

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21060009 1135 ACC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I46540562 thru I46540619

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

June 11,2021

Liu, Xuegang IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	А	Roof Special	1	1	Job Reference (optional)	146540562

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:46:59 ID:qHV9pF_zIJYMefjRQIVdogy8NK7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

LUMBER 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) TOP CHORD 2x4 SP 2400F 2.0E *Except* 16-13:2x4 SP 2400F 2x4 SP No.2 *Except* 16-13:2x4 SP 2400F BOT CHORD 2x4 SP No.2 *Except* 16-6:2x4 SP No.1, 15-10;14-11:2x4 SP No.2 15-00;14-11:2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 16-6:2x4 SP No.1, 15-10;14-11:2x4 SP No.2 c-C Exterior(2R) 9-8-3 to 12-8-3, Interior (1) 12-8-3 SLIDER Left 2x4 SP No.3 3-0-1 box 3 3-0-1 BRACING Structural wood sheathing directly applied or 1-15-0 purlins, except end verticals. forces & MWFRS for reactions shown; Lumber DOL=1.15 Plate DOL=1.16) Plate grip DOL=1.16) BOT CHORD Structural wood sheathing directly applied or 2-2-0 oc bracing. This truss has been checked for uniform snow load only, except as noted. REACTIONS (size) 2=-03-8, 13=0-3-8 MAX Horiz 2=-230 (LC 7) MAX JUPI 1 13=-17 (LC 12) MAX Grav Max Koriz 2=-230 (LC 7) MAX JUPI 1 13=-17 (LC 12) MAX Grav 2=-1414 (LC 1), 13=1427 (LC 1) FORCES (lb) - Maximum Tormson/Maximum Tension All plates are MT20 plates otherwise indicated. TOP CHORD 1-2-0/41.2-4=-1846/136, 4-5=-1554/125. All plates are MT20 plates otherwise indicated. FORCES (lb) - Maximum Tormson/Maximum Tension For an other and right regrin a)))%
 5-6=-1568/136, 6-8=-8004/231, 8-9=-8100/131, 9-10=6397/236, 10-11=-3516/165, 11-12=0/102, 11-13=-1427/137 BOT CHORD 2-16=0/2238, 15-16=-113/6350, 14-15=-103/3422, 13-14=-39/109 WEBS 4-17=-254/135, 5-17=-45/1268, 6-17=-1367/134, 6-16=-91/5972, 8-16=-73/111, 9-16=0/1416, 9-15=-860/25, 10-15=-14/2541, 10-14=-1048/72, 11-14=-89/2857 NOTES 	21

NOTES

Scale = 1:75.7

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	AA	Common	2	1	Job Reference (optional)	146540563

-13 9-11-8 9-7

Scale = 1:62.3

(Roof Snow = 30.0)

Loading

TCLL

TCDL

BCLL

BCDL

LUMBER

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

WEBS

FORCES

WEBS

NOTES

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

<u>م</u>

(psf)

30.0

10.0

0.0

10.0

Left 2x4 SP No.3 -- 3-11-14, Right 2x4 SP

Structural wood sheathing directly applied or

5-14.7-14

Rigid ceiling directly applied or 10-0-0 oc

2=0-3-8, 10=0-3-8

Max Grav 2=1422 (LC 1), 10=1422 (LC 1)

1-2=0/41. 2-5=-1857/136. 5-6=-1316/186. 6-7=-1316/186, 7-10=-1856/136, 10-11=0/41

5-15=0/142, 5-14=-549/126, 6-14=-65/779,

2-15=-15/1405. 14-15=-15/1405. 12-14=-10/1405, 10-12=-10/1405

7-14=-549/126, 7-12=0/142

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-2-0 to 1-10-0, Interior (1) 1-10-0 to 13-3-8, Exterior(2R) 13-3-8 to 16-3-8, Interior (1) 16-3-8 to 27-9-0 zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

(lb) - Maximum Compression/Maximum

2x4 SP No.2

2x4 SP No.3

No.3 -- 3-11-14

2-1-0 oc purlins.

1 Row at midpt

Max Horiz 2=181 (LC 10)

bracing.

Tension

DOL=1.60 plate grip DOL=1.60

2.0E

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 12:47:02 ID:JT3Y0b?bWdgDFpId_?1sKuy8NK6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-1-2-8 27-9-8 6-7-12 13-3-8 19-11-4 26-7-0 1-2-8 6-7-12 6-7-12 6-7-12 6-7-12 1-2-8 4x5= 6 16 17 12 81 5 7 10 11 T. 12 15 14 13 3x8 II 3x8 II 2x4 u 3x8= 2x4 u 6-7-12 13-3-8 19-11-4 26-7-0 6-7-12 6-7-12 6-7-12 6-7-12 Plate Offsets (X, Y): [2:0-5-5,Edge], [10:0-5-5,Edge] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) Plate Grip DOL 1.15 тс 0.81 Vert(LL) -0.06 14-15 >999 240 MT20 244/190 Lumber DOL 1.15 BC 0.48 Vert(CT) -0.13 14-15 >999 180 Rep Stress Incr YES WB 0.32 Horz(CT) 0.05 10 n/a n/a Code IRC2018/TPI2014 Matrix-S Weight: 154 lb FT = 20% 2) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; 2x4 SP No.2 *Except* 13-10:2x4 SP 2400F Cs=1.00; Ct=1.10

3) This truss has been checked for uniform snow load only, except as noted.

- 4) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 3x5 MT20 unless otherwise indicated. This truss is designed in accordance with the 2018 6)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 11,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the tabicity of the stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the tabicity of the stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the tabicity of the stability of	
Safety Information available from Truss Plate Institute 2670 Crain Highway Suite 203 Waldorf MD 20601	

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	AB	Common	3	1	Job Reference (optional)	146540564

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:03 ID:JT3Y0b?bWdgDFpId_?1sKuy8NK6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-3-8, Edge], [9:0-5-5, Edge]

Scale = 1:62.3

Loading TCLL (Roof Snow = 3 TCDL BCLL	(psf) 30.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.81 0.49 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.06	(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	11(02010	"TT 12014								Weight: 152 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 No.3 3-11-14 Structural wood she 1-7-8 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, Max Horiz 1=-179 (I	3-11-14, Right 2x4 S eathing directly applie y applied or 10-0-0 or 6-13, 4-13 9=0-3-8 _C 9)	3) 4) 5P 5) 6) ed or c LO	This truss ha except as no This truss ha load of 16.0 p overhangs no All plates are This truss is a International R802.10.2 ar	s been checked for ted. s been designed fo ssf or 2.00 times fla on-concurrent with 3x5 MT20 unless of designed in accord. Residential Code s ad referenced stand Standard	r uniforr or great at roof k other liv otherwi ance w sections dard AN	n snow load or of min roof pad of 30.0 p: re loads. se indicated. th the 2018 R502.11.1 a ISI/TPI 1.	only, f live sf on and						
FORCES	Max Grav 1=1327 ((lb) - Maximum Cor	LC 1), 9=1424 (LC 1 npression/Maximum)											
TOP CHORD	Tension 1-4=-1865/139, 4-5 5-6=-1320/186, 6-9	=-1320/187, =-1860/136, 9-10=0/-	41											
BOT CHORD	1-14=-17/1416, 13- 11-13=-12/1408 9-	14=-17/1416, 11=-12/1408										mun	11.	
WEBS	5-13=-67/784, 4-14 6-13=-548/127, 4-1	=0/142, 6-11=0/141, 3=-556/128										"TH CA	Rojin	
NOTES 1) Wind: ASC Vasd=103r Ke=1.00; C and C-C E: 13-3-8, Exi to 27-9-0 z vertical left forces & M DOL=1.62 DOL=1.15; Cs=1.00; C	E 7-16; Vult=130mpi mph; TCDL=6.0psf; E Cat. II; Exp B; Encloss xterior(2E) 0-0-0 to 3 terior(2R) 13-3-8 to 1 one; cantilever left at and right exposed;C WFRS for reactions : plate grip DOL=1.60 2E 7-16; Pf=30.0 psf ; Is=1.0; Rough Cat I Ct=1.10	h (3-second gust) 3CDL=6.0psf; h=25ft; ad; MWFRS (envelop -0-0, Interior (1) 3-0-6 6-3-8, Interior (1) 16- di right exposed ; en -C for members and shown; Lumber (Lum DOL=1.15 Plat B; Partially Exp.; Ce=	e) 3-8 d e -1.0;							. entitutes.	in the second second	SEAL 2822	8 E.F	and and the first of the second se

11111 June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	ACE	Common Supported Gable	1	1	Job Reference (optional)	146540565

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:03 ID:nfcwDx0DHxo4tztpYjY5t5y8NK5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.2

Plate Offsets ((X, Y): [6:0-3	3-0,0-3-0],	[18:0-3-0,0-3-0], [32	::0-3-0,0-3-0]											
Loading TCLL (Roof Snow = TCDL BCLL BCDL	ing (psf) Spacing 2-0-0 30.0 Plate Grip DOL 1.15 Snow = 30.0) Lumber DOL 1.15 . 10.0 Rep Stress Incr YES . 0.0 Code IRC2018/TPI20 . 10.0 IRC2018/TPI20					CSI TC BC WB Matrix-	0.28 0.06 0.12 R	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 24) l/defl - n/a - n/a I n/a	L/d 999 999 n/a	PLATES MT20 Weight: 231	GRIP 244/190 Ib FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No 3tructural 6-0-0 oc p Rigid ceilin bracing, 1 Row at r (size) Max Horiz Max Uplift	22 2.2 3.3 wood shear urlins, exc ng directly midpt 24=26-7-0 27=26-7-0 30=26-7-0 30=26-7-0 30=26-7-0 30=26-7-0 30=26-7-0 30=26-7-0 24=24-43 (LI 24=-43 (LI 24=-43 (LI 24=-43 (LI 24=-43 (LI 25=-8 (LI 25=-33 (LI 25=-33 (LI) 25=-33	athing directly applie cept end verticals. applied or 6-0-0 oc 12-34, 11-35, 13-33), 25=26-7-0, 29=26 , 28=26-7-0, 35=26 , 31=26-7-0, 35=26 , 40=26-7-0, 35=26 , 40=26-7-0, 41=26 , 43=26-7-0, 44=26 C 10) C 8), 25=-69 (LC 17 12), 27=-14 (LC 12 C 12), 25=-69 (LC 17 12), 27=-14 (LC 12 C 12), 25=-69 (LC 17 12), 27=-14 (LC 12 C 12), 38=-74 (LC 1 C 12), 38=-74 (LC 12 C 12), 38=-74 (LC 12 C 12), 38=-74 (LC 12 C 12), 45=24 (LC 17) C 12), 44=-92 (LC 7) EAL 3228	d or 7-0, FORCES 7-0, TOP CH 7-0,	3 ORD	(lb) - Max Tension 2-44=-25: 3-4=-118; 7-8=-82/1 10-11=-1: 10-11=-1: 12-13=-1. 14-15=-11 16-17=-6 20-21=-7: 22-24=-2 43-44=-8 41-42=-8 39-40=-8 37-38=-8 33-34=-8 33-34=-8 28-29=-8 26-27=-8	24=283 (LC 17); 26=149 (LC 1); 28=131 (LC 1); 30=131 (LC 1); 32=132 (LC 1); 36=133 (LC 1); 36=133 (LC 1); 36=133 (LC 1); 36=133 (LC 1); 40=132 (LC 1); 41=142 (LC 1); 41=14	25=102 (LC 27=121 (LC 1 27=121 (LC 1 31=134 (LC 1 33=139 (LC 1 33=139 (LC 1 33=139 (LC 1 39=143 (LC 1 41=121	(10), 1), 1), 1), 1), 1), 1), 1), 1	NOTE 1) W V3 K(ar 1- (2) C T or sec or	S find: ASC asd=103n e=1.00; C ad C-C CC 10-0 to 1: N) 16-3-8 qosed ; e embers a umber DC russ desin Ny. For s ae Standa consult c	12:34 10:36 7-39= 4-42= 14-32 20:26 E 7-16 aph; TC E 7-16 aph; TC at. II; E prmer(3 3-3-8, (i to 27- ind ver L=1.6(gned fc tuds e) rd Indu jualifier	=204/85, 11- =106/62, 9-3 =116/53, 6-40 -119/54, 3-43 =-106/62, 15- =-105/50, 17- =-105/53, 19- =-119/54, 21- : Vult=130mpl DD_=6.0psf; E ixp B; Enclose D; 1-2-0 to 1: Corner(3R) 13 9-0 zone; can tical left and r es & MWFRS D plate grip D0 or wind loads i sposed to wink istry Gable Erd d building des	35=-113/19, 7=-107/50, 8-38=- =-105/53, 5-41=-6 =-80/74, 13-33=-1 31=-107/50, 29=-116/53, 27=-95/44, 25=-80/74 n (3-second gust) ICDL=6.0psf; h=2 ad; MWFRS (enve- 10-0, Exterior(2N) I-3-8 to 16-3-8, Ex- tilever left and rigi ight exposed;C-C for reactions sho DL=1.60 n the plane of the d (normal to the fa nd Details as appli igner as per ANSI	-105/50,)5/44, 13/18, 13/18, (alope) (b) (terior ht for wm; truss ace), icable, I/TPI 1.

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	ACE	Common Supported Gable	1	1	Job Reference (optional)	146540565

- TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been checked for uniform snow load only, except as noted.
- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 44, 24, 36, 37, 38, 39, 40, 41, 42, 43, 32, 31, 30, 29, 28, 27, 26, and 25. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:03 ID:nfcwDx0DHxo4tztpYjY5t5y8NK5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	AE	Roof Special Supported Gable	1	1	Ich Reference (optional)	146540566

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:04 ID:FrAIRH1r2EwxV7S06Q3KQJy8NK4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-1-2-8	9-8-3		26	-7-0	27-9-8	
	1-2-8	9-8-3		16-1	10-13	1-2-8	
			4x5=				
			9				
12-5-3	3 2 1	8 ¹² 7 6 4 8 8 8 8 7 8 8 7 8 8 8 8 8 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8			x6°° 15 16 17		
0	45	44 43 42 41 40	3338 37 36 3	5 34 33 32	2340 18		
	3х8 ш		3x5=		29 3x5= 28 27	$ \begin{array}{c} 19 \\ 29 \\ 21 \\ 22 \\ 26 \\ 26 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23$	5-2-4
<u> </u>		*****	*****	******	*****		
					8∟ 12	25	
	I.	1	8-6-2		26-3-	8 26-7-0	
		1	8-6-2		7-9-6	6 0-3-8	

Scale = 1:77.5 Plate Offsets (X, Y): [15:0-3-0,0-3-0], [38:0-1-13,0-1-8]

	(, , , , , , , , , , , , , , , , , , ,												
Loading		(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		30.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
(Roof Snow =	30.0)		Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	,	10.0	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.01	24	n/a	n/a		
BCLL		0.0	Code	IRC2018/TPI2014	Matr	x-R							
BCDL		10.0									Weight: 178 lb	FT = 20%	
BCDL BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural v Rigid ceilin bracing. (size) Max Horiz Max Uplift	0.0 1	athing directly applied cept end verticals. applied or 6-0-0 oc), 25=26-7-0, 26=26-7), 28=26-7-0, 32=26-7), 31=26-7-0, 32=26-7), 31=26-7-0, 35=26-7), 37=26-7-0, 39=26-7), 44=26-7-0, 45=26-7), 44=27, 45=26-7), 45=27, 46-7), 45=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46-7), 46=47, 46, 46-7), 46=47, 46, 46-7), 46=47, 46, 46-7), 46=47, 46, 46-7), 46=47, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46	for 7-0, FORCES 7-0, TOP CHORD 7-0, TOP CHORD 7-0,,),,),, BOT CHORD	(b) - M Tensio 2-46=-: 3-4=-1: 6-7=-11 9-10= 11-12= 13-14= 16-17= 19-20= 21-22= 22-24= 45-46= 43-44= 43-44= 41-42= 39-40= 36-37= 34-35= 30-31= 28-29= 26-27= 24-25=	 24=319 (LC 17) 26=145 (LC 1), 28=133 (LC 1), 30=120 (LC 1), 32=130 (LC 20) 34=130 (LC 20) 34=130 (LC 1), 36=132 (LC 1), 39=228 (LC 12) 41=132 (LC 19) 45=163 (LC 19) aximum Compress 10 236/182, 1-2=0/102 37/164, 4-5=-135/13 51/271, 7-8=-187/3 196/333, 10-11=-18 2161/271, 7-8=-187/3 196/33, 10-11=-18 2161/271, 7-8=-187/3 196/33, 10-11=-18 2161/271, 7-8=-91 217/145, 44-45=-91 91/145, 40-41=-91 91/145, 37-39=-91 91/145, 37-39=-91 91/145, 33-34=-91 91/145, 31-32=-82 100/159, 29-30=-1 105/167, 25-26=-1 76/119 	, 25=129 (LC 27=131 (LC 1 27=131 (LC 1 27=131 (LC 1 31=56 (LC 7) , 33=145 (LC 33=134 (LC 1 , 40=141 (LC 42=134 (LC 1 , 40=141 (LC 42=134 (LC 1 , 44=141 (LC 42=134 (LC 1 , 44=141 (LC 42=134 (LC 1 , 40=141 (LC 1 ,	10), 1), 20), , 1), 1), 19), 1), 17) 93, 235, 333, 32/48,	WEBS NOTE: 1) Wi Va Ke an to to ve for DC 2) Tr on se or	S ind: ASCI asd=103rr b=1.00; C: d C-C Cc 9-8-3, Cc 9-8-	9-39= 6-42= 3-45= 12-35: 14-33 16-30 18-28 20-26 E 7-16; rmer(3 r	Weight: 178 lb -301/140, 8-40= -107/50, 5-43=-1 -111/54, 10-37= =-107/49, 13-34 =-118/38, 15-32 =-99/22, 17-29= =-107/49, 19-27 =-107/49, 19-27 =-117/51, 21-25 : Vult=130mph (3 DL=6.0psf; BCC ixp B; Enclosed; E) -1-2-0 to 1-8-3 R) 9-8-3 to 12-8- ntilever left and 1 ht exposed;C-C for reactions shot rip DOL=1.60 or wind loads in ti tposed to wind (r istry Gable End I d building design	FT = 20% 114/17, 7-41=-105/64, 05/49, 4-44=-114/62, 114/15, 1-36=-105/64, 104/56, 107/76, 108/61, 105/52, 96/111 I-second gust))L=6.0psf; h=25ft; MWFRS (envelope) 3, Exterior(2N) 12-8-3 ight exposed ; end for members and wn; Lumber he plane of the truss normal to the face), Details as applicable, er as per ANSI/TPI 1.
EGANG LUNIN												June	e 11,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property incorporate this design the tartures system. Before use, the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	AE	Roof Special Supported Gable	1	1	Job Reference (optional)	146540566

- TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been checked for uniform snow load only, except as noted.
- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).9) Gable studs spaced at 1-4-0 oc.
- 10) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 46, 31, 39, 40, 41, 42, 43, 44, 45, 36, 35, 34, 33, and 32. This connection is for uplift only and does not consider lateral forces.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 24. This connection is for uplift only and does not consider lateral forces.
- 12) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 29, 28, 27, 26, and 25. This connection is for uplift only and does not consider lateral forces.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 46, 31, 39, 40, 41, 42, 43, 44, 45, 37, 36, 35, 34, 33, 32, 30, 29, 28, 27, 26, 25.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:04 ID:FrAIRH1r2EwxV7506Q3KQJy8NK4-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	В	Common	4	1	Job Reference (optional)	146540567

<u>11-10-0</u> 11-6-5

Scale = 1:71.6

0-9-8

4x6 **I**

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:05 ID:FrAIRH1r2EwxV7S06Q3KQJy8NK4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 11,2021

818 Soundside Road Edenton, NC 27932

Loading TCLL (Roof Snow = 3 TCDL BCLL BCDL	(psf) 30.0 30.0) 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.64 0.65 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.23 0.09	(loc) 14-16 16-18 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 202 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 - C No.3 3-4-11 Structural wood she 2-11-2 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=218 (LC Max Gray 2=1722 (I	t* 16-7:2x4 SP No.2 3-4-11, Right 2x4 SP athing directly applied applied or 10-0-0 oc 8-16, 6-16 12=0-3-8 C 10) C 1), 12=1722 (LC 1	2) 3) 4) 1 or 5) 6) L(TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= This truss ha except as no This truss ha load of 16.0 p overhangs no All plates are This truss is International R802.10.2 ar CASE(S) 	7-16; Pf=30.0 p; s=1.0; Rough Ca =1.10 s been checked ted. s been designed sof or 2.00 times on-concurrent wit 3x5 MT20 unles designed in acco Residential Code and referenced sta Standard	sf (Lum D at B; Parti for uniforr for great flat roof li th other lin so otherwi rdance w e sections andard AN	OL=1.15 Plat ally Exp.; Ce= n snow load of ad of 30.0 ps ve loads. se indicated. ith the 2018 s R502.11.1 a ISI/TPI 1.	e =1.0; only, live sf on nd					
FORCES	(lb) - Maximum Com Tension 1-2=0/41, 2-4=-2342	2/173, 4-6=-2104/209	,										
BOT CHORD	6-7=-1556/241, 7-8= 8-10=-2104/209, 10- 12-13=0/41 2-18=-52/1790, 16-1	-1556/241, -12=-2342/173, 8=0/1542,											un.
WEBS	14-16=0/1542, 12-14 7-16=-149/1203, 8-1 8-14=-5/388, 10-14= 6-16=-633/152, 6-18	4=-47/1790 6=-633/152, :-238/129, 3=-5/388, 4-18=-238/1	29								1	CFESS	ROLIN
NOTES 1) Wind: ASC Vasd=103; Ke=1.00; C and C-C E 16-3-8, Ex: 19-6-10 to exposed ; members a Lumber DC	E 7-16; Vult=130mph mph; TCDL=6.0psf; Br Cat. II; Exp B; Enclose xterior(2E) -1-2-0 to 2 terior(2R) 16-3-8 to 19 33-9-0 zone; cantileve end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelope -1-2, Interior (1) 2-1-2 -6-10, Interior (1) er left and right ght exposed;C-C for for reactions shown; iL=1.60	e) : to								A A A A A A A A A A A A A A A A A A A	SEA 2822 HUEGAN	EER.

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	BA	Common	1	1	Job Reference (optional)	146540568

2)

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:06 ID:FrAIRH1r2EwxV7S06Q3KQJy8NK4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteets and pl

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	BB	Common	8	1	Job Reference (optional)	146540569

BCLL

BCDL

1)

Run: 8.51 S. Jun. 1.2021 Print: 8.510 S. Jun. 1.2021 MiTek Industries. Inc. Fri Jun 11.12:47:06 ID:j2kged1TpY2n6G1Cf8aZyWy8NK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	BE	Common	1	1	Job Reference (optional)	146540570

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 12:47:07 ID:j2kged1TpY2n6G1Cf8aZyWy8NK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

TCDL	,	10.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.04		28	n/a	n/a	a					
BCLL BCDL		0.0 10.0	Code	IRC2018/TPI2014	Matrix-S									Weight: 386	lb	FT = 3	20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS	DMBER DP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.3 EBS 2x4 SP No.3 *Except* 36-14:2x4 SP No.2 THERS 2x4 SP No.3 JDER Left 2x4 SP No.3 3-5-9 RACING DP CHORD Structural wood sheathing directly applied or 4-5-3 oc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing; Except: 6-0-0 oc bracing: 29-30,28-29,27-28,26-27,25-26,24-25. DINTS 1 Brace at Jt(s): 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60 EACTIONS (size) 2=0-3-8, 24=6-0-0, 25=0-0, 25=0-0, 25=0-		BOT CHORD	24-85=001405, 47-80=-001404, 46-47=-60/1404, 45-46=-60/1404, 44-45=-60/1406, 43-44=-60/1406, 42-43=0/1131, 41-42=0/1131, 39-41=(38-39=0/1135, 37-38=0/1135, 36-37=(35-36=0/702, 34-35=0/702, 32-34=0/7 31-32=0/688, 30-31=0/688, 29-30=-14 28-29=-145/69, 27-28=-86/59 WEBS 14-36=-182/664, 36-54=-68/161, 54-55=-83/142, 18-57=-838/3, 30-57= 30-58=-19/1150, 22-58=-13/973, 10-51=-562/114, 50-51=-639/127, 49-50=-689/140, 36-49=-642/131, 43-52=-71/381, 10-52=-88/467, 6-53=-273/77, 43-53=-299/80, 22-59=-95/136, 59-60=-86/148,				1) 2) 3) 4)	Wind Vasd Ke=1 and C to 16 19-6- expo mem Lumb Trus only. see S or co TCLL DOL= Cs=1 This	d: ASC d=103 1.00; C C-C E 5-3-8, l -4 to 3 sed ; ber D s des For s Standa onsult L: ASC =1.15 1.00; C truss	E 7-1 mph; Cat. II; xterio Exterio 2-1-1 end v and fo DL=1. igned studs ard In qualifi CE 7- ²); Is=1 Ct=1.1 has b	16; V TCL I; Ex or(2E ior(2 12 zo vertio orce exp d for exp dus fied 1.6; 1 1.0; 10 peen	Vult=130mpl DL=6.0psf; E pp B; Enclose E) -1-2-0 to 2 2R) 16-3-8 to one; cantilev cal left and r s & MWFRS plate grip D0 wind loads i vosed to wind try Gable Er building des Pf=30.0 psf Rough Cat i o checked fo	a (3-s SCDL ed; M 2-0-1 o 19- ver le ight (i for l DL=1 in the d (no nd Da d (no nd Da d (no nd Da f (no nd nd nd nd nd f (no nd nd nd nd nd nd f (no nd nd n	second _=6.0p 1WFR 2, Inte 6-4, In ft and expose reactio 1.60 e plane ormal to etails a r as pe a DOL= artially form si	d gust) sf; h=2! S (enve rior (1) terior (1) terior (right ed;C-C ons sho e of the o the fa as appli er ANSI =1.15 P Exp.; C now loa	5ft; lope) 2-0-12 1) for wn; truss ce), cable, /TPI 1. late 2==1.0; d only.	
REACTIONS	55, 56, 57, 58, 60 (size) 2=0-3-8, 24=6-0-0, 25=6-0-0, 26=6-0-0, 27=6-0-0, 28=6-0-0 Max Horiz 2=224 (LC 10) Max Uplift 24=-29 (LC 7), 27=-56 (LC 1) Max Grav 2=1424 (LC 1), 24=120 (LC 20), 25=65 (LC 1), 26=26 (LC 16), 27=21 (LC 12), 28=1748 (LC 1)				22-59=-95/136, 59-60=-86/148, 60-61=-82/125, 24-61=-84/131, 13-49=0/34, 37-49=-42/28, 12-50=-88/45, 38-50=-27/30, 11-51=-105/42, 39-51=-5/25, 10-41=-8/109, 9-52=-66/30, 42-52=0/27, 8-43=-107/34, 7-53=-49/26, 44-53=-14/23, 6-45=-16/117, 5-46=-33/28, 4-47=0/46, 3-48=0/30, 15,544=-1/21, 25:54=-37/27, 16-55=-82/45					except as noted. This truss has been designed for greater of min load of 16.0 psf or 2.00 times flat roof load of 30 overhangs non-concurrent with other live loads.			f min ro of 30.0 pads.	pof live psf on				
FORCES	(lb) - Max Tension	timum Com	pression/Maximum		34-55=-12/29, 17 18-32=-19/265, 2	7-56=-74/4 19-57=0/3	2, 33-56=-10 8, 31-57=-134)6/32, 4/23,				1		Kar W	1	VU	U.Y	11
TOP CHORD	1-2=0/41, 4-5=-1711 6-7=-156 9-10=-141 11-12=-9- 13-14=-8 15-16=-9- 17-18=-91 19-21=-6 22-23=-1	, 2-3=-1913 9/125, 5-6= 4/151, 7-9= 99/225, 10- 47/186, 12- 74/231, 14- 31/210, 16- 86/149, 18- 11/138, 21- 70/104, 23-	/79, 3-4=-1809/99, -1685/149, -1527/201, 11=-969/155, 13=-937/217, 15=-873/226, 17=-945/180, 19=-527/157, 22=-671/100, 24=-215/85	NOTES	20-30=-165/40, 2 22-28=-1513/17 25-61=-12/3	21-58=-1/4 3, 27-59=-	ŀ6, 29-58=-17 31/0, 26-60=-	'1/8, -6/40,			đ	ALL		SE 28 	NE	8 ER GL	N	William Branch

June 11,2021

Continued on page 2

Loading

TCLL

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	BE	Common	1	1	Job Reference (optional)	146540570

- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 1-4-0 oc.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 24 and 27. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:07 ID:j2kged1TpY2n6G1Cf8aZyWy8NK3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	BSE	Common	1	1	Job Reference (optional)	146540571

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:08 ID:BEI2sz26asAekQcODr5oVky8NK2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:72.5 [1:0-4-13,0-1-8], [1:2-7-2,0-1-8], [2:0-5-0,0-2-8], [6:0-3-8,0-3-0], [8:0-3-0,0-3-0], [10:0-5-0,0-2-8], [18:0-5-0,0-2-8], [23:0-5-0,0-3-0], [26:Edge,0-3-8], [33:0-5-0,0-2-4], Plate Offsets (X, Y): [47:0-5-0,0-2-4]

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		30.0	Plate Grip DOL	1.15		TC	0.43	Vert(LL)	-0.07	42-43	>999	240	MT20	244/190
(Roof Snow =	30.0)		Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.11	42-43	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.55	Horz(CT)	0.04	31	n/a	n/a		
BCLL		0.0	Code	IRC2018/TP	12014	Matrix-S		. ,						
BCDL		10.0											Weight: 387 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S Structura 3-11-15 c Rigid ceil bracing, 6-0-0 oc l 32-33,31 1 Bracea 54, 55, 56 59, 60, 6	0.2 0.2 0.3 *Excepi 0.3 SP No.3 - 3 I wood shee oc purlins, of coc purlins, of the provided of the provided bracing: -32,30-31,2 at Jt(s): 53, 5, 57, 58, 1, 62, 64	t* 40-14:2x4 SP No.: 8-4-11 athing directly applie except end verticals. applied or 10-0-0 oc 9-30,28-29,27-28,26	TOP C 2 d or 6-27. BOT C	HORD	1-2=-1903/93, 2-3= 3-4=-1689/128, 4-5 5-6=-1680/157, 6-7 7-9=-1517/208, 9-1 10-11=-955/160, 11 12-13=-922/222, 13 14-15=-860/231, 15 16-17=-928/186, 17 18-20=-468/168, 22 23-24=-221/140, 22 23-24=-221/140, 22 24-26=-367/140 1-52=-26/1411, 51- 50-51=-20/1408, 45 48-49=-21/1410, 47 46-47=0/1122, 45-2 42-43=0/122, 45-2 45-4	1788/1 =-1747, =-1560, 0=-148; 1-12=-9; 3-14=-8; 5-16=-9; 7-18=-9; 2-21=-5; 2-23=-5; 4-25=0/' 52=-26, 3-50=-2; 7-48=-2; 46=0/11;	03, (139, (159, 9/231, 33/191, 51/236, 17/216, 77/156, 59/149, 97/108, 102, (1411, 0/1408, 1/1410, 22, 43-45=0/'	1126,	WEBS		14-40: 58-59: 18-60: 33-62: 54-55: 40-53: 10-56: 47-57: 47-57: 46-56: 48-57: 3-51= 39-58: 17-60:		
REACTIONS	(size) Max Horiz Max Uplift Max Grav (Ib) - Max Tension	1=0-3-8, 2 28=6-3-8, 31=0-3-8 1=224 (LC 26=-41 (LL) 30=-22 (L1 1=1319 (L 27=93 (LC 29=77 (LC 31=603 (L cimum Com	(6=6-3-8, 27=6-3-8, 29=6-3-8, 30=6-3-8, 2 10) C 12), 28=-35 (LC 1) C 12, 26=238 (LC 1) C 1), 26=238 (LC 1) C 1), 28=21 (LC 12), C 1), 30=1055 (LC 1) C 1) pression/Maximum	+ ·····	TH C SEA 282	39-40=0/675, 38-35 35-37=0/675, 34-35 32-33=-157/80, 31- 30-31=-157/80, 29- 28-29=-103/70, 27- 26-27=-103/70 AL 28	9=0/675 5=0/663 32=-15 30=-10 28=-10	, 37-38=0/67; , 33-34=0/66; 7/80, 3/70, 3/70,	5, 3,			20-61: 22-62: 23-30: 28-64:	=0/61, 34-61=-11 35/7, 32-62=-21 1409/145, 29-6 5/38, 27-65=-1:	7/20, 21-33=-130/38, 39/12, 3=-27/11, 2/3
				in in	EGA	NGLIM							June	9 11,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	BSE	Common	1	1	Job Reference (optional)	146540571

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0 to 2-11-8, Interior (1) 2-11-8 to 16-3-8, Exterior(2R) 16-3-8 to 19-6-10, Interior (1) 19-6-10 to 33-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been checked for uniform snow load only, except as noted.
- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 1-4-0 oc.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 26, 30, and 28. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:08 ID:BEI2sz26asAekQcODr5oVky8NK2-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	С	Roof Special	3	1	Job Reference (optional)	146540572

Page: 1

NOTES

WEBS

Loading

TCLL

TCDL

BCLL

BCDL

LUMBER

WEBS

WEBS

FORCES

SLIDER

BRACING

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	CA	Roof Special	1	1	Job Reference (optional)	146540573

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:10 ID:7dQpHe4M6TQMzkmnLG7Ga9y8NK0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NOTES

WEBS

TCLL

TCDL

BCLL

BCDL

WEBS

WEBS

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	D	Common	4	1	Job Reference (optional)	146540574

9-11-8

4-10-0

Carter Components (Sanford), Sanford, NC - 27332,

5-1-8

5-1-8

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:11 ID:4?YZiK5ce4h4D2v9ShAkfay8NK_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-9-8

4-10-0

Page: 1

21-1-8

1-2-8

<u>19-11-</u>0

5-1-8

4 4x5 🍫 12 10 12 11 4x5、 3 5

4x5=

Scale = 1:61.2

Plate Offsets (X, Y): [9:0-4-0,0-3-0]

Loading TCLL (Roof Snow = TCDL BCLL BCDL	30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.37 0.66 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.20 0.02	(loc) 9 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 128 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural w 5-11-7 oc pr Rigid ceiling bracing. (size) 8 Max Horiz 1 Max Grav 8 (lb) - Maxim Tension 1-2=0/117,3 4-5=-858/1 8-10=-18/73	2 2 3 3 9 directly =0-3-8, 1 0=198 (L =1085 (L um Com 2-3=-370 55, 5-6=-3 30, 6-8= 44	athing directly applied ccept end verticals. applied or 10-0-0 oc 0=0-3-8 C 10) C 1), 10=1085 (LC 1 pression/Maximum /113, 3-4=-858/155, 369/113, 6-7=0/117, -453/130	4) 5) d or LO	This truss ha load of 16.0 j overhangs nu This truss is International R802.10.2 ar AD CASE(S)	s been designed fo posf or 2.00 times fla on-concurrent with designed in accord Residential Code s nd referenced stand Standard	or greate at roof k other lin lance w sections dard AN	er of min roof and of 30.0 ps re loads. th the 2018 R502.11.1 a SI/TPI 1.	live sf on nd						
WEBS NOTES 1) Wind: ASC Vasd=103 Ke=1.00; (and C-C E 1-10-2 to § (1) 12-11-{ exposed; members a Lumber DO 2) TCLL: ASC DOL=1.15 Cs=1.00; (3) This truss except as	4-9=-82/56C 3-10=-765/3 CE 7-16; Vult= mph; TCDL=6 Cat. II; Exp B; Exterior(2E) -1. 9-11-8, Exterio 8 to 21-0-14 z end vertical le and forces & N OL=1.60 plate CE 7-16; Pf=0 CE-1.6; Reu Ct=1.10 has been che noted.), 5-9=-2(9, 5-8=-7 130mph 6.0psf; BC Enclosed 1-14 to 2 or(2R) 9- orore; can fit and rig WFRS grip DO 0.0 psf (I gh Cat B cked for	52/160, 3-9=-262/160 765/39 (3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelope I-10-2, Interior (1) 11-8 to 12-11-8, Inter tilever left and right ht exposed; C-C for for reactions shown; L=1.60 Lum DOL=1.15 Plate ; Partially Exp.; Ce=1 uniform snow load of), ;ior I.0; nIy,							. and the second second	and the second	SEA 2822	RO AL 28 E.R.	and

- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been checked for uniform snow load only, except as noted.

