

RE: 21070084-01 206 Crossing at ACC-Havenbrooke C-Roof Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: Capitol City HomesProject Name: 21070084-01Lot/Block: 206Model:Address: 144 Kensington DriveSubdivision: Crossings at Anderson CreekCity: Spring LakeState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings.

N	0	T	Data	NI-	0	T	Dete
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	145130692	M1	7/14/2021	21	l45130712	T5A	7/14/2021
2	145130693	M1GE	7/14/2021	22	l45130713	T5SE	7/14/2021
3	145130694	M2	7/14/2021	23	145130714	V1	7/14/2021
4	145130695	M2GE	7/14/2021	24	145130715	V2	7/14/2021
5	145130696	M3	7/14/2021	25	l45130716	V3	7/14/2021
6	145130697	M4	7/14/2021	26	l45130717	V4	7/14/2021
7	145130698	M4A	7/14/2021	27	l45130718	V5	7/14/2021
8	145130699	M4GE	7/14/2021	28	l45130719	V6	7/14/2021
9	145130700	M4SE	7/14/2021				
10	I45130701	T1	7/14/2021				
11	145130702	T1A	7/14/2021				
12	145130703	T1GE	7/14/2021				
13	145130704	T2	7/14/2021				
14	145130705	T2SE	7/14/2021				
15	145130706	Т3	7/14/2021				
16	l45130707	T3A	7/14/2021				
17	145130708	T3GE	7/14/2021				
18	145130709	T4	7/14/2021				
19	l45130710	T4GE	7/14/2021				
20	l45130711	T5	7/14/2021				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

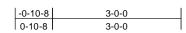
based on the parameters provided by Carter Components (Sanford, NC)).

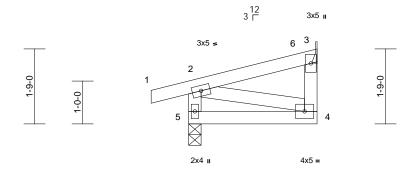
Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.




Johnson, Andrew

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	M1	Monopitch	7	1	Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:15 ID:8SifbTgoSYKzEDYFjYi9DCzB1hv-Mock Me

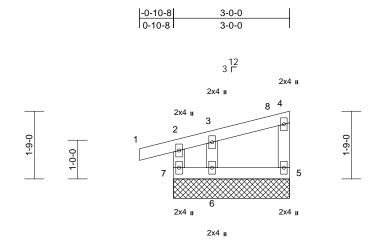
Page: 1

3-0-0

Scale = 1:26.9

00010 = 1.20.3													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.10 0.06 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103n Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf=: Plate DOL= Ct=1.10 3) Unbalanced design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-0-0 cc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o anical, 5=0-3-8 12), 5=-36 (LC 11) 2), 5=-36 (LC 11) 2), 5=181 (LC 2) apression/Maximum 7, 3-6=-34/32, 3-4=- (3-second gust) CDL=6.0psf; h=25ft S (envelope) and C. and right exposed ; C for members and hown; Lumber roof live load: Lumber 20.0 psf (ground w: Lumber DOL=1.1 xp B; Fully Exp.; seen considered for th	6) ed or 7) C 8) 9) LOA 7/41, C end er 5 nis	on the botton 3-06-00 tall b chord and an Refer to girdé Provide mecl bearing plate 3. One RT8A U truss to beari connection is forces. Gap betweer	as been designe n chord in all area y 2-00-00 wide w y other members er(s) for truss to tr nanical connectio capable of withs SP connectors re ng walls due to U for uplift only and inside of top cho ertical web shall i Standard	as where rill fit betw russ conr n (by oth tanding 5 commen IPLIFT at d does no ord bearir	a rectangle veen the bott nections. ers) of truss : lb uplift at jo ded to conne jt(s) 5. This ot consider la ng and first	om to pint				SEA 4584	ROL KAL L 44
load of 12.0) psf or 2.00 times fla non-concurrent with o	t roof load of 13.9 p									11	REWJ	OHNSIII

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.


Mon

March 10,2021

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	M1GE	Monopitch Supported Gable	1	1	I45130693 Job Reference (optional)

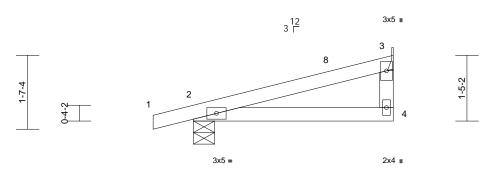
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:19 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-Mock Me

Page: 1

3-0-0

Scale = 1:29.8

LUMBER 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber TOP CHORD 2x4 SP No.2 DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground	Weight: 14 lb FT = 20%
 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 chara(ing.) REACTIONS (size) 5=3-0-0, 6=3-0-0, 7=3-0-0 Max Horiz 7=46 (LC 14) Max Horiz 5=-2 (LC 15), 6=-16 (LC 12), 7=-38 (LC 11) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-122/87, 1-2=0/19, 2-3=-51/30, 3-8=-28/19, 4=8=-21/21, 4-5=-50/45 BOT CHORD 6-7=-28/28, 5-6=-28/28 WEBS 3-6=-75/99 NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25f; cat. li; ps b; Enclosed; MWFRS for reactions show; Lumber case, second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25f; cat. li; ps b; Enclosed; MWFRS for reactions show; Lumber case, second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25f; cat. li; ps b; Enclosed; MWFRS for reactions show; Lumber case, second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25f; cat. li; ps b; Enclosed; MWFRS for reactions show; Lumber case, second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25f; cat. li; pb; Enclosed; MWFRS for reactions show; Lumber case, second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=25f; cat. li; pb; Enclosed; MWFRS for reactions show; Lumber case, second dust in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industy; Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 	SEAL 45844 March 10,2021



Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	M2	Monopitch	2	1	Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:19 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-Mock Me

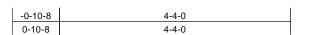
Page: 1

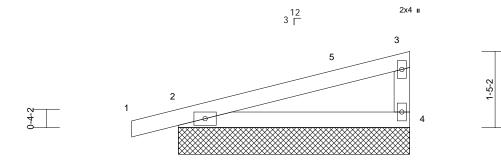
4-4-0

Scale = 1:25

		i											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
FORCES	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-4-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-5-8, 3 Max Horiz 2=36 (LC Max Grav 2=225 (LC (lb) - Maximum Com Tension 1-2=0/16, 2-8=-96/24	cept end verticals. applied or 10-0-0 oc 3= Mechanical 14) 2 11), 3=-7 (LC 15) 2 2), 3=162 (LC 2) pression/Maximum	; 8) 9) L(on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One RT16A truss to bear connection is forces. Gap between	has been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection e capable of withsta USP connectors re- ing walls due to UF s for uplift only and in inside of top chor retrical web shall no Standard	s where I fit betw uss conr (by oth anding 7 ecomme PLIFT at does n d bearin	a rectangle veen the bott nections. ers) of truss : lo uplift at jo nded to conr ; jt(s) 2. This of consider la ng and first	om to pint nect					
Vasd=103i Cat. II; Exp Exterior (2 vertical left forces & M DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10	2-4=-50/83 CE 7-10; Vult=130mph mph; TCDL=6.0psf; B(p B; Enclosed; MWFRS i) zone; cantilever left at t and right exposed;C- IWFRS for reactions s plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= =13.9 psf (flat roof snot =1.15); Category II; Ex- ed snow loads have be	CDL=6.0psf; h=25ft; S (envelope) and C-G and right exposed ; e C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 kp B; Fully Exp.;	end er 5							C	to	SEA	L

- design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.




[Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
	21070084-01	M2GE	Monopitch Supported Gable	1	1	I45130695 Job Reference (optional)

1-7-4

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:19 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-Mock Me

Page: 1

4-4-0

3x5 =

2x4 II

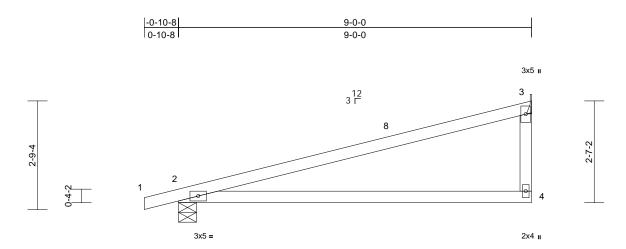
~ 4.04.0

Scale = 1:21.6					1								
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.30	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	n/a	-	n/a	999	101120	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-P								
BCDL	10.0											Weight: 16 lb	FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-4-0 oc purlins, exi Rigid ceiling directly bracing. (size) 2=4-4-0, 4 Max Horiz 2=36 (LC Max Uplift 2=-32 (LC Max Grav 2=225 (LC (lb) - Maximum Com	cept end verticals. applied or 10-0-0 o 4=4-4-0 12) 5 11), 4=-7 (LC 15) C 2), 4=162 (LC 2)	ю g	 load of 12.0 overhangs n Gable requin Gable studs This truss on the botto 3-06-00 tall chord and a One RT7A L truss to beal 		s flat roof lo ith other liv ottom chor oc. ed for a liv eas where will fit betw rs. recommen UPLIFT at	bad of 13.9 p ve loads. d bearing. e load of 20.0 a rectangle veen the both ded to conne jt(s) 4 and 2	sf on Opsf om ect					
TOP CHORD	Tension 1-2=0/13, 2-5=-51/2												
BOT CHORD	3-4=-120/105 2-4=-20/22												
NOTES	∠-+≓-∠∪/∠∠												
 Wind: ASCI Vasd=103m Cat. II; Exp Exterior (2) vertical left forces & MV DOL=1.60 p Truss desig only. For si only. For si only. For si TCLL: ASC 	E 7-10; Vult=130mph nph; TCDL=6.0psf; B(B; Enclosed; MWFR: zone; cantilever left a and right exposed;C- WFRS for reactions s plate grip DOL=1.33 gned for wind loads in tuds exposed to wind ird Industry Gable En- qualified building desig E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pa-	CDL=6.0psf; h=25ft; S (envelope) and C and right exposed; C for members and hown; Lumber the plane of the tru (normal to the face d Details as applical gner as per ANS/IT roof live load: Lumb	-C end ss), ble, PI 1.								bà	ORTH CA ORTHEESS SEA 458	L E

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

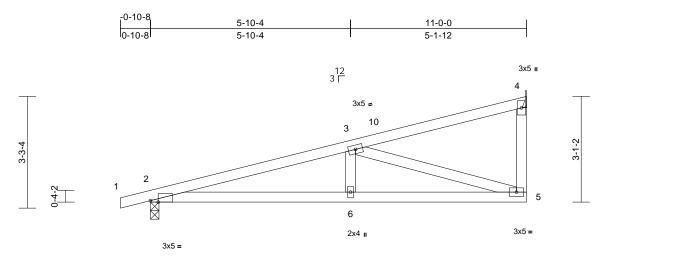
REW JOH JOHINI March 10,2021


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	М3	Monopitch	1	1	I45130696 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:19 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-Mock Me

