

8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

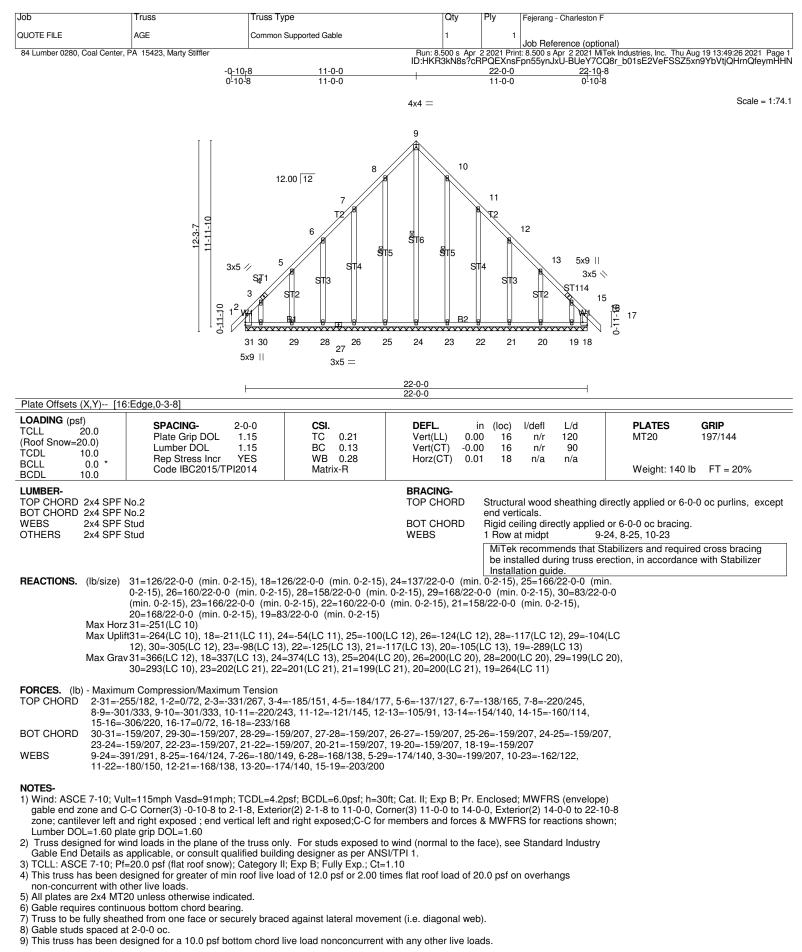
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	AG	Roof Special Girder	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center, F			2 2021 Prin	t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:25 2021 Page 2 nsFpn55ynJxU-jH49wtPW4gT9PifsxxkDvMZftl9tmHHH2B2t7CymHHO	

NOTES-

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 81 lb down and 52 lb up at 0-1-12, 113 lb down and 127 lb up at 2-0-12, 113 lb down and 127 lb up at 4-0-12, 113 lb down and 127 lb up at 4-0-12, 113 lb down and 127 lb up at 6-0-12, 113 lb down and 127 lb up at 12-0-12, 113 lb down and 127 lb up at 12-0-12, 113 lb down and 127 lb up at 12-0-12, 113 lb down and 127 lb up at 12-0-12, 113 lb down and 127 lb up at 12-0-12, 113 lb down and 127 lb up at 20-0-12, and 113 lb down and 127 lb up at 22-0-12, and 110 lb down and 133 lb up at 23-8-12 on top chord, and 31 lb down and 28 lb up at 2-0-12, 31 lb down and 28 lb up at 4-0-12, 31 lb down and 28 lb up at 4-0-12, 31 lb down and 28 lb up at 12-0-12, 31 lb down and 28 lb up at 12-0-12, 31 lb down and 28 lb up at 12-0-12, 31 lb down and 28 lb up at 12-0-12, 31 lb down and 28 lb up at 12-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 28 lb up at 22-0-12, 31 lb down and 67 lb up at 25-8-0, and 86 lb down and 58 lb up at 26-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

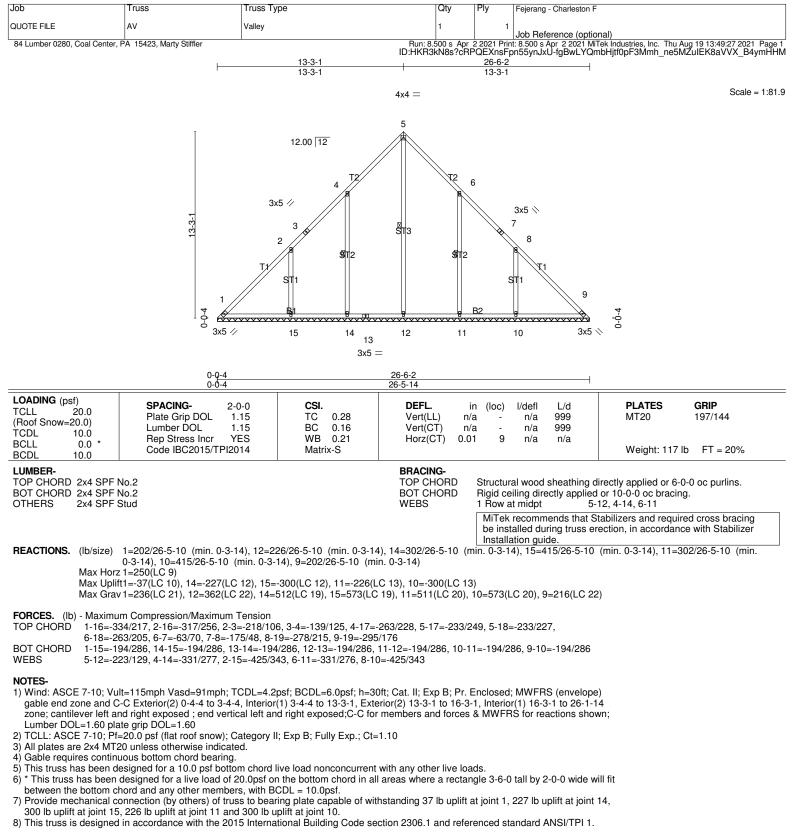

LOAD CASE(S) Standard

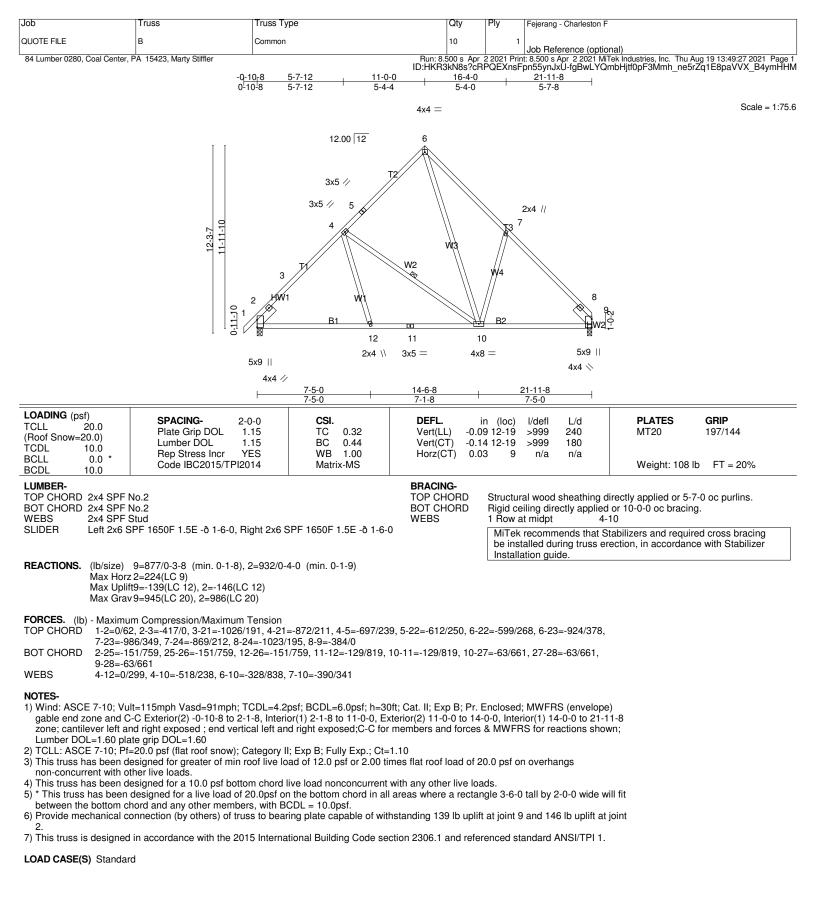
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

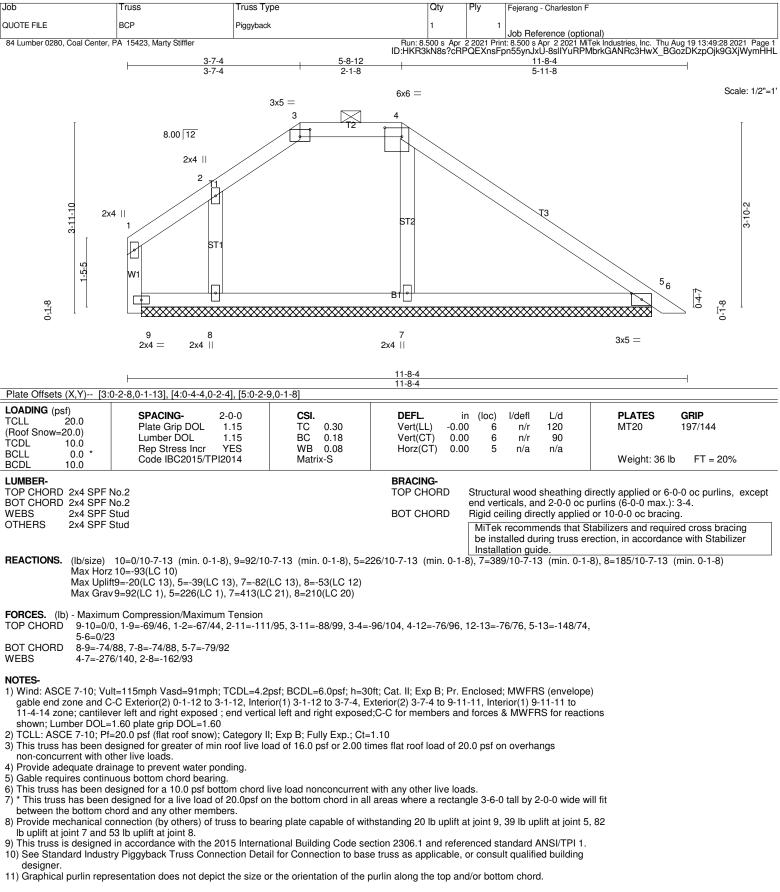
Uniform Loads (plf) Vert: 1-6=-60, 6-7=-60, 13-14=-20

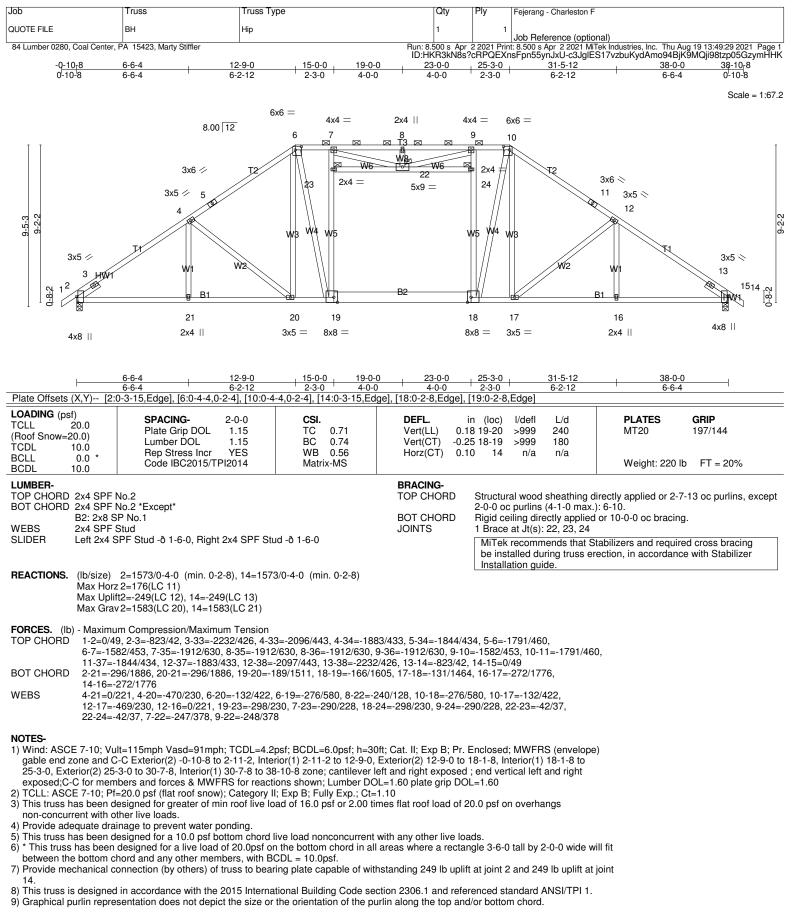
Concentrated Loads (lb)

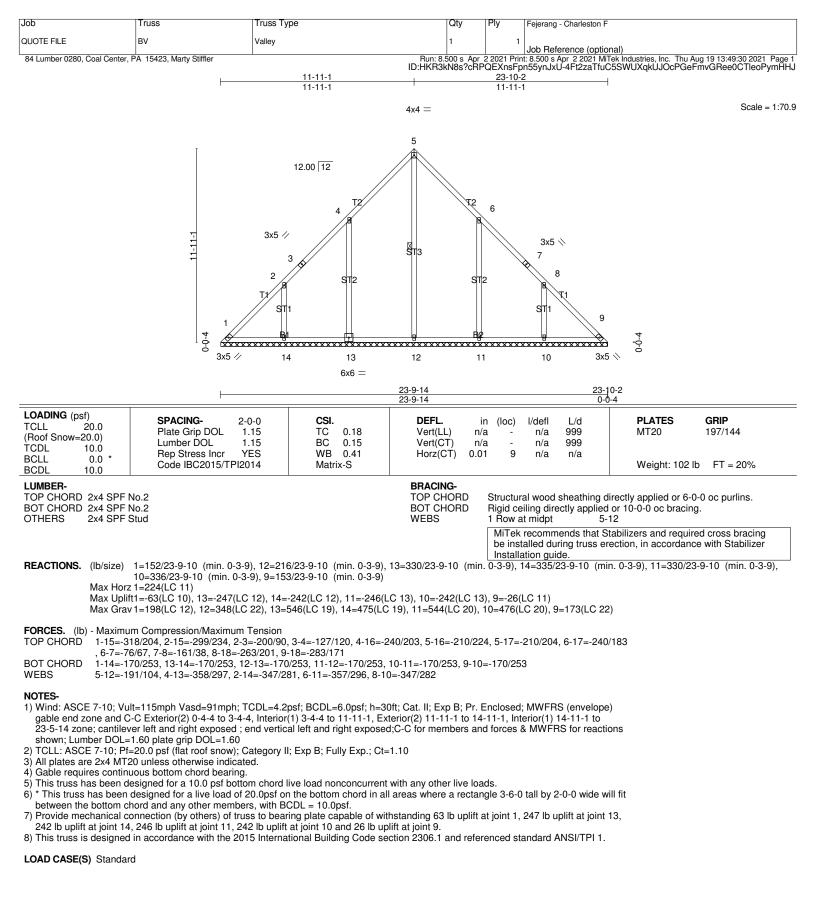
Vert: 1=-38 4=-11(B) 12=-10(B) 2=-11(B) 3=-11(B) 11=-10(B) 5=-11(B) 9=-10(B) 6=-11(B) 8=-10(B) 17=-11(B) 19=-11(B) 20=-11(B) 21=-11(B) 22=-11(B) 23=-11(B) 25=-11(B) 28=-10(B) 28=-10(B) 30=-10(B) 31=-10(B) 32=-10(B) 33=-10(B) 34=-10(B) 35=-10(B) 35=-10(B) 35=-86(B) 37=-86(B)

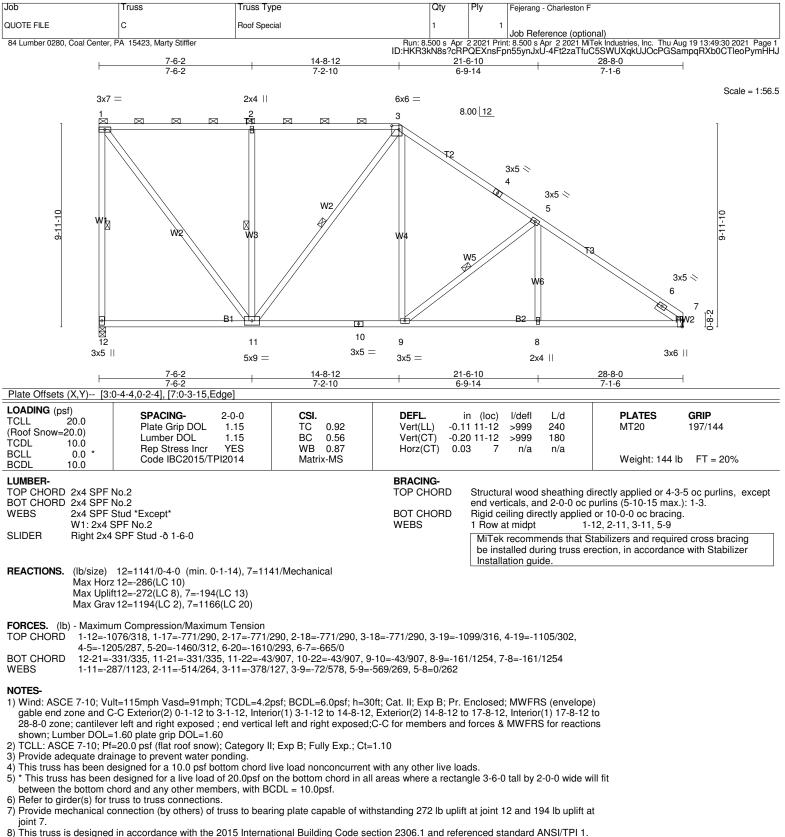

Continued on page 2

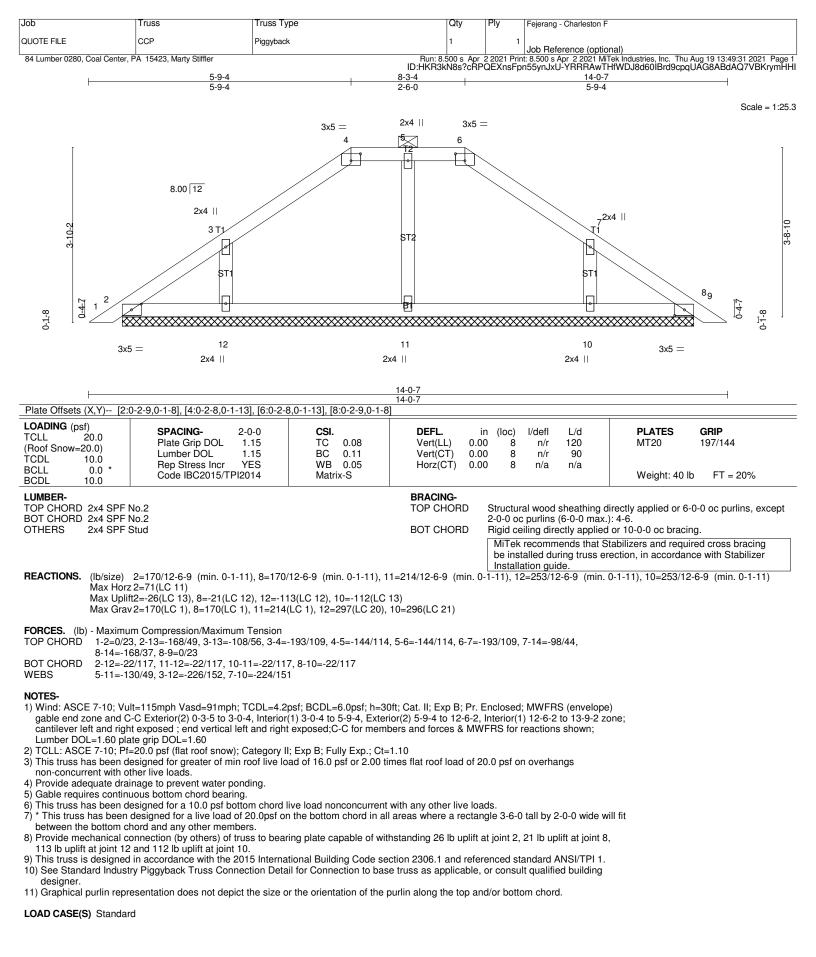

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	AGE	Common Supported Gable	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center, PA 15423, Marty Stiffler		Run: ID:HK	8.500 s Apr R3kN8s?cF	2 2021 Prin PQEXnsF	t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:26 2021 Page 2 pn55ynJxU-BUeY7CQ8r b01sE2VeFSSZ5xn9YbVtjQHrnQfeymHHN
NOTES-					

