

<u>SCALE NOTE:</u> 18x24 PRINTS ARE TO SCALE AS NOTED. **11x17 PRINTS ARE NOT TO SCALE**

ELECTRICAL LEGEND

- 😑 110 V GFI OUTLET
- BB 110 V BASEBOARD OUTLET
- +++ 4-PLEX
- COUNTER OR FLOOR MOUNTED
- COUNTER OR FLOOR MOUNTED 110V GFI
- UEATHERPROOF
- € 220 ∨ OUTLET
- Ø 110 V DEDICATED CIRCUIT
- H SPECIAL PURPOSE (240 V, ETC.)
- WALL MOUNT LIGHT
- CEILING MOUNT LIGHT
- PENDANT LIGHT
- MINI CAN LIGHT

- UNDERCABINET LIGHT
- \$ SWITCH
- \$ DIMMER SWITCH

- TY- TY CONNECTION
- ____
- CD- CONDUIT FOR COMPONENT WIRING
- SP SPEAKER
- 110 V SMOKE/ CM DETECTOR
- 6D 110 V SMOKE DETECTOR
- EXHAUST FAN
- LOW VOLTAGE PANEL

ALARM ALARM PANEL

,
DATE: FEBRUARY 19, 2021
REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:
FIRST FLOOR ELECTRICAL PLAN
E-1

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

ELECTRICAL LAYOUT NOTES: 1) BLOCK AND WIRE FOR ALL CELING FANS PER PLAN. 2.) VANITY LIGHTS TO BE SET (9.90" AFF. (TYP.)

3.) ADDITIONAL EXTERIOR OUTLETS REQUIRED BY CODE TO BE LOCATED BY ELECTRICIAN.

4.) PLACE SWITCHES 8" (MIN.) FROM ROUGH OPENINGS.

ELECTRICAL LEGEND

😑 110 V GFI OUTLET

+ 110 V SWITCHED OUTLET

🚓 4-PLEX

COUNTER OR FLOOR MOUNTED

COUNTER OR FLOOR MOUNTED 110V GFI

€ 220 ∨ OUTLET

Ø 10 V DEDICATED CIRCUIT

1 220 Y DEDICATED CIRCUIT

●H SPECIAL PURPOSE (24Ø V, ETC.)

- CEILING MOUNT LIGHT

- PENDANT LIGHT

MINI CAN LIGHT

UNDERCABINET LIGHT

\$ SWITCH

\$ DIMMER SWITCH

TELEPHONE

TELEPHONE AND DATA

TY- TY CONNECTION

CD- CONDUIT FOR COMPONENT WIRING

SP SPEAKER

110 V SMOKE/ CO DETECTOR

5D 110 Y SMOKE DETECTOR

EXHAUST FAN

LOW VOLTAGE PANEL

ALARM ALARM PANEL

CEILING FAN W/ LIGHT

<u>SCALE NOTE:</u> 18x24 PRINTS ARE TO SCALE AS NOTED. **11x17 PRINTS ARE NOT TO SCALE**

DATE: FEBRUARY 19, 2021 REV.: SCALE: 1/4" = 1'-0" DRAWN BY: WG ENGINEERED BY: REVIEWED BY: SECOND FLOOR ELCTRICAL PLAN **E-2**

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- ALL LOAD BEARING HEADERS TO BE (2) 2 x 4 (UNO).
 INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
- WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)
- 6. ALL 4 X 4 POSTS SHALL BE ANCHORED TO SLABS W/ SIMPSON ABU44 POST BASES (OR EQUAL) AND 6 X 6 POSTS W/ ABU66 POST BASES (OR EQUAL) (UNO). ALL 4 X 4 AND 6 X 6 POSTS TO BE INSTALLED WITH 700 LB CAPACITY UPLIFT CONNECTORS AT TOP (UNO.)
- FOR FIBERGLASS, ALUMINUM, OR COLUMN ENG. BY OTHERS, SECURE TO SLAB W/ (2) METAL ANGLES USING 2" CONC. SCREWS. FASTEN ANGLES TO COLUMNS W/ 1/4" THROUGH BOLTS W/ NUTS AND WASHERS. LOCATE ANGLES ON OPPOSITE SIDES OF COLUMN. THROUGH BOLTS MUST BE INSTALLED PRIOR TO SETTING COLUMN.

BRACE WALL PANEL NOTES:

EXTERIOR WALLS: ALL EXTERIOR WALLS TO BE SHEALTHED WITH CS-WSP OR CS-SFB IN ACCORDANCE WITH SECTION R602.10.3 UNLESS NOTED OTHERWISE.

REQUIRED LENGTH OF BRACING: REQUIRED BRACE WALL LENGTH FOR EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE ARE INTERPOLATED PER TABLE R602.10.3. METHODS CS-WSP AND CS-SFB CONTRIBUTE THIER ACTUAL LENGTH. METHOD GB CONTRIBUTES 0.5 ITS ACTUAL LENGTH. METHOD PF CONTRIBUTES 1.5 TIMES ITS ACTUAL LENGTH.

GYPSUM: ALL INTERIOR SIDES OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS TO HAVE 1/2" GYPSUM INSTALLED. WHEN NOT USING METHOD GB GYPSUM TO BE FASTENED PER TABLE R702.3.5. METHOD GB TO BE FASTENED PER TABLE R602.10.1.

HD: 800 LBS HOLD DOWN DEVICE FASTENED TO THE EDGE OF THE BRACE WALL PANEL NEAREST TO THE CORNER

METHODS: PER TABLE R602.10.1

EAVER HOMES	AROLINA COLLECTION	[CKORY-II
WEA	CAR	HICI

DATE: FEBRUARY 19, 2021
REV.:
SCALE: 1/4" = 1'-0"

SECOND FLOOR FRAMING PLAN

ENGINEERED BY: REVIEWED BY:

S-2

<u>SCALE NOTE:</u> 18x24 PRINTS ARE TO SCALE AS NOTED. **11x17 PRINTS ARE NOT TO SCALE**

TABLE R602.7.5 MINIMUM NUMBER OF FULL HEIGHT STUDS AT EACH END OF HEADERS IN EXTERIOR WALLS

HEADER SPAN (FEET)	MAXIMUM STUD SPACING (INCHES) (PER TABLE R602.3(5)					
(* == *)	16	24				
UP TO 3'	1	1				
4'	2	1				
8'	3	2				
12'	5	3				
16'	6	4				

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 6 (UNO).
- 3. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 4. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)

DSP - DOUBLE STUD POCKET TSP - TRIPLE STUD POCKET

WEAVER HOMES CAROLINA COLLECT HICKORY-II

DATE: FEBRUARY 19, 2021

REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:

ATTIC FLOOR FRAMING PLAN

S-3

<u>SCALE NOTE:</u> 18x24 PRINTS ARE TO SCALE AS NOTED. **11x17 PRINTS ARE NOT TO SCALE**

ROOF PLAN

S-4

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

1302 SQ. FT. OF ATTIC DIVIDED BY 150 REQUIRES 8.7 SQ. FT. OF NET FREE VENTILATING AREA (MIN.).

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE #2 SPF (UNO). 2. HIP SPLICES ARE TO BE SPACED A MIN. OF 8'-0". FASTEN MEMBERS WITH THREE ROWS OF 12d NAILS @ 16" O.C. (TYP.)
- 3. STICK FRAME OVER-FRAMED ROOF SECTIONS W/ 2 x 8 RIDGES, 2 x 6 RAFTERS @ 16" O.C. AND FLAT 2 x 10 VALLEYS OR USE VALLEY TRUSSES.
- 4. FASTEN FLAT VALLEYS TO RAFTERS OR TRUSSES WITH SIMPSON H2.5A HURRICANE TIES @ 32" O.C. MAX. PASS HURRICANE TIES THROUGH NOTCH IN ROOF SHEATHING. EACH RAFTER IS TO BE FASTENED TO THE FLAT VALLEY WITH A MIN. OF (6) 12d TOE NAILS.
- 5. REFER TO SECTION R802.11 OF THE 2018 NCRC FOR REQUIRED UPLIFT RESISTANCE AT RAFTERS AND TRUSSES.