Page: 1


818 Soundside Road Edenton, NC 27932

Loading TCLL (root) (pst) 200 Spacing Plate Grip DOL 2-0-0 1.15 CSI TC DEFL TC in (loc) I/deft U/d MT20 PLATES GRIP MT20 Snow (PV/Pg) 13.9/20.0 TCDL 10.0 Plate Grip DOL 1.15 TC 0.94 Vert(LL) -0.25 4-7 >433 240 BCD 0.0 ⁺ By Stress Incr YES Vert(CT) -0.56 4-7 >433 240 BCD 10.0 Vert(DL -0.25 4-7 >433 240 Matrix-MSH 00 Vert(CT) -0.56 4-7 >433 240 Matrix-MSH 00.0 Vert(CT) -0.56 4-7 >433 240 Matrix-MSH 00.0 Vert(CT) 0.01 2 n/a n/a Matrix-MSH 00.0 Vert(CT) 0.01 2 n/a N/a BOT CHORD 2x4 SP No.3 Structural wood sheathing directly applied or 10-0-0 oc bracing. Structural wood sheathing directly applied or 10-0-0 oc bracing. Plate capable of withstanding 16 lb uplift at joint 3. Nore RT16A USP connectors recommended to connect trues to baraing wills due to UPLIFT at j(Capita 4:00.4			-			9-0	-0					
TCLL (root) 20.0 Snow (Pl/Pg) 13.9/20.0 13.9/20.0 ECDL Plate Grip DOL 1.15 Lumber DOL TC 0.94 BC Vert(LL) -0.25 4.7 >143 240 MT20 24/190 BCLL 0.0 0.0 Cde IRC2015/TPI2014 BC 0.73 WB Vert(LT) -0.25 4.7 >143 240 Weight: 32 lb FT BCDL 0.00 Cde IRC2015/TPI2014 Matrix-MSH Weight: 32 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.1 * * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle *	Scale = 1:29.4		1			i						1	
Snow (Pf/Pg) 13.9/20.0 TCDL Lumber DOL 1.15 Rep Stress Incr BC 0.73 WB Vert(CT) -0.56 4-7 >180 BCLL 0.00 Additional set in the point of thepoint of thepoint of thepoint of the point of thepoint of the poi	•	u ,					0.04			. ,		-	•
TCDL 10.0 BCLL Rep Stress Incr YES WB 0.00 Matrix-MSH Horz(CT) 0.01 2 n/a n/a BCDL 10.0 10.0 Cde IRC2015/TPI2014 WB 0.00 Horz(CT) 0.01 2 n/a n/a UMBER 10.0 2x4 SP No.1 Structural wood sheating directly applied or 10-00 oc bracing. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 uide will fit between the bottom chord in all areas where a rectangle 3-06-00 uide will fit between the bottom chord in all areas where a rectangle 3-06-00 uide will fit bottom chord in all areas where a rectangle 3-06-00 uide will fit bottom chord in all areas where a rectangle 3-06-00 uide will fit bottom chord in all areas where a rectangle 3-06-00 uide will fit bottom chord in all areas where a rectangle 3-06-00 uide will fit bottom chord in all areas where a rectangle 3-06-00 trus to the bearing plate capable of withstanding 16 lb uplift at joint 3. 6) Nefer to girder(s) for truss to truss to most connections. 7) Provide mechanical connection flow others of truss to bearing walls due to UPLIFT at It(s) 2. This connection is for uplift only and does not consider lateral forces. 6) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at It(s) 2. This connection is for uplift only and does tool 500in. LOAD CASE(S) Standard TOP CHORD 1-2-00/16, 2-3-2-020/49, 3-3-8-73/65, 3-4-0/17	()							· · /				MIZ0	244/190
BCLL 0.0* Code IRC2015/TPI2014 Matrix-MSH Weight: 32 lb FT = 20% LUMBER 10.0	(0)					-		· · ·				1	
LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 1-11-14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-5-8, 3= Mechanical Max Horiz Max Uplift 2=-36 (LC 11), 3=-16 (LC 15) Max Grav 2=40-5-8, 3= Mechanical Max Horiz Max Uplift 2=-36 (LC 11), 3=-16 (LC 15) Max Grav 2=40-5-8, 3= Mechanical Max Horiz FORCES (Ib) - Maximum Compression/Maximum Tension Top CHORD 1-2=0/16, 2-8=-250/49, 3-8=-73/65, 3-4=-0/117 BOT CHORD 2-4=-119/242 ADAT CASE(S) Standard NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; B=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end Standard				IRC201	5/TPI2014	Matrix-MSH		- (-)					
TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BACING 306-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BRACING Structural wood sheathing directly applied or 1-11-14 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 1-0-0 oc bracing. REACTIONS Size) 2=0-5-8, 3 - Mechanical maximum to pression/Maximum tension REACTIONS (size) 2=0-5-8, 3 - Mechanical maximum compression/Maximum tension FORCES (b) Maximum Compression/Maximum tension 3-06 - 00 tall by 2-00-00 wide will fit between the bottom chord in all areas where a rectangle TOP CHORD 2x4 SP No.1 Size (L) fit (L) are fit (LC 15) max for 2 = 272 (LC 14) Max Uplift 2=-36 (LC 11), 3=-16 (LC 15) max for 2 = 2-0/49, 1.2 = 3-352 (LC 2) One RT16A USP connectors recommended to connect trus to bearing walls due to UPLIFT at it(s) 2. This connection is for uplift only and does not consider lateral forces. TOP CHORD 1-2=0/16, 2-8=-250/49, 3-8==73/65, 3-4=0/117 Soft 2-8=-70/49, 3-8=-73/65, 3-4=0/117 BOT CHORD 2-4=-119/242 CAD CASE(S) Standard NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) vasd=103mph; TCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end Soft CAD CASE(S) <	BCDL	10.0										Weight: 32 lb	FT = 20%
 vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15) Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. March 10,2021 	TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF BRACING TOP CHORD Structi 1-11-1 BOT CHORD Rigid (bracin REACTIONS (size) Max HO Max Up Max Gri FORCES (lb) - N Tensic TOP CHORD 1-2=00 BOT CHORD 2-4=-1 NOTES 1) Wind: ASCE 7-10; Vasd=103mph; TC Cat. II; Exp B; Enc Exterior (2) zone; c vertical left and rig forces & MWFRS 1 DOL=1.60 plate gr 2) TCLL: ASCE 7-10; DOL=1.15 Plate D snow); Pf=13.9 psl Plate DOL=1.15); 4 Ct=1.10 3) Unbalanced snow design. 4) This truss has bee load of 12.0 psf or	P No.1 P No.3 tural wood she 14 oc purlins, of ceiling directly ng. 2=0-5-8, 3 oriz 2=72 (LC Oblift 2=-36 (LC Maximum Com on /16, 2-8=-250/- /117 119/242 ; Vult=130mph CDL=6.0psf; Bf Closed; MWFR: cantilever left a pht exposed;C- for reactions s rip DOL=1.33 ; Pr=20.0 psf (DOL=1.15); Pg of (flat roof snov Category II; E) r loads have be en designed for 2.00 times flat	except end verticals. applied or 10-0-0 oc B= Mechanical 14) 11), 3=-16 (LC 15) 22), 3=352 (LC 2) pression/Maximum 49, 3-8=-73/65, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; er C for members and hown; Lumber =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; en considered for this greater of min roof lin roof load of 13.9 psf	for 7 8 9 L Cnd r s vve	 on the botton 3-06-00 tall li chord and an Refer to gird Provide mec bearing plate 3. One RT16A truss to bear connection is forces. Gap betwee diagonal or v 	m chord in all areas by 2-00-00 wide wil by other members. er(s) for truss to tru- thanical connection e capable of withsta USP connectors re- ring walls due to UF s for uplift only and n inside of top chor- vertical web shall no	s where I fit betw uss conr (by oth anding 1 ecomme PLIFT at does no d bearin	a rectangle veen the botto nections. ers) of truss t 6 lb uplift at j nded to conn jt(s) 2. This ot consider la ng and first	om ooint ect			REW J	EER. OHNSON

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	M4	Monopitch	3	1	I45130697 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:20 ID:5qqP09i2_9ahUXierykdldzB1ht-Mock Me

	5-10-4	11-0-0	J
	5-10-4	5-1-12	
Scale = 1:33.7			
Plate Offsets (X, Y): [2:0-2-12,Edge]			

Plate Offsets (X, Y): [2:0-2-12,Edge]											-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.46 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 -0.01	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-6-11 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=88 (LC Max Uplift 2=-38 (LC Max Grav 2=489 (LC (lb) - Maximum Comp Tension 1-2=0/16, 2-3=-961/2 4-10=-54/39, 4-5=-65 2-6=-350/914, 5-6=-3 3-6=0/137, 3-5=-931.	<pre>kcept end verticals. applied or 9-9-13 oc = Mechanical 14) 11), 4=-20 (LC 15) 2), 4=432 (LC 2) pression/Maximum 286, 3-10=-81/26, 3/311 350/914</pre>	c 6) 7) 8) 9)	load of 12.0 overhangs r * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide mee bearing plat 4. One RT16A truss to bea connection i forces.	as been designed f psf or 2.00 times f non-concurrent with has been designed m chord in all area by 2-00-00 wide win y other members. ter(s) for truss to tr chanical connection e capable of withst USP connectors ru- ring walls due to U s for uplift only and n inside of top cho vertical web shall ru- standard	lat roof lin n other lin d for a liv is where ill fit betv uss conn n (by oth canding 2 ecomme PLIFT and d does n rd bearin	bad of 13.9 p ve loads. ve load of 20. a rectangle veen the both nections. ers) of truss 20 lb uplift at unded to com t jt(s) 2. This of consider la ng and first	osf on Opsf tom to joint nect					
Vasd=103 Cat. II; Ex	CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone: cantilever left a	CDL=6.0psf; h=25ft; 6 (envelope) and C-	С							ſe	- Int	NITH CA	ROLIN

- Vasd=103mph; 1CDL=6.0pst; BCDL=6.0pst; h=25tt; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	M4A	Monopitch	3	1	I45130698 Job Reference (optional)

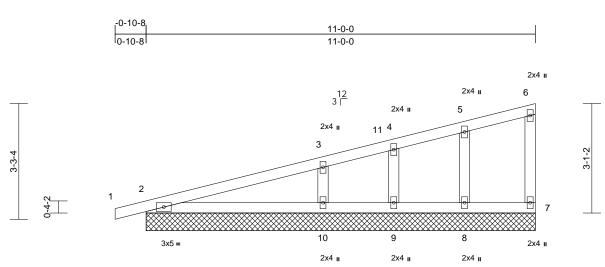
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:20 ID:5qqP09i2_9ahUXierykdIdzB1ht-Mock Me

-0-10-8 11-0-0 5-10-4 5-10-4 5-1-12 0-10-8 6x8 = 12 3 Г 4 2x4 💊 10 3 3-1-2 3-3-4 2 0-4-2 비 5 $\left|\right\rangle$ 6 2x4 II 3x5 = 3x5 =

Scale = 1:35.3

Plate Offsets (X, Y):	[2:0-2-12.Edge], [4:0-3-0.Edge]	

