

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

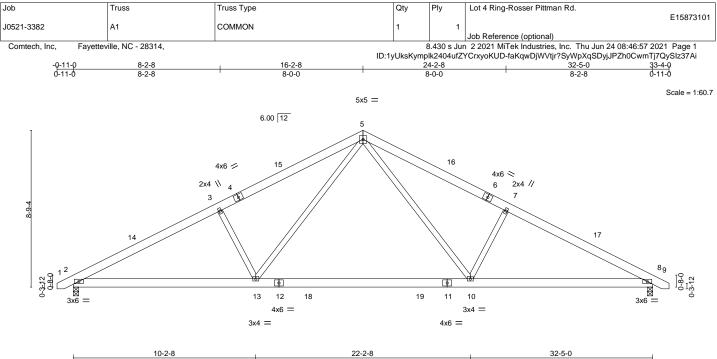
THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0521-3382 Lot 4 Ring-Rosser Pittman Rd.

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15873101 thru E15873128


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

June 24,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	10-2-8		12-0-0		10-2-8
LOADING (psf)	SPACING- 2-0	0 CSI .	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.28	Vert(LL) -0.34 10-13	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.	5 BC 0.64	Vert(CT) -0.47 10-13	>824 240	
BCLL 0.0	* Rep Stress Incr YE	S WB 0.27	Horz(CT) 0.05 8	n/a n/a	
BCDL 10.0	Code IRC2015/TPI201	Matrix-S	Wind(LL) 0.05 2-13	>999 240	Weight: 208 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

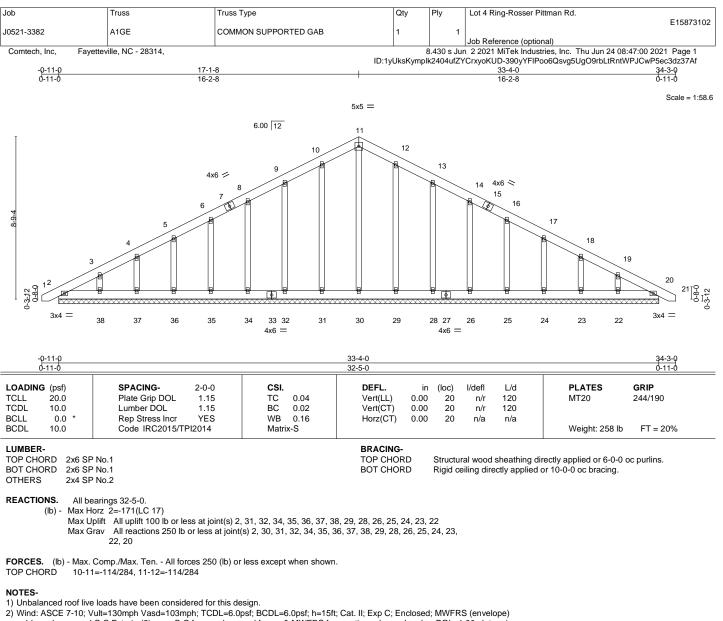
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 2 and 89 lb uplift at joint 8.

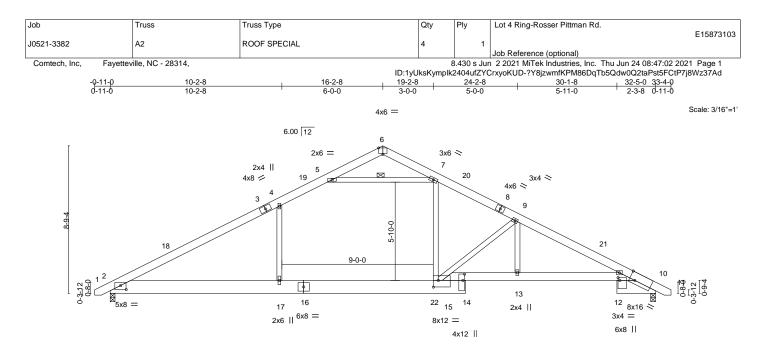
6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


- gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22,
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

June 24,2021

MARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT Interstep Texpect Proceed MIT-1473 (eV. 319/2/20 betrofte Use. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

H	10-2-8 10-2-8	<u>16-2-8</u> 6-0-0	<u>19-2-8</u> 21-1 3-0-0 1-11	-0 3-1-	-0	30-1-8 32-5-0 5-11-0 2-3-8	
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4	-0,Edge], [12:0-2-0,0-1-4],	[14:0-4-8,0-1-4], [15:0-3	3-8,0-4-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.70 Matrix-S	DEFL. in Vert(LL) -0.21 Vert(CT) -0.38 Horz(CT) 0.09 Wind(LL) 0.17	17 > 17 > 10	/defl L/d •999 360 •999 240 n/a n/a •999 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x10 10-15	P No.1 SP No.1 *Except* : 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		ing directly app	ng directly applied or 4-0-8 blied or 10-0-0 oc bracing. 5-7	3 oc purlins.
Max I Max I	te) 2=0-3-8, 10=0-3-8 Horz 2=-110(LC 10) Jplift 2=-90(LC 12), 10=-90(LC 13) Grav 2=1393(LC 2), 10=1353(LC 2)						
TOP CHORD 2-4= BOT CHORD 2-17	. Comp /Max. Ten All forces 250 (lb) or -2217/403, 4-5=-1870/483, 7-9=-2258/5 '=-193/1848, 15-17=-195/1860, 13-15=-3 '=-29/402, 7-15=-114/967, 9-15=-1075/2	19, 9-10=-2889/551 71/2525, 10-13=-380/252	5				

NOTES-

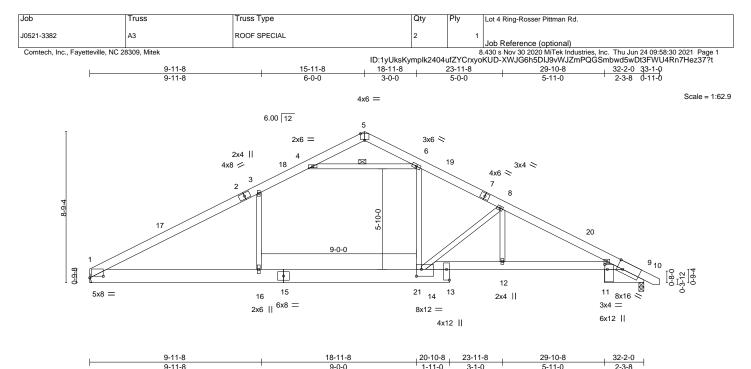
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.


6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LOADING (psf)	SPACING- 2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC	0.76	Vert(LL)	-0.21	16	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC	0.66	Vert(CT)	-0.36	16	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB	0.70	Horz(CT)	0.09	9	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix	(-S	Wind(LL)	0.16	1-16	>999	240	Weight: 243 lb	FT = 20%
LUMBER-				BRACING-						
TOP CHORD 2x6 SF						Ctructu	rolucod			
				TOP CHOR	(D	Siluciu	rai woou	sneatning di	rectly applied or 3-10-0	oc puriins.
BOT CHORD 2x10 S	P No.1 *Except*			TOP CHOR BOT CHOR					rectly applied or 3-10-0 or 10-0.	oc purlins.
						Rigid c		ectly applied		oc purlins.
9-14: 2	P No.1 *Except* x6 SP 2400F 2.0E			BOT CHOR		Rigid c 1 Row	eiling dire at midpt	ectly applied	or 10-0-0 oc bracing. 1-6	·
9-14: 2	P No.1 *Except* x6 SP 2400F 2.0E			BOT CHOR		Rigid c 1 Row MiTeł	eiling dire at midpt < recomm	ectly applied	or 10-0-0 oc bracing. 1-6 abilizers and required c	cross bracing
9-14: 2	P No.1 *Except* x6 SP 2400F 2.0E			BOT CHOR		Rigid o 1 Row MiTel be ins	eiling dire at midpt < recomm stalled du	ectly applied rends that St ring truss ere	or 10-0-0 oc bracing. 1-6	cross bracing
9-14: 2 WEBS 2x4 SF	P No.1 *Except* x6 SP 2400F 2.0E ? No.2	-8		BOT CHOR		Rigid o 1 Row MiTel be ins	eiling dire at midpt < recomm	ectly applied rends that St ring truss ere	or 10-0-0 oc bracing. 1-6 abilizers and required c	cross bracing
9-14: 2 WEBS 2x4 SF REACTIONS. (lb/size	P No.1 *Except* x6 SP 2400F 2.0E • No.2 • 1=1278/Mechanical, 9=1331/0-3-	-8		BOT CHOR		Rigid o 1 Row MiTel be ins	eiling dire at midpt < recomm stalled du	ectly applied rends that St ring truss ere	or 10-0-0 oc bracing. 1-6 abilizers and required c	cross bracing
9-14: 2 WEBS 2x4 SF REACTIONS. (Ib/size Max H	P No.1 *Except* x6 SP 2400F 2.0E ? No.2	-8		BOT CHOR		Rigid o 1 Row MiTel be ins	eiling dire at midpt < recomm stalled du	ectly applied rends that St ring truss ere	or 10-0-0 oc bracing. 1-6 abilizers and required c	cross bracing

TOP CHORD 1-17=-2189/369, 2-17=-2049/393, 2-3=-1985/401, 3-18=-1853/486, 4-18=-1798/491,

- 6-19=-2147/517, 7-19=-2156/496, 7-8=-2237/493, 8-20=-2811/549, 9-20=-2874/524 BOT CHORD 1-16=-198/1827, 15-16=-198/1827, 15-21=-200/1839, 14-21=-198/1839, 13-14=-368/2387,
- 12-13=-375/2511, 11-12=-375/2511, 9-11=-384/2464 WEBS 6-14=-117/966, 3-16=-53/392, 4-6=-1931/474, 8-14=-1081/228, 8-12=0/620

NOTES-

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

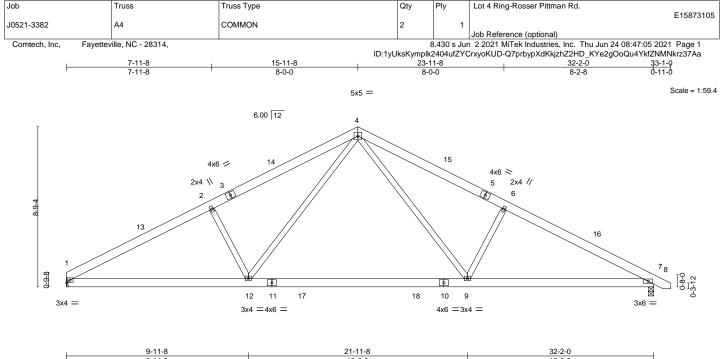
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 1 and 90 lb uplift at joint 9.

LOAD CASE(S) Standard



June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Plate Offsets	(X,Y)	<u>9-11-8</u> [1:0-1-14,0-1-8]		1		12-0-0			1		10-2-8	
LOADING (p	- /	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
	0.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.34		>999	360	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.47	9-12	>822	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.05	7	n/a	n/a		
BCDL 1	0.0	Code IRC2015/TF	12014	Matri	k-S	Wind(LL)	0.05	12	>999	240	Weight: 204 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No 2 WEBS

REACTIONS. 1=Mechanical, 7=0-3-8 (size) Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 7=-89(LC 13)

Max Grav 1=1278(LC 1), 7=1331(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973, 9-12=-109/1291, 7-9=-324/1953

WEBS 4-9=-147/922, 6-9=-454/288, 4-12=-144/897, 2-12=-437/286

NOTES-

1) Unbalanced roof live loads have been considered for this design.

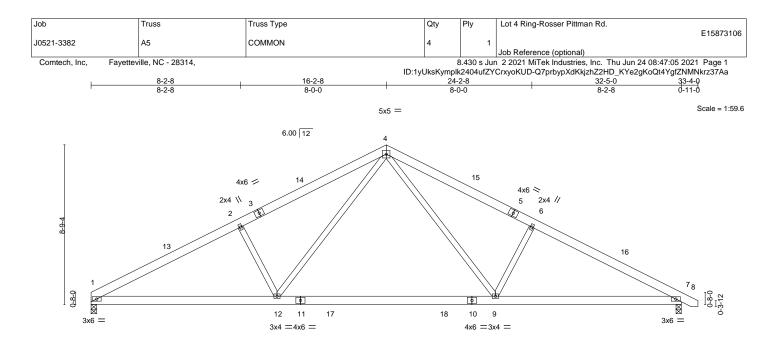
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



Structural wood sheathing directly applied or 4-11-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u> 10-2-8</u> 10-2-8		<u>22-2-8</u> 12-0-0				+ <u>32-5-0</u> + 10-2-8		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.29 BC 0.65 WB 0.27 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.34 9-12 -0.47 9-12 0.05 7 0.05 12	l/defl >999 >822 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 206 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

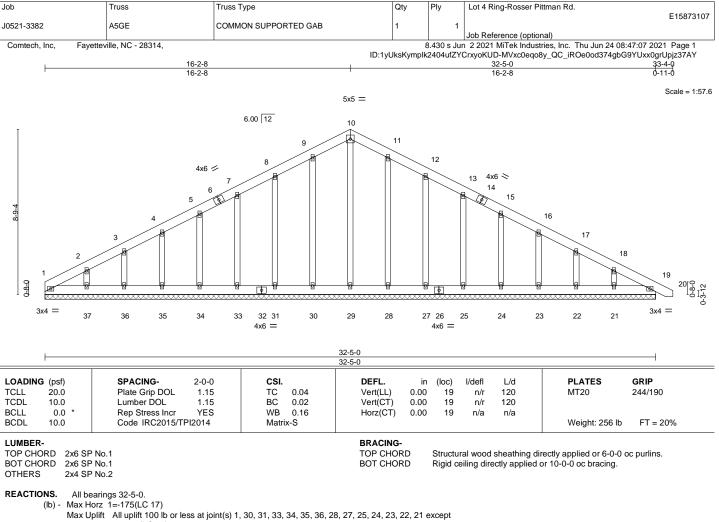
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



Structural wood sheathing directly applied or 4-10-13 oc purlins.

