

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21031265 WAG-1

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by The Building Center.

Pages or sheets covered by this seal: I45480301 thru I45480322

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

April 5,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

sheetrock be applied directly to the bottom chord.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Summing. minin April 5,2021

818 Soundside Road Edenton, NC 27932

-				41-8-8				
Plate Offsets	(X,Y)	[9:0-2-8,0-3-0], [25:0-2-8,0-3-0], [32:Ec	lge,0-3-8]					
LOADING (p TCLL 20 TCDL 10 BCLL 0 BCDL 10	osf) 0.0 0.0 0.0 * 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.11 BC 0.09 WB 0.10 Matrix-S	DEFL. ir Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) 0.01	(loc) 1 1 33	l/defl l n/r 1 n/r n/a r	/d PLATES 20 MT20 90 1/a Weight: 3	GRIP 244/190 76 lb FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	 2x4 SP 2x4 SP 2x4 SP 2x4 SP 	No.2 No.2 No.3 No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structu except Rigid c 1 Row	ral wood she end verticals eiling directly at midpt	athing directly applied or 6 applied or 10-0-0 oc brac 17-49, 16-50, 15- 20-46	6-0-0 oc purlins, ing. 51, 14-52, 18-48, 19-47,

REACTIONS. All bearings 41-8-8.

(lb) - Max Horz 2=160(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 47, 46, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 2

Max Grav All reactions 250 lb or less at joint(s) 33, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 48, 47, 46, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 15-16=-98/282, 16-17=-101/308, 17-18=-101/308, 18-19=-98/282

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-4-0, Exterior(2) 2-4-0 to 18-0-0, Corner(3) 18-0-0 to 24-0-0, Exterior(2) 24-0-0 to 38-4-0, Corner(3) 38-4-0 to 41-6-12 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing

6) Gable studs spaced at 1-4-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by other molecular to the provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 47, 46, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

April 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WAG-1	
					I	145480305
21031265	BGR	COMMON GIRDER	1	2		
				-	Job Reference (optional)	
The Building Center,	Gastonia, NC - 28052,			8.430 s N	lar 22 2021 MiTek Industries, Inc. Fri Apr 2 09:54:21 2021	Page 2
		ID:V014	ezS7ueHw4	TfvJfXVP	Zz1m7N-Yu1vUCfS8vkWz2X0dfBq_dN5q4UuoVEV4yml6Pzl	Uo3W

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 8=-1701(B) 9=-1701(B) 12=-1708(B) 16=-1701(B) 17=-1701(B) 18=-1701(B) 19=-1701(B) 20=-1701(B) 21=-1701(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road Edenton, NC 27932

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 16-2-8.

(lb) - Max Horz 2=-61(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14

Max Grav All reactions 250 lb or less at joint(s) 2, 21, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 5-1-4, Corner(3) 5-1-4 to 11-1-4, Exterior(2) 11-1-4 to 14-1-0, Corner(3) 14-1-0 to 17-1-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

Vert: 1-3=-60, 3-6=-60, 10-13=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affili 818 Soundside Road

Edenton, NC 27932

April 5,2021

Job	Truss	Truss Type	Qty	Ply	WAG-1	
21031265	CGR		1			145480308
21001200				3	Job Reference (optional)	
The Building Center,	Gastonia, NC - 28052,			8.430 s N	lar 22 2021 MiTek Industries, Inc. Fri Apr 2 09:54:28 2021	Page 2
		ID:V01	4ezS7ueH	w4TfvJfXV	/PZz1m7N-rEyYyckrV2cXJ7ZMXdpTm6AIDur0xeUXhXzAsV	zUo3P

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 8=-1648(F) 7=-1648(F) 12=-1654(F) 16=-1648(F) 17=-1648(F) 18=-1648(F) 19=-1648(F) 20=-1648(F)

				6-1-8			
	(psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/de	efi L/d	PLATES GRIP
TCLL	20.0 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	BC 0.02	Vert(LL) -0.00 Vert(CT) -0.00	7 r 7 r	n/r 120 n/r 90	MT20 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.02 Matrix-R	Horz(CT) 0.00	8 n	/a n/a	Weight: 35 lb FT = 20%

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 6-1-8. (lb) - Max Horz 12=66(LC

- Max Horz 12=66(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 12, 8, 11, 9 Max Grav All reactions 250 lb or less at joint(s) 12, 8, 10, 11, 9

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8, 11, 9.