Plate Offsets	(X, Y): [2:0-2-12,Edge], [4:0-3-0,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.43 0.30 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.09 0.00	(loc) 6-9 6-9 6	l/defl >999 >920 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exit Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=88 (LC Max Uplift 2=-30 (LC (LC 15) Max Grav 2=304 (LC (LC 2) 	cept end verticals. applied or 10-0-0 oc 4= Mechanical, 6=0-3 14) 11), 4=-7 (LC 12), 6 2 2), 4=88 (LC 22), 6	6) 7) 8-8 5=-22 ⁸⁾	load of 12.0 overhangs n * This truss I on the botto 3-06-00 tall I chord and at Refer to gird Provide mee bearing plate 6 and 7 lb up One RT16A truss to bear connection is forces.	as been designed for psf or 2.00 times fla on-concurrent with has been designed m chord in all areas by 2-00-00 wide will ny other members. er(s) for truss to tru- hanical connection e capable of withsta blift at joint 4. USP connectors re ing walls due to UP s for uplift only and n inside of top chord	at roof I other Ii for a liv where I fit betw ss coni (by oth nding 2 comme LIFT a does n	bad of 13.9 p ve loads. re load of 20. a rectangle veen the bott nections. ers) of truss 22 lb uplift at ended to comr t jt(s) 2. This ot consider la	osf on Opsf tom to joint nect					
FORCES	 (lb) - Maximum Com Tension 1-2=0/16, 2-3=-223/3 4-10=-100/127, 4-5= 	84, 3-10=-108/75,	L	diagonal or v DAD CASE(S)	vertical web shall no Standard	ot exce	ed 0.500in.						
BOT CHORD WEBS	2-6=-168/203, 5-6=- 3-6=-430/257, 4-6=-											20111	ю.
NOTES 1) Wind: AS Vasd=10: Cat. II; E: Exterior (vertical le forces & I DOL=1.6: 2) TCLL: AS DOL=1.1: snow); Pf Plate DO Ct=1.10	SCE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B4 xp B; Enclosed; MWFR 2) zone; cantilever left a fft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33 SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= [=13.9 psf (flat roof snot L=1.15); Category II; E2 ced snow loads have be	nd Fr							Y THINK		SEA 4584 VORTH CA SEA 4584	L H4 H4SUIT	


March 10,2021

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	M4GE	Monopitch Supported Gable	1	1	I45130699 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:20 ID:5qqP09i2_9ahUXierykdIdzB1ht-Mock Me

Scale = 1:32.6			1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-SH	0.27 0.16 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=11-0-0, 9=11-0-0, Max Horiz 2=87 (LC Max Uplift 2=-24 (LC (LC 15), 9 15) Max Grav 2=221 (LC	applied or 10-0-0 oc 7=11-0-0, 8=11-0-0, 10=11-0-0 12) C 11), 7=-2 (LC 12), 8 3=-5 (LC 11), 10=-23	4) 5) (LC 7) =199 9)	only. For s see Standa or consult or TCLL: ASC DOL=1.15 snow); Pf= Plate DOL= Ct=1.10 Unbalancer design. This truss h load of 12.0 overhangs All plates a Gable stud * This truss on the botto	aned for wind load tuds exposed to rd Industry Gable [ualified building E 7-10; Pr=20.0 Plate DOL=1.15) 13.9 psf (flat roof -1.15); Category d snow loads hav has been designe p sf or 2.00 time non-concurrent v re 2x4 MT20 unk ires continuous b s spaced at 2-0-0 has been design pom chord in all ar by 2-00-00 wide	wind (norm e End Deta designer a: psf (roof liv ; Pg=20.0 ; snow: Lurr II; Exp B; F re been cor ed for great s flat roof le with other lin ess otherwi bottom chor) oc. ed for a liv eas where	al to the face ils as applica s per ANSI/T e load: Lumt sof (ground iber DOL=1. 'ully Exp.; 'ully Exp.; 'asidered for t er of min roo bad of 13.9 p ve loads. se indicated. d bearing. e load of 20. a rectangle	e), able, PI 1. ber 15 this f live osf on Opsf					
	(lb) - Maximum Com Tension		10	chord and a Provide me	any other membe	ers. tion (by oth	ers) of truss	to					
TOP CHORD	1-2=0/13, 2-3=-144/	87, 3-11=-85/42,		bearing pla	te capable of with	nstanding 2	4 ID uplift at	joint					117.

<u>11-0</u>-0

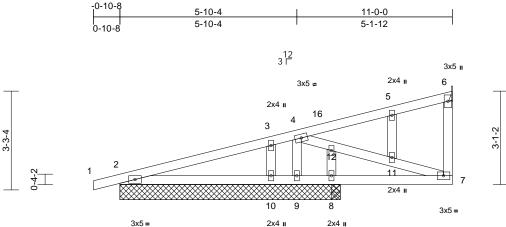
- 4-11=-80/50, 4-5=-71/55, 5-6=-49/44, 6-7=-43/32 BOT CHORD 2-10=-44/49, 9-10=-44/49, 8-9=-44/49, 7-8=-44/49 WEBS 5-8=-145/99, 4-9=-48/38, 3-10=-285/177
- NOTES

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 11) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7, 8, 9, and 10. This connection is for uplift only and does not consider lateral forces.

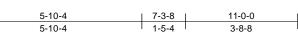
LOAD CASE(S) Standard

2.

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	M4SE	Monopitch Structural Gable	1	1	I45130700 Job Reference (optional)

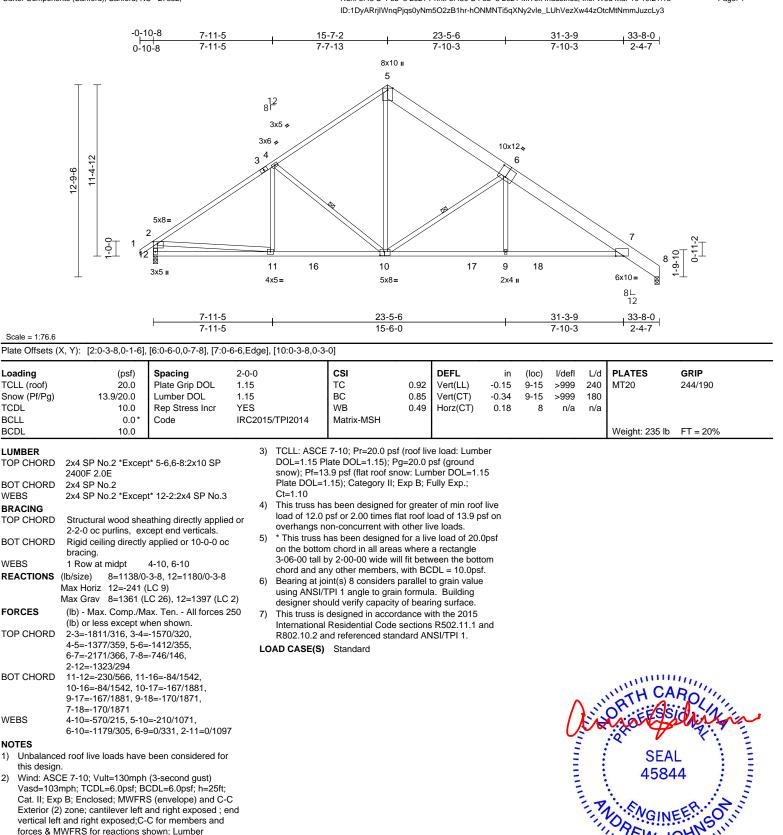
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:21 ID:Z1OoEVjgITiY5hHqPgFsrrzB1hs-Mock Me

Page: 1

2x4 II

2x4 🛛

Scale = 1:38.1


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.24 0.23 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-15 10-15 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	0000	1102010	, 11 12011								Weight: 53 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=7-3-8, 9=7-3-8, Max Horiz 2=88 (LC Max Uplift 2=-31 (L 8=215 (L 10=441 ((lb) - Maximum Con Tension 1-2=0/16, 2-3=-103, 4-16=-71/32, 5-16= 6-7=-22/85 2-10=-77/98, 9-10= 7-8=-77/71 4-9=-41/30, 4-12=-5	 applied or 10-0-0 oc 6= Mechanical, 8=0-10=7-3-8, 13=7-3-8 14), 13=88 (LC 14) 11), 6=-14 (LC 15), LC 2), 6=-157 (LC 22), C 2), 9=-38 (LC 15), LC 2), 13=-231 (LC 2) appression/Maximum 49, 3-4=-89/49, 65/44, 5-6=-52/44, 5-6=-52/44, 5-6=-52/44, 5-6=-52/44, 104/72, 8-12=-115/8 a (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- 	3) d or 3-8, 5)) 6) 7) 8) 9) 10) 0, 11) LO	only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 y overhangs n Gable studs : * This truss h on the botton 3-06-00 tall b chord and ar Refer to girdú Provide mect bearing plate 6, 31 lb uplift One RT8A U truss to bearis forces. Gap betweer	ed for wind loads ds exposed to win 1 Industry Gable E alified building de 7-10; Pr=20.0 ps ate DOL=1.15); P 3.9 psf (flat roof sn .15); Category II; snow loads have I s been designed 1 bsf or 2.00 times f on-concurrent with spaced at 2-0-0 o as been designed n chord in all area y 2-00-00 wide w y other members er(s) for truss to tr nanical connection capable of withst at joint 2 and 31 I SP connectors re ng walls due to U for uplift only and i nside of top cho ertical web shall r Standard	Ind (norm ind Detains signer as f (roof living g=20.0 provided in the gestimation of living some composition of living the provided in the some composition of living the the the the some composition of living the the the the the some composition of living the the the the the the some composition of living the the the the the the the the some composition of the the the the the some composition of the the the the the the some composition of the the the the the the the the the some composition of the	al to the face ils as applica is per ANS/IT re load: Lumb sof (ground aber DOL=1.1 iully Exp.; asidered for the er of min rool bad of 13.9 p ve loads. re load of 20.1 a rectangle veen the bott a rectangle veen the rectangle veen t	e), ble, PI 1. ber 15 his f live sf on Opsf om to joint ect		0	L'in	NY TH CA	ROLINI
vertical left forces & M	and right exposed;C WFRS for reactions s plate grip DOL=1.33	C for members and									and a	NOREW J	EER. ON

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T1	Roof Special	1	1	I45130701 Job Reference (optional)

Run: 8 43 S Feb 3 2021 Print: 8 430 S Feb 3 2021 MiTek Industries Inc. Wed Mar 10 10:21:15

Page: 1

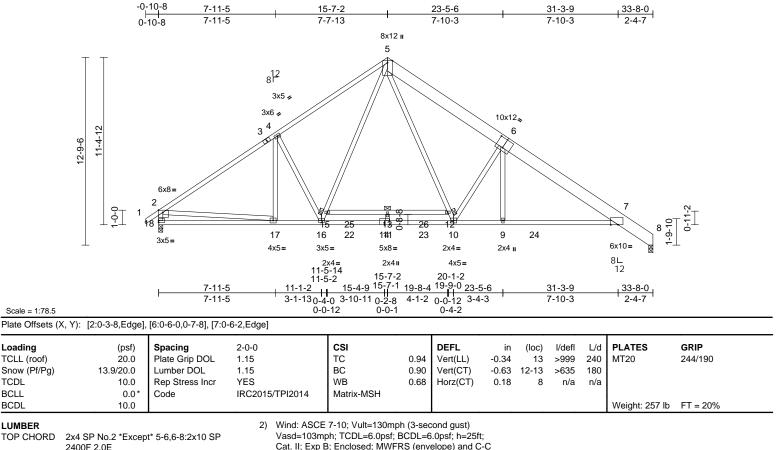
forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

BCDL

1)

2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



mm March 10,2021

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T1A	Roof Special	2	1	Job Reference (optional)

Run; 8,43 S Feb 12 2021 Print: 8,430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:21 ID:zc3wsXIY2O46z80P4opZTTzB1hp-Mock Me

Page: 1

	24001 2.02
BOT CHORD	2x4 SP No.1 *Except* 15-12:2x4 SP No.2
WEBS	2x4 SP No.2 *Except* 18-2,11-13:2x4 SP
	No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc

Loading

TCDL

BCLL

BCDL

WEBS

NOTES

LUMBER

TCLL (roof)

BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing. Except:
	6-0-0 oc bracing: 12-15
REACTIONS	(size) 8=0-3-8, 18=0-3-8
	Max Horiz 18=-241 (LC 9)
	Max Grav 8=1513 (LC 26), 18=1550 (LC 25)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/43, 2-3=-2037/234, 3-4=-1821/238,
	4-5=-1917/339, 5-6=-2239/358,
	6-7=-2477/277, 7-8=-830/119,
	2-18=-1463/243
BOT CHORD	17-18=-220/614, 16-17=-15/1750,
	16-22=0/1355, 14-22=0/1355, 11-14=0/1355,
	11-23=0/1354, 10-23=0/1354, 9-10=-88/2151,

9-24=-89/2147, 7-24=-89/2147, 15-25=-81/0,

13-25=-81/0, 13-26=-79/0, 12-26=-79/0

4-17=-123/47, 6-9=0/106, 2-17=0/1259, 4-16=-434/248, 15-16=-125/692,

5-15=-89/824, 5-12=-128/1355,

10-12=-164/1223, 6-10=-990/317,

DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on

overhangs non-concurrent with other live loads * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

chord and any other members, with BCDL = 10.0psf. 6) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

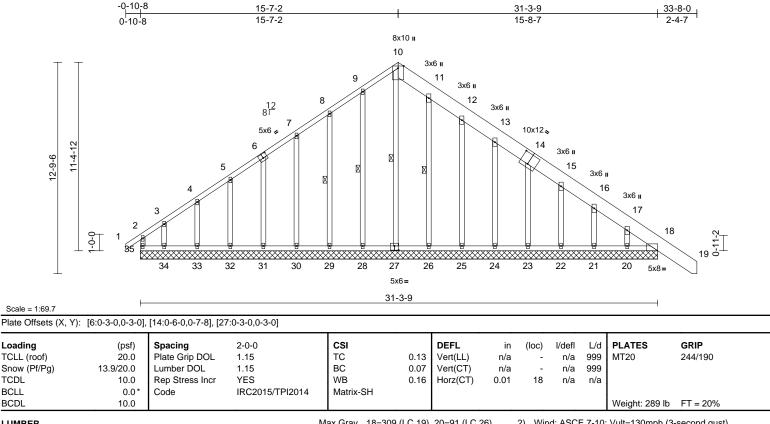
LOAD CASE(S) Standard

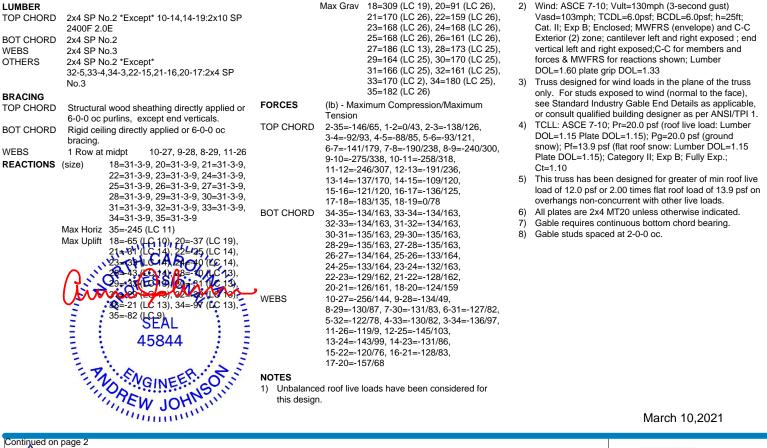
818 Soundside Road Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

11-13=-120/0

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T1GE	Common Supported Gable	1	1	I45130703 Job Reference (optional)


TCDL


BCLL

BCDL

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:22 ID:FMp59DAAMBiC?FXPbf5MGizB0kb-Mock Me

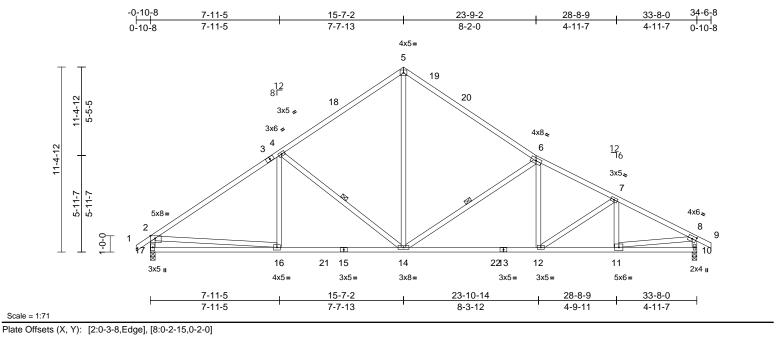
Page: 1

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof	
21070084-01	T1GE	Common Supported Gable	1	1	Job Reference (optional)	145130703

- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- chord and any other members.
 10) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 35, 28, 29, 30, 31, 32, 33, 34, 25, 24, 23, 22, 21, 20, and 18. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:22 ID:FMp59DAAMBiC?FXPbf5MGizB0kb-Mock Me


Page: 2

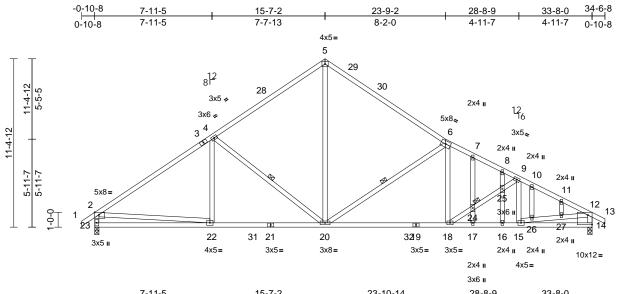
Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T2	Roof Special	3	1	I45130704 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:23 ID:v_BhHCmpa?KqCS9nBDr1YuzB1hn-Mock Me

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T	rpi2014	CSI TC BC WB Matrix-MSH	0.94 0.69 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.27 0.06	(loc) 14-16 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 ET = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x4 SP No.2 *Excep 17-2,10-8,11-7,11-8: Structural wood she except end verticals Rigid ceiling directly bracing.	t* 2x4 SP No.3 athing directly applie applied or 10-0-0 oc 4-14, 6-14 17=0-3-8 LC 13) : 16)	d, 3) -	Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl DOL=1.15 Pl Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha oad of 12.0 p	7-10; Vult=130m ph; TCDL=6.0psf; s; Enclosed; MWF one; cantilever le nd right exposed; FRS for reactions ate grip DOL=1.3 7-10; Pr=20.0 ps ate DOL=1.15); F s.9 psf (flat roof sr .15); Category II; snow loads have s been designed ss for 2.00 times with	BCDL=6 RS (env ft and rig C-C for r shown; 3 f (roof liv g=20.0 how: Lun Exp B; F been col for great lat roof l	.0psf; h=25ft elope) and C ht exposed ; nembers and Lumber e load: Lumb ber DOL=1.1 ully Exp.; asidered for t er of min rool pad of 13.9 p	-C end l ber 15 his f live				Weight: 200 ib	11 - 2078
FORCES TOP CHORD	 S (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum (basimum content of the local of the l							Le stri	WITH CA	ROLAT			
BOT CHORD	16-17=-177/565, 16- 15-21=-116/1521, 14 14-22=-184/1668, 12 12-13=-184/1668, 11 10-11=-50/211	4-15=-116/1521, 3-22=-184/1668,		D CASE(S)	Standard					U	ì	SEA	L
WEBS NOTES 1) Unbalance this design	4-16=0/188, 4-14=-5 6-14=-823/285, 6-12 7-12=-192/112, 7-11 8-11=-228/1561 ed roof live loads have		,							1115	N. A.	4584	EP. ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 10,2021

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T2SE	Roof Special Structural Gable	2	1	I45130705 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:23 ID:KZtpvEphtwiP3vuMtLOkAXzB1hk-Mock Me

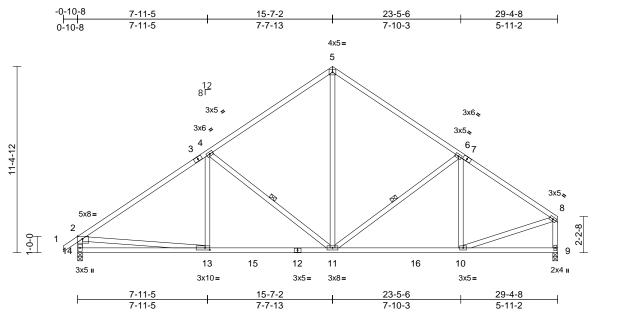
Page: 1

	1110	13-1-2	23-10-14	28-8-9	33-8-0	
Scale = 1:78	7-11-5	7-7-13	8-3-12	4-9-11	4-11-7	1

Plate Offsets (X, Y): [2:0-3-8,Edge], [14:Edge,0-7-13]

		· · ·											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.92	Vert(LL)	-0.10	. ,	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.26	18-20	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.75	Horz(CT)	0.06	14	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 221 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP 2400F 2.0E No.2 2x4 SP No.2 2x4 SP No.2 *Excep SP No.3 2x4 SP No.3 Structural wood she 3-6-6 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 24 (size) 14=0-3-8, Max Horiz 23=-240 (Max Uplift 14=-5 (LC Max Grav 14=1396 i (lb) - Maximum Com Tension	t* 23-2,14-12,15-9:2x athing directly applied cept end verticals. applied or 10-0-0 oc 4-20, 6-20 23=0-3-8 LC 13) 16) (LC 2), 23=1396 (LC pression/Maximum //334, 3-4=-1548/337, 8=-1233/376, 30=-1209/340, =-1854/414, -1945/391, 11=-2005/404, 2-13=0/34, 14=-1331/338 31=-116/1521, 0-21=-1	4 i or N 1) 2) 2)	OTES) Unbalanced this design.) Wind: ASCE Vasd=103m Cat. II; Exp I Exterior (2) : vertical left a forces & MW DOL=1.60 p) Truss design only. For st see Standar or consult qu) TCLL: ASCE DOL=1.15 F snow); Pf=1 Plate DOL=: Ct=1.10) Unbalanced design.) This truss ha load of 12.0 overhangs n) Truss to be braced agaii	4-22=0/189, 4-20=- 6-20=-826/288, 6-18 18-24=-202/109, 24 9-25=-192/102, 9-19 15-26=-215/1491, 2 12-27=-214/1457, 7 17-24=-67/12, 8-25: 10-26=-32/221, 11-2 roof live loads have 57-10; Vult=130mph ph; TCDL=6.0psf; B B; Enclosed; MWFR zone; cantilever left and right exposed; C- VFRS for reactions s late grip DOL=1.33 ned for wind loads ir uds exposed to wind d Industry Gable En- ualified building desi 57-10; Pr=20.0 psf 19ate DOL=1.15); Pg 3.9 psf (flat roof sno 1.15); Category II; E snow loads have be as been designed fo psf or 2.00 times fla ion-concurrent with e 2x4 MT20 unless of fully sheathed from spaced at 2-0-0 oc.	8=0/33 -25=-1 5=-373 -25=-1 -24=-6 =0/34, 27=-20 e been in CCDL= C CCDL= <u>C</u> CCDL= <u>C</u> CCDL= <u>C</u>	0, 2-22=-7/105 94/104, /106, 212/1454, 6/42, 16-25=0/49, /24 considered for cond gust) 5.0psf; h=25ft; elope) and C- ht exposed; e nembers and Lumber ane of the trus ial to the face) ils as applicab s per ANSI/TP re load: Lumber ane of the trus is as applicab s per ANSI/TP re load: Lumber ane of the trus is as applicab s per ANSI/TP re load: Lumber ane of the trus is as applicab s per ANSI/TP re load: Lumber ane of the trus is as applicab s per ANSI/TP re load: Lumber ane of the trus s and the trus ane of the trus is as applicab s per ANSI/TP re load: Lumber and the trus and the trus is as applicab s per ANSI/TP re load: Lumber and the trus and the trus is as applicab s per ANSI/TP re load: Lumber and the trus and the trus	C end ss, jole, il 1. er 5 is live	on t 3-00 cho 11) One trus con forc	the botto 6-00 tall rd and a e RT8A t s to bea nection i	m cho by 2-0 ny oth JSP ca ring was s for u Star	sen designed for rd in all areas wh 0-00 wide will fit er members, with onnectors recomm alls due to UPLIF plift only and doe ndard	a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. mended to connect T at jt(s) 14. This is not consider lateral
												March	10 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 10,2021

