

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21062548 WAG-15

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by The Building Center.

Pages or sheets covered by this seal: I46794277 thru I46794310

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

June 30,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

		10-7-7	21-0	0-0	29-0-0		39-4-9		50-0-0	
		10-7-7	10-4	4-9	8-0-0		10-4-9	Т	10-7-7	
Plate Offse	ts (X,Y)	[2:0-0-0,0-0-5], [6:0-3-0,0)-2-7], [7:0-3-0,0	-2-7], [11:0-0-0,0-0-5]						
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc	c) l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC 0.95	Vert(LL) -	0.65 13-1	5 >921	360	MT20	244/190
TCDI	10.0	Lumber DOI	1 15	BC 0.65	Vert(CT) -	1 01 13-1	5 >593	240	MT20HS	187/143
BCLL	0.0 *	Ren Stress Incr	YES	WB 0.41	Horz(CT)	0.20 1	1 n/a	n/a	11120110	101/110
BCDI	10.0	Code IRC2015/TE	212014	Matrix-AS	11012(01)	0.20	1 1/4	170	Weight: 284 lb	FT - 20%
DODL	10.0		12014	Matrix-A0					Weight. 204 lb	11=20%
					PPACING.					
						Ctru	atural wood	abaathing dir	actly applied avaant	
TOP CHOP					TOP CHORD	Silu				
	6-7:2X	6 SP NO.1				2-0-0	0 oc puriins	(4-4-14 max.)	: 6-7.	
BOT CHOP	RD 2x4 SF	DSS			BOT CHORD	Rigio	d ceiling dire	ectly applied.		
WEBS	2x4 SF	2 No.3			WEBS	1 Rc	ow at midpt	5-	-17, 8-15, 7-17	
WEDGE										
Left: 2x4 S	P No.3 , Rig	ht: 2x4 SP No.3								
REACTION	IS. (size	e) 11=0-3-8, 2=0-3-8								
	Max H	lorz 2=163(LC 10)								
	Max U	plift 11=-235(LC 11), 2=-	235(LC 10)							
	Max G	rav 11=2211(LC 2), 2=22	209(LC 2)							
FORCES.	(lb) - Max.	Comp./Max. Ten All for	ces 250 (lb) or l	ess except when show	'n.					
TOP CHOR	RD 2-3=-	4194/546. 3-5=-3963/535	5. 5-6=-3121/524	4. 6-7=-2705/516. 7-8=	-3124/524.					
	8-10=	=-3966/535 10-11=-4197	/546	.,						
	2-10-	449/3665 17-19291/3	222 15-1717	2/2707 13-15291/32	25 11-13385/3668					
WEBS	3-10-	-365/209 5-1948/610	5-17-740/250	6-17-47/004 7-15-0	20,1001					
WLDO	8-15-	742/250 8-1348/611	10-13-365/21)	55/1004,					
	0-10-	-742/239, 0-13-40/011,	10-13303/210)						
NOTES										
1) Unbalar	iced root live	e loads have been conside	ered for this des	ign.				-)		
2) Wind: A	SCE 7-10; V	uit=120mpn vasd=95mp	n; ICDL=5.0psf	; BCDL=5.0pst; n=35π	; Cat. II; Exp B; Enclos	sed; IVIVVF	RS (envelop	e)		
gable er	id zone and	C-C Exterior(2) -0-10-8 to	5 2-1-8, Interior(1) 2-1-8 to 16-9-1, Exte	erior(2) 16-9-1 to 33-2	-15, Interio	or(1) 33-2-1	o to	, in the second se	in the second se
47-10-8	Exterior(2)	47-10-8 to 50-10-8 zone;	cantilever left a	nd right exposed ;C-C	for members and forc	es & MWF	RS for react	tions	IN'TH C	AROUL
shown;	Lumber DOL	_=1.33 plate grip DOL=1.3	33					1	N'all.	
Provide	adequate di	rainage to prevent water p	oonding.					1	A.O. iniss	SIA: NA
All plate	s are MT20	plates unless otherwise ir	ndicated.						Veril 7	XXXXXXXXX
5) This trus	s has been	designed for a 10.0 psf b	ottom chord live	load nonconcurrent w	ith any other live loads	s.				some
6) * This tr	uss has bee	n designed for a live load	of 20.0psf on th	e bottom chord in all a	reas with a clearance	greater th	an 6-0-0			
betweer	the bottom	chord and any other men	nbers, with BCD	L = 10.0psf.					SF/	AL : E
7) Provide	mechanical	connection (by others) of	truss to bearing	plate capable of withs	tanding 100 lb uplift a	t joint(s) e	xcept (jt=lb)	=		
11=235	2=235			•	5 1	/	,		: 0449	125 : =

