

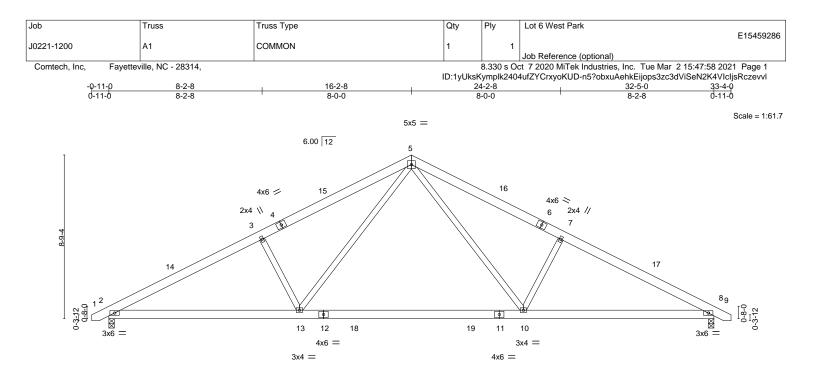
Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0221-1200 Lot 6 West Park

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15459286 thru E15459310

My license renewal date for the state of North Carolina is December 31, 2021.


North Carolina COA: C-0844

March 3,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	10-2-8 10-2-8		22-2-8 12-0-0		32-5-0 10-2-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.28 BC 0.64 WB 0.27 Matrix-S	DEFL. in (loc) Vert(LL) -0.34 10-13 Vert(CT) -0.47 10-13 Horz(CT) 0.05 8 Wind(LL) 0.05 2-13	l/defl L/d >999 360 >824 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 208 lb FT = 2	

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13)

Max Grav 2=1337(LC 1), 8=1337(LC 1)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007. 10-13=-106/1303. 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

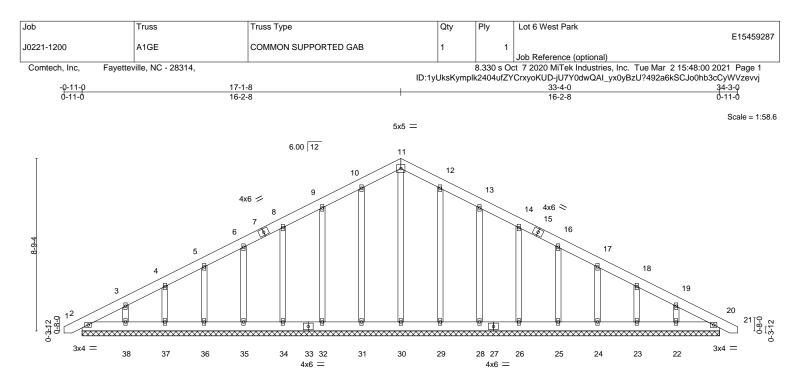
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

-0-11-0 0-11-0	<u>33-4-0</u> <u>32-5-0</u>						34-3-0 0-11-0
.OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/de	efl L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.04	Vert(LL) 0.00	20 I	n/r 120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	20 1	n/r 120		
CLL 0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.00	20 n	/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 258 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 32-5-0.

Max Horz 2=-171(LC 17) (lb) -

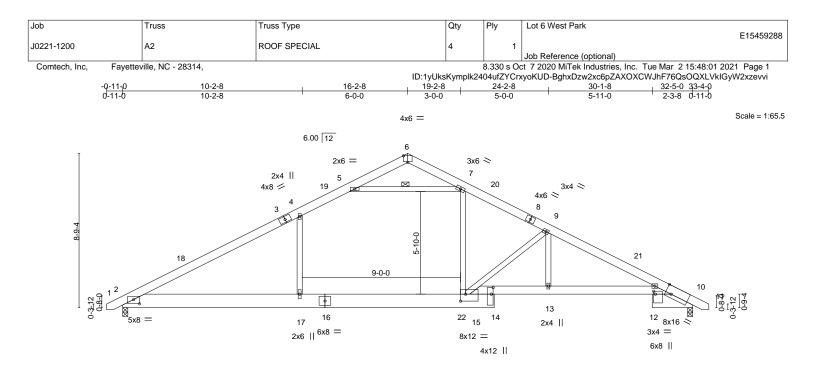
Max Uplift All uplift 100 lb or less at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22 Max Grav All reactions 250 lb or less at joint(s) 2, 30, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.20

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 10-11=-114/284, 11-12=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	10-2-8 10-2-8	<u> </u>	19-2-8 3-0-0	+ 21-1-6 + 1-11-6		4-2-8 3-1-0	<u>30-1</u> 5-11		
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4	-0,Edge], [12:0-2-0,0-1-4],	[14:0-4-8,0-1-4],	[15:0-3	-8,0-4-1	12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.70 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.38 0.09 0.17	10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x10 S 10-15: WEBS 2x4 SI	BRACING- TOP CHOF BOT CHOF WEBS	RD.	Rigid c		ectly applied of	rectly applied or 4-0-8 o or 10-0-0 oc bracing. i-7	oc purlins.		
REACTIONS. (siz Max H Max U Max C									
FORCES. (lb) - Max. TOP CHORD 2-4= BOT CHORD 2-17 WEBS 4-17									
NOTES-									

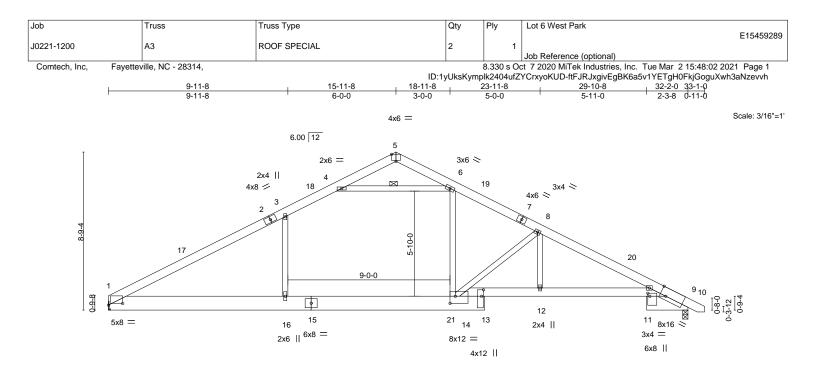
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.


