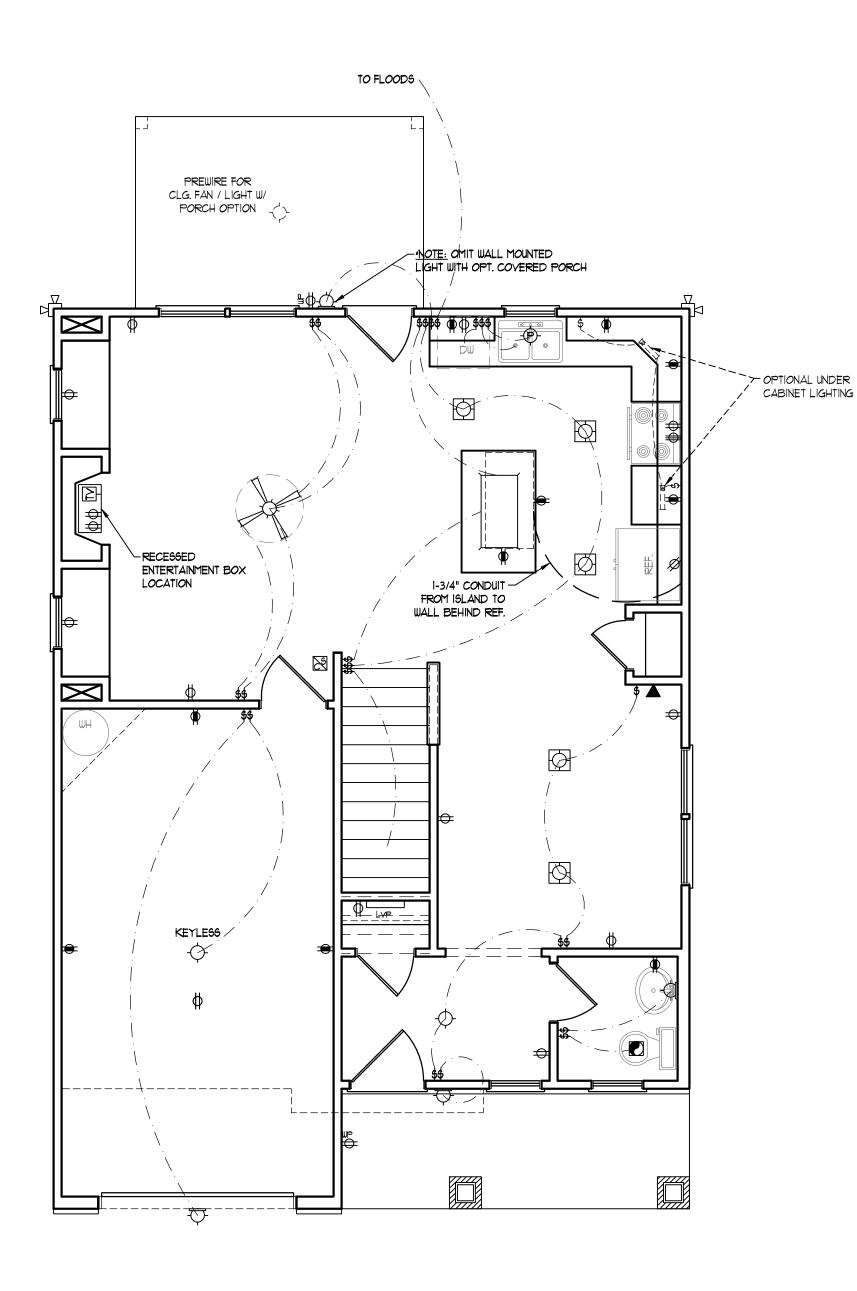


PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE



SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE A-4

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

L1x17 PRINTS ARE NOT TO SC	CAI
TO SCALE AS NOTED.	
SCALE NOTE: 18x24 PRINTS AF	٦E

1.) BLOCK AND WIRE FOR ALL CELING FANS PER PLAN. 2.) VANITY LIGHTS TO BE SET

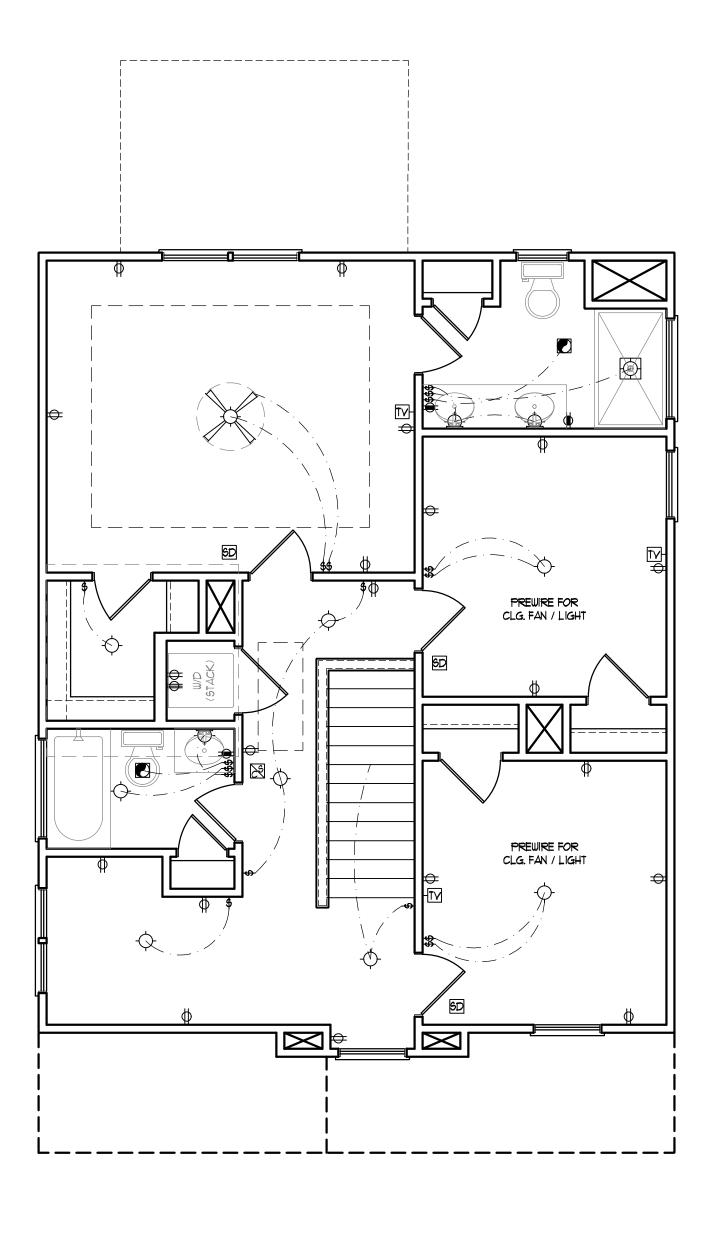
ELECTRICAL LAYOUT NOTES:

3.) ADDITIONAL EXTERIOR OUTLETS REQUIRED BY CODE TO BE LOCATED BY ELECTRICIAN.

@ 90/" AFF. (TYP.)

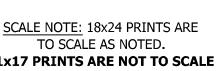
4.) PLACE SWITCHES 8" (MIN.) FROM ROUGH OPENINGS.

ELECTRICAL LEGEND


- 😑 110 y GFI OUTLET
- + IV Y SWITCHED OUTLET
- BB 🕂 IIØ Y BASEBOARD OUTLET
- +++ 4-PLEX
- COUNTER OR FLOOR MOUNTED
- COUNTER OR FLOOR MOUNTED 1107 GFI
- € 220 ∨ OUTLET
- Ø 110 Y DEDICATED CIRCUIT
- 120 Y DEDICATED CIRCUIT
- SPECIAL PURPOSE (240 V, ETC.)
- CEILING MOUNT LIGHT
- PENDANT LIGHT
- MINI CAN LIGHT
- EYEBALL LIGHT
- FLUORESCENT LIGHT
- \$ SWITCH
- \$ DIMMER SWITCH

- TV- TV CONNECTION
- CD- CONDUIT FOR COMPONENT WIRING
- SP SPEAKER
- 10 Y SMOKE/ CM DETECTOR
- SD 110 Y SMOKE DETECTOR
- EXHAUST FAN
- LOW VOLTAGE PANEL
- ALARM ALARM PANEL
- CEILING FAN W/ LIGHT

E E-1


ELECTRICAL

PLAN

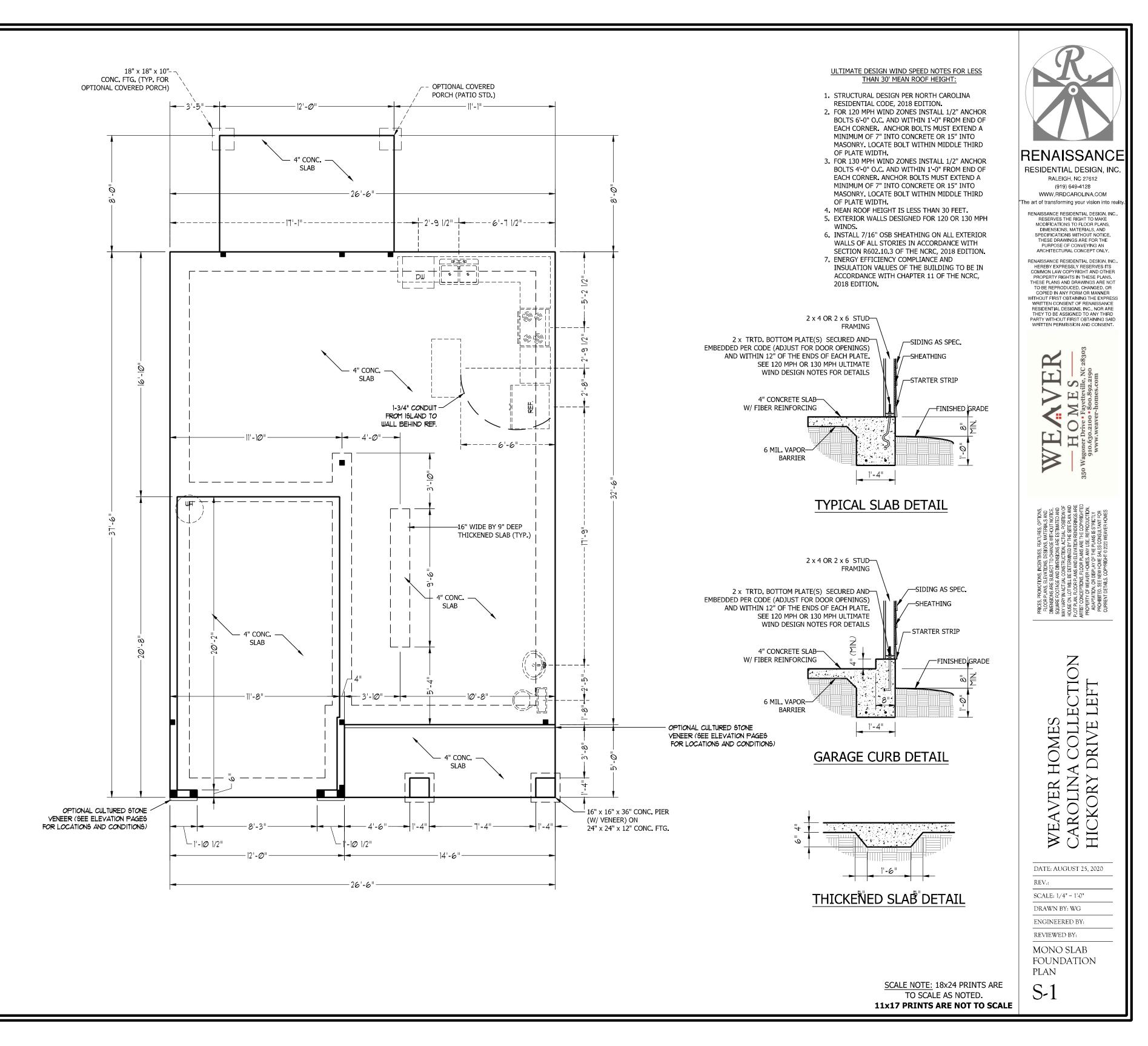
11x17 PRINTS ARE NOT TO SCAL
TO SCALE AS NOTED.
SCALE NOTE: 18x24 PRINTS ARE

PLAN

E-2

ELECTRICAL LAYOUT NOTES: 1.) BLOCK AND WIRE FOR ALL

CELING FANS PER PLAN. 2.) VANITY LIGHTS TO BE SET @ 90/" AFF. (TYP.)

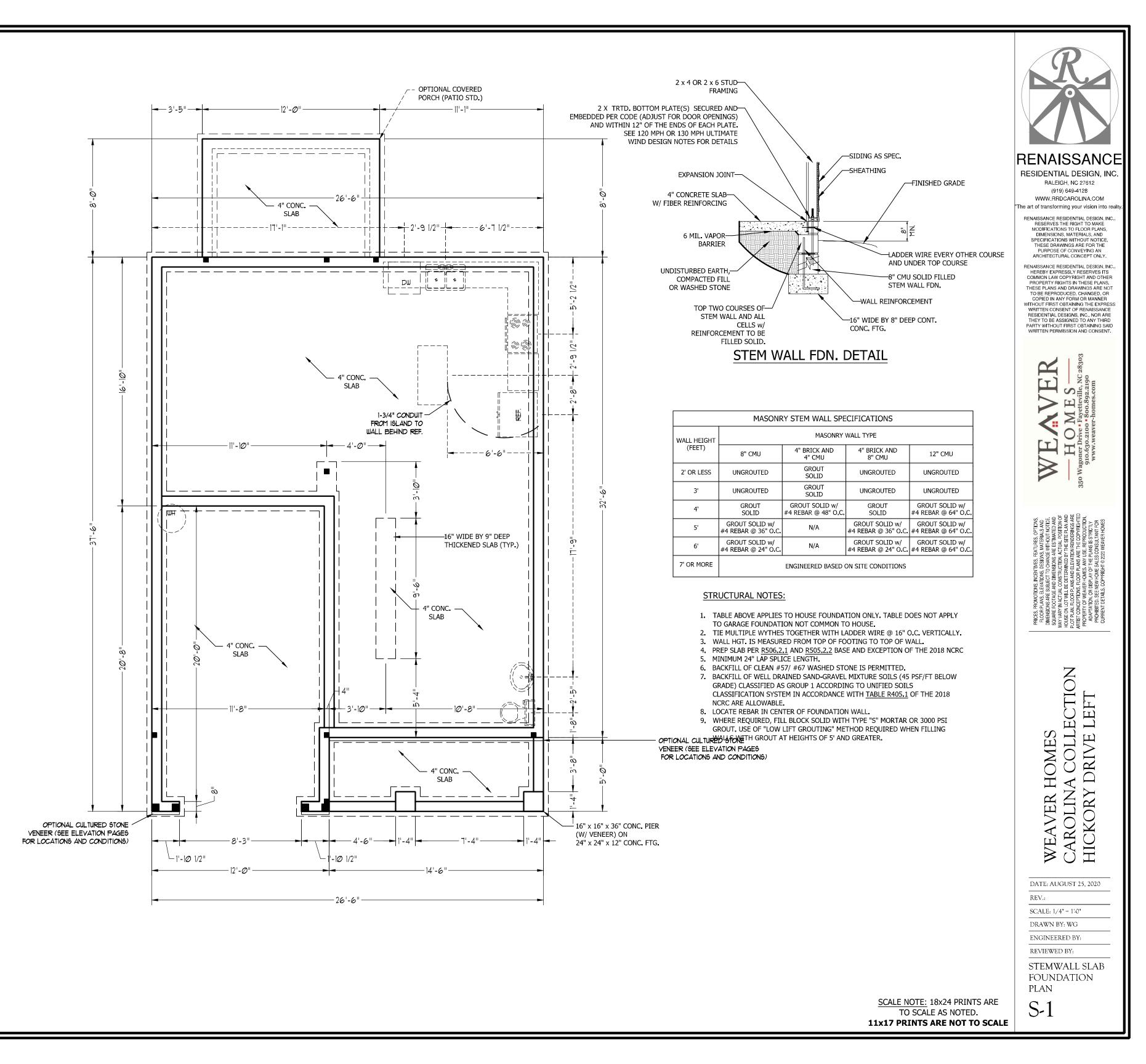

3.) ADDITIONAL EXTERIOR OUTLETS REQUIRED BY CODE TO BE LOCATED BY ELECTRICIAN.

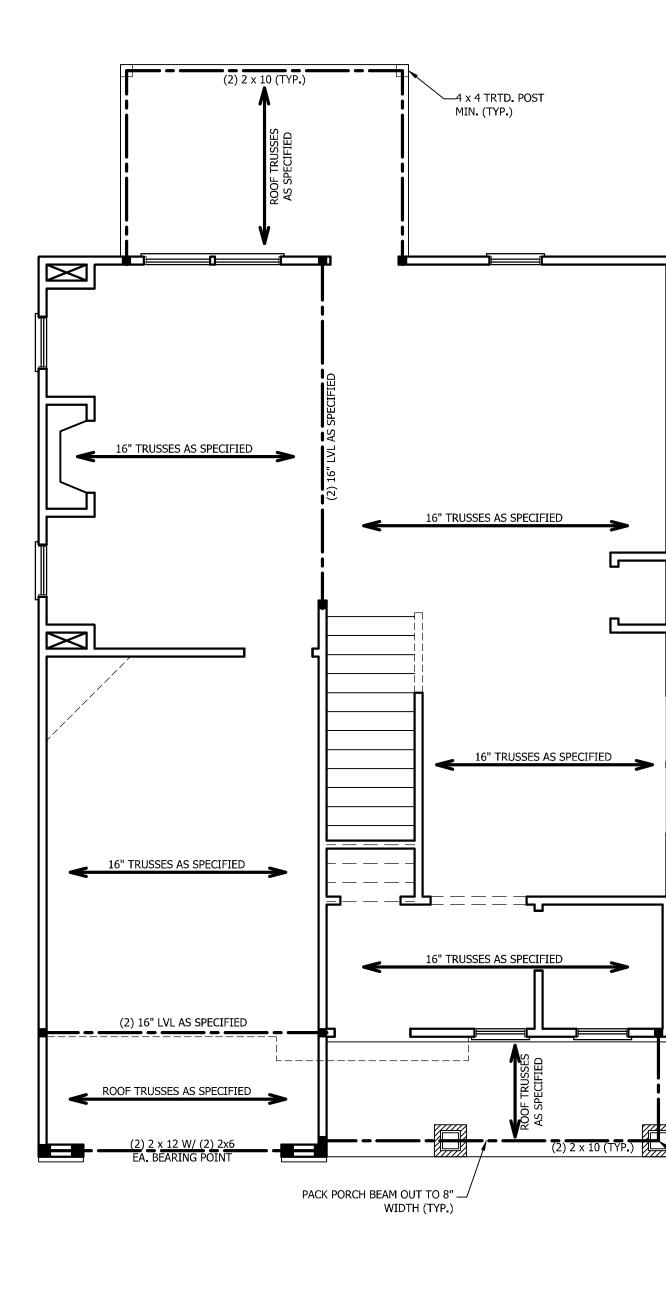
4.) PLACE SWITCHES 8" (MIN.) FROM ROUGH OPENINGS.