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	10-7-7 2	1-0-0	29-0-0	39-4-9	50-0-0					
Plate Offsets (X Y)	<u>10-7-7</u> 1([1:0-0-0 0-0-9] [5:0-3-0 0-2-7] [6:0-3-0)-4-9	8-0-0	10-4-9	10-7-7					
	[1.0-0-0,0-0-9], [0.0-3-0,0-2-7], [0.0-3-0	<u>,0-2-7], [10.0-0-0,0-0-3]</u>								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.95 BC 0.64 WB 0.42 Matrix-AS	DEFL. i Vert(LL) -0.63 Vert(CT) -1.0 Horz(CT) 0.24	n (loc) l/defl L/d 5 12-14 >922 360 1 12-14 >593 240 0 10 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 283 lb FT = 20%					
LUMBER- TOP CHORD 2x4 SF 5-6: 2x BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x4 SP No.3 , Rig	P No.2 *Except* 6 SP No.1 P DSS P No.3 ht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing of 2-0-0 oc purlins (4-4-14 max Rigid ceiling directly applied 1 Row at midpt	lirectly applied, except x.): 5-6. i. 4-16, 7-14, 6-16					
REACTIONS. (siz Max H Max U Max G	e) 10=0-3-8, 1=Mechanical lorz 1=-169(LC 15) plift 10=-235(LC 11), 1=-218(LC 10) rav 10=2211(LC 2), 1=2165(LC 2)									
FORCES. (lb) - Max. TOP CHORD 1-2=- 7-9=- 7-9=- BOT CHORD 1-18- WEBS 2-18- 7-14- 7-14-	FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-4198/518, 2-4=-3967/505, 4-5=-3122/487, 5-6=-2706/479, 6-7=-3125/486, 7-9=-3967/496, 9-10=-4198/508 BOT CHORD 1-18=-451/3670, 16-18=-284/3224, 14-16=-141/2708, 12-14=-255/3226, 10-12=-351/3669 WEBS 2-18=-368/210, 4-18=-49/613, 4-16=-742/260, 5-16=-47/995, 6-14=-99/1004, 7-14=-285/210									
 NOTES- Unbalanced roof live Wind: ASCE 7-10; V gable end zone and , Exterior(2) 26-0-0 i for members and for Provide adequate di All plates are MT20 This truss has been * This truss has been between the bottom 7) Refer to girder(s) for 8) Provide mechanical 10=235, 1=218. 9) This truss design re- sheetrock be applier 	a loads have been considered for this d /ult=120mph Vasd=95mph; TCDL=5.0p C-C Exterior(2) 0-0-0 to 3-0-0, Interior(to 32-0-0, Interior(1) 32-0-0 to 47-10-8, rcces & MWFRS for reactions shown; Lu rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord lin n designed for a live load of 20.0psf on chord and any other members, with BC r truss to truss connections. connection (by others) of truss to beari quires that a minimum of 7/16" structura d directly to the bottom chord.	esign. sf; BCDL=5.0psf; h=35ft; (1) 3-0-0 to 18-0-0, Exterio Exterior(2) 47-10-8 to 50- mber DOL=1.33 plate grip we load nonconcurrent with the bottom chord in all are iDL = 10.0psf. ng plate capable of withsta al wood sheathing be appli	Cat. II; Exp B; Enclosed r(2) 18-0-0 to 24-0-0, In 10-8 zone; cantilever lef 0 DOL=1.33 h any other live loads. eas with a clearance gre anding 100 lb uplift at joi ied directly to the top ch	; MWFRS (envelope) terior(1) 24-0-0 to 26-0-0 and right exposed ;C-C ater than 6-0-0 nt(s) except (jt=lb) ord and 1/2" gypsum	SEAL 044925					