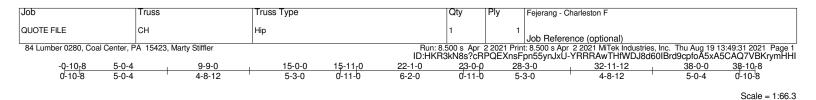

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

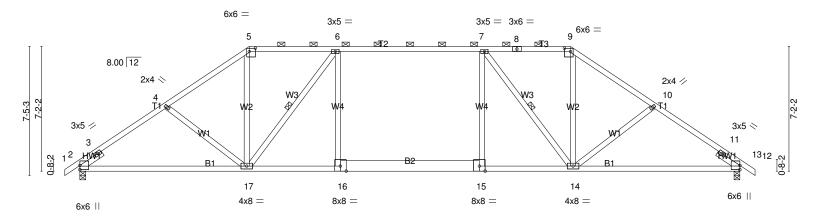

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 264 lb uplift at joint 31, 211 lb uplift at joint 18, 54 lb uplift at joint 24, 100 lb uplift at joint 25, 124 lb uplift at joint 26, 117 lb uplift at joint 28, 104 lb uplift at joint 29, 305 lb uplift at joint 30, 98 lb uplift at joint 23, 125 lb uplift at joint 22, 117 lb uplift at joint 21, 105 lb uplift at joint 20 and 289 lb uplift at joint 19.
12) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



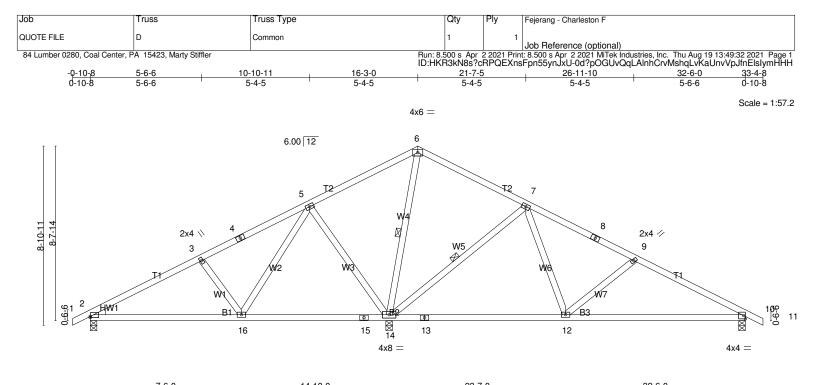


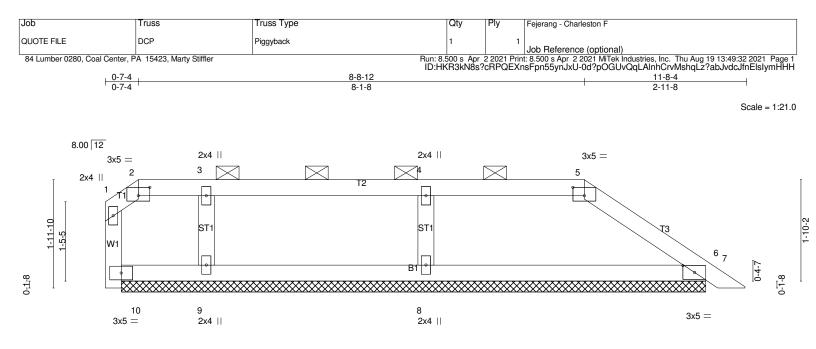






9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



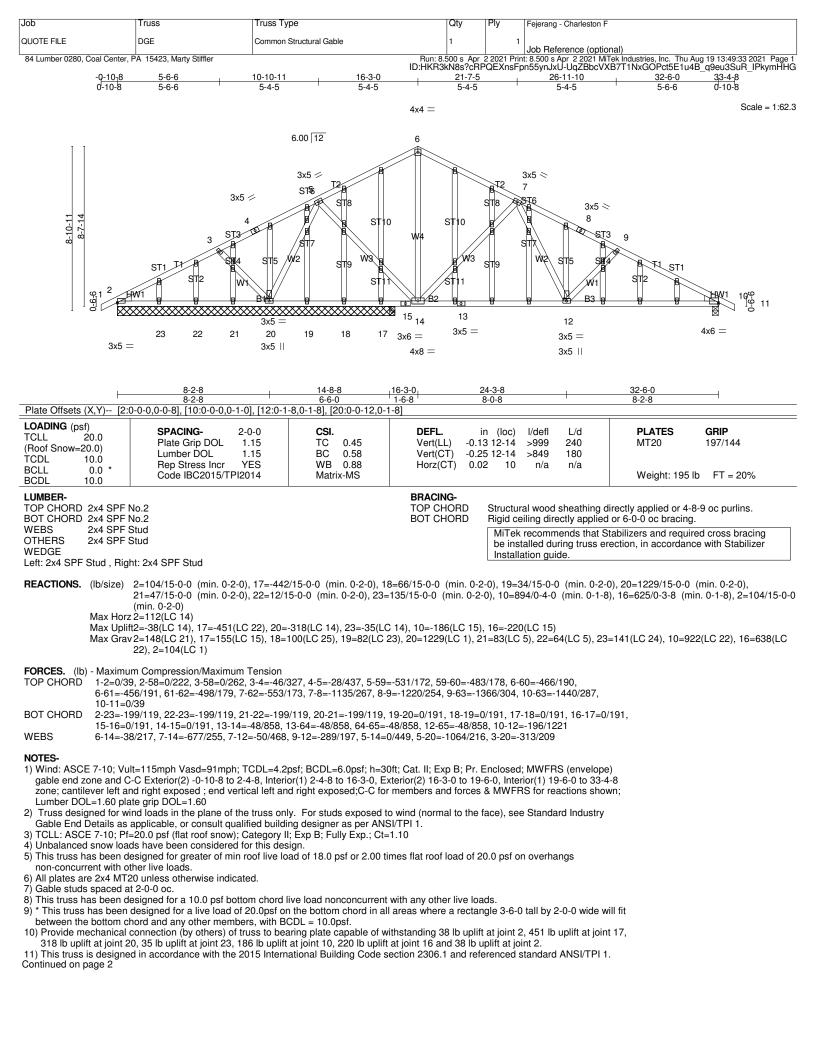

F		<u>9-9-0</u> 9-9-0		<u>15-0-0</u> 5-3-0	<u> 19-0-0</u> 4-0-0	23-0-0			<u>-3-0</u> 3-0		<u>38-0-0</u> 9-9-0	———————————————————————————————————————
Plate Offsets ((X,Y) [5:0-4-4	4,0-2-4], [9:0-4-4,0-2	2-4]									
(Roof Snow=2) TCDL 1 BCLL	Ź0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2015/TI	2-0-0 1.15 1.15 YES PI2014		0.83 0.82 0.39 ix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	0.24	n (loc) 4 16-17 1 17-20 1 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 175 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 B2: 2x8 SP No 2x4 SPF Stud	*Except* p.1	t 2x4 SPF St	tud -ð 1-6-0		BRACING- TOP CHOF BOT CHOF WEBS		2-0-0 oc Rigid ce 1 Row a MiTek be inst	purlins iling dire t midpt recomm alled du	(2-7-15 max octly applied 6- ends that S ring truss er		d cross bracing
	Max Horz 2=- Max Uplift2=-: Max Grav 2=1) - Maximum C 1-2=0/49, 2-: 6-7=-2203/5 11-12=-1091	227(LC 12), 12=-22 602(LC 20), 12=16 ompression/Maxim 3=-1091/0, 3-26=-2 20, 7-8=-1673/422, /0, 12-13=0/49	27(LC 13) 02(LC 21) um Tension 265/465, 26 8-9=-1673/4	-27=-2205/4 422, 9-10=-2	, 80, 4-27=-21 2089/456, 10-	-28=-2170/483, 2	28-29=	6, 5-6=-1 =-2205/4	80, 11-2	9, 9=-2265/46	5,	
WEBS	12-14=-315/1811											
gable end zu 28-3-0, Exte exposed;Ci-(2) 7CLL: ASCI 3) This truss h non-concurr 4) Provide ade 5) This truss h 6) * This truss h 6) * This truss h 7) Provide med 12.	one and C-C E prior(2) 28-3-0 f C for members E 7-10; Pf=20.1 as been design ent with other equate drainage as been design has been design	15mph Vasd=91mp exterior(2) -0-10-8 to to 33-7-8, Interior(1 and forces & MWF 0 psf (flat roof snow ned for greater of m live loads. e to prevent water p ned for a 10.0 psf b gned for a 10.0 psf b gned for a live load and any other men ection (by others) of	2-11-2, Interpretation of the second seco	erior(1) 2-11 8-10-8 zone tions shown II; Exp B; FL oad of 16.0 live load no no the bottor 3CDL = 10.0 tring plate ca	-2 to 9.9-0, E ; cantilever lo ; Lumber DC illy Exp.; Ct= psf or 2.00 til nconcurrent n chord in all psf. apable of with	Exterior(2) 9-9-0 eft and right exp L=1.60 plate grip 1.10 mes flat roof load with any other liv areas where a r	o 14- osed ; o DOL d of 20 ve load ectand uplift	10-4, Inte end vert =1.60 0.0 psf or ds. gle 3-6-0 at joint 2	erior(1) 1 tical left n overha tall by 2 2 and 227	4-10-4 to and right ngs -0-0 wide w 7 lb uplift at	ý ill fit	

8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

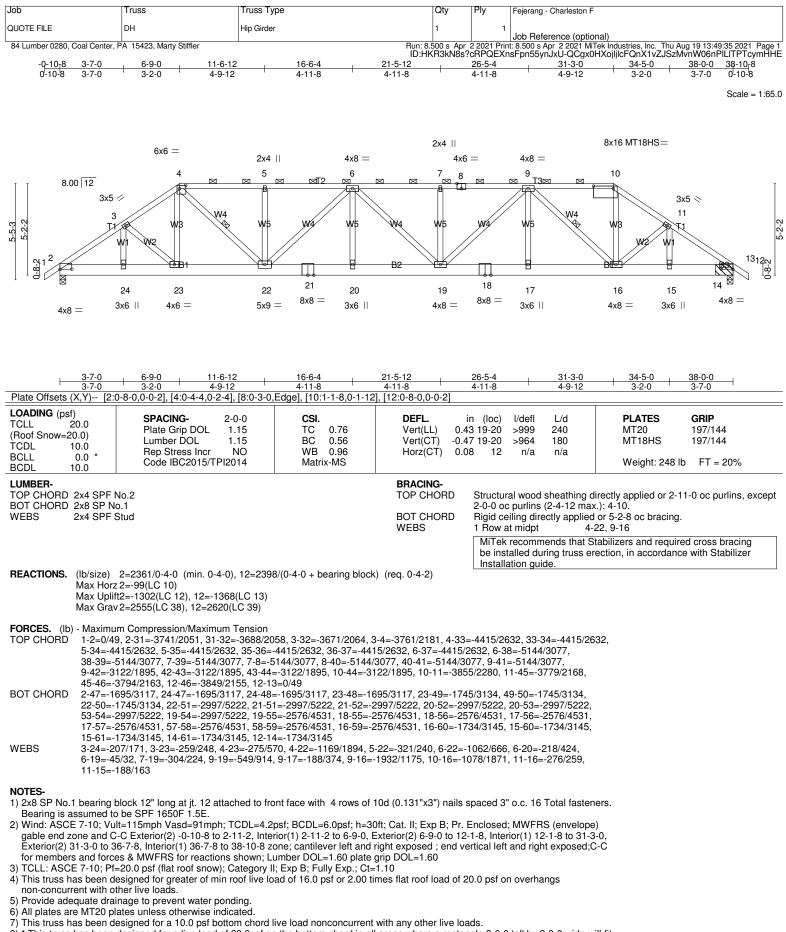
7-6-0	14-10-0	23-7-0		32-6-0	
	7-4-0	8-9-0		8-11-0	1
0-0-0,0-0-12]	1			1	
SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.46 BC 0.59 WB 0.63 Matrix-MS	Vert(LL) -0.11 12-22 >99 Vert(CT) -0.22 12-22 >95	9 240 4 180	PLATES MT20 Weight: 131	GRIP 197/144 Ib FT = 20%
No.2 No.2 Stud		BOT CHORD Rigid ceiling 6-0-0 cc brac WEBS 1 Row at mid MiTek reco be installed Installation	directly applied ing: 14-16. pt 6- nmends that S during truss er	or 10-0-0 oc bracir 14, 7-14 tabilizers and requi	ng, Except: red cross bracing
z 2=112(LC 14) ft2=-89(LC 14), 14=-303(LC 14), 10=	-136(LC 15)	=598/0-4-0 (min. 0-1-8)			
365, 26-27=0/283, 7-27=0/248, 7-8= 28/468, 16-29=-125/193, 29-30=-12 0/346, 12-32=0/346, 10-12=-109/720	-471/143, 8-9=-604/130 5/193, 15-30=-125/193,	, 9-28=-805/206, 10-28=-869/188, 1 14-15=-125/193, 13-14=0/346, 13-3	0-11=0/39 1=0/346,		
C-C Exterior(2) -0-10-8 to 2-4-8, Intern nd right exposed ; end vertical left at ate grip DOL=1.60 =20.0 psf (flat roof snow); Category ds have been considered for this de esigned for greater of min roof live le ther live loads. 20 unless otherwise indicated. esigned for a 10.0 psf bottom chord designed for a live load of 20.0psf of	or(1) 2-4-8 to 16-3-0, E: nd right exposed;C-C for l; Exp B; Fully Exp.; Ct= sign. aad of 18.0 psf or 2.00 ti live load nonconcurrent n the bottom chord in al CDL = 10.0psf.	tterior(2) 16-3-0 to 19-6-0, Interior(1) members and forces & MWFRS for 1.10 mes flat roof load of 20.0 psf on ove with any other live loads.	19-6-0 to 33-4 reactions show rhangs	í-8 vn;	
	7-6-0 0-0-0,0-0-12] SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014 No.2 No.2 Stud 2=4112(LC 14) tt2=-89(LC 14), 14=-303(LC 14), 10= /2=508(LC 21), 14=1664(LC 24), 10 m Compression/Maximum Tension 9, 2-23=-588/88, 3-23=-524/100, 3-4 365, 26-27=0/283, 7-27=0/248, 7-8= 28/468, 16-29=-125/193, 29-30=-121 //346, 12-32=0/346, 10-12=-109/720 10/199, 5-16=-94/506, 5-14=-638/26 It=115mph Vasd=91mph; TCDL=4.2 C Exterior(2) -0-10-8 to 2-4-8, Interindright exposed ; end vertical left ar ate grip DOL=1.60 =20.0 psf (flat roof snow); Category I ds have been considered for this detection for greater of min roof live lo ther live loads. 20 unless otherwise indicated. esigned for a live load of 20.0psf o hord and any other members, with B	7.6-0 7.4-0 0-0-0,0-0-12] SPACING- 2-0-0 CSI. Plate Grip DOL 1.15 TC 0.46 Lumber DOL 1.15 BC 0.59 Rep Stress Incr YES WB 0.63 Code IBC2015/TPI2014 Matrix-MS No.2 No.2 No.2 Stud No.2 Stud Stud No.2 Stud Stud No.2 Stud Stud No.2 Stud No.2 Stud No.2 Stud No.2 Stud No.2 Stud No.2 Stud No.2 Stud No.2 Stud No.2 Stud S	7-6-0 7-4-0 8-9-0 0-0-0,0-0-12 Plate Grip DOL 1.15 TC 0.46 Plate Grip DOL 1.15 BC 0.59 Vert(CT) -0.22 2.993 Rep Stress Incr YES WB 0.63 Vert(CT) -0.22 1.22 >954 No.2 Code IBC2015/TPI2014 Matrix-MS BRACING- TOP CHORD Structural wo No.2 Stud BTACING TOP CHORD Structural wo Stud BOT CHORD Rigid ceiling G 6-0-0 oc brac VEED 1 Row at mid MiTek record 12:2=12(LC 14) 12:2=508(LC 21), 14=1664(LC 24), 10=650(LC 22) MiTek record 1.15 mc Compression/Maximum Tension 9, 2:23=-588/88, 3:23=-524/100, 3:4=-404/73, 4:5=-272/91, 5:24=-25/368, 24:25=-17/403, 6:25=-352, 26:27=-0283, 7:27=0/284, 7:4=25/193, 15:30=-125/193, 14:15=-125/193, 13:14=0/346, 13:3''' 13:46, 12:32=0/346, 10:12=-109/720 10/199, 5:16=-94/506, 5:14=-638/264, 6:14=-620/118, 7:14=-734/252, 7:12=-26/490, 9:12=-332 14:115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWI/-C Exterior(2) -0:10-8 to 2:4-8, Interior(1) 2:4-8 to 16:3-0, Exterior(2) 16:3-0 to 19-6-0, Interior(1)	7-6-0 7-4-0 8-9-0 0-0-0,0-0-12 SPACING- 2-0-0 In (loc) I/def L/d Plate Grip DOL 1.15 TC 0.46 Vert(LL) -0.1112-22 >999 240 Vert(CT) -0.2212-22 >954 180 Horz(CT) 0.01 2 n/a n/a Rep Stress Incr YES WB 0.63 Horz(CT) 0.01 2 n/a n/a No.2 Stud Matrix-MS BRACING- TOP CHORD Structural wood sheathing d 6-0-0 oc bracing: 14-16. No.2 Stud WEBS 1 Row at midpt 6- Stud WEBS 1 Row at midpt 6- MiTek recommends that S Secoluc 21), 14=1664(LC 24), 10=-616(LC 22) 10 1833-252/103, 3-4=-404/73, 4-5=-272/91, 5-24=-25/368, 24-25=-17/403, 6-25=-14/483, 365, 26-27=0/283, 7-27=0/248, 7-8=-471/143, 8-9=-604/130, 9-28=-805/206, 10-28=-869/188, 10-11=0/39 28/368, 16-29=-125/193, 13-14=-0/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 13-31=0/346, 1/346, 1	7:4:0 7:4:0 8:9:0 8:11:0 0:0:0:0:0:0:12 SPACING: 2:0:0 Reining Reini