818 Soundside Road Edenton, NC 27932

GANG 11111 June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	DA	Common	3	1	Job Reference (optional)	146540575

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:11 ID:u9vqyNANDwRExzNJpyH8vry8NJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61.2

Plate Offsets (X, Y): [8:0-3-8,0-3-0]

												_			_
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL		30.0	Plate Grip DOL	1.15		тс	0.38	Vert(LL)	-0.02	8	>999	240	MT20	244/190	
(Roof Snow = 3	30.0)		Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.20	7-8	>999	180			
TCDL		10.0	Rep Stress Incr	YES		WB	0.73	Horz(CT)	0.02	7	n/a	n/a			
BCLL		0.0	Code	IRC2018	3/TPI2014	Matrix-S									
BCDL		10.0											Weight: 125 lb	FT = 20%	
L UMBER FOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3	2 2 3		4) 5)	This truss ha load of 16.0 p overhangs no Refer to girde	s been designed for osf or 2.00 times flaton-concurrent with er(s) for truss to tru	or greate at roof lo other liv uss conr	er of min root oad of 30.0 p ve loads. nections.	f live sf on						
BRACING				6)	This truss is	designed in accord	dance w	ith the 2018							
TOP CHORD	Structural w 6-0-0 oc pu	ood shea lins, exc	athing directly applie cept end verticals.	d or	International R802.10.2 ar	Residential Code	sections dard AN	R502.11.1 a ISI/TPI 1.	and						
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc	LO	AD CASE(S)	Standard									
REACTIONS	(size) 7 Max Horiz 9 Max Grav 7	=0-3-8, 9 =-194 (Li =1074 (L	= Mechanical C 9) .C 1), 9=963 (LC 1)												
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum												
TOP CHORD	1-2=-271/83 4-5=-370/11 5-7=-453/12	5, 2-3=-84 2, 5-6=0 9	42/154, 3-4=-842/154 /117, 1-9=-266/70,	4,											
BOT CHORD	7-9=-23/712														
WEBS	3-8=-82/541 2-9=-835/78	, 4-8=-26 , 4-7=-74	54/161, 2-8=-241/15 ⁻ 48/39	7,											
NOTES													, mining	1111	
 Wind: ASC Vasd=103r Ke=1.00; C and C-C E: 9-11-8, Ext 12-11-8 to 	CE 7-16; Vult= mph; TCDL=6 Cat. II; Exp B; xterior(2E) 0-4 terior(2R) 9-1 21-0-14 zone	130mph 0.0psf; B0 Enclosed 5-4 to 3-5 1-8 to 12 cantiley	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop 5-4, Interior (1) 3-5-4 -11-8, Interior (1) ver left and right	e) to								X	ATH CA	N. A.K.	

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-16; PF=30.0 psf (Lum DOL=1.15 Plate

- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been checked for uniform snow load only, except as noted.

SEAL 28228 HUNGINEER June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	DE	Common Supported Gable	1	1	Job Reference (optional)	146540576

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:11 ID:YC5xvg6EPOpxqBUM0OhzCny8NJz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

19-11-0

Scale = 1:60.2 Plate Offsets (X, Y): [28:0-3-0,0-3-0]

·`														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		30.0	Plate Grip DOL	1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
(Roof Snow = 3	30.0)		Lumber DOL	1.15		BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES	1	WB	0.14	Horz(CT)	0.00	20	n/a	n/a		
BCLL		0.0	Code	IRC2018/TPI2014	1	Matrix-R							-	
BCDL		10.0											Weight: 181 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP Nc 2x4 SP Nc 2x4 SP Nc 2x4 SP Nc Structural 6-0-0 oc p Rigid ceilin bracing. 1 Row at r (size) Max Horiz Max Uplift	10.0 10.0 10.2 10.2 10.2 10.3 10.3 10.3 10.3 10.2	athing directly applied cept end verticals. applied or 6-0-0 oc 10-28 0, 21=19-11-0, 0, 23=19-11-0, 0, 25=19-11-0, 0, 25=19-11-0, 0, 27=19-11-0, 0, 33=19-11-0, 0, 33=19-11-0, 0, 35=19-11-0, 0, 35=19-11-0, 0, 35=19-11-0, 0, 20=27 (LC 12, 23=27 (LC 12, 23=23), 23=23 (LC 7, 23=23), 23=23), 23=23), 23=23 (LC 7, 23=23), 23=23), 23=23), 23=23, 23=23), 23=23, 23=23), 23=23, 23=23), 23=23, 23=23), 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23), 23=23, 23=23, 23=23, 23=23, 23=23, 23=23, 23=23, 23=23, 23=23, 23=23, 2	d or FORCES TOP CHORD BOT CHORD	(lb Te 2: 3-2- 6-7 9 11 13 166 188 333 31 29 266 244 220 10 8- 5- 11	Grav 20=346 (22=137 / 24=133 (26=134 (30=133 (32=133 (34=137 (36=350 () - Maximum Cor nsion 36=-336/133, 1-2 4=-111/116, 4-5= 7=-77/151, 7-8=- 10=-151/300, 10 -12=-137/272, 17 -20=-336/97 -36=-96/121, 30- -30=-96/121, 32- -32=-96/121, 25- -25=-96/121, 25- -23=-96/121, 25- -23=-25- -23=-25- -2525- -25	(LC 17), (LC 1), ; (LC 1), ; (LC 20), (LC 12), (LC 12), (LC 1), ; (LC 1), ; (LC 1), ; (LC 1), ; (LC 20) npressi =0/117, -98/101 103/207 11=-15 2-13=-11 153-58, 8=-147, 33=-96, 33=-96, 33=-96, 23=-96, 24=-96, 22=-96, 22=-96, 29=-11; =-107/7 =-109/8 26109/8	21=189 (LC 1 23=133 (LC 2(25=133 (LC 1) 27=139 (LC 1) 31=133 (LC 1) 33=134 (LC 1(33=134 (LC 1(33=235 (LC 9) 0n/Maximum 2-3=-185/158 , 5-6=-87/101 ; 8-9=-137/27 1/300, 03/207, 196, 15-16=-66 (115, 18-19=0) (121, 121, 121, 121, 121, 121, 121, 121	10),)),)),)),)),), 3, 2, 3/79, (117, 71, 54,	1) Wir Va Ke and 1-1 (2N exp or (3) TC Cs (3) TC Cs (3) TC Cs (3) TC (5) Thi loa ove (6) All	nd: ASCE sd=103m =1.00; Ca I C-C Co 1-8 to 9- I) 12-11-i ossed ; e mbers an nber DO uss desig y. For st s Standar consult q LL: ASCI L=1.15); =1.00; Ct s s truss h d of 16.0 erhangs r plates ar	E 7-16 ph; TC at. II; E rner(3 11-8, (8 to 21 nd forc L=1.6(for d Indu ualified E 7-16 Is=1.(is=1.10 as bee psf or non-coo e 2x4	Weight: 181 lb ; Vult=130mph (CDL=6.0psf; BC Exp B; Enclosed E) -1-1-14 to 1- Corner(3R) 9-11 I-0-14 zone; car tical left and right ess & MWFRS fo D plate grip DOL or wind loads in cposed to wind (ustry Gable End d building design ; Pf=30.0 psf (L C); Rough Cat B; en checked for u en designed for u mocurrent with ot MT20 unless ot	FT = 20% 3-second gust) DL=6.0psf; h=25ft; ; MWFRS (envelope) 11-8, Exterior(2N) -8 to 12-11-8, Exterior titlever left and right t exposed;C-C for or reactions shown; =1.60 the plane of the truss normal to the face), Details as applicable, her as per ANSI/TPI 1. um DOL=1.15 Plate Partially Exp.; Ce=1.0; uniform snow load only, greater of min roof live roof load of 30.0 psf on her live loads. herwise indicated.
	11111111	ENC.	OZZO	NOTES	13 15 17	-25=-107/70, 14- -23=-107/71, 16- -21=-79/154	24=-10 22=-10	7/71, 9/81,						
	and a	TUEG	ANGLID										Jun	e 11,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design runst verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

H

4

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	DE	Common Supported Gable	1	1	Job Reference (optional)	146540576

- 7) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 1-4-0 oc.
- 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 36, 20, 29, 30, 31, 32, 33, 34, 35, 27, 26, 25, 24, 23, 22, and 21. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:11 ID:YC5xvg6EPOpxqBUM0OhzCny8NJz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	EE	Common Supported Gable	1	1	Job Reference (optional)	146540577

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:12 ID:BEI2sz26asAekQcODr5oVky8NK2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

16-4-0

Scale = 1:51

Plate Offsets (X, Y): [19:0-2-1,0-1-8]

Loading TCLL (Roof Snow =	30.0)	(psf) 30.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.28 0.06	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190	
TCDL		10.0	Rep Stress Incr	YES		WB	0.30	Horz(CT)	0.00	16	n/a	n/a			
BCLL BCDL		0.0 10.0	Code	IRC2018	3/TPI2014	Matrix-R							Weight: 132 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p	0.2 0.2 0.3 0.3 wood shea purlins, exc	athing directly applie sept end verticals.	BC ed or Wi	DT CHORD	F CHORD 28-29=-82/108, 27-28=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-82/108, 25-26=-106/94, 17-18=-82/108, 16-17=-82/108 10) One RT7A MiTek connectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to bearing walls due to UPLIFT at jt 25, 26, 27, 28, 22, 21, 20, 18, and 17. Theorem of the sectors recommend truss to beari									
BOT CHORD	Bigid celli bracing.	ng directly	applied or 6-0-0 oc			11-20=-106/79, 12-	18=-11	5/83, 13-17=-	94/94						
REACTIONS	(size) Max Horiz Max Uplift Max Grav	$\begin{array}{c} 16 = 16 - 4 - 0 \\ 20 = 16 - 4 - 0 \\ 23 = 16 - 4 - 0 \\ 29 = 16 - 4 - 0 \\ 29 = 16 - 4 - 0 \\ 29 = -168 (l \\ 18 = -15 (L \\ 24 = -9 (L \\ 24 = -9 (L \\ 26 = -28 (L \\ 26 = -28 (L \\ 28 = -89 (L \\ 18 = 143 (L \\ 26 = -12 (L \\ 28 = -132 (L \\ 23 = 171 (L \\ 23 = 171 (L \\ 25 = 132 (L \\ 27 = 143 (L \\ 29 = 237 (L \\ 20 (L \\ 20 = 237 (L \\ 20 (L \\ 2$), 17=16-4-0, 18=16.), 21=16-4-0, 22=16.), 24=16-4-0, 25=16.), 27=16-4-0, 28=16.) C 8), 17=-76 (LC 7), C 12), 20=-27 (LC 1: C 12), 22=-8 (LC 12 11), 25=-32 (LC 12 C 12), 22=-8 (LC 12 C 12), 22=-8 (LC 12 C 12), 22=-8 (LC 12 C 12), 22=-8 (LC 12 C 12), 22=-141 (LC 20 C 22), 24=141 (LC 20 C 12), 28=153 (LC 15 C 12), 28=153 (LC 15 C 17)	$\begin{array}{ccc} -4-0, & NC\\ -4-0, & 1)\\ -4-0, & \\ -4-0, & \\ 2), & \\ , & \\ , & \\ , & \\ , & \\ , & \\ 1), & 2)\\ 20), & \\ 20), & \\ 0), & 3)\\ 1), & \\ 9), & 4)\\ 9), & 4)\end{array}$	Vind: ASCE Viad: ASCE Vasd=103m Ke=1.00; Ca and C-C Co 1-10-2 to 8-2 11-2-0 to 17 exposed; er members an Lumber DOL Truss desig only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15); Cs=1.00; Ct: This truss ha except as no	7-16; Vult=130mpf ph; TCDL=6.0psf; B it. II; Exp B; Enclose mer(3E) -1-114 to ' 2-0, Corner(3R) 8-2- 5-14 zone; cantilev d vertical left and ri d forces & MWFRS _=1.60 plate grip DC ned for wind loads i uds exposed to wind d Industry Gable Er ualified building desi 5-7-16; Pf=30.0 psf Is=1.0; Rough Cat I =1.10 as been checked for ited.	n (3-sec CDL=6 ed; MW 1-10-2, -0 to 11 er left a ght exp for rea DL=1.60 n the p d (norm id Deta igner a: (Lum D 3; Parti	cond gust) .0psf; h=25ft; FRS (envelop Exterior(2N) -2-0, Exterior and right osed;C-C for ctions shown) lane of the tru al to the face) ils as applicat s per ANSI/TF OL=1.15 Plat ally Exp.; Ce= m snow load of the tru of the tru of the tru all to the face) of the tru all to the face) all to the f	(2N) (2N) (ss), ble, Pl 1. e =1.0; bnly,			and the second sec	CH CA	ROLUT	
FORCES	(lb) - Max Tension 2-29=-22(3-4=-76/9 6-7=-115/ 9-10=-115 11-12=-52 14-15=0/1	imum Com)/93, 1-2=0 5, 4-5=-70/ 240, 7-8=- ⁻ 5/240, 10-1 2/110, 12-1 117, 14-16=	pression/Maximum /117, 2-3=-113/110, '110, 5-6=-81/170, 133/279, 8-9=-133/2 1=-81/170, 3=-55/80, 13-14=-9(220/93	5) (7) (79, 7) (8) (7) (85, 9)	I nis truss ha load of 16.0 overhangs n All plates are Gable requir Truss to be f braced agair Gable studs	as been designed to psf or 2.00 times fla ion-concurrent with e 2x4 MT20 unless es continuous botto fully sheathed from nst lateral movemer spaced at 1-4-0 oc.	or great at roof lo other liv otherwi on chor one fac at (i.e. d	er of min roof bad of 30.0 ps /e loads. se indicated. d bearing. e or securely iagonal web).	iive sf on		1100 C	A A A A A A A A A A A A A A A A A A A		EEP	

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	EG	Common Girder	1	2	Job Reference (optional)	146540578

Scale = 1:56.2

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:13 ID:bp_BU_5_tnZDbuKzuzfV7My8NK?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [7:Edge,0-2-14], [9:0-6-4,0-1-8], [10:0-6-0,0-6-0], [11:0-6-4,0-1-8]

Loading TCLL (Roof Snow = TCDL BCLL BCDL LUMBER	30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018 3)	8/TPI2014 Wind: ASCE	CSI TC BC WB Matrix-S 7-16; Vult=130mpl	0.82 0.31 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.03	(loc) 10-11 10-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 254 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3' Top chord oc. BOttom ch staggered Web conn 2) All loads a except if r CASE(S) provided t unless oth	2x4 SP 244 2x8 SP 244 2x8 SP 244 2x8 SP 244 2x4 SP No Left 2x4 SP 2-8-2 Structural 1 4-5-0 oc pi Rigid ceilir bracing. (size) Max Horiz Max Horiz Max Horiz Max Grav (lb) - Maxir Tension 1-3=-8282, 5-7=-8282, 1-11=0/598 3-11=0/598 3-11=0/598 3-11=0/598 3-11=0/598 3-11=0/598 3-11=0/598 3-11=0/598 3-10-2112 s to be connected the connected are considered to distribute o nerwise indice	200F 2.0E 200F 2.0E 3 *Excep 2 No.3 2 wood shear urlins. g directly 1=0-3-8, 7 1=-138 (Li 1=7503 (L num Com (0, 3-4=-5i 0) 31, 10-11= 1 33, 3-10=- 2/0, 5-9=0 cted toget ows: as follows are d as follows we as follows are d as follows	t* 10-4:2x4 SP No.2 2-8-2, Right 2x4 SP No.2 athing directly applied applied or 10-0-0 oc '=0-3-8 C 5) .C 1), 7=7610 (LC 1) pression/Maximum 869/0, 4-5=-5869/0, =0/5981, 9-10=0/598 2111/0, 4-10=0/6907 /3163 ther with 10d :: 2x4 - 1 row at 0-9-0 cows: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ lections have been noted as (F) or (B),	lo.3 4) d or 5) 6) 7) 1, LC , 1)	Vasd=103m; Ke=1.00; Ca cantilever left right exposed TCLL: ASCE DOL=1.15); I Cs=1.00; Ct= This truss ha except as no This truss is International R802.10.2 at Use MiTek T 12-10d x 1-1 2-0-0 oc may 15-2-12 to co chord. Fill all nail hot DAD CASE(S) Dead + Snot Increase=1 Uniform Loa Vert: 1-4. Concentrato Vert: 8=- 14=-1685	bh; TCDL=6.0psf; E t. II; Exp B; Enclose t and right exposed d; Lumber DOL=1.6 (7-16; Pf=30.0 psf Is=1.0; Rough Cat I =1.10 s been checked for ted. designed in accord Residential Code s and referenced stand HD26 (With 18-16c /2 nails into Truss) c. starting at 1-2-12 ponnect truss(es) to bles where hanger i Standard w (balanced): Lum 15 ads (lb/ft) =-80, 4-7=-80, 1-7= ed Loads (lb) 1685 (B), 12=-1685 (B) 5 (B), 18=-1685 (B)	CDL=6 ed; MW d; end v 50 plate (Lum D B; Parti r uniforr lance w sections dard AN d nails in or equi from th back fa s in cor aber Inc =-20 5 (B), 13 , 16=-1	6.0psf; h=25ft FRS (envelop vertical left an grip DOL=1. OL=1.15 Plat ally Exp.; Ce: n snow load of ith the 2018 s R502.11.1 a ISI/TPI 1. nto Girder & valent spaced te left end to ce of bottom ntact with lum rease=1.15, I 3=-1685 (B),	; pe); id 60 te =1.0; only, and d at ber. Plate				SEA 2822	ROLUUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F	Common	2	1	Job Reference (optional)	146540579