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

L	10-7-7	21-0-0 29-0-0			39-4-9	50-0-0				
	10-7-7	10-4-9	8-0-0	10-7-7						
Plate Offsets (X,Y)	[1:0-0-0,0-0-5], [2:0-2-8,0-3-0], [3:0-3	0,0-3-4], [4:0-3-0,0-2-7], [5	:0-3-0,0-2-7], [6:0-3-0	0-3-4], [7:0)-2-8,0-3-0], [8:0-0-0	0-1-5], [9:0-4-0,0-3-4]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.95 BC 0.95 WB 0.41 Matrix-AS	DEFL. Vert(LL) -0 Vert(CT) -1 Horz(CT) 0	in (loc) 66 9-11 03 9-11 21 8	l/defl L/d >904 360 >584 240 n/a n/a	PLATES GRIP MT20 244/190 Weight: 281 lb FT = 20%				
LUMBER- TOP CHORD 2x4 SP 4-5: 2xi BOT CHORD 2x4 SP 8-9: 2x WEBS 2x4 SP WEDGE Left: 2x4 SP No.3 , Rig	9 No.2 *Except* 6 SP No.1 9 DSS *Except* 4 SP No.1 9 No.3 ht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structo 2-0-0 (Rigid (1 Row	ural wood sheathing oc purlins (4-4-15 m ceiling directly applie r at midpt	directly applied, except x.): 4-5. d. 3-13, 6-11, 5-13				
REACTIONS. (size Max H Max U Max G	e) 8=Mechanical, 1=Mechanical orz 1=156(LC 10) plift 8=-218(LC 11), 1=-218(LC 10) rav 8=2167(LC 2), 1=2165(LC 2)									
FORCES. (lb) - Max. TOP CHORD 1-2=- 6-7=- BOT CHORD 1-15= WEBS 2-15=	Comp./Max. Ten All forces 250 (lb) 4197/560, 2-3=-3968/548, 3-4=-3124 3969/548, 7-8=-4197/560 =-455/3668, 13-15=-321/3230, 11-13 =-365/208, 3-15=-49/612, 3-13=-744/	or less except when showr 529, 4-5=-2707/521, 5-6=- -198/2709, 9-11=-321/3232 59, 4-13=-46/993, 5-11=-9	n. 3127/529, 2, 8-9=-420/3667 7/1003,							
 BOT CHORD 1-15=-455/3668, 13-15=-321/3230, 11-13=-198/2709, 9-11=-321/3232, 8-9=-420/3667 WEBS 2-15=-365/208, 3-15=-49/612, 3-13=-744/259, 4-13=-46/993, 5-11=-97/1003, 6-11=-744/259, 6-9=-50/609, 7-9=-363/208 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0- to 3-0-0, Interior(1) 30-0 to 16-9-1, Exterior(2) 16-9-1 to 33-2-15, Interior(1) 33-2-15 to 47-0-0, Exterior(2) 47-0-0 to 50-0-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=218, 1=218. 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheet(xeb he applied directly to the bottom chord 										

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

M. SEVIET

818 Soundside Road Edenton, NC 27932

	10-7-7	21-0-0	29-0-0	36-8-8	38-8-8	48-8-8	<u>50-0-0</u>			
Plate Offsets (X,Y)	[1:0-0-0,0-0-9], [5:0-3-0,0-2-7]	, [6:0-3-0,0-2-7], [15:0-7-12,	0-1-12]	7-0-0	2-0-0	10-0-0	1-3-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code IRC2015/TPI207	D-0 CSI. 15 TC 0.92 15 BC 0.98 ES WB 1.00 4 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.67 18-20 -1.06 18-20 0.28 12	l/defl L/d >891 360 >566 240 n/a n/a	PLATES MT20 MT20HS Weight: 314 lb	GRIP 244/190 187/143 FT = 20%			
LUMBER- TOP CHORD 2x4 SF 5-6: 2x BOT CHORD 2x4 SF 12-13: WEBS 2x4 SF 9-13,1 WEDGE Left: 2x4 SP No.3	P No.2 *Except* K6 SP No.1 P No.1 *Except* 2x4 SP No.2, 17-19: 2x4 SP [P No.3 *Except* 1-13: 2x4 SP No.2	DSS	BRACING TOP CHO BOT CHO WEBS	i- RD Structu 2-0-0 o RD Rigid c 1 Row 2 Rows	aral wood sheathing di c purlins (4-5-11 max eiling directly applied. at midpt s at 1/3 pts s	irectly applied, except): 5-6, 9-11. 4-18, 6-18, 7-16, 7-15 9-13	end verticals, and			
REACTIONS. (siz Max H Max U Max G	e) 1=0-3-7, 12=Mechanical lorz 1=243(LC 10) Jplift 1=-214(LC 10), 12=-224(Grav 1=2140(LC 2), 12=2102(I	_C 11) .C 2)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-4142/509, 2-4=-3910/496, 4-5=-3072/477, 5-6=-2661/471, 6-7=-3038/470, 7-9=-4448/566, 9-10=-761/100, 10-11=-744/92, 11-12=-2173/222 BOT CHORD 1-20=-536/3619, 18-20=-408/3177, 16-18=-290/2630, 15-16=-392/3193, 14-15=-427/3523, 13-14=-554/4291 WEBS 2-20=-367/210, 4-20=-50/607, 4-18=-739/261, 5-18=-42/979, 6-16=-67/889, 7-16=-760/219, 7-15=-1334/214, 7-14=-249/2298, 9-14=-653/170, 9-13=-3917/505, 10-13=-520/212, 11-13=-301/2447										
 <i>I</i>-16=-<i>I</i>-60/219, <i>I</i>-15=-1334/214, <i>I</i>-14=-2249/2298, 9-14=-653/170, 9-13=-391//505, 10-13=-520/212, 11-13=-301/2447 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0 to 3-0-0, Interior(1) 3-0-0 to 18-0-0, Exterior(2) 18-0-0 to 24-0-0, Interior(1) 24-0-0 to 26-0-0, Exterior(2) 26-0-0 to 32-0-0, Interior(1) 32-0-0 to 18-0-0, Exterior(2) 18-0-0 to 24-0-0, Interior(1) 24-0-0 to 26-0-0, Exterior(2) 26-0-0 to 32-0-0, Interior(1) 32-0-0 to 48-10-4, Exterior(2) 46-10-4 to 49-10-4 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord ine load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 1=214, 12=224. 9) This truss design requires that a minimum of 71/6" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										
WARNING - Verify	design parameters and READ NOTES	ON THIS AND INCLUDED MITEK RE	FERENCE PAGE MII-7473 rev	. 5/19/2020 BEFORE	USE.	ENGINE	ERING BY			