	MIGE		ASGE	1.4"	Π		
T A A	× BBO					*	
	2.0		32' 6"		8' 0"	1	
			45' 6"			ŕ	
	Con Sym Product Image: Sym HUS26 Image: Sym THDH210 Image: Symmetry Symme	Ridge Line = 1692. Ridge Line = 52.07 Hip Line = 0 ft. Horiz. OH = 115.6 Raked OH = 175.3 Decking = 58 sh	Roof Area - 1602				
	th Produ $1-3/4"$ $1-3/4"$ $2x10 \ 5$ $1-3/4"$ $1-3/4"$	2 ft. 39 ft. 3 ft. heets	1. All exte face of sh 2. All inter frame wal 3. All exte face of fra All W Conside				
	Qty Supported Member 12 NA 1 Varies Products ct x 16" LVL Kerto- SPF No.2 x 11-7/8" LVL Kerto Placement Plan (4"=1'		rior wall to wall dimensio eathing unless noted oth ior wall dimensions are t unless noted otherwise rior wall to truss dimensi- ime wall unless noted oth Valls Shown ered Load E	Dimension Notes			
	Nail Info Header 16d/3-1/2" 16d/3-1/2" Plie -S -S 2 erto-S	2nd Tra	ns are to erwise o face of ons are to herwise Are Bearing Hatch				
	Truss 16d/3-1/2" 16d/3-1/2" s Net Qty 2 2 2 2 2	y Ceiling p Beam	Legend				
BUILDER	Weaver Development Co. Inc.	CITY / CO .	Harnett / Harnett	В С С С С С С С С С С С С С	Tables, retained reaction Signatu	Bearing deemed requiren attached requiren size and reaction 15000#. retained reaction	T F
JOB NAME	Lot 1 Wire Road	ADDRESS	Lot 1 Wire Road	addraft (2) 1 2 3 4 5 6 7 8 9	A register to design s that exc re AD_CH/ (BASED (BASED NBER OF CA	reactions to compl nents. The I Tables (nents) to number of s greater A register to design that exce	ROC RUS ceilly R Fayet Phon Fax:
PLAN	Hickory "A"	MODEL	Roof	2550 5100 7650 10200 12750	ed design the supp eed 15000 David David David ART FC	Jess than y with the contract derived fi determine of wood s than 3000 red design the supp reds those	DF 8 SES oad In teville, e: (910)
SEAL DATE		DATE REV.	05/11/21		n profession out system d La d Lar DR JAC (S R5025(1) (REQUIRED (SIRDER	or equal prescript or shall re rom the pre- the mini tuds requ # but not professi ort system e specifice	Te & FL(& B dustri , N.C. 2)) 864- 864-4
QUOTE #		DRAWN BY	David Landry	800 3400 6800 1020 1360	onal shall m for all ndry K STU (% STU (%) & Ext END	to 3000# tive Code efer to the rescriptive imum four ired to su greater th ional shall m for any d in the at	CH DOR EAN ial Parl 28309 -8787 444
JOB #	J0521-2780	SALES REP.	Lenny Norris	Normal (h) (h) 1 2 3 0 4 0 5	J DS of	are Code Idation pport Ian be tached	l IS <

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

		Rei Fra Bering res Fra P Bering res Fra P	Ily Roa ayette hone: Fax: (S reater tha registered design that at exceed egistered	F & ES & ad Ind ville, N (910) 910) 80 ss than or vived fron termine th wood stuc an 3000# t design p te support is those sj design p	FLO FLO E BE lustria N.C. 28 864-8 64-44 r equal to r escriptiv shall refe n the pre- he minim ds require but not g profession rt system ripecified i rofession	DOR DOR AM I Park 3309 787 44	are COde idation pport ian be tached be
		retained to reactions th Signature_	design th nat exceed Dr	e support d 15000#. avid	t system - Lav	for all	<u>1</u>
		LOAD)avid	Lanc JACK	Jry : stui	DS
46, 4"		NUMBER Image: Image of the state of t	(MARED OK) & OF JACK : 	1 AULES # STUDS REC 2500 FED 2550 5100 7650 10200 12750 15300	Correction and Correc	LEX EA END C NO LOVE (24 and 3400 6800 10200 13600 17000	x xojsonus o,bje 0 3 0 4 0 5
	45' 6"	Dimension Notes 1. Al exterior wall dimensions are to face of frame wall unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall dimensions are to face of frame wall unless noted otherwise All Walls Shown Are Considered Load Bearing Match Legend Roof Area = 1692.08 sq.ft. Ridge Line = 52.07 f. Hoiz, OH = 115.69 ft. Bakeng = 58 sheets Drop Beam	ADDRESS Lot 1 Wire Road	MODEL Roof	DATE REV . 05/11/21	DRAWN BY David Landry	SALES REP. Lenny Norris
		Sym Product Manuf Qty Supported Member Header Truss HUS26 USP 12 NA 16d/3-1/2" 16d/3-1/2" Image: The state of the stat	ot 1 Wire Road	Hickory "A"			10521-2780
		BUTLDER	JOB NAME		SEAL DATE	QUOTE #	JOB # J

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0521-2780 Lot 1 Wire Road

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15716428 thru E15716455

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

May 11,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	10-2-8 10-2-8	22-2-8 12-0-0	<u> </u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. in (TC 0.28 Vert(LL) -0.34 10 BC 0.64 Vert(CT) -0.47 10 WB 0.27 Horz(CT) 0.05 2 Matrix-S Wind(LL) 0.05 2	Idefl L/d PLATES GRIP -13 >999 360 MT20 244/190 -13 >824 240 MT20 244/190 8 n/a n/a Veight: 208 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 2 and 89 lb uplift at

joint 8. 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 11,2021

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- <u>0-11-0</u> 0-11-0			33-4-0 32-5-0						34-3-0 0-11-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.04 BC 0.02 WB 0.16 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 20 20 20	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 258 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-					-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS.

All bearings 32-5-0. Max Horz 2=-171(LC 17) (lb) -

- Max Uplift All uplift 100 b or less at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22 Max Grav All reactions 250 lb or less at joint(s) 2, 30, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22, 20
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

TOP CHORD 10-11=-114/284, 11-12=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22,
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 11,2021

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT IN EXPECTED EXECT PAGE MIT-F473 (eV. 319/2/20 BEFORE USE. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F	10-2-8	16-2-8	<u> </u>	-1-8 24-2-8 1-0 3-1-0	+ <u>30-1-8</u> 5-11-0	32-5-0	-	
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4	-0,Edge], [12:0-2-0,0-1-4], [1	4:0-4-8,0-1-4], [15:0	-3-8,0-4-12]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.70 Matrix-S	DEFL. i Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.0 Wind(LL) 0.1	in (loc) l/defl 1 17 >999 8 17 >999 9 10 n/a 7 2-17 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP No.1 BRACING- TOP CHORD BOT CHORD 2x10 SP No.1 *Except* 10-15: 2x6 SP 2400F 2.0E TOP CHORD BOT CHORD Structural wood sheathing directly applied or 4-0-8 oc purlins. BOT CHORD WEBS 2x4 SP No.2 WEBS 1 Row at midpt 5-7								
REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-90(LC 12), 10=-90(LC 13) Max Grav 2=1393(LC 2), 10=1353(LC 2)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-2217/403, 4-5=-1870/483, 7-9=-2258/519, 9-10=-2889/551 BOT CHORD 2-17=-193/1848, 15-17=-195/1860, 13-15=-371/2525, 10-13=-380/2525 WEBS 4-17=-29/402, 7-15=-114/967, 9-15=-1075/232, 9-13=0/616, 5-7=-1955/459								
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10;	re loads have been considered for this de Vult=130mph (3-second aust) Vasd=103	esign. mph: TCDL=6.0psf: BCDL=€	5.0psf: h=15ft: Cat. II	: Exp C: Enclosed	:			

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; 1CDL=6.0pst; BCDL=6.0pst; BcDL=6.10st; h=15t; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	9-11-8	18-11-8	20-10-8	3 23-11-8	29-10-8	32-2-0			
Plate Offsets (X Y)	9-11-8 [1:0-9-6 0-1-2] [5:0-3-0 Edge] [9:0-4-0	9-0-0 Edge] [11:0-2-0 0-1-4] [1	1-11-0 13:0-4-4 0-1-41 [14:0-3-	3-1-0	5-11-0	2-3-8			
	[1.0-9-0,0-1-2]; [3.0-3-0,Euge]; [3.0-4-0;	Lugej, [11.0-2-0,0-1-4], [1	13.0-4-4,0-1-4], [14.0-3-	0,0-4-12]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/def	l L/d	PLATES	GRIP		
TCLL 20.0	Plate Grip DOL 1.15	TC 0.76	Vert(LL) -0.2	16 >999	360	MT20	244/190		
TCDL 10.0	Lumber DOL 1.15	BC 0.66	Vert(CT) -0.36	5 16 >999	9 240				
BCLL 0.0	Code IBC2015/TBI2014	WB 0.70	HOTZ(CT) 0.03	9 N/2	a n/a	Waight 042 lb	FT 200/		
BCDL 10.0	Code IRC2015/1PI2014	Maurix-S		5 1-16 >995	9 240	weight. 243 ib	F1 = 20%		
LUMBER- TOP CHORD 2x6 SP No.1 BRACING- TOP CHORD 807 CHORD 2x10 SP No.1 *Except* 9-14: 2x6 SP 2400F 2.0E TOP CHORD 9-14: 2x6 SP 2400F 2.0E Structural wood sheathing directly applied or 3-10-0 oc purlins. WEBS 2x4 SP No.2 WEBS 1 Row at midpt 4-6 REACTIONS. Use the distribution of the distret distret distribution of the distribution of the distribution of									
Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 9=-90(LC 13) Max Grav 1=1345(LC 2), 9=1347(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-2189/401, 3-4=-1853/491, 6-8=-2237/517, 8-9=-2874/549 BOT CHORD 1-16=-198/1827, 14-16=-200/1839, 12-14=-375/2511, 9-12=-384/2511									
WEBS 6-14=-11//300, 3-16=-03/392, 4-6=-1931/4/4, 8-14=-1081/228, 8-12=0/620 NOTES- 1) Unbalanced roof live loads have been considered for this design.									
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. with BCDL = 10 0nsf 									