9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

L	11-8-4
Plate Offsets (X,Y) [2:0-2-8,0-1-13], [5:0-2-8,0-1-13], [6:0-	2-9,0-1-8]
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 (Roof Snow=20.0) TCDL 10.0 BCLL 0.0 * BCDL 10.0 Code IBC2015/TPI2014 Section 10.0	CSI. DEFL. in (loc) l/defl L/d TC 0.23 Vert(LL) -0.00 7 n/r 120 BC 0.17 Vert(CT) 0.00 7 n/r 90 WB 0.06 Horz(CT) -0.00 10 n/a n/a Matrix-S Weight: 31 lb FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF Stud OTHERS 2x4 SPF Stud	
FORCES. (lb) - Maximum Compression/Maximum Tension	107/80, 3-12=-107/80, 12-13=-107/80, 4-13=-107/80, 4-5=-107/80, 5-6=-172/79
 gable end zone and C-C Exterior(2) 0-1-12 to 4-10-3, Interight exposed; end vertical left and right exposed; C-C for grip DOL=1.60 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category 3) This truss has been designed for greater of min roof live I non-concurrent with other live loads. 4) Provide adequate drainage to prevent water ponding. 5) Gable requires continuous bottom chord bearing. 6) This truss has been designed for a 10.0 psf bottom chord 	oad of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs


between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 10, 50 lb uplift at joint 6, 91 lb uplift at joint 8 and 59 lb uplift at joint 9.


9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building

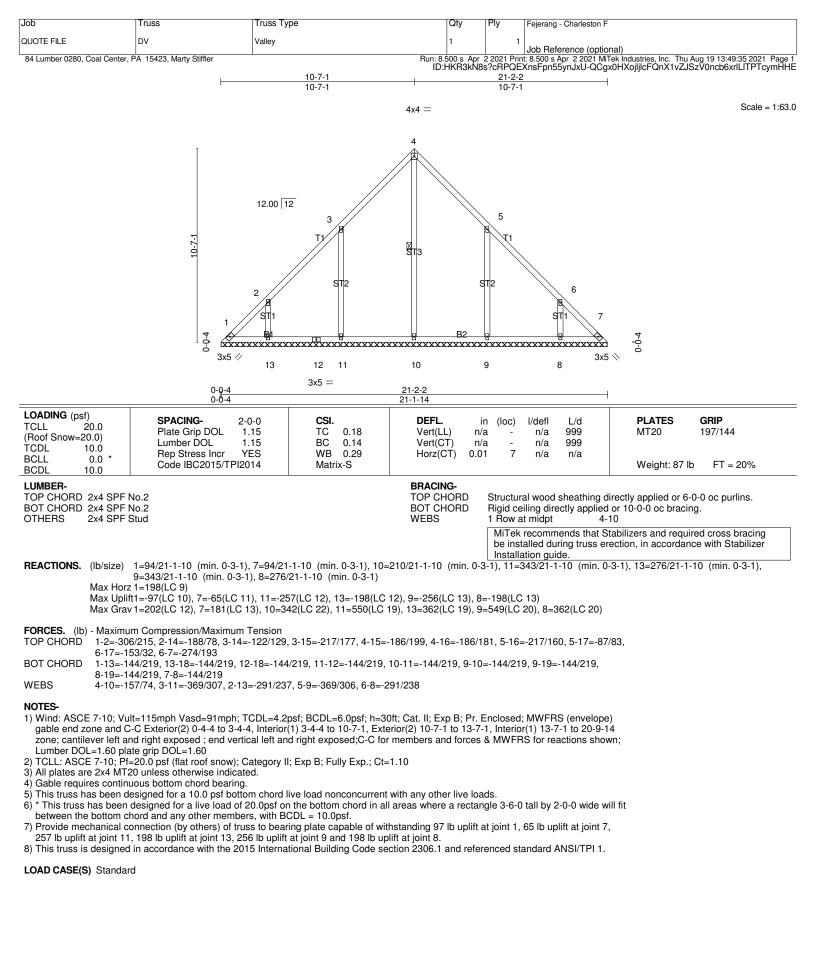
designer. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

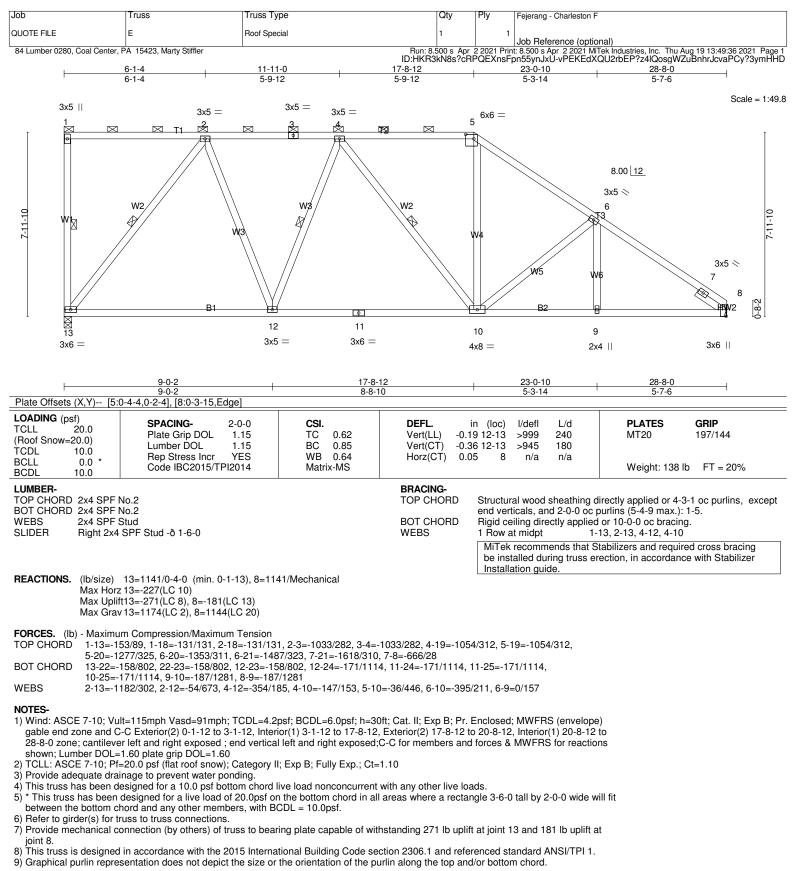
Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	DGE	Common Structural Gable	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center, PA 15423, Marty Stiffler					t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:33 2021 Page 2 n55ynJxU-UqZBbcVXB7T1NxGOPct5E1u4B_q9eu3SuR_IPkymHHG

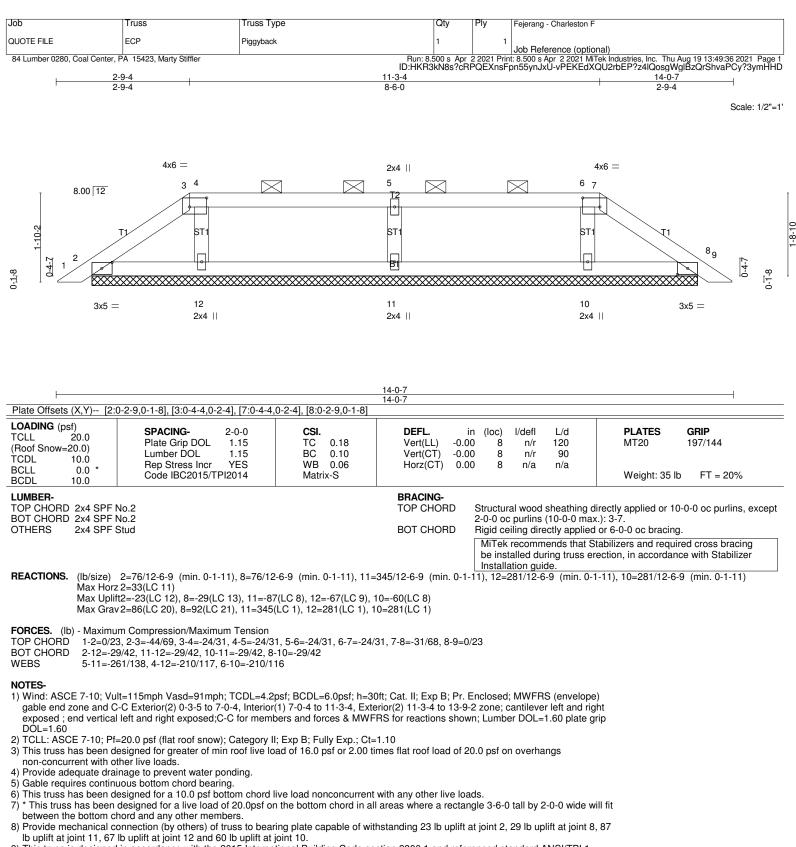
 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	DH	Hip Girder	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center, I	PA 15423, Marty Stiffler				t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:35 2021 Page 2 sFpn55ynJxU-QCgx0HXojlilcFQnX1vZJSzMvnW06nPILITPTcymHHE

NOTES-

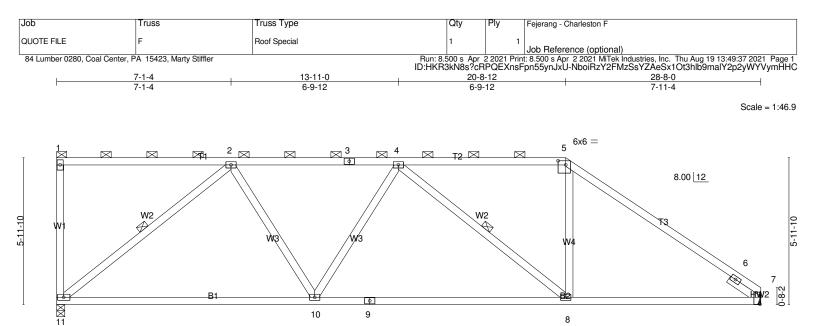

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1302 lb uplift at joint 2 and 1368 lb uplift at joint 12.
- 10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 84 lb down and 96 lb up at 6-9-0, 87 lb down and 90 lb up at 8-9-12, 87 lb down and 90 lb up at 12-9-12, 86 lb down and 90 lb up at 12-9-12, 86 lb down and 90 lb up at 14-9-12, 86 lb down and 90 lb up at 16-9-12, 86 lb down and 90 lb up at 18-9-12, 87 lb down and 90 lb up at 20-9-12, 86 lb down and 90 lb up at 22-9-12, 86 lb down and 90 lb up at 24-9-12, 87 lb down and 90 lb up at 26-9-12, 87 lb down and 90 lb up at 29-9-12, 86 lb down and 90 lb up at 24-9-12, 87 lb down and 90 lb up at 20-9-12, 87 lb down and 90 lb up at 20-9-12, 87 lb down and 90 lb up at 29-9-12, 87 lb down and 90 lb up at 29-9-12, 87 lb down and 90 lb up at 29-9-12, 108 lb down and 90 lb up at 29-9-12, 108 lb down and 90 lb up at 29-9-12, 108 lb down and 90 lb up at 29-9-12, 108 lb down and 90 lb up at 29-9-12, 108 lb down and 102 lb up at 29-9-12, 108 lb down and 102 lb up at 12-9-12, 108 lb down and 102 lb up at 12-9-12, 108 lb down and 102 lb up at 12-9-12, 108 lb down and 102 lb up at 12-9-12, 108 lb down and 102 lb up at 20-9-12, 108 lb down and 102 lb up at 12-9-12, 108 lb down and 102 lb up at 20-9-12, 108 lb down and 102 lb up at 12-9-12, 108 lb down and 102 lb up at 20-9-12,
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

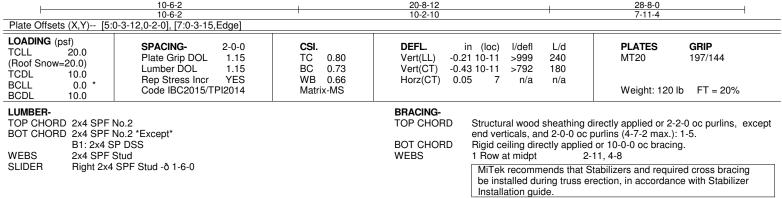

LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-4=-60, 4-10=-60, 10-13=-60, 25-28=-20

Concentrated Loads (lb)

Vert: 8=-0(F) 10=-0(F) 23=-74(F) 4=-0(F) 6=-0(F) 20=-74(F) 16=-74(F) 33=-0(F) 34=-0(F) 36=-0(F) 37=-0(F) 38=-0(F) 39=-0(F) 49=-0(F) 42=-0(F) 43=-0(F) 44=-0(F) 47=-147(F) 48=-137(F) 49=-74(F) 50=-74(F) 51=-74(F) 52=-74(F) 53=-74(F) 55=-74(F) 55=-74(F) 55=-74(F) 58=-74(F) 58=-7





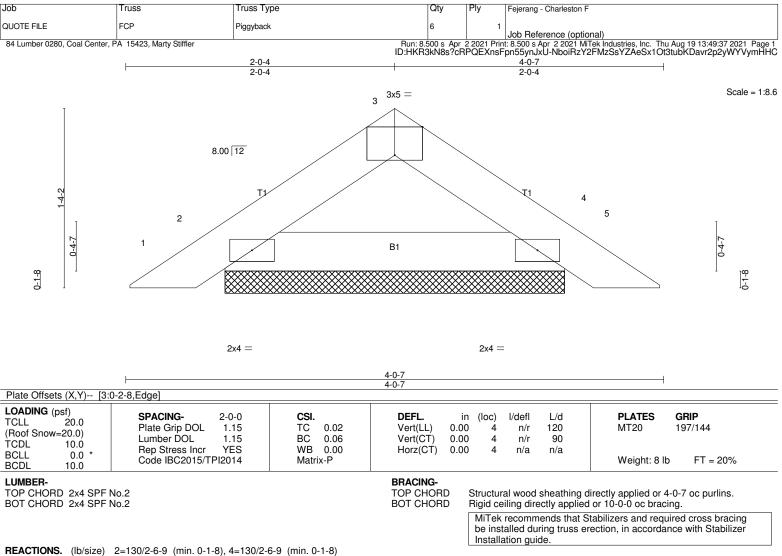
9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

3x6 ||

REACTIONS. (lb/size) 11=1141/0-4-0 (min. 0-1-13), 7=1141/Mechanical Max Horz 11=-168(LC 10) Max Uplift11=-270(LC 8), 7=-162(LC 13) Max Grav 11=1141(LC 1), 7=1153(LC 20)

FORCES. (Ib) - Maximum Compression/Maximum Tension

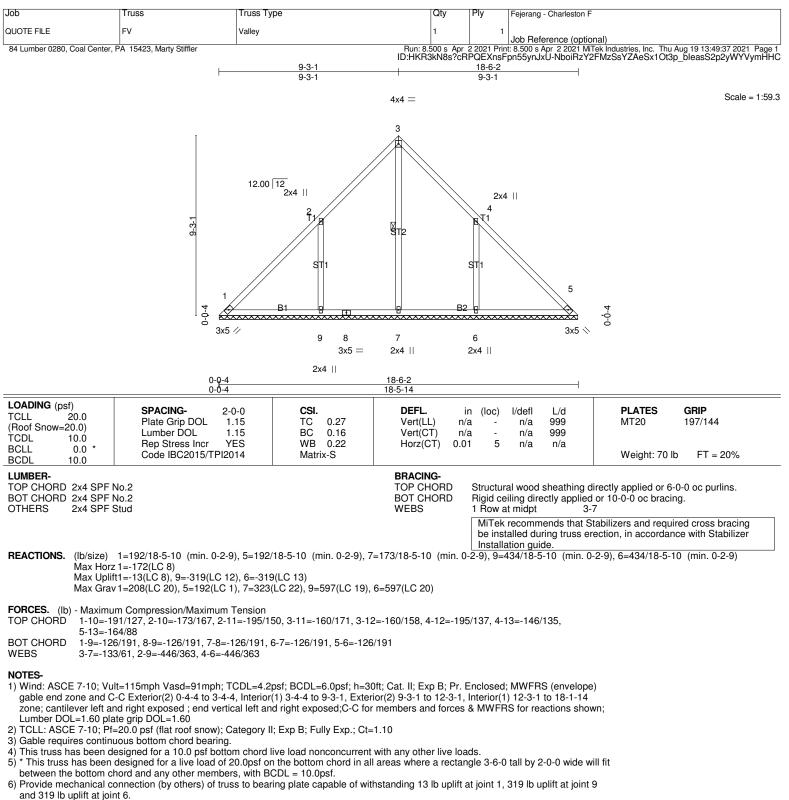

- TOP CHORD 1-11=-182/96, 1-16=-109/97, 2-16=-109/97, 2-3=-1449/311, 3-4=-1449/311, 4-17=-1242/321, 5-17=-1242/321,
- 5-18=-1502/308, 18-19=-1510/291, 6-19=-1611/285, 6-7=-580/1
- BOT CHORD 11-20=-257/1148, 20-21=-257/1148, 10-21=-257/1148, 9-10=-287/1521, 9-22=-287/1521, 8-22=-287/1521, 10-21=-287/1521, 10-287/1520, 10-287/1521, 10-287/1521, 10-287 8-23=-137/1253, 7-23=-137/1253
- WEBS
- 2-11=-1386/363, 2-10=0/591, 4-10=-230/171, 4-8=-447/212, 5-8=-16/517