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 12:47:13 ID:BEI2sz26asAekQcODr5oVky8NK2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F1	Floor	7	1	Job Reference (optional)	146540580

1-3-0

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:14 ID:YC5xvg6EPOpxqBUM0OhzCny8NJz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-2-0

9

11-10-4 11-10-4

Scale = 1:24.3

Plate Offsets (X, Y): [11:0-1-8,Edge], [12:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.28 0.48 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.09 0.02	(loc) 11-12 11-12 9	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHO BOT CHO WEBS OTHERS BRACING	RD 2x4 SP No.2(flat) RD 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)												
ТОР СНО ВОТ СНО	RD Structural wood she 6-0-0 oc purlins, ex RD Rigid ceiling directly bracing	athing directly applie cept end verticals. applied or 10-0-0 or	ed or										
REACTIC	NS (size) 9=0-3-8, Max Grav 9=632 (L0	14= Mechanical C 1), 14=638 (LC 1)											
FORCES	(lb) - Maximum Compression/Maximum Tension												
ТОР СНО	Tension [•] CHORD 1.14=-39/0, 8-9=-35/0, 1-2=0/0, 2-3=-1212/0, 3-4=-1758/0, 4-5=-1758/0, 5-6=-1758/0, 6-7=-1211/0, 7-8=-2/0												
BOT CHO	RD 13-14=0/777, 12-13 10-11=0/1611 9-10	=0/1611, 11-12=0/17 =0/776	758,										
WEBS	7-9=-971/0, 2-14=-9 2-13=0/566, 6-10=-5 6-11=-28/362, 3-12= 5-11=-161/0	74/0, 7-10=0/567, 521/0, 3-13=-520/0, 28/362, 4-12=-161/	/0,									Della	
NOTES 1) Unba this d	anced floor live loads have esign.	been considered fo	r							in the second se	OFESS	NU AND	
 All pla Refer 	tes are 3x5 MT20 unless of the direction of the second sec	otherwise indicated.							1				
4) This 1 Interr R802	russ is designed in accorda ational Residential Code so 10.2 and referenced stand	ance with the 2018 ections R502.11.1 a ard ANSI/TPI 1.	nd								SEA 2822	L 28	
5) Reco 10-00 (0.13 at the	Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means												
6) CAU	TON, Do not erect truss ba SE(S) Standard	ckwards.									EGAN	GLinn	

June 11,2021

Job	Truss		Truss Type		Qty	Ply	1135 ACC				
21060009	F1GE		Floor Supported Ga	ble	2	1	Job Refere	ence (op	tional)		146540581
Carter Components (Sanford)	Sanford, N	C - 27332,		Run: 8.51 S Jun 1 20	21 Print: 8.5	510 S Jun 12	2021 MiTek Ir	dustries,	Inc. Fri	Jun 11 12:47:14	Page: 1
1-2-0	3x5 ш 1 20 3x5 ш	2 0 0 19	3 4 	5 5 	6 0 15	7 7 0 0 14	sB70Hq3NSq	8		9 10 9 10 12 3)	1-8
				11-10-4							
				11-10-4							
Scale = 1:24.3											
Plate Offsets (X, Y): [20:	dge,0-1-8]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/TPI2014	CSI TC 0. BC 0. WB 0. Matrix-R	08 Vert(I 01 Vert(03 Horiz	– LL) r TL) r (TL) 0.	in (loc) n/a - n/a - 00 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N OTHERS 2x4 SP N BRACING TOP CHORD Structural 6-0-0 oc p BOT CHORD Rigid ceili bracing. REACTIONS (size)	5.2(flat) 5.2(flat) 5.3(flat) 5.3(flat) 5.3(flat) 9.3(flat) 11=11-10 13=11-10 15=11-10 15=11-10 19=11-10 11=48 (LC 13=150 (L 13=150 (L 13=147 (L 17=147) (L 19=145 (L	athing directly applied cept end verticals. applied or 10-0-0 oc -4, 12=11-10-4, -4, 16=11-10-4, -4, 18=11-10-4, -4, 20=11-10-4, -1), 12=133 (LC 1), .C 1), 14=146 (LC 1), .C 1), 18=147 (LC 1), .C 1), 18=147 (LC 1), .C 1), 20=61 (LC 1)	 5) This truss is a linternational R802.10.2 ar 6) Recommend 10-00-00 oc a (0.131" X 3") 1 or 1 or 1 CAUTION, D LOAD CASE(S) 	designed in accordanc Residential Code sect Id referenced standarc 2x6 strongbacks, on e and fastened to each t nails. Strongbacks to ends or restrained by o not erect truss backy Standard	e with the ons R502. I ANSI/TPI dge, space russ with 3 be attache other mean vards.	2018 11.1 and 1. ed at -10d ed to walls ns.				<u>.</u>	
FORCES (lb) - Max	mum Com	pression/Maximum									

Tension TOP CHORD 1-20=-56/0, 10-11=-43/0, 1-2=-9/0, 2-3=-9/0, 3-4=-9/0, 4-5=-9/0, 5-6=-9/0, 6-7=-9/0, 7-8=-9/0, 8-9=-9/0, 9-10=-9/0 BOT CHORD 19-20=0/9, 18-19=0/9, 17-18=0/9, 16-17=0/9, 15-16=0/9, 14-15=0/9, 13-14=0/9, 12-13=0/9, 11-12=0/9

WEBS 2-19=-131/0, 3-18=-134/0, 4-17=-133/0, 5-16=-133/0, 6-15=-134/0, 7-14=-133/0, 8-13=-136/0, 9-12=-122/0

NOTES

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely

braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F2	Floor	4	1	Job Reference (optional)	146540582

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:14 ID:YC5xvg6EPOpxqBUM0OhzCny8NJz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

5.0	Code	IRC2018/TPI2014	Matrix-S			Weight: 99 lb	FT = 20%F, 11%E	
		5) Recommend	2x6 strongbacks, on e	loe spaced at				

10-00-00 oc and fastened to each truss with 3-10d

at their outer ends or restrained by other means.

LOAD CASE(S) Standard

(0.131" X 3") nails. Strongbacks to be attached to walls

LUMBER TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.1(flat) *Except* 21-14:2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 14=0-3-8, 24=0-3-8 Max Grav 14=1039 (LC 1), 24=1039 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-24=-35/0, 13-14=-36/0, 1-2=-2/0, 2-3=-2231/0, 3-4=-3773/0, 4-5=-3773/0, 5-6=-4570/0, 6-7=-4740/0, 7-9=-4548/0, 9-10=-3762/0, 10-11=-3762/0, 11-12=-2231/0, 12-13=-2/0 BOT CHORD 23-24=0/1309, 22-23=0/3119, 20-22=0/4288, 19-20=0/4740, 18-19=0/4740, 17-18=0/4740, 16-17=0/4315, 15-16=0/3120, 14-15=0/1309 WEBS 12-14=-1639/0, 2-24=-1640/0, 12-15=0/1201, 2-23=0/1200, 11-15=-1157/0, 3-23=-1157/0, 11-16=0/820, 3-22=0/834, 6-19=-230/346, 10-16=-48/0. 9-16=-706/0. 9-17=0/442. 7-17=-534/133. 7-18=-222/176. 4-22=-82/0. 5-22=-658/0, 5-20=0/524, 6-20=-613/141

NOTES

BCDL

- Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SEAL 28228

June 11,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F2A	Floor	2	1	Job Reference (optional)	146540583

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:15 ID:YC5xvg6EPOpxqBUM0OhzCny8NJz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

|--|

Plate Offsets (X, Y): [7:0-1-8,Edge], [19:0-1-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.90	Vert(LL)	-0.38	17-18	>592	360	MT20HS	187/143
TCDL	10.0	Lumber DOL	1.00	BC	0.78	Vert(CT)	-0.52	17-18	>432	240	MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.07	14	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-S	-						Weight: 97 lb	FT = 20%F, 11%E
LUMBER			6) Recomme	nd 2x6 strongbacks	, on edge	e, spaced at						
TOP CHORD	2x4 SP No.2(flat)		10-00-00 (oc and fastened to e	each truss	s with 3-10d						
BOT CHORD	2x4 SP No.1(flat) *E	Except* 20-14:2x4 SP	(0.131" X	3") nails. Strongbac	ks to be	attached to w	alls					
	2400F 2.0E(flat)		at their ou	ter ends or restraine	ed by othe	er means.						
WEBS	2x4 SP No.3(flat) /) CAUTION, Do not efect truss backwards.											
OTHERS	2x4 SP No.3(flat) LOAD CASE(S) Standard											
BRACING												
TOP CHORD	IP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.											
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 oc	:									
REACTIONS	(size) 14=0-3-8 Max Grav 14=1023	, 23= Mechanical (LC 1). 23=1029 (LC	: 1)									
FORCES	(lb) - Maximum Cor	npression/Maximum	.,									
TOROLO	Tension											
TOP CHORD	Indiana IRD 1-23=-39/0 13-14=-36/0 1-2=0/0											
	2-3=-2193/0, 3-4=-3	3688/0, 4-5=-3688/0,										
	5-6=-4563/0, 6-7=-4	1563/0, 7-9=-4430/0,										
	9-10=-3681/0, 10-1	1=-3681/0,										
	11-12=-2192/0, 12-	13=-2/0										
BOT CHORD	22-23=0/1290, 21-2	2=0/3055, 19-21=0/4	187,									
	18-19=0/4563, 17-1	8=0/4563, 16-17=0/4	222,								munn	1111
	15-16=0/3060, 14-1	5=0/1288									"TH CA	Rollin
WEBS	12-14=-1613/0, 2-2	3=-1619/0, 12-15=0/1	177,							N	A	. Lin
	2-22=0/1175, 11-15	=-1131/0, 3-22=-112	3/0,							53	C FESS	loi: Kiz
	11-16=0/792, 3-21=	0/807, 10-16=-43/0,	, ,							: 2	XIDA A	1417 3
	9-10=-091/0, 9-1/=	0/432, /-1/=-310/192 1_ 102/0 5 21_ 628/	<u>2</u> ,									
	5-10-0/752 6-10-	7=-103/0, 5-21=-030/0 272/0	0,						-		CEA	1 2
NOTES	5-13-0/132, 0-13	212/0							=	:	SEA	- : :
NUIES	ad flaar live leade hev	a haan aanaidarad fa	-						=		2822	28 : -
this design	this design.											
2) All plates a	are MT20 plates unles	s otherwise indicated	J.						6	1	· .	al S
3) All plates a	are 3x5 MT20 unless	otherwise indicated.								11	L VGIN	EFININ
Refer to gi	irder(s) for truss to tru	ss connections.								11	TUP	
5) This truss	is designed in accord	ance with the 2018									1, SGAN	6
Internation	hai Kesidential Code s	ections R502.11.1 an	na								in min	inne.
K802.10.2	and referenced stand	Jaiu ANSI/TPLT.									lune	11 2021
											oune	, , , 2021

- this design.
- All plates are MT20 plates unless otherwise indicated. 2)
- 3) All plates are 3x5 MT20 unless otherwise indicated.
- Refer to girder(s) for truss to truss connections. 4)
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 5)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F2GE	Floor Supported Gable	1	1	Job Reference (optional)	146540584

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:15 ID:YC5xvg6EPOpxqBUM00hzCny8NJz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0-1-8 ||

Scale = 1:35.6

00010 - 1.00.0				-										
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCU		40.0	Plate Grip DOI	1 00		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDI		10.0		1.00		BC	0.02	Vert(TL)	n/a		n/a	999		210,000
BCU		0.0	Ren Stress Incr	VES		WB	0.02	Horiz(TL)	0.00	18	n/a	n/a		
BOLL		0.0 5.0	Codo	IDC204	0/TDI2014	Notrix D	0.03	110112(11)	0.00	10	n/a	11/a	Waight: 90 lb	ET 200/E 110/E
BCDL		5.0	Code	IKC201	0/1712014	IVIALITX-R							weight. 60 lb	FT = 20%F, TT%E
LUMBER				N	OTES									
TOP CHORD	2x4 SP N	o.2(flat)		1	All plates are	1.5x3 MT20 unle	ess other	wise indicated	l.					
BOT CHORD	2x4 SP N	o.2(flat)		2	Gable require	es continuous bo	ttom chor	d bearing.						
WEBS	2x4 SP N	o.3(flat)		3	Truss to be f	ully sheathed from	n one fac	e or securely						
OTHERS	2x4 SP N	o 3(flat)		- /	braced again	st lateral movem	ent (i.e. d	liagonal web).						
RRACING				4	Gable studs	spaced at 1-4-0 c	C.	J						
	Structura	l wood chor	athing directly applied	dor 5	This truss is	designed in acco	rdance w	ith the 2018						
TOF CHORD	Siluciula 6.0.0 oou		auting unecuy applied	101 -2	International	Residential Code	sections	R502 11 1 a	nd					
	0-0-0 00 pigid agil	punins, exc	cept end verticals.		R802 10 2 a	nd referenced sta	ndard AN	ISI/TPI 1						
BOTCHORD	kigia celi	ing directly	applied of 10-0-0 oc	6	Recommend	2x6 strongbacks	. on edae	e. spaced at						
	bracing.			• •	10-00-00 oc	and fastened to e	ach truss	with 3-10d						
REACTIONS	(size)	18=19-3-0	0, 19=19-3-0, 20=19-	3-0,	(0.131" X 3")	nails. Strongbad	ks to be	attached to w	alls					
		21=19-3-0), 22=19-3-0, 23=19-	3-0,	at their outer	ends or restraine	ed by othe	er means.						
		24=19-3-0), 25=19-3-0, 26=19-	3-0, 7	CAUTION, D	o not erect truss	backward	ds.						
		27=19-3-0), 29=19-3-0, 30=19-	3-0, i	DAD CASE(S)	Standard								
		31=19-3-0), 32=19-3-0, 33=19-	3-0, -	0/10 0/102(0)	Otaridard								
	May 0	34=19-3-0												
	Max Grav	18=9 (LC	1), $19=103$ (LC 1), C 1) 21-145 (LC 1)											
		20=153 (L	.C 1), 21=145 (LC 1), C 1), 22-147 (LC 1)	,										
		22=147 (L	C(1), 23 = 147 (LC(1))	,										
		24=147 (L	C 1), 25=147 (LC 1), C 1), 27-147 (LC 1),	,										
		20=147 (L	(LC I), $27 = 147$ (LC I), C 1) 20-147 (LC 1)	,										
		29=147 (L 21_147 (L	C(1), 30 = 147 (LC(1))											
		31=147 (L 33=153 (l	(1), 32 = 145 (10 1), 34 = 61 (10 1)	'										Un.
	(1)												N' U CA	D."".
FURGES	(ID) - IVIAX		pression/iviaximum										TH UT	10/11
	Tension	0 47 40		10								5	D JESS	A.C.
TOP CHORD	1-34=-55	/0, 17-18=-	1/0, 1-2=-6/0, 2-3=-6/	0,								:2	Math	PAIN A -
	3-4=-6/0,	4-5=-6/0, 5	-6 = -6/0, 6 - 7 = -6/0,	0/0										
	7-8=-6/0,	8-10=-6/0	10-11=-6/0, 11-12=-	6/0,										N 1 2
	12-13=-0/	/0, 13-14=-0	0/0, 14-15=-0/0,										SEA	
	15-16=-6/	(0, 16 - 17 = -1)	0/0	0/0							=			
BOT CHORD	33-34=0/0	6,32-33=0/	6, 31-32=0/6, 30-31=	=0/6,							=		2822	28 : -
	29-30=0/0	0,27-29=0/	0, 20-27=0/0, 20-20=	=0/0,								- P		1 5
	24-25=0/0	0, 23-24=0/ 6 10 20 0/	0, ZZ-Z3=0/0, Z1-ZZ= /c 19 10 0/c	=0/6,								-	N	1 1 2
WERS	20-21=0/0	0, 19-20=0/ 0/0 2 22 /	0, 10-19=0/0									1	· SNOW	EFR. S
VVEBO	Z-33=-14	0/0, 3-32=- 2/0 6 20	132/0, 4-31=-134/0,									11	+, GIN	5. 11 1
	0.00=-13	2/0 10 25-	133/0, 1-21=-133/0, 133/0 11 3/- 133/	`								1	VECAN	GLUN
	12-23- 1	370, 10-25= 33/0 13.00	-133/0, 11-24=-133/0 -131/0 11-21- 133/0), /0									GAN	No. IIII
	15 20- 1	20/0 16 10	–-10+/0, 14+21=-132 – 102/0	/0,									- min	m.
	10-20=-1	55/0, 10-19	-102/0										June	11 2021
													Jun	5 , 202 .