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss evaluat and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPI 1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

BOT CHORD 2x6 SP No.1 2x4 SP No 2 WEBS

REACTIONS. 1=Mechanical, 7=0-3-8 (size) Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 7=-89(LC 13) Max Grav 1=1278(LC 1), 7=1331(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973, 9-12=-109/1291, 7-9=-324/1953

WEBS 4-9=-147/922, 6-9=-454/288, 4-12=-144/897, 2-12=-437/286

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	10-2-8 10-2-8	22-2-8 12-0-0			32-5-0 10-2-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. TC 0.29 Vert(LL) BC 0.65 Vert(CT) WB 0.27 Horz(CT) Matrix-S Wind(LL)	in (loc) -0.34 9-12 -0.47 9-12 0.05 7 0.05 12	l/defl L/d >999 360 >822 240 n/a n/a >999 240	PLATES GF MT20 24 Weight: 206 lb F	RIP 4/190 T = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

SERL DB0322 How 11 2021

Structural wood sheathing directly applied or 4-10-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent personal personal injury and property damage. For general guidance regarding the fabrication and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the personal persona

I			32-5-0						I	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.04 BC 0.02 WB 0.16 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 19 19 19	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 256 lb	GRIP 244/190 FT = 20%	
LUMBER-			BRACING-							

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 32-5-0

- Max Horz 1=-175(LC 17) (lb) -
 - Max Uplift All uplift 100 lb or less at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except 37=-101(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 29, 30, 31, 33, 34, 35, 36, 37, 28, 27, 25, 24, 23, 22,

21, 19

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-114/284, 10-11=-114/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

MARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design values of the second se

May 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 1 Wire Road	E15716426
J0521-2780	B1-GR	COMMON GIRDER	1	2		E13710430
Comtoch los					Job Reference (optiona	
Contech, Inc,	-ayetteville, NC - 28314,		ID:1yUksKymplk2404	ufZYCrxyoł	CUD-wZWSBY?M3pMmr	syllbsYfsGU_oXTPWaWjpGo3HwzHaMR
H	4-11-8	9-11-8	14-11-	8	19-1	1-0 <u>20-10-0</u> 1-8 0-11-0
	4110	000	000			
			5x12			Scale = 1:39.5
т			3			
		/				
			7ΨΛ			
	7.00 12		$\land \land \checkmark$			
	2×4 >>		$/ \setminus \setminus $	\sim	2×4 /4	
	2,4 \		$\langle \langle \rangle \rangle$	\sim	4	
-15	2				\searrow	
2-9	~					
1						5
व						e lợ
	·					
ě		9	8 7			×
5x8	=	5x8 =	6x8 = 6x12			5x8 =
L	7-9-0		12-2-0		19-11-0	
Plate Offsets (X V)-	7-9-0	1	4-5-0		7-9-0	I
LOADING (psf)	SPACING- 2-0-1	CSI.	DEFL.	in (loc)	I/defl L/d	PLATES GRIP
TCDL 10.0	Lumber DOL 1.1	5 BC 0.27	Vert(CT) -0.1	4 7	>999 240	WI120 244/190
BCLL 0.0 *	Rep Stress Incr NO	O WB 0.55	Horz(CT) 0.0	3 5	n/a n/a	Weight 249 lb FT 200/
BCDL 10.0		Maurix-5		5 /	>999 240	Weight. 348 ib FT = 20%
LUMBER-			BRACING-	Ctructur	ol wood oboothing dire	the applied of 4.44.42 op purling
BOT CHORD 2x6	0 SP 2400F 2.0E		BOT CHORD	Riaid ce	al wood sneatning direc	tily applied of 4-11-12 oc purlins. 10-0-0 oc bracing.
WEBS 2x6	SP No.1 *Except*			5	3	j
4-7,	,2-9: 2x4 SP No.2					
REACTIONS. (size) 1=0-3-8, 5=0-3-8					
Ma Ma	x Horz 1=-148(LC 6) x Uplift 1=-423(LC 8), 5=-642(LC 9)				
Ma	x Grav 1=4234(LC 2), 5=6219(LC	, 2)				
FORCES (lb) - M	ax Comp /Max Ten - All forces 25	0 (lb) or less except when showr	h			
TOP CHORD 1-	2=-7519/795, 2-3=-7422/798, 3-4=	-10665/1144, 4-5=-10716/1136				
BOT CHORD 1- WEBS 3-	·9=-679/6256, 7-9=-581/6251, 5-7= .7953/8888	-887/8935 14/404 2-9284/309				
WEBS 5-	1	14/404, Z-3=-204/303				
NOTES-	connected to gother with 10d (0.121	"v?") noile op follower				
Top chords conn	ected as follows: 2x6 - 2 rows stage	gered at 0-9-0 oc.				
Bottom chords co	onnected as follows: 2x10 - 4 rows	staggered at 0-2-0 oc.				
2) All loads are con	sidered equally applied to all plies,	except if noted as front (F) or ba	oc. ck (B) face in the LOAD	CASE(S)	section. Ply to	
ply connections h	nave been provided to distribute on	ly loads noted as (F) or (B), unles	ss otherwise indicated.	()		and the second second
 Unbalanced roof Wind: ASCE 7-10 	live loads have been considered to 0: Vult=130mph (3-second gust) Va	ir this design. isd=103mph: TCDL=6.0psf: BCE	0L=6.0psf: h=15ft: Cat.	: Exp C: E	nclosed:	CABA
MWFRS (envelo	pe); Lumber DOL=1.60 plate grip D	OL=1.60		, , , ,	,	
 This truss has be * This truss has has has has has has has has has h	een designed for a 10.0 psf bottom	chord live load nonconcurrent wi	th any other live loads. reas where a rectangle ?	-6-0 tall by	(2-0-0 wide	
will fit between th	he bottom chord and any other men	ibers.	eae mere a reetangle t			
 Provide mechani 1–423 5–642 	ical connection (by others) of truss t	o bearing plate capable of withst	tanding 100 lb uplift at jo	int(s) exce	pt (jt=lb)	SEAL A
8) Hanger(s) or othe	er connection device(s) shall be pro	vided sufficient to support conce	entrated load(s) 9034 lb	down and s	972 lb up at 🛛 🛃	086322
12-1-4 on bottom	h chord. The design/selection of su	ch connection device(s) is the re-	sponsibility of others.			
LOAD CASE(S) S	tandard					
1) Dead + Roof Live	e (balanced): Lumber Increase=1.1	5, Plate Increase=1.15			ng L	GNEEL
Uniform Loads (p Vert: 1-3	اار 3=-60, 3-6=-60, 1-5=-20					CR BESS
Concentrated Lo	ads (lb)					The second second
Vert: 7=	-7520(B)					May 11,2021
WARNING - Verif	y design parameters and READ NOTES ON T	HIS AND INCLUDED MITEK REFERENCE	E PAGE MII-7473 rev. 5/19/202	BEFORE US	SE.	
a truss system. Before	only with white two connectors. This design is pre use, the building designer must verify the	applicability of design parameters and pr	operly incorporate this design	into the overa	n All Sociola	
is always required for	acing mulcaled is to prevent buckling of Indiv or stability and to prevent collapse with possi	ble personal injury and property damage.	 For general guidance regard 	ng the	aony	

Is analys required to stability and to prevent contapse with possible personal injury and poperty damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see *Safety Information* available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 1=-186(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except 22=-116(LC 12), 13=-103(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 16, 15, 14, 13, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This sknu include Der Die Der Die Der Die Der Die Dese Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

			7-7-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.33 BC 0.21 WB 0.00	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) -0.04 2-6 >999 360 MT20 244/190 Vert(CT) -0.07 2-6 >999 240 MT20 244/190 Horz(CT) 0.00 n/a n/a Na Na Na	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 48 lb F1 = 20%	
LUMBER-			BRACING-	

7-7-8

TOP CHORD

BOT CHORD

•

6

except end verticals.

5 3x4 Ш

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12) Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-288/220

0-4-0 0-10-3

3x4

NOTES-

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone; C-C for members and forces & MWFRS for

- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.03 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 1 n/r 120 Vert(CT) -0.00 1 n/r 120 Horz(CT) -0.00 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 57 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS OTHERS 2x4 SP No 2 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

8 3x4 ||

REACTIONS. All bearings 7-7-8.