NOTES-

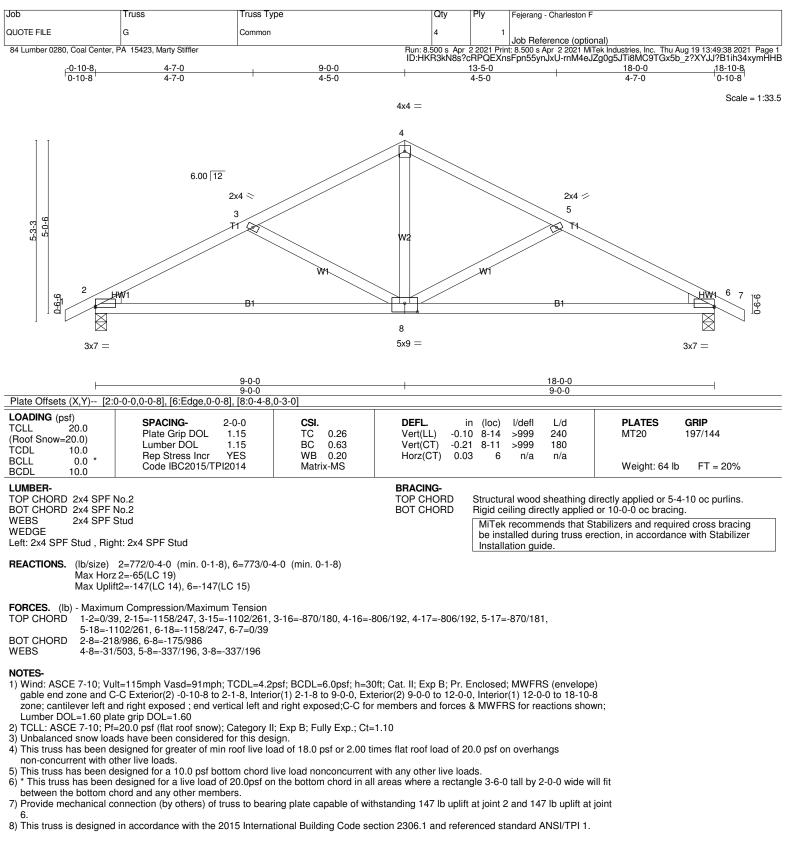
3x6 =

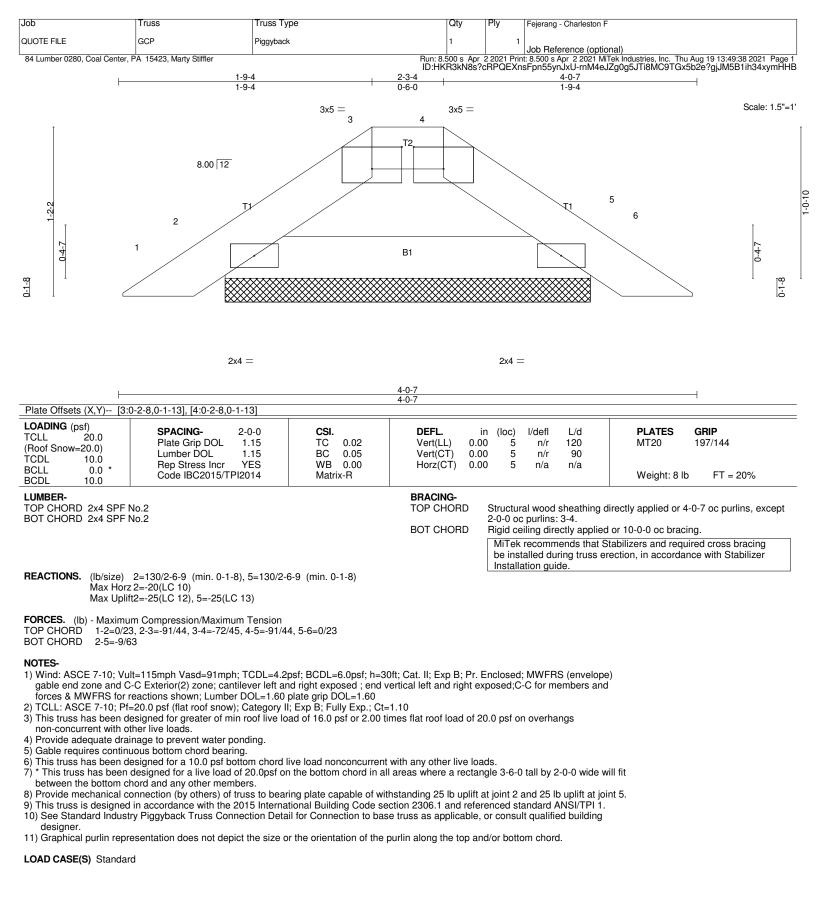
- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 20-8-12, Exterior(2) 20-8-12 to 23-8-12, Interior(1) 23-8-12 to 28-8-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 3x5 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit 6) between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 270 lb uplift at joint 11 and 162 lb uplift at joint 7.

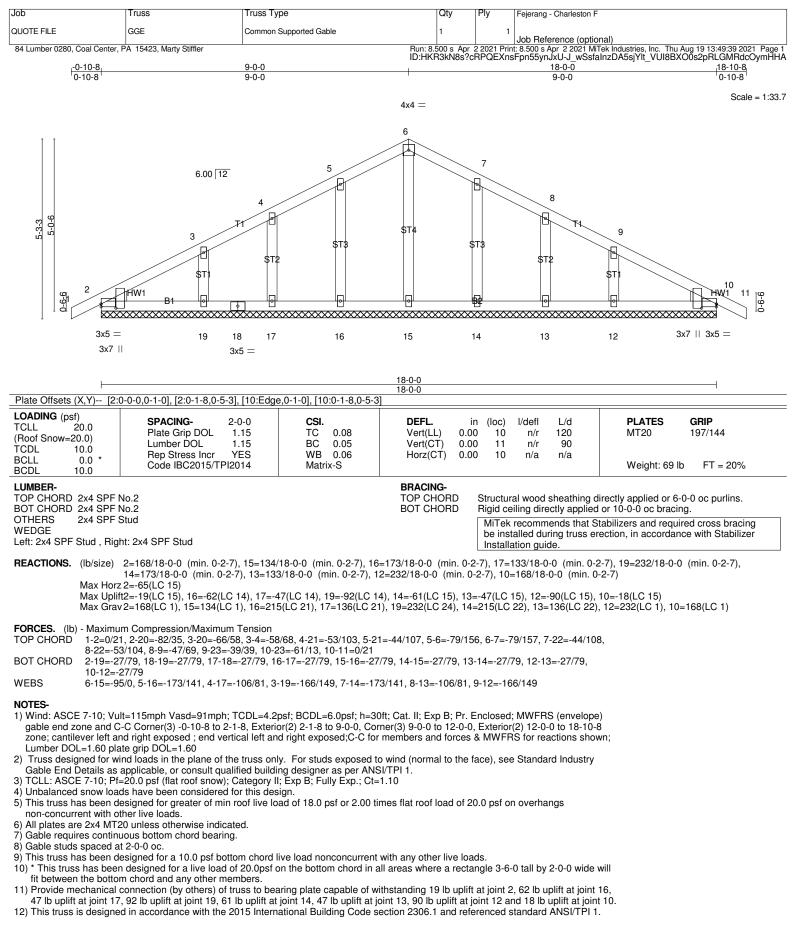
 This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

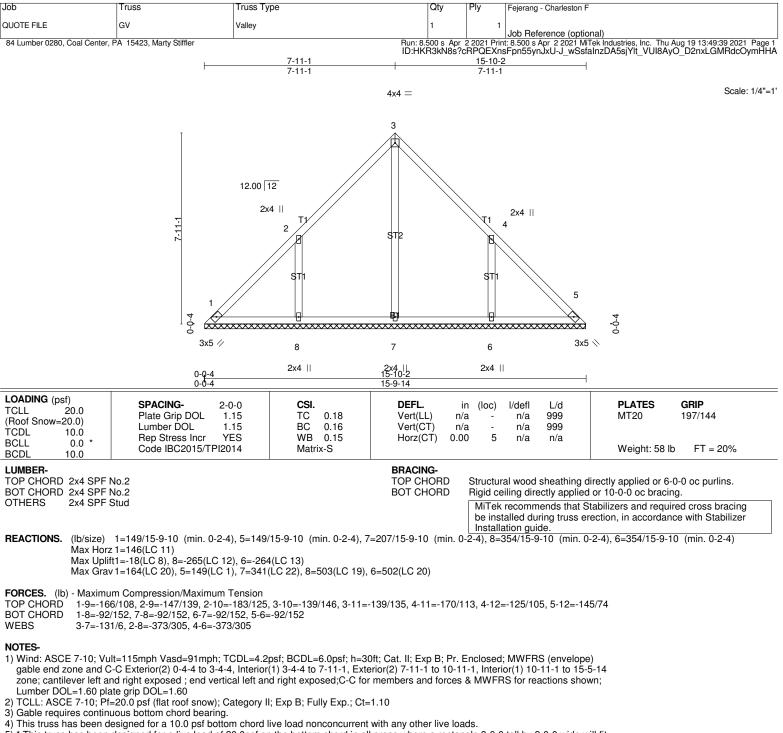


Max Horz 2=130/2-6-9 (min. 0-1-8), 4=130/2-6-9 (min. 0-1-8) Max Horz 2=22(LC 11) Max Uplift2=-27(LC 12), 4=-27(LC 13)

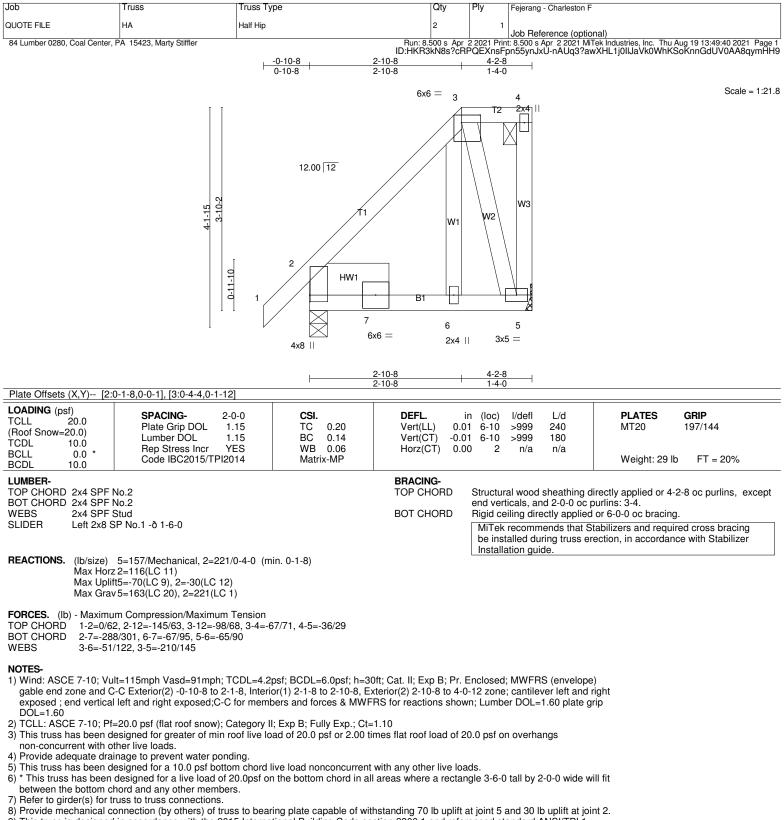

- FORCES. (Ib) Maximum Compression/Maximum Tension
- TOP CHORD 1-2=0/23, 2-3=-82/36, 3-4=-82/36, 4-5=0/23
- BOT CHORD 2-4=-8/52


NOTES-

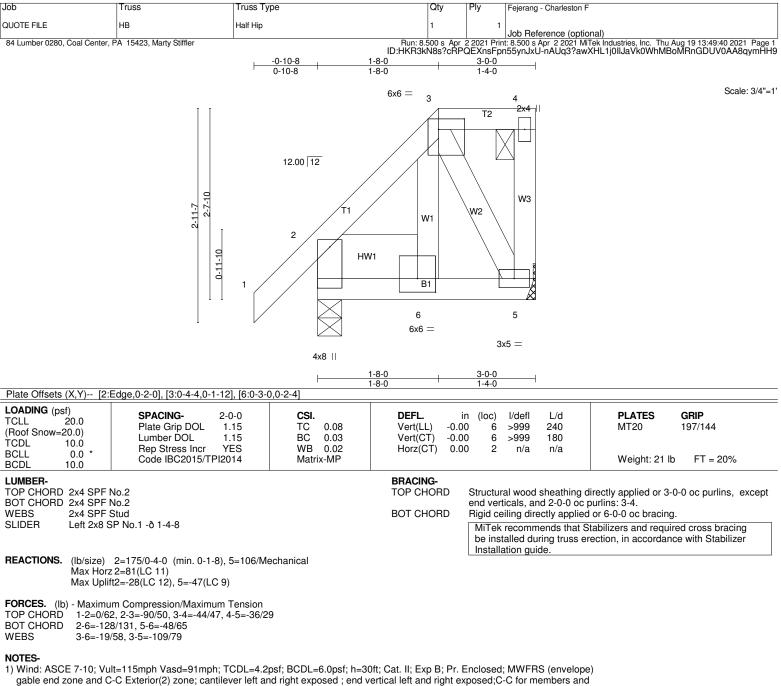

- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2 and 27 lb uplift at joint 4.
- 8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



7) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1, 265 lb uplift at joint 8 and 264 lb uplift at joint 6.

7) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

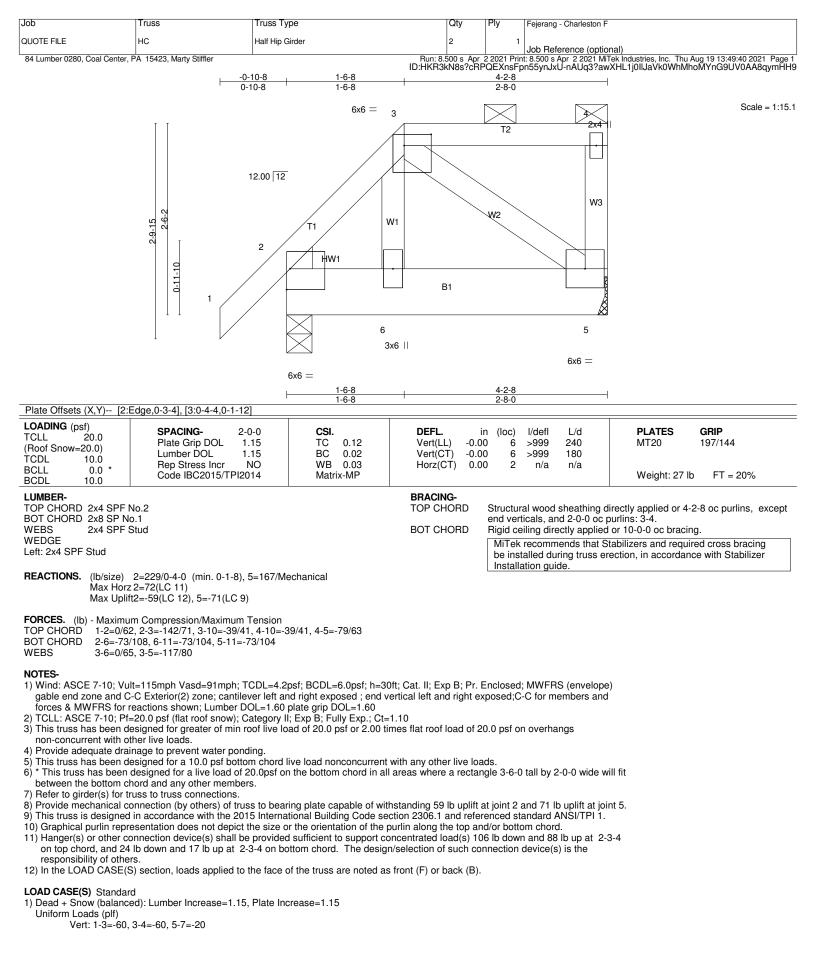
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10

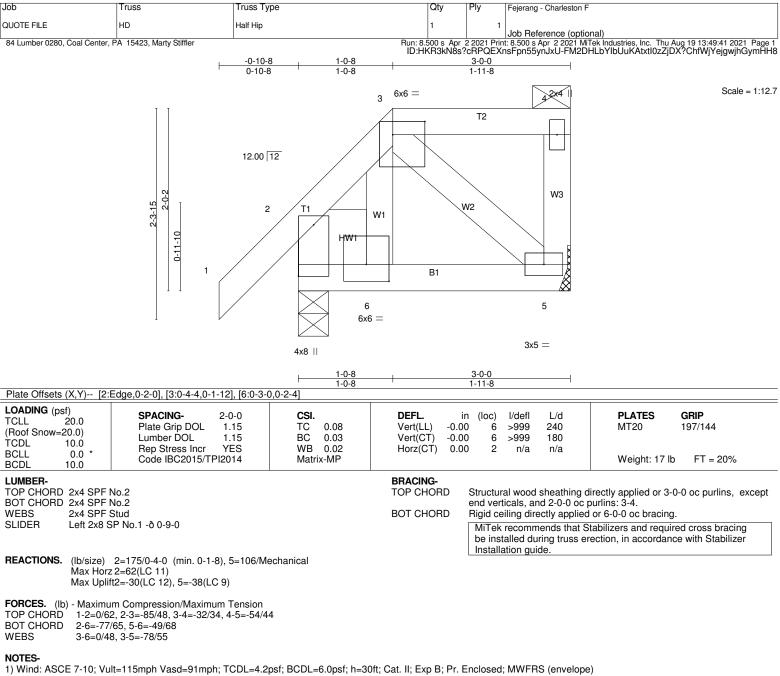
3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.
 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2 and 47 lb uplift at joint 5.