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F3	Floor	2	1	Job Reference (optional)	146540585

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:15 ID:00fK607sAixoSL3Ya6CCk?y8NJy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.5

Plate Offsets (X, Y): [3:0-1-8,Edge], [8:0-1-8,Edge]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.70	Vert(LL)	-0.05	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.53	Vert(CT)	-0.08	7-8	>972	240		
BCLL	0.0	Rep Stress Incr	NO	WB	0.16	Horz(CT)	0.00	7	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 39 lb	FT = 20%F, 11%E

Concentrated Loads (lb) Vert: 1=-200

LUMBER	
TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
REACTIONS	(size) 7=0-3-8, 10=0-3-8
	Max Grav 7=324 (LC 4), 10=679 (LC 1)
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-11=0/17, 6-7=-47/0, 1-2=0/257, 2-3=0/256,
	3-4=-411/12, 4-5=-411/12, 5-6=0/0
BOT CHORD	10-11=0/0, 9-10=-12/411, 8-9=-12/411, 7-8=0/321
WEBS	2-10=-55/31, 1-10=-381/0, 3-10=-686/0, 5-7=-410/0, 5-8=-61/171, 4-8=-96/31, 3-9=0/122

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 3) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00

Uniform Loads (lb/ft) Vert: 7-11=-10, 1-6=-100

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F3GR	Floor	1	1	Job Reference (optional)	146540586

Run: 8,51 S Jun 1 2021 Print: 8,510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 12:47:16 ID:OGuxQi9b?TbxwdTVRDieKtzVTDE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.5

Plate Offs	ets (X, Y): [9:0-1-8,Edge],	[10:0-1-8,Edge]										
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	CSI TC BC	0.21 0.17	DEFL Vert(LL) Vert(CT)	in -0.01 -0.02	(loc) 8-9 8-9	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	NO	WB	0.15	Horz(CT)	0.00	8	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 41 lb	FT = 20%F, 11%E
LUMBER TOP CHO BOT CHO WEBS OTHERS	DRD 2x4 SP No.2(flat) JRD 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)		Vert: 8-1 Concentrat Vert: 1=-	2=-10, 1-7=-100 ed Loads (lb) :250, 6=-54, 4=-54,	, 15=-54							
BRACING TOP CHO	 Structural wood sheat 6-0-0 oc purlins, exception 	athing directly applie cept end verticals.	d or									
BOT CHO	ORD Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 10	applied or 10-0-0 oc -11.										
REACTIC	NS (size) 8=0-3-8, 1 Max Grav 8=362 (LC	11=0-3-8 C 1), 11=824 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHO	ORD 1-12=-5/2, 7-8=-51/0 3-4=-479/0 4-5=-479), 1-2=0/261, 2-3=0/2 9/0_5-6=-479/0_6-7;	262, =0/0									
ВОТ СНО	ORD 11-12=0/0, 10-11=-1 8-9=0/375	23/293, 9-10=0/479	,									
WEBS	2-11=-161/0, 1-11=- 6-8=-478/0, 3-10=0/3 4-10=-172/0, 5-9=-8	387/0, 3-11=-605/0, 314, 6-9=-35/189, 5/24										um.
NOTES											WH CA	Rollin
1) Unba this d	lanced floor live loads have esign.	been considered fo	r							31	P. EESS	No. Nº
2) This t Interr R802	russ is designed in accorda ational Residential Code se 10.2 and referenced stand	ance with the 2018 ections R502.11.1 ar ard ANSI/TPI 1	nd								XAM	VAN
3) Reco 10-00 (0.13	mmend 2x6 strongbacks, o -00 oc and fastened to eac 1" X 3") nails. Strongbacks	n edge, spaced at th truss with 3-10d to be attached to wa	alls						1111		SEA 2822	L 28
4) CAU	TON. Do not erect truss ba	ckwards.								2		al 3
LOAD CA	SE(S) Standard									1	NGIN	EER
1) Dea Plat	d + Floor Live (balanced): L	umber Increase=1.0	00,							11	UEGAN	GLIUM

Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00

Uniform Loads (lb/ft)

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F4	Floor	1	1	Job Reference (optional)	146540587

1-2-0

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:16 ID:00fK607sAixoSL3Ya6CCk?y8NJy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-2-0

Scale = 1:20.6

Plate Offsets (X, Y): [8:0-1-8,Edge], [9:0-1-8,Edge]

			-										
Loa TCL	ding L	(psf) 40.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.26	DEFL Vert(LL)	in -0.02	(loc) 7-8	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCE	DL	10.0	Lumber DOL	1.00	BC	0.27	Vert(CT)	-0.03	9-10	>999	240		
BCL	.L	0.0	Rep Stress Incr	NO	WB	0.15	Horz(CT)	0.01	7	n/a	n/a		
BCI	DL	5.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 39 lb	FT = 20%F, 11%E
		2v4 SP No 2(flat)											
ROT	CHORD	2x4 SP No 2(flat)											
WF	BS	2x4 SP No 3(flat)											
BR		2/11 01 11010(1101)											
TOF	P CHORD	Structural wood she 6-0-0 oc purlins. exe	athing directly applie	ed or									
BOT	CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	c									
RE/	ACTIONS	(size) 7= Mecha	inical, 10=0-3-8										
		Max Grav 7=390 (LC	C 1), 10=390 (LC 1)										
FOF	RCES	(lb) - Maximum Com Tension	pression/Maximum										
TOF	P CHORD	1-10=-57/0, 6-7=-57	/0, 1-2=0/0, 2-3=-64	4/0,									
		3-4=-644/0, 4-5=-64	4/0, 5-6=0/0										
BO	r chord	9-10=0/423, 8-9=0/6	644, 7-8=0/423										
WE	BS	5-7=-530/0, 2-10=-5	30/0, 5-8=0/323,										
		2-9=0/323, 3-9=-156	6/0, 4-8=-156/0										
NO	TES												
1)	Unbalance this desigr	ed floor live loads have n.	been considered fo	or									
2)	Refer to g	irder(s) for truss to trus	s connections.									, in the second	1111
3)	This truss	is designed in accorda	ance with the 2018									"TH CA	Rollin
	Internatior	nal Residential Code se	ections R502.11.1 a	nd							1.	A	A

R802.10.2 and referenced standard ANSI/TPI 1.
4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F4A	Floor	2	1	Job Reference (optional)	146540588

 2
 1
 Job Reference (optional)

 Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:17
 Page: 1

 ID:00fK607sAixoSL3Ya6CCk?y8NJy-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:34.1

Plate Offsets (X, Y): [5:0-1-8,Edge], [12:0-1-8,Edge]

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 NO		CSI TC BC WB	0.53 0.97 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.16 0.03	(loc) 13-14 13-14 10	l/defl >999 >961 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BCDL	5.0	Code	IRC2018/1	FPI2014	Matrix-S		()					Weight: 75 lb	FT = 20%F, 11%E	
BCLL BCDL IUMBER TOP CHORD 2 BOT CHORD 2 BOT CHORD 2 BRACING TOP CHORD 5 BOT CHORD 6 BOT CHORD 7 BOT CHORD 7 FORCES ((i) FORCES ((i) FORCES ((i) FORCES ((i) BOT CHORD 1 1 0 FORCES ((i) BOT CHORD 1 1 1 WEBS 2 BOT CHORD 1 1 WEBS 2 BOT CHORD 1 1 1 WEBS 2 1 1 Unbalanced 1 this design. 2) All plates are 3) Refer to girde 4) This truss is (International R802.10.2 ar 5) Recommend 10-00-00 oc ((0.131" X 3") 10 Unbalanced 1	0.0 5.0 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood sheas 6-0-0 oc purlins, exc Rigid ceiling directly is oracing. ize) 10= Mecha ax Grav 10=714 (Lr 1b) - Maximum Comp Tension 1-17=-5/0, 9-10=-39// 3-4=-1362/0, 4-5=-20 5-7=-2190/0, 7-8=-13 16-17=0/0, 15-16=-03 16-17=0/0, 15-16=-03 1-11=0/874 2-16=-119/0, 1-16=-3 3-10=-1097/0, 3-15=- 4-15=-705/0, 7-11=-6 7-12=0/536, 5-14=-36 3-12=-202/0 floor live loads have ax5 MT20 unless of er(s) for truss to truss designed in accordan Residential Code se nd referenced standa 2x6 strongbacks, or and fastened to eact nails. Strongbacks, or and fastened to eact nails. Strongbacks	Rep Stress Incr Code athing directly applied ept end verticals. applied or 10-0-0 oc anical, 16=0-3-8 C 4), 16=1042 (LC 1) pression/Maximum 0, 1-2=0/215, 2-3=0/2 771/0, 5-6=-2190/0, 193/0, 8-9=0/0 312, 14-15=0/1888, =0/2190, 11-12=0/18 30/736, 8-11=0/675, 354/0, 4-14=0/339, 64/49, 5-13=-140/73, been considered for therwise indicated. s connections. nce with the 2018 citons R502.11.1 and ard ANSI/TPI 1. n edge, spaced at n truss with 3-10d to be attached to wally o other means.	NO IRC2018/1 LOA 1)	TPI2014 D CASE(S) Dead + Floc Plate Increa Uniform Loa Vert: 10-1 Concentrate Vert: 1=-2	WB Matrix-S Standard or Live (balanced): I se=1.00 ids (Ib/ft) 7=-10, 1-9=-100 d Loads (Ib) 200	0.35 Lumber	Horz(CT)	0.03	10	n/a	n/a	Weight: 75 lb	FT = 20%F, 11%E	
6) CAUTION, D	o not erect truss bac	kwards.										June	11,2021	

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F5	Floor	4	1	Job Reference (optional)	146540589

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:17 ID:00fK607sAixoSL3Ya6CCk?y8NJy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:57.6

Plate Offsets (X	K, Y): [5:0-1-8,Edge],	[17:0-1-8,Edge], [29:	:0-1-8,Edg	ge], [35:0-1-8,E	dge]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.94 0.87 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.42 0.04	(loc) 27-28 27-28 24	l/defl >723 >534 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1(flat) *E: No.2(flat) 2x4 SP 2400F 2.0E(SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 5-4-14 oc purlins, e: Rigid ceiling directly bracing. (size) 24=0-3-8, Max Grav 24=908 (L 40=974 (L (lb) - Maximum Com	xcept* 21-23:2x4 SP flat) *Except* 41-39:2 athing directly applied xcept end verticals. applied or 6-0-0 oc 33=0-7-4, 40=0-3-8 LC 5), 33=2122 (LC 4 LC 3) ipression/Maximum	W 2x4 d or 1)), 2) 3)	EBS	2-40=-125/0, 10-33 3-40=-978/0, 9-33= 9-34=0/983, 4-38=- 1-37=-176/139, 8-3 5-36=-348/0, 11-33 11-32=0/1403, 22-2 20-25=-952/0, 12-3 5-35=-383/0, 19-26 18-27=-132/223, 17 17-28=-326/0, 13-3 15-29=0/1053, 16-2 floor live loads hav 9 3x5 MT20 unless designed in accord Residential Code s	=-102/0 -1423/0 615/29, 5=0/10 =-1836, 5=0/10 0=0/10 =-25/2, 7-27=-126, 29=-388 e been otherwi ance w sections	 1-40=-317// 3-38=-5/63(8-34=-1078(8-34=-1078(75, 5-37=0/52 (0, 22-24=-14 00, 12-32=-1 46, 20-26=0/(18-26=-541/(82/462, (0, 15-30=-90)/(considered for see indicated. the the 2018 R F502.11.1 a 	2, 6, 0, 20, 24/0, 350/0, 300, 0, 3/0, or						
TOP CHORD	1-41=-6/0, 23-24=-3i 2-3=0/215, 3-4=-119 5-6=-1685/641, 6-8= 8-9=-483/1403, 9-10 11-12=-344/406, 12- 13-15=-2139/0, 15-1 16-17=-3457/0, 17-1 18-19=-3107/0, 19-2 20-22=-1905/0, 22-2 40-41=0/0, 38-40=-1 37-38=-216/1651, 36 35-36=-641/1685, 34 33-34=-1722/0, 32-3 30-32=-104/1351, 25 28-29=0/3457, 27-22 25-26=0/2637, 24-25	6/0, 1-2=0/214, 04/194, 4-5=-1740/35 1685/641, =0/2592, 10-11=0/25 -13=-2139/0, 6=-3457/0, 8=-3579/0, 10=-3107/0, 23=-2/0 90/720, 6-37=-641/1685, 4-35=-1053/1152, 33=-1129/0, 9-30=0/2811, 3=-0/3457, 26-27=0/35 5=0/1137	1, 4) ;92, 5) LC 1) 530,	R802.10.2 ar Recommend 10-00-00 oc (0.131" X 3") at their outer CAUTION, D DAD CASE(S) Dead + Floo Plate Increa Uniform Loo Vert: 24 Concentrate Vert: 1=-	nd referenced stan 2x6 strongbacks, i and fastened to ea nails. Strongback ends or restrained to not erect truss bi Standard or Live (balanced): ise=1.00 ads (lb/ft) 41=-10, 1-23=-100 ad Loads (lb) 200	dard AN on edge ch truss s to be by othe ackward	ISI/TPI 1. , spaced at s with 3-10d attached to w er means. ds. r Increase=1.	valls 00,		. antitutes.	ALL	SEA 2822	ROLAN BER	

June 11,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F6GR	Floor	1	1	Job Reference (optional)	146540590

Scale = 1:34.1

Plate Offsets (X, Y): [13:0-1-8,Edge]

1-2-0

Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 NO		CSI TC BC WB	0.66 0.77 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.19 0.03	(loc) 14-15 14-15 11	l/defl >999 >871 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 80 lb	FI = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 oc purlins, exc	athing directly applied	5) LC 1) 1 or	CAUTION, D DAD CASE(S) Dead + Floo Plate Increa Uniform Loa Vert: 11-1 Concentrate Vert: 1=-2	o not erect truss ba Standard or Live (balanced): se=1.00 ads (lb/ft) 88=10, 1-10=-100 ad Loads (lb) 250	ackwaro Lumbe	ds. r Increase=1.	.00,					
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16	applied or 10-0-0 oc -17.											
REACTIONS	(size) 11=0-7-4, Max Grav 11=732 (L	17=0-3-8 .C 1), 17=1128 (LC 1)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum	,										
TOP CHORD	1-18=-6/0, 10-11=-39 2-3=0/260, 3-4=-142 5-6=-2288/0, 6-7=-2 8-9=-1466/0, 9-10=0	9/0, 1-2=0/260, (6/0, 4-5=-2288/0, (370/0, 7-8=-2370/0, /0											
BOT CHORD	17-18=0/0, 16-17=-2 14-15=0/2370, 13-14 11-12=0/909	/853, 15-16=0/1976, 4=0/2370, 12-13=0/20	011,										10.
WEBS	2-17=-110/0, 1-17=- 9-11=-1140/0, 3-16= 4-16=-741/0, 8-12=- 8-13=0/623, 7-13=-2 6-15=-458/141, 6-14	385/0, 3-17=-1167/0, 0/772, 9-12=0/726, 710/0, 4-15=0/420, 59/0, 5-15=-173/39, =-126/75									A.A.A.	OFFESS	POLA
NOTES 1) Unbalance	ed floor live loads have	been considered for								Ē	-	SEA	LIE
this design	۱.									=	:	2022	: :

2) All plates are 3x5 MT20 unless otherwise indicated.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Recommend 2x6 strongbacks, on edge, spaced at 4) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 1110 Martin 28228 GANG 11111 June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F7	Floor	5	1	Job Reference (optional)	146540591

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:18 ID:00fK607sAixoSL3Ya6CCk?y8NJy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.1

Plate Offsets ((X, Y): [4:0-1-8,Edge],	[15:0-1-8,Edge], [28	8:0-1-8,Ed	lge], [34:0-1-8,	Edge]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.89 0.97 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.45 0.05	(loc) 25-27 25-27 22	l/defl >681 >503 n/a	L/d 360 240 n/a	PLATES MT20 MT20HS MT18HS Weight: 163 lb	GRIP 244/190 187/143 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1(flat) *Ex No.2(flat) 2x4 SP 2400F 2.0E(f SP No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 2-2-0 oc purlins, exc Rigid ceiling directly bracing. (size) 22=0-3-8.	Accept* 16-21:2x4 SP flat) *Except* 26-22: athing directly applie cept end verticals. applied or 2-2-0 oc 31=0-7-4. 38=0-3-8	• 2x4 ed or N 1)	/EBS OTES) Unbalanced this design.	9-31=-102/0, 7-31 7-33=0/998, 2-37 3-37=-584/64, 6-3 4-36=0/549, 4-35 20-22=-1418/0, 11 11-30=-1356/0, 11 11-30=-1356/0, 11 19-24=0/597, 18- 17-25=-136/220, 15-27=-327/0, 12- 13-28=0/1064, 14 floor live loads ha	=-1439/C =-36/611, i4=0/110 360/0, 300=0/1 -23=-94 24=-30/1, 15-25=-1 -29=-127, -28=-393 we been	l, 2-38=-975/ 6-33=-1097 4, 3-36=-219 10-31=-1842 408, 20-23=C 17-24=-531 75/465, 70, 13-29=-9 /0, 5-34=-39 considered f	(0, /0, /104, /0,)/992, /1052, /0, 10/0, 2/0 or					
FORCES TOP CHORD BOT CHORD	(a)	C 4), 31=2136 (LC 1 C 3) pression/Maximum 36/0, 1-2=-3/0, 1777/239, -1709/579, 0/2663, 9-10=0/2663 12=-2083/0, 4=-3418/0, 7=-3547/0, 9=-3087/0, 1=-2/0 =-71/1698, t-35=-579/1709, 31-33=-1768/0, 0=-115/1291, 3=0/3418, 25-27=0/3 t=0/2619, 22-23=0/1	1), 2) 3) 4) 5) 3, 6) L 1418, 132	 All plates are All plates are All plates are This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3" at their outei CAUTION, I OAD CASE(S) 	e MT20 plates unl a 3x5 MT20 unles designed in acco Residential Code nd referenced sta d 2x6 strongbacks and fastened to e nails. Strongbac r ends or restraine Do not erect truss Standard	ess other s otherwi dance w a sections ndard AN , on edge ach truss ks to be ad by othe backward	wise indicate se indicated. ith the 2018 is R502.11.1 a SI/TPI 1. , spaced at s with 3-10d attached to v er means. ds.	ed. and valls		. antitutes.	Annual Annual	SEA 2822	ROLULIUM INTERNET