(lb) - Max Horz 2=228(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-269/227

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ł

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (it=lb) 11=117.

```
el annual
```

May 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			000				
			8-3-8				
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:0-2-0,0-1-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.84 BC 0.24 WB 0.00	DEFL. i Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) 0.0	n (loc) l/d 5 2-5 >9 0 2-5 >9 0 5 r	efl L/d 99 360 69 240 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.1	0 2-5 >8	86 240	Weight: 37 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF OTHERS 2x6 SF	P No.1 P No.1 P No.2 P No.2		BRACING- TOP CHORD BOT CHORD	Structural w except end Rigid ceiling	vood sheathing di verticals. g directly applied	irectly applied or 5-3-4 or 10-0-0 oc bracing.	l oc purlins,

8-3-8

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>8-3-8</u> 8-3-8		
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [12:0-2-0,0-1-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	DEFL. ir Vert(LL) 0.09 Vert(CT) -0.08 Horz(CT) -0.00	n (loc) I/defl L/d 9 10-11 >999 240 3 10-11 >999 240 9 8 n/a n/a	PLATES GRIP MT20 244/190 M18SHS 244/190 Weight: 41 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x4 SF OTHERS 2x4 SF 8-12: 2	P No.1 P No.1 P No.2 P No.2 *Except* 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 8=0-3-8 Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8)

Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216.8=188.

May 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Н

3810 11
1

6

3-11-8	1	7-11-0
3-11-8		3-11-8

4 ... 7

8

3x10 ||

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offs	sets (X,Y)	[1:0-0-4,0-0-5], [1:0-0-8,0-3-6], [3:0-0-4	,0-0-5], [3:0-0-8,0-3-6]		
LOADING	G (psf) 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.38	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) -0.02 3-4 >999 360 MT20 244/190	
TCDL	10.0	Lumber DOL 1.15	BC 0.57	Vert(CT) -0.04 3-4 >999 240	
BCLL	0.0 *	Rep Stress Incr NO	WB 0.39	Horz(CT) 0.01 3 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.01 3-4 >999 240 Weight: 100 lb FT = 20%	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8

Max Horz 1=91(LC 24) Max Uplift 1=-191(LC 8), 3=-180(LC 9) Max Grav 1=2919(LC 1), 3=2779(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-2418/177, 2-3=-2418/177 TOP CHORD 1-4=-100/1678, 3-4=-100/1678 BOT CHORD 2-4=-154/3142 WEBS

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 11,2021

Job	Truss	Truss Type	Qty	Ply	Lot 1 Wire Road	
					E15716442	
J0521-2780	D1-GR	Common Girder	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,			3.330 s Oct	7 2020 MiTek Industries, Inc. Tue May 11 12:07:51 2021 Page 2	
		ID:1yUksKymplk2404ufZYCrxyoKUD-HXJLFF3VuL_3ydrFNP8qZJBq0Y61AsOSyYWqy8zHaMM				

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.02 BC 0.01 WB 0.03 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 6 n/r 120 Vert(CT) 0.00 6 n/r 120 Horz(CT) 0.00 6 n/a n/a Weight: 60 lb FT = 20%	
			BRACINO	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 OTHERS 2x4 SP No 2 WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

(lb) - Max Horz 2=-118(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152.8=148.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 11,2021

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **AVSUPTI Quality Criteria, DSB-89 and BCSI Building Compor Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTEk® connectors. This skill include a single state of the skill include a single state of the skill include skill include state of the skill include skill include state of the skill include ski

A18 Soundside Road

lenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 1 Wire Road
					E15716444
J0521-2780	G1-GR	FLAT GIRDER	1	3	lob Reference (antional)
				-	
Comtech, Inc, Fayettev	rille, NC - 28314,		8	3.330 s Oct	7 2020 MiTek Industries, Inc. Tue May 11 12:07:53 2021 Page 2

ID:1yUksKymplk2404ufZYCrxyoKUD-DvR5gx4IPyEnBx?dVqAlekGDrMubejwlQs?x10zHaMK

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20

Concentrated Loads (lb)

Vert: 12=-276(F) 14=-259(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-259(B) 20=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F) 21=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 25=-291(B) 26=-276(F) 21=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 25=-291(B) 26=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 25=-291(B) 25=-291(B) 25=-291(B) 25=-291(B) 25=-291(B) 25=-276(F) 21=-276(F) 22=-276(F) 23=-276(F) 23=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, terction and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			5-0-0		
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.28	DEFL. in (loc) I/de Vert(LL) -0.01 2-4 >99	lefl L/d 99 360	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.00 r Wind(LL) 0.01 2-4 >99	99 240 n/a n/a 99 240	Weight: 24 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

- capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

May 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			5-0-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.09 BC 0.09 WB 0.02 Matrix S	DEFL. in (loc) l/defl L/d Vert(LL) 0.01 8 >999 240 Vert(CT) -0.01 8 >999 240 Horz(CT) -0.00 6 n/a n/a
BCDL 10.0		Wattrx-S	weight. 27 ib FT = 20 %

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

BRACING TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8)

Max Uplift 2=-147(LC 8), 6=-115(LC 8) Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147.6=115.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTerk® connectors. This solution that and inducted the Reference PAGE MICr473 fev. 519/2020 before USE. Design valid for use only with MTerk® connectors. This solution is a solution of the so

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 1 Wire Road
			_		E15716447
J0521-2780	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314,				.330 s Oct	7 2020 MiTek Industries, Inc. Tue May 11 12:07:55 2021 Page 2

8.330 s Oct 7 2020 MITek Industries, Inc. Tue May 11 12:07:55 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-9IZs4c60xaUUQF80cFCmk9MYB9Z56mP2tAU25vzHaMI

Concentrated Loads (lb)
Vert: 9=-350
 Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40
Concentrated Loads (lb)
Vert: 9=-300
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
Concentrated Loads (Ib)
Vert: 9=548
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
Concentrated Loads (Ib)
Vert: 9=566
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
Concentrated Loads (lb)
Vert: 9=-420
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (pit)
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
HOIZ: 1-2=19, 2-3=25, 3-4=19, 3-5=51
Vert. 9=-400
b) Dead + 0.6 MWPRS Wind (POS. Internal) Lett. Lumber increase=1.00, Plate increase=1.00
Vert. $1-2=30, 2-3=21, 3-4=14, 3-0=11, 2-0=10, 0-10=33, 7-10=10$
$\frac{1}{1012} + \frac{1}{12} - \frac{1}{100} + \frac{1}$
9) Dead + 0.6 MWERS Wind (Pos. Internal) Right: Lumber Increase=1.60. Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27
Concentrated Loads (lb)
Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
Concentrated Loads (lb)
Concentrated Loads (lb) Vert: 9=-339
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=-43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60. Plate Increase=1.60
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-12, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=-2, 5-6=1, 2-7=-12
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=-9, 3-4=-2, 5-6=1, 2-7=-12 Horz: 1-2=-2, 2-3=-9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-4, 2-3=-9, 2-4, 3-5=-2, 2-1, 3-4=-2, 3-4=-2, 5-6=-1, 2-7=-12 Horz: 1-2=-4, 2-3=-2, 1-3=-2,
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=-43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-21, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-21, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (plf)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=-43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=-43
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60 Plate Increase=1.60 Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60 Plate Increase=1.60 Vert: 9=43
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-24, 2-3=, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-24, 2-3=, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=-43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=-2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=-21, 3-4=-14, 5-6=-11, 2-7=-12
Concentrated Loads (lb) Vert: 9339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-324 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=-43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=-43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=-43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=-43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-14, 2-3=-21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Concentrated Loads (lb) Vert: 9–339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 2=43, 3-4=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 2=43, 3-4=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=-14, 2-5=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
Concentrated Loads (lb) Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 9=-234 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=-21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=-43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=1, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 1-2=14, 2-3=-21, 3-4=-14, 3-6=-17, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 1-2=14, 2-3=21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 1-2=-48, 2-3=-21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 1-2=-48, 2-3=-21, 3-

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 1 Wire Road
					E15716447
J0521-2780	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Tue May 11 12:07:55 2021 Page 3

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue May 11 12:07:55 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-9IZs4c60xaUUQF80cFCmk9MYB9Z56mP2tAU25vzHaMI