818 Soundside Road Edenton, NC 27932

	10-7-7 21-		29-0-0	36-8-8 38-8-8 4	43-0-1 48-8-8 50-0-0
Plate Offsets (X Y)	[2:0-0-0 0-1-5] [6:0-3-0 0-2-7] [7:0-3-0	4-9 0-2-7] [8·0-2-13 0-1-12]	0-0-0 [11:0-3-8 Edge] [16:0-7	7-0-0 2-0-0	4-3-9 3-8-7 1-3-8
	[2.0-0-0,0-1-5], [0.0-3-0,0-2-7], [7.0-3-0	0-2-7], [0.0-2-13,0-1-12],	[11.0-5-0,Euge], [10.0-1	-12,0-1-12]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.98 BC 0.98 WB 0.90 Matrix-AS	DEFL. i Vert(LL) -0.6 Vert(CT) -1.0 Horz(CT) 0.2	n (loc) l/defl L/d 8 19-21 >882 360 7 19-21 >560 240 9 12 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 310 lb FT = 20%
LUMBER- TOP CHORD 2x4 Sf 6-7: 22 BOT CHORD 2x4 Sf 12-13: WEBS 2x4 Sf 10-13: WEDGE Left: 2x4 SP No.3	P No.2 *Except* 46 SP No.1 P No.1 *Except* 2x4 SP No.2, 18-20: 2x4 SP DSS P No.3 *Except* 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathi 2-0-0 oc purlins (4-5-10 Rigid ceiling directly app 1 Row at midpt	ng directly applied, except end verticals, and max.): 6-7, 10-11. Jied. 8-16, 5-19, 7-19, 8-17, 10-13
REACTIONS. (siz Max H Max L Max C	e) 2=0-3-8, 12=Mechanical lorz 2=238(LC 10) Jplift 2=-233(LC 10), 12=-222(LC 11) Grav 2=2184(LC 2), 12=2101(LC 2)				
FORCES. (lb) - Max. TOP CHORD 2-3= 8-10 BOT CHORD 2-21 14-1 WEBS 3-21 11-1 10-1	Comp./Max. Ten All forces 250 (lb) o -4137/540, 3-5=-3906/529, 5-6=-3071/5 =-4439/619, 10-11=-874/107, 11-12=-2C =-519/3614, 19-21=-418/3175, 17-19=-2 I5=-629/4744, 13-14=-626/4750 =-365/209, 5-21=-49/604, 8-16=-1281/2 3=-213/2076, 6-19=-44/976, 7-17=-78/8 3=-4290/575	less except when shown. 18, 6-7=-2661/510, 7-8=-3 88/277 99/2628, 16-17=-412/320 53, 8-15=-280/2185, 5-19= 95, 8-17=-774/234, 10-15=	039/513, 0, 15-16=-462/3508, =-737/260, =-1009/176,		
 NOTES- 1) Unbalanced roof liv. 2) Wind: ASCE 7-10; \ gable end zone and 46-10-4, Exterior(2) shown; Lumber DO 3) Provide adequate d 4) All plates are MT20 5) This truss has been 6) * This truss has been between the bottom 7) Refer to girder(s) fo 8) Provide mechanical 2=233, 12=222. 9) This truss design re sheetrock be applie 10) Graphical purlin re 	e loads have been considered for this de Vult=120mph Vasd=95mph; TCDL=5.0p; I C-C Exterior(2) -0-10-8 to 2-1-8, Interio 46-10-4 to 49-10-4 zone; cantilever left L=1.33 plate grip DOL=1.33 rainage to prevent water ponding. plates unless otherwise indicated. I designed for a 10.0 psf bottom chord live on designed for a live load of 20.0psf on a chord and any other members, with BC or truss to truss connections. I connection (by others) of truss to bearing equires that a minimum of 7/16" structura d directly to the bottom chord. presentation does not depict the size or	sign. f; BCDL=5.0psf; h=35ft; C r(1) 2-1-8 to 16-9-1, Exteri and right exposed ;C-C fo e load nonconcurrent with the bottom chord in all are DL = 10.0psf. ng plate capable of withsta I wood sheathing be appli- the orientation of the purli	Cat. II; Exp B; Enclosed ior(2) 16-9-1 to 33-2-15 r members and forces a n any other live loads. as with a clearance gre unding 100 lb uplift at jo ed directly to the top ch n along the top and/or l	; MWFRS (envelope) , Interior(1) 33-2-15 to & MWFRS for reactions eater than 6-0-0 int(s) except (jt=lb) ord and 1/2" gypsum pottom chord.	SEAL 044925 MGINEER, HELININ June 30,2021
	design parameters and READ NOTES ON THIS AN		E PAGE MIL-7473 rev. 5/19/20		