6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

F	<u>9-11-8</u> 9-11-8		1	<u>18-11-8</u> 9-0-0	ii	<u>20-10-8</u> 1-11-0	<u>23-11</u> 3-1-	-	<u>29-10-8</u> 5-11-0	<u>32-2-0</u> 2-3-8	
Plate Offsets (X,Y)		Edge], [9:0-4-0,	Edge], [11:0		[13:0-4-4,0-1-4], [1			-	5-11-0	2-3-0	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.76	Vert(LL)	-0.21	` 16	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.36	16	>999	240		
BCII 0.0 *	Ren Stress Incr	VES	WB	0.70	Horz(CT)	0 09	a	n/a	n/a		

BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.16		Weight: 243 lb FT = 20%
BOT CHORD 2x1 9-1	SP No.1) SP No.1 *Except* I: 2x6 SP 2400F 2.0E SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling directly applied	irectly applied or 3-10-0 oc purlins. or 10-0-0 oc bracing. 4-6
	size) 1=Mechanical, 9=0-3-8				

Max Grav 1=1345(LC 2), 9=1347(LC 2)

Max Uplift 1=-76(LC 12), 9=-90(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2189/401, 3-4=-1853/491, 6-8=-2237/517, 8-9=-2874/549

BOT CHORD 1-16=-198/1827, 14-16=-200/1839, 12-14=-375/2511, 9-12=-384/2511

WEBS 6-14=-117/966, 3-16=-53/392, 4-6=-1931/474, 8-14=-1081/228, 8-12=0/620

NOTES-

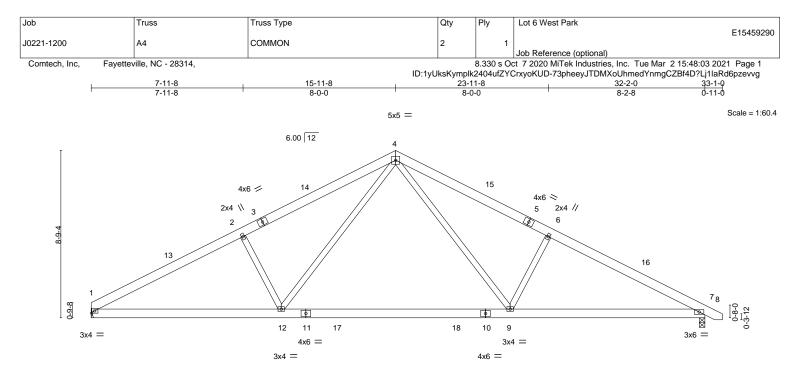
1) Unbalanced roof live loads have been considered for this design.

Max Horz 1=-111(LC 8)

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		<u>9-11-8</u> 9-11-8				<u>21-11-8</u> 12-0-0					<u>32-2-0</u> 10-2-8	
Plate Offsets	; (X,Y)	[1:0-1-14,0-1-8]				1200					1020	
LOADING (osf)	SPACING-	2-0-0	CSI.		DEFL.	in	(/	l/defl	L/d	PLATES	GRIP
	0.0	Plate Grip DOL	1.15	-	0.28	Vert(LL)	-0.34		>999	360	MT20	244/190
	0.0	Lumber DOL	1.15	-	0.64	Vert(CT)	-0.47	9-12	>822	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.05	7	n/a	n/a		
BCDL 1	0.0	Code IRC2015/TF	912014	Matrix	-S	Wind(LL)	0.05	12	>999	240	Weight: 204 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 7=0-3-8 Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 7=-89(LC 13) Max Grav 1=1278(LC 1), 7=1331(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973, 9-12=-109/1291, 7-9=-324/1953

WEBS 4-9=-147/922. 6-9=-454/288. 4-12=-144/897. 2-12=-437/286

NOTES-

1) Unbalanced roof live loads have been considered for this design.

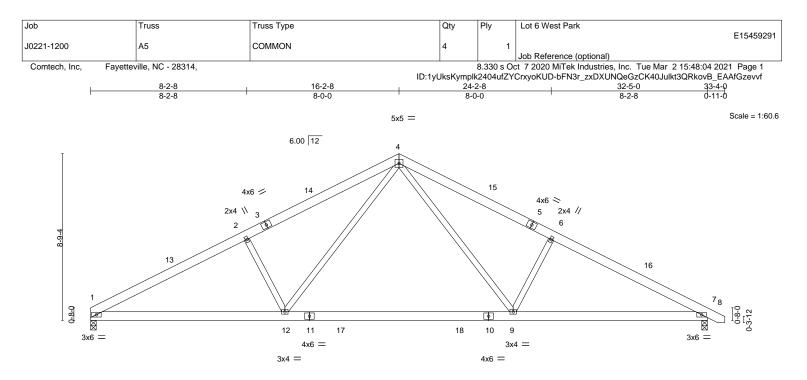
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



Structural wood sheathing directly applied or 4-11-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ŀ	10-2-8 10-2-8	<u>22-2-8</u> 12-0-0		-	32-5-0 10-2-8	—
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.29 Vert(LL)	-0.34 9-12	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.65 Vert(CT	-0.47 9-12	>822 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.27 Horz(CT) 0.05 7	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S Wind(LL) 0.05 12	>999 240	Weight: 206 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10)

Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

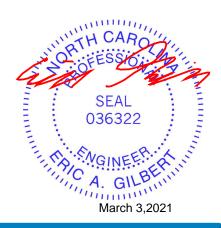
TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012 9-12=-111/1304 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