ELECTRICAL LEGEND

- 😑 110 V GFI OUTLET
- BB \ominus IIØ Y BASEBOARD OUTLET
- + 4-PLEX
- COUNTER OR FLOOR MOUNTED
- COUNTER OR FLOOR MOUNTED 110V GFI
- UEATHERPROOF
- Ø 110 V DEDICATED CIRCUIT
- 120 Y DEDICATED CIRCUIT
- ●H SPECIAL PURPOSE (240 Y, ETC.)
- WALL MOUNT LIGHT
- CEILING MOUNT LIGHT
- PENDANT LIGHT
- MINI CAN LIGHT

- UNDERCABINET LIGHT
- SWITCH \$
- \$_D DIMMER SWITCH
- TELEPHONE
- TELEPHONE AND DATA
- TV- TV CONNECTION
- CD- CONDUIT FOR COMPONENT WIRING
- SP SPEAKER
- S C 110 V SMOKE/ CO DETECTOR
- SD 110 V SMOKE DETECTOR
- EXHAUST FAN
- LOW VOLTAGE PANEL
- ALARM ALARM PANEL
- CEILING FAN




ULTIMATE DESIGN WIND SPEED NOTES FOR LESS THAN 30' MEAN ROOF HEIGHT:

- 1. STRUCTURAL DESIGN PER NORTH CAROLINA RESIDENTIAL CODE, 2018 EDITION.
- 2. FOR 120 MPH WIND ZONES INSTALL 1/2" ANCHOR BOLTS 6'-0" O.C. AND WITHIN 1'-0" FROM END OF EACH CORNER. ANCHOR BOLTS MUST EXTEND A MINIMUM OF 7" INTO CONCRETE OR 15" INTO MASONRY. LOCATE BOLT WITHIN MIDDLE THIRD OF PLATE WIDTH.
- 3. FOR 130 MPH WIND ZONES INSTALL 1/2" ANCHOR BOLTS 4'-0" O.C. AND WITHIN 1'-0" FROM END OF EACH CORNER. ANCHOR BOLTS MUST EXTEND A MINIMUM OF 7" INTO CONCRETE OR 15" INTO MASONRY. LOCATE BOLT WITHIN MIDDLE THIRD OF PLATE WIDTH.
- MEAN ROOF HEIGHT IS LESS THAN 30 FEET.
 EXTERIOR WALLS DESIGNED FOR 120 OR 130 MPH WINDS.
- 6. INSTALL 7/16" OSB SHEATHING ON ALL EXTERIOR WALLS OF ALL STORIES IN ACCORDANCE WITH SECTION R602.10.3 OF THE NCRC, 2018 EDITION.
- 7. ENERGY EFFICIENCY COMPLIANCE AND INSULATION VALUES OF THE BUILDING TO BE IN ACCORDANCE WITH CHAPTER 11 OF THE NCRC, 2018 EDITION.

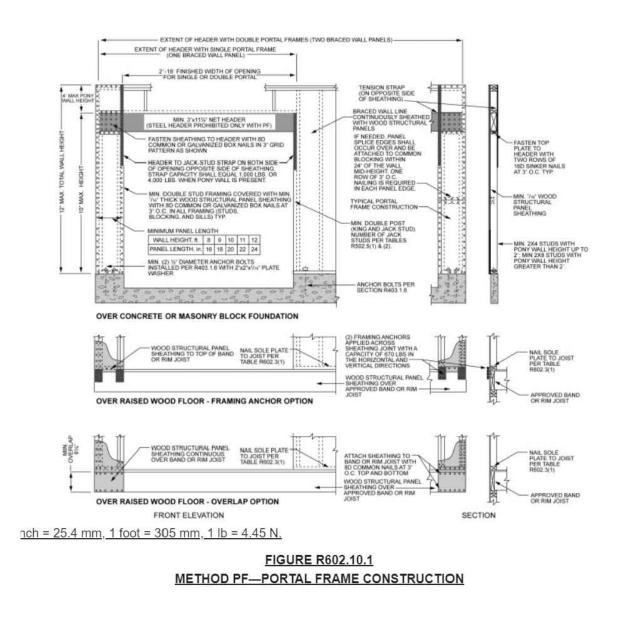
ANCHO	or spacing and e	MBEDMENT
WIND ZONE	120 MPH	130 MPH
SPACING	6'-0" O.C.	4'-0" O.C.
EMBEDMENT	7"	7" INTO CONCRETE 15" INTO MASONRY

NOTE: HORIZONTAL FOOTING REBAR REQUIRED IN HIGH WIND ZONES ONLY (140-150 MPH)

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 4 (UNO).
- INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
 WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 5. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)
- 6. ALL 4 X 4 POSTS SHALL BE ANCHORED TO SLABS W/ SIMPSON ABU44 POST BASES (OR EQUAL) AND 6 X 6 POSTS W/ ABU66 POST BASES (OR EQUAL) (UNO). ALL 4 X 4 AND 6 X 6 POSTS TO BE INSTALLED WITH 700 LB CAPACITY UPLIFT CONNECTORS AT TOP (UNO.)
- FOR FIBERGLASS, ALUMINUM, OR COLUMN ENG. BY OTHERS, SECURE TO SLAB W/ (2) METAL ANGLES USING 2" CONC. SCREWS. FASTEN ANGLES TO COLUMNS W/ 1/4" THROUGH BOLTS W/ NUTS AND WASHERS. LOCATE ANGLES ON OPPOSITE SIDES OF COLUMN. THROUGH BOLTS MUST BE INSTALLED PRIOR TO SETTING COLUMN.

BRACE WALL PANEL NOTES:


EXTERIOR WALLS: ALL EXTERIOR WALLS TO BE SHEALTHED WITH CS-WSP OR CS-SFB IN ACCORDANCE WITH SECTION R602.10.3 UNLESS NOTED OTHERWISE.

REQUIRED LENGTH OF BRACING: REQUIRED BRACE WALL LENGTH FOR EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE ARE INTERPOLATED PER TABLE R602.10.3. METHODS CS-WSP AND CS-SFB CONTRIBUTE THIER ACTUAL LENGTH. METHOD GB CONTRIBUTES 0.5 ITS ACTUAL LENGTH. METHOD PF CONTRIBUTES 1.5 TIMES ITS ACTUAL LENGTH.

GYPSUM: ALL INTERIOR SIDES OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS TO HAVE 1/2" GYPSUM INSTALLED. WHEN NOT USING METHOD GB GYPSUM TO BE FASTENED PER TABLE R702.3.5. METHOD GB TO BE FASTENED PER TABLE R602.10.1.

HD: 800 LBS HOLD DOWN DEVICE FASTENED TO THE EDGE OF THE BRACE WALL PANEL NEAREST TO THE CORNER

METHODS: PER TABLE R602.10.1

-4 x 4 TRTD. POST MIN. (TYP.) RENAISSANCE RESIDENTIAL DESIGN, INC. RALEIGH, NC 27612 (919) 649-4128 WWW.RRDCAROLINA.COM he art of transforming your vision into real RENAISSANCE RESIDENTIAL DESIGN, INC.. RESERVES THE RIGHT TO MAKE MODIFICATIONS TO FLOOR PLANS, DIMENSIONS, MATERIALS, AND SPECIFICATIONS WITHOUT NOTICE. THESE DRAWING ADE FOR THE THESE DRAWINGS ARE FOR THE PURPOSE OF CONVEYING AN ARCHITECTURAL CONCEPT ONLY. RENAISSANCE RESIDENTIAL DESIGN, INC. HERBY EXPRESSLY RESERVES ITS COMMON LAW COPYRIGHT AND OTHER PROPERTY RIGHTS IN THESE PLANS. THESE PLANS AND DRAWINGS ARE NOT TO BE REPRODUCED, CHANGED, OR COPIED IN ANY FORM OR MANNER WITHOUT EIGET ORTAINING THE EVERESS WITHOUT FIRST OBTAINING THE EXPRESS WRITTEN CONSENT OF RENAISSANCE RESIDENTIAL DESIGNS, INC. NOR ARE THEY TO BE ASSIGNED TO ANY THIRD PARTY WITHOUT FIRST OBTAINING SAID WRITTEN DERWING ON ANY CONSENT WRITTEN PERMISSION AND CONSENT [T] S T)

$\left(1\right) $	LLECTION	'E LEFT
WEAVER HOM	CAROLINA COI	HICKORY DRIV

REV.:	
SCALE: 1/4" = 1'-0"	
DRAWN BY: WG	
ENGINEERED BY:	
REVIEWED BY:	

FRAMING PLAN

S-2

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

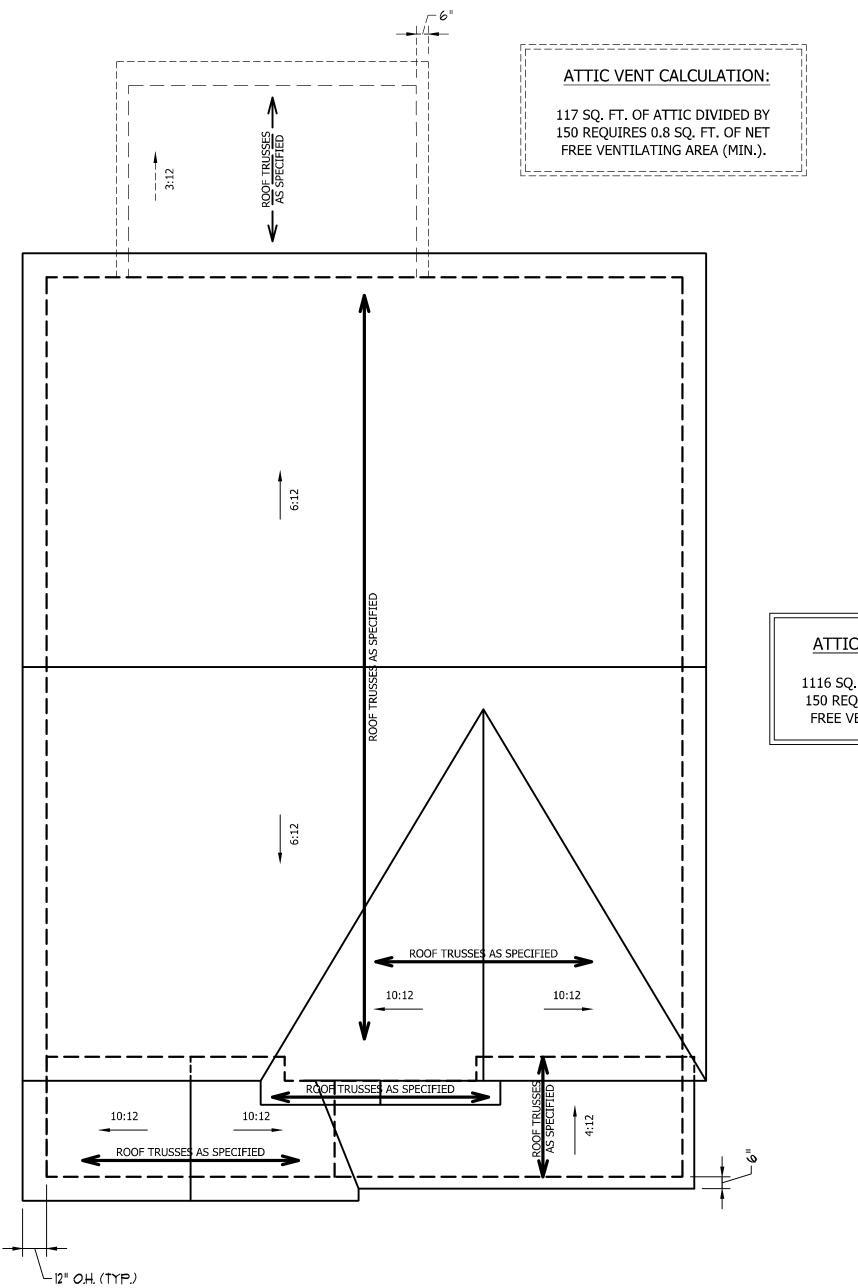
TABLE R602.7.5 MINIMUM NUMBER OF FULL HEIGHT STUDS AT EACH END OF HEADERS IN EXTERIOR WALLS

HEADER SPAN (FEET)	MAXIMUM STUD SPACING (INCHES) (PER TABLE R602.3(5)				
(* == •)	16	24			
UP TO 3'	1	1			
4'	2	1			
8'	3	2			
12'	5	3			
16'	6	4			

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 6 (UNO).
- 3. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 4. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)

DSP - DOUBLE STUD POCKET TSP - TRIPLE STUD POCKET

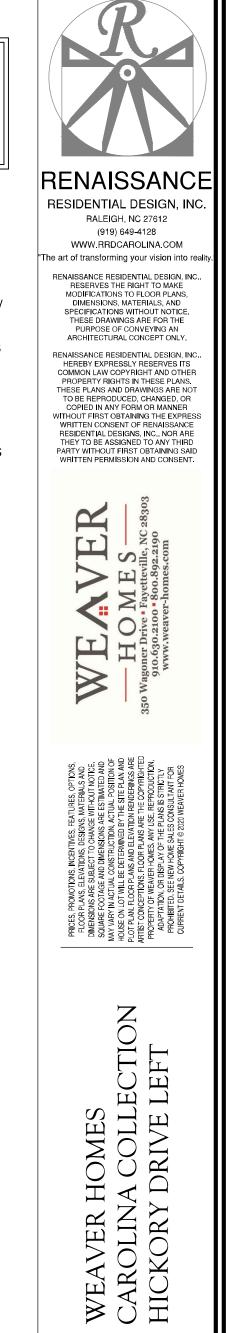


D/	ATE: AUGUST 25, 2020
RE	EV.:
SC	CALE: 1/4" = 1'-0"
DF	RAWN BY: WG
EN	IGINEERED BY:
RE	EVIEWED BY:

ATTIC FLOOR FRAMING PLAN

S-3

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE



ATTIC VENT CALCULATION:

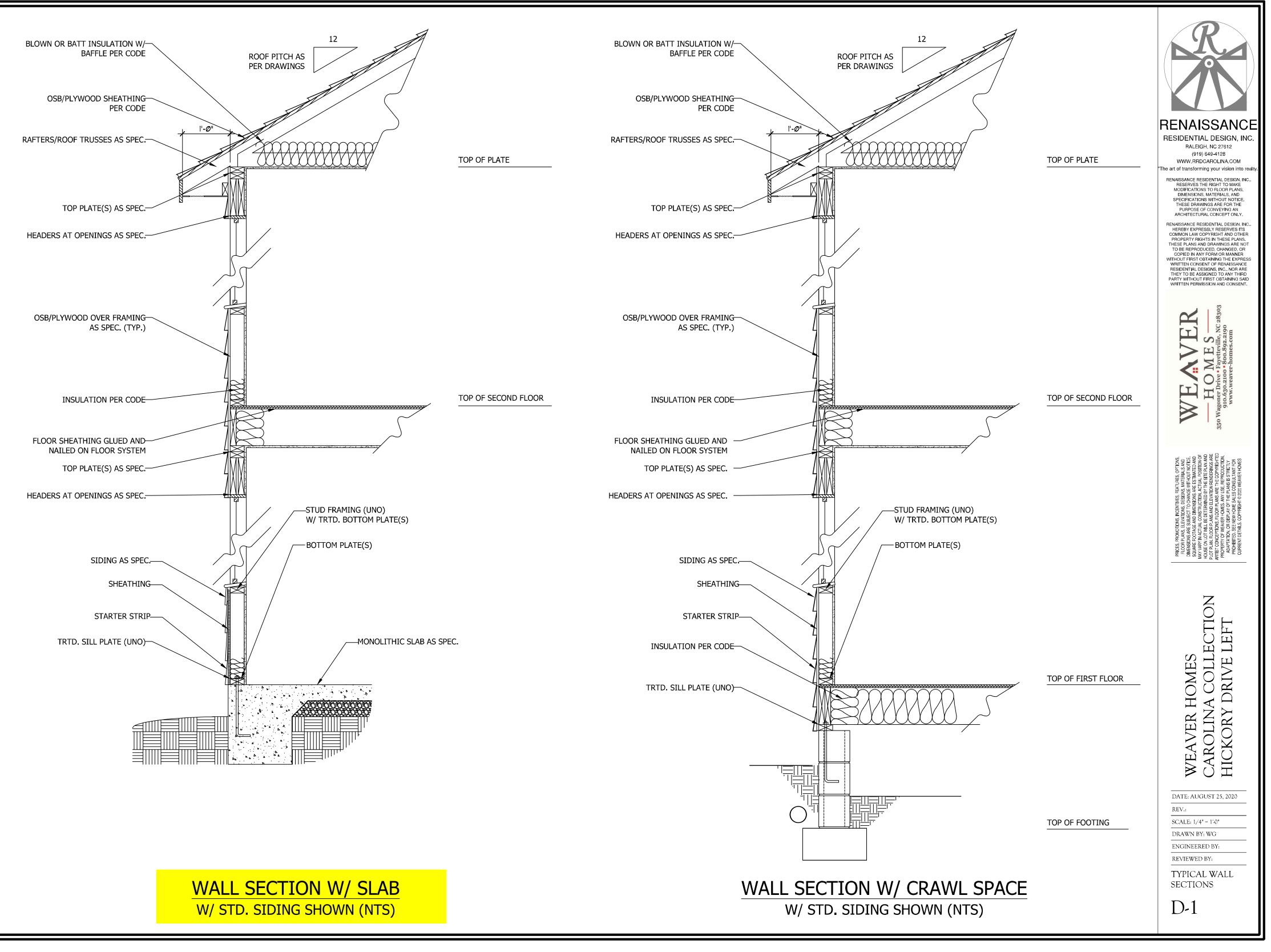
1040 SQ. FT. OF ATTIC DIVIDED BY 150 REQUIRES 6.9 SQ. FT. OF NET FREE VENTILATING AREA (MIN.).

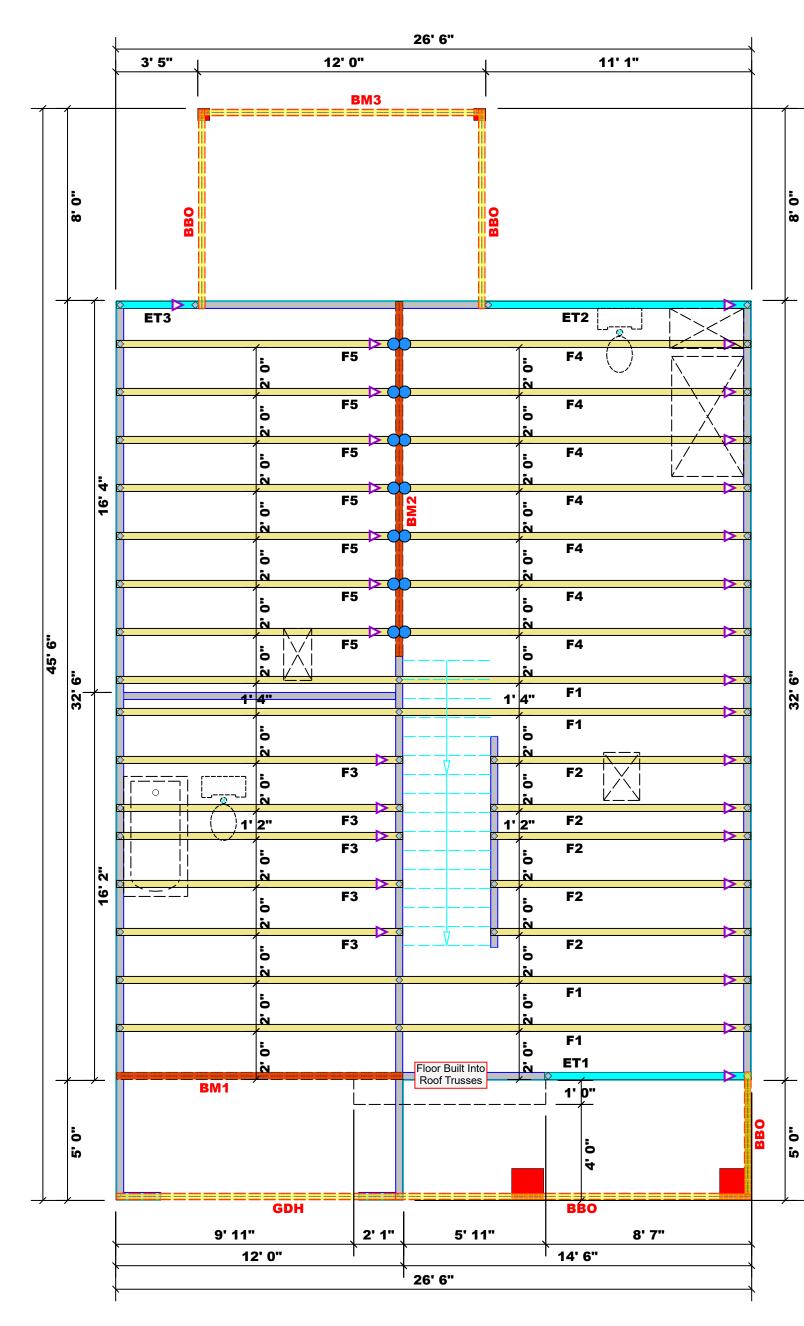
STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE #2 SPF (UNO).
 HIP SPLICES ARE TO BE SPACED A MIN. OF 8'-0". FASTEN MEMBERS WITH THREE ROWS OF 12d NAILS @ 16" O.C. (TYP.)
- STICK FRAME OVER-FRAMED ROOF SECTIONS W/ 2 x 8 RIDGES, 2 x 6 RAFTERS @ 16" O.C. AND FLAT 2 x 10 VALLEYS OR USE VALLEY TRUSSES.
- FASTEN FLAT VALLEYS TO RAFTERS OR TRUSSES WITH SIMPSON H2.5A HURRICANE TIES @ 32" O.C. MAX. PASS HURRICANE TIES THROUGH NOTCH IN ROOF SHEATHING. EACH RAFTER IS TO BE FASTENED TO THE FLAT VALLEY WITH A MIN. OF (6) 12d TOE NAILS.
- 5. REFER TO SECTION R802.11 OF THE 2018 NCRC FOR REQUIRED UPLIFT RESISTANCE AT RAFTERS AND TRUSSES.