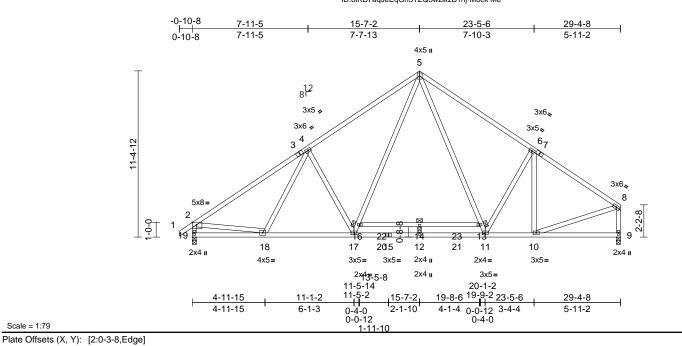
Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	ТЗ	Common	5	1	I45130706 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:24 ID:R39kehzrpwLZ7vOs7a7nCGzB1hX-Mock Me

Page: 1

Scale = 1:70.5 Plate Offsets (X, Y): [2:0-3-8,Edge], [13:0-3-8,0-1-8]

	, r). [2.0-5-0,∟uge],	[10.0 0 0,0-1-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.90 0.56 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 10-11 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 182 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 4-11, 6-11 14=0-3-8 _C 12)	ed or 4)	DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall b	57-10; Pr=20.0 psi late DOL=1.15); P 3.9 psf (flat roof sn 1.15); Category II; as been designed f psf or 2.00 times fl on-concurrent with as been designed n chord in all area by 2-00-00 wide wi y other members, Standard	g=20.0 ow: Lum Exp B; F or great lat roof I other li for a liv s where Il fit betv	osf (ground her DOL=1.1 Fully Exp.; er of min roof bad of 13.9 p ve loads. re load of 20.0 a rectangle veen the both	15 f live sf on 0psf om					
FORCES	(lb) - Maximum Com		<u>~</u>)										
TOP CHORD	4-5=-1081/312, 5-6=-1083/308, 6-7=-1089/248, 7-8=-1259/245, 2-14=-1152/268, 8-9=-1114/211												
BOT CHORD	13-14=-259/543, 13- 12-15=-194/1310, 1 11-16=-156/988, 10- 9-10=-28/59	1-12=-194/1310,										TH CA	Rojin
WEBS	4-13=0/202, 4-11=-5 6-11=-355/177, 6-10 8-10=-135/1010	,	,							(to	of the so	Hintin
NOTES												· × · · ·	
1) Unbalance this design	ed roof live loads have n.	been considered for	r									SEA	• •
Vasd=103 Cat. II; Exp Exterior (2 vertical left forces & N	CE 7-10; Vult=130mph imph; TCDL=6.0psf; Bi p B; Enclosed; MWFR 2) zone; cantilever left at t and right exposed;C- IWFRS for reactions s 0 plate grip DOL=1.33	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and	С							102	N. H. H.	4584	EER. ON



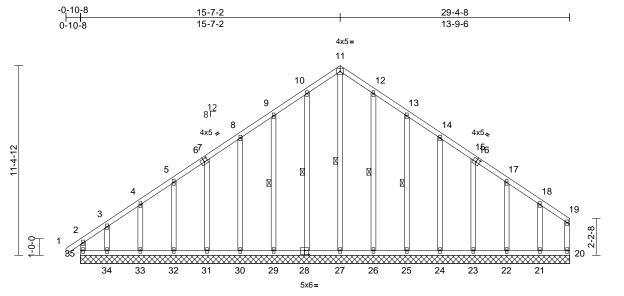
minin March 10,2021

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	ТЗА	Common	5	1	I45130707 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:25 ID:olRB7aqJeEqGh3TZQ3wzikzB1hj-Mock Me

Page: 1

Scale = 1:79


1 1010 0110010 ((i, i): [2:0 0 0;2ag0]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 19-2,9-8,18-2,12-14: Structural wood she	nt* :2x4 SP No.3 athing directly applied	2	Vasd=103m Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 p	CSI TC BC WB Matrix-MSH 7-10; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF zone; cantilever lef ind right exposed; /FRS for reactions late grip DOL=1.3; 27_10; PC 20.0 pc	BCDL=6 RS (env ft and rig C-C for r shown; 3	6.0psf; h=25ft elope) and C ht exposed ; nembers and Lumber	-C end I	(loc) 12-17 12-17 9	l/defl >999 >610 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 202 lb	GRIP 244/190 FT = 20%	
	bracing, Except: 2-2-0 oc bracing: 12 6-0-0 oc bracing: 13 (size) 9=0-3-8, Max Horiz 19=248 (L	applied or 10-0-0 oc -17. -16 19=0-3-8 _C 10)	4	DOL=1.15 P snow); Pf=1: Plate DOL= Ct=1.10) This truss ha load of 12.0 overhangs n	7-10; Pr=20.0 ps late DOL=1.15); P 3.9 psf (flat roof sn 1.15); Category II; as been designed i psf or 2.00 times f on-concurrent with as been designed	g=20.0 how: Lun Exp B; F for great fat roof I h other li	osf (ground ther DOL=1. Fully Exp.; er of min root bad of 13.9 p ve loads.	15 f live sf on						
FORCES	(lb) - Maximum Com Tension 1-2=0/43, 2-3=-1670 4-5=-1590/306, 5-6= 6-7=-1258/191, 7-8=	lax Grav 9=1311 (LC 26), 19=1353 (LC 25) 5) * This truss has been designed for a live load of 20.0psf (lb) - Maximum Compression/Maximum on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom Tension 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 1-2=0/43, 2-3=-1670/190, 3-4=-1454/194, LOAD CASE(S) Standard												
BOT CHORD	12-21=0/1057, 11-2	-18=-143/1485, 0=0/1057, 12-15=0/10 1=0/1057, -10=-24/67, 16-22=-7	,							(2 1/2	ORTH CA	ROLL	مير
WEBS	16-17=-127/704, 5-1 5-13=-53/604, 11-13	=0/1010, 4-17=-428/20 16=-90/836, 3=-90/472, 6-11=-211, 90/1142, 12-14=-11	/227,									SEA 4584	L 14	WILLING .
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									N. A.	4584	EER OHNS 10,2021	IIIII.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T3GE	Common Supported Gable	1	1	I45130708 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:25 ID:Gy_aKwqxOYz7ID2I_mRCFyzB1hi-Mock Me

Page: 1

20	10	

Scale = 1:69.2

Plate Offsets (X, Y): [6:0-2-8,0-2-4], [16:0-2-8,0-2-4], [28:0-3-0,0-3-0]

				-					-		-		-		-
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.25	Vert(LL)	n/a		-	n/a	999	MT20	244/190
Snow (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a		-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.00	2	20	n/a	n/a		
BCLL		0.0*	Code	IRC20	15/TPI2014	Matrix-R									
BCDL		10.0												Weight: 230 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP N 2x4 SP N 2x4 SP N	lo.2 lo.3 lo.2 *Excep	t* 7,21-18:2x4 SP No.3		ORCES	(lb) - Maximum Con Tension 2-35=-222/166, 1-2: 3-4=-215/204, 4-5= 6-7=-176/205, 7-8= 9-10=-287/334, 10- 11-12=-330/384, 12	=0/43, 2 -210/20 -187/21 11=-33 -13=-2	2-3=-269/249,)8, 5-6=-196/1 4, 8-9=-235/2 0/384, 89/335,	93, 272,	5)	DOL= snow) Plate Ct=1. This t load c	=1.15 F); Pf=1 DOL= 10 russ ha of 12.0	Plate D 3.9 ps 1.15); as bee psf or	OL=1.15); Pg=20 f (flat roof snow: Category II; Exp en designed for g 2.00 times flat ro	Lumber DOL=1.15 B; Fully Exp.; reater of min roof live pof load of 13.9 psf on
TOP CHORD			athing directly applied cept end verticals.	lor		13-14=-237/273, 14 15-16=-120/157, 16	-17=-1	40/150,		6)	All pla	ates ar	e 2x4 l		erwise indicated.
BOT CHORD	Rigid ceil bracing.	ling directly	applied or 6-0-0 oc	В	BOT CHORD	17-18=-92/99, 18-19 34-35=-48/51, 33-3 31-32=-48/51, 30-3	4=-48/5	51, 32-33=-48/	/51,	8)	Truss	to be	fully sł		e face or securely
WEBS	1 Row at		11-27, 10-28, 9-29, 12-26, 13-25			28-29=-48/51, 27-28 25-26=-47/50, 24-29	8=-47/5	0, 26-27=-47/	/50,	9)	Gable	e studs	space	ed at 2-0-0 oc.	.e. diagonal web). a live load of 20.0psf
REACTIONS	Max Horiz	23=29-4-{ 26=29-4-{ 32=29-4-{ 35=29-4-{ 35=29-4-{ 35=248 (L 20=-20 (L 22=-23 (L 24=-28 (L 26=-18 (L	.C 10) C 10), 21=-63 (LC 14 C 14), 23=-32 (LC 14 C 14), 25=-36 (LC 14 C 14), 27=-50 (LC 12	I-8, V I-8, I-8, I-8, I-8, I-8, I-8, I-8, I-8,	this design.	22-23=-47/50, 21-22 11-27=-353/244, 10 9-29=-135/91, 8-30 5-32=-127/82, 4-33 12-26=-128/65, 13- 14-24=-126/80, 15- 17-22=-127/80, 18- d roof live loads have	2=-47/5 -28=-1 =-126/5 =-129/5 25=-13 23=-12 21=-13 e been (50, 20-21=-47/ 37/65, 50, 7-31=-128/ 33, 3-34=-154/ 5/91, 8/82, 7/93 considered for	/50 /82, /110,	11)	on the 3-06-0 chord Provio	e botto 00 tall and a de meo	m cho by 2-0 ny oth chanica e capa	rd in all areas wh 0-00 wide will fit er members. al connection (by	ere a rectangle between the bottom others) of truss to ng 21 lb uplift at joint
$\begin{array}{c} 26=-18 \ ({\rm LC}\ 14),\ 23=-30 \ ({\rm LC}\ 14),\ 23=-30 \ ({\rm LC}\ 14),\ 23=-30 \ ({\rm LC}\ 12),\ 28=-21 \ ({\rm LC}\ 13),\ 29=-36 \ ({\rm LC}\ 13),\ 30=-29 \ ({\rm LC}\ 13),\ 31=-29 \ ({\rm LC}\ 13),\ 32=-33 \ ({\rm LC}\ 13),\ 33=-16 \ ({\rm LC}\ 13),\ 34=-161 \ ({\rm LC}\ 10),\ 35=-210 \ ({\rm LC}\ 9),\ 22=161 \ ({\rm LC}\ 2),\ 22=161 \ ({\rm LC}\ 2),\ 22=161 \ ({\rm LC}\ 2),\ 22=168 \ ({\rm LC}\ 26),\ 24=165 \ ({\rm LC}\ 26),\ 22=168 \ ({\rm LC}\ 26),\ 26=168 \ ({\rm LC}\ 26),\ 27=262 \ ({\rm LC}\ 14),\ 28=177 \ ({\rm LC}\ 25),\ 29=162 \ ({\rm LC}\ 25),\ 30=167 \ ({\rm LC}\ 25),\ 31=165 \ ({\rm LC}\ 25),\ 32=169 \ ({\rm LC}\ 25),\ 32=169 \ ({\rm LC}\ 25),\ 32=169 \ ({\rm LC}\ 25),\ 32=167 \ ({\rm LC}\ 2),\ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 26=168 \ ({\rm LC}\ 26),\ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 11),\ 35=280 \ ({\rm LC}\ 26) \ 34=239 \ ({\rm LC}\ 26) \ 34=230 \ ({\rm LC}\ 26) \ 34$),), 9)), 6), 3 (6), 3 5), 5),	Vasd=103n Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 p) Truss desig only. For si see Standa	P-10; Vulte-130mpr hph; TCDL=6.0psf; B B; Enclosed; MWFR zone; cantilever left and right exposed; C WFRS for reactions s olate grip DOL=1.33 ined for wind loads in tuds exposed to wind rd Industry Gable Er jualified building desi	CDL=6 S (env and rig -C for r shown; n the pl d (norm id Deta	0.0psf; h=25ft; elope) and C- ht exposed ; e nembers and Lumber ane of the trus al to the face) ils as applicat	C end ss), ble,			Our man	P	SEA 4584	L H4 OHNSULLIN	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design mer user verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 10,2021