June June

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F7GE	Floor Supported Gable	1	1	Job Reference (optional)	146540592

1-2-0

Run: 8.51 E Jun 1 2021 Print: 8.510 E Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 15:15:46 ID:MMTDAjB?_EZ5Y6yWMfoNR2y8NJt-5iZlk6JWgk75i9pM_CLxkfuD2uSM3m_4mPQ6O?z7JiB Page: 1

Scale = 1:32

Loading (sf) TGL 40.0 TGL 40.0 BC 0.01 BC 0.02 BC 0.03 BC 0.04 Wert(L1, ni 0,			1											
TCLL 40.0 Plate frip DOL 1.00 TC 0.09 Vert(TL) n/a - n/a 999 MT20 244/190 BCLL 0.0 Rep Stress incr YES WES 0.03 Wert(TL) n/a - n/a 999 MT20 244/190 UUMBER Code IRC201ETP12014 Matrix-R Wert(TL) n/a - n/a 999 MT20 244/190 UUMBER LOAD CASE(5) Standard Incore to the character of the c	Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 10.0 Lumber DOL 10.0 BC 0.01 Vert(TL) n/a - n/a 99 BCDL 5.0 Code IRC2018/TPI201 Matrix-R 0.03 Heriz(TL) 0.00 9 n/a n/a UUMBER Code Code IRC2018/TPI201 Matrix-R 0.03 Heriz(TL) 0.00 9 n/a n/a UCMCR 2x4 SP No.2(flat) IRC2018/TPI2014 No Dead + Floot Like (balanced): Lumber Increase=1.00, Plate Increase=1.00, Plate Increase=1.00 Concentrated Lodes (bth) Vert 2=370 (F).4=366 (F).6=-366 (F) Vert 2=370 (F).4=-366 (F).6=-366 (F) Vert 2=370 (F).4=-366 (F).6=-366 (F) FOR CHOR Structural wood sheathing directly applied or 10-0-0 or bracing. Normal 6: 9: 10, 12, 14, 16 except 11=4226 (LC 1), 13=-409 (LC 1), 14=-400 (LC 1),	TCLL	40.0	Plate Grip DOL	1.00		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
BCLL 0.0 Rep. Stress incr YES WB 0.03 Horiz(TL) 0.00 9 n/a No LUMBER LOAD CASE(S) Standard Image: Standard Weight: 43 ib FT = 20% F, 11% E LUMBER LOAD CASE(S) Standard Image: Standard Image: Standard Weight: 43 ib FT = 20% F, 11% E LUMBER LOAD CASE(S) Standard Image: Standard	TCDL	10.0	Lumber DOL	1.00		BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCDL 5.0 Code IRC2018/TP[2014 Matrix-R Weight 43 lb FT = 20% F, 11% E LUMBER TO CHORD 2x4 SP No.2(flat) ID Beat - Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00, Plate Increase=1.00 Plate Increase=1.00 WEBS 2x4 SP No.3(flat) Uniform Loads (bit) Vert: 9+16=10, 1-8=100 COCHORD Dev Dev pulse, scept end verticals. Concentrated Loads (bit) Vert: 2=370 (F), 4=-366 (F) BTO CHORD Structural wood sheathing directly applied or 10-0-0 combinated Loads (bit) Vert: 2=-370 (F), 4=-366 (F) CHORD Rigd caling directly applied or 10-0-0 combinated Loads (bit) Vert: 2=-370 (F), 4=-366 (F) (b) - Max Grav All reactions 250 (b) or less at joint (s) 9, 10, 12, 14, 16 except 11+428 (LC 1), 13-6323 (LC 1), 15-4040, (L-15-6080, C-11+42100 VBRES 2: 158-4040, 4: 13-65080, 6: 11-42100 VORES (b) - Max Comp.Max. Ten All forces 250 (b) or less are joint (s) shaat be requires continuous bottom chord bearing. 10 All plates are 1.5:X MT20 unless otherwise indicated. 20 Gable requires continuous bottom chord bearing. 10: All plates are 1.5:X MT20 unless otherwise indicated. 20 Gable requires continuous bottom chord bearing. 10: All plates are 1.5:X MT20 unless otherwise indicated. 20 Gable requires continuous bottom chord bearing. 10: All plates are 1.5:X MT20 unles actives at a binth outer ends or restr	BCLL	0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	9	n/a	n/a		
LUME F TOP CHORN 2x4 SP No.2[Ital) WEBS 2x4 SP No.3[Ital) WEBS 2x4 SP No.4[Ital) WEBS 2x4 SP No.4[Ital) WEBS 2x4 SP No.4	BCDL	5.0	Code	IRC2018	/TPI2014	Matrix-R							Weight: 43 lb	FT = 20%F, 11%E
 TOP CHORD 2:44 SP No.2(fla) Dead + Floor Live (balanced): Lumber Increase=1.00, Pitate Increase=1.00 Uniform Loads (bf/h) Vert: 2=370 (F), 4=-366 (F) Concentrated Loads (b) Vert: 2=-370 (F), 4=-366 (F) Vert: 2=-370 (F	LUMBER			LO	AD CASE(S)	Standard								
BOT CHORD 2:44 SP No.2[flat] WEBS 2:44 SP No.2[flat] OTHERS 2:44 SP No.2[flat] OTHERS 2:44 SP No.3[flat] DTHERS 2:44 SP No.3[flat] TOP CHORD Structural wood sheathing directly applied or 6-0-0 counting, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. REACTIONS All bearings 6-0-0. (ID) - Max Grav All reactions 250 (Ib) or less at joint (s) 9, 10, 12, 14, 16 except 11-428 (LC 1), 13-623 (LC 1), 15-409 (LC 1) FORCES (Ib) - Max. Comp.Max. Ten All forces 250 (Ib) or less except when shown. WEBS 2: 4154040, 4-13508/0, 6-11-421/0 NOTES 1) All plates and 15.53 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in acordrance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced Standard ANSUTP1 1. 6) Recommend 2:6 strongbacks, on edge, spaced at 10-00-00 co and fastered to each truss with 3-10d (0.131' X 3') nails. Strongbacks to be attached to walls at their outler ends or restrained by other means. 7) CAUTION, Do not erect russ backwards. 8) Provided sufficient to support concentrate load(s) 370 1b down at 0-4-812 on 016 flow mat 2-421, and 386 1b down at 4-812 on top chord. The design/selection of such connection device(5) shall be provided sufficient to support concentrated load(s) 1370 1b down at 0-4-812, and 386 1b down at 0-4-812, and 386 1c) down at 0-4-812, and 38	TOP CHORD	2x4 SP No.2(flat)		1)	Dead + Floo	or Live (balanced):	Lumbe	r Increase=1.0	00,					
WEBS 2x4 SP No.3(flai) Uniform Loads (bith) OTHERS 2x4 SP No.3(flai) Vert: 9t-16e-10, 1-8e-100 Concentrated Loads (b) Vert: 2e-370 (F), 4e-366 (F) Vert: 2e-370 (F), 4e-366 (F) BRACING Vert: 2e-370 (F), 4e-366 (F) Vert: 2e-370 (F), 4e-366 (F) ChORD Rigid celling directly applied or 10-0-0 oc bracking. Vert: 2e-370 (F), 4e-366 (F) CHOND Rigid celling directly applied or 10-0-0 oc bracking. Vert: 2e-370 (F), 4e-366 (F) CHOND Rigid celling directly applied or 10-0-0 oc bracking. Vert: 2e-370 (F), 4e-366 (F) CHOND Na Grav All reactions 250 (b) or less at joint (10) or less except when shown. Vert: 2e-370 (F), 4e-366 (F) VEES 2-15e-40404, 413-5000, C-11=-421/0 Vert: 2e-370 (F), 4e-366 (F) NOTES 2.15e-40404, 413-5000, e-11=-421/0 Vert: 2e-370 (F), 4e-366 (F) NOTES 2.15e-40404, 413-5000, e-11=-421/0 Vert: 2e-370 (F), 4e-366 (F) Notes 2.15e-40404, 413-5000, e-11=-421/0 Vert: 2e-370 (F), 4e-366 (F) Notes 2.15e-40404, 413-5000, e-11=-421/0 Vert: 2e-370 (F), 4e-366 (F) Solar Land Land Land Land Land Land Land Land	BOT CHORD	2x4 SP No.2(flat)		,	Plate Increa	ise=1.00			,					
OTHERS 2x4 SP No.3(fin) Vert. 9-16=-10.0 BRACING Concentrated Loads (h) Concentrated Loads (h) TOP CHORD Structural wood sheathing directly applied or 0-0-0 corbracing. Concentrated Loads (h) Vert. 2=-370 (F), 4=-366 (F). BOT CHORD Bugid ceiling directly applied or 10-0-0 corbracing. REACTING Vert. 2=-370 (F), 4=-366 (F). FRACTIONS Hiberings 6-0.0. (LC 1), 13=523 (LC 1), 15=409 (LC 1). (LC 1), 13=523 (LC 1), 15=409 (LC 1). (LD 1) 10, 12, 14, 16 orceps 11=428 (LC 1). (LC 1), 13=523 (LC 1), 15=409 (LC 1). (LC 1). FORCES (h) - Max. Comp./Max. Ten All forces 250 (f). 6:11=421/0 NOTES 7.5=404.0, 4.13=-5080.0, 6.11=421/0 NOTES 7.5=404.0, 4.40 oc. 7.5=404.0, 4.40 oc. 30 Trust bis designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.102 and referenced Standard ANUTP1 1. Rescommend 2x6 strongbacks, on edge, spaced at 1-40 oc. 61 Recommend 2x6 strongbacks, on edge, spaced at 1-40 oc. SEAL SEAL 70 CAUTION, Do not erect truss backwards. SEAL SEAL 81 Harder (or other connetated by all be imposite on divide (s) shall be provided sufficient to support concentrated load(s) 370 SEAL SEAL 91 In the LOAD CASE	WEBS	2x4 SP No.3(flat)			Uniform Loa	ads (lb/ft)								
 BRACING Concentrated Loads (lb) Vert: 2=-370 (F), 4=-366 (F), 6=-366 (F) Structural word sheathing directly applied or 10-0-0 oc bracing. BCACHONR Rigid celling directly applied or 10-0-0 oc bracing. (lb) - Max Grav All reactions 250 (lb) or less at joint (s) 9, 10, 12, 14, 16 except 11=428 (LC 1), 13=623 (LC 1), 15=409 (LC (LC 1), 13=623 (LC 1), 15=409 (LC (LC 1), 13=623 (LC 1), 15=409 (LC 1)) FORCES (lb) - Max Comp./Max. Ten All forces 250 (lb) or less are 1.5x3 MT20 unless otherwise indicated. 23 Gable requires continuous bottom chord bearing. 11 All plates are 1.5x3 MT20 unless otherwise indicated. 23 Gable requires continuous bottom chord bearing. 31 Truss to be fully sheathed form on face or securely braced against lateral movement (le. diagonal web). 40 Gable studies does excites RS0: 11.1 and R802,10.2 and referenced standard ANS/TP1 1. Recommed 226 strongbacks, on edge, spaced at 100-000 or and fastened to each truss with 3-10d (0.131* X 3') nails. Strongbacks to be attached to walls at their outle ends or restained by other means. 7) CAUTION. Do not rect truss backwards. 8) Hanger(is) or other connectinated load(s) 370 bdown at 4-8-12 on top chord. The design/selection of such connection device(s) is hard by others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as from (F) or the face of the face of the face of the truss are noted as from (F) or thef (2000). 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as from (F) or thef (A). 	OTHERS	2x4 SP No.3(flat)			Vert: 9-16	6=-10, 1-8=-100								
 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purins, except end verticals. BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. REACTIONS All bearings 6-0. (b) Max Grav All reactions 250 (b) or less at joint (s) 9, 10, 12, 14, 16 except 11=428 (LC 1), 13=523 (LC 1), 15=409 (LC 1) (c) 1, 13=523 (LC 1), 15=409 (LC 1) (b) or less except when shown. WEBS 2-15=-4040, 4-13=-508/0, 6-11=-421/0 NOTES 10 All partings 6-0.0. (b) or less except when shown. WEBS 2-15=-4040, 4-13=-508/0, 6-11=-421/0 NOTES 40 (a) Constrained by other works indicated. Coshe requires continuous bottom chord bearing. Structural dode sections RS02.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 60 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 c and fastende to each truss with 3-100 (0.131* X 37) nails. Strongbacks to be attached to walls at their outle ends or restained by other means. 7) CAUTION, Do not rect truss backwards. 8) Hanger(5) or other connectinated load(3) 370 bid down at 4-8-12 on other dows attached to walls other ends or restained by other sets. 9) In the LOAD CASE(5) section, loads applied to the face dot thres. 9) In the LOAD CASE(5) section, loads applied to the face dot thres. 9) In the LOAD CASE(5) section, loads applied to the face dot for section of Parts. 	BRACING				Concentrate	ed Loads (lb)								
 6-0-0 oc putlins, except end verificals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS All bearings 6-0-0. (ib) - Max Grav All reactions 250 (ib) or less at joint (s) 9, 10, 12, 14, 16 except 11=428 (LC 1), 13=523 (LC 1), 13=523 (LC 1), 15=409 (LC 1) FORCES (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studies spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sectors R502.11, 1 and R802.10.2 and referenced standard ANS/ITP1 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to eath truss with 3-10d (0.131* X3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(5) or other connectinic delos(6) 370 bid own at 4-8-12 on top chord. The design/selection of stops of bid bown at 4-8-12 on top chord. The design/selection of stops of the face. 9) In the LOAD CASE(5) section, loads applied to the face of the truss are noted as for of (1) Connecting 4(B) and (B) a	TOP CHORD	Structural wood she	athing directly applie	ed or	Vert: 2=-3	370 (F), 4=-366 (F)	, 6=-36	6 (F)						
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS All bearings 6-0. (b) - Max Grav All reactions 250 (b) or less at joint (s) 9, 10, 12, 14, 16 except 11-428 (LC 1), 13-523 (LC 1), 15=409 (LC 1) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. disgonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 cand fastened to each truss with 3-10d (0.131* X3) rails. Strongbacks to be atched to walls at their outer ends or restrained by other means. 7) CAUTION. Do not erect russ backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on tog fork. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(5) section, loads applied to the face of the truss are noted as for toff. Dr notes (B)		6-0-0 oc purlins, exe	cept end verticals.											
bracing, REACTIONS All bearings 6-0. (b) - Max Grav All reactions 250 (b) or less at joint (s) 9, 10, 12, 14, 16 except 11=428 (LC 1), 13=523 (LC 1), 15=409 (LC 1) FORCES (b) - Max. Comp.Max. Ten All forces 250 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is desligned in accordance with the 2018 International Residential Code sections R602.11.1 and R802.10.2 and referenced standard ANS/ITPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fasterned to each truss with 3-10d (0.131' X3) naits. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, Loads applied to the face of the truss are noted as fort (E) to the face of the truss are noted as (fm) (E) to the face of the face of the truss are noted as (fm) (E) to the face the face of the truss are noted as (fm) (E) to the face the face of the truss are noted as (fm) (E) to the face that (fm) (fm) (fm) (fm) (fm) (fm) (fm) (fm)	BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0										
REACTIONS All bearings 6-0-0. (b) - Max Grav All reactions 250 (b) or less at joint (s) 9, 10, 12, 14, 16 except 11=428 (LC 1), 13=523 (LC 1), 15=409 (LC 1) FORCES (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 cc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 cc and fastened to each truss with 3-10d (0.131*X3') nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION. Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted ans (mot (F) conder (B) face)		bracing.												
 (b) - Max Grav All reactions 250 (b) or less at joint (c) 9, 10, 12, 14, 16 except 11=428 (LC 1), 13=523 (LC 1), 15=409 (LC 1) FORCES (b) - Max. Cron./Max. Ten All forces 250 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studies spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections RSO: 11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastemed to each truss with 3-10d (0.131* X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION. Do not eret truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated loa(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as frond (E) to the day. 	REACTIONS	All bearings 6-0-0.												
 (s) 9, 10, 12, 14, 16 except 11=428 (LC 1), 13=523 (LC 1), 15=409 (LC 1) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TPT 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-000 oc and fastened to walls at their outer ends or restrained by other means. 7) CAUTION. Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366	(lb) -	Max Grav All reactio	ons 250 (lb) or less a	t joint										
 (LC 1), 13=523 (LC 1), 15=409 (LC 1) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studies spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 co and fastened to each truss with 3-10d (0.131* X 3') nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated loa(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or take (B). 		(s) 9, 10, ⁻	12, 14, 16 except 11	=428										
 1) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131° X 3') nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, ond 366 Ib down at 2-8-12		(LC 1), 13	3=523 (LC 1), 15=40	9 (LC										
FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502,11.1 and R802,10.2 and referenced standard ANS/ITPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, on d 366 lb down at 2-8-12, on d 366 lb down at 2-8-12, on d 366 lb down at 3-50 lb other connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (R).		1)												
 (b) or less except when shown. WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 2-8-12, on day for the face of the truss are noted as from (FD) or back (R) 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as from (FD) or back (R) 	FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces	250										
 WEBS 2-15=-404/0, 4-13=-508/0, 6-11=-421/0 NOTES 1 All plates are 1.5x3 MT20 unless otherwise indicated. 2 Gable requires continuous bottom chord bearing. 3 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-000 oc and fastened to each truss with 3-10d (0.131* X 3*) nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as from (FD) or back (R). 		(lb) or less except w	hen shown.											
 NOTES 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (R). 	WEBS	2-15=-404/0, 4-13=-	508/0, 6-11=-421/0											
 1) All plates are 1.5x3 MT20 unless otherwise indicated. 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-000 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the tures are noted as form (E) or back (B) 	NOTES													
 2) Gable requires continuous bottom chord bearing. 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as forot (E) or back (B). 	 All plates a 	are 1.5x3 MT20 unless	s otherwise indicated	ł.										
 a) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). b) Gable studs spaced at 1-4-0 oc. c) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. c) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131* X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. c) CAUTION, Do not erect truss backwards. c) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. f) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B). 	2) Gable req	uires continuous bottor	m chord bearing.											
 b) Gable studs spaced at 1-4-0 oc. c) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. c) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131* X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. c) CAUTION, Do not erect truss backwards. c) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) section, loads applied to the face of the truss are noted as front (F) or back (B). 	3) I russ to b	e fully sheathed from c	one face or securely											
 4) Gable Studs spaced at 1-4-0 dc. 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B) 	4) Cable atur	ainst lateral movement	t (i.e. diagonal web).											1111
 a) This fuss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 2-8-12, and 366 Jb down at 2-8-1	 Gable Stud This truck 	is spaced at 1-4-0 oc.	anaa with the 2019										"TH CA	Roill
 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B). 	Internation	al Residential Code se	ance with the 2018 actions R502 11 1 a	nd								N	APY	· · · · / · · ·
 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B) 	R802.10.2	and referenced stand	ard ANSI/TPI 1.									32	FESS	QNI. War
 10:00-00 oc and fastened to each truss with 3:10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B). 	6) Recomme	nd 2x6 strongbacks o	n edge spaced at									5		VAY.
 (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B). 	10-00-00 0	oc and fastened to eac	truss with 3-10d								-			1 N 1 2
at their outer ends or restrained by other means. 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 1b down at 0-8-12, and 366 lb down at 2-8-12, and 366 1b down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B)	(0.131" X	3") nails. Strongbacks	to be attached to w	alls							=		SEA	1 1 2
 7) CAUTION, Do not erect truss backwards. 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B). 	at their out	ter ends or restrained l	by other means.								- 8		0000	
 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 370 lb down at 0-8-12, and 366 lb down at 2-8-12, and 366 lb down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B). 	7) CAUTION	, Do not erect truss ba	ckwards.								1		2822	8 : 2
provided sufficient to support concentrated load(s) 370 Ib down at 0-8-12, and 366 Ib down at 2-8-12, and 366 Ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as (rout (E) or back (B)	8) Hanger(s)	or other connection de	evice(s) shall be								-			1 2
ib down at 0-8-12, and 366 ib down at 2-8-12, and 366 ib down at 4-8-12 on top chord. The design/selection of such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as (rout (E) or back (B)	provided s	sufficient to support cor	ncentrated load(s) 3	70							3	2		al 3
such connection device(s) is the responsibility of others. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as (rout (E) or back (B)	Ib down at	: 0-8-12, and 366 lb do	own at 2-8-12, and 3	300								11	NGINE	ELL
9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (E) or back (B)	ID down at	4-8-12 on top chord.	i ne design/selectio	on of								11,	TUN	
of the truss are noted as (not (E) or back (B)		D CASE(S) soction	nesponsionity of oth	CIS.								100	1, GAN	GLIN
	of the trus	s are noted as front (F)) or back (B).	000									in min	inin.