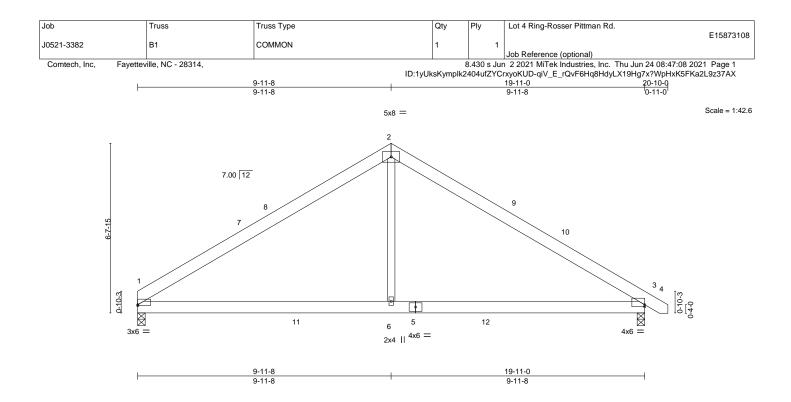
Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

37=-101(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 29, 30, 31, 33, 34, 35, 36, 37, 28, 27, 25, 24, 23, 22, 21, 19

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-114/284, 10-11=-114/284


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid of use only with MTek® connectors. This sket intoCLOBED with REFERENCE FAGE MIF 4/3 FeV, 519/2020 BEFORE 052. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Braching indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.52	Vert(LL) -0.06	3-6 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.44	Vert(CT) -0.13	3-6 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.15	Horz(CT) 0.02	2 3 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.04	3-6 >999	240	Weight: 112 lb	FT = 20%
LUMBER-		•	BRACING-				
TOP CHORD 2x6 SP	No.1		TOP CHORD	Structural woo	d sheathing dire	ectly applied or 5-11-1	1 oc purlins.
BOT CHORD 2x6 SP	No.1		BOT CHORD	Rigid ceiling di	rectly applied o	r 10-0-0 oc bracing.	
WEBS 2x4 SP	No 2						

Max Horz 1=-149(LC 8) Max Uplift 1=-43(LC 12), 3=-56(LC 13) Max Grav 1=900(LC 19), 3=951(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1193/217, 2-3=-1221/216

BOT CHORD 1-6=-30/956, 3-6=-30/956

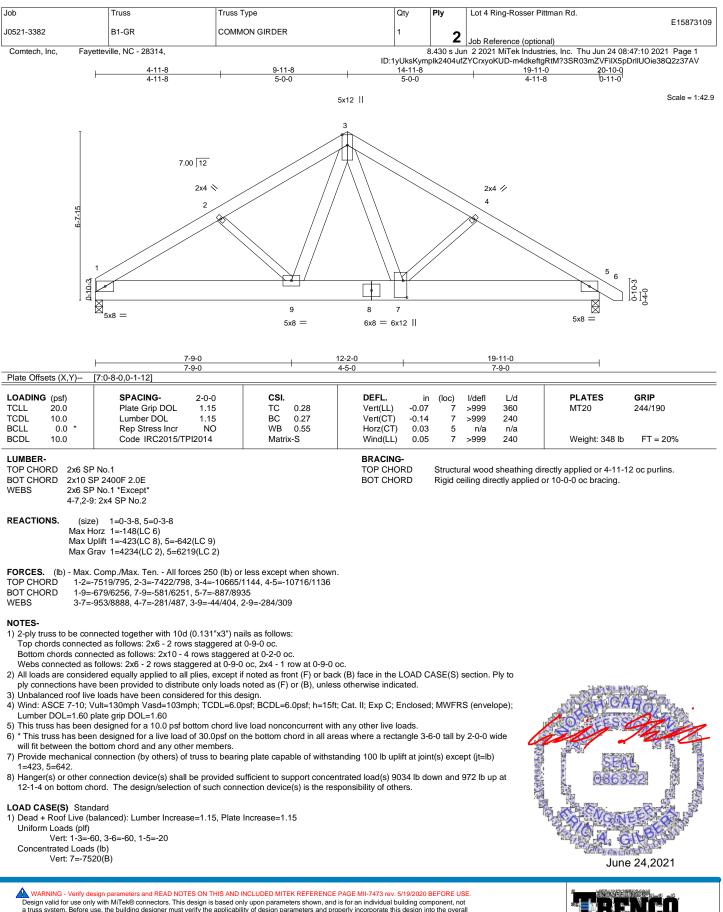
WEBS 2-6=0/660

NOTES-

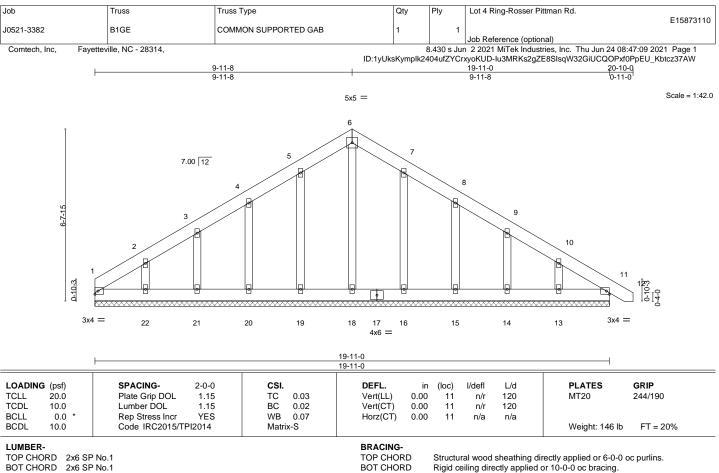
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 9-11-8, Exterior(2) 9-11-8 to 14-4-5, Interior(1) 14-4-5 to 20-8-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

June 24,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid of use only with MTek® connectors. This sket intoCLOBED with REFERENCE FAGE MIF 4/3 FeV, 519/2020 BEFORE 052. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Braching indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

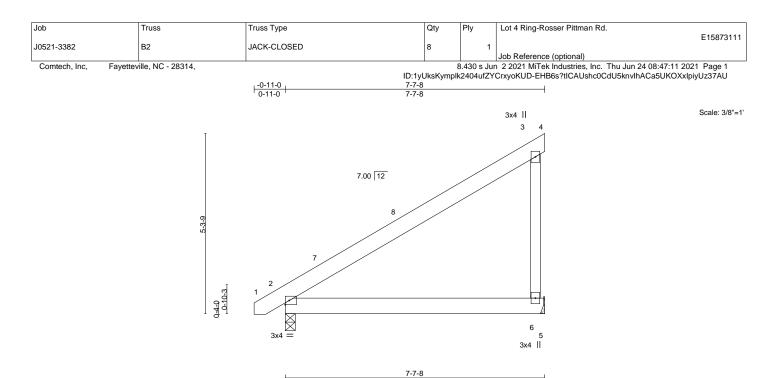
2x6 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 19-11-0.

Max Horz 1=-186(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except 22=-116(LC 12), 13=-103(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 16, 15, 14, 13, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				1		7-7-8						
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	-0.04	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.07	2-6	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-P	Wind(LL)	0.00	2	****	240	Weight: 48 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12) Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-288/220

NOTES-

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

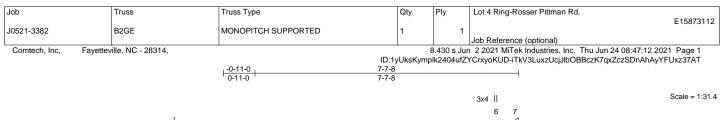
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

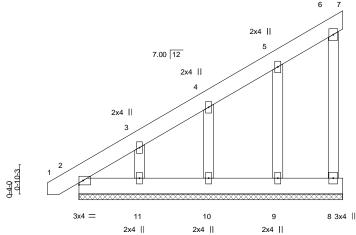
3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00 1 n/r 120	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 1 n/r 120	
CLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) -0.00 7 n/a n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 57 lb FT = 20%

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS OTHERS 2x4 SP No 2 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 7-7-8.

(lb) - Max Horz 2=228(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-269/227

NOTES-

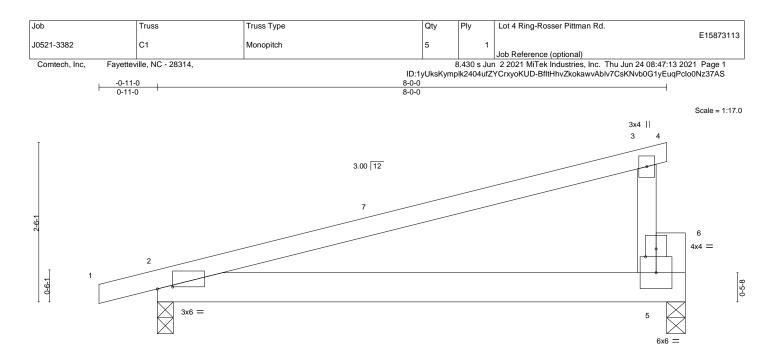
1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ł

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (it=lb) 11=117.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

e) annual

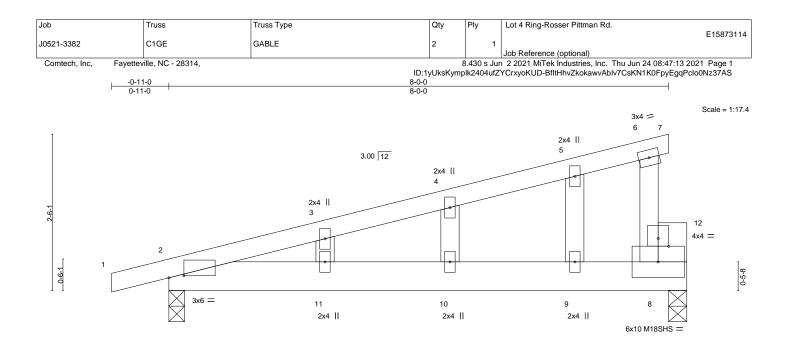
			0-3-0			
			8-3-8			1
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:0-2-0,0-1-8]					
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.84	Vert(LL) -0.05	(,	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.10	2-5 >969 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	5 n/a n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10	2-5 >886 240	Weight: 37 lb	FT = 20%
UMBER-			BRACING-			
OP CHORD 2x4 SP	' No.1		TOP CHORD	Structural wood sheathing d	irectly applied or 5-3-4 of	oc purlins,
BOT CHORD 2x6 SP	No.1			except end verticals.		•
VEBS 2x4 SP	No.2		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.	
DTHERS 2x6 SP	No.1				•	

8-3-8

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

			<u>8-3-8</u> 8-3-8		
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [12:0-2-0,0-1-8]		0-3-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	Vert(LL) 0.09	n (loc) I/defl L/d 9 10-11 >999 240 8 10-11 >999 240 0 8 n/a n/a	PLATES GRIP MT20 244/190 M18SHS 244/190 Weight: 41 lb FT = 20%
	No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 8=0-3-8 Max Horz 2=105(LC 8)

Max Uplift 2=-216(LC 8), 8=-188(LC 8) Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

NOTES-

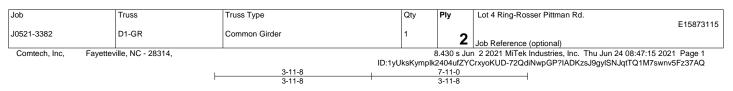
1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

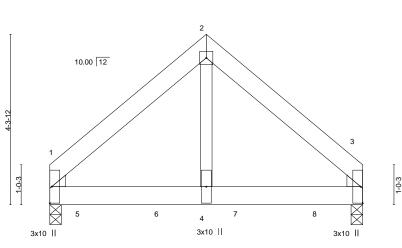
3) All plates are MT20 plates unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216.8=188.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4x4

Scale = 1:27.4

				3-1	1-8		:	3-11-8		1		
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.38	Vert(LL)	-0.02	3-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.04	3-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.39	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P	Wind(LL)	0.01	3-4	>999	240	Weight: 100 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

7-11-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-11-8

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS WEDGE Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=91(LC 24)

Max Uplift 1=-191(LC 8), 3=-180(LC 9) Max Grav 1=2919(LC 1), 3=2779(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2418/177, 2-3=-2418/177 678