ARKING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 rev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road Edenton, NC 27932

L	10-7-7 21	0-0	29-0-0	36-8-8 38	<u>3-8-8 43-0-1</u>	48-8-8 50-0-0				
Diata Offacta (V.V)		4-9	8-0-0	7-8-8 2	-0-0 4-3-9	5-8-7 1-3-8				
Plate Olisets (X, Y)	[1:0-0-0,0-0-9], [5:0-3-0,0-2-7], [6:0-3-0	<u>,0-2-7], [7:0-2-13,0-1-12],</u>	[10:0-3-8,Edge], [15:0-7	-12,0-1-12]						
LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.98 BC 0.98 WB 0.90 Matrix-AS	DEFL. i Vert(LL) -0.64 Vert(CT) -1.0 Horz(CT) 0.25	n (loc) l/defl 8 18-20 >883 7 18-20 >561 9 11 n/a	L/d 360 240 n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 308 lb FT = 20%				
LUMBER- TOP CHORD 2x4 SF 5-6: 2x BOT CHORD 2x4 SF 11-12: WEBS 2x4 SF 9-12: 2 WEDGE Left: 2x4 SP No.3	P No.2 *Except* 6 SP No.1 P No.1 *Except* 2x4 SP No.2, 17-19: 2x4 SP DSS P No.3 *Except* 2x4 SP No.2	1	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dir 1 Row at midpt	I sheathing diri (4-5-10 max.) ectly applied. 7.	ectly applied, except end verticals, and : 5-6, 9-10. -15, 4-18, 6-18, 7-16, 9-12				
REACTIONS. (siz Max H Max L Max C	e) 1=Mechanical, 11=Mechanical lorz 1=225(LC 10) Jplift 1=-215(LC 10), 11=-222(LC 11) Grav 1=2140(LC 2), 11=2102(LC 2)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-4142/512, 2-4=-3910/499, 4-5=-3072/480, 5-6=-2661/473, 6-7=-3040/475, 7-9=-4440/571, 9-10=-874/99, 10-11=-2089/259 BOT CHORD 1-20=-521/3619, 18-20=-385/3177, 16-18=-268/2629, 15-16=-376/3201, 14-15=-422/3509, 13-14=-584/4745, 12-13=-581/4751 WEBS 2-20=-367/210, 4-20=-50/607, 7-15=-1281/236, 7-14=-260/2186, 4-18=-739/260, 10-12=-194/2076, 5-18=-44/977, 6-16=-78/895, 7-16=-774/234, 9-14=-1009/176, 9-12=-4291/534										
 13-14=-584/4745, 12-13=-581/4751 WEBS 2-20=-367/210, 4-20=-50/607, 7-15=-1281/236, 7-14=-260/2186, 4-18=-739/260, 10-12=-194/2076, 5-18=-44/977, 6-16=-78/895, 7-16=-774/234, 9-14=-1009/176, 9-12=-4291/534 NOTES- Uhobalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vull=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 18-0-0, Exterior(2) 18-0-0 to 24-0-0, Interior(1) 24-0-0 to 26-0-0, Exterior(2) 26-0-0 to 32-0-0, Interior(1) 32-0-0 to 46-10-4, Exterior(2) 46-10-4 to 49-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10/2 plot of 10/20 pf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (It=lb) 1-215, 11-222. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (It=lb) 1-215, 11-222. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. (10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										
	design parameters and READ NOTES ON THIS AN									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTEX REFERENCE PAGE MII-7473 ev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 	10-7-7	21-0-0	29-0-0	<u>36-8-8</u> <u>37-6</u> 7 <u>41-10-4</u> 7-8-8 <u>0-9-15</u> <u>4-3-13</u>	50-0-0 8-1-12					
Plate Offsets (X,Y)	[2:0-0-0,0-1-5], [6:0-3-0,0-2-7], [7	:0-3-0,0-2-7], [14:0-4-0,0-3-4],	[16:0-5-8,0-2-4]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.94 BC 0.98 WB 0.99 Matrix-AS	DEFL. i Vert(LL) -0.6 Vert(CT) -1.0 Horz(CT) 0.2	in (loc) I/defl L/d 6 19-21 >900 360 4 19-21 >573 240 5 13 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 310 lb FT = 20%					
LUMBER- TOP CHORD 2x4 SF 6-7: 2x BOT CHORD 2x4 SF 15-16: WEBS 2x4 SF WEDGE Left: 2x4 SP No.3	P No.2 *Except* 6 SP No.1 P No.1 *Except* 2x6 SP No.1, 18-20: 2x4 SP DSS P No.3	3	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing d 2-0-0 oc purlins (4-5-12 max Rigid ceiling directly applied 1 Row at midpt	irectly applied, except end verticals, and): 6-7, 11-12. 5-19, 7-19, 8-17, 11-13					
REACTIONS. (siz Max H Max L Max C	e) 13=Mechanical, 2=0-3-8 lorz 2=199(LC 10) Jplift 13=-218(LC 11), 2=-235(LC Grav 13=2101(LC 2), 2=2184(LC	10) 2)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-4137/544, 3-5=-3906/533, 5-6=-3072/521, 6-7=-2661/514, 7-8=-3035/518, 8-10=-3874/564, 10-11=-4318/555 BOT CHORD 2-21=-484/3614, 19-21=-368/3175, 17-19=-251/2628, 16-17=-366/3202, 15-16=-409/3385, 14-15=-456/3825, 13-14=-604/4333 WEBS 3-21=-365/209, 5-21=-49/603, 5-19=-737/260, 6-19=-49/978, 7-17=-83/885, 8-17=-772/241, 8-16=-1064/226, 8-15=-226/1595, 10-15=-603/136, 10-14=0/381, 11-14=-561/181, 11-13=-4630/684										
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=120mpl Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 21-8 to 16-9-1, Exterior(2) 16-9-1 to 33-2-15, Interior(1) 33-2-15 to 47-0-1, Exterior(2) 47-0-1 to 49-10-4 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10:0 psf bottom chord in eload nonconcurrent with any other live loads. 6) *This truss has been designed for a 10:0 psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. 7) Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1.3=218, 2=235. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ollapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