DATE: AUGUST 25, 2020 REV.: SCALE: 1/4" = 1'-0" DRAWN BY: WG ENGINEERED BY:

ENGINEERED BY: REVIEWED BY:


ROOF PLAN


S-4

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

ATTIC VENT CALCULATION:

1116 SQ. FT. OF ATTIC DIVIDED BY 150 REQUIRES 7.4 SQ. FT. OF NET FREE VENTILATING AREA (MIN.).

)								
These to compose design See ind identified designed for the support and col designed consult		Weaver Development Co. Inc.	ГУ / CO.	CITY / CO . Harnett / Harnett	NUW NOLL3YE 34 (QL an) NOL 3400 5100 6800 8500 10200 11900 13600	Tables. /	deemed requiren attached requiren size and reaction 15000#. retained	
A TRUSS russes ar nents to b at the spo ividual de ed on the er is respo eent brach overall st t structurn umns is t er. For ge BCSI-B1 elivery pa	JOB NAME	Lot 6 West Park ADI	ADDRESS	Lot 6 West Park	AD CHA (BASEC BASEC OF JA NOJ STOLE AND NOJ	A register to desigr s that exc	reactions to comply nents. The Tables (nents) to number of s greater A register to design that exce	RUS eilly R Fayet Phon
e designe e incorpo ecification esign she placemen onsible fo ng of the ructure. 1 e includin the respo neral guid and BCS	DLACE	Hickory "A" MO	MODEL	Floor	ON TABLE	ed design the suppled the suppled the suppled the supplementation of	y with the contract derived f determin of wood s than 3000 red desig the supp	OF & SES oad Ir teville e: (91(
ed as indi prated int n of the b ets for ea nt drawin r tempor roof and 'he desig g header nsibility o dance reg I-B3 prov	SEAL DATE	Seal Date DA	DATE REV.	03/02/21	ES R502.5(1) REQUIREC /GIRDER /GIRDER /GIRDER /GIRDER /GIRDER / / / / / / / / / / / / / / / / / / /	n profess port syste 0#.	e prescrip for shall r rom the p e the min studs req 0# but no n profess port syste	& B
vidual bu o the buil uilding de ich truss g. The bu ary and floor syst n of the ti s, beams, of the buil arding br ided with		Quote # DR,	AWN BY	DRAWN BY David Landry) & (b))	ional shal em for all MAY	tive Code efer to the prescriptive imum fout uired to s t greater to ional sha em for any	OOF EAN ial Par 28309 -8787
ilding ding esigner. design ilding tem and russ , walls, ding acing, the	TOB #	J0221-1201 SAI	LES REP.	SALES REP. Lenny Norris	0 0 0 0 0 8 7 1 REQ ⁰ b stubs for 0 0 4 (4) PLV HEADER (4) PLV HEADER 0 0 0 0	l be	e ve Code indation upport than II be	//S ^{-k}

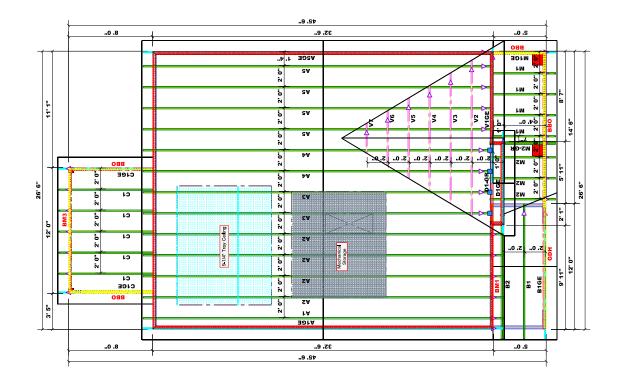
Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes Plumbing drop locations shown are NOT exact.
 Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses.
 Adjust spacing as needed not to exceed 24"oc.

	Conne	ctor Info	rmat	ion	Nail Info	ormation
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	14	NA	16d/3-1/2"	16d/3-1/2"

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM3	12' 0"	2x10 SPF No.2	2	2
GDH	12' 0"	2x12 SPF No.2	2	2


Truss Placement Plan Scale: 1/4"=1'

6

45'

CONTECTION ROOF & FLOOR RUSSES & BEAMS RUSSES & BEAMS Deligibution of the Contection		Harnett / Harnett David Landry 800f 800f 93/02/21 800f	Арреесси Морес рате реу. Сансес рер. Сансес рер.	Weaver Development Co. Inc. Lot 6 West Park Hickory "A"	в UILDER 108 NAME 9LAN 5EAL DATE QUOTE # 108 #	These increases are advected to the second on the mean provide the second on the second on the providence of the second on the second on the second on the second on the second on the second on the second on the second on the second on the second on the second on the second on the second on the second on the second on the second on the
	Dimentificant Notes 1. All attention and an anti-anti-anti-anti-anti-anti-anti-anti-	S S S	Connector Information Nal Information Symp Product Manuf Cay Supported Header Truss USP 4 NA 16403-112" (6403-112")	Products Produc		Tarter and the second

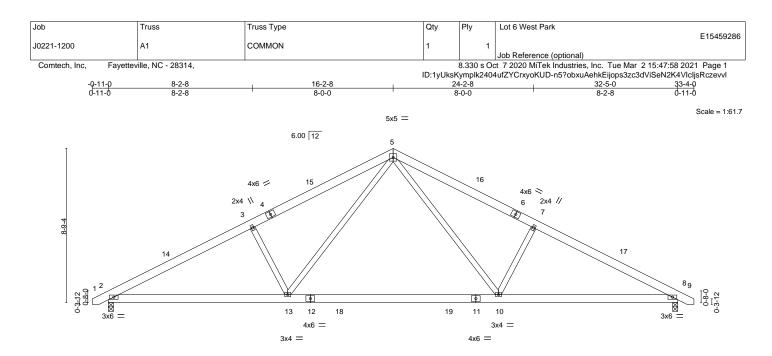
T ~ ¥		a a data a da		5	<u>8</u> 4	Contention of Autor		Lenny Norris	SALES REP.	10221-1200	108 #	A ONLY A building building a designer res designer of system and he truss system and he truss
EAM Set	21 C. 22 C. 24 C. 25 C.	al to 3000 off we Cod refer to th prescripti nimum to pulred to 1	sional shi soma shi am for ar ed in the sional she sional she	ndry	ans to			νανία Landry	VR WWA BY		QUOTE #	Active and a second a se
E B S	년년 왕왕 왕왕	an or equi- tion shall from the mi- re the mi- studs rec	gin profess sport syst an profess profess 000.	David Landı David Landry				03\05\51	DATE REV.		JTAO JAJ R	MENT DL Net as inc on of the outs for a set for a inc tempo of tempo of the design
COMTECH ROOF & FLOOR TRUSSES & BEAMS	Relly food ndurcha Park Tayetheri e, h.C. 32308 Throne: Y.C. 355-2353 Tayetheri e, dir (2004-1444)	ins less the only with the he contra- (derived o determin- of wood	frman Ju gn the su ceeds tho ered desig jn the su jn the su ceed 150.	David Landry David Landry	Loap d-akt fits Jack Shuts webs represented	8		Roof	WOPEL	Ηίςκουγ "Α"		THS IS A TUDS PLACEMENT DURINA ONLY THS IS A TUDS PLACEMENT DURINA ONLY THS PLACEMENT DURING A DURING COMPONENT ON BLANDING COMPONENT ON BLANDING SUBJECT STATE AND SUBJECT ON DURING OF COMPONENT DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING A DURING A DURING DURING A DURING A DURING A DURING A DURING A DURING A DURING DURING A DURING A
2 8 5	위험 같은 같은 같이	g reaction d to come ments. T ad Tables ments) t od numbe	A regist of that each A regist of the dest of the dest	atura	th day	anavan in sin Sanan ang sina		Lot 6 West Park	ADDRESS	.ot 6 West Park	1 3WAN 80T	s A TRU t trusses onents to onents to onents to fied on th ner is res ament bra or struct
		Bearin deeme attach require size ar	150001 150001 reactio retains retains	Signa	З ,	n ta z' no w no		ttannaH / ttannaH	CITY / CO.	Veaver Development Co. Inc.	BUILDER	THE These compound desig desig desig tor th tor th
							Dimension Notes 1.4 denomination Notes 2.4 denomination and the main conservation and 2.4 denomination and productions on the 2.4 denomination and and and and and and and and and the second and and and and and and and and and a	sidered Load Bearing	Connector Information Nat Information Product Manuf DN Supported HU226 USP 4 NA	Products Preaduct 12 0" F-34"x 16" LM, Kette-S 2 12 0" F-34"x 16" LM, Kette-S 2 2 12 0" 2x10 SPF No.2 2 2 12 0" 2x10 SPF No.2 2 2 12 0" 2x12 SPF No.2 2 2 12 0" 2x12 SPF No.2 2 2 14 0" Tuss Placement Plan 2 2		▲= Indicates Left End of Truss
								Con Red Area = 1464.1 st.ft. Redge Line = 5.2.07 it. Hete: Cot = 50.57 ft. Rede: Cot = 50.54 ft. Decelling = 5.0 strongs	Sym Pro	PleitD BM1 BM2 BM2 BM2 CDH		
	26 Gr	11'1" 12'0" 3'5"	2°0° 2°0° 2°0° 2°0°	8.0 880 64 64 64 64 64 64 64 880 880			А	Under the second		6. 0. 5. 0.	26.6"	
	26.6°	1" 12.0" 12.0"	2: 0" 2: 0" 2: 0"	880 IGE CJ CJ CJ CJ CJ CJ CJ CJ CJ			9 9 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	35. e		V4 V3 V V	e. 1 28. 6. 1 12.	
	۲ ۲۰۰۲ - ۲۰۰۲ ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲۰۰۲ - ۲	1" 12.0" 12.0"	2: 0" 2: 0" 2: 0"	880 IGE CJ CJ CJ CJ CJ CJ CJ CJ CJ			*Δ *Δ 1 3084 \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 2 \$\$ \$\$ \$\$ 3 \$\$ \$\$ \$\$ 3 \$\$ \$\$	35. e		Mi Mi Mi V13 V2 V V3 V10 V10 V V V V11 V10 V V V V11 V10 V V V V11 V10 V V V V V11 V10 V V V V V V11 V10 V V V V V V V11 V10 V	e. 1 28. 6. 1 12.	

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0221-1200 Lot 6 West Park

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15459286 thru E15459310


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

March 3,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MITek or TRENCO. Any project specific information included is for MITek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MITek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	10-2-8 10-2-8		2-8 0-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	TC 0.28 BC 0.64 WB 0.27	Vert(CT) -0.47 10-13 Horz(CT) 0.05 8	I/defl L/d >999 360 >824 240 n/a n/a >999 240	PLATES MT20 Weight: 208 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

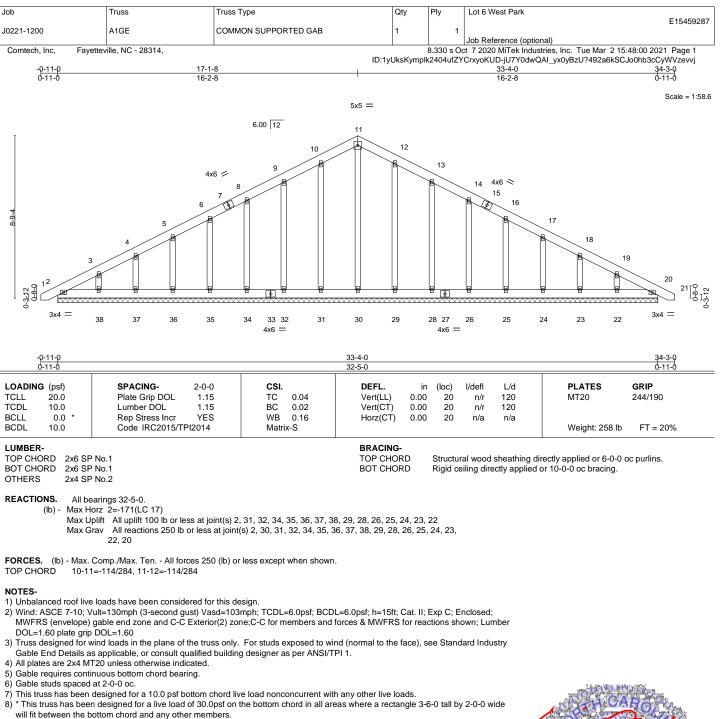
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

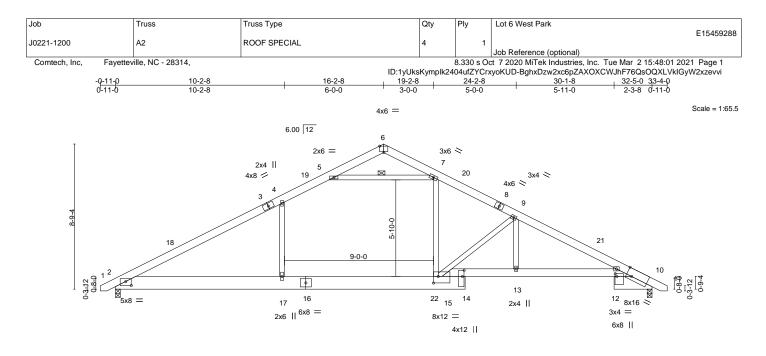
6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTeKe connectors. This serve into CLUDED will CHETERCHOE FAGE with for the off stability of the source of the document, not be sign valid for use only with MTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22,

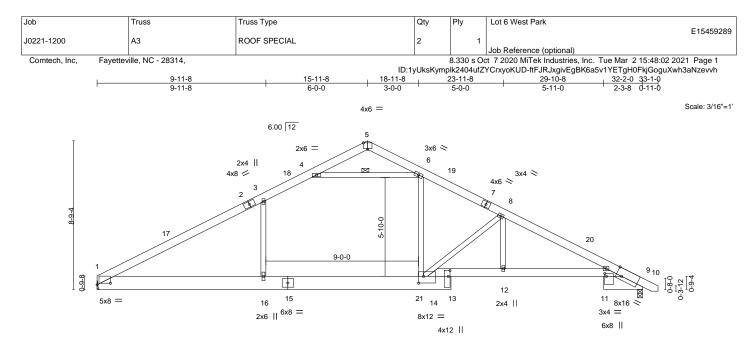
10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT IN EXPECTED EXECT PAGE MIT-F473 (eV. 319/2/20 BEFORE USE. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	10-2-8 10-2-8 [2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4	+ 16-2-8 6-0-0 -0,Edge], [12:0-2-0,0-1-4]	+ 19-2-8 + 21-1 3-0-0 + 1-11 , [14:0-4-8,0-1-4], [15:0-	-0 3-1-0	30-1- 5-11-		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.70 Matrix-S	DEFL. in Vert(LL) -0.21 Vert(CT) -0.38 Horz(CT) 0.09 Wind(LL) 0.17	3 17 >999 9 10 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
10-15:	P No.1 SP No.1 *Except* : 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		rectly applied o	ectly applied or 4-0-8 o r 10-0-0 oc bracing. -7	oc purlins.
Max H Max L	e) 2=0-3-8, 10=0-3-8 Horz 2=-110(LC 10) Jplift 2=-90(LC 12), 10=-90(LC 13) Grav 2=1393(LC 2), 10=1353(LC 2)						
TOP CHORD 2-4= BOT CHORD 2-17	Comp./Max. Ten All forces 250 (lb) or -2217/403, 4-5=-1870/483, 7-9=-2258/5 =-193/1848, 15-17=-195/1860, 13-15=-3 =-29/402, 7-15=-114/967, 9-15=-1075/2	19, 9-10=-2889/551 71/2525, 10-13=-380/252	25				
2) Wind: ASCE 7-10; '	e loads have been considered for this de Vult=130mph (3-second gust) Vasd=103) and C-C Exterior(2) -0-8-10 to 3-8-3. In	mph; TCDL=6.0psf; BCDI					

33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

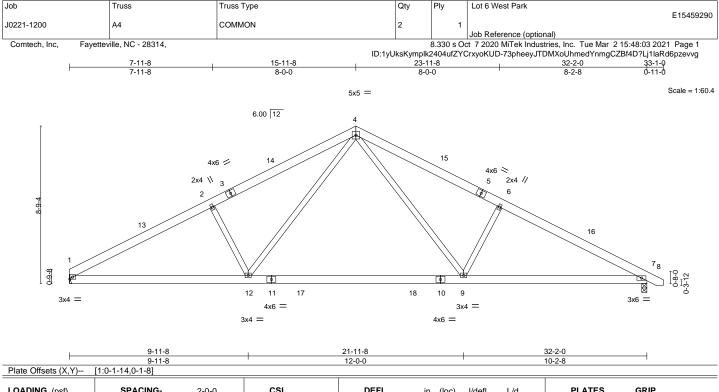
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⊢	<u>9-11-8</u> 9-11-8	<u>18-11-8</u> <u>9-0-0</u>	20-10-8	23-11-8 3-1-0	<u>29-10-8</u> 5-11-0		
Plate Offsets (X,Y)	[1:0-9-6,0-1-2], [5:0-3-0,Edge], [9:0-4-0				0110	200	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.76 BC 0.66 WB 0.70 Matrix-S	DEFL. in Vert(LL) -0.21 Vert(CT) -0.36 Horz(CT) 0.09 Wind(LL) 0.16	16 > 16 > 9	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%
9-14: : WEBS 2x4 SI REACTIONS. (siz Max H Max (SP No.1 *Except* 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		ing directly applied o	ectly applied or 3-10-0 or 10-0-0 oc bracing. -6	oc purlins.
TOP CHORD 1-3= BOT CHORD 1-16	. Comp./Max. Ten All forces 250 (lb) o 2189/401, 3-4=-1853/491, 6-8=-2237/5 i=-198/1827, 14-16=-200/1839, 12-14=-3 =-117/966, 3-16=-53/392, 4-6=-1931/47	17, 8-9=-2874/549 75/2511, 9-12=-384/2511					
NOTES- 1) Unbalanced roof liv	e loads have been considered for this de	sian.					