9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	нс	Half Hip Girder	2	1	Job Reference (optional)
84 Lumber 0280, Coal Center, F			2 2021 Prin	: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:41 2021 Page 2 Spn55ynJxU-FM2DHLbYIbUuKAtxtI0zZjDXRChnWjPejgwjhGymHH8	

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 10=-6(F) 11=-13(F)

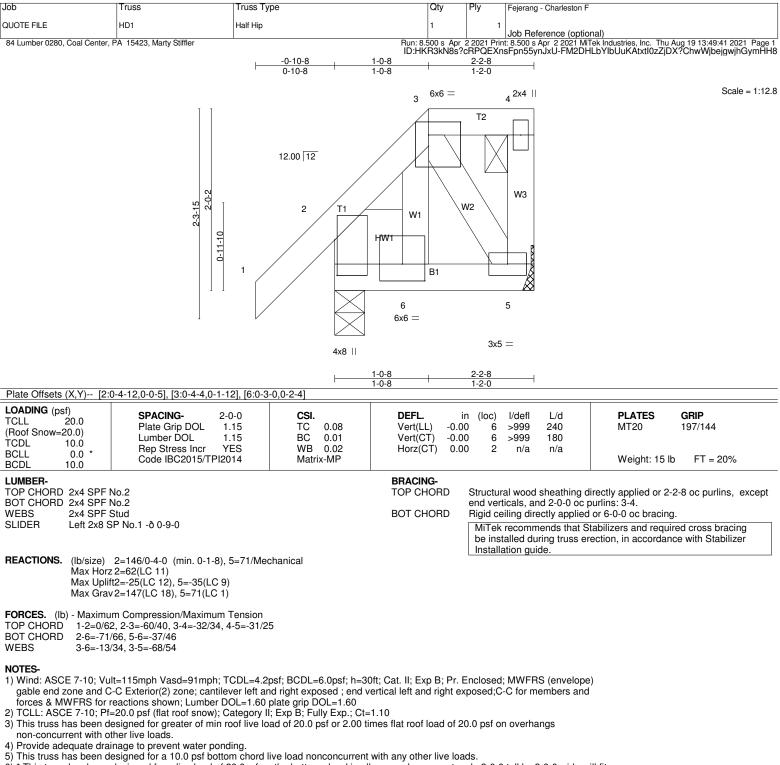
gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) Provide adequate drainage to prevent water ponding.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

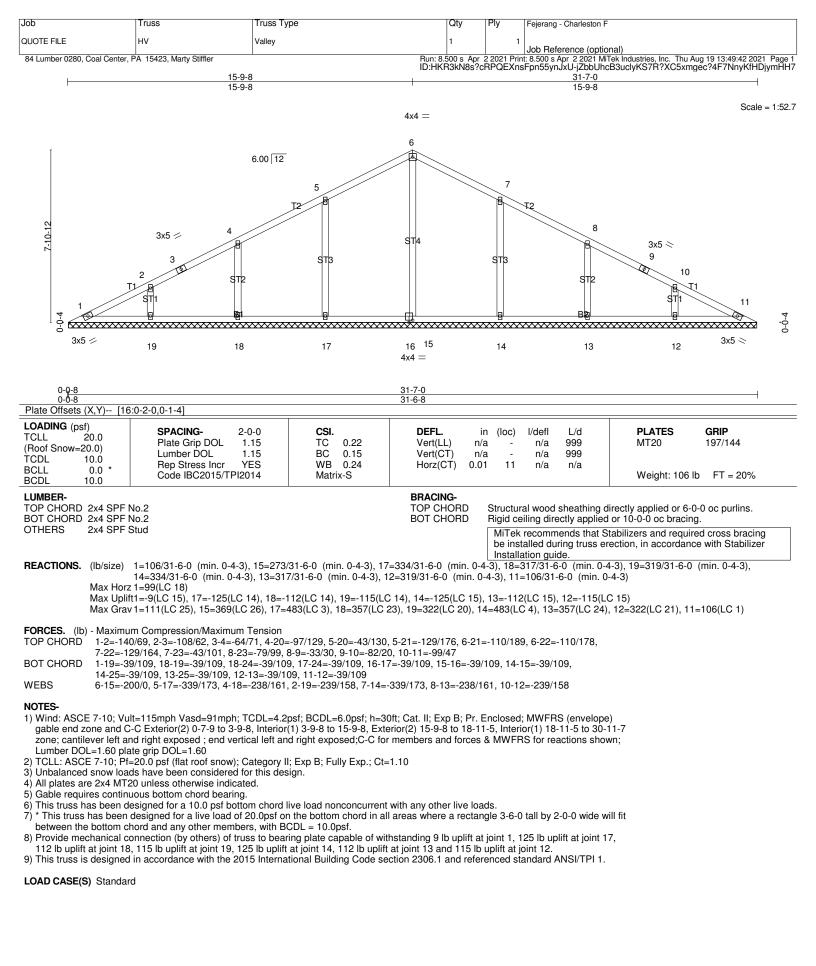

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit 6) between the bottom chord and any other members.

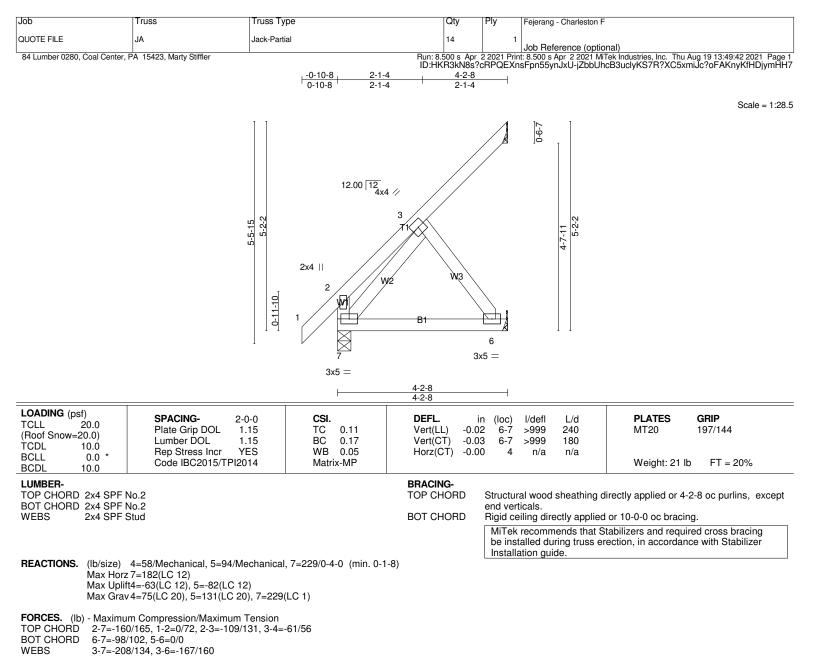
7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 2 and 38 lb uplift at joint 5.

9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 2 and 35 lb uplift at joint 5.

9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

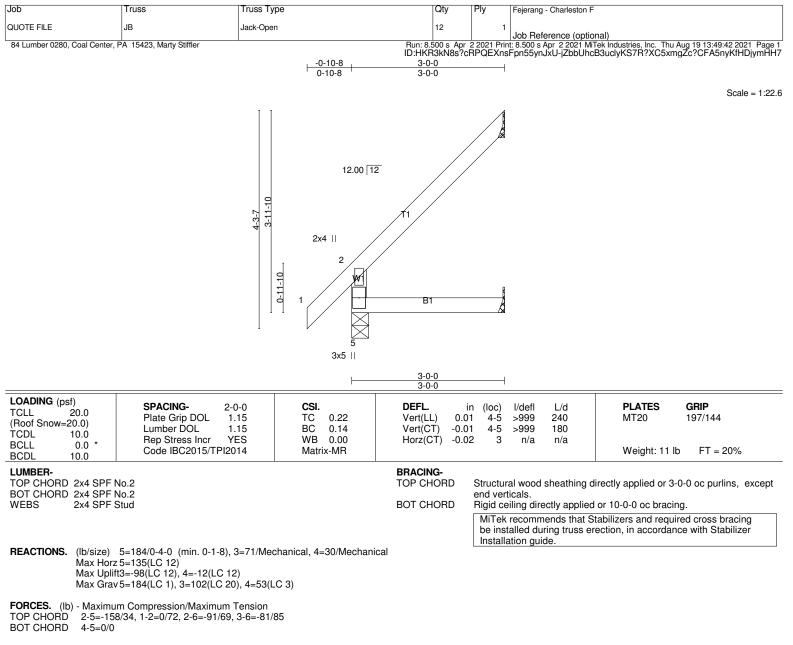
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NOTES-

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 4 and 82 lb uplift at joint 5.

8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

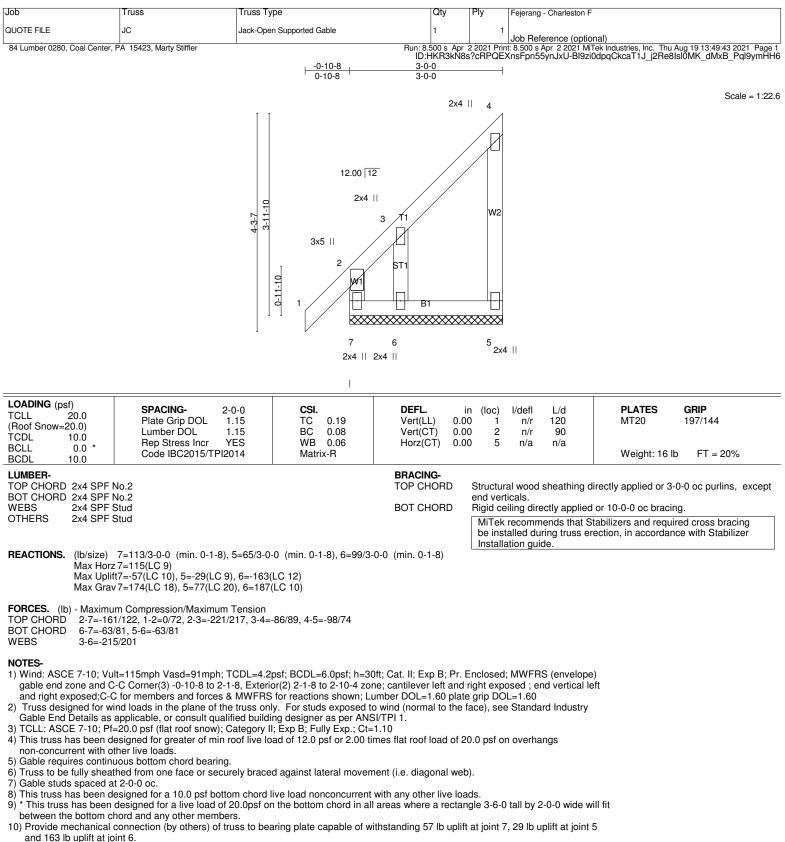
¹⁾ Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 1-11-5, Interior(1) 1-11-5 to 4-1-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

NOTES-

 Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 98 lb uplift at joint 3 and 12 lb uplift at joint 4.

8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

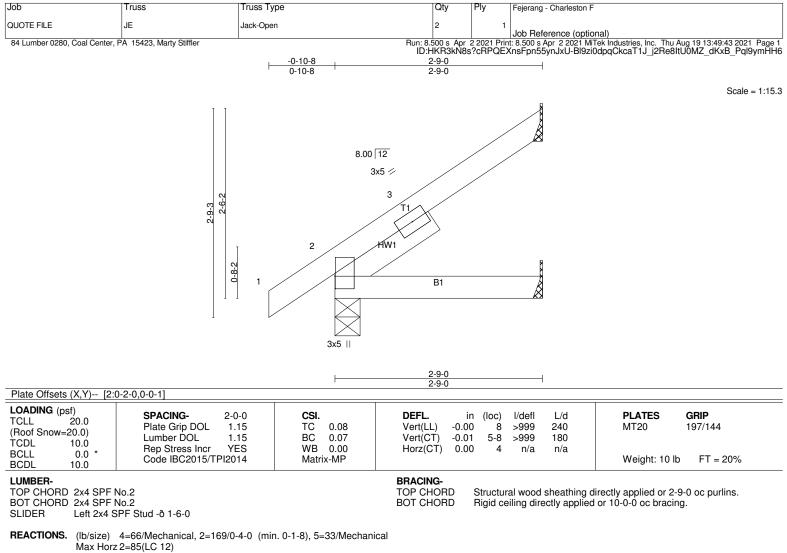
11) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 3 and 13 lb uplift at joint 4.

8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Max Uplift4=54(LC 12), 2=-10(LC 12), 5=-2(LC 12) Max Grav 4=81(LC 20), 2=169(LC 1), 5=48(LC 3)

FORCES. (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/49, 2-3=-62/15, 3-10=-38/34, 4-10=-35/46

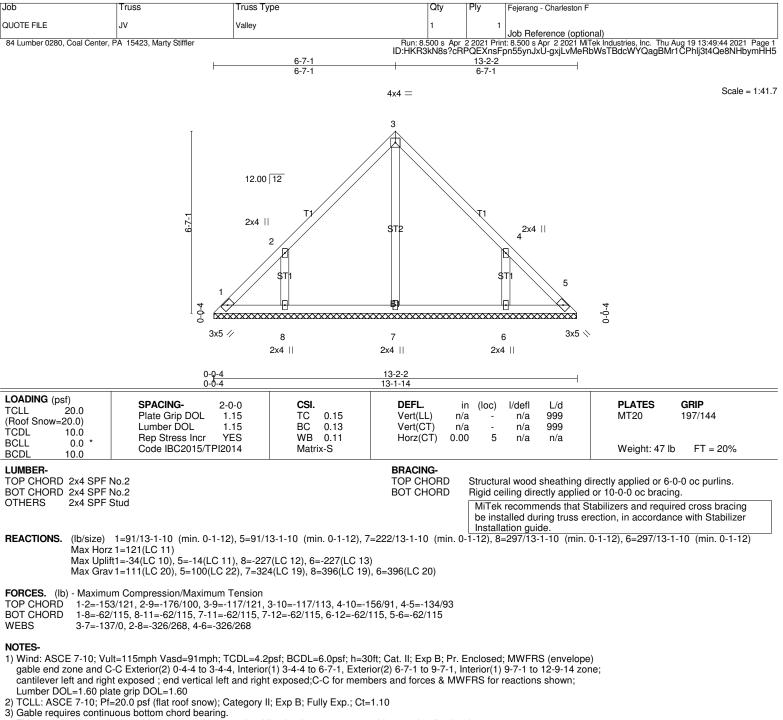
BOT CHORD 2-5=0/0

NOTES-

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10

3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

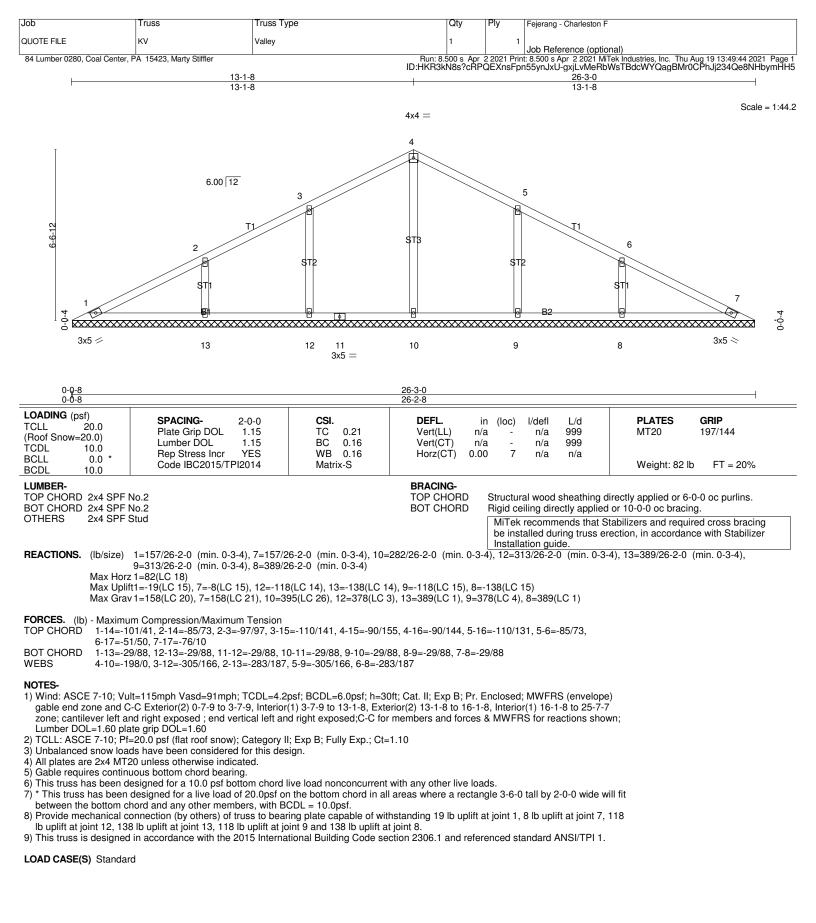

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

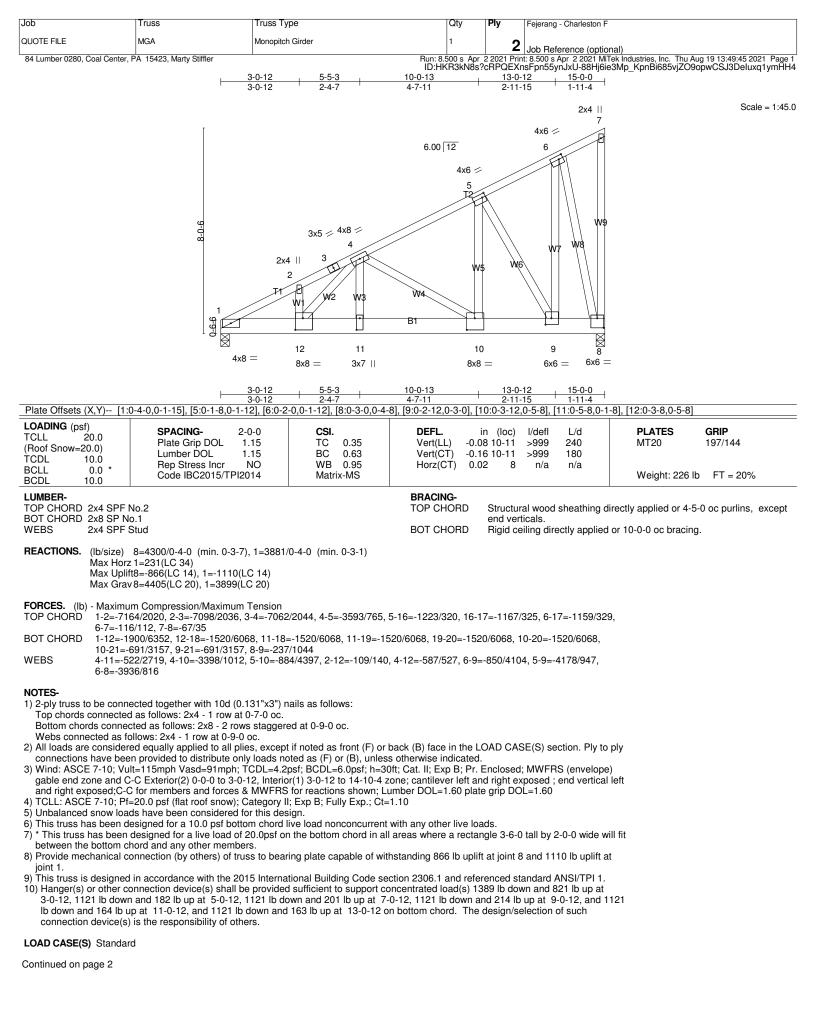
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 4, 10 lb uplift at joint 2 and 2 lb uplift at joint 5.