	10-7-7 10	-4-9	8-0-0	7-8-8 0-9-15 4-3-13	8-1-12					
Plate Offsets (X,Y)	[1:0-0-0,0-0-9], [5:0-3-0,0-2-7], [6:0-3-0),0-2-7], [13:0-4-0,0-3-4], [15:0-5-8,0-2-4]		0112					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.92 BC 0.97 WB 0.99 Matrix-AS	DEFL. in Vert(LL) -0.66 Vert(CT) -1.04 Horz(CT) 0.25	n (loc) l/defl L/d 3 18-20 >902 360 4 18-20 >575 240 5 12 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 309 lb FT = 20%					
LUMBER- TOP CHORD 2x4 SF 5-6: 2x BOT CHORD 2x4 SF 14-15: WEBS 2x4 SF WEDGE Left: 2x4 SP No.3	P No.2 *Except* .6 SP No.1 P No.1 *Except* 2x6 SP No.1, 17-19: 2x4 SP DSS P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing d 2-0-0 oc purlins (4-5-12 max Rigid ceiling directly applied 1 Row at midpt	lirectly applied, except end verticals, and x.): 5-6, 10-11. J. 4-18, 6-18, 7-16, 10-12					
REACTIONS. (size Max H Max U Max G	e) 1=Mechanical, 12=Mechanical lorz 1=186(LC 10) lplift 1=-218(LC 10), 12=-218(LC 11) irav 1=2140(LC 2), 12=2102(LC 2)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-4142/516, 2-4=-3910/503, 4-5=-3073/484, 5-6=-2662/477, 6-7=-3036/480, 7-9=-3874/522, 9-10=-4319/514 BOT CHORD 1-20=-486/3619, 18-20=-335/3177, 16-18=-220/2628, 15-16=-329/3203, 14-15=-369/3386, 13-14=-418/3826, 12-13=-565/4334 WEBS 2-20=-367/210, 4-20=-50/606, 4-18=-738/261, 5-18=-48/979, 6-18=-223/250, 6-16=-84/885, 7-16=-772/241, 7-15=-1065/211, 7-14=-211/1595, 9-14=-603/135, 9-13=0/381, 10-13=-561/481, 10-12=-463/1641										
 9-13=0/381, 10-13=-561/181, 10-12=-4631/641 NOTES- Uhalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; B=25(t; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-0 to 3-0.0, Interior(1) 3-0-0 to 18-0.0, Exterior(2) 18-0-0 to 24-0.0, Interior(1) 24-0-0 to 26-0.0, Exterior(2) 20-0 to 47-0.1; Exterior(2) 47-0-1 to 49-10-4 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss to thruss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 1=218, 12=218. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										
A										