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Off	sets (X,Y)	[1:0-1-14,0-1-8]										
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.34	9-12	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.47	9-12	>822	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.05	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-S	Wind(LL)	0.05	12	>999	240	Weight: 204 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 7=0-3-8 Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 7=-89(LC 13) Max Grav 1=1278(LC 1), 7=1331(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973, 9-12=-109/1291, 7-9=-324/1953

WEBS 4-9=-147/922, 6-9=-454/288, 4-12=-144/897, 2-12=-437/286

NOTES-

1) Unbalanced roof live loads have been considered for this design.

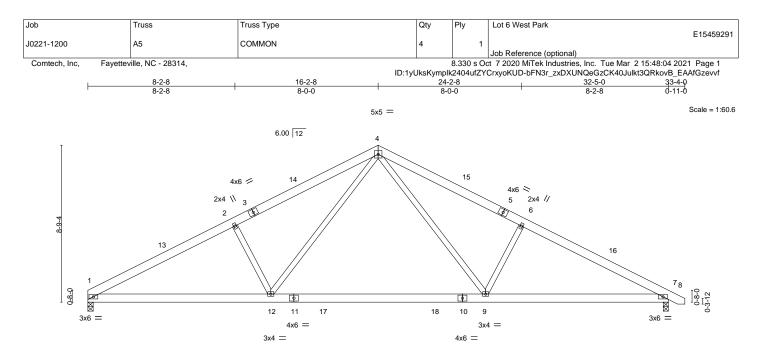
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.


Structural wood sheathing directly applied or 4-11-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	10-2-8 10-2-8		22-2-8 12-0-0		<u>32-5-0</u> 10-2-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.29 BC 0.65 WB 0.27 Matrix-S	Vert(CT) -0 Horz(CT) 0	in (loc) 0.34 9-12 0.47 9-12 0.05 7 0.05 12	l/defl L/d >999 360 >822 240 n/a n/a >999 240	PLATES MT20 Weight: 206 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

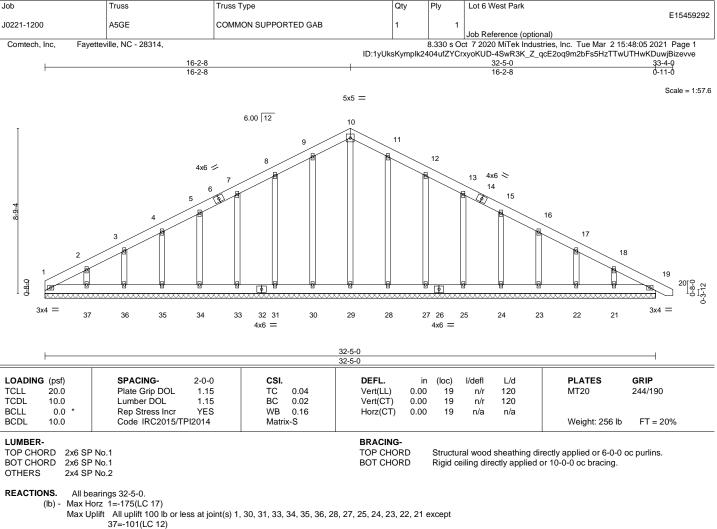
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

Structural wood sheathing directly applied or 4-10-13 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

March 3,2021

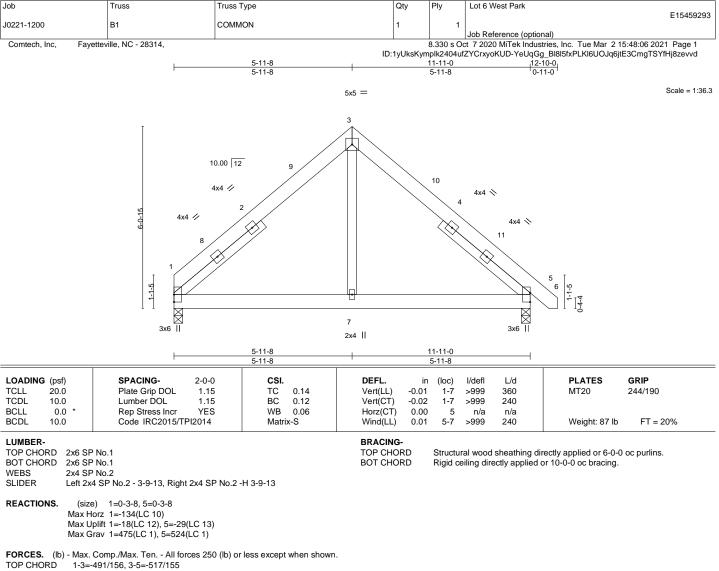
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Trus Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Annual A (h) (n) (h)

Max Grav All reactions 250 lb or less at joint(s) 1, 29, 30, 31, 33, 34, 35, 36, 37, 28, 27, 25, 24, 23, 22, 21, 19

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-114/284, 10-11=-114/284


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid of use only with MTek® connectors. This skew invCLOBED with REFERENCE FAGE MIF 4/3 FeV, 519/2020 BEFORE 052. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Braching indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

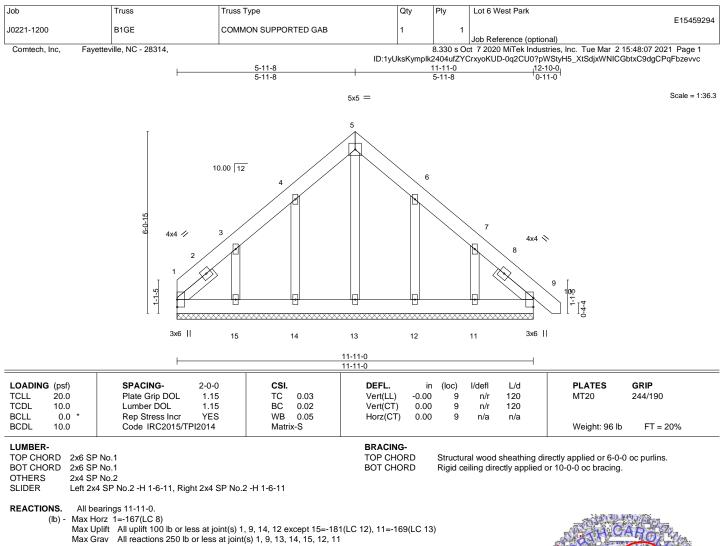
1-7=0/307, 5-7=0/307 WEBS 3-7=0/277

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

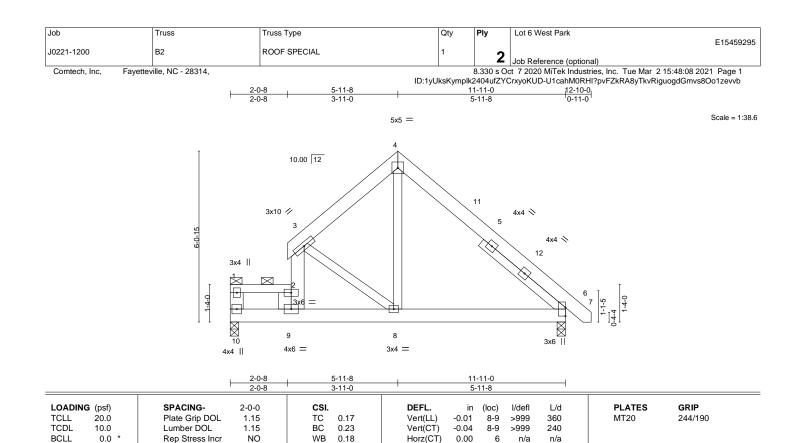
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 14, 12 except (it=lb) 15=181, 11=169.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 9.

March 3,2021

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.01

8-9

>999

240

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 1-2.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 184 lb

FT = 20%

REACTIONS.	(size)	10=0-3-8, 6=0-3-8
	Max Horz	10=-131(LC 8)
	Max Grav	10=859(LC 1), 6=555(LC 1)
FORCES. (lb)		np./Max. Ten All forces 250 (lb) or less except when shown.

1-10=-363/0, 1-2=-630/0, 3-4=-478/103, 4-6=-578/69 TOP CHORD BOT CHORD 9-10=0/631, 8-9=0/325, 6-8=0/334 WEBS 4-8=0/359, 2-9=-497/2, 2-3=-404/132

Code IRC2015/TPI2014

NOTES-

BCDL

WEBS

SLIDER

LUMBER-

TOP CHORD

BOT CHORD

10.0

2x6 SP No.1 *Except*

2x6 SP No 1 *Except* 4-8.3-8: 2x4 SP No.2

Right 2x4 SP No.2 -H 3-9-13

1-2: 2x4 SP No.1

2x6 SP No.1

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
- Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc, 2x4 1 row at 0-9-0 oc.
- Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc, 2x6 2 rows staggered at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Matrix-S

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 2-4-12, Interior(1) 2-4-12 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 5) Provide adequate drainage to prevent water ponding.6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified.
- Building designer must review loads to verify that they are correct for the intended use of this truss.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-260, 3-4=-60, 4-7=-60, 6-10=-20

March 3,2021

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459295
J0221-1200	B2	ROOF SPECIAL	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.330 s Oc	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:08 2021 Page 2
		10.4.4	والمعمد المعالية	2404.471/0	The relation of the second sec

ID:1yUksKymplk2404ufZYCrxyoKUD-U1cahM0RHI?pvFZkRA8yTkvRiguogdGmvs8Oo1zevvb

LOAD CASE(S) Standard 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf) Vert: 1-2=-250, 3-4=-50, 4-7=-50, 6-10=-20
 Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)
Vert: 1-2=-220, 3-4=-20, 4-7=-20, 6-10=-40 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-156, 3-4=27, 4-12=35, 6-12=27, 6-7=20, 6-10=-12 Horz: 3-4=-39, 4-12=47, 6-12=39, 6-7=32
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-170, 3-4=35, 4-11=27, 6-11=35, 6-7=58, 6-10=-12
Horz: 3-4=-47, 4-11=39, 6-11=47, 6-7=70 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-235, 3-4=-58, 4-6=-58, 6-7=-51, 6-10=-20
Horz: 3-4=38, 4-6=-38, 6-7=-31
 Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-235, 3-4=-58, 4-6=-58, 6-7=11, 6-10=-20 Horz: 3-4=38, 4-6=-38, 6-7=31
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-179, 3-4=-13, 4-6=11, 6-7=4, 6-10=-12
Horz: 3-4=1, 4-6=23, 6-7=16 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-191, 3-4=11, 4-6=-13, 6-7=2, 6-10=-12
Horz: 3-4=-23, 4-6=-1, 6-7=14
 Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-201, 3-4=-35, 4-6=-11, 6-7=-4, 6-10=-20 Horz: 3-4=15, 4-6=9, 6-7=16
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-213, 3-4=-11, 4-6=-35, 6-7=-28, 6-10=-20
Horz: 3-4=-9, 4-6=-15, 6-7=-8 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-179, 3-4=21, 4-6=9, 6-7=2, 6-10=-12 Horz: 3-4=-33, 4-6=21, 6-7=14
 Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-191, 3-4=9, 4-6=21, 6-7=14, 6-10=-12
Horz: 3-4=-21, 4-6=33, 6-7=26 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-179, 3-4=21, 4-6=9, 6-7=2, 6-10=-12
Horz: 3-4=-33, 4-6=21, 6-7=14 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-191, 3-4=9, 4-6=21, 6-7=14, 6-10=-12 Horz: 3-4=-21, 4-6=33, 6-7=26
 Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-201, 3-4=-1, 4-6=-13, 6-7=-6, 6-10=-20
Horz: 3-4=-19, 4-6=7, 6-7=14 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-213, 3-4=-13, 4-6=-1, 6-7=6, 6-10=-20
Horz: 3-4=-7, 4-6=19, 6-7=26 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
Uniform Loads (plf)
Vert: 1-2=-220, 3-4=-20, 4-7=-20, 6-10=-20 19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-236, 3-4=-61, 4-6=-43, 6-7=-38, 6-10=-20
Horz: 3-4=11, 4-6=7, 6-7=12
20) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-245, 3-4=-43, 4-6=-61, 6-7=-56, 6-10=-20 Horz: 3-4=-7, 4-6=-11, 6-7=-6
 21) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.6

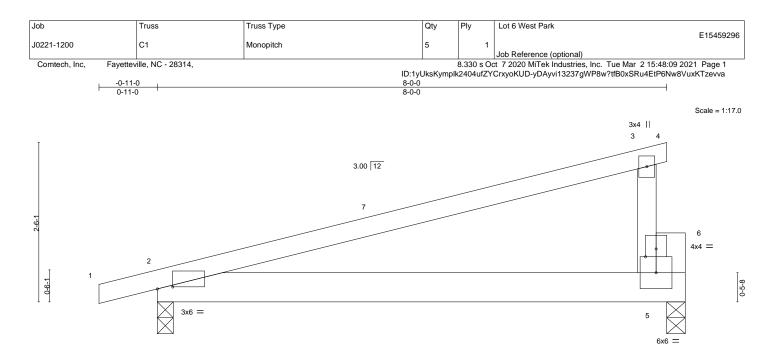
21) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
	_				E15459295
J0221-1200	B2	ROOF SPECIAL	1	2	
					Job Reference (optional)
Comtech, Inc, Fayettev	lle, NC - 28314,			8.330 s Oo	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:08 2021 Page 3

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:08 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-U1cahM0RHI?pvFZkRA8yTkvRiguogdGmvs8Oo1zevvb

LOAD CASE(S) Standard Uniform Loads (plf)


Vert: 1-2=-236, 3-4=-36, 4-6=-45, 6-7=-40, 6-10=-20 Horz: 3-4=-14, 4-6=5, 6-7=10

22) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

- Uniform Loads (plf)
 - Vert: 1-2=-245, 3-4=-45, 4-6=-36, 6-7=-31, 6-10=-20 Horz: 3-4=-5, 4-6=14, 6-7=19
- 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-2=-260, 3-4=-60, 4-7=-20, 6-10=-20
- 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-220, 3-4=-20, 4-7=-60, 6-10=-20
- 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-250, 3-4=-50, 4-7=-20, 6-10=-20
- 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-2=-220, 3-4=-20, 4-7=-50, 6-10=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

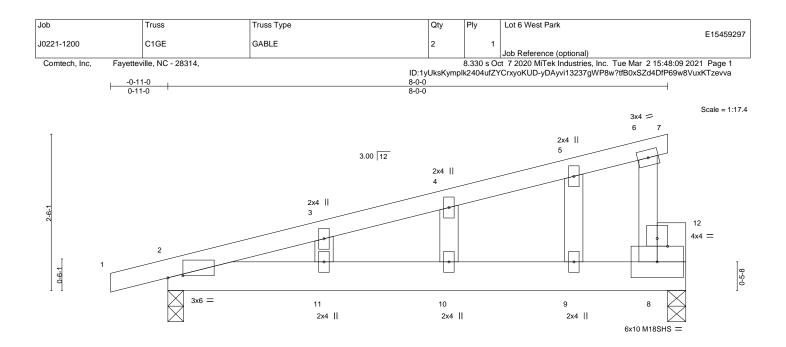
ADING (psf) SPACING- Plate Grip DOL 2-0-0 1.15 CSI. TC DEFL. in (loc) l/defl L/d PLATES GRIP ADING (psf) Plate Grip DOL 1.15 TC 0.84 Vert(LL) -0.05 2-5 >999 360 MT20 244/190 VDL 10.0 Lumber DOL 1.15 BC 0.24 Vert(CT) -0.10 2-5 >969 240 MT20 244/190 Vert(DT) -0.10 2-5 >969 240 MT20 244/190 Vert(DT) -0.10 2-5 >866 240 Weight: 37 lb FT = 20% MBER- Code IRC2015/TPI2014 Matrix-P Wind(LL) 0.10 2-5 >886 240 Weight: 37 lb FT = 20% MBER- COHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.				0-3-0					
ADING (psf) SPACING- Plate Grip DOL 1.15 CSI. TC DEFL. Vert(LL) in (loc) l/defl L/d L/d PLATES GRIP 0.1 0.0 Plate Grip DOL 1.15 TC 0.84 Vert(LL) -0.05 2-5 >999 360 MT20 244/190 0.1 0.0 Kep Stress Incr YES WB 0.00 5 n/a MVert(CT) -0.10 2-5 >969 240 MT20 244/190 0.1 0.0 Kep Stress Incr YES WB 0.00 Matrix-P Wind(LL) 0.10 2-5 >886 240 Weight: 37 lb FT = 20% MBER- C CHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.		I		8-3-8					
L 20.0 Plate Grip DOL 1.15 TC 0.84 Vert(LL) -0.05 2.5 >999 360 MT20 244/190 DL 10.0 Lumber DOL 1.15 BC 0.24 Vert(LL) -0.05 2.5 >999 360 MT20 244/190 DL 0.0 * Rep Stress Incr YES WB 0.00 Matrix-P Wind(LL) 0.10 2-5 >866 240 Weight: 37 lb FT = 20% HBER- Code IRC2015/TPI2014 Matrix-P Wind(LL) 0.10 2-5 >886 240 Weight: 37 lb FT = 20% HBER- CHORD 2x4 SP No.1 ERACING- TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. 3S 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	Plate Offsets (X,Y) [[2:0-2-14,0-0-6], [6:0-2-0,0-1-8]							
L 20.0 Plate Grip DOL 1.15 TC 0.84 Vert(LL) -0.05 2.5 >999 360 MT20 244/190 DL 10.0 Lumber DOL 1.15 BC 0.24 Vert(LL) -0.05 2.5 >999 360 MT20 244/190 DL 0.0 * Rep Stress Incr YES WB 0.00 Matrix-P Wind(LL) 0.10 2-5 >866 240 Weight: 37 lb FT = 20% HBER- Code IRC2015/TPI2014 Matrix-P Wind(LL) 0.10 2-5 >886 240 Weight: 37 lb FT = 20% HBER- CHORD 2x4 SP No.1 ERACING- TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. 3S 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES	GRIP
L 0.0 * Rep Stress Incr YES Code WB 0.00 Matrix-P Horz(CT) 0.00 5 n/a n/a Horz(CT) 0.10 2-5 >886 240 Weight: 37 lb FT = 20% HBER- P CHORD 2x4 SP No.1 Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. 3S 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	u - /		TC 0.84		()		360	MT20	244/190
DL 10.0 Code IRC2015/TPI2014 Matrix-P Wind(LL) 0.10 2-5 >886 240 Weight: 37 lb FT = 20% IBER- C CHORD 2x4 SP No.1 BRACING- TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. 3S 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing.	TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.10	2-5	>969	240		
BBER- BRACING- 7 CHORD 2x4 SP No.1 TOP CHORD 7 CHORD 2x6 SP No.1 Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. 3S 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) 5	n/a	n/a		
O CHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins, except end verticals. T CHORD 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing.	BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10) 2-5	>886	240	Weight: 37 lb	FT = 20%
CHORD 2x6 SP No.1 except end verticals. BS 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	LUMBER-			BRACING-					
3S 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	TOP CHORD 2x4 SP	No.1		TOP CHORD	Structu	ural wood	sheathing di	irectly applied or 5-3-4	l oc purlins,
	BOT CHORD 2x6 SP	No.1			except	t end verti	cals.		
IERS 2x6 SP No.1	WEBS 2x4 SP	No.2		BOT CHORD	Rigid o	ceiling dire	ectly applied	or 10-0-0 oc bracing.	
	OTHERS 2x6 SP	No.1							

8-3-8

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	 		<u>8-3-8</u> 8-3-8		
Plate Offsets (X,Y) [2:0-2-14,0-0-6], [12:0-2-0,0-1-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	Vert(LL) 0.09	n (loc) I/defl L/d 9 10-11 >999 240 8 10-11 >999 240 9 8 n/a n/a	PLATES GRIP MT20 244/190 M18SHS 244/190 Weight: 41 lb FT = 20%
	No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 8=0-3-8 Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8)

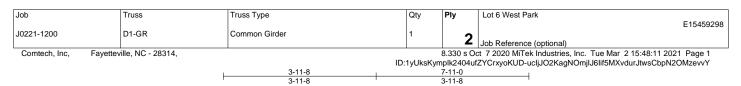
Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

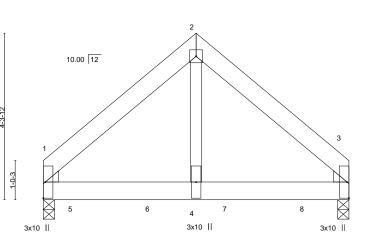
BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.