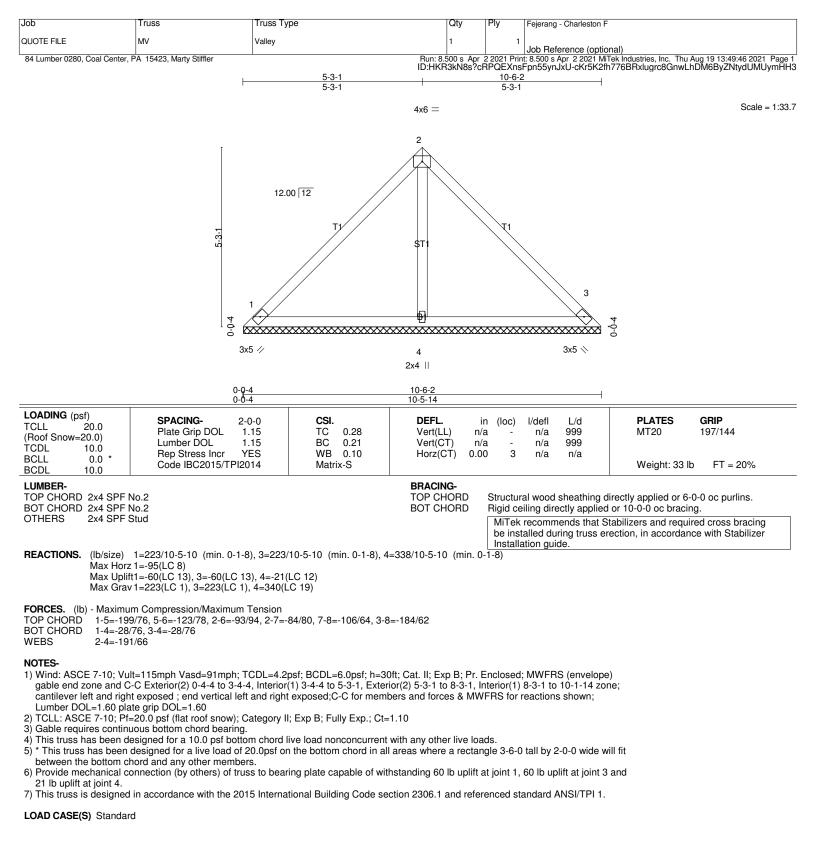
8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

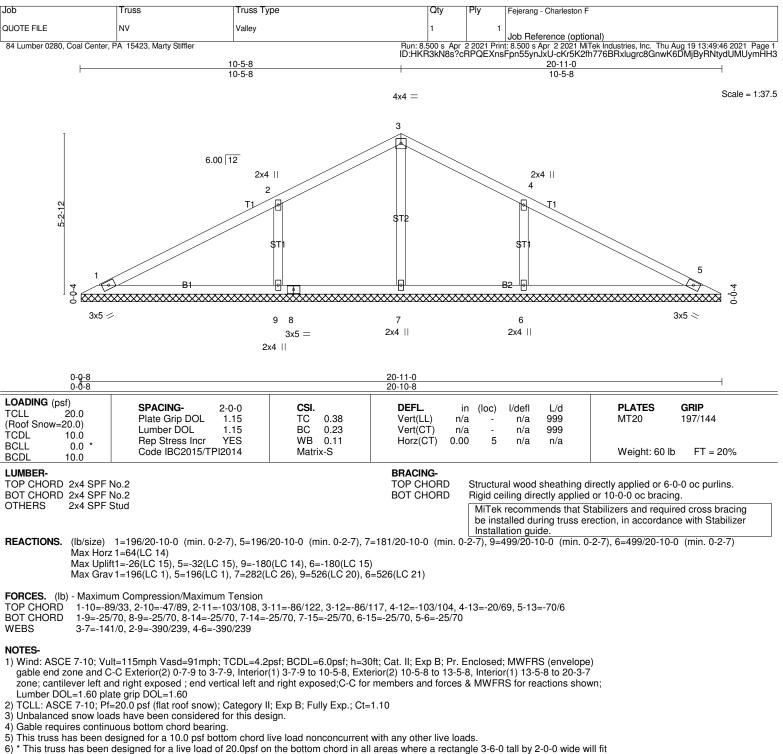



4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

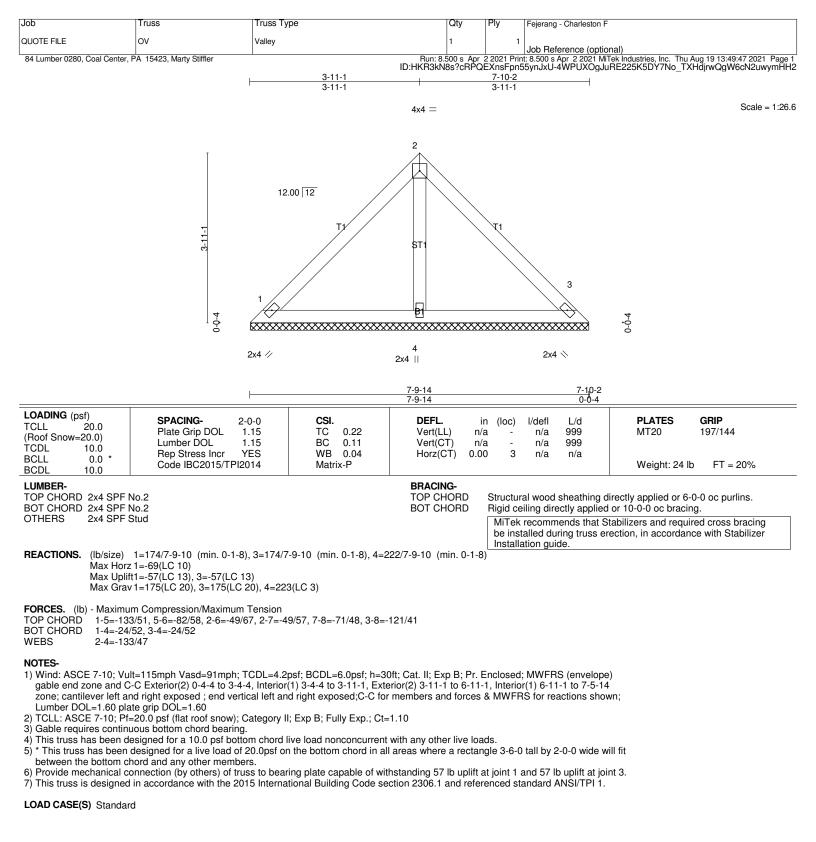
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1, 14 lb uplift at joint 5, 227 lb uplift at joint 8 and 227 lb uplift at joint 6.

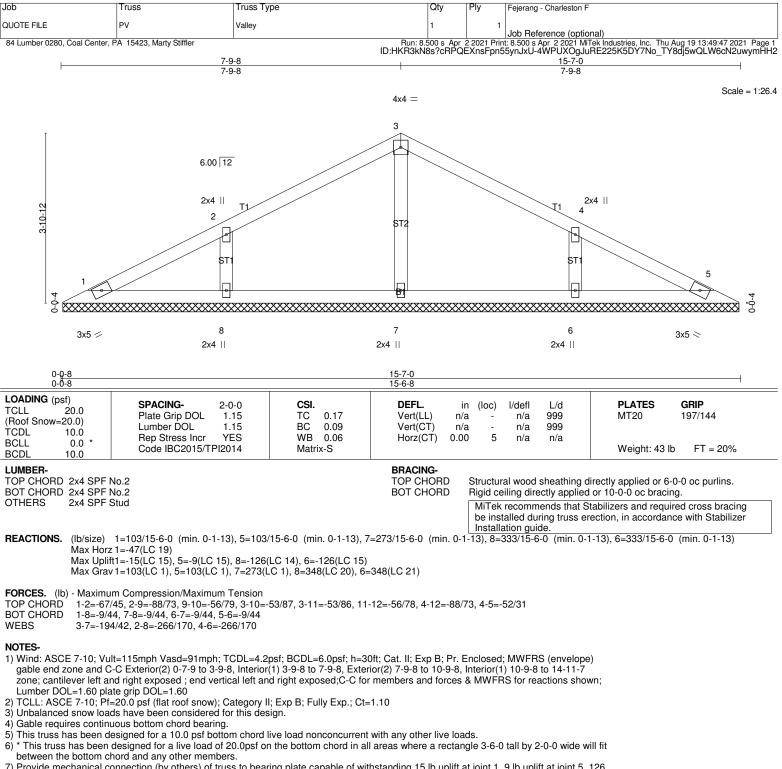

7) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	MGA	Monopitch Girder	1	2	Job Reference (optional)
84 Lumber 0280, Coal Center, F	A 15423, Marty Stiffler				t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:45 2021 Page 2 nsFpn55ynJxU-88Hj6ie3Mp_KpnBi685vjZO9opwCSJ3Deluxq1ymHH4

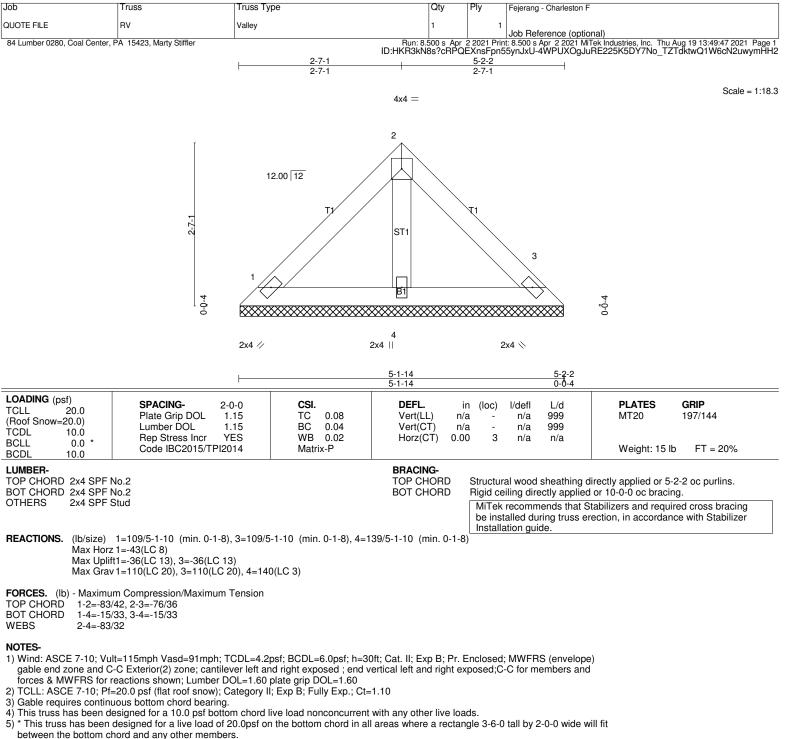
LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-7=-60, 8-13=-20 Concentrated Loads (lb) Vert: 12=-1389(F) 9=-1121(F) 18=-1121(F) 19=-1121(F) 20=-1121(F) 21=-1121(F)

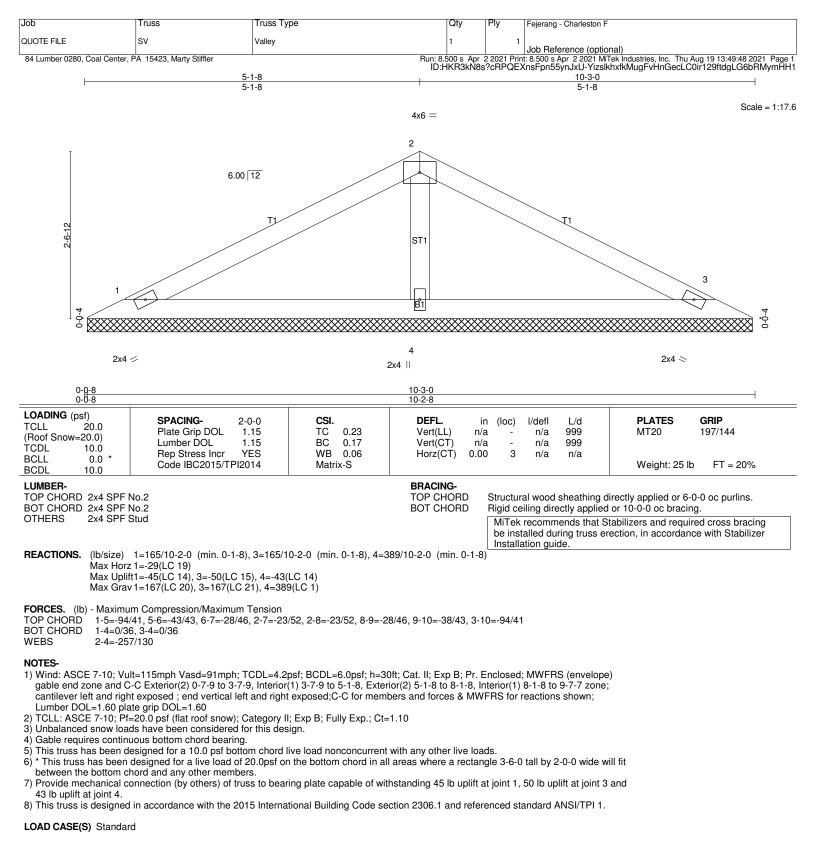


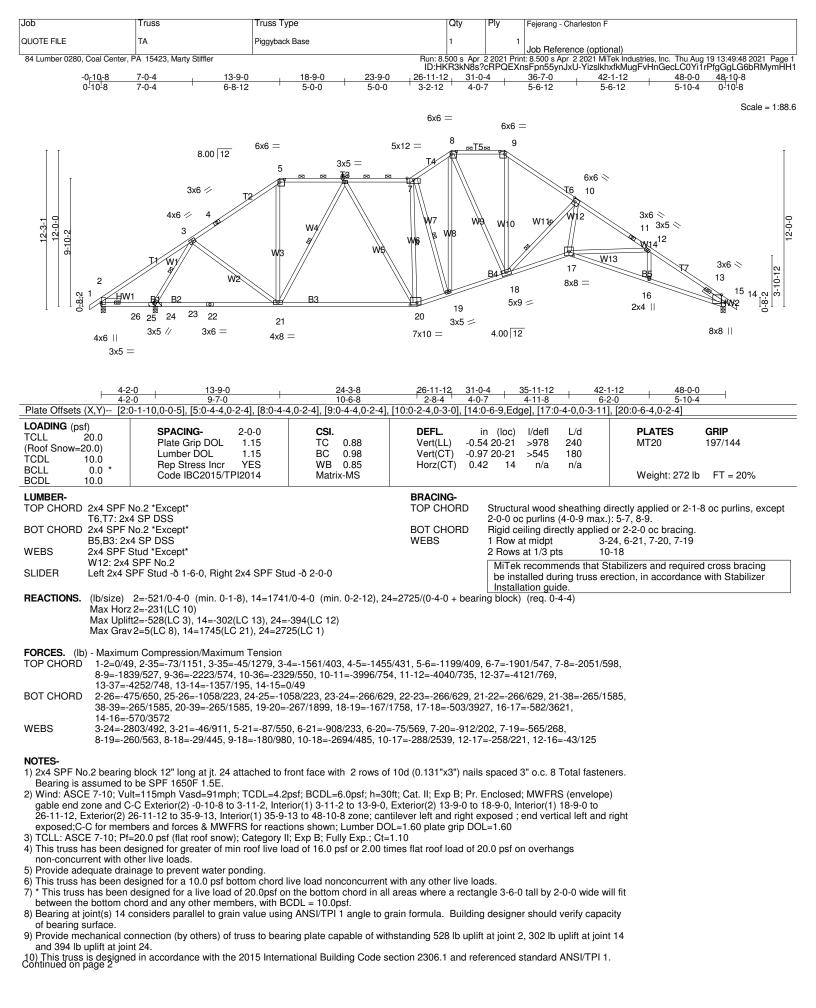


between the bottom chord and any other members, with BCDL = 10.0psf.

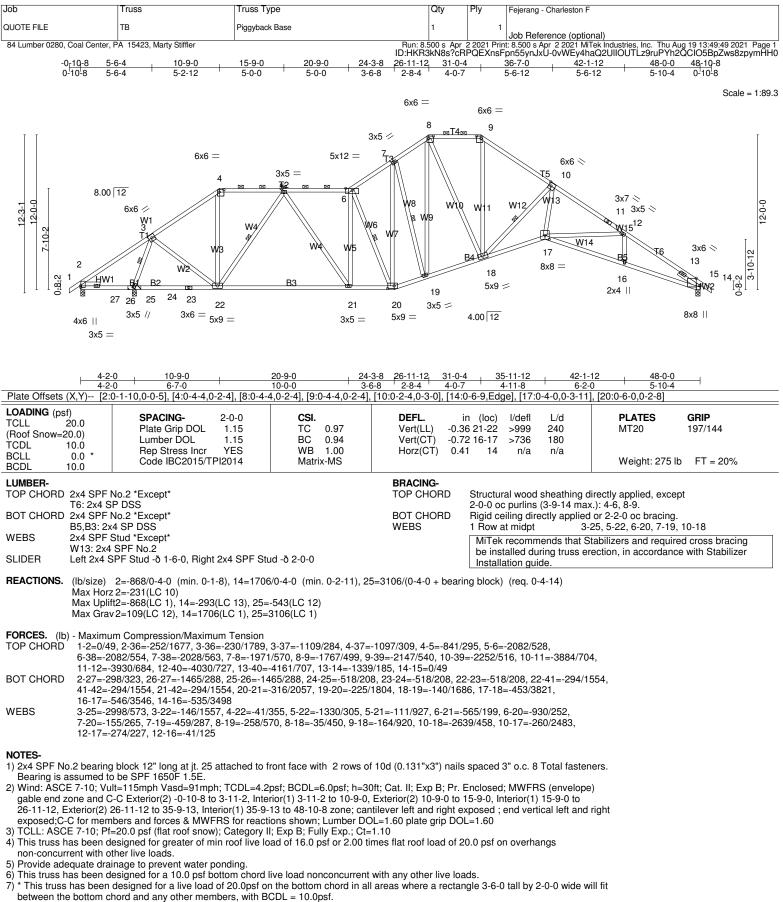
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 1, 32 lb uplift at joint 5, 180 lb uplift at joint 9 and 180 lb uplift at joint 6.