LOAD CASE(S) Standard	
Vert: 1-z=z, z-3=9, 3-4=z, 5-6=1, z-7=-12	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
16) Dead + 0.6 MWERS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60. Plate Increase=1.60	
Uniform Loads (off)	
Vert 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20	
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12	
Concentrated Loads (lb)	
Vert: 9=-234	
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20	
Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0	
Concentrated Loads (lb)	
Vert: 9=-234	
16) Dead: Lumber increase=0.90, Plate increase=0.90 Pit. metal=0.90	
Uniform Loads (pin) Not: $1 = 20, 2, 4 = 20, 5, 6 = 120, 2, 7 = 20$	
$\begin{array}{c} \text{Velt. } 153=20, \ 544=20, \ 5\cdot0=120, \ 2\cdot1=20 \\ \text{Concentrated Loade} (\mathbf{h}\rangle) \end{array}$	
Vari 9–200	
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWERS Wind (Neg. Int) Left): Lumber Increase=1.60. Plate Incre	ase=1.60
Uniform Loads (olf)	400-1.00
Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26	
Concentrated Loads (lb)	
Vert: 9=-454	
20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Incr	rease=1.60
Uniform Loads (plf)	
Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20	
Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0	
Concentrated Loads (Ib)	
Vert: 9=-3/5 21) Deed + 0.75 Papel in (bal) + 0.75 Attic Elect + 0.75(0.6 MWEPS Wind (Neg. Jat) 4at Papello); Humber Jagrages-1.60 Pla	to Incrosco-1.60
	te increase=1.00
Viet 1.231 2-336 3-431 5-995 6-9125 2-720	
Horr 1-219 2-314 3-419 3-59	
Concentrated Loads (b)	
Vert: 9=-375	
22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Pla	ate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20	
Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0	
Concentrated Loads (lb)	
Vert: 9=-375	
2) 1st Dead + Root Live (unbalanced): Lumber increase=1.15, Plate increase=1.15	
Violiti Lodas (pii) Violiti 1.3 -60 3.4 -60 5.6 -40 2.7 -20	
Concentrated Loads (Ib)	
Vert 9=-400	
24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-400	
25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20	
voit. 5500 28) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15. Plate Increase=1.15	
Uniform Loads (off)	
Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-350	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

AWANING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Compor Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 1 Wire Road
					E15716448
J0521-2780	M2-GR	HALF HIP	1	2	
				-	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,			3.330 s Oct	7 2020 MiTek Industries, Inc. Tue May 11 12:07:55 2021 Page 2

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue May 11 12:07:55 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-9IZs4c60xaUUQF80cFCmk9Ma59ac6mP2tAU25vzHaMI

	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20
	Vort: 0- 250
3)	Dead + Uninhabitable Attic Without Storage: Lumber Increase=1 25 Plate Increase=1 25
•,	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40
	Concentrated Loads (lb)
4	Vert: 9=-300
4)	Dead + 0.6 C-C wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
	Concentrated Loads (lb)
-	Vert: 9=548
5)	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
	Concentrated Loads (lb)
6)	Vert: 9=566
0)	Uniform Loads (olf)
	Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
	Concentrated Loads (lb)
7)	Vert: 9=-420 Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60. Plate Increase=1.60
')	Uniform Loads (plf)
	Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
	Concentrated Loads (lb)
8)	Vert: 9=-420 Dead + 0.6 MWERS Wind (Pos. Internal) Left: Lumber Increase-1.60. Plate Increase-1.60
0)	Uniform Loads (plf)
	Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10
	Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
	Concentrated Loads (lb)
9)	Vert. 9=134 Dead + 0.6 MWERS Wind (Pos. Internal) Right: Lumber Increase=1.60 Plate Increase=1.60
•,	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12
	Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27
	Concentrated Loads (lb)
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60. Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
	Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20
	H0IZ: 1-Z=-18, 2-3=-11, 3-4=-18, 3-5=-0
	Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
	Concentrated Loads (Ib)
	Vert: 9=43
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-400

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 1 Wire Road
					E15716448
J0521-2780	M2-GR	HALF HIP	1	2	lob Reference (entional)
Comtech, Inc, Fayettev	rille, NC - 28314,			3.330 s Oct	7 2020 MiTek Industries, Inc. Tue May 11 12:07:55 2021 Page 3

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue May 11 12:07:55 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-9IZs4c60xaUUQF80cFCmk9Ma59ac6mP2tAU25vzHaMI

LOAD CASE(S) Standard
Uniform Loads (plf) Vert: 1-2=14. 2-3=21. 3-4=14. 5-6=-131. 2-7=-12
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Vert: 9=43
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
Vert: 9=43
16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12
Vert: 9=-234
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20
Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
Vert: 9=-234
18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20
Concentrated Loads (lb)
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
Concentrated Loads (lb)
20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Horz: 1-2=-07, 2-3=-8, 3-4=-13, 3-5=-0
Concentrated Loads (lb)
21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
Concentrated Loads (lb)
22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20
Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
Concentrated Loads (lb) Vert: 9=-375
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (pit) Vert: 1-3=-60. 3-4=-60. 5-6=-160. 2-7=-20
Concentrated Loads (lb)
Vert: 9=-400 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf)
vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20 Concentrated Loads (lb)
Vert: 9=-400 ´´
25) 3rd Dead + 0.75 Root Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20
Vert: 9=-350
26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20
Concentrated Loads (lb)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4x4 =

TOP CHORD

BOT CHORD

3x4 =

Plate Off	sels (A, f)	[7.0-3-11,Euge], [9.0-1-6	,0-1-0], [10.0-2	-0,0-0-10]									
LOADIN TCLL TCDL BCLL	G (psf) 20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.06 0.03 0.08	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-S						Weight: 75 lb	FT = 20%	
LUMBER	₹-					BRACING-							

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No 2

REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 11,2021

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses systems, see **ANS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X, Y)	[4:0-0-0,0-0-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC/2015/TEPI2014	CSI. TC 0.14 BC 0.15 WB 0.09 Matrix S	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 5 n/a n/a	
		Matrix-S	BRACING-	

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. All bearings 14-10-0.

(lb) - Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

WEBS 2-8=-338/247, 4-6=-338/247

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Componen Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 12-5-4.

(lb) - Max Horz 1=-116(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the appliciability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=10-0-7, 3=10-0-7, 4=10-0-7

Max Horz 1=-92(LC 8)

Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent personal personal injury and property damage. For general guidance regarding the fabrication and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the personal persona

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 28 lb

FT = 20%

n/a

LUMBER-
TOP CHORD
BOT CHORD

BCDL

2x4 SP No.1 2x4 SP No.1 RD OTHERS 2x4 SP No.2

10.0

REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10

Max Horz 1=68(LC 9)

Max Uplift 1=-24(LC 13), 3=-30(LC 13)

Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

Code IRC2015/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

Matrix-P

arip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13

Max Horz 1=-44(LC 8)

Max Uplift 1=-15(LC 13), 3=-19(LC 13) Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

arip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

3x4 📎

Plate Offsets (X,Y)	[2:0-2-0,Edge]		2-10-0				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.01 BC 0.03 WB 0.00 Matrix-P	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) l, a - a - 0 3	/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%

2-10-0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0

Max Horz 1=-20(LC 8) Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 2-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

THIS IS These t compo design	BUILDER	Weaver Development Co. Inc.	CITY / CO .	Harnett / Harnett	LO, NOT (21-40) 1700 3400 5100 6800 8500 10200 11900 13600 15300	Signatu	Bearing deemed requiren attached requiren size and reaction Tables. retained reaction	T F	ŀ
A TRUS russes a nents to l at the sp	JOB NAME	Lot 1 Wire Road	ADDRESS	Lot 1 Wire Road	AD CH. (BASE)	re	reactions to compl nents. The I Tables (nents) to number s greater A register to design that exce A register to design s that exce	RUS eilly F Fayet Phon Fax	
S PLACEN re design be incorp ecification	PLAN	Hickory "A"	MODEL	Floor	ART F() ON TABLE ACK STUDS HEADER 2550 5100 7650 10200 12751 15300	Davi Davi	less that y with the e contract derived 1 determin of wood s than 300 red desig n the sup seeds thos red desig n the sup ceed 1500	SES toad Ir teville e: (910)	
MENT DIA ed as ind orated int n of the b	SEAL DATE	Seal Date	DATE REV.	05/11/21	OR JA(es RESOLINE VERTICE NOTIFIC	<i>ol La</i> id La	n or equa e prescrip tor shall i rom the p te the mir studs req 0# but no n profess port syste e specifie n profess port syste	& FL & B ndustr (N.C. 0) 864 864-4	те
GRAM ON ividual bu to the buil puilding de	QUOTE #	Quote #	DRAWN BY	David Landry	CK STU () 5 (5) 2 8 64 640 SU 4 4 4 4 4 4 4 4 4 4 4 4 4	<i>indr</i> ndry	I to 3000# tive Code refer to th prescriptiv imum fou uired to s t greater f sional sha em for an ed in the a ional sha em for all	ial Par 28309 -8787	
ILY. IIIding ding esigner.	JOB #	J0521-2781	SALES REP.	Lenny Norris	/DS M30rg1A Ng (F) M30rg1A Ng (F) 00 3 00 4 00 5	.y	# are e ve Code indation upport than II be y attached II be	ΛS ^{rk}	

Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. 2. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24"oc.

	Conne	ctor Info	rmati	ion	Nail Info	ormation
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
\bigcirc	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM3	12' 0"	2x10 SPF No.2	2	2
GDH	20' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2

Truss Placement Plan Scale: 1/4"=1'

Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

0.