4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4x4 ||

Scale = 1:28.1

Plate Offsets (X,Y)	[1:0-0-4,0-0-5], [1:0-0-8,0-3-6], [3:0-0-4	3-11-8 3-11-8 0-0-51 [3:0-0-8 0-3-6]		7-11-0 3-11-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.38 BC 0.57 WB 0.39 Matrix-P	Vert(CT) Horz(CT)	in (loc) -0.02 3-4 -0.04 3-4 0.01 3 0.01 3-4	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 100 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No 2 WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8

Max Horz 1=91(LC 24) Max Uplift 1=-191(LC 8), 3=-180(LC 9) Max Grav 1=2919(LC 1), 3=2779(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2418/177, 2-3=-2418/177 1-4=-100/1678, 3-4=-100/1678 BOT CHORD 2-4=-154/3142 WEBS

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

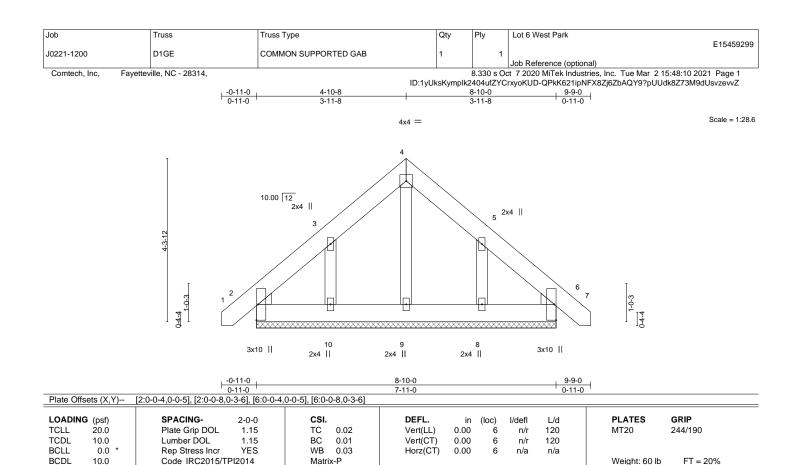
Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1-0-3

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.


Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
J0221-1200	D1-GR	Common Girder	1	2	E15459298
				2	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.330 s Oc	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:11 2021 Page 2
		ID:	1yUksKym	plk2404uf	ZYCrxyoKUD-ucljJO2KagNOmjlJ6lif5MXvdurJtwsCbpN2OMzevvY

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

OTHERS

WEDGE

TOP CHORD

BOT CHORD

REACTIONS.

2x6 SP No.1

2x6 SP No.1

2x4 SP No 2

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

(lb) - Max Horz 2=-118(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13)

All bearings 7-11-0.

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

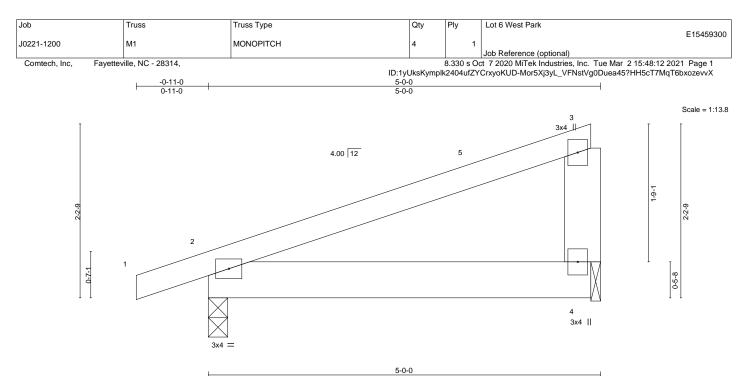
5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152.8=148.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 3,2021

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT IN EXPECTED EXECT PAGE MIT-F473 (eV. 319/2/20 BEFORE USE. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			1			5-0-0					1	
LOADING (ps	i)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	o l	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL 10.	0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL 0.	0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.	D	Code IRC2015/TF	912014	Matri	k-P	Wind(LL)	0.01	2-4	>999	240	Weight: 24 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

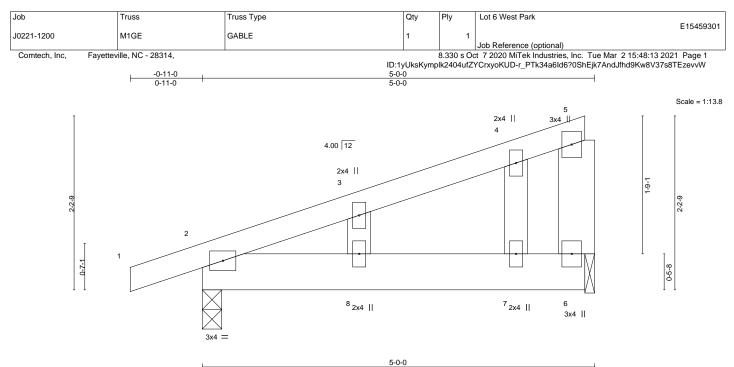
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

- capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		5-0-0	
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09 Vert(LL) 0.01 8 >999	240 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09 Vert(CT) -0.01 8 >999	240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02 Horz(CT) -0.00 6 n/a	n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8)

Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

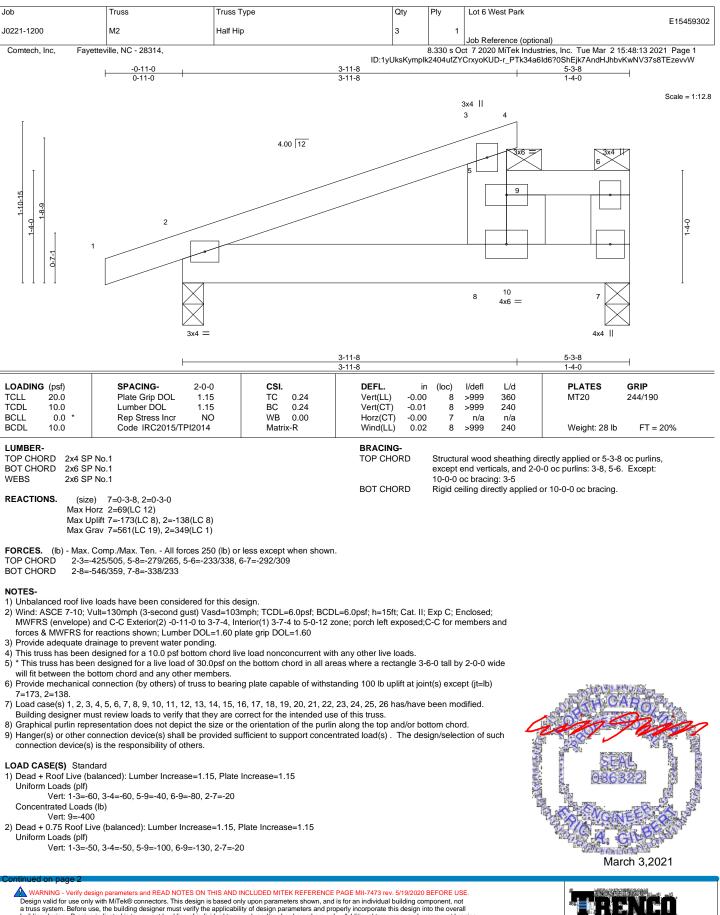
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147.6=115.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

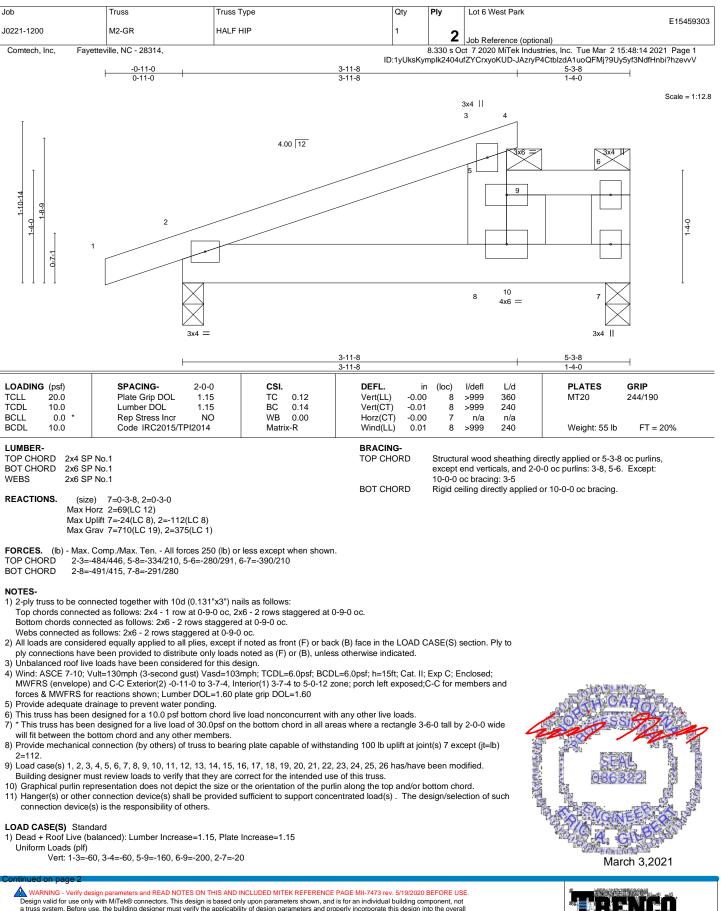
Design valid for use only with MTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses systems, see **AUSEPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

dof	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459302
J0221-1200	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayettevi	lle, NC - 28314,			8.330 s Oo	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:13 2021 Page 2

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:13 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-r_PTk34a6ld6?0ShEjk7AndHJhbvKwNV37s8TEzevvW

LOAD CASE(S) Standard Concentrated Loads (Ib)
Vert: 9=-350 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)
Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40 Concentrated Loads (lb)
Vert: 9=-300 4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
Concentrated Loads (lb) Vert: 9=548
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55 Concentrated Loads (lb)
Vert: 9=566 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51 Concentrated Loads (lb)
Vert: 9≕420 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9 Horz: 1-2=-19, 2-3=25, 3-4=-19, 3-5=51
Concentrated Loads (lb) Vert: 9=-420
 B) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-11, 2-8=10, 8-10=33, 7-10=10 Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
Concentrated Loads (lb) Vert: 9=154 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (lb)
Vert: 9=43 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-34
Concentrated Loads (lb) Vert: 9=-339
 Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
Concentrated Loads (lb) Vert: 9=43
 Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Concentrated Loads (lb) Vert: 9=43 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
10° 2000 \pm 0.0 mm to wind (0.0 micrial) furtialities function for 20° -1.00, Flate indease -1.00

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459302
J0221-1200	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			8.330 s Oo	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:13 2021 Page 3

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:13 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-r_PTk34a6ld6?0ShEjk7AndHJhbvKwNV37s8TEzevVW

	ID: TyüksKympikz404uiz YOIxyüKüD-r_P Tk34abiuo?05i
10	AD CASE(S) Standard
20	Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
16)	Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12
	Concentrated Loads (lb)
	Vert: 9=-234
17)	Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20
	Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
	Concentrated Loads (lb)
10)	Vert: 9=-234 Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
10)	Uniform Loads (plf)
	Vent: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-200
19)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
	Concentrated Loads (lb)
	Vert: 9=-454
20)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20
	Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
	Concentrated Loads (lb)
24)	Vert: 9=-375 Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
21)	Uniform Loads (plf)
	Vent: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20
	Hor: 1-2=19, 2-3=14, 3-4=19, 3-5=-9
	Concentrated Loads (lb)
	Vert: 9=-375
22)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20
	Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-375
23)	1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20
	Concentrated Loads (lb) Vert: 9=-400
24)	ver. 5=-400 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
27)	Uniform Loads (pf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-400
25)	3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350
26)	4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20
	Concentrated Loads (lb) Vert: 9=-350
	AGIC 2=-220

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the appliciability of design parameters and properly incorporate this design in tot the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see *ANSUTPI 1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information* available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
J0221-1200	M2-GR	HALF HIP	1		E15459303
				2	Job Reference (optional)

Comtech, Inc, Fayetteville, NC - 28314,

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-400

Uniform Loads (plf)

~

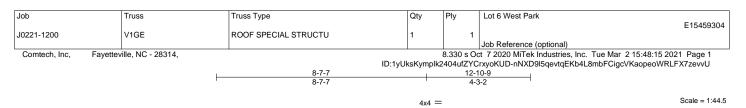
8.330 s Oct 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:14 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-JAzryP4CtblzdA1uoQFMj?9Uy5yf3NdfHnbi?hzevvV

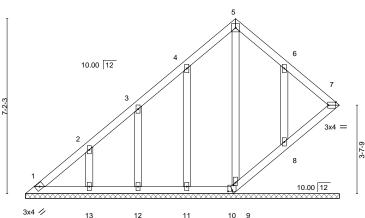
Concentrated Loads (lb)
Vert: 9=-350
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40
Concentrated Loads (lb) Vert: 9=-300
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
Concentrated Loads (lb)
Vert: 9=548
 Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
Concentrated Loads (lb)
Vert: 9=566
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9 Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
Concentrated Loads (lb)
Vert: 9=-420
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
Concentrated Loads (lb) Vert: 9=-420
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10
Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
Concentrated Loads (lb)
Vert: 9=154 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27
Concentrated Loads (lb)
Vert: 9=43 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
Concentrated Loads (lb)
Vert: 9=-339
 Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20
Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
Concentrated Loads (lb)
Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Concentrated Loads (lb)
Vert: 9=43
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
Concentrated Loads (lb)
Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15

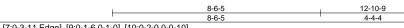
Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclaul truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 6 West Park
					E15459303
J0221-1200	M2-GR	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,			8.330 s Oc	t 7 2020 MiTek Industries, Inc. Tue Mar 2 15:48:14 2021 Page 3


ID:1yUksKymplk2404ufZYCrxyoKUD-JAzryP4CtblzdA1uoQFMj?9Uy5yf3NdfHnbi?hzevvV

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 9=-234 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20 Concentrated Loads (lb) Vert: 9=-200 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26 Concentrated Loads (lb) Vert: 9=-454 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9 Concentrated Loads (lb) Vert: 9=-375 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0 Concentrated Loads (lb) Vert: 9=-375 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20 Concentrated Loads (lb) Vert: 9=-400 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350 26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20 Concentrated Loads (lb) Vert: 9=-350


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

TCDL 10.0 L	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.06	Vert(LL)	n/a `	- n/a	999	MT20	244/190
	Lumber DOI 115	DO 0.00						
		BC 0.03	Vert(CT)	n/a	- n/a	999		
BCLL 0.0 * F	Rep Stress Incr YES	WB 0.08	Horz(CT)	0.00	7 n/a	n/a		
BCDL 10.0 0	Code IRC2015/TPI2014	Matrix-S					Weight: 75 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No 2

REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

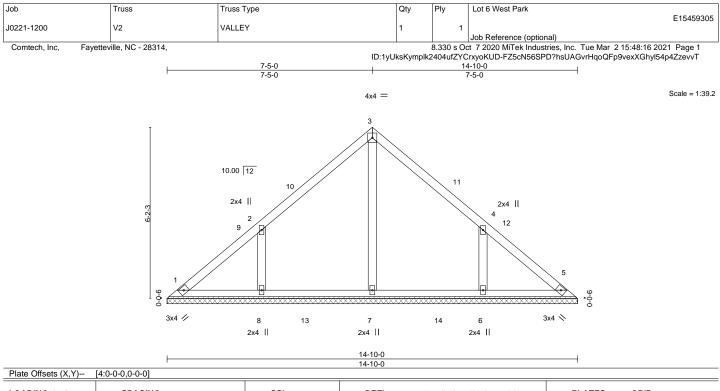
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 3,2021

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 64 lb	FT = 20%
LUMBER	2-	1				BRACING-					1	

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 14-10-0.

(lb) - Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

WEBS 2-8=-338/247, 4-6=-338/247

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

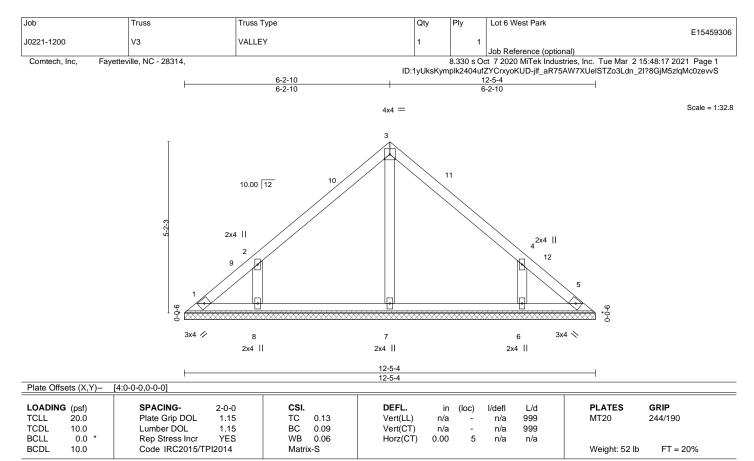
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb)

8=135, 6=135.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 12-5-4.

(lb) - Max Horz 1=-116(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

1) Unbalanced roof live loads have been considered for this design.