BOT CHORD	1-4=-100/1678, 3-4=-100/16
WEBS	2-4=-154/3142

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

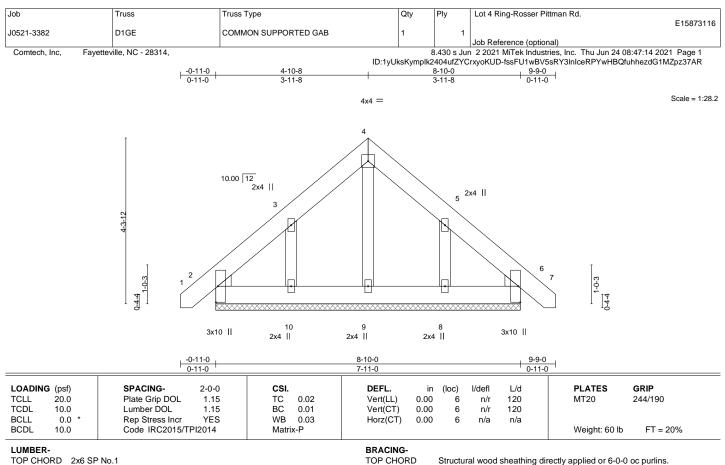
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 1-3=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job		Truss	Truss Type	Qty	Ply	Lot 4 Ring-Rosser Pittman Rd.
J0521-3382		D1-GR	Common Girder	1	2	E15873115
						Job Reference (optional)
Comtech, Inc,	Fayettev	ille, NC - 28314,		8	3.430 s Jur	2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:15 2021 Page 2
			ID:1yU	ksKymplk	2404ufZYC	CrxyoKUD-72QdiNwpGP?IADKzsJ9gyISNJqtTQ1M7swnv5Fz37AQ

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

(lb) - Max Horz 2=-118(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

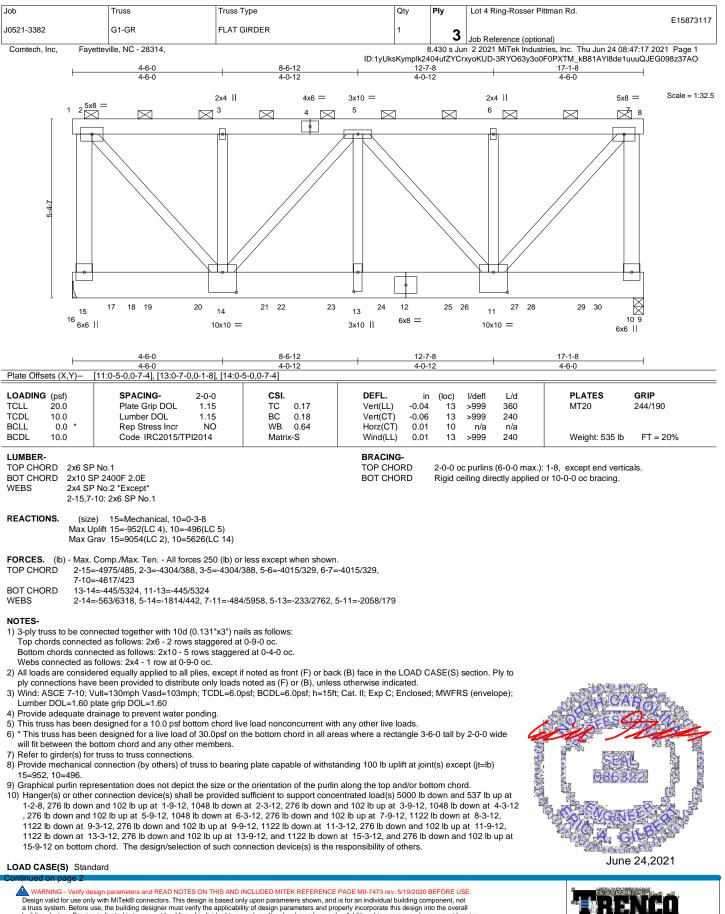
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152, 8=148.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE 🛕 WARNING - Verify design pa Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses systems, see **ANS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

Design valid for use only with MTek® connectors. This skip included only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual Truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPHI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

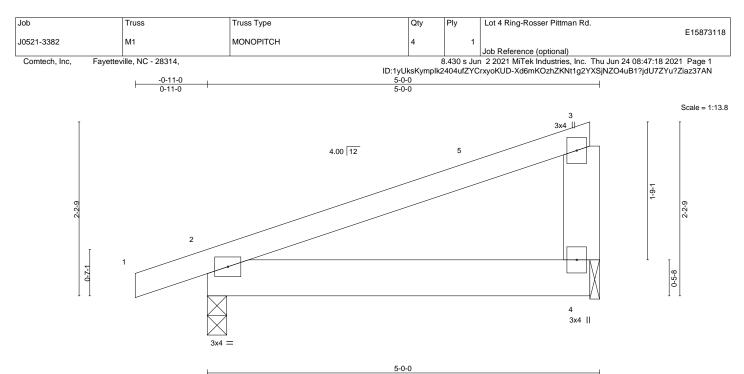
818 Soundside Road lenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 4 Ring-Rosser Pittman Rd.
					E15873117
J0521-3382	G1-GR	FLAT GIRDER	1	2	
					Job Reference (optional)
Comtech, Inc, Fayette	/ille, NC - 28314,		8	3.430 s Jur	n 2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:17 2021 Page 2

ID:1yUksKymplk2404ufZYCrxyoKUD-3RYO63y3o0F0PXTM_kB81AYl8de1uuuQJEG098z37AO

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20

Concentrated Loads (lb)

Vert: 12=-276(F) 14=-259(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-259(B) 20=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F) 21=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 26=-276(F) 21=-276(F) 22=-259(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 21=-276(F) 22=-276(F) 23=-276(F) 23=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						5-0-0					1	
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-P	Wind(LL)	0.01	2-4	>999	240	Weight: 24 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

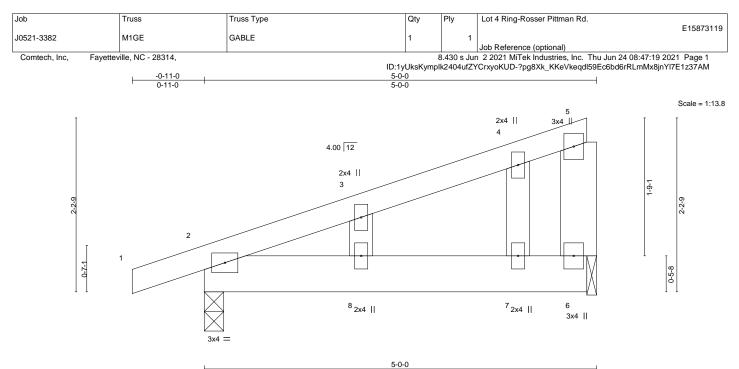
3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

capacity of bearing surface.

- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.

Structural wood sheathing directly applied or 5-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		5-0-0	
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09 Vert(LL) 0.01 8 >999	240 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09 Vert(CT) -0.01 8 >999	240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02 Horz(CT) -0.00 6 n/a	n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS OTHERS 2x4 SP No 2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8)

Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

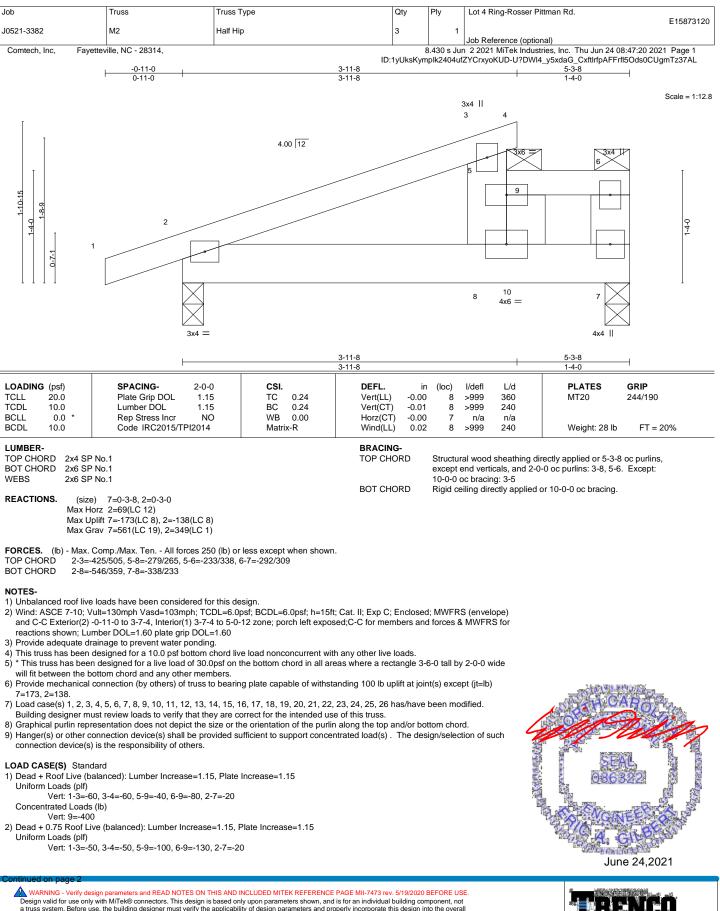
3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

capacity of bearing surface.


7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147.6=115.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design values of the segin parameters and READ NOTES ON THIS AND INCLODED WITER KRETERENCE FAGE MICF473 (eV). 51/3/2/05 BEFCRE OSE. Design values of the segin of the segin is a based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

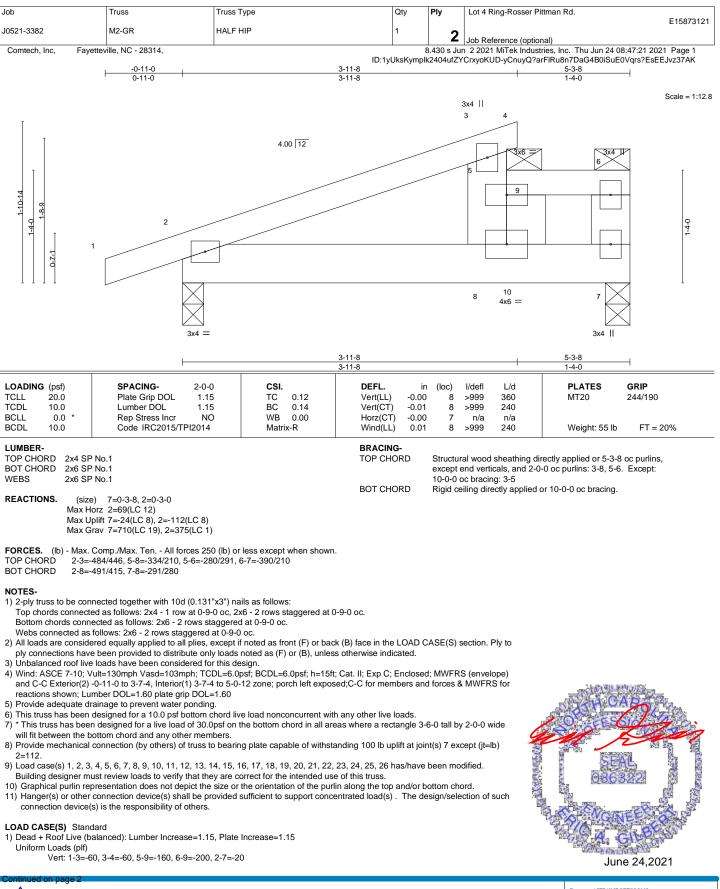
1	Job	Truss	Truss Type	Qty	Ply	Lot 4 Ring-Rosser Pittman Rd.
						E15873120
	J0521-3382	M2	Half Hip	3	1	
						Job Reference (optional)
	Comtech, Inc, Fayettev	lle, NC - 28314,		8	3.430 s Jur	2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:20 2021 Page 2

8.430 s Jun 2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:20 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-U?DWI4_y5xdaG_CxttlrfpAFFrfl5Ods0CUgmTz37AL

Vert: 9=-350
 Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40 Concentrated Loads (lb)
Vert: 9=-300
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
Concentrated Loads (lb)
Vert: 9=548 5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
Concentrated Loads (lb)
Vert: 9=566
 Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
Concentrated Loads (lb)
Vert: 9=-420
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9 Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
Concentrated Loads (Ib)
Vert: 9=-420
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-11, 2-8=10, 8-10=33, 7-10=10 Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
Concentrated Loads (lb)
Vert: 9=154
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (lb)
Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
Concentrated Loads (lb) Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20
Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb)
Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
official Educid (pil)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=-43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 9=43 13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 9=43 14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=-14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-350

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 4 Ring-Rosser Pittman Rd.
					E15873120
J0521-3382	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	8.430 s Jur	n 2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:20 2021 Page 3

8.430 s Jun 2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:20 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-U?DWI4_y5xdaG_CxtflrfpAFFrff5Ods0CUgmTz37AL