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof	
21070084-01	T3GE	Common Supported Gable	1	1	Job Reference (optional)	145130708
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.43 S Feb 12 2	2021 Print: 8.	430 S Feb 1:	2 2021 MiTek Industries, Inc. Wed Mar 10 09:52:25	Page: 2

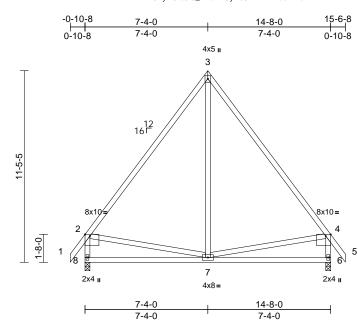
ID:Gy_aKwqxOYz7ID2I_mRCFyzB1hi-Mock Me

Carter Components (Sanford), Sanford, NC - 27332,

12) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 35, 20, 27, 29, 30, 31, 32, 33, 34, 26, 25, 24, 23, 22, and 21. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Page: 2

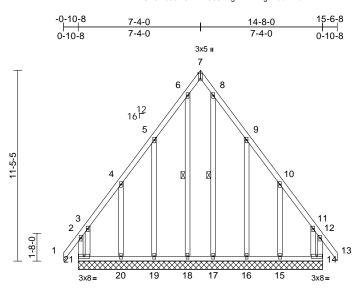
Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof	
21070084-01	Τ4	Common	1	1	I45130709 Job Reference (optional)	

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:26 ID:k8YyXGra9r5_wNdxYUyRo9zB1hh-Mock Me

Page: 1

Scale = 1:68.8

Plate Offsets (2	X, Y): [2:Edge,0-1-3],	[4:Edge,0-1-3]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.32 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.06 0.01	(loc) 7-8 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
	Max Horiz 8=-277 (L Max Uplift 6=-7 (LC Max Grav 6=636 (LC	cept end verticals. applied or 9-9-11 or 3=0-3-8 C 11) 13), 8=-7 (LC 14) C 2), 8=636 (LC 2)	ed or 5 6)	load of 12.0 j overhangs no * This truss h on the bottor 3-06-00 tall b chord and ar One RT8A U truss to bear		at roof lo other liv for a liv s where Il fit betw commen PLIFT at	bad of 13.9 p ve loads. re load of 20.0 a rectangle veen the botto ided to conne t jt(s) 8 and 6	sf on Opsf om ect					
FORCES	(lb) - Maximum Com Tension 1-2=0/62, 2-3=-530/												
BOT CHORD WEBS NOTES	1-2=0/62, 2-3=-530/ 4-5=0/62, 2-8=-572/ 7-8=-353/467, 6-7=- 3-7=-67/271, 2-7=-3	194, 4-6=-572/194 251/386	5										
	d roof live loads have	been considered for										UNUL CA	Della
 Wind: ASC Vasd=1037 Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 TCLL: ASC DOL=1.15 snow); Pf= 	E 7-10; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR) zone; cantilever left a and right exposed;C- WFRS for reactions s plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg: 13.9 psf (flat roof snot =1.15); Category II; E;	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1	end er							Commen		SEA 4584	• •


March 10,20

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof	
21070084-01	T4GE	Common Supported Gable	1	1	I45130710 Job Reference (optional)	

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:26 ID:CK6KlcsCw9DrYXC86BTgKNzB1hg-Mock Me

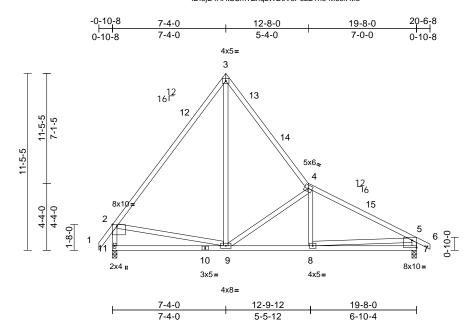
Page: 1

14-8-0

Scale = 1:69.1

Plate Offsets (X, Y): [7:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.17	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.25	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TP	2014	Matrix-R								
BCDL	10.0											Weight: 137 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.2 *Except		WEBS	5 3 1	6-18=-337/210, 8- 5-19=-272/263, 4- 3-21=-366/320, 9- 10-15=-284/271, 1	20=-286 16=-271 1-14=-3	/272, /262, 53/307		bea join 12) One trus	t 21 and t 21 and RT8A s to bea	te capa I 184 lb USP ce aring w	able of withstandi o uplift at joint 14. onnectors recom	mended to connect T at jt(s) 18, 17, 19,
BRACING	20-4,21-3,15-10,14-	11:2x4 SP No.3	/ -	alanced r design.	roof live loads hav	/e been	considered fo	r				lateral forces.	or uplint only and
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		dor 2) Wi Va	d: ASCE d=103mp	7-10; Vult=130mp h; TCDL=6.0psf;	BCDL=6	6.0psf; h=25ft;		LOAD	CASE(S) Sta	Indard	
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	Ext	erior (2) z	B; Enclosed; MWF one; cantilever lef	ft and rig	ht exposed ;	end					
WEBS	1 Row at midpt	6-18, 8-17			nd right exposed; FRS for reactions								
	17=14-8- 20=14-8- 20=14-8- Max Horiz 21=-277 (14=-184 (16=-115 (18=-22 (L 20=-232 (Max Grav 14=292 (L 16=175 (L 18=239 (L)	LC 10), 15=-227 (LC LC 14), 17=-15 (LC C 12), 19=-114 (LC LC 10), 21=-193 (LC	8-0, DC 3) Trr onl 9), see (1), 4) TC (3), 4) TC 9) DC 2), sno 2), Son 2), Ct= (5), 5) Thi	ss design Standard onsult qua L: ASCE L=1.15 Pl w); Pf=13 e DOL=1 1.10 s truss has	ate grip DOL=1.33 ed for wind loads ds exposed to win d Industry Gable E alified building de 7-10; Pr=20.0 ps ate DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; s been designed 1 psf or 2.00 times f	in the pl nd (norm End Deta signer a f (roof liv Pg=20.0 how: Lum Exp B; F	al to the face ils as applical s per ANSI/TF re load: Lumb osf (ground ber DOL=1.1 fully Exp.; er of min roof), ble, PI 1. er 5 live			1.11	WITH CA	ROLA
FORCES	(lb) - Maximum Com Tension	pression/Maximum			on-concurrent with			si on			L'AS	inght	Martin
TOP CHORD	2-21=-241/242, 1-2=	184/234, 5-6=-368/4 168/199, 8-9=-367/4 1=-214/208, -13=0/62, -20=-147/152, -18=-147/152,	58, 7) Ga 57, 8) Tru 57, 9) Ga 9) Ga 10) * T on 3-0	ble require ss to be fu ced again ble studs s his truss h he bottom 5-00 tall b	2x4 MT20 unless as continuous bot ully sheathed from st lateral moveme spaced at 2-0-0 o ias been designed n chord in all area by 2-00-00 wide w by other members	tom choi n one fac ent (i.e. c c. d for a liv is where ill fit betv	d bearing. e or securely liagonal web) re load of 20.0 a rectangle	Dpsf		Sentimes.	N. M.	Thinn J	EER. ON


March 10,2021

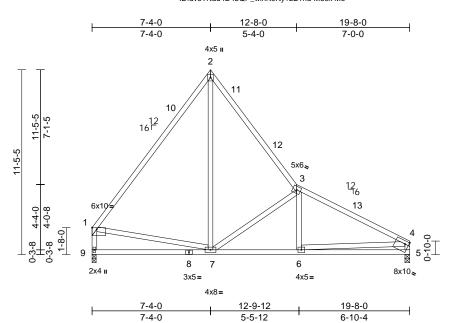
Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	Т5	Roof Special	3	1	Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:27 ID:8jE4AHtSSmTZnqLWDcV8PozB1he-Mock Me

Page: 1

Offsets (X Y)	[2·Edge 0-1-3]	[7:Edge 0-5-13

Plate Offsets ((X, Y): [2:Edge,0-1-3],	[7:Edge,0-5-13]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		5/TPI2014 TCLL: ASCE	CSI TC BC WB Matrix-MSH	0.88 0.36 0.52 f (roof liv	DEFL Vert(LL) Vert(CT) Horz(CT) e load: Lumb	in -0.03 -0.09 0.02	(loc) 8-9 9-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 130 lb	GRIP 244/190 FT = 20%
OP CHORD OT CHORD /EBS RACING OP CHORD OT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 2-2-0 oc purlins, exc	athing directly applie cept end verticals.	ed or 4)	snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0	late DOL=1.15); P 3.9 psf (flat roof sn .15); Category II; I snow loads have t is been designed f psf or 2.00 times f	ow: Lum Exp B; F Deen cor for great lat roof le	ber DOL=1. ully Exp.; nsidered for t er of min roo bad of 13.9 p	his f live					
REACTIONS	0	LC 13)	6)	* This truss h on the bottor	on-concurrent with has been designed n chord in all areas by 2-00-00 wide wi	l for a liv s where	e load of 20. a rectangle						
ORCES OP CHORD	(lb) - Maximum Com Tension 1-2=0/62, 2-12=-742 3-13=-538/253, 13-1 4-14=-683/222, 4-15	2/187, 3-12=-519/21≀ 4=-576/226,	8, LC		y other members.								
OT CHORD	5-15=-1092/203, 5-6 5-7=-770/252	6=0/34, 2-11=-765/2 0=-300/465,	17,										
/EBS	3-9=-179/581, 4-9=- 2-9=-226/393, 5-8=0		,									"TH CA	RO
this design Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bd p B; Enclosed; MWFR 2) zone; cantilever left a 2 zone; cantilever left a ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and	-C							Continue		SEA 4584	4 EP. O