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932

ERENCO A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	WAG-15	
						146794290
21062548	B1GR	COMMON GIRDER	1	2		
				5	Job Reference (optional)	
The Building Center,	Gastonia, NC - 28052,			8.430 s Jur	n 2 2021 MiTek Industries, Inc. Tue Jun 29 13:24:52 2021	Page 2
		ID:TYS?C)ry2uNqy7	8j88Ho5vtv	VX ?-6HXUzmabvH25VBfGEpsODSzZJBu00RvVNb2Mhv	wz1Pe9

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 8=-2033(B) 10=-1974(B) 11=-1974(B) 12=-1974(B) 13=-1980(B) 14=-2033(B) 15=-2033(B) 16=-2033(B) 17=-2033(B)

M. SE.

REACTIONS. All bearings 18-0-0.

(lb) - Max Horz 2=-73(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14

Max Grav All reactions 250 lb or less at joint(s) 2, 21, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-4-0, Exterior(2) 2-4-0 to 6-0-0, Corner(3) 6-0-0 to 12-0-0, Exterior(2) 12-0-0 to 15-8-0, Corner(3) 15-8-0 to 18-10-8 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 22, 23, 24, 25, 26, 20, 19, 18, 17, 16, 14.

besign valid to less only with with twe contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	WAG-15	
					4	6794293
21062548	C3GR	ROOF SPECIAL GIRDER	1	2		
				5	Job Reference (optional)	
The Building Center,	Gastonia, NC - 28052,			8.430 s Ju	n 2 2021 MiTek Industries, Inc. Tue Jun 29 13:24:57 2021 Pa	age 2
		ID:TYS'	?Ory2uNgy	78j88Ho5	rtyVX ?-SFKN0UekkggObyYD1MSZwVhRbCYagh7FXtl7M7z	1Pe4

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 14-15=-20, 13-14=-20, 9-13=-20, 8-9=-20, 8-18=-20

Concentrated Loads (lb)

Vert: 13=-1974(B) 9=-1974(B) 11=-1974(B) 17=-1980(B) 20=-1980(B) 21=-1974(B) 22=-1974(B) 23=-1974(B) 24=-1974(B)

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.12 BC 0.04 WB 0.04 Matrix-R	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) 9 9 10	l/defl L n/r 1 n/r n/a r	L/d 20 90 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
--	--	---	--	-----------------------	-----------------------------------	------------------------	---------------------------------	------------------------------------

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 7-5-0.

(lb) - Max Horz 16=93(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 16, 10, 14, 15, 12, 11

Max Grav All reactions 250 lb or less at joint(s) 16, 10, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15,
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.

Plate Offse	ts (X,Y)	[26:0-3-0,0-1-4]											
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.06 0.04 0.04 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 16 16 16	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 115 lb	GRIP 244/190 FT = 20%	
LUMBER-						BRACING-							

TOP CHORD

BOT CHORD

L

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 21-0-0.

(lb) -Max Horz 2=-70(LC 15)

Max Uplift All uplift 100 lb or less at joint(s) 2, 25, 27, 28, 29, 30, 31, 23, 22, 21, 20, 19, 18, 16

Max Grav All reactions 250 lb or less at joint(s) 2, 24, 25, 27, 28, 29, 30, 31, 23, 22, 21, 20, 19, 18, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 7-6-0, Corner(3) 7-6-0 to 13-6-0, Exterior(2) 13-6-0 to 18-10-8, Corner(3) 18-10-8 to 21-10-8 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 25, 27, 28, 29,

30, 31, 23, 22, 21, 20, 19, 18, 16. 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 16.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

2

3-0-0 oc bracing.

n/a

n/a

FORCES.	(lb) - Max.	Comp./Max.	Ten	All forces 2	50 (lb)	or less	except when	shown.
---------	-------------	------------	-----	--------------	---------	---------	-------------	--------

BCLL

BCDL

WEBS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

0.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

(size) 2=0-3-8, 4=0-1-8 Max Horz 2=82(LC 10)

Max Uplift 2=-40(LC 10), 4=-49(LC 10) Max Grav 2=260(LC 1), 4=187(LC 1)

10.0

NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

WB

Matrix-AS

0.00

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

Rep Stress Incr

Code IRC2015/TPI2014

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord.