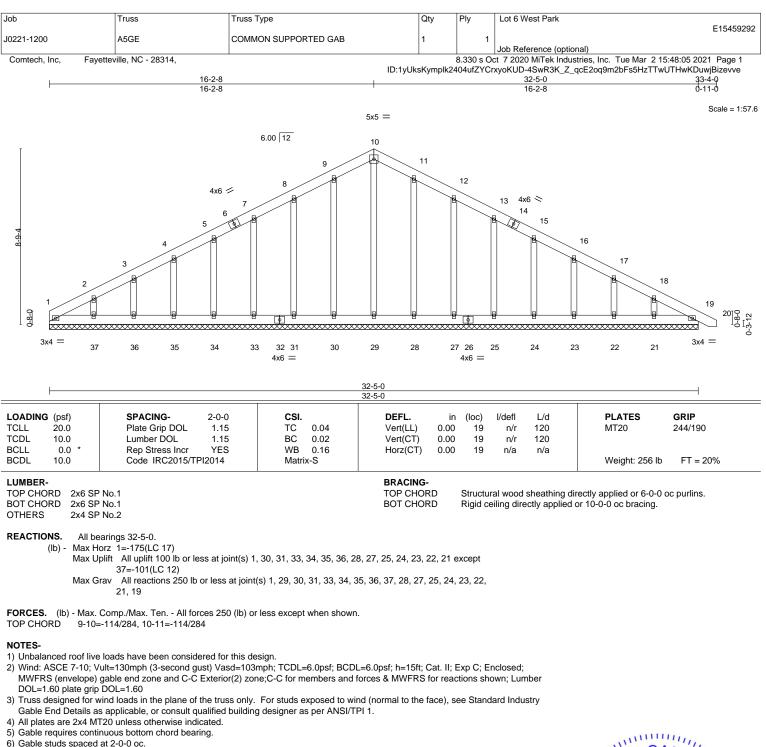

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to

33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

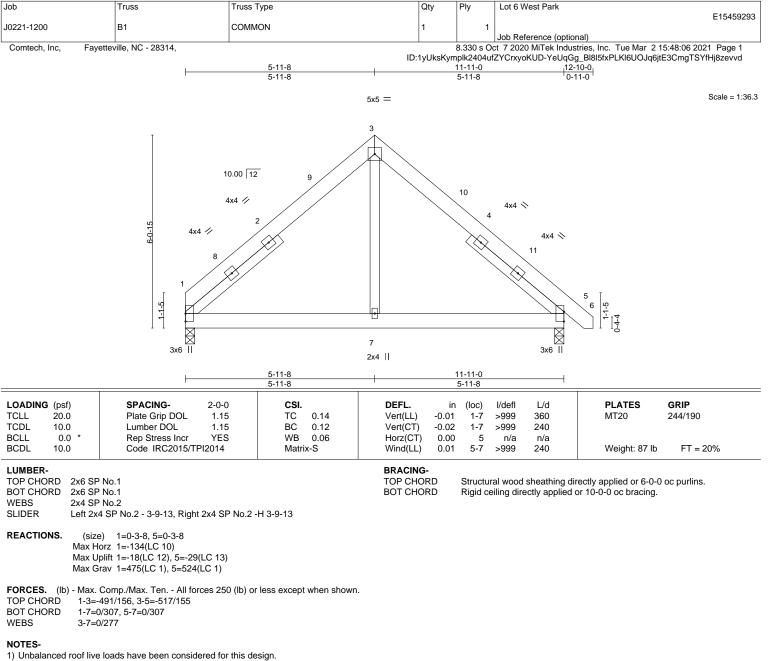


Structural wood sheathing directly applied or 4-10-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

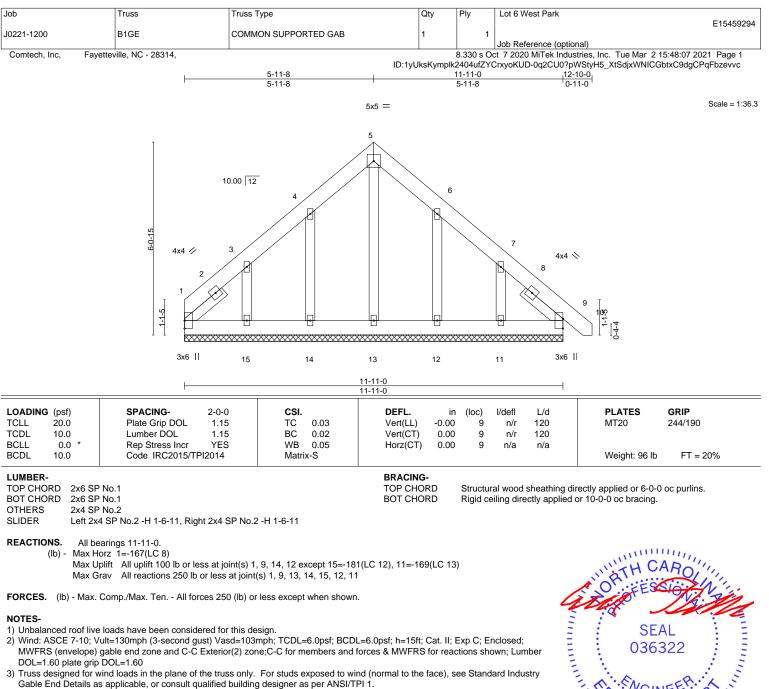
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

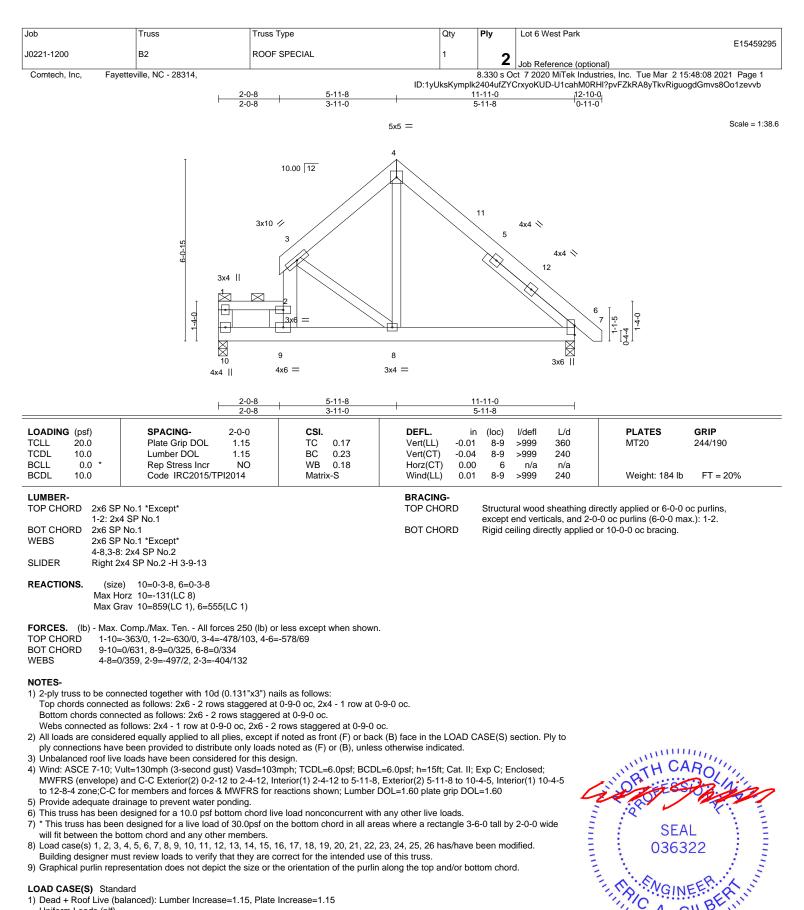
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 14, 12 except (jt=lb) 15=181, 11=169.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 9.

March 3.2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-260, 3-4=-60, 4-7=-60, 6-10=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

mmm March 3,2021

G

Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
10004 4000	50				E15459295
J0221-1200	B2	ROOF SPECIAL	1	2	lab Dataman (antional)
				_	Job Reference (optional)
Comtech, Inc, F	ayetteville, NC - 28314,			8.330 s Oo	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:08 2021 Page 2
		ID:1y	UksKymplk	2404ufZYC	<pre>CrxyoKUD-U1cahM0RHI?pvFZkRA8yTkvRiguogdGmvs8Oo1zevvb</pre>