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F8	Floor	2	1	Job Reference (optional)	146540593

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:19 ID:UaDiKM8Vx?3f4Vek7pjRHCy8NJx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46.4

Plate Offsets (X, Y): [4:0-1-8,Edge], [22:0-1-8,Edge], [30	0:0-1-8,Edg	ge]										
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.98 0.93 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.38 0.04	(loc) 21-22 21-22 19	l/defl >767 >559 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 135 lb	GRIP 244/190 FT = 20%F, 11%	БЕ
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) *I No.1(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood sh except end vertical Rigid ceiling directl bracing. (size) 19=0-3-6 Mechani Max Uplift 31=-104 Max Grav 19=865 31=350	Except* 26-19:2x4 SF eathing directly applie s. y applied or 2-2-0 oc 8, 27=0-3-8, 31= cal (LC 4) (LC 4), 27=1817 (LC (LC 3)	W ed, 1) 2) 3) 1), 4)	EBS 6 5 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	S-27=-123/0, 5-27= 5-28=0/722, 2-30= 3-30=-101/179, 4-2 77-19=-1352/0, 7-2 3-25=-1238/0, 16-2 16-21=0/564, 15-2 14-22=-276/351, 12 3-24=-118/0, 10-24 2-23=-369/0 floor live loads have a 3x5 MT20 unless er(s) for truss to tru- hanical connection capable of withsta	1034/0 -443/189 29=0/219 25=0/128 20=-895 1=-78/0, 3-22=-1 4=-746/0 /e been otherwi uss conr o (by oth anding 1	, 2-31=-468/2 9, 4-28=-840/ 9, 7-27=-1705 32, 17-20=0/9 14-21=-353/ 73/56, 10-23=0/87 considered fc se indicated. nections. ers) of truss t 04 lb uplift at	220, 0, 5/0, 928, 928, 8, 0, 5, 5, or						
FORCES	(lb) - Maximum Cot Tension 1-31=-54/7, 18-19= 2-3=-521/522, 3-4= 5-6=0/2093, 6-7=0/ 8-9=-2159/0, 9-10= 12-13=-3226/0, 13- 14-15=-2923/0, 15- 16-17=-1793/0, 17-	npression/Maximum -35/0, 1-2=0/0, -521/522, 4-5=-182/1 2093, 7-8=-526/138, -2159/0, 10-12=-322 14=-3226/0, 16=-2923/0, 18=-2/0	5) 1013, 6) 6/0, 7)	This truss is (International R802.10.2 ar Recommend 10-00-00 oc ((0.131" X 3") at their outer CAUTION, D	designed in accord Residential Code of referenced stan 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained o not erect truss b	dance w sections idard AN on edge ach truss is to be d by othe backward	th the 2018 R502.11.1 a ISI/TPI 1. spaced at with 3-10d attached to w er means. Is.	nd ralls				H CA	ROLA	
BOT CHORD	30-31=-175/373, 25 28-29=-522/521, 2 25-27=-734/0, 24-2 22-23=0/3226, 21-2 19-20=0/1080	9-30=-522/521, 7-28=-1391/0, 5=0/1456, 23-24=0/2 22=0/3199, 20-21=0/2	2718, 2481,	JAD CASE(S)	Standard					CONTRACTOR OF CONTRACTOR	A AND	SEA 2822 FUEGAN June	8 5 6 11,2021	STATING STATES

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F8A	Floor	5	1	Job Reference (optional)	146540594

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:19 ID:UaDiKM8Vx?3f4Vek7pjRHCy8NJx-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

CD0i7J4zJC?f

Scale = 1:46

Plate Offsets (X, Y): [4:0-1-8,Edge], [22:0-1-8,Edge], [30:0-1-8,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL		40.0	Plate Grip DOL	1.00		TC	0.89	Vert(LL)	-0.25	21-22	>831	360	MT20	244/190	
TCDL		10.0	Lumber DOL	1.00		BC	0.85	Vert(CT)	-0.35	21-22	>607	240			
BCLL		0.0	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.04	19	n/a	n/a			_
BCDL		5.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 134 lb	FT = 20%F, 11%	ε
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 No.1(flat) 2x4 SP No.3 Structural w	2(flat) 2(flat) *Ex 8(flat) wood shea	cept* 26-19:2x4 SP thing directly applied	N(1) 2) 3) 4) or	OTES Unbalanced f this design. All plates are Refer to girde Provide mecl bearing plate ioint 21	floor live loads have 3x5 MT20 unless or(s) for truss to trus nanical connection capable of withsta	e been otherwis ss conr (by oth nding 1	considered fo se indicated. iections. ers) of truss to 00 lb uplift at	o						
BOT CHORD	2-2-0 oc pur Rigid ceiling bracing.	rlins, exc directly a	ept end verticals. applied or 6-0-0 oc	5)	This truss is International	designed in accord Residential Code s	ance wi	ith the 2018 R502.11.1 a	nd						
REACTIONS	(size) 19 M Max Uplift 37 Max Grav 19 33	9= Mecha lechanica 1=-100 (L 9=855 (L) 1=350 (L)	anical, 27=0-3-8, 31= l .C 4) C 4), 27=1799 (LC 1) C 3)	6) ,	R802.10.2 ar Recommend 10-00-00 oc a (0.131" X 3") at their outer	ad referenced stand 2x6 strongbacks, c and fastened to eac nails. Strongbacks ends or restrained	lard AN on edge ch truss s to be a by othe	ISI/TPI 1. e, spaced at s with 3-10d attached to w er means.	alls						
FORCES	(lb) - Maxim Tension	um Comp	pression/Maximum	7) L(CAUTION, D DAD CASE(S)	o not erect truss ba Standard	ackward	ls.							
TOP CHORD	1-31=-54/6, 2-3=-519/51 5-6=0/2077, 8-9=-2109/0 12-13=-3112 14-15=-2841 16-17=-1753	18-19=-3 1, 3-4=-5 6-7=0/20), 9-10=-2 2/0, 13-14 1/0, 15-16 3/0, 17-18	19/0, 1-2=0/0, i19/511, 4-5=-179/99 077, 7-8=-513/151, i109/0, 10-12=-3112/ 4=-3112/0, 6=-2841/0, 3=0/0	4, 0,									WTH CA	ROUN	
BOT CHORD	30-31=-171/ 28-29=-511/ 25-27=-737/ 22-23=0/311 19-20=0/106	/372, 29-3 /519, 27-2 /0, 24-25= 12, 21-22 60	30=-511/519, 28=-1368/0, =0/1425, 23-24=0/26 =0/3101, 20-21=0/24	48, 20,									SEA	o With	-
WEBS	6-27=-123/0 5-28=0/718, 3-30=-100/1 17-19=-1322 8-25=-1217/ 16-21=0/537 14-22=-291/ 9-24=-113/0 12-23=-340/), 5-27=-1 , 2-30=-43 76, 4-29= 9/0, 7-25= /0, 16-20= 7, 15-21= /322, 13-2), 10-24=- /0	031/0, 2-31=-467/21 34/188, 4-28=-834/0, =0/216, 7-27=-1680/C =0/1258, 17-20=0/90: =-868/0, 8-24=0/904, -79/0, 14-21=-332/0, 22=-154/69, -722/0, 10-23=0/816,	4,), 3,							HIMPS.	ALL	2822	8 E.F G.L.D 11 2021	
													Julie	11,2021	

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F8B	Floor	2	1	Job Reference (optional)	146540595

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:20 ID:ynn4Xi87hJBWhfDxhXEgqQy8NJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46

Plate Offsets ((X, Y): [2:0·	-1-8,Edge],	[3:0-1-8,Edge], [12:0	-1-8,Edg	e], [23:0-1-8,Ec	lge]									
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.93 0.89 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.46 -0.63 0.07	(loc) 22-23 22-23 18	l/defl >559 >408 n/a	L/d 360 240 n/a	PLATES MT20HS MT20 Weight: 133 lb	GRIP 187/143 244/190 FT = 20%F, 11%E	E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP 2 SP No.2(1 2x4 SP N 2400F 2.(2x4 SP N Structura 2-2-0 oc Rigid ceil bracing. (size) Max Uplift Max Grav (lb) - Max Tension 1-31=-21 2-3=0/100 5-6=-630, 8-10=-40 11-12=-41 13-14=-3 15-16=-2: 30-31=-11 28-29=-11 24-26=0/3 21-22=0/4 18-19=0/7	5.0 400F 2.0E(f flat) o.1(flat) *E: DE(flat) I wood shea purlins, exc ing directly 18= Mech Mechanica 31=-462 (f 18=1064 (f 31=-462 (f 18=1064 (f 31=-462 (f 18=1064 (f 31=-462 (f) 18=1064 (f) 31=-462 (f) 31=-46	Code flat) *Except* 9-17:2x xcept* 25-18:2x4 SP athing directly applied sept end verticals. applied or 6-0-0 oc anical, 28=0-3-8, 31= al LC 4) (LC 7), 28=2058 (LC C 3) pression/Maximum -40/0, 1-2=0/0, 355, 4-5=0/2355, 35/0, 7-8=-2735/0, =-4892/0, 5=-3857/0, 7=0/0 0=-1047/0, 8=-679/0, 26-27=0/13 4=0/4594, 22-23=0/43 1=0/4436, 19-20=0/3	1100201 W 4 1 or N(1) = 2) 3) 1), 4) 5) 1), 5) 6) 7) 6) 7) 8) 790, L 392, 191,	B/TPI2014 TEBS	Matrix-S 1-28=-17/189, 3-28 2-30=-351/0, 3-29= 16-18=-1675/0, 5-2 5-27=-1521/0, 15-1 5-20=0/851, 14-20 13-21=0/487, 12-21 12-22=-227/163, 7- 3-24=0/679, 10-24= 11-23=-265/0 floor live loads have mT20 plates unless arcs) for truss to tru hanical connection capable of withsta designed in accord Residential Code and referenced stance and referenced s	=-1769, 0/400, § 7=0/158 9=-118; 9=-48/0, =-599/ 26=-66, 669/0, e been ss other otherwi ss contr nding 4 ance w sections dard AN adge, sp ith 3-10 ed to w ns. ackward	(0, 2-31=0/12) 5-28=-2112/0 32, 16-19=0/1 13-20=-740// 172, 10-23=-76/7- considered fc wise indicate- se indicated- se indicated- i	94, 231, 214, 0, 6/0, 42, or d. d. o 0-00)") uter			Annual	Veight: 133 ID CA SEA 2822 HUEGAN	RO 2007 8 E.P. 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
													June	11,2021	

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	F8GE	Floor Supported Gable	1	1	Job Reference (optional)	146540596

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:20 ID:ynn4Xi87hJBWhfDxhXEgqQy8NJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8 ∦

Scale = 1:46.4

Plate Offsets (X, Y): [44:Edge,0-1-8]

Loading TCLL TCDL BCLL BCDL LUMBER TOP CHORD	2x4 SP No	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC20	018/TPI2014 BOT CHORD	CSI TC BC WB Matrix-R 43-44=0/7, 42-43=1 39-40=0/7, 38-39=1	0.08 0.01 0.03 0/7, 41-4 0/7, 37-3	DEFL Vert(LL) Vert(TL) Horiz(TL) 42=0/7, 40-41 38=0/7, 35-37	in n/a n/a 0.00 =0/7, 2=0/7,	(loc) - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%F, 11%E	
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing. (size)	2.(iiat) 2.2(iiat) 3.2(iiat) 3.3(iiat) 3	athing directly applie tept end verticals. applied or 10-0-0 oc , 24=26-3-8, 25=26- , 27=26-3-8, 28=26- , 30=26-3-8, 31=26- , 33=26-3-8, 34=26- , 37=26-3-8, 38=26- , 40=26-3-8, 41=26- , 43=26-3-8, 44=26-	d or 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8,	WEBS NOTES 1) All plates ar 2) Gable requi 3) Truss to be braced agai	34-35=0/7, 33-34= 30-31=0/7, 29-30= 26-27=0/7, 25-26= 2-43=-133/0, 3-42= 5-40=-133/0, 6-39= 8-37=-133/0, 9-35= 11-33=-133/0, 16-2 15-30=-133/0, 16-2 18-27=-134/0, 19-2 21-24=-112/0 e 1.5x3 MT20 unlest res continuous bott fully sheathed from nst lateral moveme	0/7, 32-2 0/7, 28-2 0/7, 24-2 =-134/0, =-133/0, =-133/0, 32=-133/ 29=-133/ 29=-133/ 29=-132/ ss other om chor one fac nt (i.e. d	33=0/7, 31-32 29=0/7, 27-28 25=0/7, 23-24 4-41=-133/0, 7-38=-133/0, 10-34=-133/0 (0, 14-31=-133 (0, 17-28=-133 (0, 17-28=-133 (0, 17-28=-133) (0, 20-25=-13) wise indicated d bearing. e or securely iagonal web).	=0/7, =0/7, =0/7), 3/0, 3/0, 8/0,						
	Max Grav	23=34 (LC 25=152 (L 27=147 (L 29=147 (L 31=147 (L 33=147 (L 35=147 (L 38=147 (L 40=147 (L 44=59 (LC	. 1), 24=120 (LC 1), C 1), 26=145 (LC 1) C 1), 28=147 (LC 1) C 1), 32=147 (LC 1) C 1), 32=147 (LC 1) C 1), 34=147 (LC 1) C 1), 37=147 (LC 1) C 1), 41=147 (LC 1) C 1), 41=148 (LC 1) C 1), 43=148 (LC 1)	, , , , ,	 (a) Gable studs (b) This truss is Internationa R802.10.2 a (c) Recommen 10-00-00 oc (0.131" X 3' at their oute (c) CAUTION, (c) LOAD CASE(S) 	s spaced at 1-4-0 oc s designed in accord and referenced stan d 2x6 strongbacks, c and fastened to ea ') nails. Strongback er ends or restrained Do not erect truss b) Standard	2. dance w sections dard AN on edge ach truss ach truss ach truss d by othe ackward	ith the 2018 FR502.11.1 and ISI/TPI 1. a, spaced at with 3-10d attached to water attached to water attached so water at	nd alls			and a start of the	H CA	ROLAN	
FORCES	(lb) - Maxii Tension 1-44=-55/(3-4=-7/0, & 11-12=-7/(15-16=-7/(18-19=-7/(21-22=-7/(mum Com), 22-23=-2 4-5=-7/0, 5 3-9=-7/0, 9), 12-14=-7), 16-17=-7), 19-20=-7)	pression/Maximum 28/0, 1-2=-7/0, 2-3=- -6=-7/0, 6-7=-7/0, -10=-7/0, 10-11=-7/0 7/0, 14-15=-7/0, 7/0, 17-18=-7/0, 7/0, 20-21=-7/0,	-7/0, 0,								AL A	SEA 2822 FUEGAN June	E.F.F	