5

32

ā

			T	CO RO RUS Reilly F Fayet Phon	OF 8 SES toad Ir teville ie: (910)	Te & FLC & BI ndustri v, N.C. 2 0) 864- 864-4	CH DOR EAM al Park 18309 8787	S
		_	Bearing deemed requirer attached requirer size and	reactions to compl nents. Th d Tables (nents) to	Jess that y with the e contract derived f determin of wood) or equal f prescripti for shall re from the pr the minin studs requi	to 3000# ar ve Code fer to the escriptive num founc	re Code Jation
			reaction 15000#. retained reaction Tables. retained reaction	A registe A registe I to desig I that exc A registe I to desig Is that exc	than 3000 red design n the supp seds thos red design n the supp ceed 1500)# but not (n professio port system e specified n professio port system 0#.	in the atta in al shall k in for any in the atta in al shall b n for all	in De ached De
8' 0"			Signatu	ire	Zavi Davi	d La id Lan	n <i>dry</i> dry	,
	.		LO, NJ	AD CH (BASEI WBER OF (7)	ART FC 5 ON TABLE VCK STUDS HEADER Z	DR JACI	K STUD 3 (b)) 9 EA END OI 2	א 5 ⊮ ניַנו
6' 4"			B C C C C C C C C C C C C C	1 2 3 4 5 6 7 8 9 9	日本 日本 日本 日本 日本 日本 日本 日本 日本 日本	- 2 3 - 2	3400 6800 10200 13600	
,	1 45' 6"	Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise	lett	g				
		All Walls Shown Are Considered Load Bearing	Harnett / Harr	Lot 1 Wire Roa	Floor	05/11/21	David Landry	Lenny Norris
		Connector Information Noil Information	ITY / CO.	NDDRESS	VODEL	ATE REV.	RAWN BY	ALES REP.
21. 2"		Sym Product Manuf Qty Supported Member Header Truss HUS410 USP 22 NA 16d/3-1/2" 16d/3-1/2" THDH412 USP 1 NA 16d /3-1/2" 16d /3-1/2" PlotID Length Product Plies Net Qty BM1 12' 0" 1-3/4"x 16" LVL Kerto-S 2 2	Co. Inc. 6		<			<u> </u>
		BM2 15' 0" 1-3/4"x 16" LVL Kerto-S 2 2 BM3 12' 0" 2x10 SPF No.2 2 2 GDH 20' 0" 1-3/4"x 11-7/8" LVL Kerto-S 2 2	elopment	toad				
,		- <u>1</u> Truss Placement Plan Scale: 1/4"=1'	Weaver Dev	Lot 1 Wire R	Hickory "A"	Seal Date	Quote #	J0521-2781
			BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

lis	Design	(<i> </i>	Client: Project: Address:	Weaver Dev	elopment			Date: Input by Job Nan Project i	5/18/20 : David ne: The Hi #: J0521-	021 ₋andry ckory II P 2781	lan			Page 1 of 8
BM1 k	Kerto-S L\	/L 1.	750" >	(16.00	0" 2-	-Ply - P	ASS	SED	Level: Lev	el				
1 SPF		2	•	1					2	SPF				1'4"
Member Inf	formation		1.				Read	tions UN	NPATTER	NED I	o (Uplift)			
Type: Plies: Moisture Conc Deflection LL: Deflection TL: Importance:	Girder 2 lition: Dry 480 360 Normal - II		Applicati Design I Building Load Sh Deck: Ceiling:	ion: Method: , Code: Paring:	Floor ASD IBC/IRC 2015 No Not Checked Gypsum 1/2'	5	Brg 1 2	Direction Vertical Vertical	Liv	re 0 0	Dead 2869 2869	Snow 2079 2079	Wind 0 0	Const 0 0
Temperature:	Temp <= 100)°F					Beer	•••••						
							Bear Bea 1 - 3	ring Leng SPF 3.500	ith Dir.)" Vert	Cap. 95%	React D/L 2869 / 20	lb Total 79 4948 79 4948	Ld. Case	Ld. Comb. D+S
Analysis Re	sults						2-0	5FT 0.000	ven	5070	2000720		L	0.0
Analysis Moment Unbraced Shear LL Defl inch TL Defl inch	Actual 13679 ft-lb 13679 ft-lb 3615 lb 0.069 (L/2000) 0.164 (L/840)	Location / 5'11 1/2" 3 5'11 1/2" 4 1'7 1/2" 4 5'11 1/2" 4 5'11 1/2" 4	Allowed 39750 ft-lb 13699 ft-lb 13739 lb 0.287 (L/480 0.383 (L/360	Capacity 0.344 (349 0.999 (100%) 0.263 (269 0.240 (249) 0.240 (249)	Comb. (b) D+S D+S (c) D+S (c) S (c) D+S (c) D+S	Case L L L L								
Design Not				, (,		1							
1 Provide sup may also be 2 Fasten all p to exceed 6 3 Refer to las 4 Girders are 5 Top loads n 6 Top must be 7 Lateral slen	port to prevent late e required at the int lies using 3 rows of ". t page of calculatio designed to be sup nust be supported e e laterally braced at demess ratio base	ral movemen erior bearings f 10d Box nail ns for fastene oported on the equally by all p t a maximum d on single pt	t and rotation by the build s (.128x3") a rs required f bottom edg blies. of 8'8 3/8" o. y width.	n at the end I ling code. at 12" o.c. Ma for specified I ge only. .c.	oearings. Late aximum end o oads.	eral support distance not								
ID	Load Type	l	ocation	Trib Width	Side	Dead 0.9	-	_ive 1 Sr	now 1.15	Wind '	I.6 Const	. 1.25 Con	nments	
1	Uniform				Тор	120 PLF		0 PLF	0 PLF	0 P	LF	0 PLF Wall		
2	Uniform Self Weight				Тор	349 PLF 12 PLF		0 PLF	349 PLF	0 P	LF	0 PLF A2		
Notes Calculated Structured structural adequacy of design criteria and responsibility of the of ensure the componi- application and the off	Designs is responsible only of this component based o loadings shown. It is ustomer and/or the contrac ent suitability of the init to the dimensione and lead	chemica of the Handling n the 1. LVL bea tor to 2. Refer regardin anded fastenin	ls g & Installations ms must not be cu to manufactured g installation g details, beam s	ON it or dri∎ed r's product info requirements, r strength values, ar	6. For f pondi rmation nulti-ply id code	ll at roofs provide p ing	oroper drair	age to prevent	Manufact Metsä Wo 301 Merrit Norwalk, 0 (800) 622-	od t 7 Building CT 06851 5850	, 2nd F l oor	Comtech, I 1001 S. Re Fayetteville USA 28314 910-864-TF	nc. ∎y Road, Suite # , NC RUS	1639
 appreasion, and to veri Lumber 1. Dry service conditient 2. LVL not to be treat 	ons, unless noted otherwise ted with fire retardant or corr	approva 3. Damage 4. Design a 5. Provide lateral d	Is ad Beams must no assumes top edge [atera] support a isplacement and re	t be used is laterally restrain t bearing points t otation	ed o avoid This	s design is va l id	l until 4/7	/2024	ICC-ES: E	awood.cor SR-3633	n/us	0	от	есн

Version 21.40.305 Powered by iStruct™ Dataset: embedded

	/		Client:	Weaver Developr	nent	Date	9:	5/18/2021	Page 2 of 8
1	isDesign		Project:			Input	t by: Name:	David Landry The Hickory II Plan	
+	13D cargin		Address.			Proje	ect #:	J0521-2781	
BM1	Kerto-S	LVL	1.750"	X 16.000"	2-Plv	- PASSED	Le	vel: Level	
				/	<u> </u>				
•	• •	•	•	• •	•	• •	•	• •	$\overline{\mathbf{M}}$ \mathbf{T}
	•	•		•					WI L
								$\overline{\mathbf{v}}$	1'4"
	• •	•	•	• •	•	• •	•		
								2 SPF	
1				11'11"					3 1/2"
1				11'11"				Y	
Multi-Ply	/ Analysis								
Fasten all	plies using 3 i	rows of	10d Box nails	s (.128x3") at 12	" o.c Maxim	num end distanc	e not	to exceed 6".	
Capacity		0.0	%						
Load Yield Limit pe	er Foot	0.0 245	PLF .6 PLF						
Yield Limit pe	er Fastener	81.9	9lb.						
Yield Mode Edge Distand	ce	IV 1 1/	2"						
Min. End Dis	stance	3"	-						
Load Combin	nation	1.00	`						
Bulation rud		1.00	<u> </u>						
Notes			chemicals		6. For flat roofs pro	ovide proper drainage to prev	event N	lanufacturer Info	Comtech, Inc. 1001 S. Reilly Road. Suite #639
Calculated Struct structural adequ	tured Designs is responsible acy of this component ba	e only of the used on the	Handling & Install 1. LVL beams must not b	ation be cut or drilled	ponding		N 3	letsä Wood 01 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria responsibility of ensure the con-	and loadings shown. the customer and/or the c mponent suitability of the	It is the contractor to intended	2 Refer to manufac regarding installatio	turer's product information on requirements, multi-ply			N IS	lorwalk, CT 06851 300) 622-5850	28314 910-864-TRUS
application, and t	to verify the dimensions and	loads.	approvals approvals 3. Damaged Beams mus	im screngtn values, and code st not be used			w w	ww.metsawood.com/us	
1. Dry service c 2. LVL not to be	onditions, unless noted othe e treated with fire retardant	erwise or corrosive	 Design assumes top e Provide lateral support 	edge is laterally restrained ort at bearing points to avoid nd rotation				50 20. EON 0000	соттесн
Version 21.40	205 Powered by iStru		t: omboddod		i nis design is	s vaild until 4///2024			