2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-250, 3-4=-50, 4-7=-50, 6-10=-20 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-2=-220, 3-4=-20, 4-7=-20, 6-10=-40 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-156, 3-4=27, 4-12=35, 6-12=27, 6-7=20, 6-10=-12 Horz: 3-4=-39, 4-12=47, 6-12=39, 6-7=32 5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-170, 3-4=35, 4-11=27, 6-11=35, 6-7=58, 6-10=-12 Horz: 3-4=-47, 4-11=39, 6-11=47, 6-7=70 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-235, 3-4=-58, 4-6=-58, 6-7=-51, 6-10=-20 Horz: 3-4=38, 4-6=-38, 6-7=-31 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-235, 3-4=-58, 4-6=-58, 6-7=11, 6-10=-20 Horz: 3-4=38, 4-6=-38, 6-7=31 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-179, 3-4=-13, 4-6=11, 6-7=4, 6-10=-12 Horz: 3-4=1, 4-6=23, 6-7=16 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-191, 3-4=11, 4-6=-13, 6-7=2, 6-10=-12 Horz: 3-4=-23, 4-6=-1, 6-7=14 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-201, 3-4=-35, 4-6=-11, 6-7=-4, 6-10=-20 Horz: 3-4=15, 4-6=9, 6-7=16 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-213, 3-4=-11, 4-6=-35, 6-7=-28, 6-10=-20 Horz: 3-4=-9, 4-6=-15, 6-7=-8 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-179, 3-4=21, 4-6=9, 6-7=2, 6-10=-12 Horz: 3-4=-33, 4-6=21, 6-7=14 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-191, 3-4=9, 4-6=21, 6-7=14, 6-10=-12 Horz: 3-4=-21, 4-6=33, 6-7=26 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-179, 3-4=21, 4-6=9, 6-7=2, 6-10=-12 Horz: 3-4=-33, 4-6=21, 6-7=14 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-191, 3-4=9, 4-6=21, 6-7=14, 6-10=-12 Horz: 3-4=-21, 4-6=33, 6-7=26 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-201, 3-4=-1, 4-6=-13, 6-7=-6, 6-10=-20 Horz: 3-4=-19, 4-6=7, 6-7=14 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-213, 3-4=-13, 4-6=-1, 6-7=6, 6-10=-20 Horz: 3-4=-7, 4-6=19, 6-7=26 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-2=-220, 3-4=-20, 4-7=-20, 6-10=-20 19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-236, 3-4=-61, 4-6=-43, 6-7=-38, 6-10=-20 Horz: 3-4=11, 4-6=7, 6-7=12

LOAD CASE(S) Standard

20) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-245, 3-4=-43, 4-6=-61, 6-7=-56, 6-10=-20 Horz: 3-4=-7, 4-6=-11, 6-7=-6

21) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459295
J0221-1200	B2	ROOF SPECIAL	1	2	
				_	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,			8.330 s Oo	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:08 2021 Page 3

ID:1yUksKymplk2404ufZYCrxyoKUD-U1cahM0RHI?pvFZkRA8yTkvRiguogdGmvs80o1zevvb

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-2=-236, 3-4=-36, 4-6=-45, 6-7=-40, 6-10=-20

Horz: 3-4=-14, 4-6=5, 6-7=10

22) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-245, 3-4=-45, 4-6=-36, 6-7=-31, 6-10=-20

Horz: 3-4=-5, 4-6=14, 6-7=19

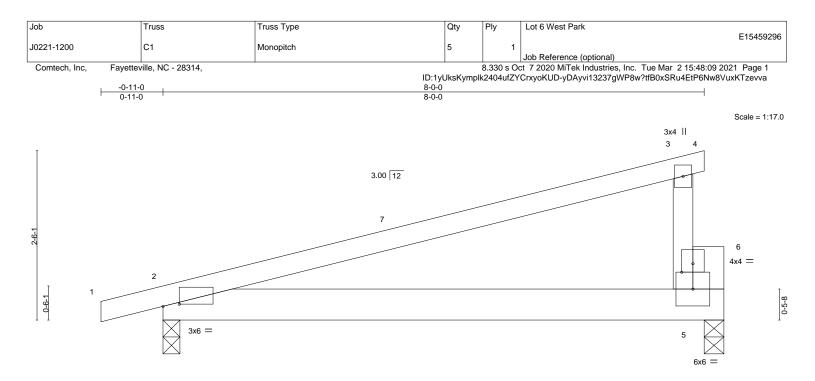
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-260, 3-4=-60, 4-7=-20, 6-10=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-220, 3-4=-20, 4-7=-60, 6-10=-20

25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-250, 3-4=-50, 4-7=-20, 6-10=-20

26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-220, 3-4=-20, 4-7=-50, 6-10=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

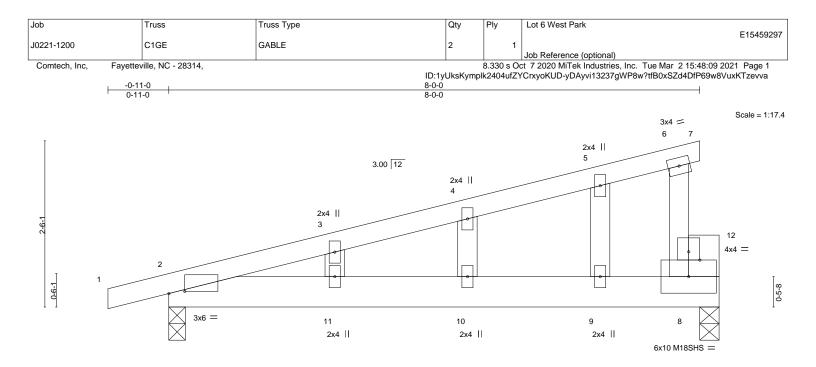
OADING (psf)	SPACING- 2-0-	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.1	5 TC 0.84	Vert(LL) -0.05	2-5 >999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.1	5 BC 0.24	Vert(CT) -0.10	2-5 >969	240		
BCLL 0.0 *	Rep Stress Incr YE	WB 0.00	Horz(CT) 0.00	5 n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10	2-5 >886	240	Weight: 37 lb	FT = 20%
UMBER-			BRACING-				
OP CHORD 2x4 S	SP No.1		TOP CHORD	Structural woo	d sheathing dir	rectly applied or 5-3-4	oc purlins,
BOT CHORD 2x6 S	SP No.1			except end ver	ticals.	,	• •
VEBS 2x4 S	SP No.2		BOT CHORD	Rigid ceiling di	rectly applied o	or 10-0-0 oc bracing.	
OTHERS 2x6 S	SP No.1			0 0	, ,,	Ŭ	

Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

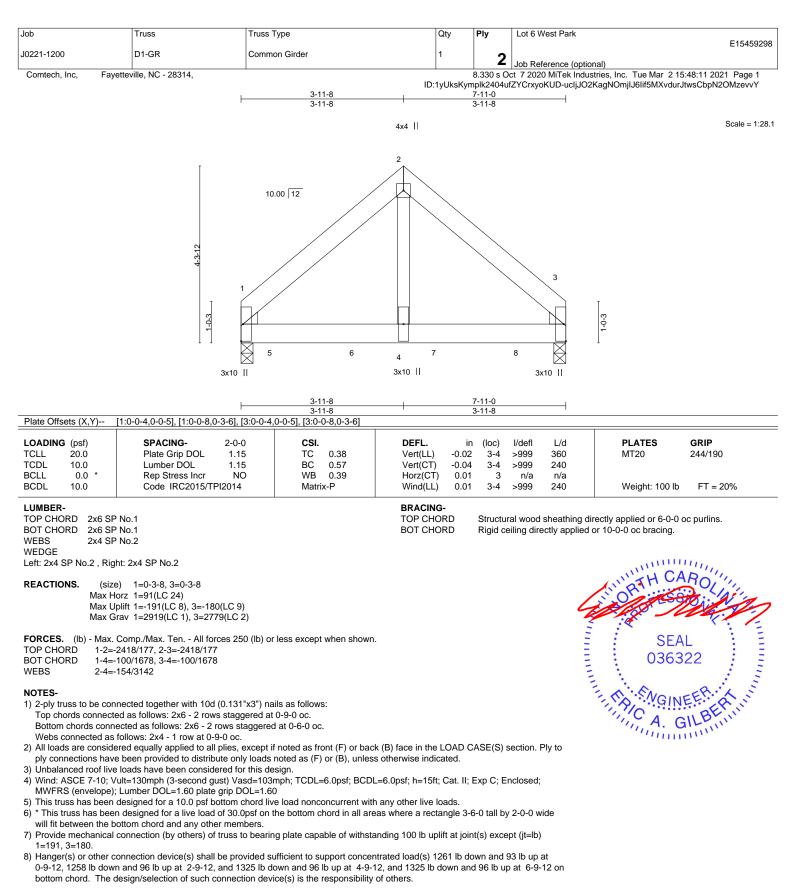
4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>8-3-8</u> 8-3-8		
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [12:0-2-0,0-1-8]	г			1
OADING (psf)	SPACING- 2-0-0	CSI.		in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.35 BC 0.26	- ()	9 10-11 >999 240 8 10-11 >999 240	MT20 244/190 M18SHS 244/190
CLL 0.0 *	Rep Stress Incr YES	WB 0.01	Horz(CT) -0.0		10103113 244/190
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 41 lb FT = 20%
UMBER- OP CHORD 2x4 SF OT CHORD 2x6 SF			BRACING- TOP CHORD	Structural wood sheathing di except end verticals.	rectly applied or 6-0-0 oc purlins,
VEBS 2x4 SF OTHERS 2x4 SF			BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.
	e) 2=0-3-0, 8=0-3-8 torz 2=105(LC 8) 2 109(LC 0)				

Max Uplift 2=-216(LC 8), 8=-188(LC 8) Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Ma/S/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

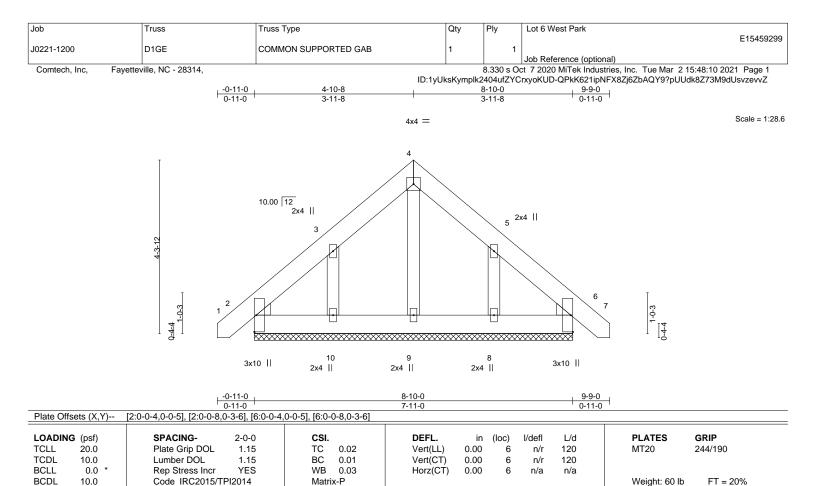
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 March 3,2021


Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459298
J0221-1200	D1-GR	Common Girder	1	2	
				_	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,			8.330 s O	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:11 2021 Page 2
			ID:1yUksKyr	nplk2404uf	ZYCrxyoKUD-ucljJO2KagNOmjIJ6lif5MXvdurJtwsCbpN2OMzevvY

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

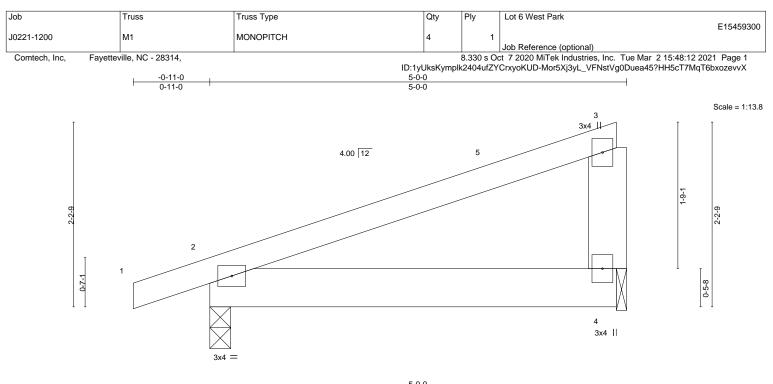
REACTIONS. All bearings 7-11-0.

- (lb) Max Horz 2=-118(LC 10)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152, 8=148.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			5-0-0 5-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.1	0-0 CSI. 1.15 TC 0.28 1.15 BC 0.08	DEFL. in (loc) Vert(LL) -0.01 2-4 Vert(CT) -0.01 2-4	l/defl L/d >999 360 >999 240	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0		YES WB 0.00	Horz(CT) 0.00 Wind(LL) 0.01 2-4	n/a n/a	Weight: 24 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8

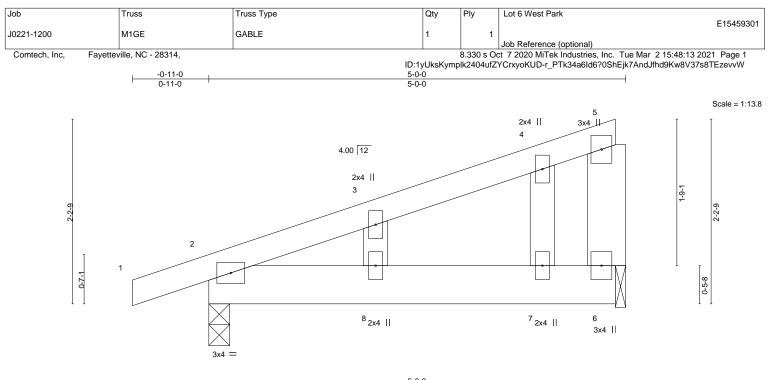
Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

					5-0-0						
	SPACING-	200	CSI.		DEFL.	in	(100)	l/dofl	L /d	PLATES	GRIP
LOADING (psf) TCLL 20.0	Plate Grip DOL	2-0-0 1.15	TC	0.09	Vert(LL)	in 0.01	(loc) 8	l/defl >999	L/d 240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	8		240	101120	244/190
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI	2014	Matri	x-S						Weight: 27 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

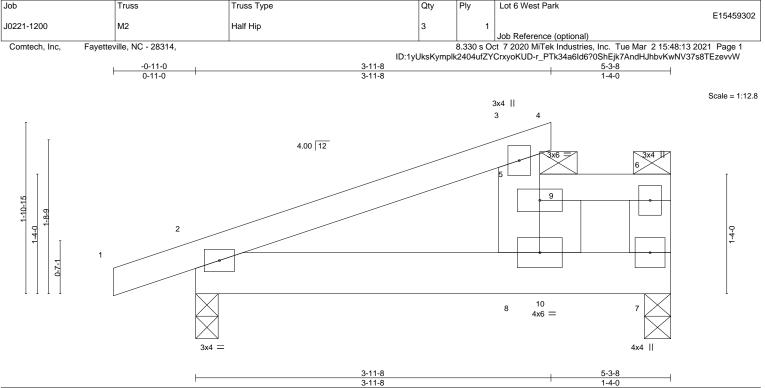

TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8) Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147, 6=115.