Mon March 10,2021

818 Soundside Road Edenton, NC 27932

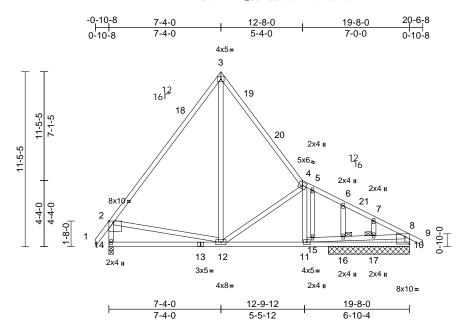
Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T5A	Roof Special	1	1	Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:27 ID:dvoTNdu4D4bQP_winK0Ny?zB1hd-Mock Me

Page: 1

Plate Offsets (X, Y):	[1:Edge,0-1-3], [5:Edge,0-2-4]

	, , , , , , , , , , , , , , , , , , ,	[0.Edge,0 2 4]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁻	5/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.37 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.09 0.01	(loc) 6-7 7-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x4 SP No.2 *Excep No.3 Structural wood she 2-11-15 oc purlins, Rigid ceiling directly bracing. (size) 5=0-3-8, § Max Horiz 9=-252 (L Max Uplift 9=-1 (LC	t* 6-3,9-1,5-4:2x4 SI athing directly applie except end verticals. applied or 10-0-0 oc 9=0-3-0 C 11)	= P 4 ed or ⁵	DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Unbalanced design. * This truss on the botto 3-06-00 tall chord and a One RT8A L truss to beal	F7-10; Pr=20.0 psf late DOL=1.15; P 3.9 psf (flat roof sn 1.15); Category II; I snow loads have t has been designed m chord in all areas by 2-00-00 wide wi ny other members. JSP connectors rec ring walls due to UI s for uplift only and	g=20.0 ow: Lun Exp B; F been cou I for a liv s where II fit betv commer PLIFT a	besf (ground iber DOL=1. Fully Exp.; hsidered for t re load of 20. a rectangle veen the bott ided to connet t jt(s) 9. This	15 his Opsf com ect					
	Max Grav 5=775 (LC (Ib) - Maximum Com Tension 1-10=-734/164, 2-10	C 2), 9=775 (LC 2) pression/Maximum	L	forces. OAD CASE(S)	Standard								
BOT CHORD WEBS	2-11=-539/253, 11-1 3-12=-690/218, 3-13 4-13=-1095/201, 1-5 8-9=-245/378, 7-8=- 5-6=-123/355 2-7=-153/552, 3-7=- 1-7=-88/276, 4-6=0/	3=-1000/220, 5=-705/175, 4-5=-708 245/378, 6-7=-123/8 696/304, 3-6=0/102,	392,							[.	and a	OR FESS	ROLIN
this design 2) Wind: ASC Vasd=103	ed roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=25ft;								U	k V Q	SEA 4584	• •


Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 March 10,2021

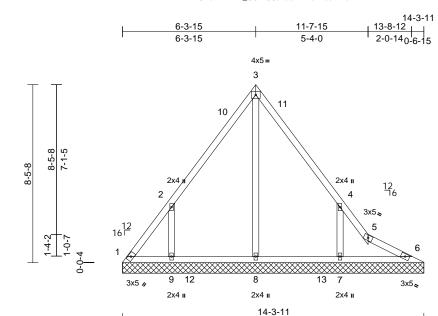
Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	T5SE	Roof Special Structural Gable	1	1	Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:28 ID:1UTb?fxzW?z_GSfHSSa4aezB1ha-Mock Me

Page: 1

Scale =	1:75.4
---------	--------

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · ·											
Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	20.0 13.9/20.0	Plate Grip DOL Lumber DOL	1.15		TC BC	0.88 0.36	Vert(LL) Vert(CT)		11-12 12-14	>999 >999	240 180	MT20	244/190
TCDL		Rep Stress Incr	1.15 YES		WB	0.36	Horz(CT)	-0.10	12-14	>999 n/a	n/a		
BCLL	10.0 0.0*	Code		5/TPI2014		0.52		0.02	10	n/a	n/a		
BCLL BCDL	10.0	Code	IRC201	5/1912014	Matrix-MSH							Weight: 140 lb	ET - 20%
BCDL	10.0											Weight. 140 lb	FT = 2076
LUMBER			2)		7-10; Vult=130mp								
TOP CHORD					ph; TCDL=6.0psf;								
BOT CHORD					B; Enclosed; MWF zone; cantilever lef								
WEBS	2x4 SP No.2 *Excep	t* 11-4,10-8:2x4 SP	No.3		and right exposed;								
OTHERS	2x4 SP No.3				FRS for reactions			1					
BRACING	.				late grip DOL=1.3		Lumber						
TOP CHORD			ed or 3)		ned for wind loads		ane of the tru	221					
	2-2-0 oc purlins, ex		-,		uds exposed to wir								
BOT CHORD		applied or 10-0-0 or	0		d Industry Gable E								
	bracing.				alified building de								
JOINTS	1 Brace at Jt(s): 16, 17		4)		7-10; Pr=20.0 ps								
				DOL=1.15 F	late DOL=1.15); P	g=20.0	osf (ground						
REACTIONS					3.9 psf (flat roof sn			15					
	Max Horiz 14=-270 (、 、		I.15); Category II;	Exp B; F	fully Exp.;						
	Max Grav 10=836 (L		,	Ct=1.10									
FORCES	(lb) - Maximum Com	pression/Maximum	5)		snow loads have	been coi	nsidered for t	his					
	Tension		.	design.		_							
TOP CHORD			8, 6)		as been designed								
	3-19=-543/256, 19-2	,	000		psf or 2.00 times f			osf on					
	4-20=-684/224, 4-5= 6-21=-987/200, 7-21	,	,		on-concurrent with								
	7-8=-1085/190, 8-9=				ully sheathed from							111111	11111
	8-10=-764/251	-0/34, 2-14700/21			nst lateral moveme		liagonal web)).		_	. (WAH CA	Roill
BOT CHORD		13=-300/465	8) 9)		spaced at 2-0-0 o has been designed		a load of 20	Onof			1.1	A	·NAIN
	11-12=-89/881, 10-1	,	9)		n chord in all area			opsi			5-	U.FESP	Oh: Vice
WEBS	3-12=-182/588, 4-12				by 2-00-00 wide w			om			F N		
	4-11=-32/143, 2-12=		398.		ny other members.		veen the bott	om				2. V	
	15-16=0/393, 16-17=			DAD CASE(S)								SEA	1 1 1
	5-15=-49/152, 6-16=		L.	JAD CASE(3)	Stanuaru					-	:		• •
NOTES	,	,								=		4584	4 : =
	ed roof live loads have	been considered for	r							-			1 S
this design													123
											-, 7,	1. SNOW	ER. OS
											11	ON GIN	F.F. 60 .
											1	TEM I	OHN
												THUN S	
												2000 D	H to the second s



.10 munn March 10,2021

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	V1	Valley	1	1	Job Reference (optional)

Run; 8,43 S Feb 12 2021 Print: 8,430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:28 ID:1UTb?fxzW?z_GSfHSSa4aezB1ha-Mock Me

Page: 1

Scale = 1:54.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.26	Horiz(TL)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-SH								
BCDL	10.0										Weight: 73 lb	FT = 20%

LUMBER								
TOP CHORD	2x4 SP No.2							
BOT CHORD	2x4 SP N	2x4 SP No.2						
OTHERS	2x4 SP N	o.3 *Except* 8-3:2x4 SP No.2						
BRACING								
TOP CHORD	Structural 6-0-0 oc p	wood sheathing directly applied or burlins.						
BOT CHORD		ing directly applied or 6-0-0 oc						
REACTIONS	(size)	1=14-3-11, 6=14-3-11, 7=14-3-11, 8=14-3-11, 9=14-3-11						
	Max Horiz	1=-174 (LC 13)						
	Max Uplift	1=-145 (LC 13), 7=-150 (LC 16), 9=-196 (LC 15)						
	Max Grav	1=193 (LC 12), 6=101 (LC 2),						
		7=424 (LC 29), 8=446 (LC 31),						
		9=415 (LC 28)						
FORCES	(lb) - Max	imum Compression/Maximum						
	Tension							
TOP CHORD		238, 2-10=-194/179,						
	3-10=-14	7/197, 3-11=-141/194,						
		2/176, 4-5=-115/118, 5-6=-115/76						
BOT CHORD		18, 9-12=-64/118, 8-12=-64/118,						
		/118, 7-13=-64/118, 6-7=-64/118						
WEBS	3-8=-238/	/57, 2-9=-405/364, 4-7=-380/327						
NOTES								
1) Unbalanc	ed roof live l	oads have been considered for						

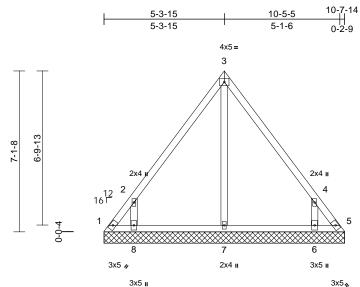
this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)

- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 145 lb uplift at joint 1, 196 lb uplift at joint 9 and 150 lb uplift at joint 7. LOAD CASE(S) Standard





Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	V2	Valley	1	1	I45130715 Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:29 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

Page: 1

Scale = 1:51

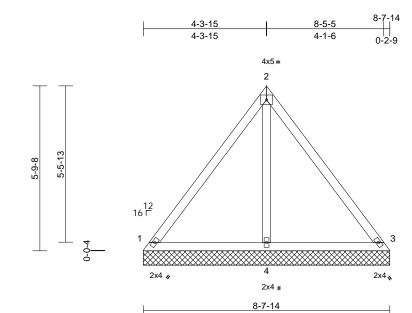
Scale = 1:51													
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 g) 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-SH	0.27 0.09 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOR BOT CHOR OTHERS BRACING TOP CHOR BOT CHOR REACTION	 D 2x4 SP No.2 2x4 SP No.3 *Excep D Structural wood she 6-0-0 oc purlins. D Rigid ceiling directly bracing. S (size) 1=10-7-14 	athing directly applie applied or 10-0-0 oc 4, 5=10-7-14, 6=10-7	C	 DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Gable requi Gable studs * This truss on the botto 3-06-00 tall 	E 7-10; Pr=20.0 p: Plate DOL=1.15); I 3.9 psf (flat roof s 1.15); Category II; res continuous bo s spaced at 4-0-0 o has been designe m chord in all are by 2-00-00 wide v ny other members	Pg=20.0 ; now: Lum ; Exp B; F ttom chor oc. ed for a liv as where vill fit betv	osf (ground her DOL=1.1 fully Exp.; rd bearing. re load of 20.0 a rectangle	15 Opsf					
	Max Horiz 1=-144 (L Max Uplift 1=-158 (L 6=-208 (L Max Grav 1=179 (L0	C 11), 5=-139 (LC 1) C 14), 8=-208 (LC 1) C 13), 5=170 (LC 14) C 25), 7=201 (LC 2),	2), 3)),	bearing plat		standing 1	58 Ib uplift at	t					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHOR		186/115, 3-4=-171/1	115,										
BOT CHOR	D 1-8=-76/122, 7-8=-7 5-6=-76/122	6/122, 6-7=-76/122,										TH CA	11111
WEBS	3-7=-114/0, 2-8=-46	4/441, 4-6=-464/441	1									TH UA	ROUL
NOTES										 C 	5	ON SER	in shire
 Unbalar this desi 	nced roof live loads have ign.	been considered for	r								ED	inatil	- white
Vasd=10 Cat. II; E Exterior vertical forces & DOL=1.	SCE 7-10; Vult=130mph 03mph; TCDL=6.0psf; BH Exp B; Enclosed; MWFR (2) zone; cantilever left left and right exposed;C- MWFRS for reactions s 60 plate grip DOL=1.33	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber	·C end							Contraction of the second s	N. N. N.	SEA 458	• •••
only. Fo	esigned for wind loads in or studs exposed to wind ndard Industry Gable En-	(normal to the face)),								11	REW J	OHNS