	ID:1yUKSKYMPIKZ4U4UIZYC/IXYOKUD-U?DWI4_Y5Xdat
10	AD CASE(S) Standard
	Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
16)	Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12
	Concentrated Loads (lb) Vert: 9=-234
17)	vert. 3-2-2-4 Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (plf)
	Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20
	Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-234
18)	Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20 Concentrated Loads (lb)
	Verte 9=200
19)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (bif)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
	Concentrated Loads (lb)
	Vert: 9=-454
20)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20
	Vent. 1-2=-37, 2-3=-42, 3-4=-37, 3-9=-60, 0-9=-110, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
	Concentrated Loads (Ib)
	Vert: 9=375
21)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
	Concentrated Loads (lb)
22)	Vert: 9=-375 Dead + 0.25 Packt ins (Apt) + 0.25 Attis Eleas + 0.25 (0.6 NWEDC Wind (Neg. b)) and Pacellaly Lymber Langage 1.60 Plate Langage 1.60
22)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Verti 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20
	Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-375
23)	1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20
	Concentrated Loads (lb)
24)	Vert: 9=-400 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
24)	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-400
25)	3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20
	Concentrated Loads (lb)
20	Vert: 9=-350
20)	4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20
	Concentrated Loads (Ib)
	Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT Interstep Texpect Proceed MIT-1473 (eV. 319/2/20 betrofte Use. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

[Job	Truss	Truss Type	Qty	Ply	Lot 4 Ring-Rosser Pittman Rd.
					-	E15873121
	J0521-3382	M2-GR	HALF HIP	1	ົ	
					2	Job Reference (optional)
	Comtech, Inc, Fayettevi	lle, NC - 28314,		8	3.430 s Jur	2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:21 2021 Page 2

8.430 s Jun 2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:21 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-yCnuyQ?arFIRu8n7DaG4B0iSuE0Vqrs?EsEEJvz37AK

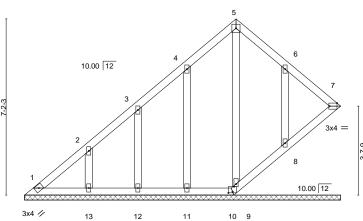
2)	Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20
	Concentrated Loads (lb) Vert: 9=-350
3)	Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
3)	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40
	Concentrated Loads (lb)
	Vert: 9=-300
4)	Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (plf)
	Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
	Concentrated Loads (lb)
	Vert: 9=548
5)	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55 Concentrated Loads (lb)
	Vert: 9=566
6)	Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
0)	Uniform Loads (plf)
	Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
	Concentrated Loads (lb)
	Vert: 9=-420
7)	Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
	Concentrated Loads (lb)
8)	Vert: 9=-420 Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
0)	Uniform Loads (plf)
	Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10
	Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
	Concentrated Loads (lb)
	Vert: 9=154
9)	Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12
	Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27
	Concentrated Loads (lb)
10	Vert: 9=43
IU	 Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
	Concentrated Loads (lb)
	Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20
	Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-234
12	P) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
	Concentrated Loads (lb)
	Vert: 9=43
13	b) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
14	Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

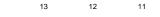
2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-400

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 4 Ring-Rosser Pittman Rd.
			-		E15873121
J0521-3382	M2-GR	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	3.430 s Jur	2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:21 2021 Page 3


8.430 s Jun 2 2021 MiTek Industries, Inc. Thu Jun 24 08:47:21 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-yCnuyQ?arFIRu8n7DaG4B0iSuE0Vqrs?EsEEJvz37AK


LOA	AD CASE(S) Standard
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
	Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
	Concentrated Loads (lb)
15)	Vert: 9=43 Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Dead + 0.0 inverses wind (ros. internal) 40 Fataliei. Lunder inclease=1.00, Fate inclease=1.00 Uniform Loads (plf)
	Vert. 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
	Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb)
	Vert: 9–234
17)	Veil: 3-23-4 Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20
	Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-234
	Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
	Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20
	Volt 10-20, 34-20, 50-240, 211-20 Concentrate Loads (lb)
	Vert: 9=-200
19)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
	Concentrated Loads (lb)
20)	Vert: 9=-454 Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
	Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20
	Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-375
	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9 Concentrated Loads (lb)
	Vert: 9=-375
22)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20
	Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
	Concentrated Loads (lb)
22)	Vert: 9=-375 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Tai Dead + Root Live (unbatanced). Lumber increase=1.15, Plate increase=1.15 Uniform Loads (plf)
	Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-400
24)	2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20
	Concentrated Loads (lb)
25)	Vert: 9=-400
	3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20
	Vent 10-50, 54-50, 50-520, 211-20
	Vert: 9=-350
26)	4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

Plate Offsets (X,Y) [7:0-3-11,Edge], [9:0-1-6,0-1-0], [10:0-2-0,0-0-10]										I.		
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
FCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014		Matrix-S							Weight: 75 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No 2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

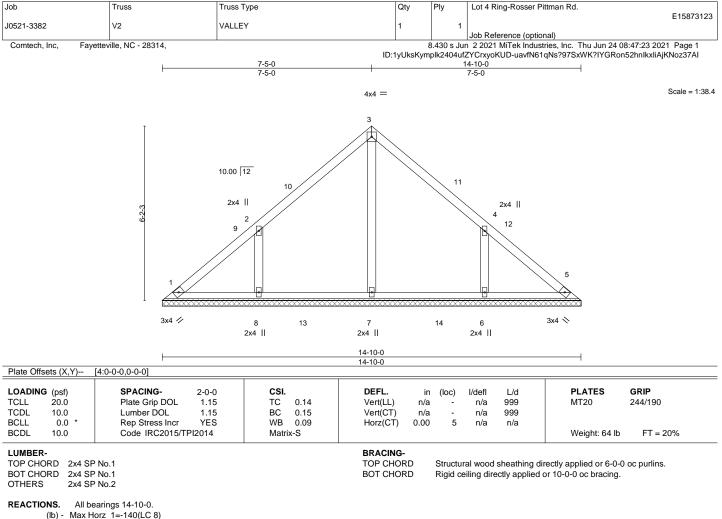
Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

Н

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design values for use only with MTek® connectors. This should be used only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracking indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Hol2 1=-140(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Opint All upint 100 ib of less at joint(s) 1 except 6=130(LC 12), 6=130(LC 13)Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

WEBS 2-8=-338/246, 4-6=-338/246

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

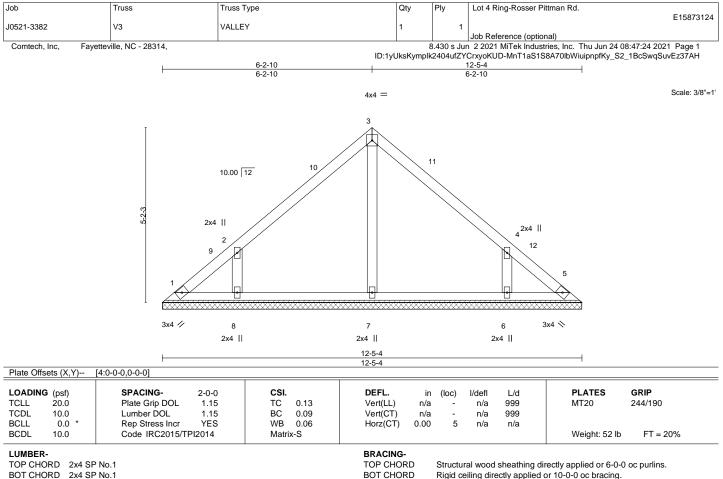
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-5-4

(lb) - Max Horz 1=-116(LC 8)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-8=-312/241, 4-6=-312/241

OTHERS

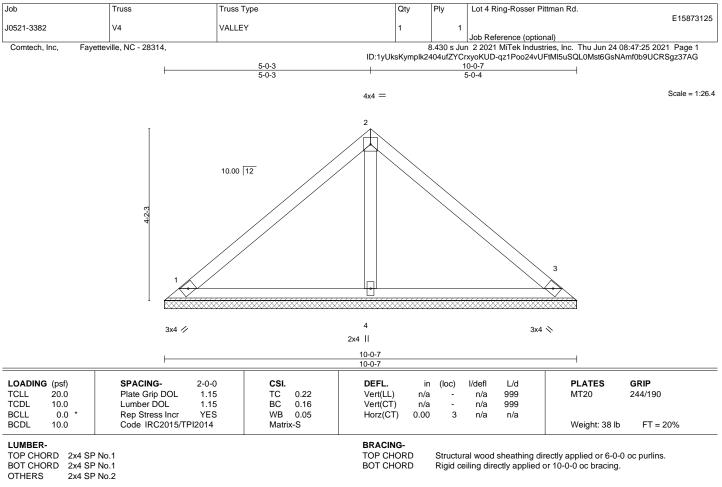
NOTES-1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.


6) Non Standard bearing condition. Review required.

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT Interstep Texpect Proceed MIT-1473 (eV. 319/2/20 betrofte Use. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=10-0-7, 3=10-0-7, 4=10-0-7 Max Horz 1=-92(LC 8)

Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

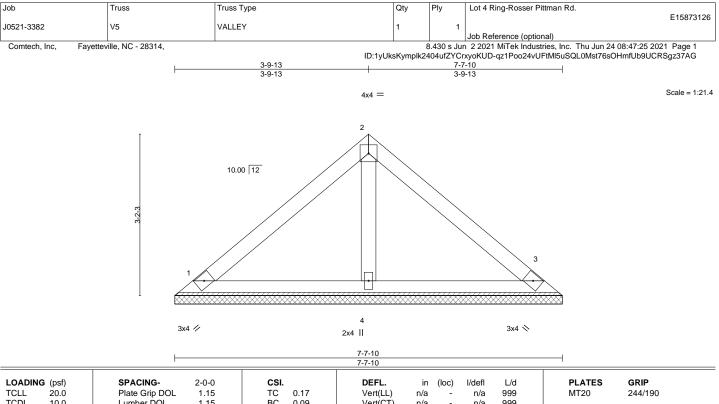
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Trus Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-						BRACING	i -						
BCDL	10.0	Code IRC2015/TPI2014		Matrix-P		- (-)		-			Weight: 29 lb	FT = 20%	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	3	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999			
TCLL	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10 Max Horz 1=68(LC 9)

Max Uplift 1=-24(LC 13), 3=-30(LC 13)

Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

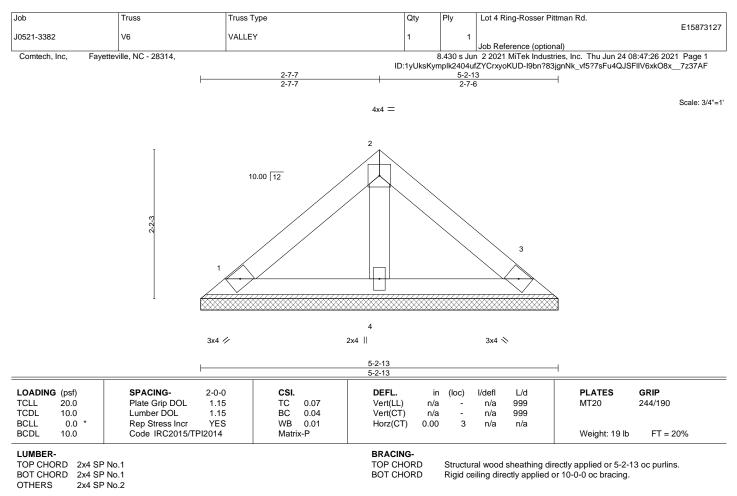
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13 Max Horz 1=44(LC 11)

Max Uplift 1=-15(LC 13), 3=-19(LC 13) Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

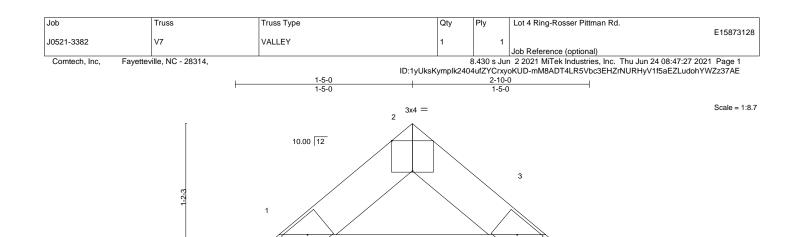
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Trus Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

3x4 📎

Plate Offsets (X,Y)	[2:0-2-0,Edge]				2-10-0					1	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999	-	
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matri	k-P						Weight: 8 lb	FT = 20%

2-10-0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0 Max Horz 1=-20(LC 8)

Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

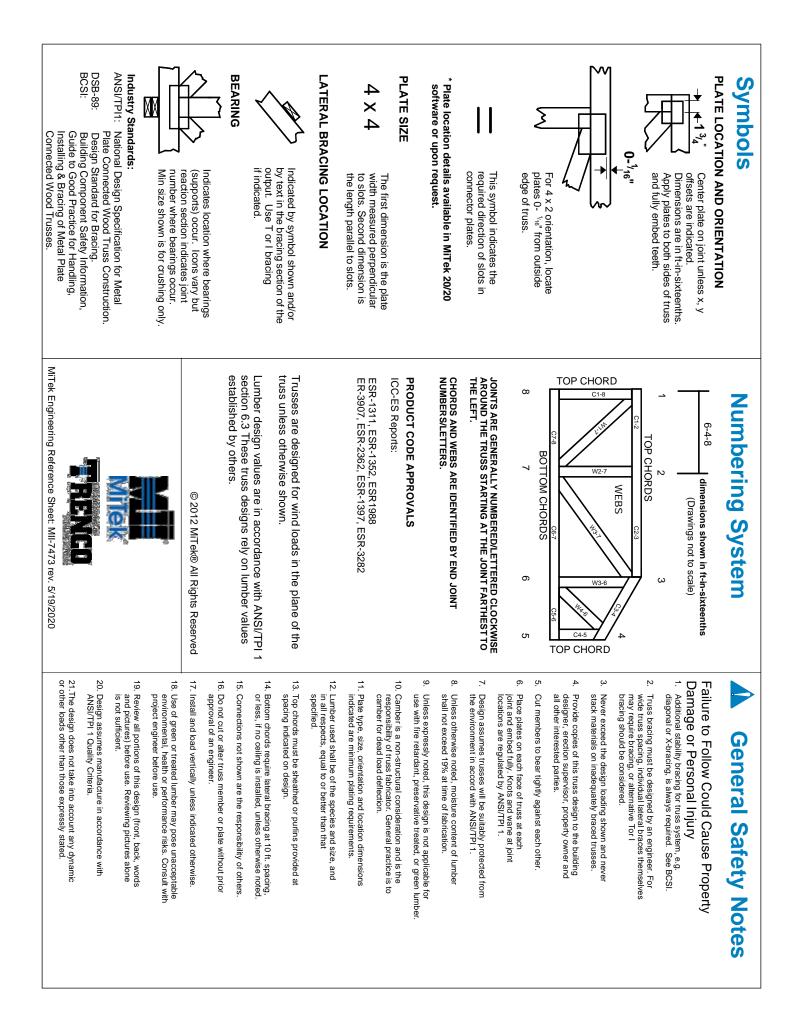
and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

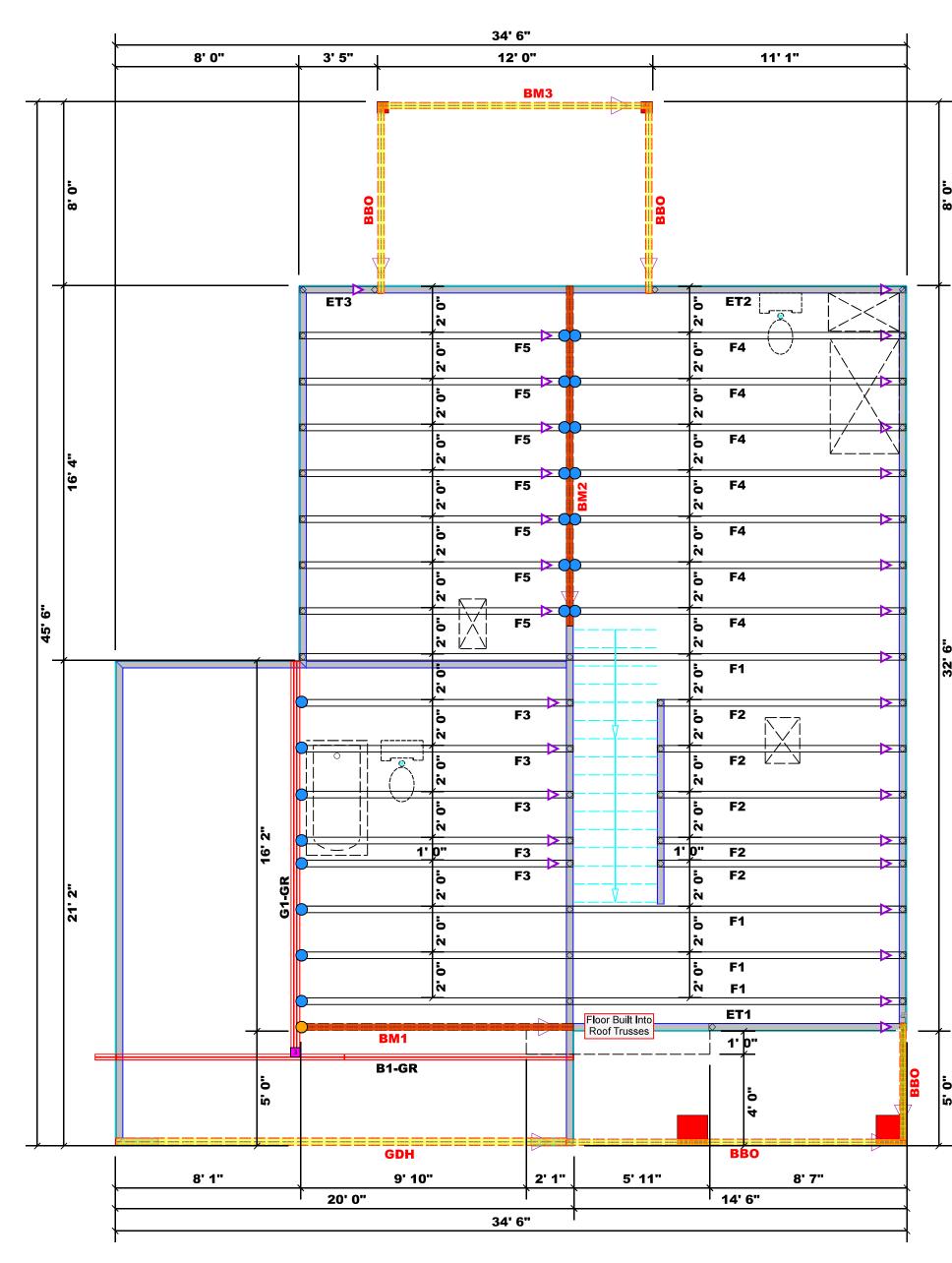
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.




Structural wood sheathing directly applied or 2-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		CO	m	те	c	
		RUS eilly R Fayet Phon	SES toad Ir teville e: (910	& FL & B dustr (N.C. 0) 864 864-4	EAN ial Par 28309 -8787	ΛS ∗
	deemed requirem attached requirem size and reaction 15000#. retained reaction Tables. retained	to compl nents. The Tables (nents) to number s greater A register to design that exce A register to design	y with the e contract derived f determin of wood s than 3000 red desig the sup eeds thos red desigu	n or equa e prescrip tor shall r from the p e the min studs req D# but noi n profess port syste e specifie n profess port syste 0#.	tive Code efer to the prescriptive imum fou- uired to s t greater to ional sha em for any d in the a ional shal	e ve Code indation upport than II be y ttached
	Signatu	e [<i>d Lo</i> id Lai		<u>y</u>
	N5#	(BASED BER OF JA	ON TABLE CK STUDS	DR JAC ES R5025(I REQUIRED /SIRDER	l) š (b))	
	NOLLY 24 (94 AM) 1700 3400 5100 6800 8500 10200 11900 13600 15300	801 901 901 90 1 2 3 4 5 6 7 8 9	онски страно 10200 12750 15300	2 3 24 25	NOLLOVE N 340 680 1021 1360 1700)0 1)0 2)0 3)0 4
	CITY / CO. Broadway / Harnett	Lot 4 Ring-Rosser Pittman Rd.	Floor	/ /	DRAWN BY David Landry	SALES REP. Lenny Norris
	CITY / CO .	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
	Weaver Development Co. Inc.	Lot 4 Ring-Rosser Pittman Rd.	Hickory "A"	Seal Date	Quote #	J0521-3383
	BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #
s ving) s	These to compore design See ind identified designed for the support and col designed consult	russes an nents to b at the sp ividual de ed on the er is resp ent braci overall st t structur umns is f er. For ge BCSI-B1	re design be incorpo ecification esign she placemen onsible fo ng of the ructure. 1 e includir the respo neral guid and BCS	MENT DIA ded as indi orated inti- n of the b lets for ea- nt drawing- or tempor- roof and (The desig ng header g header g header g header egil-B3 prov online @	vidual bu o the buil uilding de ich truss g. The bu ary and floor sysi n of the t s, beams, of the buil arding br ided with	ilding ding esigner. design ilding tem and russ , walls, ding racing, the

All Walls Shown Are

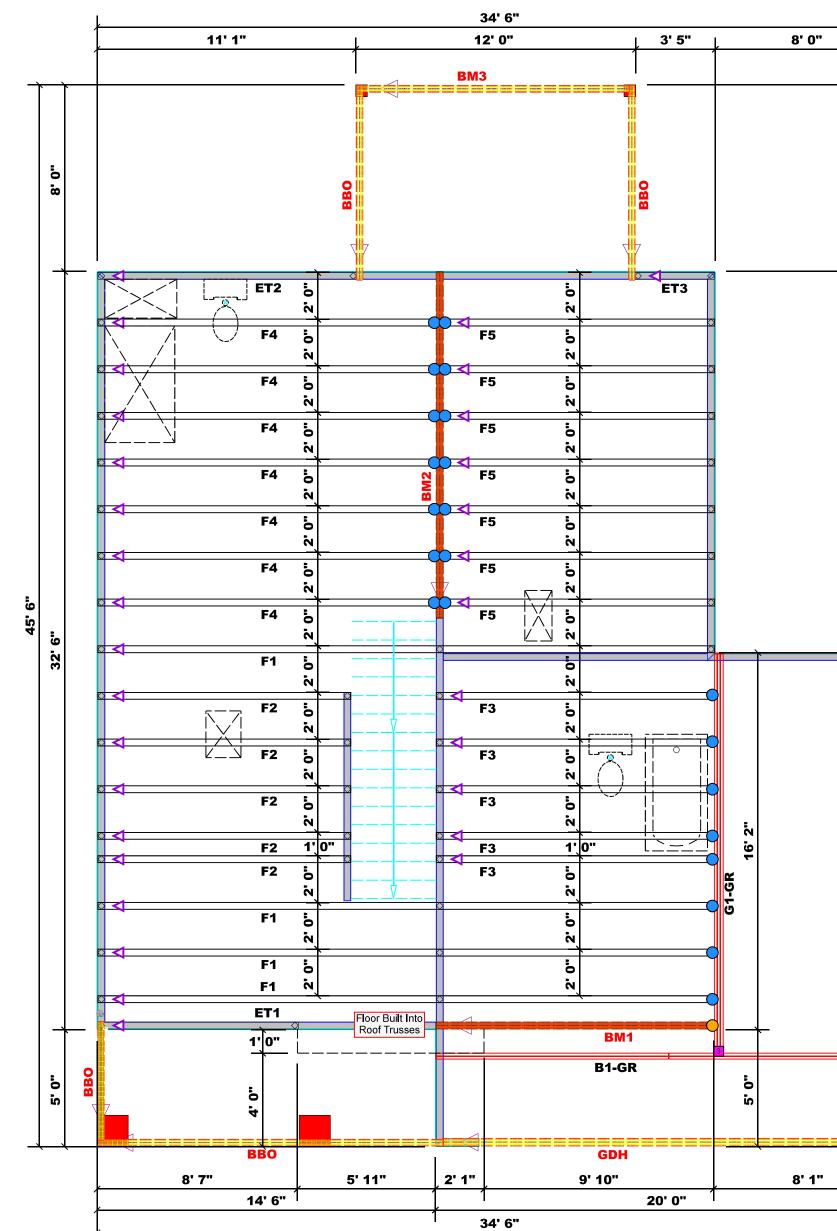
Plumbing Drop Notes Plumbing drop locations shown are NOT exact.
 Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses.
 Adjust spacing as needed not to exceed 24"oc.

	Conne	Nail Info	ormation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
	HUS410	USP	22	NA	16d/3-1/2"	16d/3-1/2"
	THDH412	USP	1	NA	16d /3-1/2"	16d /3-1/2"

		Products			
PlotID	Length	Product	Plies	Net Qty	Fab Type
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF
BM3	12' 0"	2x10 SPF No.2	2	2	FF
GDH	20' 0"	1-3/4"x 14" LVL Kerto-S	2	2	FF

Truss Placement Plan Scale: 1/4"=1'

All exterior wall to wall dimensions are to face of sheathing unless noted otherwise All interior wall dimensions are to face of frame wall unless noted otherwise All exterior wall to truss dimensions are to face of frame wall unless noted otherwise


Dimension Notes

Considered Load Bearing

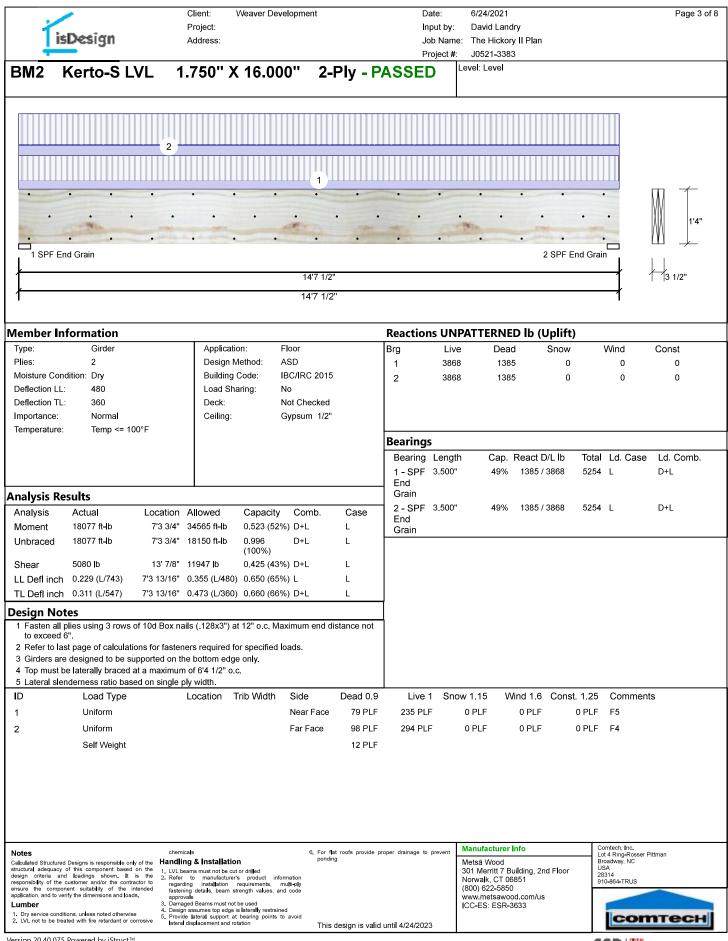
(Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