8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



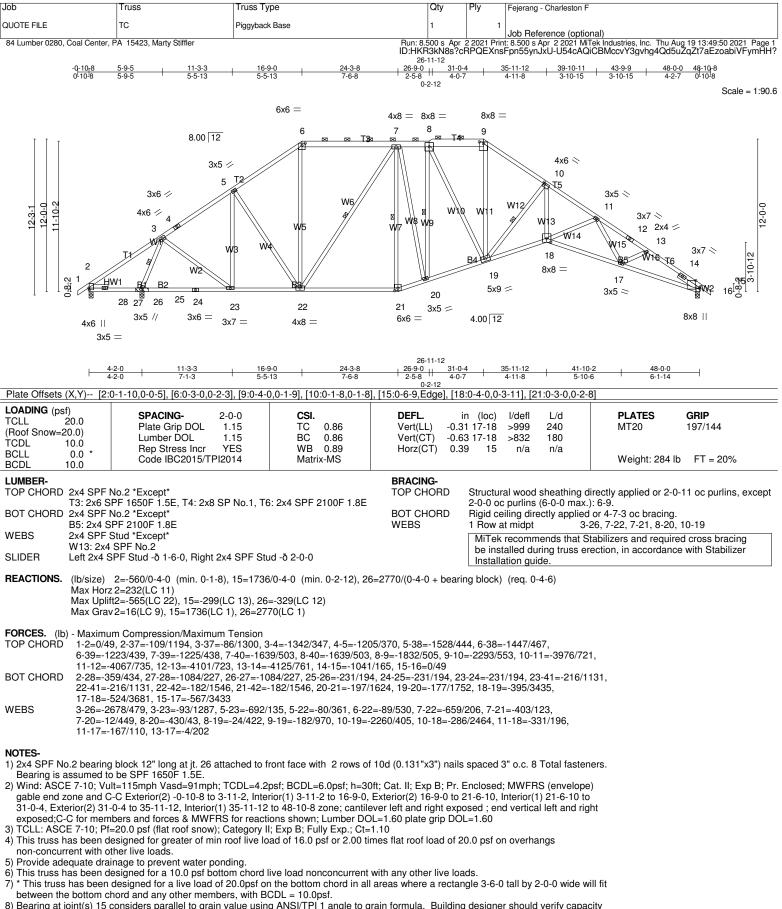

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1, 9 lb uplift at joint 5, 126 lb uplift at joint 8 and 126 lb uplift at joint 6.

8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 36 lb uplift at joint 3.
 7) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	ТА	Piggyback Base	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center,	PA 15423, Marty Stiffler				t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:48 2021 Page 2 sFpn55ynJxU-YizslkhxfkMugFvHnGecLC0Yi1rPfgGgLG6bRMymHH1
NOTEO					

NOTES- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

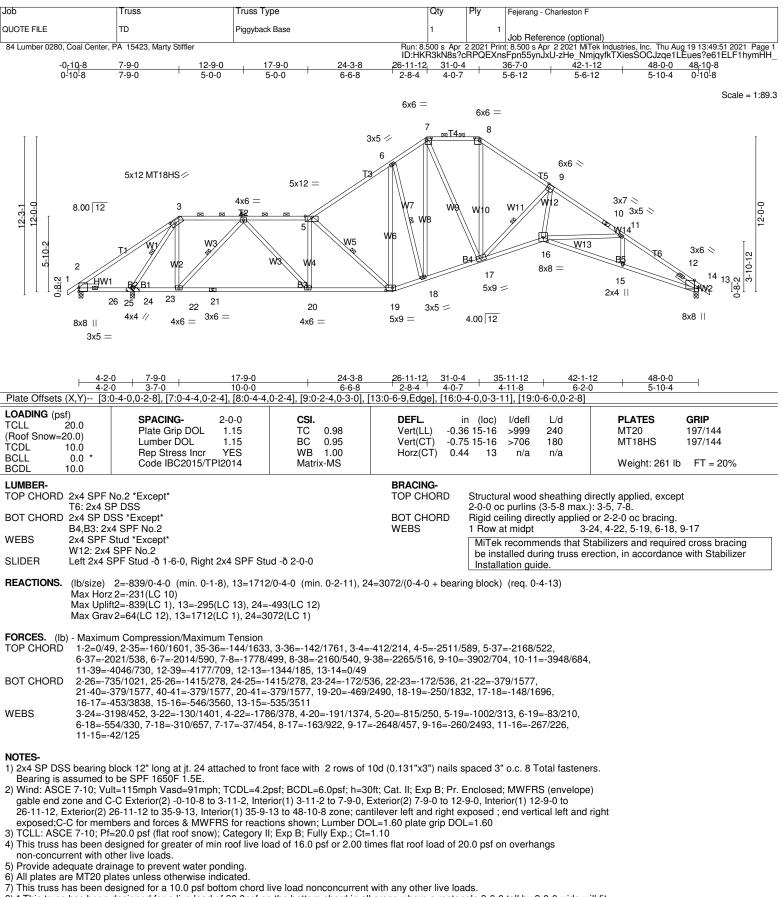

Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity
of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 868 lb uplift at joint 2, 293 lb uplift at joint 14 and 543 lb uplift at joint 25.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	ТВ	Piggyback Base	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center, P	A 15423, Marty Stiffler				t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:49 2021 Page 2 pn55ynJxU-0vWEy4haQ2UIIOUTLz9ruPYh2QCIO5BpZws8zpymHH0

NOTES-10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


 Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

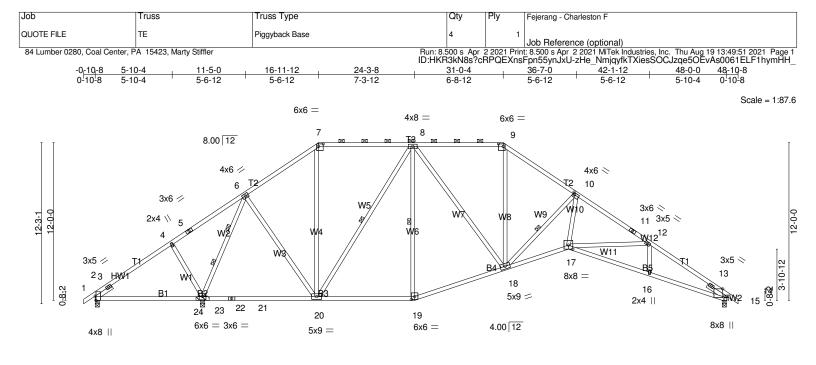
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 565 lb uplift at joint 2, 299 lb uplift at joint 15 and 329 lb uplift at joint 26.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	тс	Piggyback Base	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center, P	A 15423, Marty Stiffler			2 2021 Prin	128500 s Apr 2 2021 MITek Industries, Inc. Thu Aug 19 13:49:50 2021 Page 2 Fpn55ynJxU-U54cAQiCBMccvY3gvhg4Qd5uZqZt7aEzoabiVFymHH?

NOTES-10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit

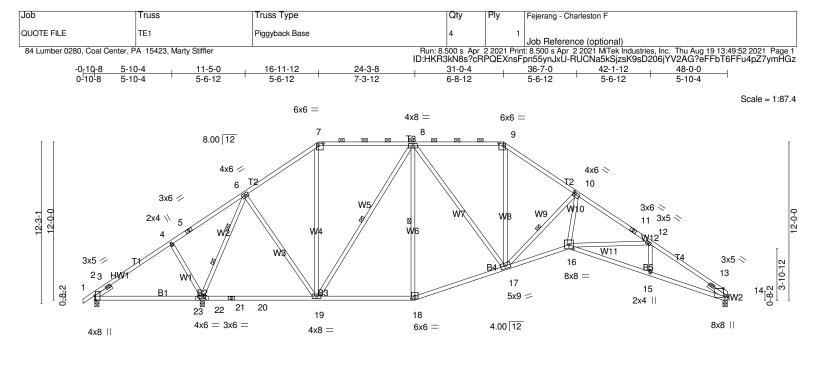

between the bottom chord and any other members, with BCDL = 10.0psf. 9) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	TD	Piggyback Base	1	1	Job Reference (optional)
84 Lumber 0280, Coal Center, P	A 15423, Marty Stiffler				t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:51 2021 Page 2 Fpn55ynJxU-zHe_NmjqyfkTXiesSOCJzqe1LEues?e61ELF1hymHH_

NOTES-

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 839 lb uplift at joint 2, 295 lb uplift at joint 13 and 493 lb uplift at joint 24.
11) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



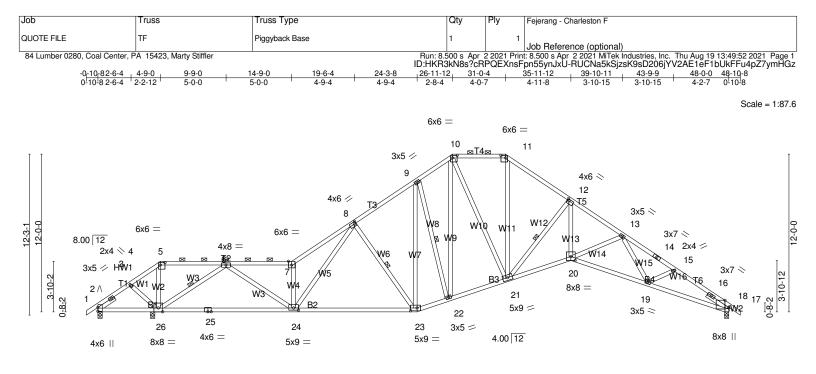
ł	8-2-0 8-2-0	<u>16-11-12</u> 8-9-12	24-3-8 7-3-12	<u>31-0-4</u> 6-8-12			1-12 48-0 2-0 5-10	
Plate Offsets (X,	Y) [2:0-3-15,Edge], [7:0)-4-4,0-2-4], [9:0-4-	4,0-2-4], [10:0-1-12,0-1-1	12], [14:0-6-9,Edge], [17:0-4-0,0-3-1	1], [19:0-3-0,0-	-2-8]	
LOADING (psf) TCLL 20. (Roof Snow=20.0 TCDL 10. BCLL 0. BCDL 10.	0) Plate Grip 0 Lumber DO .0 Rep Stress .0 Code IBC2	DOL 1.15 DL 1.15	CSI. TC 0.73 BC 0.85 WB 0.92 Matrix-MS	Vert(CT) -0	in (loc) l/de 0.28 16-17 >99 0.59 16-17 >80 0.35 14 n/	9 240 7 180	PLATES MT20 Weight: 250	GRIP 197/144 lb FT = 20%
LUMBER-				BRACING-				
TOP CHORD 2>	x4 SPF No.2 *Except*			TOP CHORD	Structural wo	od sheathing d	lirectly applied or 2-	3-7 oc purlins, except
	1: 2x4 SP DSS					ns (4-3-5 max.		
	x4 SPF No.2 *Except* 5: 2x4 SP DSS			BOT CHORD WEBS	1 Row at mid		l or 5-10-7 oc bracir 20, 8-19, 10-18	ıg.
WEBS 2>	x4 SPF Stud				2 Rows at 1/3		23	
SLIDER Le	eft 2x4 SPF Stud -ð 1-6-0	, Right 2x4 SPF Sti	ıd -ð 1-9-0			during truss er	tabilizers and requi rection, in accordan	
Ň N	b/size) 2=-299/0-4-0 (n Max Horz 2=-231(LC 10) Max Uplift2=-357(LC 22), Max Grav 2=71(LC 8), 14=	14=-274(LC 13), 23	=-352(LC 12)	2737/(0-4-0 + bear				
TOP CHORD	Maximum Compression// 1-2=0/49, 2-3=-172/151, 7-35=-667/336, 8-35=-66 12-37=-3467/644, 13-37=	3-33=-91/895, 4-33 7/336, 8-9=-1417/4	43, 9-10=-1821/471, 10-				8,	
	2-24=-874/278, 23-24=-8			21-38=-222/210, 21	-39=-222/210, 2	0-39=-222/210	,	
WEBS	20-40=-137/1077, 19-40= 4-23=-422/239, 6-23=-23 9-18=-105/646, 10-18=-2	79/423, 6-20=-102/	1103, 7-20=-34/176, 8-2	0=-897/220, 8-19=				
Bearing is ass 2) Wind: ASCE 7	bearing block 12" long a sumed to be SPF 1650F 7-10; Vult=115mph Vasd- so and C. Exterior(2).0	I.5E. =91mph; TCDL=4.2	psf; BCDL=6.0psf; h=30	ft; Cat. II; Exp B; P	r. Enclosed; MW	FRS (envelope	e)	

- gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 16-11-12, Exterior(2) 16-11-12 to 23-9-4, Interior(1) 23-9-4 to 31-0-4, Exterior(2) 31-0-4 to 37-9-11, Interior(1) 37-9-11 to 48-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit 7) between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 357 lb uplift at joint 2, 274 lb uplift at joint 14 and 352 lb uplift at joint 23.
- 10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	TE	Piggyback Base	4	1	Job Reference (optional)
84 Lumber 0280, Coal Center, F	A 15423, Marty Stiffler			2 2021 Prin	t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:51 2021 Page 2 Fpn55ynJxU-zHe_NmjqyfkTXiesSOCJzqe5OEvAs0061ELF1hymHH_

	8-2-0 8-2-0	16-11-12 8-9-12		24-3-8 7-3-12	6	1-0-4 ·8-12	i	<u>35-11-12</u> 4-11-8	6	2-1-12 6-2-0	48-0- 5-10-	
Plate Offsets (X,Y) LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL 10.0 BCLL 0.0 * BCDL 10.0	[2:0-3-15,Edge], [7:0-4-4, SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2015/T	2-0-0 1.15 1.15 YES	CSI. TC BC WB	,	12], [14:0-6-9,] DEFL. Vert(LL) Vert(CT Horz(CT	-0.2	<u>[16:0-4-0</u> in (loc) 28 15-16 30 15-16 35 14	l/defl >999	L/d L/d 240 180 n/a	0-2-8]	PLATES MT20 Weight: 245 It	GRIP 197/144 p FT = 20%
BOT CHORD 2x4 SI B5: 2x WEBS 2x4 SI	4 SP DSS	t 2x4 SPF Stu	ıd -ð 1-9-0		BRACING TOP CHC BOT CHC WEBS	RD	2-0-0 or Rigid ce 1 Row a 2 Rows MiTek be ins	c purlins eiling dire at midpt at 1/3 p c recomn	(4-2-12 ma ectly applie ts 6 nends that uring truss 6	ax.): 7- ed or 6- 8-19, 8- 6-22 Stabiliz	9. ' 0-0 oc bracing. -18, 10-17 zers and require	-12 oc purlins, except ed cross bracing e with Stabilizer
Max H Max L	e) 2=-230/0-4-0 (min. 0- Horz 2=227(LC 11) Jplift2=-298(LC 22), 14=-2 Grav 2=76(LC 8), 14=1468	58(LC 13), 22:	=-339(LC 1	/ ,	=2655/(0-4-0 +	bearin						
TOP CHORD 1-2= 7-34	imum Compression/Maxin 0/49, 2-3=-188/146, 3-32= =-698/338, 8-34=-698/338 6=-3517/676, 13-36=-3653	-88/789, 4-32= , 8-9=-1443/44	49, 9-10=-1							10,		
BOT CHORD 2-23 19-3 WEBS 4-22	=-794/278, 22-23=-794/27 9=-144/1094, 18-39=-144/ =-406/234, 6-22=-2299/42 =-109/662, 10-17=-2320/4	8, 21-22=-188 1094, 17-18=- 2, 6-19=-106/	/207, 21-3 162/1173, 1061, 7-19:	16-17=-397/ =-35/196, 8-1	/3239, 15-16=-{ 19=-882/221, 8	06/31 -18=-2	07, 14-15	5=-497/3	066	7,		
Bearing is assume 2) Wind: ASCE 7-10; gable end zone an 31-0-4, Exterior(2) exposed;C-C for m 3) TCLL: ASCE 7-10; 4) This truss has bee non-concurrent wit	ring block 12" long at jt. 22 of to be SPF 1650F 1.5E. Vult=115mph Vasd=91mp d C-C Exterior(2) -0-10-8 to 31-0-4 to 37-9-11, Interior nembers and forces & MW ; Pf=20.0 psf (flat roof snow in designed for greater of r th other live loads.	oh; TCDL=4.2 o 3-11-2, Inter (1) 37-9-11 to FRS for reacti w); Category II nin roof live lo	osf; BCDL= fior(1) 3-11 48-0-0 zon ons shown ; Exp B; Fu	=6.0psf; h=30 -2 to 16-11-1 ne; cantilever l; Lumber DC Jlly Exp.; Ct=	Dft; Cat. II; Exp 12, Exterior(2) r left and right e DL=1.60 plate g 1.10	B; Pr. 6-11-1 expose rip DO	Enclosec 12 to 23-9 d ; end ve DL=1.60	l; MWFF 9-4, Inter ertical let	RS (envelop ior(1) 23-9 ft and right	oe) -4 to		


- 6) Provide adequate drainage to prevent water ponding.
 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Bearing at joint(s) 14 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 298 lb uplift at joint 2, 258 lb uplift at joint 14 and 339 lb uplift at joint 22.