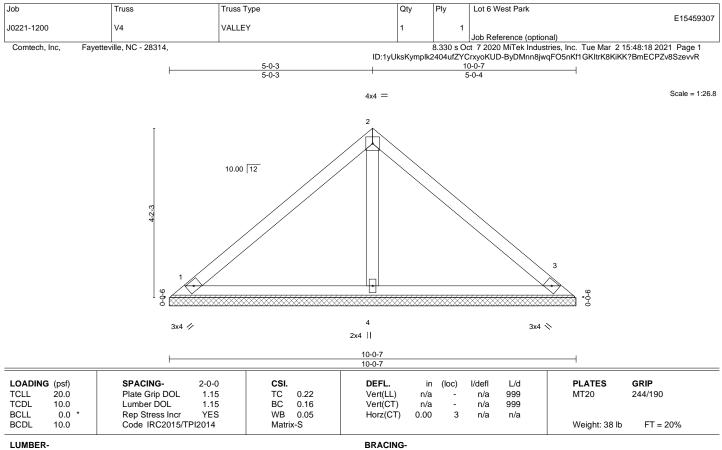
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the appliciability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=10-0-7, 3=10-0-7, 4=10-0-7

Max Horz 1=-92(LC 8)

Max Uplift 1=-22(LC 13), 3=-30(LC 13) Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

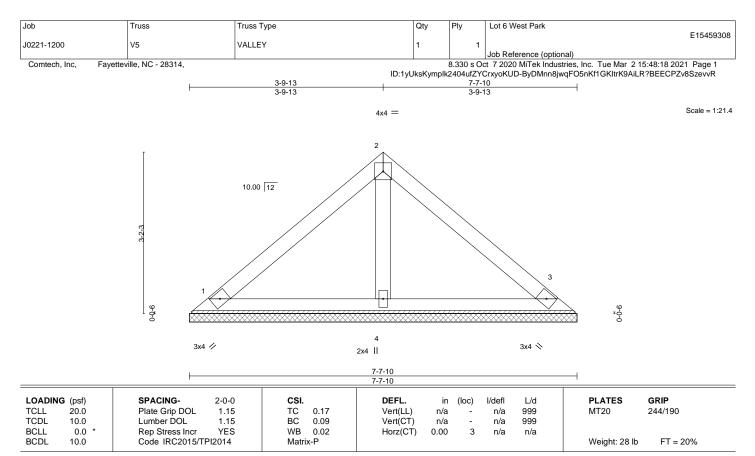
arip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10

Max Horz 1=68(LC 9)

Max Uplift 1=-24(LC 13), 3=-30(LC 13)

Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

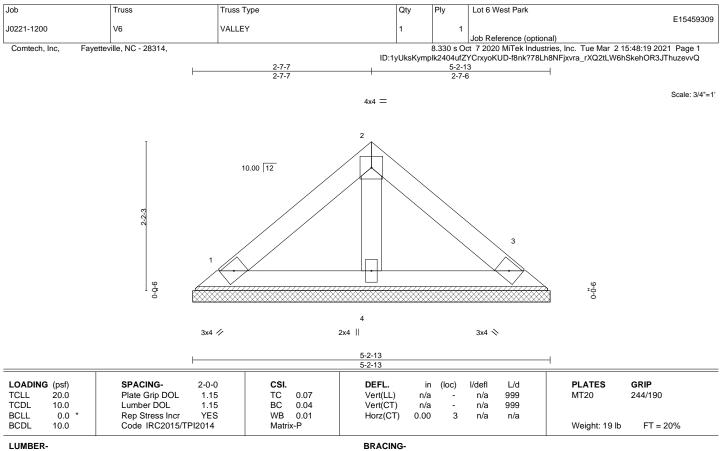
grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13

Max Horz 1=-44(LC 8)

Max Uplift 1=-15(LC 13), 3=-19(LC 13)

Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

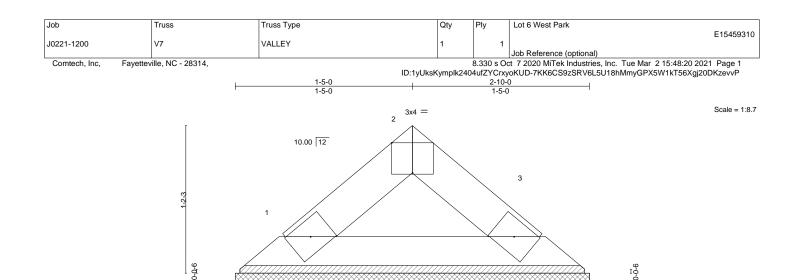
arip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 5-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

3x4 📎

Plate Offsets (X,Y)	[2:0-2-0,Edge]	1			2-10-0					1	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matr	x-P						Weight: 8 lb	FT = 20%

2-10-0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0

Max Horz 1=-20(LC 8) Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

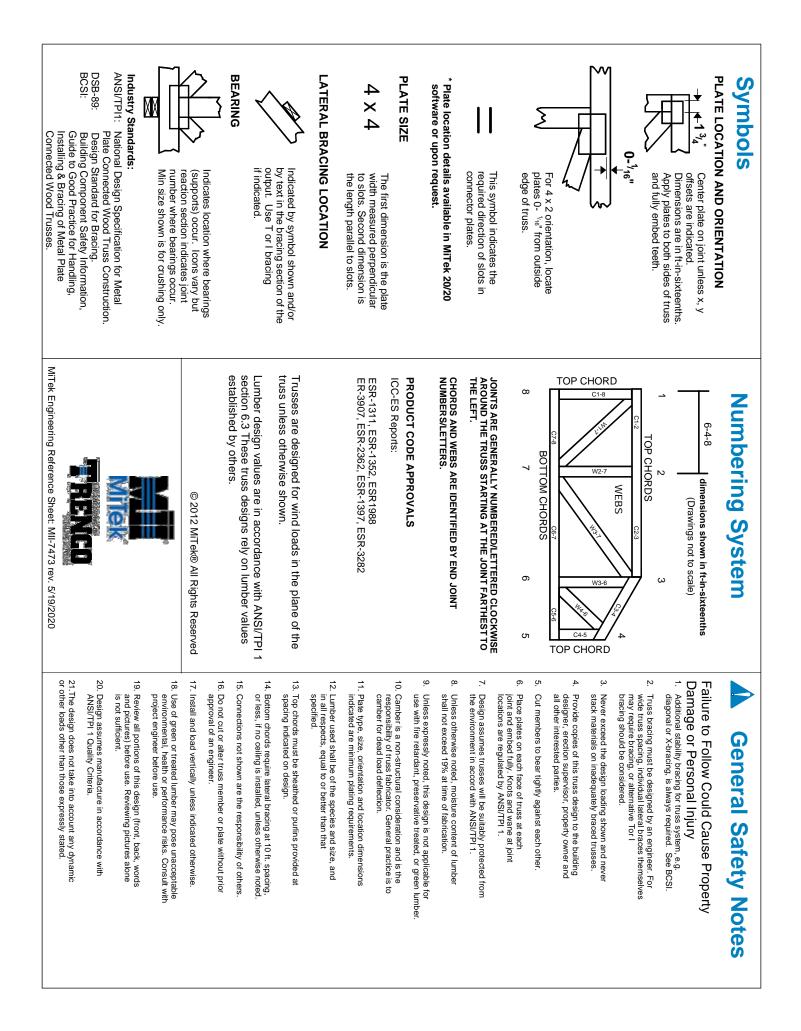
grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 2-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

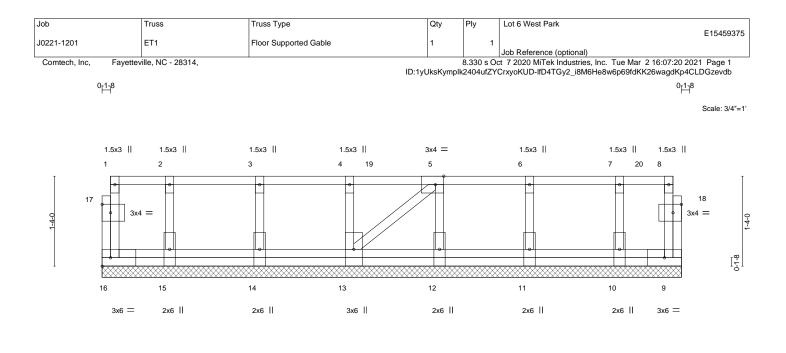
	NATIONAL COLOR	Lenny Norris	SALES REP.	10551-1501	108 #	ng ang ang ang com
CONTECT & FLOOR ROOF & FLOOR RUSSES & BEAMS RUSSES & BEAMS RUSSES & BEAMS RUSSES & BEAMS RUSSES & BEAMS RUSSES & BEAMS RUSSES & RUSSES RUSSES & RUSSES RUSSES & RUSSES RUSSES & RUSSES RUSSES & RUSSES RUSSE RUSSES RUSSE		ρανία Γαυαίγ	V8 NWAAD	Quote #	QUOTE #	AM ONLY Wall build build fing design free building design free building design and free building and the trues openant, we are building breed of with the
OF & FLOOR BEAM	f 1 m 2 m 2 m = second track 2 m = second track 1 m = second track	03/05/51	DATE REV.	Seal Date		as individual and the burk of the region of the region of the region of the burk of the bu
DDF & DDF & I	a a a a a a a a a a a a a a a a a a a	Floor	WOPER	Ηιςκοιγ "Α"		HACEME HACEME designed designed fileation or fileation or site for or the or or the or or or BCSI F age or or BCSI F
CONTINUES & BEAM ROOF & FLOOR RUSSES & BEAM RUSSES & RUSSES AND RUSSES	tip∑. SISSI waxaezaazi _indon a canan a si	Lot 6 West Park	ADDRESS	Lot 6 West Park		TRUSS F reveal and the special fidual dosi is reveal atrue for gene for gene for gene for gene
A Contraction of the second se		Harnett / Harnett	.03 / YTI3	Weaver Development Co. Inc.	BUILDER	THIS IS A THIS IS A Component of design at designer permanen permanent designer designer designer designer designer
		45.6°.	F3 F2 F4 F2 F4 F4 F4	7 9 7 9 7 9 8 0 7 1 1 1 1 9 0 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>26.6° 2010 12 0 2413 5F No.2 2 2 $-\left(1 \operatorname{Saller14^{+1}}\right)$</th> <th> ▲ Indicate Left End of Trus De NOT Erect Truss Backwords Left erect and a factor of the standard and a factor of the stan</th>	26.6° 2010 12 0 2413 5F No.2 2 2 $-\left(1 \operatorname{Saller14^{+1}}\right)$	 ▲ Indicate Left End of Trus De NOT Erect Truss Backwords Left erect and a factor of the standard and a factor of the stan

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0221-1201 Lot 6 West Park

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15459375 thru E15459382


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

March 3,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			010			
1			8-7-0			1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [17:0-1-8,0-1-8], [18:0-1	-8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.08 BC 0.00 WB 0.05	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-P	()		Weight: 54 lb	FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	, ,,,) oc purlins,

8-7-0

REACTIONS. All bearings 8-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

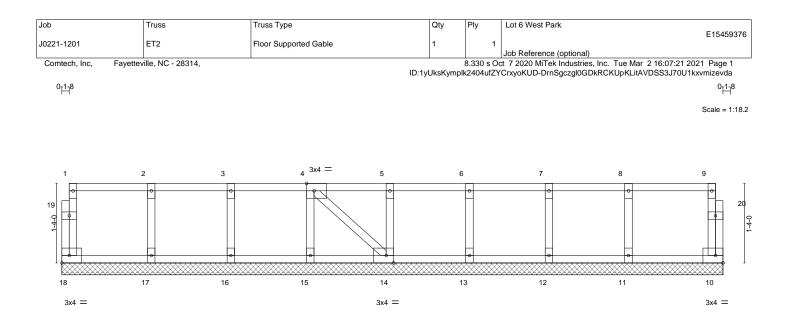
4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 3=-71 6=-71 19=-71 20=-77

March 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>11-1-0</u> 11-1-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [14:0-1-8,Edge]					
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.01 WB 0.04 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999 a - n/a 999	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1 (flat) P No.1 (flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	, ,,) oc purlins,

REACTIONS.

DNS. All bearings 11-1-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

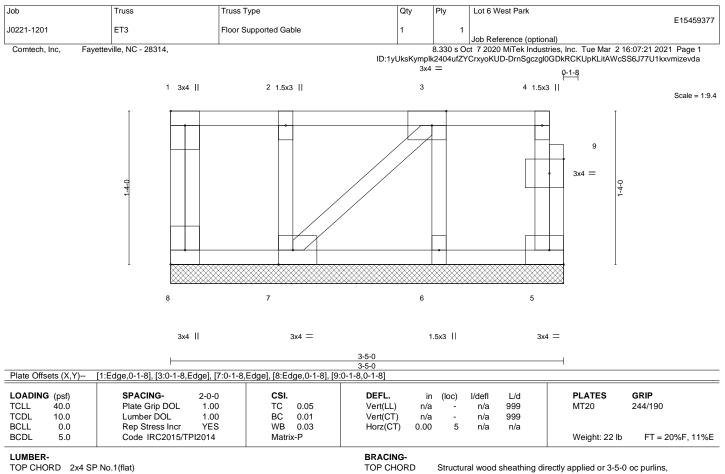
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

March 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss systems, see fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compon-Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x4 SP No.1(flat)

 BOT CHORD
 2x4 SP No.1(flat)

 WEBS
 2x4 SP No.3(flat)

 OTHERS
 2x4 SP No.3(flat)

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

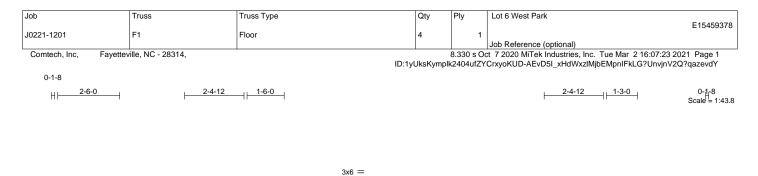
1) Plates checked for a plus or minus 1 degree rotation about its center.

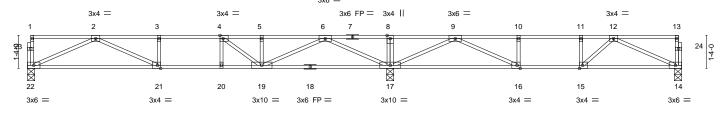
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>14-7-12</u> 14-7-12					26-5- 11-9-		
Plate Offsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1	-8,Edge], [21:0-1-8,Edge]					·	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.59 WB 0.53 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.17 21-22 -0.25 21-22 0.03 14	l/defl >999 >697 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x WEBS 2x REACTIONS.	4 SP No.1(flat) 4 SP No.1(flat) 4 SP No.3(flat) (size) 22=0-3-8, 17=0-3-8, 14=0-3-8 ax Grav 22=728(LC 10), 17=1669(LC 1), 14	I=562(LC 7)	BRACING- TOP CHOR BOT CHOR	D Rigid c	end verti eiling dire	cals.	rectly applied or 6-0-0 d or 10-0-0 oc bracing, 1 7.	•
TOP CHORD 2 BOT CHORD 2 WEBS 8	Max. Comp./Max. Ten All forces 250 (lb) of -3=-1987/0, 3-4=-1987/0, 4-5=-1740/0, 5-6- b-10=-1183/0, 10-11=-1183/0, 11-12=-1183/ 11-22=0/1314, 20-21=0/1987, 19-20=0/1987 5-16=0/1183, 14-15=0/954 -17=-284/0, 2-22=-1440/0, 2-21=0/745, 3-2 -19=-646/0, 9-17=-1465/0, 9-16=0/917, 10-	1740/0, 6-8=0/1282, 8-9 0 ', 17-19=-191/818, 16-17= 1=-260/0, 6-17=-1781/0, 6	=0/1282, -366/574, 5-19=0/1122,					
NOTES-								

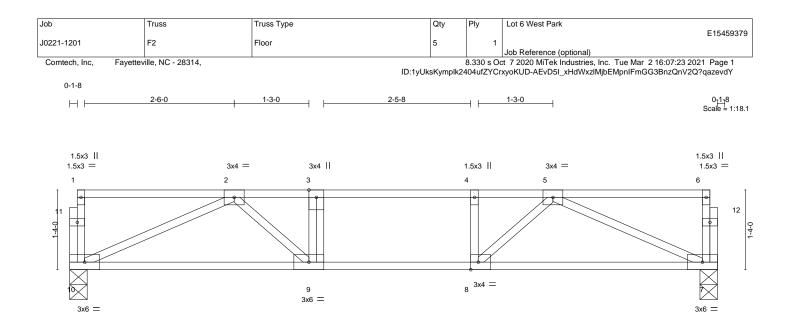
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			10-10-0 10-10-0			
Plate Offsets (X,Y)	[8:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.42 BC 0.35 WB 0.30 Matrix-S	DEFL. ir Vert(LL) -0.08 Vert(CT) -0.11 Horz(CT) 0.02	3 9-10 >999 480 9-10 >999 360	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	⁹ No.1(flat) ⁹ No.1(flat) ⁹ No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing din except end verticals. Rigid ceiling directly applied o	,) oc purlins,

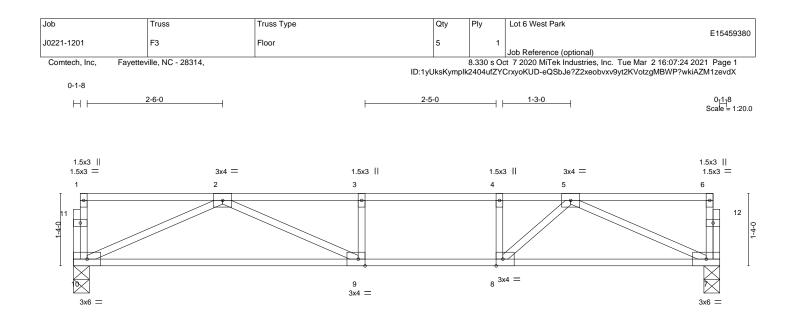
Max Grav 10=576(LC 1), 7=576(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1234/0, 3-4=-1234/0, 4-5=-1234/0

BOT CHORD 9-10=0/981, 8-9=0/1234, 7-8=0/982 2-10=-1073/0, 5-7=-1075/0, 5-8=0/485, 2-9=0/478, 3-9=-255/0, 4-8=-266/0 WEBS

NOTES-


 Unbalanced floor live loads have been considered for this design.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

March 3,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

H			<u>11-11-0</u> 11-11-0			
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]	1			T	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.68 BC 0.56 WB 0.34 Matrix-S	DEFL. i Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	9 9-10 >490 360	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat) e) 10=0-3-8.7=0-3-8		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d except end verticals. Rigid ceiling directly applied	2 11	

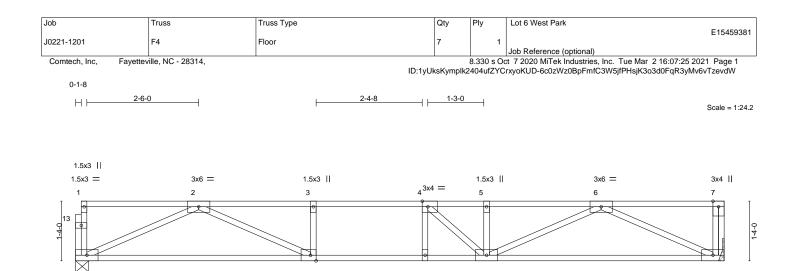
Max Grav 10=635(LC 1), 7=635(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1508/0, 3-4=-1508/0, 4-5=-1508/0

BOT CHORD 9-10=0/1112, 8-9=0/1508, 7-8=0/1121

WEBS 2-10=-1219/0, 2-9=0/558, 5-7=-1228/0, 5-8=0/655, 4-8=-353/0


NOTES-

 Unbalanced floor live loads have been considered for this design.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10

1.5x3 ||

9

3x6 =

			14-6-0			
1			14-6-0			I
Plate Offsets (X,Y)	[4:0-1-8,Edge], [11:0-1-8,Edge]					
LOADING (psf)	SPACING- 2-0-0	CSI.		n (loc) l/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.00 Lumber DOL 1.00	TC 0.61 BC 0.84	Vert(LL) -0.20 Vert(CT) -0.25) 9-10 >838 480 5 9-10 >684 360	MT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.46 Matrix-S	Horz(CT) 0.03	3 8 n/a n/a	Weight: 73 lb	FT = 20%F, 11%E
LUMBER-			BRACING-			
	P No.1(flat) P No.1(flat)		TOP CHORD	Structural wood sheathing dir except end verticals.	rectly applied or 6-0-0) oc purlins,
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	
REACTIONS. (size	e) 12=0-3-8, 8=Mechanical					

14-6-0

Max Grav 12=778(LC 1), 8=784(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2243/0, 3-4=-2243/0, 4-5=-2186/0, 5-6=-2186/0

11-12=0/1424, 10-11=0/2243, 9-10=0/2243, 8-9=0/1429 BOT CHORD

2-12=-1561/0, 2-11=0/958, 3-11=-303/0, 6-8=-1573/0, 6-9=0/836, 5-9=-271/41, WEBS 4-9=-428/186

NOTES-

12

3x6 =

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

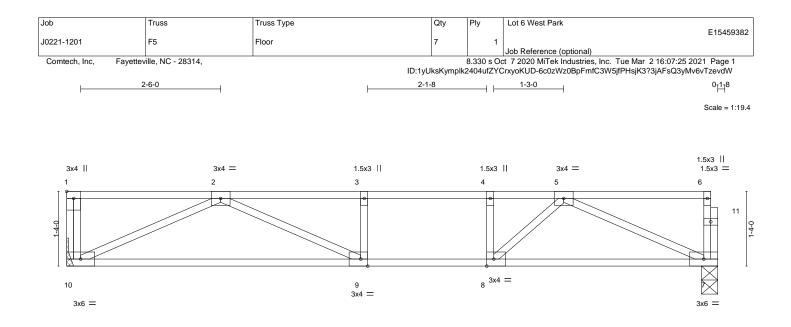
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

11

3x4 =

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.