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						3-11-8				1	1-4-0	
LOADIN	· · ·	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.00	8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.01	8	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(CT)	-0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-R	Wind(LL)	0.02	8	>999	240	Weight: 28 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x6 SP No.1 **REACTIONS.** (size) 7=0-3-8

FIONS. (size) 7=0-3-8, 2=0-3-0 Max Horz 2=69(LC 12) Max Uplift 7=-173(LC 8), 2=-138(LC 8) Max Grav 7=561(LC 19), 2=349(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-425/505, 5-8=-279/265, 5-6=-233/338, 6-7=-292/309 BOT CHORD 2-8=-546/359, 7-8=-338/233

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-7-4, Interior(1) 3-7-4 to 5-0-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=173, 2=138.

7) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-9=-40, 6-9=-80, 2-7=-20

Concentrated Loads (lb)

Vert: 9=-400

2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-50, 3-4=-50, 5-9=-100, 6-9=-130, 2-7=-20

Structural wood sheathing directly applied or 5-3-8 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-8, 5-6. Except:

Rigid ceiling directly applied or 10-0-0 oc bracing.

10-0-0 oc bracing: 3-5

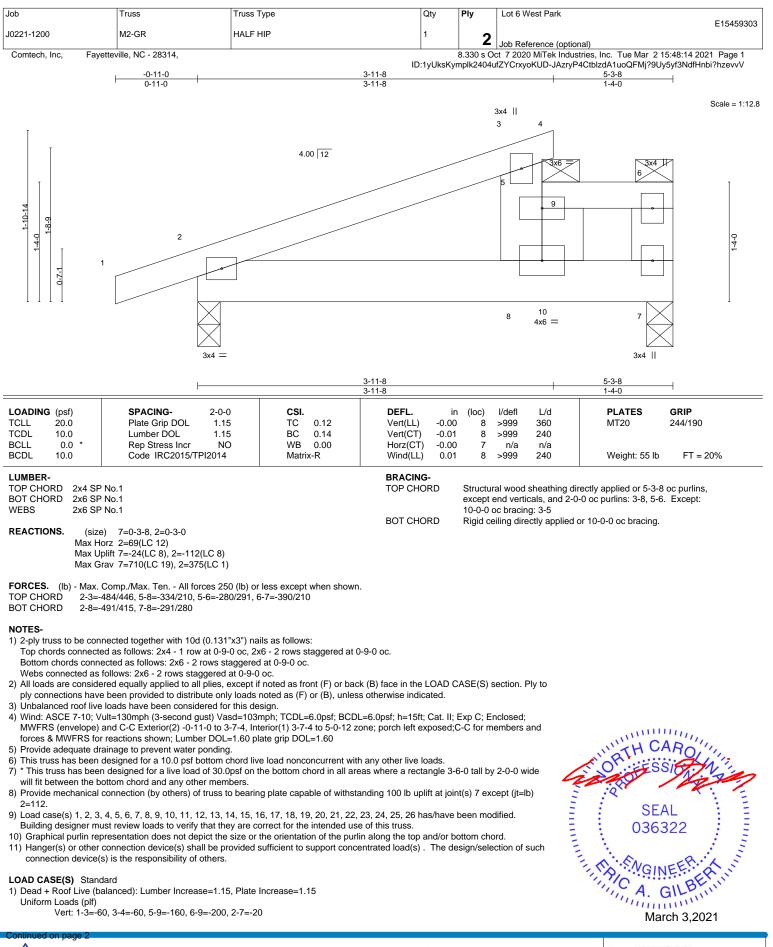
TRENCO AMITek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNNO - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPT/1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 West	Park	
							E15459302
J0221-1200	M2	Half Hip	3	1	Job Referer	nce (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,				ct 7 2020 Mi	iTek Industries, Inc. T	ue Mar 2 15:48:13 2021 Page 2
LOAD CASE(S) Standar Concentrated Loads (lb			ID:1yUksKymplk	(2404ufZY	′CrxyoKUD-r_	_PTk34a6ld6?0ShEjki	7AndHJhbvKwNV37s8TEzevvW
Vert: 9=-350 3) Dead + Uninhabitable A Uniform Loads (plf)	ttic Without Storage: Lumber	Increase=1.25, Plate Increase=1.25					
Vert: 1-3=-20, 3 Concentrated Loads (Ib	3-4=-20, 5-6=-40, 2-7=-40)						
Vert: 9=-300 4) Dead + 0.6 C-C Wind (I Uniform Loads (plf)	Pos. Internal) Case 1: Lumber	Increase=1.60, Plate Increase=1.60					
Vert: 1-2=70, 2 Horz: 1-2=-82, Concentrated Loads (Ib	-3=58, 3-4=153, 5-6=12, 2-8= 2-3=-70, 3-4=-165, 3-5=-55)	52, 8-10=115, 7-10=52					
Uniform Loads (plf)	Pos. Internal) Case 2: Lumber	Increase=1.60, Plate Increase=1.60					
	2-3=-70, 3-4=-63, 3-5=-55						
Uniform Loads (plf)	Neg. Internal) Case 1: Lumber ·3=-45, 3-4=17, 5-6=-58, 2-8=	-Increase=1.60, Plate Increase=1.60 -9, 8-10=2, 7-10=-9					
Horz: 1-2=-19, Concentrated Loads (Ib Vert: 9=-420	2-3=25, 3-4=-37, 3-5=51)						
Uniform Loads (plf) Vert: 1-2=-39, 2	2-3=-45, 3-4=-39, 5-6=-58, 2-8	- Increase=1.60, Plate Increase=1.60 3=-9, 8-10=2, 7-10=-9					
Concentrated Loads (Ib Vert: 9=-420							
Uniform Loads (plf) Vert: 1-2=36, 2	-3=21, 3-4=14, 5-6=-11, 2-8= 2-3=-33, 3-4=-26, 3-5=7	er Increase=1.60, Plate Increase=1.60 10, 8-10=33, 7-10=10					
Concentrated Loads (lb Vert: 9=154 9) Dead + 0.6 MW/ERS Wi		per Increase=1.60, Plate Increase=1.60					
Uniform Loads (plf) Vert: 1-2=6, 2-3	3=12, 3-4=28, 5-6=1, 2-7=-12 2-3=-24, 3-4=-40, 3-5=-27						
Vert: 9=43	, ,						
Uniform Loads (plf) Vert: 1-2=6, 2	Vind (Neg. Internal) Left: Luml 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 5, 2-3=-19, 3-4=-26, 3-5=34	ber Increase=1.60, Plate Increase=1.60 8-10=25, 7-10=2					
Concentrated Loads (I Vert: 9=-339		nber Increase=1.60, Plate Increase=1.6	0				
Uniform Loads (plf) Vert: 1-2=-2, 2	2-3=-9, 3-4=-2, 5-6=-21, 2-7=- 8, 2-3=-11, 3-4=-18, 3-5=-0						
Vert: 9=-234	,	el: Lumber Increase=1.60, Plate Increas	e=1.60				
Vert: 1-2=14,	2-3=21, 3-4=14, 5-6=-11, 2-7 5, 2-3=-33, 3-4=-26, 3-5=-39 b)	12					
Uniform Loads (plf)	(, , , , , , , , , , , , , , , , , , ,	el: Lumber Increase=1.60, Plate Increas	se=1.60				
Horz: 1-2=-14 Concentrated Loads (I	!-3=9, 3-4=2, 5-6=1, 2-7=-12 !, 2-3=-21, 3-4=-14, 3-5=-27 b)						
Uniform Loads (plf)	Vind (Pos. Internal) 3rd Paralle 2-3=21, 3-4=14, 5-6=-11, 2-7	el: Lumber Increase=1.60, Plate Increas =-12	se=1.60				
	6, 2-3=-33, 3-4=-26, 3-5=-39	-					
	Vind (Pos. Internal) 4th Paralle	el: Lumber Increase=1.60, Plate Increas	e=1.60				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job		Truss	Truss Type	Qty	Ply	Lot 6 West Park
						E15459302
J0221-1200		M2	Half Hip	3	1	
						Job Reference (optional)
Comtech, Inc	, Fayette	ville, NC - 28314,			8.330 s Oo	ct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:13 2021 Page 3