▲ = Indicates Left End of Truss

5

	Bearing m deemed to requirement size and requirement size and requirement tached to requirement size and recurrent reactions Signature LOA	ROC RUS eilly R Fayett Phone Fax: eactions o comply ents. The register o design that exce register o design that exce contact that exce register o design that exce contact that exce register o design that exce contact that exce register o design that exce register o design that exce	y with the contract derived fi determine of wood s than 3000 red design the supp eds those ed design the supp	& FL(& B idustr , N.C)) 864- 9 rescription 864-4 1 or equal 1 prescription 864-4 1 or equal 1 profession 1 prof	OOI EAN ial Pai 28309 -8787 444 to a solo to a	# are e v Code v
Image: Second	1700 3400 5100 6800 8500 10200 11900 13600 15300	Pittman Rd.	NOTICAL AND A CONTRACT OF A CO	1 2 3 4 5 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	680 102 136	(01 41) (01 41) 000 1 000 2 000 3 000 4 000 5
Plumbing Drop Notes 1. Plumbing drop locations shown are NOT exact. 2. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. 3. Adjust spacing as needed not to exceed 24"oc. Connector Information Nail Information	CITY / CO. Broadway / Harnett	ADDRESS Lot 4 Ring-Rosser	MODEL Floor	DATE REV. / /	DRAWN BY David Landry	SALES REP. Lenny Norris
Sym Product Manuf Qty Supported Member Header Truss HUS410 USP 22 NA 16d/3-1/2" 16d/3-1/2" THDH412 USP 1 NA 16d /3-1/2" 16d /3-1/2" THDH412 USP 1 NA 16d /3-1/2" 16d /3-1/2" Products Products Product Plots Net Qty Fab Type BM1 12'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM2 15'0" 1-3/4"x 16" LVL Kerto-S 2 2 FF BM3 12'0" 2x10 SPF No.2 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF GDH 20'0" 1-3/4"x 14" LVL Kerto-S 2 2 FF	Weaver Development Co. Inc.	Lot 4 Ring-Rosser Pittman Rd.	Hickory II	Seal Date	Quote #	J0521-3383
	BUILDER	JOB NAME	B PLACEMe designed	SEAL DATE	# JLONO GRAM OF	JOB #

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

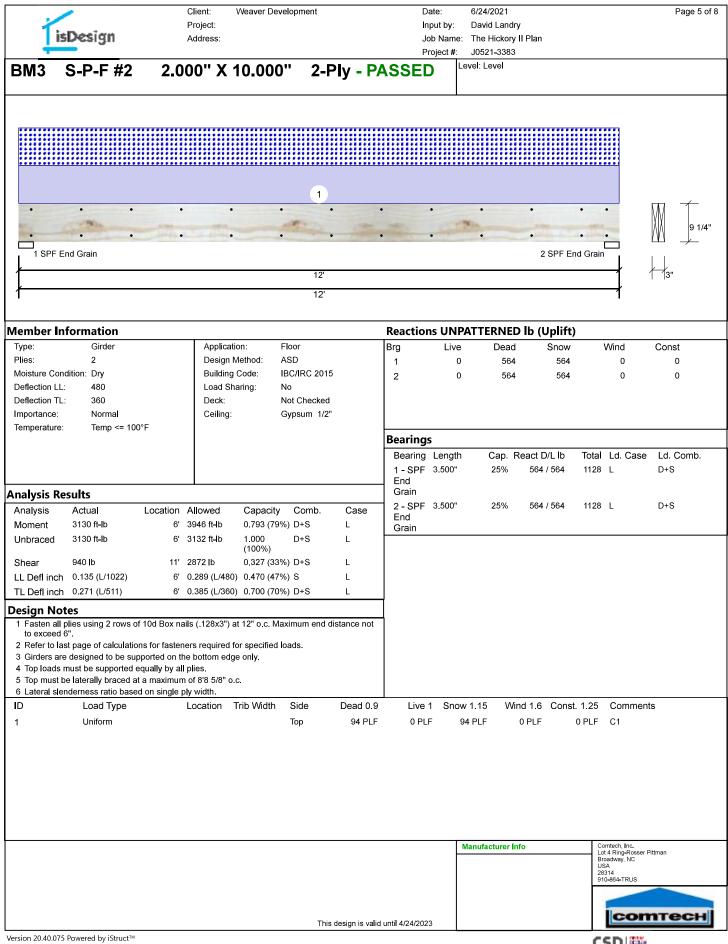

= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

	2	••••••	<u></u>				••••••			
•		• •	1	•			• •			π \pm
•		· · ·	att .		·					1'4"
1 SPF							2 SPF			
[1	1'11"							3 1/2"
<u>,</u>		1	1'11"				ł			
ember In	formation				Reactions		ERNED Ib (U	Jolift)		
/pe:	Girder	Application:	Floor		Brg	Live	Dead	Snow	Wind	Const
lies: loisture Cond	2 dition: Dov	Design Method: Building Code:	ASD IBC/IRC 2015		1	0	2869	2079	0	0
eflection LL:		Load Sharing:	No		2	0	2869	2079	0	0
eflection TL:		Deck:	Not Checked							
nportance:	Normal	Ceiling:	Gypsum 1/2"							
emperature:	Temp <= 100°F				Bearings					
					Bearing L	.ength	Cap. React D)/L lb Tota	Ld. Case	Ld. Comb.
					1-SPF 3		95% 2869 /		3 L	D+S
alysis Re	culte				2-SPF 3	.500"	95% 2869 /	2079 4948	3 L	D+S
nalysis		tion Allowed Capa	acity Comb.	Case	1					
loment		•	(34%) D+S	L						
nbraced	13679 ft-lb 5'11	1/2" 13695 ft-lb 0.999		L						
inbradea		(100%		L						
	3659 lb 1'6	5/8" 13739 lb 0.266	6 (27%) D+S							
hear		5/8" 13739 lb 0.266 1/2" 0.287 (L/480) 0.240	6 (27%) D+S 0 (24%) S	L						
hear L Defl inch	0.069 (L/2000) 5'11) (24%) S							
hear L Defl inch L Defl inch	0.069 (L/2000) 5'11 0.164 (L/840) 5'11	1/2" 0.287 (L/480) 0.240) (24%) S	L						
ihear L Defl inch L Defl inch esign Not Fasten all p	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 :es blies using 3 rows of 10d B	1/2" 0.287 (L/480) 0.240) (24%) S) (43%) D+S	L						
hear L Defl inch L Defl inch esign Not Fasten all p to exceed 6 Refer to las	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 tes blies using 3 rows of 10d B 5". st page of calculations for f	1/2" 0.287 (L/480) 0.240 1/2" 0.383 (L/360) 0.430 Box nails (.128x3") at 12" o. fasteners required for speci) (24%) S) (43%) D+S c. Maximum end dis	L						
hear L Defl inch L Defl inch esign Not Fasten all p to exceed 6 Refer to las Girders are	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 esc blies using 3 rows of 10d B "." t page of calculations for f designed to be supported	1/2" 0.287 (L/480) 0.240 1/2" 0.383 (L/360) 0.430 30x nails (.128x3") at 12" o. fasteners required for specident on the bottom edge only.) (24%) S) (43%) D+S c. Maximum end dis	L						
hear L Defl inch L Defl inch sign Not Fasten all p to exceed 6 Refer to las Girders are Top loads n Top must b	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 tes Diles using 3 rows of 10d B s''. st page of calculations for f designed to be supported must be supported equally e laterally braced at a max	1/2" 0.287 (L/480) 0.240 1/2" 0.383 (L/360) 0.430 Box nails (.128x3") at 12" o. fasteners required for speci d on the bottom edge only. by all plies. kimum of 8'8 1/4" o.c.) (24%) S) (43%) D+S c. Maximum end dis	L						
hear L Defl inch L Defl inch sign Not Fasten all r to exceed 6 Refer to las Girders are Top loads n Top must b Lateral sier	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 tes Dies using 3 rows of 10d B s''. st page of calculations for f designed to be supported must be supported equally e laterally braced at a maxidemenss ratio based on si	1/2" 0.287 (L/480) 0.240 1/2" 0.383 (L/360) 0.430 Box nails (.128x3") at 12" o. fasteners required for speci d on the bottom edge only. by all plies. kimum of 8'8 1/4" o.c. ngle ply width.	9 (24%) S 0 (43%) D+S c. Maximum end dis ified loads.	L L	live 1	Spow 11	Wind 1.6	Const 1.25	Common	
hear L Defl inch L Defl inch esign Not Fasten all p to exceed 6 Refer to las Girders are Top loads n Top must b	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 tes Diles using 3 rows of 10d B 3". t page of calculations for f designed to be supported must be supported equally e laterally braced at a max idemess ratio based on si Load Type	1/2" 0.287 (L/480) 0.240 1/2" 0.383 (L/360) 0.430 Box nails (.128x3") at 12" o. fasteners required for speci d on the bottom edge only. by all plies. kimum of 8'8 1/4" o.c.	0 (24%) S 0 (43%) D+S c. Maximum end dis ified loads. dth Side	L L stance not		Snow 1.1		Const. 1.25		s
hear L Defl inch L Defl inch esign Not Fasten all r Fasten all r Garders are Girders are Top loads m Top must b Lateral sier	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 tes blies using 3 rows of 10d B 3". It designed to be supported must be supported equally e laterally braced at a max idderness ratio based on si Load Type Uniform	1/2" 0.287 (L/480) 0.240 1/2" 0.383 (L/360) 0.430 Box nails (.128x3") at 12" o. fasteners required for speci d on the bottom edge only. by all plies. kimum of 8'8 1/4" o.c. ngle ply width.	0 (24%) S 0 (43%) D+S c. Maximum end dis ified loads. dth Side Top	L L stance not Dead 0.9 120 PLF	0 PLF	0 PLI	0 PLF	0 PLF	Wall	S
hear L Defl inch L Defl inch sign Not Fasten all r to exceed 6 Refer to las Girders are Top loads n Top must b Lateral sier	0.069 (L/2000) 5'11 0.164 (L/840) 5'11 tes Diles using 3 rows of 10d B 3". t page of calculations for f designed to be supported must be supported equally e laterally braced at a max idemess ratio based on si Load Type	1/2" 0.287 (L/480) 0.240 1/2" 0.383 (L/360) 0.430 Box nails (.128x3") at 12" o. fasteners required for speci d on the bottom edge only. by all plies. kimum of 8'8 1/4" o.c. ngle ply width.	0 (24%) S 0 (43%) D+S c. Maximum end dis ified loads. dth Side	L L stance not			0 PLF		Wall	s

	Client: Weaver Developm	ent Date:	6/24/2021	Page 2 of 8
	Project:	Input by:		
isDesign	Address:	Job Nam		
		Project #	5 J0521-3383	
BM1 Kerto-S LVL	1.750" X 16.000"	2-Ply - PASSED	Level: Level	
		,		
	• • •	• • • •	•••	M 1
• • •			. 1/2	1'4"
			$\overline{\mathbf{v}}$	M 1'4
	• • •	• • • •		
1 SPF			2 SPF	
/	11'11"			3 1/2"
<i> </i>	11'11"			
· ·			I	
Multi-Ply Analysis				
Fasten all plies using 3 rows of 10c	Box nails (.128x3") at 12"	o.c Maximum end distance r	ot to exceed 6"	
Capacity 0.0 %				
Load 0.0 PLF Yield Limit per Foot 245.6 Pl				
Yield Limit per Fastener 81.9 lb.				
Yield Mode IV				
Edge Distance 1 1/2"				
Min. End Distance 3" Load Combination				
Duration Factor 1.00				
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the 1, LUU design criteria and loadings shown. It is the responsibility of the customer autiability of the intended fas	beams must not be cut or drilled fer to manufacturer's product information arding installation requirements, multi-ply tening details, beam strength values, and code	 For flat roofs provide proper drainage to prevent ponding 	Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850	Comtech, Inc. Lot 4 Ring-Rosser Pitman Broadway, NC USA 28314 910-864-TRUS
Lumbor 3 Dat	orovals maged Beams must not be used sign assumes top edge is laterally restrained		www.metsawood.com/us ICC-ES: ESR-3633	
1 Dry service conditions, unless noted otherwise 5 Pro 2 LVL not to be treated with fire retardant or corrosive late	sign assumes top edge is laterally restrained vide lateral support at bearing points to avoid ral displacement and rotation	This design is valid until 4/24/2023		соттесн
Version 20.40.075 Powered by iStruct™		· · · · · · · · · · · · · · · · · · ·	1	

