Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

Owner:

Sheet: Property ID: Lot #: File #: Code:

Site Classification (.1948): Provisional SuiTABLE

ANDREW CURUN, NEWS

Evaluated By:

Others Present:

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

System

25/0 120

25/2 200

0.3

Available Space (.1945)

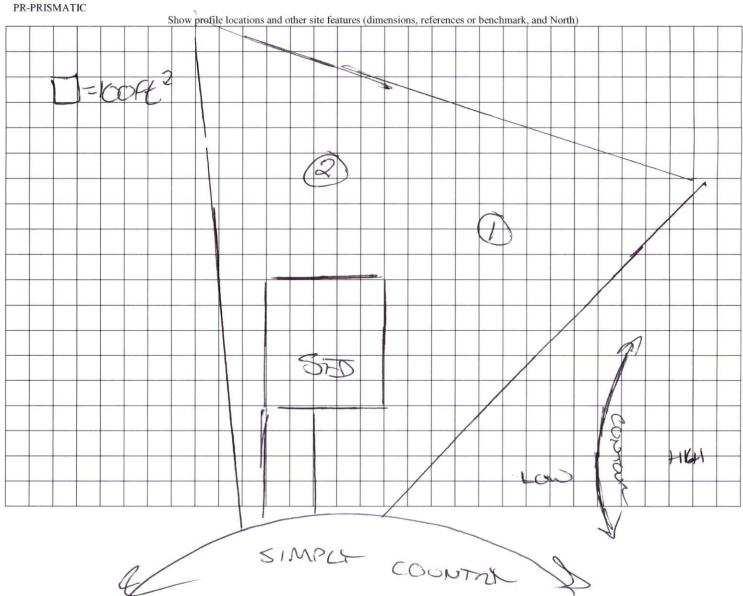
System Type(s)

Site LTAR

Applicant: D. Z. Honsen

SFD 2107-0042

Water S Evalua	s: 5, 6 ed Facility: on of Site: Supply: tion Method f Wastewate	Auge	JANY FD	Date Desig Prope lic Ir	Evaluate in Flow erty Reco idividua	ed: ©8/1 (.1949): 3 orded:	Vell Spring Cut	ze:	MGN er	CAN N	onty 36
P R O F I L E	.1940 Landscape Position/ Slope %	Horizon Depth (In.)	SOIL MORPHOLOGY .1941 .1941 .1941 Structure/ Consistence Texture Mineralogy			.1941	OTHER PROFILE FACTORS .1942 Soil .1943 .1956 .1944 Wetness/ Soil Sapro Restr Color Depth (IN.) Class Horiz				Profile Class & LTAR
1,7	L 4%	0-13	GZ.	45	w	MEM					P5
		12-33	m	512	F	50	7.577,036	38			0.3
_											
									nto .		
				,							
Descri	otion	I	nitial	Re	epair Sy	stem	Other Factors (.1946):				


COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	<u>TEXTURES</u>	.1955 LTAR	CONSISTENCE MOIST	WET	
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE FS-FOOT SLOPE N-NOSE SLOPE	I II	S-SAND LS-LOAMY SAND SL-SANDY LOAM L-LOAM	1.2 - 0.8 0.8 - 0.6	VFR-VERY FRIABLE FR-FRIABLE FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	NS-NON-STICKY SS-SLIGHTY STICKY S-STICKY VS-VERY STICKY	
H-HEAD SLOPE CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	Ш	SI-SILT SIL-SILT LOAM CL-CLAY LOAM SCL-SANDY CLAY LOAM	0.6 - 0.3		NP-NON-PLASTIC SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC	
	IV	SIC-SILTY CLAY C-CLAY SC-SANDY CLAY	0.4 - 0.1	XP.L.		

STRUCTURE
SG-SINGLE GRAIN
M- MASSIVE
CR-CRUMB
GR-GRANULAR
SBK-SUBANGULAR BLOCKY
ABK-ANGULAR BLOCKY
PL-PLATY
PD-DRISMATIC

MINERALOGY
SLIGHTLY EXPANSIVE

EXPANSIVE