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:13 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-r_PTk34a6ld6?0ShEjk7AndHJhbvKwNV37s8TEzevvW

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 9=-234 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20 Concentrated Loads (lb) Vert: 9=-200 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26 Concentrated Loads (lb) Vert: 9=-454 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9 Concentrated Loads (lb) Vert: 9=-375 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459303
J0221-1200	M2-GR	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.330 s Oo	ct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:14 2021 Page 2

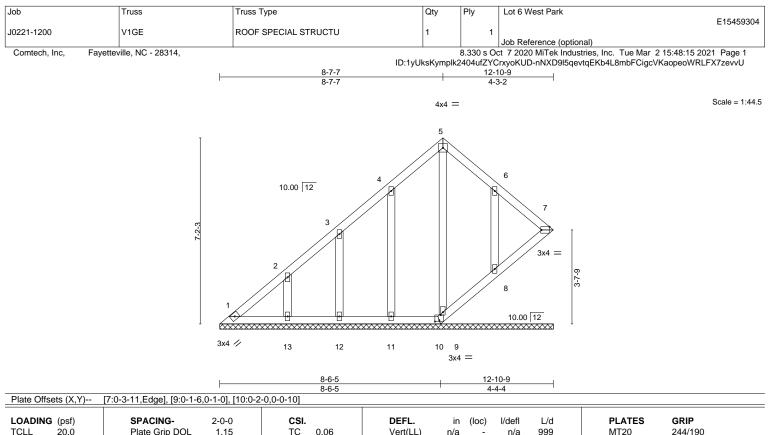
4, 8.330 s Oct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:14 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-JAzryP4CtblzdA1uoQFMj?9Uy5yf3NdfHnbi?hzevvV

	Vort: 9-400
2)	Vert: 9=-400 Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
-,	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350
3)	Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
	Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40
	Concentrated Loads (lb)
	Vert: 9=-300
4)	Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
	Concentrated Loads (lb) Vert: 9=548
5)	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
0)	Uniform Loads (plf)
	Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
	Concentrated Loads (lb)
C)	Vert: 9=566
0)	Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
	Concentrated Loads (lb)
	Vert: 9=-420
7)	Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
	Concentrated Loads (lb)
	Vert: 9=-420
8)	Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10 Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
	Concentrated Loads (lb)
	Vert: 9=154
9)	Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12
	Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (lb)
	Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
	Concentrated Loads (lb) Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20
	Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
	Concentrated Loads (lb)
10	Vert: 9=-234 bead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
12	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
	Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
	Concentrated Loads (lb)
	Vert: 9=43
13	b) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

LOAD CASE(S) Standard Concentrated Loads (Ib)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459303
J0221-1200	M2-GR	HALF HIP	1	2	
				2	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.330 s Oo	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:14 2021 Page 3


Comtech, Inc, Fayetteville, NC - 28314, EVADE CASE(S) Standard Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 9=-234 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20 Concentrated Loads (lb) Vert: 9=-200 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26 Concentrated Loads (lb) Vert: 9=-454 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right); Lumber Increase=1.60. Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9 Concentrated Loads (lb) Vert: 9=-375 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350 26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15. Plate Increase=1.15

 26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-	P No 1		BRACING-	Structural wood sheathing d	irectly applied or 6-0-0 oc purlins	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 75 lb FT = 2	0%
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.03 WB 0.08	Vert(CT) n/a Horz(CT) 0.00	- n/a 999 7 n/a n/a		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) n/a	- n/a 999	MT20 244/190	
LOADING (pst)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defI L/d	PLATES GRIP	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. All bearings 12-10-9.

(lb) -Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

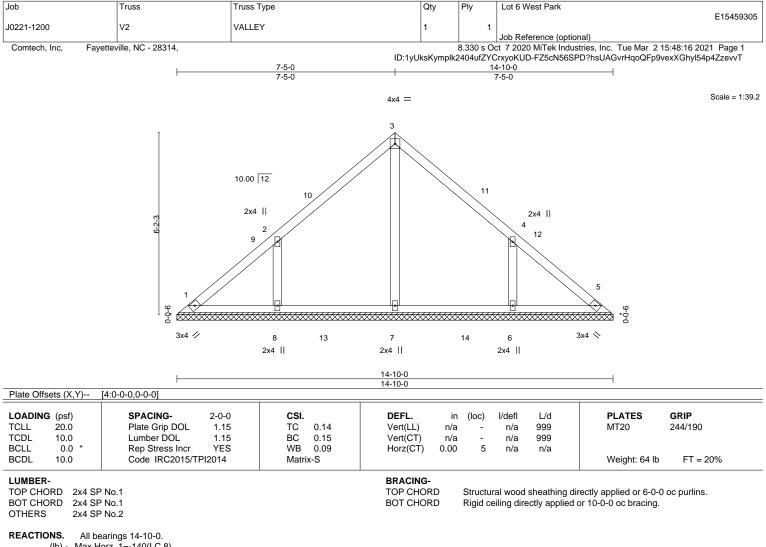
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a uses system, before use, included the building designer mask vering the approximation to design building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(lb) -Max Horz 1=-140(LC 8)

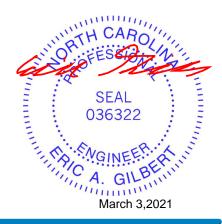
Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-338/247, 4-6=-338/247