- 2 Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Mon

March 10,2021


Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	V3	Valley	1	1	Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:30 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

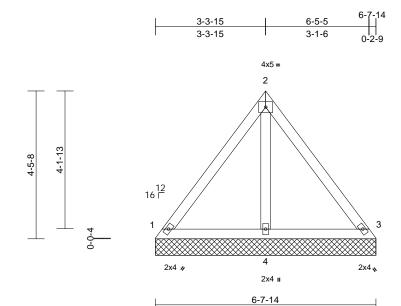
Page: 1

March 10,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:40.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI201	4 Matrix-P								
BCDL	10.0										Weight: 41 lb	FT = 20%
LUMBER			5) Gable r	equires continuous b	oottom choi	d bearing.						
TOP CHORD	2x4 SP No.2			tuds spaced at 4-0-0								
BOT CHORD	2x4 SP No.2			uss has been desigr)psf					
OTHERS	2x4 SP No.2			ottom chord in all ar								
BRACING				tall by 2-00-00 wide		veen the botto	om					
TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly appli		nd any other membe mechanical connect		ers) of truss to	0					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 c		plate capable of with	hstanding 3	30 lb uplift at jo	oint					
Derenend	bracing.		1 and 2	3 lb uplift at joint 3.								
	()	, 3=8-7-14, 4=8-7-14	4 LOAD CAS	E(S) Standard								
	Max Horiz 1=-116 (L	,										
	Max Uplift 1=-30 (LC											
	Max Grav 1=207 (L0 (LC 2)	C 2), 3=207 (LC 2),	4=233									
FORCES	(Ib) - Maximum Con	prossion/Maximum										
FORCES	Tension	ipression/maximum										
TOP CHORD	1-2=-170/73, 2-3=-1	56/73										
BOT CHORD	1-4=-46/86, 3-4=-46	6/86										
WEBS	2-4=-132/41											
NOTES												
1) Unbalance	ed roof live loads have	been considered for	or									
this design											mun	1111
	CE 7-10; Vult=130mph									1	I'''H CA	ROUL
	mph; TCDL=6.0psf; B								_	1	all	- Ult
	p B; Enclosed; MWFR									E.	O'.EES	15: 1/2
	?) zone; cantilever left t and right exposed;C	U 1 7								115	1 is all	Mitrin
	WFRS for reactions s								<u> </u>		:2	K 1 - 2
	plate grip DOL=1.33	nown, Eumber							-	8	SE/	6 E E E
	igned for wind loads in	the plane of the tru	ISS							:		• •••
	studs exposed to wind								=		458	44 🔅 🗧
	ard Industry Gable En									5 3		1.3
	qualified building desi										1. A.	- 1 - S
	CE 7-10; Pr=20.0 psf (ber							2.11	L. SNGIN	EEN ON
	Plate DOL=1.15); Pg		15							11	00	S. S.N
	=13.9 psf (flat roof sno .=1.15); Category II; E		15							1.0	IN EW I	OHL
Ct=1.10	- 1.13), Calegory II, E	λρ D, Fully Exp.,									Min W J	mm
01-1.10											Moro	h 10 2021


Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	V4	Valley	1	1	Job Reference (optional)

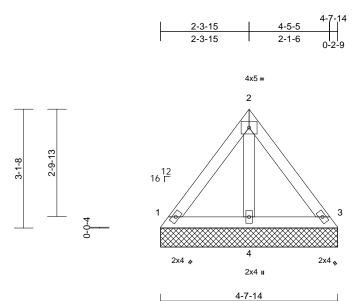
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:30 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

Page: 1

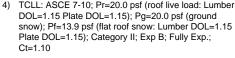
March 10,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:34.7


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.26 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 31 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-7-14, Max Horiz 1=-87 (LC Max Uplift 1=-23 (LC	applied or 10-0-0 o 3=6-7-14, 4=6-7-14 2 9) 2 14), 3=-18 (LC 13)	6) Gable s 7) * This tr on the b 3-06-00 chord au 8) Provide c bearing 1 and 10 4 LOAD CAS	quires continuous b uds spaced at 4-0-0 uss has been design ottom chord in all an tall by 2-00-00 wide id any other membe mechanical connect plate capable of with b uplift at joint 3. E(S) Standard) oc. ned for a liv eas where will fit betw rs. tion (by oth	e load of 20.0 a rectangle veen the botto ers) of truss t	om to					
FORCES	Max Grav 1=158 (L0 (LC 2) (Ib) - Maximum Corr											
ONCES	Tension	pression/maximum										
TOP CHORD	1-2=-129/58, 2-3=-1											
BOT CHORD	1-4=-35/68, 3-4=-35	/68										
WEBS NOTES	2-4=-96/32											
 Unbalancethis design Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 Truss desig only. For s see Standa or consult c TCLL: ASC DOL=1.15 snow); Pf= 	d roof live loads have E 7-10; Vult=130mph mph; TCDL=6.0psf; B B; Enclosed; MWFR ozone; cantilever left and right exposed;C- WFRS for reactions s plate grip DOL=1.33 gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg 13.9 psf (flat roof sno =1.15); Category II; E	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed; ; C for members and hown; Lumber the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF roof live load: Lumb =20.0 psf (ground w: Lumber DOL=1.1	; end ss), ble, PI 1. er						Comme	A STATEMENT	SEA 458	44 EEP. ON

Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	V5	Valley	1	1	I45130718 Job Reference (optional)

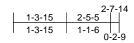

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:31 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

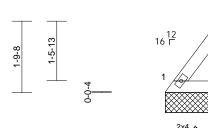
Page: 1

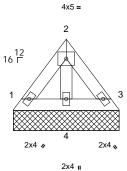
Scale = 1:30.3

Ocale = 1.50.5												
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.12	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		210,000
TCDL	10.0	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-P								
BCDL	10.0							_			Weight: 21 lb	FT = 20%
LUMBER				quires continuous b		d bearing.						
	2x4 SP No.2			uds spaced at 2-0-0								
BOT CHORD	2x4 SP No.2			uss has been design ottom chord in all are			Opst					
OTHERS	2x4 SP No.3			tall by 2-00-00 wide		•	om					
BRACING TOP CHORD	Structural wood she	athing directly appli	abord o	id any other membe								
	4-8-4 oc purlins.	auning unecuy appi	8) Provide	mechanical connect								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 c		plate capable of with buplift at joint 3.	nstanding 1	5 lb uplift at j	oint					
REACTIONS	0	, 3=4-7-14, 4=4-7-14	4 LOAD CAS	E(S) Standard								
	Max Horiz 1=-59 (LC	C 9)										
	Max Uplift 1=-15 (LC											
	Max Grav 1=106 (LC 2)	C 2), 3=106 (LC 2),	4=116									
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=-87/41, 2-3=-80	/41										
BOT CHORD	1-4=-25/47, 3-4=-25											
WEBS	2-4=-65/23											
NOTES												
,	ed roof live loads have	been considered for	or									
this design		(*)									mm	11111
	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B										"TH CA	Ro
	D B; Enclosed; MWFR								ſ	1	R. Di	A. 4/1/1
) zone; cantilever left								·	3.2	U. HEPS	Qin Ka .
	t and right exposed;C-									W	Non	New WV
	IWFRS for reactions s	hown; Lumber									· × /	1 N N E
	plate grip DOL=1.33									N. N. N.	SEA SEA	∖L : =
	gned for wind loads ir studs exposed to wind								=		458	44 5
	ard Industry Gable En									9	+50	TT (* 5
	qualified building desi									-		
	CE 7-10; Pr=20.0 psf									-7	A. ENG	- CRI RE
	Plate DOL=1.15); Pg									11	O GIN	F.F. GUN
	13.9 psf (flat roof sno		15							1	TEM	OHN
Plate DOL: Ct=1.10	=1.15); Category II; E	хр В; Fully Exp.;									WILLING J	
CI=1.10											More	h 10 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




March 10,2021


Job	Truss	Truss Type	Qty	Ply	206 Crossing at ACC-Havenbrooke C-Roof
21070084-01	V6	Valley	1	1	Job Reference (optional)

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Wed Mar 10 09:52:31 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

Page: 1

2-7-14

Scale - 1.28 9

Scale = 1:28.9												
TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	I2014 CSI TC BC WB Matrix-P	0.03 0.01 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0								_		Weight: 11 lb	FT = 20%
2-8-4 oc 30T CHORD Rigid cei bracing. REACTIONS (size) Max Horiz	No.2 No.3 al wood shea purlins. iling directly 1=2-7-14, t 1=-30 (LC		6) Ga 7) * T on 3-(dor 6h 8) Pro be be	ble requires continuous b ble studs spaced at 2-0-0 his truss has been design the bottom chord in all ar 06-00 tall by 2-00-00 wide ord and any other member ovide mechanical connec aring plate capable of with d 6 lb uplift at joint 3. CASE(S) Standard) oc. ned for a liv reas where will fit betw ers. tion (by oth	e load of 20.0 a rectangle veen the botto ers) of truss t	om o					
Max Grav	1=54 (LC 2)	14), 3=-6 (LC 13) 2), 3=54 (LC 2), 4=5	9									
Tension		pression/Maximum										
	21, 2-3=-41/ 24, 3-4=-13/ 12											
 NOTES Unbalanced roof live this design. Wind: ASCE 7-10; Vi Vasd=103mph; TCDD Cat. II; Exp B; Enclos Exterior (2) zone; car vertical left and right forces & MWFRS for DOL=1.60 plate grip 	ult=130mph L=6.0psf; BC sed; MWFRS ntilever left a exposed;C-(reactions sh DOL=1.33	(3-second gust) DL=6.0psf; h=25ft; S (envelope) and C-(and right exposed; e C for members and hown; Lumber	C ind						C	tion	NITH CA	ROL
 Truss designed for w only. For studs expo see Standard Industr or consult qualified b TCLL: ASCE 7-10; P DOL=1.15 Plate DOL snow); Pf=13.9 psf (f Plate DOL=1.15); Ca Ct=1.10 	esed to wind ry Gable Enc uilding desig r=20.0 psf (r _=1.15); Pg= flat roof snow	(normal to the face) d Details as applicab gner as per ANSI/TP roof live load: Lumbe 20.0 psf (ground v: Lumber DOL=1.15	, ile, I 1. er						HINE	N. H.		

818 Soundside Road Edenton, NC 27932