10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

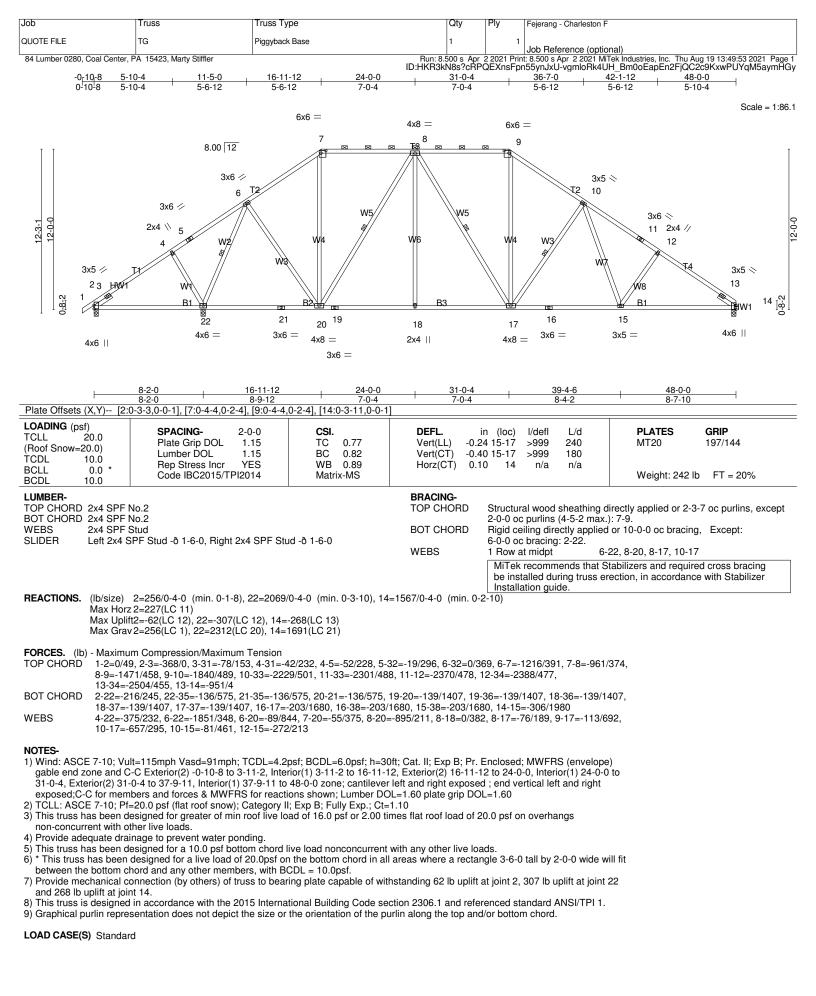
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Continued on page 2

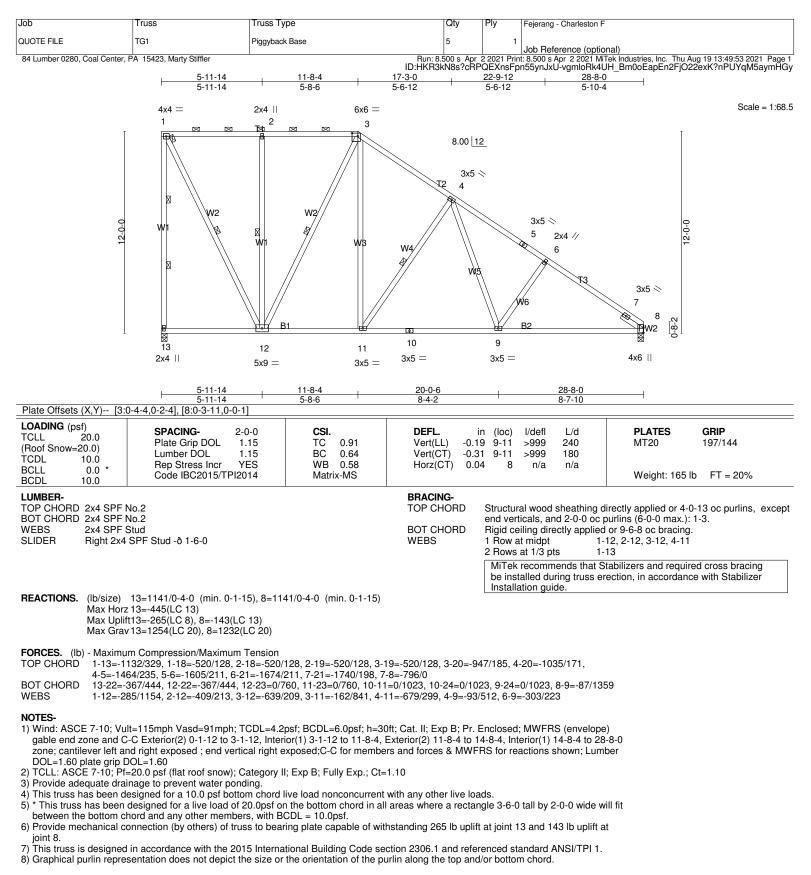
Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	TE1	Piggyback Base	4	1	Job Reference (optional)
84 Lumber 0280, Coal Center, P	A 15423, Marty Stiffler	IC	Run: 8.500 s Apr 2 D:HKR3kN8s?cRF	2021 Print PQEXnsF	: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:52 2021 Page 2 on55ynJxU-RUCNa5kSjzsK9sD206jYV2AG?eFFbT6FFu4pZ7ymHGz

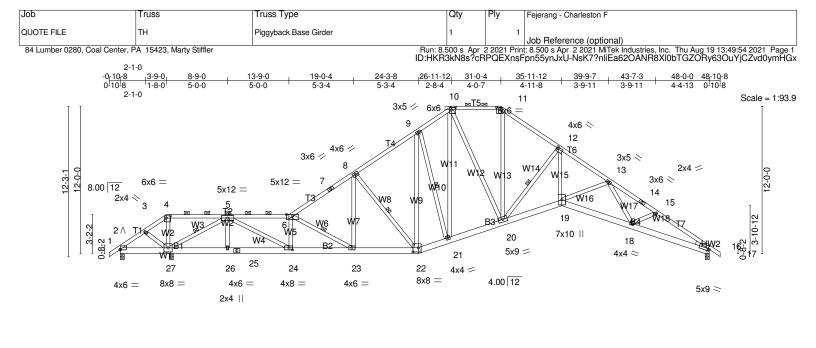
 4-0-0
 4-9-0
 14-9-0
 24-3-8
 26-11-12
 31-0-4
 35-11-12
 41-10-2
 48-0-0

 4-0-0
 0-9-0
 10-0-0
 9-6-8
 2-8-4
 4-0-7
 4-11-8
 5-10-6
 6-1-14

 [2:0-3-7,0-0-1], [5:0-4-4,0-2-4], [7:0-3-0,Edge], [8:0-1-8,0-2-0], [10:0-4-4,0-2-4], [11:0-4-4,0-2-4], [12:0-1-8,0-1-8], [17:0-6-9,Edge], [20:0-4-0,0-3-11], [23:0-6-0


 ,0-2-8], [24:0-4-8,0-2-0]
 4-0-0 4-0-0 Plate Offsets (X,Y)--


,0-2-	-8], [24:0-4-8,0-2-0]						
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.86 BC 0.88 WB 0.89 Matrix-MS	Vert(CT) -	in (loc) l/defl 0.46 23-24 >999 0.92 23-24 >567 0.40 17 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 261 I	GRIP 197/144 lb FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x4 SPF N			TOP CHORD				11-12 oc purlins, excep
T6: 2x4 SP BOT CHORD 2x4 SPF N			BOT CHORD	2-0-0 oc purlins Bigid ceiling dire		5-7, 10-11. 10-0-0 oc bracin	a Except:
B01 01010 224 311 1 B4,B2: 2x4			BOT CHOILD	6-0-0 oc bracing			g, Except.
WEBS 2x4 SPF S	tud *Except*			9-10-12 oc braci	ng: 17-19.		
W13: 2x4 S			WEBS	1 Row at midpt		, 8-23, 9-22, 12-2	
SLIDER Left 2x4 SF	PF Stud -ð 1-6-0, Right 2x4 SPF Stu	Ja -0 2-0-0				bilizers and requir	
				Installation gui		tion, in accordance	se with Stabilizer
	2=0/0-4-0 (min. 0-1-8), 17=1763/0-	4-0 (min. 0-2-12), 26=2	182/0-4-0 (min. 0-				
	2=231(LC 11)						
	2=REL, 17=-275(LC 13), 26=-804(L 2=339(LC 12), 17=1763(LC 1), 26=						
	2=000(2012), 17=1700(201), 20=	2102(201)					
	n Compression/Maximum Tension						
	, 2-3=-124/148, 3-4=-568/256, 4-36				-4289/474,		
	99/432, 9-37=-2211/452, 9-10=-210 144/622, 14-15=-4179/610, 15-16=			5, 12-13=-4066/590,			
	6/466, 25-26=-163/1951, 24-25=-16			68, 23-39=-268/2468	8,		
	50/1959, 21-22=-77/1803, 20-21=-2						
	5/177, 5-26=-388/427, 6-26=-2674/ /445, 9-22=-626/229, 10-22=-214/6						
	/445, 9-22=-828/229, 10-22=-214/8 19/198, 13-19=-163/86, 15-19=0/20		1=-120/1009, 12-2	21=-2313/353, 12-20	=-216/2509,		
10 20- 0							
NOTES-					.		
	=115mph Vasd=91mph; TCDL=4.2 C Exterior(2) -0-10-8 to 3-11-2, Inte						
	35-11-12, Interior(1) 35-11-12 to 48					,	
exposed;Ć-C for memb	ers and forces & MWFRS for react	ions shown; Lumber DC	L=1.60 plate grip I		3		
	20.0 psf (flat roof snow); Category I						
 This truss has been dee non-concurrent with oth 	signed for greater of min roof live lo	ad of 16.0 pst or 2.00 til	mes flat roof load o	of 20.0 pst on overha	ngs		
	age to prevent water ponding.						
5) This truss has been de	signed for a 10.0 psf bottom chord						
	esigned for a live load of 20.0psf o		areas where a rec	tangle 3-6-0 tall by 2	-0-0 wide will	fit	
	ord and any other members, with B onsiders parallel to grain value usin		rain formula Duile	ling docignor chould	vorify concoit	,	
of bearing surface.	onsiders paraller to grain value usin	y ANOR IFT T ANYIE LO Y	rain ionnuia. Duile	any designer should	veriny capacity	/	
	nnection (by others) of truss to bea	ring plate capable of with	nstanding 275 lb u	olift at joint 17 and 80	04 lb uplift at		


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 275 lb uplift at joint 17 and 804 lb uplift at joint 26. 9) "//" indicates Released bearing: allow for upward movement at joint(s) 2. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F
QUOTE FILE	TF	Piggyback Base	1	1	Job Reference (optional)
84 Lumber 0280, Coal Cente	, PA 15423, Marty Stiffler				t: 8.500 s Apr 2 2021 MiTek Industries, Inc. Thu Aug 19 13:49:52 2021 Page 2 pn55ynJxU-RUCNa5kSjzsK9sD206jYV2AE1eF1bUkFFu4pZ7ymHGz

NOTES-10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	<u>3-9-</u> 3-9-	<u>0 4-0-0 8-9-0</u> 0 0-3-0 4-9-0	13-9-0 5-0-0	19-0-4 5-3-4		4-3-8 5-3-4	26-11-12	<u>31-0-4</u> 4-0-7		<u>5-11-12</u> 4-11-8	41-8-5 5-8-9		
Plate Offsets (X	(,Y) [2:0-0-0	,0-0-8], [4:0-4-4,0-	2-4], [10:0-4-4	,0-2-4], [1	1:0-4-4,0-2	2-4], [12	:0-1-4,0-1-8	3], [16:	0-1-4,0-	·1-12], [2	2:0-5-4,0-4-	0], [24:0-3-8,0-2-0]	
(Roof Snow=20 TCDL 10 BCLL 0	0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2015/T	2-0-0 1.15 1.15 NO PI2014		0.93 0.71 0.84 rix-MS		DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.33 -0.67	' 19	l/defl >999 >790 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 309 I	GRIP 197/144 b FT = 20%
LUMBER- TOP CHORD 2 T BOT CHORD 2 WEBS 2	T7: 2x4 SP D8 2x6 SP DSS 2x4 SPF Stud W4,W15: 2x4	*Except*					BRACING- TOP CHOF BOT CHOF WEBS	RD	2-0-0 of Rigid co 6-0-0 of 1 Row a MiTek be ins	c purlins eiling dire c bracing at midpt c recomm talled du	(2-2-1 max. ectly applied g: 2-27. 5- nends that S iring truss er	irectly applied, exce): 4-6, 10-11. or 10-0-0 oc bracin 27, 6-23, 8-22, 9-21 tabilizers and requir ection, in accordance	g, Except: , 12-20 ed cross bracing
1	Max Hórz 2=2 Max Uplift2=F	/0-4-0 (min. 0-1-8) 31(LC 11) REL, 16=-289(LC 13 60(LC 12), 16=179	3), 27=-1216(LC 12)	,,	=2200/)-4-0 (min.	0-3-7)		ation gui	de.		
TOP CHORD	1-2=0/49, 2-3 6-7=-3335/50 12-13=-4233	ompression/Maxim 3=-750/236, 3-4=-7 05, 7-8=-3223/519, /646, 13-14=-4300 35, 27-40=-299/638	70/316, 4-35= 8-38=-2417/4 /670, 14-15=-	476, 9-38= 4328/657,	-2312/497 15-39=-43	, 9-10= 370/718	2208/530, , 16-39=-45	10-11= 07/716	⊧-1951/4 5, 16-17	463, 11-1 ′=0/49	2=-2451/50		
WEBS	25-43=-292/2 19-20=-318/2 3-27=-112/1 8-23=-44/102	53, 27-40=-299/63 2503, 24-43=-292/2 3568, 18-19=-453/2 11, 4-27=-381/597, 97, 8-22=-1253/27 2/370, 12-19=-243/2	2503, 23-24=- 3877, 16-18=- 5-27=-3130/9 3, 9-22=-100/4	558/4505, 544/3784 902, 5-26= 456, 9-21=	22-23=-35 0/195, 5-24 -649/265,	55/2721 4=-513, 10-21=	, 21-22=-19 2385, 6-24 246/764, 1	07/2058 =-1113 0-20=-4	5, 20-21 8/317, 6 [,]	=-114/18 -23=-202	889, 20/230,		
gable end zo 48-10-8 zone shown; Lumb 2) TCLL: ASCE	ne and C-C E c; cantilever le cer DOL=1.60 7-10; Pf=20.0	5mph Vasd=91mp xterior(2) -0-10-8 t ft and right expose plate grip DOL=1. 0 psf (flat roof snov red for greater of n	b 8-9-0, Interio d ; end vertica 60 v); Category II	or(1) 8-9-0 al left and ; Exp B; Fi	to 26-11-1 right expos ully Exp.; C	2, Exte sed;C-C	rior(2) 26-1 for membe	1-12 to ers and) 35-10- I forces	0, Interic & MWFF	or(1) 35-10-0 RS for reacti	to	
non-concurre 4) Provide adeq 5) This truss ha 6) * This truss h between the	ent with other quate drainage is been design as been design bottom chord int(s) 16 cons		oonding. ottom chord li of 20.0psf or nbers.	ive load no the bottor	nconcurre n chord in	ent with all area	any other li Is where a l	ve loac rectanç	ds. gle 3-6-() tall by 2	2-0-0 wide w		
		ction (by others) of	truss to bear	ing plate c	apable of v	withstar	iding 289 lb	uplift	at joint [.]	16 and 1	216 lb uplift	at	

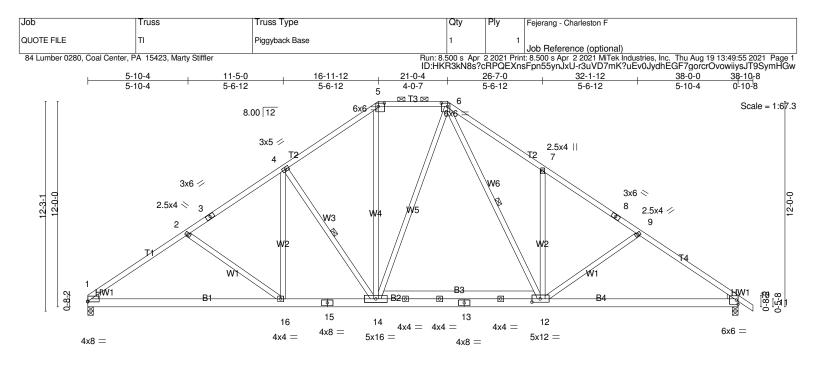
8) connection (by others) of truss to bearing plate capable of withstanding 289 lb uplift at joint 16 and 1216 lb uplift at b) Invite international connection (a) status, and a status of pint 27.
9) "/" indicates Released bearing: allow for upward movement at joint(s) 2.
10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Fejerang - Charleston F	
QUOTE FILE	тн	Piggyback Base Girder	1	1	Job Reference (optional)	
84 Lumber 0280, Coal Center,		Run: 8.500 s Apr 2 2021 Print: 8.500 s Apr 2 2021 Mintal Mitek Industries, Inc. Thu Aug 19 13:49:54 2021 Page 2 ID:HKB3kN8s?cRPQEXnsFon55vn.lxU-NsK7?nilEa62QANB8XI0bTGZQRv63QuYiCZvd0vmHGx				

NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 90 lb down and 105 lb up at 3-9-0, 91 lb down and 98 lb up at 5-9-12, and 91 lb down and 98 lb up at 7-9-12, and 90 lb down and 98 lb up at 9-9-12 on top chord, and 52 lb down and 54 lb up at 2-0-12, 22 lb down and 24 lb up at 3-9-12, and 22 lb down and 24 lb up at 5-9-12, and 22 lb down and 24 lb up at 7-9-12, and 22 lb down and 24 lb up at 7-9-12, and 22 lb down and 24 lb up at 7-9-12, and 22 lb down and 24 lb up at 9-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
13) In the I OND CASE(S) continue loads applied to the face of the trues are pated as fract (D) as heat (D).

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-6=-60, 6-10=-60, 10-11=-60, 11-17=-60, 22-28=-20, 19-22=-20, 19-31=-20 Concentrated Loads (lb)

Vert: 27=0(F) 40=-52(F) 41=0(F) 42=0(F) 43=0(F)

	11-5-0	<u>16-11-12</u>	<u>26-7-0</u> 9-7-3		<u>38-0-0</u> 11-5-0				
Plate Offsets (X,Y) [1:0-0-0,0-0-8], [5:0-4-4,0-2-4], [6:0-4-4,0-2-4], [12:0-5-12,0-2-4]									
LOADING (psf) TCLL 20.0 (Roof Snow=20.0) TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.39 BC 0.35 WB 0.55 Matrix-MS	Vert(LL) -0.1	in (loc) I/defl L/d 3 12-14 >999 240 25 16-19 >999 180 06 10 n/a n/a	PLATES MT20 Weight: 222	GRIP 197/144 lb FT = 20%			
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF 1650F 1.5E WEBS 2x4 SPF Stud BRACING- TOP CHORD WEDGE Left: 2x4 SPF Stud, Right: 2x4 SPF Stud BOT CHORD WEDGE Structural wood sheathing directly applied or 3-7-6 oc purlins, except 2-0-0 oc purlins (4-11-14 max.): 5-6. BOT CHORD WEBS BRACING- TOP CHORD REACTIONS. (Ib/size) 1=1519/0-4-0 (min. 0-2-8), 10=1573/0-4-0 (min. 0-2-10) Max Horz 1=-227(LC 8) Max Uplift1=-258(LC 12), 10=-273(LC 13) BRACING- TOP CHORD Structural wood sheathing directly applied or 3-7-6 oc purlins, except 2-0-0 oc purlins (4-11-14 max.): 5-6. BOT CHORD									
Max Grav 1=1610(LC 20), 10=1656(LC 21) FORCES. (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-23=-2387/446, 2-23=-2287/469, 2-3=-2113/406, 3-4=-1989/430, 4-5=-1735/464, 5-6=-1384/432, 6-7=-2208/586, 7-8=-2043/419, 8-9=-2119/395, 9-24=-2312/458, 10-24=-2392/435, 10-11=0/49 BOT CHORD 1-16=-405/2061, 15-16=-218/1782, 14-15=-218/1782, 14-25=-51/1308, 13-25=-50/1316, 13-26=-51/1315, 12-26=-54/1309, 10-12=-286/1890 WEBS 2-16=-343/230, 4-16=-8/437, 4-14=-685/255, 5-14=-133/714, 6-14=-103/202, 6-12=-311/1019, 7-12=-444/297, 9-12=-341/233 NOTES-									

Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=4.2psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Pr. Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-9-10, Interior(1) 3-9-10 to 16-11-12, Exterior(2) 16-11-12 to 26-7-0, Interior(1) 26-7-0 to 38-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) TCLL: ASCE 7-10; Pf=20.0 psf (flat roof snow); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 258 lb uplift at joint 1 and 273 lb uplift at joint 10.

8) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.