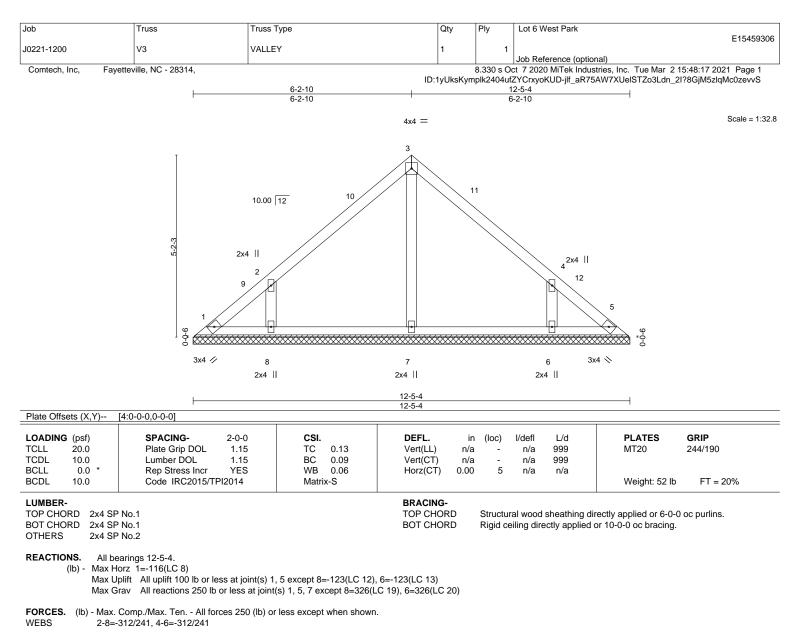
NOTES-


2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

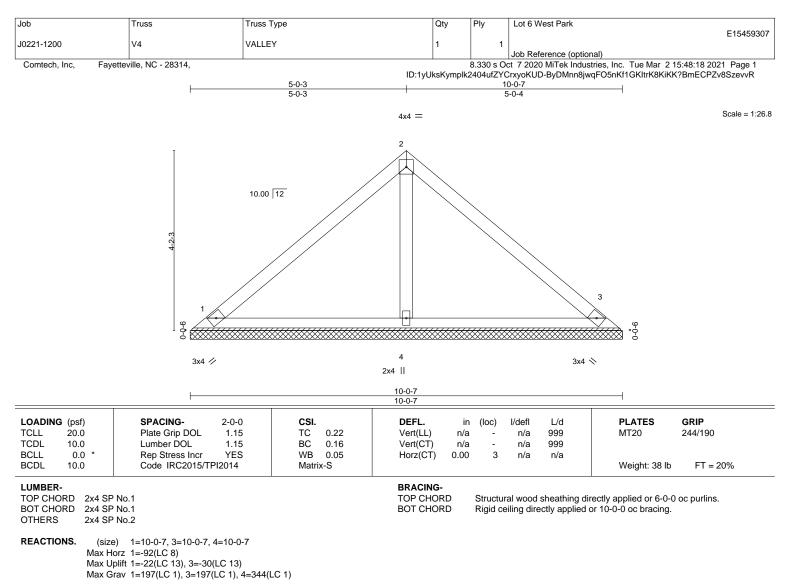
NOTES-

 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

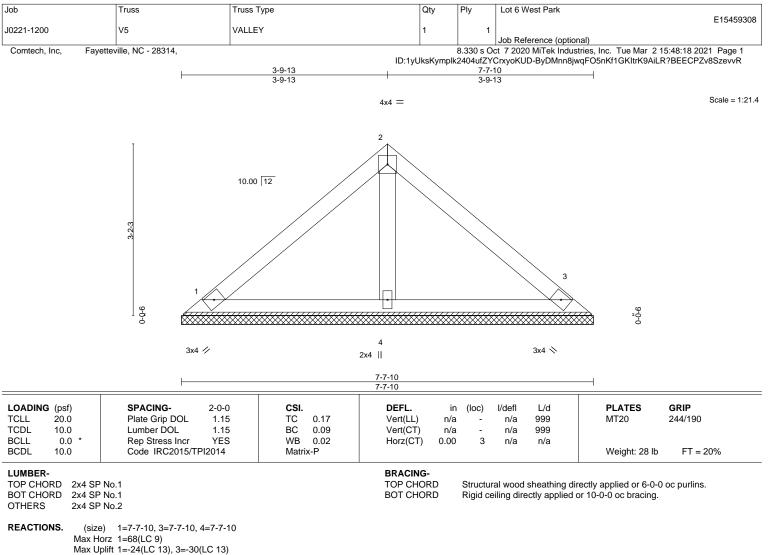
NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

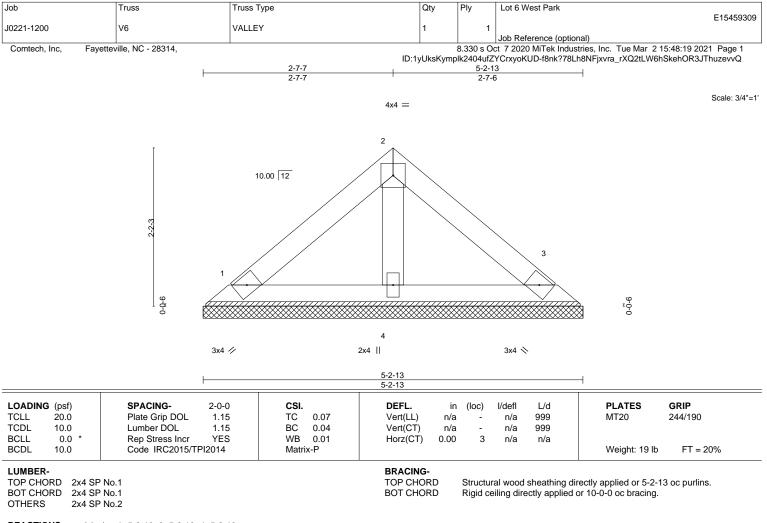
¹⁾ Unbalanced roof live loads have been considered for this design.

Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13 Max Horz 1=-44(LC 8)

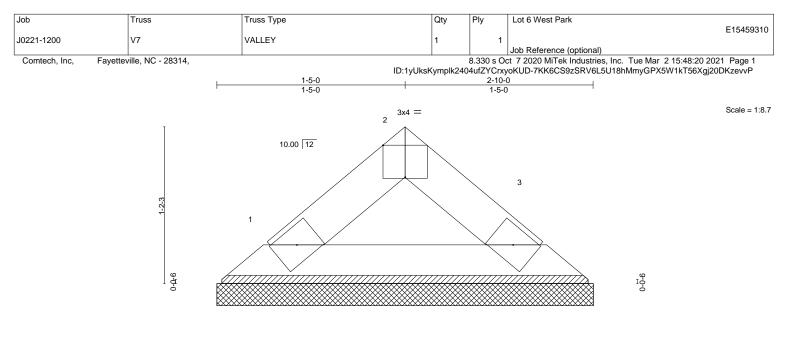
Max Uplift 1=-15(LC 13), 3=-19(LC 13)

Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

3x4 📎

LOADING (psf) ICLL 20.0 ICDL 10.0 ICCL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.01 BC 0.03 WB 0.00	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	'a - 'a -	'defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		5 5	ina ina	Weight: 8 lb FT = 20%

REACTIONS. (size) 1=2-10-0, 3=2-10-0 Max Horz 1=-20(LC 8)

Max Uplift 1=-20(LC 3)Max Uplift 1=-4(LC 12), 3=-4(LC 13)Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