Version 21.40.305 Powered by iStruct™ Dataset: embedded

	/		Client:	Weaver Developm	ient	Da	te:	5/18/2021	Page 4 of 8
1	isDesign		Project: Address:			Inp Jot	ut by: Name:	David Landry The Hickory II Plan	
+						Pro	oject #:	J0521-2781	
BM2	Kerto-S	LVL	1.750"	X 16.000"	2-Ply	- PASSED		evel: Level	
•	• •	•	•	• •	• •	•	•	• • •	· [[] []
・	•	• •	•	• •	•	• •	•		· 2 1'4"
	• •	•	•	• •	• •	•	•	• • •	
	F End Grain							2 SPF End	Grain
					14'7 1/2"				1]3 1/2"
1				Î	4'7 1/2"				1
Multi-Di	v Analysis								
Fasten all	nlies using 3	rows of 10	d Box nails	(128x3") at 12"	oc Maxim	um end distar	nce no	t to exceed 6"	
Capacity	<u>p</u>	79.8 %		(
Load Yield Limit p	er Foot	196.0 F 245.6 F	²LF ²LF						
Yield Limit p	er Fastener	81.9 lb.							
Edge Distan	се	1 1/2"							
Min. End Dis	stance	3"							
Duration Fac	ctor	1.00							
Nete					Q East first an off	uide seeses dooloo oo '		Manufacturer Info	Comtech, Inc.
Calculated Structural adequi	tured Designs is responsib Jacy of this commonent h	ch leonlyofthe Han ased on the 4 ···	dling & Installa	tion	 For mat roots pro ponding 	wide proper drainage to p	nevent	Metsä Wood 301 Merritt 7 Ruilding, 2nd Elect	■ 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA
design criteria responsibility of	and loadings shown. the customer and/or the	It is the 2 Re contractor to re he intended	efer to manufactu garding installation	urer's product information requirements, multi-ply				Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and Lumber	to verify the dimensions an	diloads ap 3 Da	sterning details, bean oprovals amaged Beams must	n strength values, and code				www.metsawood.com/us ICC-ES: ESR-3633	
 Dry service of 2. LVL not to b 	conditions, unless noted oth e treated with fire retardan	erwise 4. De 5. Pr tor corrosive 1a	esign assumes top ed rovide lateral suppor teral displacement an	ge is laterally restrained t at bearing points to avoid d rotation	This design is	valid until 4/7/2024			соттесн
L	205 D 11 10								

Version 21.40.305 Powered by iStruct™ Dataset: embedded

	1		Client:	Weaver Devel	opment		Date:	5/18/2021	Page 6 of 8
1	icDecian		Project:				Input by:	David Landry	
4	ISDESIGI		Address:				Job Name Project #:	J0521-2781	
BM3	S_P_F #	2 2 (א ייחחו	10 000"	2_Plv	- PASSI		Level: Level	
	0-1-1 #				2-i iy	-1700			
							I		
									_
•	•	•	•	• •	•	•	•	• • •	· Ĩ ₩ Ź
									9 1/4"
	•	•	•	• •	•	•	•		
1 SP	F End Grain							2 SPF End G	arain
[12'				∫
1					12'				1
Multi-Ply	y Analysis								
Fasten al	plies using 2 i	rows of 10d	Box nails	(.128x3") at	12" o.c Maxi	mum end di	stance no	ot to exceed 6".	
Capacity		0.0 % 0.0 PL F							
Yield Limit p	er Foot	157.4 PL	F						
Yield Limit p	er Fastener	78.7 lb.							
Edge Distan	ce	1 1/2"							
Min. End Dis	stance	3"							
Duration Fac	ctor	1.00							
							Г	Manufacturer Info	Comtech, Inc.
							F		1001 S. Reilly Road, Suite #639 Fayetteville, NC
									28314 910-864-TRUS
									Comtooul
					This desigr	n is valid until 4/7/2	2024		Connech

TisDesign	Cl Pr Ad	ient: Weaver Dev oject: ddress:	velopment		Date: Input by: Job Nam	5/18/2021 David Lan e: The Hickor	dry ry II Plan		Page 7	of 8
CDH Karta	<u>-</u>	750" ¥ 11 93	75" 2 DI			: J0521-278 Level: Level	1			
GDH Kerto-	SLVL I.	100 A 11.01	5 2 -FI	y = PA	SSED					
*****	2				****	3	*****			
1 SPF End Grain			1	*		-Win	2 SPF E	ind Grain		/8"
			16'10"						´ ´ 3 1/2"	
			10.10.					I		
Member Informatio	n			R	eactions UN	PATTERNE	D lb (Uplift))		
Type: Girde	r	Application:	Floor	Br	g Direction	Live	Dead	Snow	Wind C	Const
Plies: 2 Moisture Condition: Dry Deflection LL: 480 Deflection TL: 360		Design Method: Building Code: Load Sharing: Deck:	ASD IBC/IRC 2015 No Not Checked		1 Vertical 2 Vertical	0 0	1509 1509	168 168	0 0	0 0
Importance: Norm	al - II	Ceiling:	Gypsum 1/2"							
Temperature: Temp	<= 100°F			B	earings					
					Bearing Lengt 1 - SPF 3.500" End	h Dir. (' Vert	Cap. React D/L 16% 1509 / 1	lb Total Ld 68 1677 L	. Case Ld. Co D+S	omb.
Analysis Results					Grain				5.0	
Analysis Actual Moment 6008 ft-lb Unbraced 6678 ft-lb	Location A 8'5" 17 8'5" 66	Ilowed Capacity 7919 ft-lb 0.335 (34 684 ft-lb 0.999 (100%)	Comb. C %) D U D+S L	Case Iniform	2 - SPF 3.500" End Grain	vert	16% 150971	68 1677 L	D+S	
LL Defl inch 0.035 (L/5	617) 8'5 1/16" 0.	409 (L/480) 0.085 (9%	») S L							
TL Defl inch 0.348 (L/5	64) 8'5 1/16" 0.	546 (L/360) 0.638 (64	%) D+S L							
Design Notes 1 Provide support to prevmay also be required a 2 Fasten all plies using 2 to exceed 6". 3 Refer to last page of ca 4 Girders are designed to 5 Top loads must be supp 6 Top must be laterally br 7 Lateral slenderness rat	ent lateral movement a the interior bearings t rows of 10d Box nails iculations for fasteners be supported on the l ported equally by all pli aced at a maximum of o based on single ply	and rotation at the end by the building code. (.128x3") at 12" o.c. M required for specified bottom edge only. les. 14'10 7/16" o.c. width.	bearings. Lateral si aximum end distan loads.	upport ice not						
ID Load T	ype Lo	ocation Trib Width	Side De	ead 0.9	Live 1 Sno	ow 1.15 V	Vind 1.6 Const	1.25 Comm	ents	
1 Uniform			Тор Тор	60 PLF			0 PLF	0 PLF Wall		
2 Uniform	0 0 0 to 2	16 10 0 1 0 0	Тор	90 PLF				0 PLF BIGE	her	
Self We	ight		тор .	9 PLF	0101	201 01	0101		au	
Notes Calculated Structured Designs is respon structural adequacy of this componen design criteria and loadings sho responsibility of the customer and/or t ensure the component suitability of application, and to varity the dimensioner	sible only of the t based on the m. It is the contractor to the intended and loads	& Installation s must not be cut or driled manufacturer's product infi installation requirements, details, beam strength values, a	6. For flat roofs ponding ormation multi-ply nd code	's provide proper	drainage to prevent	Manufacturer Metsä Wood 301 Merritt 7 E Norwalk, CT 0 (800) 622-585	Info Building, 2nd Floor 6851 0 od com/up	Comtech, Inc. 1001 S. Reilly F Fayetteville, NC USA 28314 910-864-TRUS	Road, Suite #639	
Explosion, and to verify the dimensions Lumber I. Dry service conditions, unless noted LUL not to be treated with fire retars	and loads. approvals 3. Damaged 4. Design as iant or corrosive 5. Provide la lateral disp	Beams must not be used sumes top edge is laterally restrair teral support at bearing points accement and rotation	to avoid This desig	gn is valid unti	4/7/2024	www.metsawo ICC-ES: ESR-	oa.com/us 3633	co	тесн	J