FT = 20%

Weight: 20 lb

Structural wood sheathing directly applied, except end verticals.

Plate Offsets (X,Y)	[4:Edge,0-1-14]		
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.19 BC 0.16 WB 0.00	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.01 4-7 >999 360 MT20 244/190 Vert(CT) -0.02 4-7 >999 240 MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Weight: 16 lb FT = 20%
LUMBER- TOP CHORD 2x	4 SP No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-12 oc purlins,

BOT CHORD

except end verticals.

3-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=67(LC 10)

Max Horz 2=67(LC 10) Max Uplift 2=-37(LC 10), 4=-38(LC 10) Max Grav 2=221(LC 1), 4=146(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Plate Offsets (X,Y)	[4:Edge,0-1-14]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.19 BC 0.16 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 4-9 >999 360 MT20 244/190 Vert(CT) -0.02 4-9 >999 240 MT20 244/190 Horz(CT) 0.00 2 n/a n/a Weight: 18 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2			BRACING- TOP CHORD Structural wood sheathing directly applied or 3-11-12 oc purlins,

BOT CHORD2x4 SP No.2except end verticals.WEBS2x4 SP No.3BOT CHORD3-0-0 oc bracing.OTHERS2x4 SP No.3BOT CHORD3-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=67(LC 10) Max Uplift 2=-37(LC 10), 4=-38(LC 10) Max Grav 2=221(LC 1), 4=146(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 1-4-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

BRACING-

TOP CHORD

BOT CHORD

3-0-0 oc bracing.

LUMBER-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=82(LC 10) Max Uplift 2=-40(LC 10), 4=-49(LC 10) Max Grav 2=260(LC 1), 4=187(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 1-4-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord.

Structural wood sheathing directly applied, except end verticals.

8-0-0								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.15 BC 0.09 WB 0.03 Matrix-P	DEFL. in Vert(LL) 0.00 Vert(CT) 0.01 Horz(CT) 0.00	(loc) 5 5 4	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

4 SP No.2 4 SP No.3 BRACING-TOP CHORD Stru BOT CHORD Rig

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=6-0-14, 4=6-0-14, 6=6-0-14 Max Horz 2=27(LC 10) Max Uplift 2=-42(LC 10), 4=-47(LC 11), 6=-1(LC 10) Max Grav 2=165(LC 1), 4=165(LC 1), 6=232(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-0-0. (lb) - Max Horz 1=27(LC

Max Horz 1=27(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 1, 2, 6, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 2, 0, 10, 0 Max Grav All reactions 250 lb or less at joint(s) 1, 7, 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 2, 6, 10, 8.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-8 to 3-4-8, Interior(1) 3-4-8 to 6-7-12, Exterior(2) 6-7-12 to 12-7-12, Interior(1) 12-7-12 to 15-11-0, Exterior(2) 15-11-0 to 18-11-0 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb)

1=103, 11=194, 12=139, 9=194, 8=139.

Max Grav All reactions 250 lb or less at joint(s) $1 \neq x \neq p = 2.0(LC + 10), 0 = 2.10(LC + 11)$ Max Grav All reactions 250 lb or less at joint(s) $1, 5 = x \neq p = 2.0(LC + 10), 0 = 2.10(LC + 11)$

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- WEBS 2-8=-331/253, 4-6=-331/252

NOTES-

Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-8 to 3-4-8, Interior(1) 3-4-8 to 5-6-11, Exterior(2) 5-6-11 to 11-6-11, Interior(1) 11-6-11 to 13-8-13, Exterior(2) 13-8-13 to 16-8-13 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=216, 6=216.

818 Soundside Road Edenton, NC 27932

June 30,2021

between the bottom chord and any other members.
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=107, 8=188, 6=188.

REACTIONS. (size) 1=8-4-1, 3=8-4-1, 4=8-4-1 Max Horz 1=77(LC 9) Max Uplift 1=-39(LC 11), 3=-44(LC 11) Max Grav 1=180(LC 1), 3=180(LC 1), 4=251(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. 1=6-1-14, 3=6-1-14, 4=6-1-14 (size) Max Horz 1=-55(LC 8) Max Uplift 1=-28(LC 11), 3=-31(LC 11) Max Grav 1=129(LC 1), 3=129(LC 1), 4=179(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 5)

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

REACTIONS. (size) 1=3-11-11, 3=3-11-11 Max Horz 1=-33(LC 6) Max Uplift 1=-12(LC 10), 3=-12(LC 11) Max Grav 1=131(LC 1), 3=131(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=35ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