CSD 🗱

Version 20.40.075 Powered by iStruct^T


Version 20.40.075 Powered by iStruct™

CSD 🚟

	-		Client:	Weaver Developm	pont		ate:	6/24/2021	Page 4 of 8
	-		Project:	Weaver Developin	icint		iput by:	David Landry	
	isDesign		Address:					The Hickory II Plan	
	150 051311		Address.				roject #:	J0521-3383	
	-			<u> </u>				.evel: Level	
BM2	Kerto-S	LVL	1.750"	X 16.000"	2-Ply	- PASSEI	ין ט		
	• •	•	•	• •	• •	•	•	• • •	• • • • • • • • • • • • • • • • • • • •
		•			•				
									$\frac{1}{\Sigma}$
	• •	•	•	• •	• •	•	•	• • •	
1 S	PF End Grain							2 SPF End	Grain /
1					14'7 1/2"				1 3 1/2"
/					14'7 1/2"				
Multi-F	Ply Analysis								
Fasten a	all plies using 3	rows of	10d Box nails	(128x3") at 12'	oc Maxim	num end dista	ince no	t to exceed 6"	
Capacity	an plies using 5	79.8		(.120X3) at 12	0.0.1				
Load			.0 PLF						
Yield Limit	t per Foot		.6 PLF						
Yield Limit	t per Fastener	81.9) Ib.						
Yield Mod		IV							
Edge Dist		1 1/2	2"						
Min. End I		3"							
Load Corr Duration F		D+L 1.00							
Buluton		1,00	·						
Net			chamicala		6 Epr det	rovida proper de-i	provent	Manufacturer Info	Comtech, Inc.
Notes Calculated S	tructured Designs is responsib	e only of the I	chemicals Handling & Installa	ition	 For flat roofs pi ponding 	rovide proper drainage to	prevent	Metsä Wood	Lot 4 Ring-Rosser Pittman Broadway, NC
structural ac design crite	lequacy of this component b eria and loadings shown.	ased on the the strice of the	 LVL beams must not be 					301 Merritt 7 Building, 2nd Floor	USA 28314
responsibility	of the customer and/or the component suitability of t	contractor to	regarding installation	n requirements, multi-ply				Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
application, a	and to verify the dimensions an	d oads.	fastening details, bear approvals 3. Damaged Beams must	m strength values, and code				www.metsawood.com/us	
Lumber 1. Dry servi	ce conditions, unless noted oth	erwise	 Design assumes top eq 	t not be used dge is laterally restrained rt at bearing points to avoid				ICC-ES: ESR-3633	
2. LVL not t	to be treated with fire retardan	t or corrosive	5. Provide lateral suppor lateral displacement an	n at bearing points to avoid nd rotation	This design i	s valid until 4/24/202	3		соттесн
	40.075 Doworod by iStr								

CSD 🗱

Version 20.40.075 Powered by iStruct™

CSD 🚟

	/	Clier		ver Developm	ent		Date:	6/24/2021	Page 6 of 8
1	isDesign	Proj					Input by:	David Landry	
- +	Istresign	Add	ress:				Project #:	The Hickory II Plan J0521-3383	
BM3	S-P-F #2	2 000	" X 10	000"	2-Plv	PASSE		evel: Level	
	0-1 -1 #2	2.000			2-1 IY				
							I		
•	•	• •	•	•	•	•	•	• • •	
									∑ XX 9 1/4"
	•	• •	•	•	•	•	•	• • •	
	F End Grain							2 SPF End G	
					12'				3"
1					12'				
Multi-Ply	y Analysis								
Fasten all	l plies using 2 ro	ws of 10d Box	nai l s (.128	x3") at 12"	o.c Maxir	num end dis	tance no	t to exceed 6"	
Capacity		0.0 %							
Load Yield Limit p	er Foot	0.0 PLF 157.4 PLF							
Yield Limit p Yield Mode	er Fastener	78.7 lb. IV							
Edge Distan	се	1 1/2"							
Min. End Dis Load Combi		3"							
Duration Fac		1.00							
							_		
							F	Manufacturer Info	Comtech, Inc. Lot 4 Ring-Rosser Pittman Broadway, NC
									USA
									28314 910-864-TRUS
					This design	is valid until 4/24/2	2023		COMTECH
L					5				

is	Design	Pr	ent: W oject: dress:	eaver Develop	oment			t by: [Name:]	6/24/2021 David Landry The Hickory I				Page 7
GDH	Kerto-S L	VL 1.7	′50" X	14.000	" 2-Ply	/ - PA			10521-3383 el: Level				
							3			2			
		2			1								
• •	The -	• . • .					· · ·	-	• •		•		1'2"
1 SPF End	· · · d Grain			•			•			• • • 2 SPF	• End Gra	ain	
,					20'								3 1/2"
					20'							1	
	formation						eactions	UNPA	TERNED	lb (Uplif	t)		
ype: lies:	Girder 2		Application Design Me				rg 1	Live 0	Dead 1804	Snov 196		Wind 0	Const 0
oisture Con	dition: Dry		Building Co		IRC 2015		2	0	1750	14		0	0
eflection LL:			Load Shari	-	Chaokad								
eflection TL: portance:	360 Normal		Deck: Ceiling:		Checked sum 1/2"								
emperature:	Temp <= 100)°F	o o ining.	016									
						В	earings						
							Bearing Lo 1 - SPF 3. End	-	Cap. R 19%	eact D/L lb 1804 / 196	Total 2000	Ld. Case L	Ld. Comb. D+S
alysis Re	sults	I					Grain						
nalysis	Actual	Location All				ase	2 - SPF 3. End	500"	18%	1750 / 141	1891	L	D+S
loment nbraced	8592 ft-lb 9503 ft-lb			0.354 (35%) [1.000 [) Ur)+S L	niform	Grain						
nbiaceu		3111/2 33		(100%)	, , , , , , , , , , , , , , , , , , ,								
hear	1552 lb			0.165 (16%) [niform							
	0.041 (L/5726)	9'11 1/16" 0.4											
	0.430 (L/546)	9'11 7/8" 0.6	51 (L/360)	J.660 (66%) I	D+S L								
Easten all r	t es blies using 3 rows of	f 10d Box nails	(128x3") at 1	2" o c Maxim	um end distanc	e not							
to exceed 6	6".		. ,										
	st page of calculation designed to be sup		•	•	s.								
Top loads r	nust be supported e	equally by all plic	es.										
•	e laterally braced at iderness ratio base												
)	Load Type		cation Tri	b Width S	ide Dea	ad 0.9	Live 1	Snow 1	.15 Win	d 1.6 Con	st. 1.25	Comment	s
	Uniform			То	ор 6	60 PLF	0 PLF	0 F	PLF) PLF	0 PLF	Wall	
	Uniform			То	op 9	0 PLF	0 PLF	0 F	PLF) PLF	0 PLF	B1GE	
	Tie-In	0-0-0 to 1	6-10-0 1-0	-0 To	op 2	0 PSF	0 PSF	20 F	PSF () PSF	0 PSF	Roof Load	
	Self Weight				1	11 PLF							
otes Iculated Structured	Designs is responsible only	chemicals of the Handling &	Installation		For flat roofs ponding	provide prope	r drainage to pre	vent	n ufacturer Inf isä Wood	0	L	omtech, Inc. ot 4 Ring-Rosser P roadway, NC	ittman
uctural adequacy sign criteria and	of this component based o I loadings shown. It is	the 1 LVL beams the 2 Refer to	must not be cut or manufacturer's	product information	n			301		ding, 2nd F l oor	r U 2	SA 8314	
sure the compor	customer and/or the contrac tent suitability of the inte ify the dimensions and loads.	tor to regarding anded fastening of	installation rec	uirements, multi- gth values, and co	ły			(80	wark, C1 0000 0) 622-5850 w.metsawood		9	10-864-TRUS	
umber		3. Damaged B	Beams must not be	used					-ES: ESR-363				
	ions, unless noted otherwise	 Design ass 	umes top edge is l a	aring points to avo									ITECH

	Client: Weaver Developm	ent Date:	6/24/2021	Page 8 of 8
	Project:	Input b		
isDesign	Address:	Job Na		
			#: J0521-3383	
GDH Kerto-S LVL	1./50" X 14.000"	2-Ply - PASSED		
				-
• • • • •	• • • • •	• • • • •	• • • •	
	••••			· · ↓ ↓ 1′2″
1 SPF End Grain	· · · · ·	· · · · ·	2 SPF En	
[20'		∫ 1/2"
1		20'		1
Multi-Ply Analysis				
Fasten all plies using 3 rows of	10d Box nails (.128x3") at 12"	o.c Maximum end distance	not to exceed 6"	
Capacity 0.0 °	%			
Load 0.0 I Yield Limit per Foot 245.	PLF .6 PLF			
Yield Limit per Fastener 81.9				
Yield Mode IV				
Edge Distance 1 1/2 Min. End Distance 3"	2"			
Load Combination				
Duration Factor 1.00)			
Notes	chemicals Handling & Installation	For flat roofs provide proper drainage to preven ponding	t Manufacturer Info Metsä Wood	Comtech, Inc. Lot 4 Ring-Rosser Pittman Broadway, NC
structural adequacy of this component based on the design criteria and loadings shown. It is the	 LVL beams must not be cut or drilled 		301 Merritt 7 Building, 2nd Floor	USA 28314
responsibility of the customer and/or the contractor to ensure the component suitability of the intended	 Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code 		Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
application, and to verify the dimensions and loads. Lumber	approvals 3. Damaged Beams must not be used		www.metsawood.com/us ICC-ES: ESR-3633	
 Dry service conditions, unless noted otherwise LVL not to be treated with fire retardant or corrosive 	 Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid lateral displacement and rotation 	This design is valid until 4/24/2023		соттесн
Version 20.40.075 Powered by iStruct™		. no dooign 15 vand undi 4/24/2025	<u> </u>	CSDI

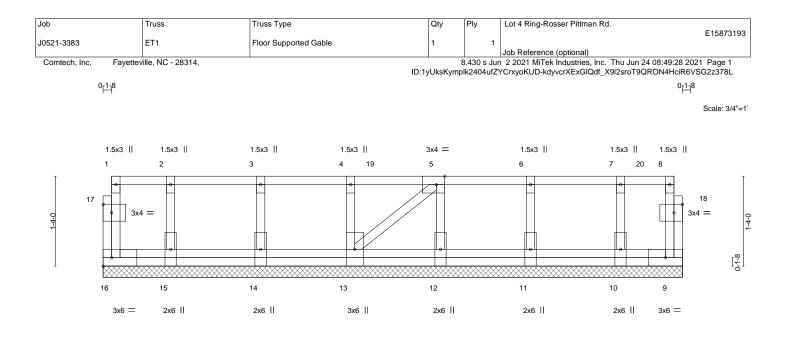
CSD 🗱

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0521-3383 Lot 4 Ring-Rosser Pittman Rd.

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15873193 thru E15873200


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

June 24,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			8-7-0 8-7-0			
Plate Offsets (X,Y)	[5:0-1-8,Edge], [17:0-1-8,0-1-8], [18:0-1-	8,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.00 WB 0.05 Matrix-P	DEFL. i Vert(LL) n/; Vert(CT) n/; Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	2 No.1(flat) 2 No.1(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	<i>,</i>) oc purlins,

REACTIONS. All bearings 8-7-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

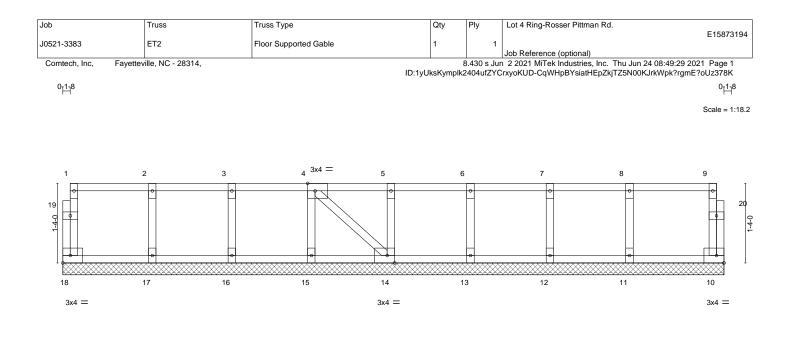
4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 3=-71 6=-71 19=-71 20=-77

June 24,2021

			11-1-0 11-1-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [14:0-1-8,Edge]					
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.01 WB 0.04 Matrix-S	DEFL.iiVert(LL)n/aVert(CT)n/aHorz(CT)0.00	a - n/a 999	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.) oc purlins,	

REACTIONS.

DNS. All bearings 11-1-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

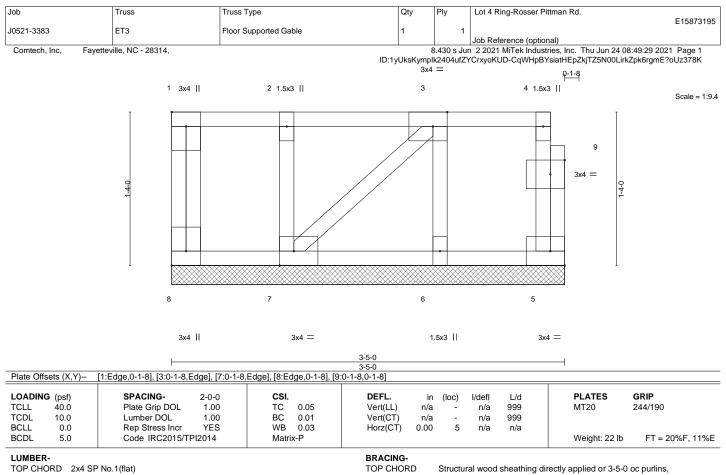
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat)

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) Plates checked for a plus or minus 1 degree rotation about its center.