March 3,2021

8

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,	Edgel	11-7-8 11-7-8			
Plate Olisets (A, f)	[1.Edge,0-1-6], [6.0-1-6,Edge], [9.0-1-6,	Edgej				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	i (loc) l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.60	Vert(LL) -0.16	9-10 >846 480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.51	Vert(CT) -0.25	9-10 >540 360		
BCLL 0.0	Rep Stress Incr YES	WB 0.33	Horz(CT) 0.02	7 n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 58 lb	FT = 20%F, 11%E
LUMBER-			BRACING-			
	P No.1(flat) P No.1(flat)		TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0	oc purlins,
	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied of	or 10-0-0 oc bracing.	
REACTIONS. (size	e) 10=Mechanical, 7=0-3-8					

Max Grav 10=626(LC 1), 7=619(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1441/0, 3-4=-1441/0, 4-5=-1441/0

 BOT CHORD
 9-10=0/1081, 8-9=0/1441, 7-8=0/1087

 WEBS
 2-10=-1190/0, 2-9=0/515, 5-7=-1190/0, 5-8=0/606, 4-8=-323/0

NOTES-

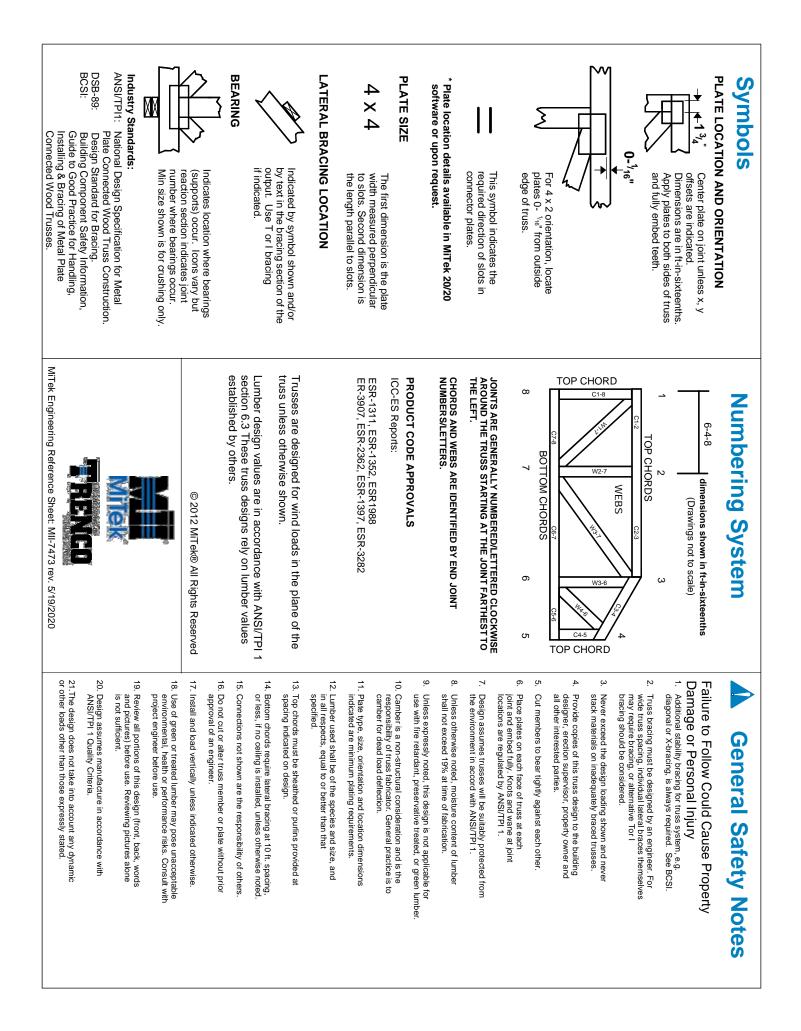
1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

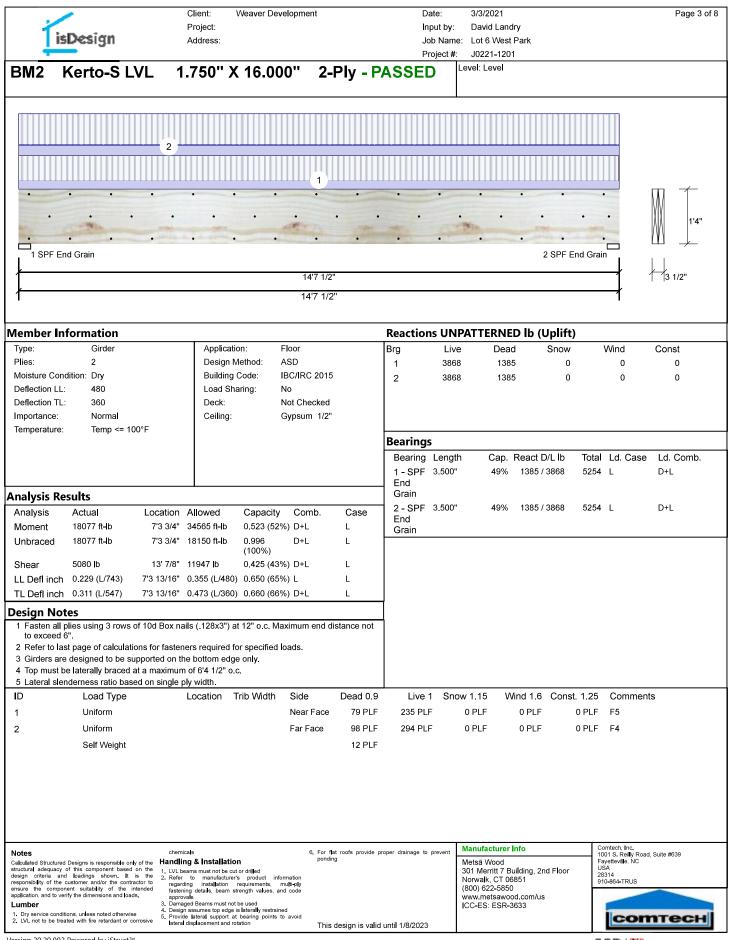
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

March 3,2021

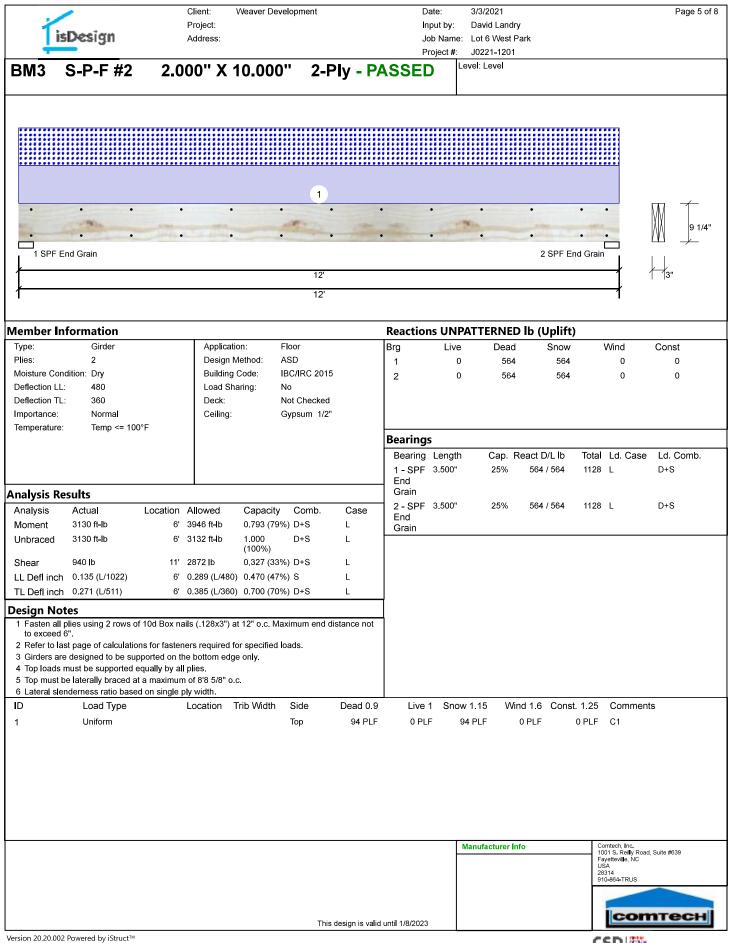
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses sand truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



isl	Design	Client: Weaver Developm Project: Address:	nent			2021 id Landry 6 West Park		Page 1 o
3M1 k	erto-S LVL	1.750" X 16.000"	2-Plv - P			21-1201 _evel		
		1.750 × 10.000	2-r iy - r	AUULD				
	2	1						
-1 SPF	- Non		4	-	1000	2 SPF		1'4"
¢		11'11"						3 1/2"
ŕ		11'11"				ł		
				D (1				
ember Inf	Girder	Application: Floor		Brg	Live	ERNED Ib (Uplind		Const
lies: loisture Cond leflection LL: leflection TL:	2 ition: Dry 480 360	Design Method: ASD Building Code: IBC/IF Load Sharing: No Deck: Not C	RC 2015 hecked	1 2	0	2869 207 2869 207	9 0	0 0
nportance: emperature:	Normal Temp <= 100°F	Ceiling: Gypsu	ım 1/2"					
				Bearings				
				Bearing I	-	Cap. React D/L lb 95% 2869 / 2079	Total Ld. Case 4948 L	E Ld. Comb. D+S
				2-SPF 3		95% 2869 / 2079	4948 L	D+S
nalysis Res		ation Allowed Capacity Co	mh Casa					
/loment		ation Allowed Capacity Co 1/2" 39750 ft-lb 0.344 (34%) D+	omb. Case S L					
Inbraced	13679 ft-lb 5'11	1/2" 13695 ft-lb 0.999 D+	S L					
Shear	3659 lb 1'6	(100%) 5/8" 13739 lb 0.266 (27%) D+	S L					
L Defl inch	0.069 (L/2000) 5'11	1/2" 0.287 (L/480) 0.240 (24%) S	L					
L Defl inch	0.164 (L/840) 5'11	1/2" 0.383 (L/360) 0.430 (43%) D+	S L	1				
to exceed 6' Refer to last?	lies using 3 rows of 10d E '. : page of calculations for :	Box nails (.128x3") at 12" o.c. Maximu fasteners required for specified loads.						
Top loads m Top must be Lateral slend	ust be supported equally laterally braced at a max derness ratio based on si	ximum of 8'8 1/4" o.c. ingle ply width.						
0	Load Type Uniform	Location Trib Width Sid		Live 1 0 PLF	Snow 1.15 0 PLF		nst. 1.25 Comme 0 PLF Wall	nts
	Uniform	Тор		0 PLF	349 PLF		0 PLF VVall 0 PLF A2	
	Self Weight	Top	12 PLF		2.0, E			
uctural adequacy of sign criteria and ponsibility of the cu sure the compone plication, and to verif	f this component based on the loadings shown. It is the istomer and/or the contractor to int suitability of the intended y the dimensions and loads.	chemicals Handling & Installation 1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals	6, For fla t roofs provide p ponding	voper drainage to p	Metsä 301 Me Norwal (800) 6	acturer Info Wood rritt 7 Building, 2nd Floc k, CT 06851 22-5850 etsawood.com/us	Contech, Inc. 1001 S, Reilly Ro Fayetteville, NC USA 28314 910-864-TRUS	ad, Suite #639
	ns, unless noted otherwise	 Damaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid 				5: ESR-3633	Icor	ntecu
	ed with fire retardant or corrosive	b. Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid	until 1/8/2023			CO	птесн

	/		Client:	Weaver Developm	nent	Date:	3/3/2021	Page 2 of 8
1	isDesign		Project: Address:			Input I Job N	ame: Lot 6 West Parl	k
BM1	Kerto-S		1 750"	X 16.000"	2 Phy	Projec	t #: J0221-1201	
	Nerto-3	LVL	1.750	V 10.000	2- F Iy	-FASSED		
							•	
•	• •	•	•	• •	•	• •	• • •	a T
•	•	•	• •	•	• •	• •	•	N 1'4"
	••	•	•	• •	•	• •	· · · · -	\neq \square \downarrow
1 SPF	-			441440			2 SPF	
				11'11" 11'11"				1/2"
Multi-Ply	/ Analysis							
	p l ies using 3	rows of		s (.128x3") at 12'	o.c Maxim	um end distance	e not to exceed 6	II.
Capacity Load		0.0	PLF					
Yield Limit pe Yield Limit pe		245 81.9	9 Ib.					
Yield Mode		IV						
Edge Distand Min. End Dis		1 1/ 3"	2"					
Load Combir Duration Fac	nation	1.00	<u>_</u>					
Notes Calculated Struct	tured Designs is responsibl acy of this component b				6. For flat roofs pro ponding	ovide proper drainage to preve	Metsä Wood	Comtech, Inc. 1001 S. Relly Road, Suite #639 Fayetteville, NC USA
design criteria responsibility of ensure the co	and loadings shown the customer and/or the mponent suitability of t	It is the contractor to he intended	regarding installatio fastening details, bea	e cut or drilled turer's product information n requirements, multi-ply m strength values, and code			301 Merritt 7 Buildin Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and t Lumber 1. Dry service c	to verify the dimensions and conditions, unless noted oth a treated with fire retardant	d loads. erwise	approvals 3. Damaged Beams mus 4. Design assumes top e	t not be used dge is laterally restrained rt at bearing points to avoid	This design is	s valid until 1/8/2023	www.metsawood.co ICC-ES: ESR-3633	comtech
Version 20.20.	002 Powered by iStru	Jct™						

CSD 🗱

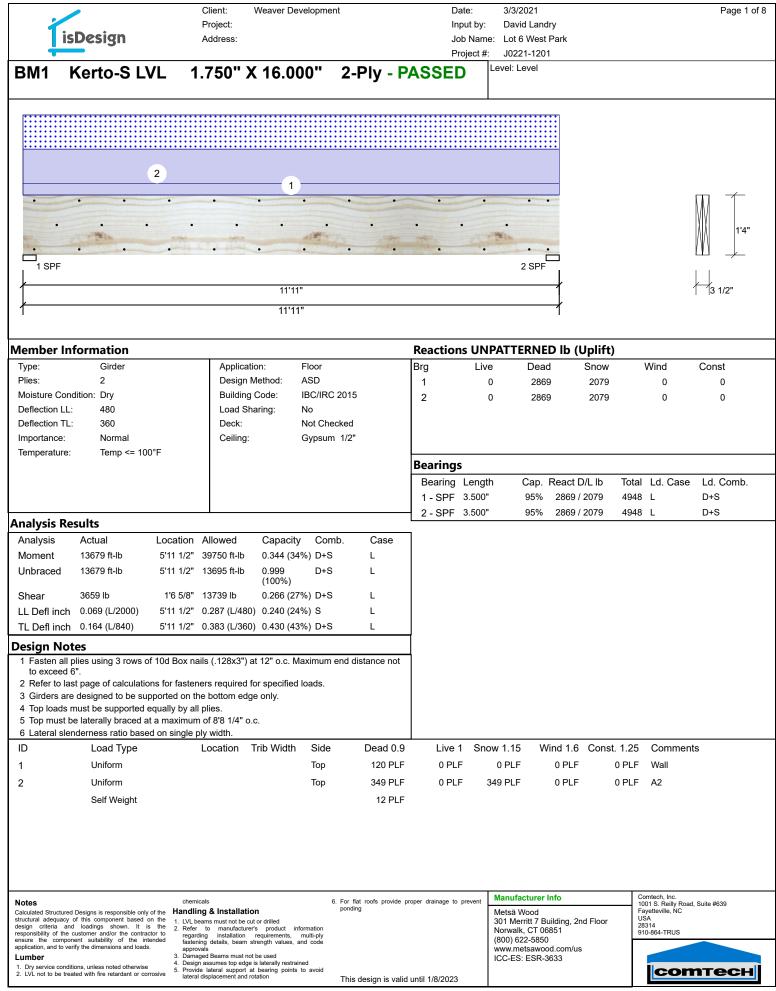

Version 20.20.002 Powered by iStruct™

CSD 🚟

	/		Client:	Weaver Developm	nent		Date:	3/3/2021		Page 4 of 8
1	isDesign		Project: Address:					David Landry : Lot 6 West Park		
BM2	Kerto-S		1.750"	X 16.000"	2-Plv	- PASSE	Project #:	J0221-1201 evel: Level		
					2,	INCOL				
	· · ·	•	•	• •	· · ·	•	•	• •	· · ·]	$\Pi \neq$
	•				•			•		۲ ۲ ۲ 1'4"
.		•				•	•		🛓	\overline{V}
	F End Grain								2 SPF End Grain	
					14'7 1/2"				{	3 1/2"
1				1	14'7 1/2"				1	
Multi-Pl	y Analysis									
		rows of 1(Dd Box nails	(.128x3") at 12"	' o.c Maxim	um end dist	ance nc	ot to exceed 6"		
Capacity Load		79.8 % 196.0								
Yield Limit p		245.6	PLF							
Yield Limit p Yield Mode	er Fastener	81.9 lt IV).							
Edge Distar		1 1/2"								
Min. End Di Load Combi		3" D+L								
Duration Fa		1.00								
Notes Calculated Stru structural adeo	ctured Designs is responsib uacy of this component b	le only of the Ha	chemicals ndling & Installa		6. For flat roofs pro ponding	ovide proper drainage t	to prevent	Manufacturer Info Metsä Wood	2nd Elect USA	eily Road, Suite #639
design criteria responsibility o ensure the c	i and loadings shown. f the customer and/or the omponent suitability of t	t is the 2 contractor to he intended	regarding installation fastening details, bean	cut or drilled urer's product information requirements, multi-ply n strength values, and code				301 Merritt 7 Building, Norwalk, CT 06851 (800) 622-5850	28314 910-864-T	RUS
Lumber	to verify the dimensions and conditions, unless noted oth be treated with fire retardant	a loads 3. 4. erwise 5.	approvals Damaged Beams must Design assumes top ed	not be used ge is laterally restrained t at bearing points to avoid	This design is	s valid until 1/8/202		www.metsawood.com/ ICC-ES: ESR-3633		оттесн
L					o dobigit la		-		_	