			4-10-12	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.30	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.02 4-7 >999 360 MT20 244/190	
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.25 WB 0.00 Matrix-AS	Vert(CT) -0.05 4-7 >999 240 Horz(CT) 0.00 2 n/a n/a Weight: 20 lb FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

3-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

REACTIONS. 2=0-3-8, 4=0-1-8 (size) Max Horz 2=74(LC 10) Max Uplift 2=-32(LC 10), 4=-40(LC 10) Max Grav 2=256(LC 1), 4=184(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord.

Structural wood sheathing directly applied, except end verticals.

LOADING TCLL TCDL BCLL	(psf) 20.0 10.0 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.18 BC 0.15 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 4-7 >999 360 Vert(CT) -0.02 4-7 >999 240 Horz(CT) 0.00 2 n/a n/a	PLATES GRIP MT20 244/190
BCDL	10.0	Code IRC2015/TPI2014	Matrix-MP		Weight: 16 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

2=0-3-8, 4=0-1-8 (size)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-12 oc purlins, except end verticals. 3-0-0 oc bracing.

REACTIONS. Max Horz 2=61(LC 10) Max Uplift 2=-30(LC 10), 4=-31(LC 10) Max Grav 2=218(LC 1), 4=142(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

						5-10-12						
						5-10-12					1	
Plate Offs	ets (X,Y)	[2:0-1-4,0-0-6]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.50	Vert(LL)	-0.04	4-13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.11	4-13	>632	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	k-MP						Weight: 29 lb	FT = 20%

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 5-10-12 oc purlins, except end verticals.

 BOT CHORD
 3-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=87(LC 10) Max Uplift 2=-35(LC 10), 4=-49(LC 10) Max Grav 2=295(LC 1), 4=225(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable studs spaced at 1-4-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

LOADING TCLL	(psf) 20.0	SPACING- 2-0- Plate Grip DOL 1.1	CSI. 5 TC	0.30	DEFL. Vert(LL)	in -0.02	(loc) 4-11	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0 *	Lumber DOL 1.1 Rep Stress Incr YES	5 BC S WB	0.25 0.00	Vert(CT) Horz(CT)	-0.05 0.00	4-11 2	>999 n/a	240 n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix	k-AS						Weight: 23 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

3-0-0 oc bracing

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8

Max Horz 2=74(LC 10) Max Uplift 2=-32(LC 10), 4=-40(LC 10)

Max Grav 2=256(LC 1), 4=184(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 1-4-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord.

Structural wood sheathing directly applied, except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=144. 6=144.

SEAL 044925 MGINEEP, HANNIN April 5,2021

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=132, 6=131.

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

REACTIONS. (size) 1=9-10-11, 3=9-10-11, 4=9-10-11 Max Horz 1=77(LC 7) Max Uplift 1=-25(LC 11), 3=-35(LC 11), 4=-4(LC 10) Max Grav 1=193(LC 1), 3=193(LC 1), 4=344(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 5)

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

Max Horz 1=-57(LC 6)

Max Uplift 1=-26(LC 11), 3=-33(LC 11) Max Grav 1=155(LC 1), 3=155(LC 1), 4=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

REACTIONS. (size) 1=5-1-2, 3=5-1-2, 4=5-1-2 Max Horz 1=-37(LC 8) Max Uplift 1=-17(LC 11), 3=-21(LC 11) Max Grav 1=100(LC 1), 3=100(LC 1), 4=148(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 1=2-8-5, 3=2-8-5 Max Horz 1=-16(LC 6) Max Uplift 1=-6(LC 10), 3=-6(LC 11) Max Grav 1=77(LC 1), 3=77(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 2-8-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=8-0-8, 3=8-0-8, 4=8-0-8 Max Horz 1=24(LC 14) Max Uplift 1=-26(LC 10), 3=-30(LC 11) Max Grav 1=139(LC 1), 3=139(LC 1), 4=271(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

818 Soundside Road Edenton, NC 27932

2x4 💋

BOT CHORD

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

0- <mark>0-</mark> 8			4-1-8	
0-0-8 Plate Offsets (X,Y) [2:0-2-0,Edge]		4-1-0	· · · · · · · · · · · · · · · · · · ·
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL in (loc) l/defl l/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.04	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.10	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 11 lb FT = 20%
LUMBER-			BRACING-	
TOP CHORD 2x4 SP	No.2		TOP CHORD Structural wood sheathing dire	ectly applied or 4-1-8 oc purlins.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS. (size) 1=4-0-8, 3=4-0-8 Max Horz 1=10(LC 14) Max Uplift 1=-10(LC 10), 3=-10(LC 11) Max Grav 1=115(LC 1), 3=115(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