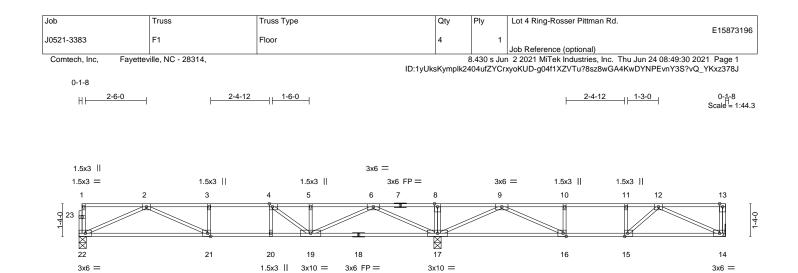
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

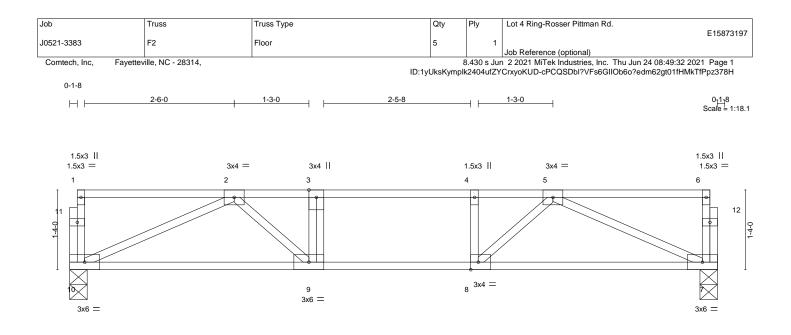
5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u> </u>			26-5-0				
Plate Offsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1	-8,Edge], [21:0-1-8,Edge]			11-8	-4		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.63 BC 0.65 WB 0.53	Vert(LL) -0.17	n (loc) l/defl 7 21-22 >999 5 21-22 >697 3 14 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190	
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 129 lb	FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP No.1(flat) BRACING- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. except end verticals. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing; 17-19,16-17.								
	e) 22=0-3-8, 17=0-3-8, 14=Mechanica rav 22=727(LC 10), 17=1669(LC 1), 14							
TOP CHORD 13-14 8-9=(BOT CHORD 21-22 15-16 WEBS 8-17=	Comp./Max. Ten All forces 250 (lb) or 4=-611/0, 2-3=-1987/0, 3-4=-1987/0, 4-5 //1282, 9-10=-1182/0, 10-11=-1182/0, 1 2=0/1314, 20-21=0/1987, 19-20=0/1987 3=0/1182, 14-15=0/957 284/0, 2-22=-1440/0, 2-21=0/744, 3-2 -647/0, 9-17=-1466/0, 9-16=0/918, 10-	5=-1739/0, 5-6=-1739/0, 6 1-12=-1182/0 ', 17-19=-192/817, 16-17= 1=-260/0, 6-17=-1781/0, (5-8=0/1282, =-367/573, 6-19=0/1122,					
 All plates are 3x4 M Plates checked for a Refer to girder(s) for Recommend 2x6 str 	e loads have been considered for this d T20 unless otherwise indicated. plus or minus 1 degree rotation about i truss to truss connections. rongbacks, on edge, spaced at 10-0-0 of ttached to walls at their outer ends or re rect truss backwards.	its center. oc and fastened to each tr	russ with 3-10d (0.131")	(3") nails.				
LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf)	dard valanced): Lumber Increase=1.00, Plate	Increase=1.00			4	COL ES-	Marc 1	


```
Vert: 14-22=-10, 1-13=-100
Concentrated Loads (lb)
```

Vert: 13=-500

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent locality possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			10-10-0 10-10-0			
Plate Offsets (X,Y)	[8:0-1-8,Edge]				T	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.35 WB 0.30 Matrix-S	DEFL. ir Vert(LL) -0.08 Vert(CT) -0.11 Horz(CT) 0.02	9-10 >999 360	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) REACTIONS. (size) 10=0-3-8, 7=0-3-8			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.		

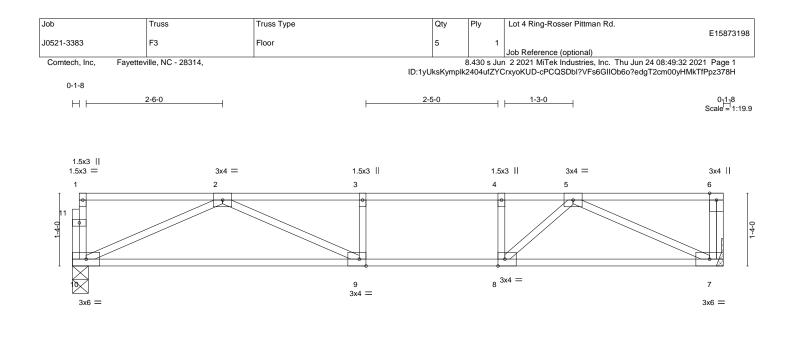
Max Grav 10=576(LC 1), 7=576(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1234/0, 3-4=-1234/0, 4-5=-1234/0

BOT CHORD 9-10=0/981, 8-9=0/1234, 7-8=0/982 2-10=-1073/0, 5-7=-1075/0, 5-8=0/485, 2-9=0/478, 3-9=-255/0, 4-8=-266/0 WEBS

NOTES-


 Unbalanced floor live loads have been considered for this design.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>11-11-0</u> 11-11-0			
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.78 BC 0.61 WB 0.34 Matrix-S	DEFL. in Vert(LL) -0.15 Vert(CT) -0.25 Horz(CT) 0.02	9-10 >490 360	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.		

REACTIONS. (size) 10=0-3-8, 7=Mechanical Max Grav 10=635(LC 1), 7=1142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 6-7=-616/0, 2-3=-1508/0, 3-4=-1508/0, 4-5=-1508/0

9-10=0/1112, 8-9=0/1508, 7-8=0/1124 BOT CHORD

WEBS 2-10=-1219/0, 2-9=0/558, 5-7=-1238/0, 5-8=0/654, 4-8=-352/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

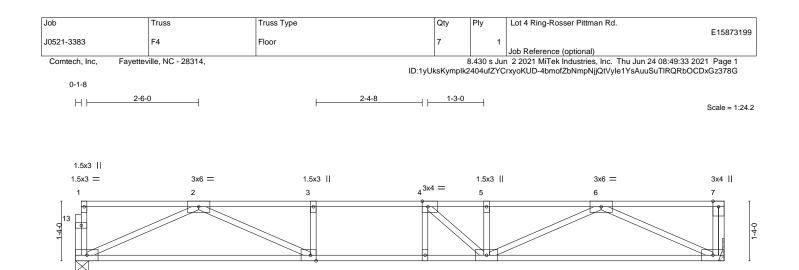
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 7-10=-10, 1-6=-100 Concentrated Loads (lb)


Vert: 6=-500

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10

14-6-0 14-6-0

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

1.5x3 ||

9

in

-0.20 9-1Ó

-0.25 9-10

0.03

(loc)

8 n/a

3x6 =

I/defl

>838

>684

except end verticals.

L/d

480

360

n/a

Max Grav 12=778(LC 1), 8=784(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2243/0, 3-4=-2243/0, 4-5=-2186/0, 5-6=-2186/0 BOT CHORD 11-12=0/1424, 10-11=0/2243, 9-10=0/2243, 8-9=0/1429

2-0-0

1.00

1.00

YES

11

3x4 =

CSI.

тс

вС

WB 0.46

Matrix-S

0.61

0.84

WEBS 2-12=-1561/0, 2-11=0/958, 3-11=-303/0, 6-8=-1573/0, 6-9=0/836, 5-9=-271/41, 4-9=-428/186

NOTES-

2

3x6 =

Plate Offsets (X,Y)--LOADING (psf)

40.Ó

10.0

0.0

5.0

TCLL

TCDL

BCLL

BCDL

WEBS REACTIONS.

LUMBER-

TOP CHORD

BOT CHORD

1) Unbalanced floor live loads have been considered for this design.

[4:0-1-8,Edge], [11:0-1-8,Edge]

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

(size) 12=0-3-8, 8=Mechanical

SPACING-

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

2x4 SP No.1(flat)

2x4 SP No.1(flat)

2x4 SP No.3(flat)

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

PLATES

Weight: 73 lb

MT20

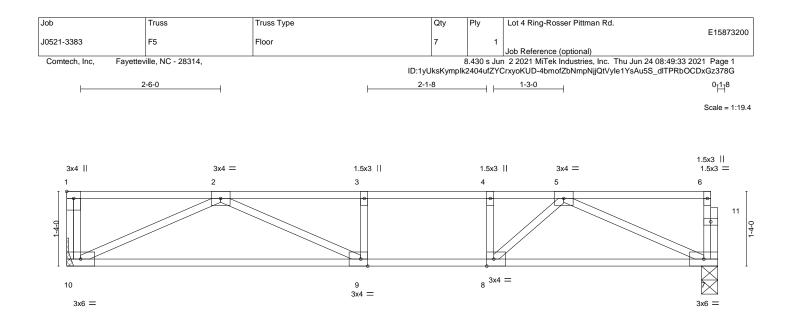
Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP

244/190

June 24,2021


8

3x6 =

FT = 20%F, 11%E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1			11-7-8			
			11-7-8			1
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8	,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.60 BC 0.51 WB 0.33	DEFL. in Vert(LL) -0.16 Vert(CT) -0.25 Horz(CT) 0.02	9-10 >846 480 9-10 >540 360	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		, nja nja	Weight: 58 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.			
WEBS 2x4 SP No.3(flat)		BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.				
REACTIONS. (size Max G	e) 10=Mechanical, 7=0-3-8 Brav 10=626(LC 1), 7=619(LC 1)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1441/0, 3-4=-1441/0, 4-5=-1441/0

BOT CHORD 9-10=0/1081, 8-9=0/1441, 7-8=0/1087

WEBS 2-10=-1190/0, 2-9=0/515, 5-7=-1190/0, 5-8=0/606, 4-8=-323/0

NOTES-

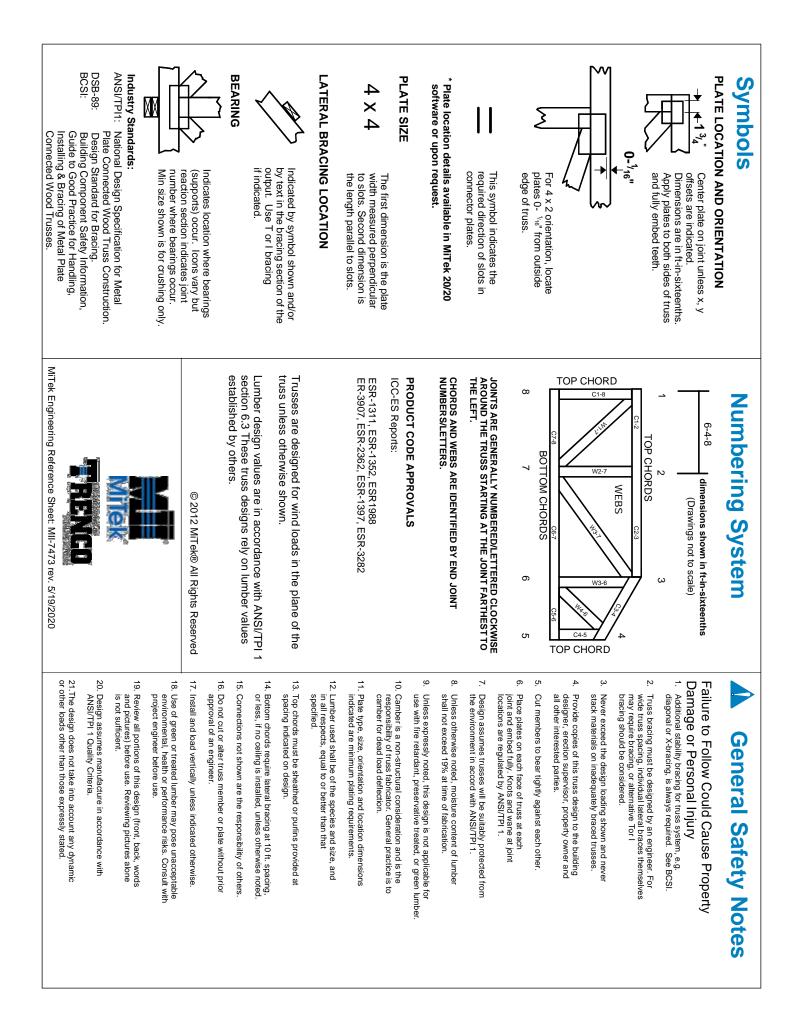
1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

June 24,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