*	/		Client: Project:	Weaver Developr	nent	Date: Input I	5/18/2021 by: David Landry	Page 8 of 8
- 1	isDesign		Address:			Job N Projec	ame: The Hickory II Plan tt#: J0521-2781	
GDH	Kerto-S	LVL	1.750"	X 11.875"	2-Ply	- PASSED	Level: Level	
	•••	•	•••	•••	•••	•••	• • •	· · · ~ 11 7/8"
1 SPF	• • End Grain	•	• •	• •	• •	• •	••••	SPF End Grain
					16'10"			3 1/2"
ł					16'10"			ł
Multi_Dly	/ Analycic							
Fasten all	plies using 2	rows of	10d Box nails	s (.128x3") at 12	" o.c Maxim	um end distance	not to exceed 6".	
Capacity Load		0.0 0.0	% PLF					
Yield Limit pe Yield Limit pe	er Foot er Fastener	163 81 9	.7 PLF					
Yield Mode		IV						
Edge Distand Min End Dis	ce tance	1 1/: 3"	2"					
Load Combin	nation	0						
Duration Fac	stor	1.00)					
Notes			chemicals		6. For flat roofs pro	vide proper drainage to preve	nt Manufacturer Info	Comtech, Inc.
Calculated Struct	tured Designs is responsib acy of this component b	le only of the h ased on the	andling & Installa	ation	ponding	the second of th	Metsä Wood	Fayetteville, NC USA
design criteria responsibility of	and loadings shown the customer and/or the	It is the contractor to	 LVL beams must not b Refer to manufact regarding installatio 	e cut or an∎ea turer's product information n requirements, multi–ply			Norwalk, CT 06851	28314 910-864-TRUS
ensure the cor application, and t	mponent suitability of t to verify the dimensions and	ne intended dioads.	fastening details, bea approvals	m strength values, and code			(800) 622-5850 www.metsawood.com/us	
1. Dry service or	onditions, unless noted oth	erwise	 Damaged beams musical design assumes top e Provide lateral support 	dge is laterally restrained rt at bearing points to avoid			ICC-ES: ESR-3633	Comtecul
2. LVL HOT TO DE	205 During retardant		lateral displacement a	nd rotation	This design is	valid until 4/7/2024		

Version 21.40.305 Powered by iStruct[™] Dataset: embedded

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0521-2781 Lot 1 Wire Road

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15739897 thru E15739904

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

May 18,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MITek or TRENCO. Any project specific information included is for MITek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MITek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

L			8-7-0			
1			8-7-0			1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [17:0-1-8,0-1-8], [18:0-1-	8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.00 WB 0.05 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 9 n/a n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	2 No.1(flat) 2 No.1(flat) 2 No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0	oc purlins,	

REACTIONS. All bearings 8-7-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 3=-71 6=-71 19=-71 20=-77

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

11-1-0							
Plate Offsets (X,Y)	[4:0-1-8,Edge], [14:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.01 WB 0.04 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 10 n/a n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,		

REACTIONS.

DNS. All bearings 11-1-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss evaluat and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPI 1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

TOP CHORD

2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS 2x4 SP No.3(flat) OTHERS

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

Structural wood sheathing directly applied or 3-5-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x10 =

	L	14-7-12				26-5-0			
		14-7-12					11-9-	-4	
Plate Of	fsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8,Edge],	[16:0-1-8,Edge], [21:0-1-8	3,Edge]					
LOADIN TCLL TCDL BCLL BCLL	IG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NC Code IRC2015/TPI2014) CSI. TC 0.63 BC 0.65 WB 0.53 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.17 21-22 -0.25 21-22 0.03 14	l/defl L >999 4 >697 3 n/a r	_/d 80 60 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBE TOP CH BOT CH WEBS REACT	R- IORD 2x4 SF IORD 2x4 SF 2x4 SF IONS. (size Max G	² No.1(flat) ² No.1(flat) ² No.3(flat) e) 22=0-3-8, 17=0-3-8, 14=Me Srav 22=727(LC 10), 17=1669(L	chanical C 1), 14=1068(LC 7)	BRACING TOP CHO BOT CHO	RD Struct excep RD Rigid (6-0-0 (ural wood she end verticals æiling directly oc bracing: 17	eathing dire applied o 7-19,16-17	ectly applied or 6-0-0 c r 10-0-0 oc bracing, E	oc purlins, Except:
FORCE TOP CH BOT CH WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 13-14=-611/0, 2-3=-1987/0, 3-4=-1987/0, 4-5=-1739/0, 5-6=-1739/0, 6-8=0/1282, 8-9=0/1282, 9-10=-1182/0, 10-11=-1182/0, 11-12=-1182/0 BOT CHORD 21-22=0/1314, 20-21=0/1987, 19-20=0/1987, 17-19=-192/817, 16-17=-367/573, 15-16=0/1182, 14-15=0/957 WEBS 8-17=-284/0, 2-22=-1440/0, 2-21=0/744, 3-21=-260/0, 6-17=-1781/0, 6-19=0/1122, 4-19=-647/0, 9-17=-1466/0, 9-16=-0/918, 10-16=-330/0, 12-14=-1053/0, 12-15=-87/307								
NOTES 1) Unba 2) All pla	lanced floor liv ates are 3x4 M	e loads have been considered for T20 unless otherwise indicated.	r this design.						

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

1.5x3 ||

3x10 =

3x6 FP =

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

3x6 =

LOAD CASE(S) Standard 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 14-22=-10, 1-13=-100

Concentrated Loads (lb) Vert: 13=-500

May 18,2021

3x6 =

			10-10-0		
Plate Offsets (X,Y)	[8:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.35 WB 0.30 Matrix-S	DEFL. in Vert(LL) -0.08 Vert(CT) -0.11 Horz(CT) 0.02	(loc) l/defl L/d 9-10 >999 480 9-10 >999 360 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 56 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

(size) 10=0-3-8, 7=0-3-8 REACTIONS. Max Grav 10=576(LC 1), 7=576(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1234/0, 3-4=-1234/0, 4-5=-1234/0

BOT CHORD 9-10=0/981, 8-9=0/1234, 7-8=0/982 WEBS 2-10=-1073/0, 5-7=-1075/0, 5-8=0/485, 2-9=0/478, 3-9=-255/0, 4-8=-266/0

NOTES-

Р

 Unbalanced floor live loads have been considered for this design.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

l	11-11-0							
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.78 BC 0.61 WB 0.34 Matrix-S	DEFL. ir Vert(LL) -0.19 Vert(CT) -0.29 Horz(CT) 0.02	(loc) l/defl L/d 9-10 >740 480 9-10 >490 360 7 n/a n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied of	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,			

REACTIONS. (size) 10=0-3-8, 7=Mechanical

Max Grav 10=635(LC 1), 7=1142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 6-7=-616/0, 2-3=-1508/0, 3-4=-1508/0, 4-5=-1508/0

BOT CHORD 9-10=0/1112, 8-9=0/1508, 7-8=0/1124

WEBS 2-10=-1219/0, 2-9=0/558, 5-7=-1238/0, 5-8=0/654, 4-8=-352/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 7-10=-10, 1-6=-100

Concentrated Loads (lb)

Vert: 6=-500

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			14-6-0						
			14-6-0			I			
Plate Offsets (X,Y	[4:0-1-8,Edge], [11:0-1-8,Edge]								
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Pag Strass Incr. VES	CSI. TC 0.61 BC 0.84	DEFL. ir Vert(LL) -0.20 Vert(CT) -0.25 Horz(CT) -0.03	(loc) l/defl L/d 9-10 >838 480 9-10 >684 360	PLATES MT20	GRIP 244/190			
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S	1012(01) 0.03	0 11/a 11/a	Weight: 73 lb	FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x BOT CHORD 2x WEBS 2x	4 SP No.1(flat) 4 SP No.1(flat) 4 SP No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,				
REACTIONS.	(size) 12=0-3-8, 8=Mechanical ax Grav 12=778(LC 1), 8=784(LC 1)								

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2243/0, 3-4=-2243/0, 4-5=-2186/0, 5-6=-2186/0

BOT CHORD 11-12=0/1424, 10-11=0/2243, 9-10=0/2243, 8-9=0/1429 WEBS

2-12=-1561/0, 2-11=0/958, 3-11=-303/0, 6-8=-1573/0, 6-9=0/836, 5-9=-271/41, 4-9=-428/186

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

11-7-8								
11-7-8								
Plate Offsets (X,Y) [1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,Edge]								
LOADING (psf) TCLL 40.0	SPACING- 2-0-0 Plate Grip DOL 1.00	CSI. TC 0.60	DEFL. in Vert(LL) -0.16	(loc) I/defl L/d 9-10 >846 480	PLATES MT20	GRIP 244/190		
TCDL 10.0 BCLL 0.0 BCDL 5.0	Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.51 WB 0.33 Matrix-S	Vert(CT) -0.25 Horz(CT) 0.02	9-10 >540 360 7 n/a n/a	Weight: 58 lb	FT = 20%F, 11%E		
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,			
REACTIONS. (size Max G	e) 10=Mechanical, 7=0-3-8 irav 10=626(LC 1), 7=619(LC 1)							

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1441/0, 3-4=-1441/0, 4-5=-1441/0

BOT CHORD 9-10=0/1081, 8-9=0/1441, 7-8=0/1087

WEBS 2-10=-1190/0, 2-9=0/515, 5-7=-1190/0, 5-8=0/606, 4-8=-323/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

May 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