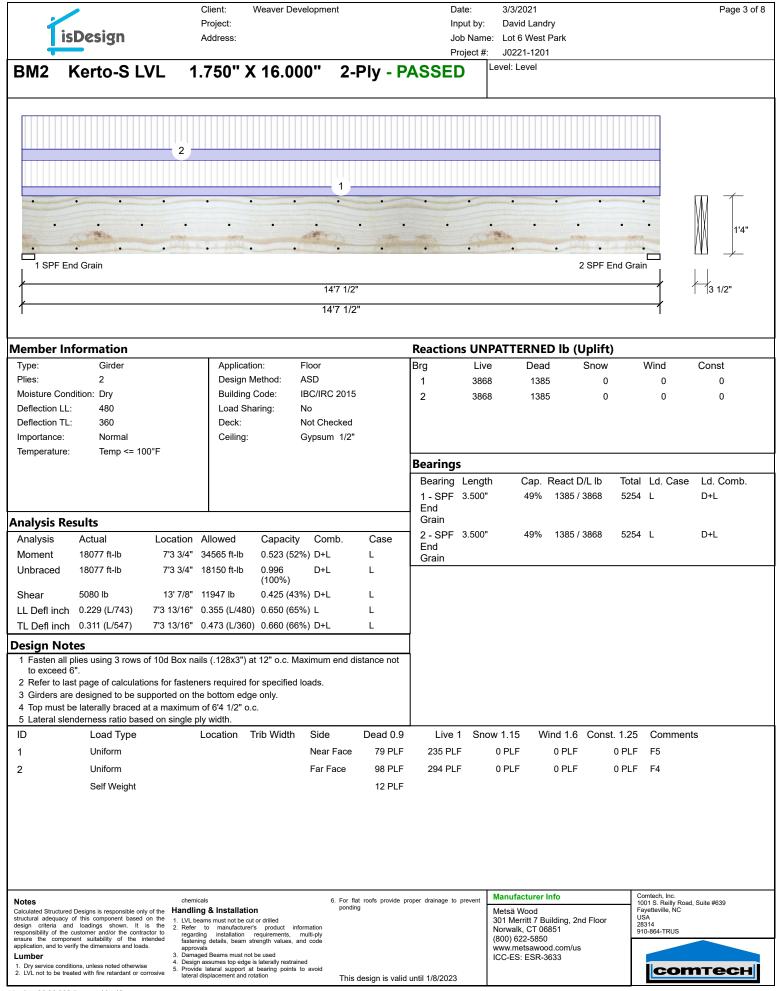
CSD 🚟

Version 20.20.002 Powered by iStruct™



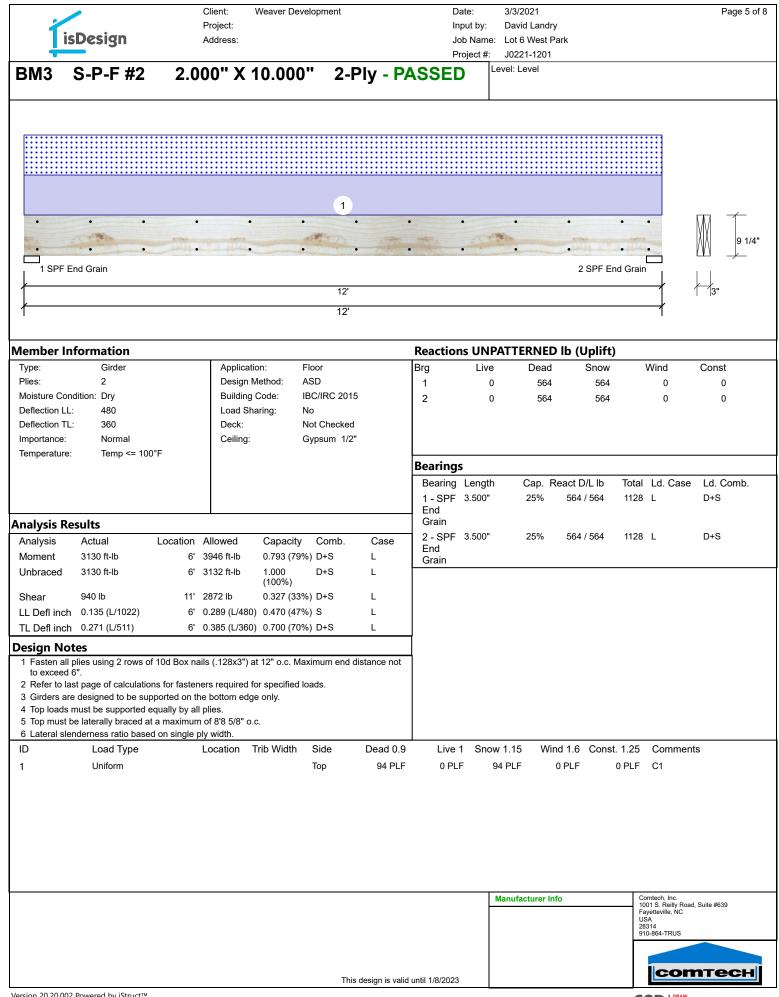
CSD 🚟

_	/	Client	: Wea	aver Developn	nent		Date:	3/3/2021		Page 6 of 8
1	isDesign	Projec					Input by:	David Landry		
	Isbesign	Addre	SS:				Job Name Project #:	: Lot 6 West Park J0221-1201		
BM3	S-P-F #2	2.000"	X 10	000"	2_Dhy	- PASSE		evel: Level		
DIVIS	3-F-F #Z	2.000		.000	Z- F Iy	FASSL				
•	• •	•	•	•	•	•	•	• •	••	<u>۲</u> M 3
										<u>↓</u> ↓ 9 1/4"
	• •	•	•	•	•	•	•	• •	· · ·	
	F End Grain								2 SPF End Grain	Λ
					12'					3"
<i> </i>					12'					
•					12					
	y Analysis									
		us of 10d Dour	-:l- (1)	D		المعرب مستعاد		t to succeed C"		
Fasten an Capacity	plies using 2 rov	0.0 %		3x3) at 12	o.c Maxir	num ena ais	tance no	t to exceed 6		
Load		0.0 PLF								
Yield Limit p Yield Limit p		157.4 PLF 78.7 lb.								
Yield Mode	er i asterier	IV								
Edge Distan		1 1/2"								
Min. End Dis Load Combi		3"								
Duration Fac		1.00								
							_			
							Ľ	Manufacturer Info	Comtech 1001 S. F	Inc. Rei∎y Road, Suite #639 Ile, NC
									USA	
									28314 910-864-	TRUS
									Īc	оттесн
					This design	is valid until 1/8/20	023		2	

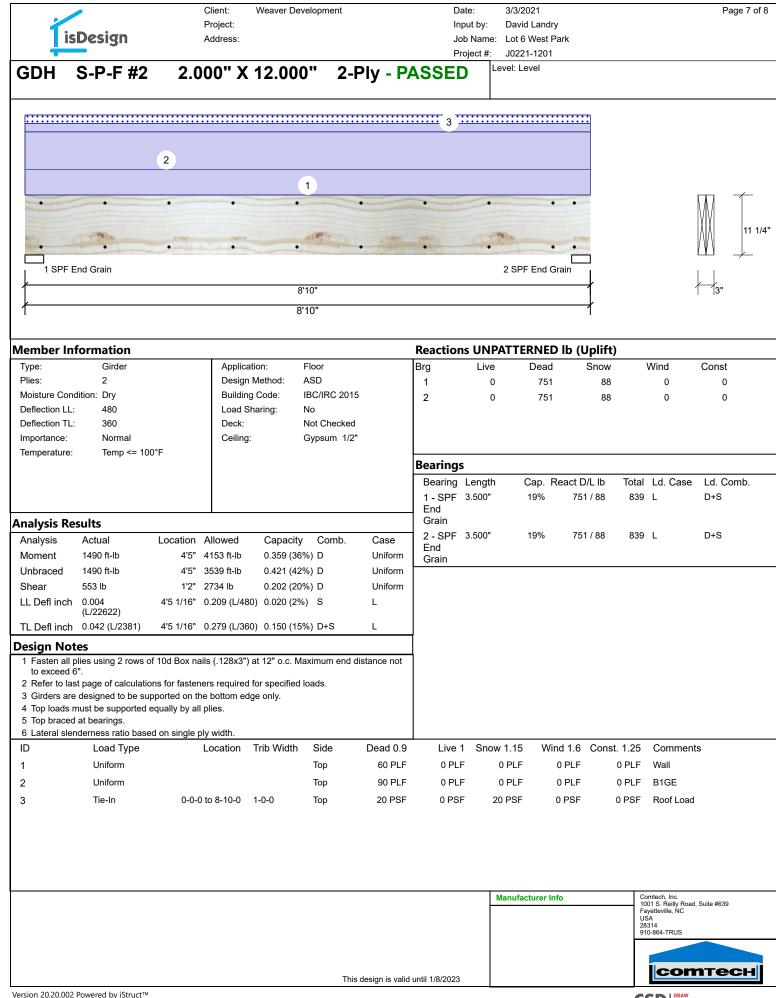

is	Design	P	lient: We roject: ddress:	aver Developm	lent	In	put by: Da	3/2021 ivid Landry t 6 West Park			Page 7
						Pr	roject #: J0	221-1201			
GDH	S-P-F #2	2.00	0" X 12	2.000"	2-Ply - P	ASSE	C Level:	Level			
						3					
		2		1					-		
•	•	•	•	•		•	-	• •			MÍ
	- The			at	27	-		-			11
• 	• Ind Grain		•	•	·	11 ·	• 2 S	PF End Grain	-		
,				8'10"					ł		
				8'10''					1		
ember Int	formation					_	s UNPAT	FERNED Ib (-		
ype:	Girder		Application:	Floor		Brg	Live	Dead	Snow	Wind	Const
lies: loisture Conc	2 dition: Do		Design Meth Building Cod		RC 2015	1	0	751	88	0	0
eflection LL:	-		Load Sharin		0 2015	2	0	751	88	0	0
eflection TL:			Deck:	-	hecked						
nportance:	Normal		Ceiling:		ım 1/2"						
emperature:	Temp <= 100°	F	-								
						Bearings	5				
						Bearing	Length	Cap. React I)/Llb To	tal Ld. Case	Ld. Comb.
						1 - SPF	3.500"	19% 75	1/88 8	39 L	D+S
	<u> </u>					End					
alysis Re						Grain 2 - SPF	3 500"	19% 75	1/88 8	39 L	D+S
nalysis		Location A			omb. Case	End	0.000	1070 70	1,00 0	00 L	0.0
loment	1490 ft -l b			.359 (36%) D	Uniform	Grain					
nbraced	1490 ft -l b			.421 (42%) D	Uniform						
hear	553 lb	1'2" 2		.202 (20%) D	Uniform						
L Defl inch	0.004 (L/22622)	4'5 1/16" 0.	.209 (L/480) 0.	.020 (2%) S	L						
L Defl inch	0.042 (L/2381)	4'5 1/16" 0.	.279 (L/360) 0.	.150 (15%) D+	S L						
						-					
sign Not	es blies using 2 rows of	10d Poy poils	(129.v2") at 12	" o o Movimu	m and distance not	4					
to exceed 6			(.12033) at 12		Il ella distance not						
	t page of calculation										
	designed to be supp nust be supported ed		•	ıly.							
•	at bearings.	luany by an pi	163.								
Lateral slen	nderness ratio based	on single ply	width.								
)	Load Type	Lo	ocation Trib	Width Sid	e Dead 0.9	Live '	1 Snow 1.1	5 Wind 1.6	Const. 1.2	5 Commen	ts
	Uniform			Тор	60 PLF	0 PLF	= 0 PL	.F 0 PLF	0 PL	F Wall	
	Uniform			Тор	90 PLF	0 PLF	= 0 PL	.F 0 PLF	0 PL	F B1GE	
	Tie-In	0-0-0 to	8-10-0 1-0-0	О Тор	20 PSF	0 PSI	= 20 PS	F 0 PSF	0 PS	F Roof Load	
				1							
							Manu	facturer Info		Comtech, Inc. 1001 S. Rei∎y Road	0.4
										Fayetteville, NC	a, Suite #639
										USA 28314 910-864-TRUS	
										5071-004-1K08	
					This design is va l i	d until 1/8/2022				con	птесн

/		Client: Project:	Weaver Developme	nt		Date: Input by:	3/3/2021 David Landry	Page 8 of 8
	sDesign	Address:					Lot 6 West Park J0221-1201	
GDH	S-P-F #2	2.000" X	12.000"	2-Ply -	PASSE		evel: Level	
•	•	• •	•	•	•	•	••	
							11/2"	11 1/4"
	•	• •	•	•	•	•	· : : : : : : : : : : : : : : : : : : :	
1 SPF	End Grain		014.01				2 SPF End Grain	
			8'10" 8'10"					1 13"
•			0.10				•	
Multi-Ply /								
Fasten a ll p Capacity	lies using 2 row	vs of 10d Box nails (0.0 %	(.128x3") at 12"	o.c Maxim	um end dis	tance no	t to exceed 6"	
Load Yield Limit per	Foot	0.0 PLF 157.4 PLF						
Yield Limit per Yield Mode		78.7 lb. IV						
Edge Distance		1 1/2"						
Min. End Distan		3"						
Duration Facto		1.00						
						Г	Manufacturer Info	Comtech, Inc.
						F		Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314
								28314 910-864-TRUS
								loomte eu l
				This design is	valid until 1/8/20	23		соттесн

Version 20.20.002 Powered by iStruct™


	Client: Weaver Developme	ent Date:	3/3/2021	Page 2 of 8
	Project:	Input by		_
isDesign	Address:	Job Nan	ne: Lot 6 West Park	
		Project #	#: J0221-1201	
BM1 Kerto-S LVL	1.750" X 16.000"	2-Ply - PASSED	Level: Level	
		,		
	• • •	• • •		NA A
			• 1/2"	1'4"
			$\overline{\mathbf{v}}$	MA 14
• • •	• • •	• • •		
1 SPF			2 SPF //	
ļ	11'11"		/	3 1/2"
				5 1/2
1	11'11"		1	
Multi-Ply Analysis				
Fasten all plies using 3 rows of 1		o.c Maximum end distance r	not to exceed 6"	
Capacity 0.0 % Load 0.0 P				
	2LF 6 PLF			
Yield Limit per Fastener 81.9				
Yield Mode IV				
Edge Distance 1 1/2				
Min. End Distance 3"				
Load Combination Duration Factor 1.00				
			Manufactures late	Comtach Inc
Notes	chemicals	6. For flat roofs provide proper drainage to prevent ponding	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
	LVL beams must not be cut or drilled	. •	Metsä Wood 301 Merritt 7 Building, 2nd Floor	USA 28314
design criteria and loadings shown. It is the 2 responsibility of the customer and/or the contractor to ensure the component suitability of the intended	Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code		Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
application, and to verify the dimensions and loads.	approvals		www.metsawood.com/us	
1. Dry service conditions, unless noted otherwise 4.	Damaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid		ICC-ES: ESR-3633	
2. LVL not to be treated with fire retardant or corrosive	. Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 1/8/2023		сотесн
Version 20.20.002 Powered by iStruct™		-		

Version 20.20.002 Powered by iStruct™


	-		Client:	Weaver Developm	nent	Da	ate:	3/3/2021	Page 4 of 8
			Project:			Inp	out by:	David Landry	
	isDesign		Address:					Lot 6 West Park	
-							oject #:	J0221-1201	
BM2	Kerto-S	LVL	1.750"	X 16.000"	2-Ply -	PASSED) [evel: Level	
•	• •	•	٠	• •	• •	•	•	• • •	•
	• •	•	• •	• •	•	• •	•		• • • • • • • • • • • • • • • • • • • •
									$\overline{\mathbf{v}}$ \mathbb{W} \mathbb{T}^{4}
	• •	•	٠	• •	• •	•	•	• • •	
1 SPF	F End Grain							2 SPF End	Grain ()
					14'7 1/2"				3 1/2"
/					14'7 1/2"				
I					147 1/2				I
Multi-Pl	y Analysis								
Fasten all	I plies using 3	rows of	10d Box nails	s (.128x3") at 12"	o.c Maxim	um end distar	nce no	t to exceed 6"	
Capacity	1 5		8 %						
Load			0.0 PLF						
Yield Limit p Yield Limit p			5.6 PLF 9 lb.						
Yield Mode	ler Fasterier	IV	S ID.						
Edge Distan		1 1/	/2"						
Min. End Dis		3"							
Load Combi Duration Fac		D+L 1.00							
Notes			chemicals	ation	For flat roofs proportion	vide proper drainage to p	prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural adequ	ctured Designs is responsib uacy of this component b	based on the	1. LVL beams must not b	e cut or drilled	,			Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA 28314
responsibility of	a and loadings shown. f the customer and/or the omponent suitability of	It is the contractor to	 Refer to manufact regarding installatio 	turer's product information n requirements, multi-ply				Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and	I to verify the dimensions an	d loads.	fastening details, bea approvals 3. Damaged Beams mus	m strength values, and code			,	www.metsawood.com/us	
	conditions, unless noted oth	nerwise	 Design assumes top e Provide lateral support 	dge is laterally restrained rt at bearing points to avoid				ICC-ES: ESR-3633	соттесн
2. LVL not to b	be treated with fire retardan	n or corrosive	lateral displacement a	nd rotation		valid until 1/8/2023			Connech
Version 20.20	002 Powered by iStr	uctTM							

/ersion 20.20.002 Powered by iStruct

		Client	: Weave	er Developme	ent		Date:	3/3/2021		F	Page 6 of 8
· 7	- De siene	Projec	ot:	-			Input by:	David Landry			C
	isDesign	Addre	SS:					Lot 6 West Park J0221-1201			
BM3	S-P-F #2	2 2.000"	Y 10 (2 DIv	DACC	Project #:	JU221-1201 evel: Level			
DIVIJ	З-Г- Г #/	2 2.000	× 10.0	100	Z-FIY	- PASC					
•	•	• •	•	•	•	•	•	• •	• •	₩ 1 2	
										5	9 1/4"
	•	• •	•	•	•	•	٠	• •	••-	<u></u> ₩	
1 SPF	F End Grain								2 SPF End Grain		
1					12'					1 3"	
ſ					12'						
Multi-Ply	/ Analysis										
	plies using 2 r	ows of 10d Box n	ails (.128x	3") at 12"	o.c Maxir	mum end o	distance not	to exceed 6"			
Capacity Load		0.0 % 0.0 PLF									
rield Limit pe	∍r Foot	157.4 PLF									
rield Limit pe	er Fastener	78.7 lb.									
∕ield Mode Edge Distanc	ce	IV 1 1/2"									
Min. End Dist		3"									
_oad Combin											
Duration Fact	tor	1.00									

Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS
	соттесн

	Client: Project:	Weaver Developmen	t	Date: Input by:	3/3/2021 David Landry	Page 8 of 8
isDesign	Address:			Job Name:	Lot 6 West Park	
GDH S-P-F #2	2 000" X	12.000"	2-Ply - PASSI	Project #:	J0221-1201 evel: Level	
	2.000 X	12.000	2-1 ly - 1 A001			
• •	• •	•	• •	•	» ۱	\mathbf{M} 1
					11/2"	11 1/4"
•••	• •	•	• •	•		
1 SPF End Grain		014.01			2 SPF End Grain	
		8'10" 8'10"				3"
		010			,	
Multi-Ply Analysis						
Fasten all plies using 2 row		(.128x3") at 12" o	.c Maximum end dis	stance no	t to exceed 6"	
Capacity Load	0.0 % 0.0 PLF					
Yield Limit per Foot Yield Limit per Fastener	157.4 PLF 78.7 lb.					
Yield Mode Edge Distance	IV 1 1/2"					
Min. End Distance	3"					
Load Combination Duration Factor	1.00					
				_		
					Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
						USA 28314 910-864-TRUS
			This design is valid until 1/8/2	023		соттесн