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	FA	Roof Special	3	1	Job Reference (optional)	146540597

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1 and

- TOP CHORD 3-11-10 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 2=0-3-8, 8=0-3-8
- Max Horiz 2=-103 (LC 9) Max Grav 2=797 (LC 1), 8=797 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/41, 2-3=-841/82, 3-4=-2109/178, TOP CHORD 4-5=-864/113, 5-6=-864/113, 6-7=-2109/178, 7-8=-841/82, 8-9=0/41 BOT CHORD 2-16=-12/515, 15-16=-17/138, 14-15=0/59, 4-14=0/757. 13-14=-172/2013. 10-11=-17/138, 8-10=-12/512 WEBS 5-13=0/429, 6-13=-1397/231, 4-13=-1397/232, 3-16=-536/13,

12-13=-171/2013, 11-12=0/59, 6-12=0/753, 3-14=-95/1240, 14-16=0/622, 7-10=-531/12, 7-12=-95/1240, 10-12=0/611

NOTES

Scale = 1:53.1

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

LUMBER

TOP CHORD BOT CHORD

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=1.00; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-2-0 to 1-10-0, Interior (1) 1-10-0 to 7-0-8, Exterior(2R) 7-0-8 to 10-0-8, Interior (1) 10-0-8 to 15-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

"munninger WWWWWWWWWW

June 11,2021

GRIP

244/190

FT = 20%

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	FE	Common Supported Gable	1	1	Job Reference (optional)	146540598

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

OTHERS

LUMBER

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 12:47:22 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-	
REACTIONS	(size)	14=14-1-0, 15=14-1-0, 16=14-1-0,
		17=14-1-0, 18=14-1-0, 19=14-1-0,
		20=14-1-0, 21=14-1-0, 22=14-1-0,
		23=14-1-0, 24=14-1-0
	Max Horiz	24=118 (LC 10)
	Max Uplift	14=-17 (LC 8), 15=-35 (LC 12),
		16=-12 (LC 12), 17=-22 (LC 12),
		18=-10 (LC 12), 20=-10 (LC 11),
		21=-22 (LC 11), 22=-11 (LC 11),
		23=-40 (LC 8), 24=-35 (LC 7)
	Max Grav	14=233 (LC 17), 15=129 (LC 20),
		16=140 (LC 1), 17=131 (LC 1),
		18=141 (LC 1), 19=149 (LC 1),
		20=141 (LC 1), 21=131 (LC 1),
		22=140 (LC 1), 23=137 (LC 19),

24=233 (LC 17) FORCES (lb) - Maximum Compression/Maximum Tension 2-24=-210/118, 1-2=0/102, 2-3=-71/82, TOP CHORD 3-4=-49/93, 4-5=-52/92, 5-6=-77/144, 6-7=-98/185, 7-8=-98/185, 8-9=-77/144 9-10=-52/93. 10-11=-29/93. 11-12=-50/64. 12-13=0/102, 12-14=-210/119 BOT CHORD 23-24=-65/95, 22-23=-65/95, 21-22=-65/95,

20-21=-65/95, 19-20=-65/95, 18-19=-65/95, 17-18=-65/95, 16-17=-65/95, 15-16=-65/95, 14-15=-65/95

- DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate 3) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been checked for uniform snow load only. except as noted.
- 5) This truss has been designed for greater of min roof live load of 16.0 psf or 2.00 times flat roof load of 30.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web). 9)
- Gable studs spaced at 1-4-0 oc. 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, and 15. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	FG	Common Girder	1	2	Job Reference (optional)	146540599

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:22 ID:bp_BU_5_tnZDbuKzuzfV7My8NK?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	:42.2
-----------	-------

Plate Offsets (X, Y):	[6:0-5-0,0-4-12],	[7:0-5-0,0-4-12]
-----------------------	-------------------	------------------

(nof)	0										
Loading (pSi) TCLL 30.0 (Roof Snow = 30.0) TCDL TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.95 0.57 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.11 0.02	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 167 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 30T CHORD 2x6 SP 2400F 2.0E WEBS 2x4 SP No.3 Right: 2x4 SP No.3 Right: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheat 4-9-10 oc purlins. 30T CHORD Rigid ceiling directly as bracing. REACTIONS (size) 1=0-3-8, 5 Max Horiz 1=-95 (LC Max Grav 1=4718 (LI FORCES (Ib) - Maximum Comp Tension TOP CHORD 1-2=-6034/0, 2-3=-58 4-5=-5990/0 30T CHORD 1-2=-6/3283, 4-6=0/3 2-7=0/346 NOTES 1) 2-ply truss to be connected togetl (0.131"x3") nails as follows: Top chords connected as follows oc. Bottom chords connected as follows oc. Bottom chords connected as follows: 2-7=0/346 NOTES 1) 2-ply truss to be connected togetl (0.131"x3") nails as follows: Top chords connected as follows: 2-7=0/346 NOTES 1) 2-ply truss to be connected togetl (0.131"x3") nails as follows: Top chords connected as follows: 2-7=0/346 NOTES 1) 2-ply truss to be connected togetl (0.131"x3") nails as follows: Top chords connected as follows: 2-7=0/346 NOTES 1) 2-ply truss to be connected togetl (0.131"x3") nails as follows: Top chords connected as follows: CASE(S) section. Ply to ply conn provided to distribute only loads r unless otherwise indicated.	athing directly applied applied or 10-0-0 oc =0-3-8 20) C 1), 5=4506 (LC 1) pression/Maximum 319/0, 3-4=-5774/0, 370, 5-6=0/4610 47, 3-7=0/3371, her with 10d : 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, k (B) face in the LOA ections have been hoted as (F) or (B),	 3) Wind: AS(Vasd=103; Ke=1.00; cantilever right expo 4) TCLL: AS DOL=1.15 Cs=1.00; or 5) This truss except as 6) This truss Internation R802.10.2 7) Use MITel 12-10d x⁻¹ 2-0-0 oc n 11-10-4 tc chord. 8) Fill all nail LOAD CASE(1) Dead + S Increase Uniform Vert: 1 Concentu Vert: 8 11=-13 	E 7-16; Vult=130mp mph; TCDL=6.0psf; Cat. II; Exp B; Enclos eff and right expose sed; Lumber DOL=1 E 7-16; Pf=30.0 ps; b; Is=1.0; Rough Cat Ct=1.10 has been checked for noted. is designed in accor al Residential Code and referenced star THD26 (With 18-16 -1/2 nails into Truss ax. starting at 1-10- connect truss(es) to holes where hanger 5) Standard now (balanced): Lui =1.15 .oads (lb/ft) -3=-80, 3-5=-80, 1-5 ated Loads (lb) =-1307 (F), 9=-1307 (F), 12=-1309 (F	bh (3-sec BCDL=6 sed; MW d; end v. 60 plate f (Lum D B; Partia or uniforr dance w sections ndard AN d nails ii) or equi 4 from t fac is in cor mber Inc =-20 f (F), 10=), 13=-13	ond gust) .0psf; h=25f FRS (envelo retrical left ar grip DOL=1 0L=1.15 Pla ally Exp.; Ce n snow load ith the 2018 R502.11.1 a ISI/TPI 1. nto Girder & valent space e left end to ce of bottom ttact with lun rease=1.15, -1307 (F), 307 (F)	t; ipe); nd .60 ite =1.0; only, and id at nber. Plate				SEA 2822 HUEGAN June	RO L 8 5 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	Н	Monopitch	1	1	Job Reference (optional)	146540600

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:23 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.4

Plate Offsets (X, Y): [2:0-2-12,Edge]

1 · · · · ·		-												
Loading TCLL (Roof Snow = 30.0) TCDL BCLL BCDL	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.60 0.54 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.14 -0.13 0.02	(loc) 2-6 2-6 5	l/defl >987 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 S BOT CHORD 2x4 S BOT CHORD 2x4 S BRACING TOP CHORD Struc BRACING (size) Max U Max U Ma	SP No.2 SP No.2 SP No.3 stural wood she oc purlins, ex ceiling directly ng. 2=0-3-0, oriz 2=86 (LC plift 2=-137 (I rav 2=698 (L Maximum Cor ion)/35, 2-3=-132 175/117 -1152/1228, 5- 360/139, 3-5= S; Vult=130mpl CDL=6.0psf; E Exp B; Enclose 2(E) -1-2-5 to porch left and ces & MWFRS 0 plate grip DC 0; Rough Cat 0; Rf=30.0 psf 0; Rough Cat 0; Rough Cat 0; an checked fo en checked fo	eathing directly applie ccept end verticals. y applied or 5-0-10 oc 5=0-1-8 C 7), 5=-119 (LC 7) C 1), 5=581 (LC 1) npression/Maximum 7/1079, 3-4=-95/12, 6=-1152/1228 -1249/1164 h (3-second gust) 3CDL=6.0psf; h=25ft; ed; MWFRS (envelop H9-11, Interior (1) 1-9 right exposed; C-C for 6 for reactions shown; DL=1.60 (Lum DOL=1.15 Plate B; Partially Exp.; Ce= r uniform snow load of or greater of min roof 1 at roof load of 30.0 ps other live loads.	 5) 6) d or 7) 8) LC e) +11 e) 1.0; nly, live f on 	Bearing at jo using ANSI/ designer sho Provide mec bearing plate One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 a DAD CASE(S)	int(s) 5 considers p TPI 1 angle to grain puld verify capacity chanical connection e at joint(s) 5. MTek connectors re- ing walls due to UF tion is for uplift only designed in accord Residential Code s nd referenced stan Standard	parallel in formul of bear (by oth ecomme PLIFT and and do dance w sections dard AN	o grain value a. Building ng surface. ers) of truss t anded to conn jt(s) 2 and 5. es not consid ith the 2018 i R502.11.1 a ISI/TPI 1.	o ect ier nd				DATESS SEA 2822 TUEGAN	L EEF.UU	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	H1	Half Hip	1	1	Job Reference (optional)	146540601

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:23 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.5

Plate Offsets (X, Y): [2:0-2-12.Edge], [4:0-3-0.0-2-12], [6:0-2-7.0-1-7]

	(7, 1). [2.0 2	TZ,Euge	j, [4.0 0 0,0 2 12], [0	5.0 2 7,0	1.1]								-	
Loading TCLL (Roof Snow =	: 30.0)	(psf) 30.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.47 0.82	DEFL Vert(LL) Vert(CT)	in 0.55 0.40	(loc) 2-7 2-7	l/defl >258 >348	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL		10.0	Rep Stress Incr	YES		WB	0.37	Horz(CT)	0.02	6	n/a	n/a		
BCLL		0.0	Code	IRC20)18/TPI2014	Matrix-S								
BCDL		10.0											Weight: 56 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v 4-5-15 oc p 2-0-0 oc pu	2 2 3 vood shea vurlins, ez ırlins (6-0	athing directly applie xcept end verticals, ; -0 max.): 4-5.	ed or and	 This truss ha load of 20.0 overhangs n Provide ade Bearing at jc using ANSI/ designer sho Provide mec 	as been designed fi psf or 2.00 times fl on-concurrent with quate drainage to p oint(s) 6 considers p TPI 1 angle to grain ould verify capacity chanical connection	or great at roof lo other lip prevent parallel n formul of bear n (by oth	er of min roof bad of 30.0 p ve loads. water pondin to grain value a. Building ing surface. ers) of truss	f live sf on g. e					
BOT CHORD	Rigid ceilin bracing.	g directly	applied or 2-2-0 oc		bearing plate 8) One RT7A N	e at joint(s) 6. /iTek connectors re	ecomme	ended to conr	nect					
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2	2=0-3-0, 6 2=75 (LC 2=-140 (L 2=698 (LC	S=0-1-8 7) C 7), 6=-116 (LC 7) C 1), 6=581 (LC 1)		truss to bear This connec lateral forces 9) This truss is International	ring walls due to UF tion is for uplift only s. designed in accord Residential Code	PLIFT at y and do dance w sections	t jt(s) 2 and 6 ses not consid ith the 2018 3 R502 11 1 a	i. der and					
FORCES	(lb) - Maxin Tension	num Com	pression/Maximum		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.	size					
TOP CHORD	1-2=0/35, 2 4-5=-471/6	-3=-1340 11, 5-6=-0	/1030, 3-4=-529/605 647/829	5,	or the orient	ation of the purlin a	along the	e top and/or	0120					
BOT CHORD	2-7=-1101/	1263, 6-7	=-6/15			Standard								
WEBS	3-7=-834/5	11, 4-7=-	154/52, 5-7=-1015/7	'65		Standard								
NOTES														1111
 Wind: ASI Vasd=103 Ke=1.00; and C-C E to 10-0-0, and right of MWFRS f grip DOL= 	CE 7-16; Vult= 3mph; TCDL= Cat. II; Exp B; Exterior(2E) -1 Exterior(2E) - exposed;C-C for reactions s =1.60	=130mph 6.0psf; B0 Enclosed -2-5 to 1- 10-0-0 to for memb hown; Lu	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop 9-11, Interior (1) 1-5 11-10-4 zone; porch ers and forces & mber DOL=1.60 pla	be) Ə-11 n left te								X	SEA	L

- TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been checked for uniform snow load only, except as noted.

G 11111

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	H2	Half Hip	1	1	Job Reference (optional)	146540602

8-0-0

8-0-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:23 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-2-8

1-2-8

12-0-0

4-0-0

Scale = 1:31.6

Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading	(p	osf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	30	0.0	Plate Grip DOL	1.15		тс	0.62	Vert(LL)	0.30	2-6	>463	240	MT20	244/190
(Roof Snow =	30.0)		Lumber DOL	1.15		BC	0.66	Vert(CT)	0.23	2-6	>624	180		
TCDL	1(0.0	Rep Stress Incr	YES		WB	0.40	Horz(CT)	0.02	5	n/a	n/a		
BCLL	(0.0	Code	IRC201	8/TPI2014	Matrix-S								
BCDL	10	0.0											Weight: 49 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP 2400F No.2 2x4 SP No.2 2x4 SP No.3 Structural woo 6-0-0 oc purlin 2-0-0 oc purlin Rigid ceiling di	2.0E *I od shea s, exce is (6-0-(irectly a	Except* 3-4:2x4 SP thing directly applied ept end verticals, an 0 max.): 3-4. applied or 4-4-15 oc	4) 5) 6) d or 1d 7) 8)	This truss ha load of 20.0 overhangs n Provide adec Bearing at jo using ANSI/ designer sho Provide mec bearing plate One RT7A M	as been designed psf or 2.00 times f on-concurrent with quate drainage to int(s) 5 considers IFPI 1 angle to grai yuld verify capacity hanical connection at joint(s) 5. IiTek connectors r ine wolk due to 14	for greate flat roof lo n other liv prevent v parallel t in formula y of beari n (by othe recomme	er of min roof bad of 30.0 p: ve loads. vater ponding o grain value a. Building ng surface. ers) of truss t nded to conn	live sf on g. co nect					
REACTIONS	bracing. (size) 2=0- Max Horiz 2=62 Max Uplift 2=-1 Max Grav 2=69	-3-0, 5= 2 (LC 7 142 (LC 98 (LC	=0-1-8) : 7), 5=-114 (LC 7) 1), 5=581 (LC 1)	9)	This connect lateral forces This truss is International	tion is for uplift onl designed in accor Residential Code	dance wi	th the 2018 R502.11.1 a	ler Ind					
FORCES	(lb) - Maximum Tension	n Comp	ression/Maximum	10)) Graphical pu	Irlin representation	n does no	ot depict the s	size					
TOP CHORD	1-2=0/35, 2-3= 4-5=-108/77	-1005/	1000, 3-4=-10/14,		bottom chore	d. Oten dend	along the							
BOT CHORD	2-6=-1017/897	7, 5-6=-	984/885	L	JAD CASE(S)	Standard								
WEBS	3-6=-466/178,	3-5=-9	90/1105										munn	1111
NOTES													"TH CA	Rollin
 Wind: ASC Vasd=103 Ke=1.00; (and C-C E to 8-0-0, E 	CE 7-16; Vult=13 mph; TCDL=6.0p Cat. II; Exp B; En Exterior(2E) -1-2- Exterior(2E) 8-0-0	0mph (psf; BC nclosed 5 to 1-9) to 11-	3-second gust) DL=6.0psf; h=25ft; ; MWFRS (envelope)-11, Interior (1) 1-9- 10-4 zone; porch lef	e) -11 t								A.V.	X MM	MAX .

to 8-0-0, Exterior(2E) 8-0-0 to 11-10-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- This truss has been checked for uniform snow load only, except as noted.

SEAL 28228 June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	НЗ	Half Hip	1	1	Job Reference (optional)	146540603

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:24 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.9

Plate Offsets	(X, Y): [2:0-2	2-12,Edge], [4:Edge,0-1-8]											
Loading TCLL (Roof Snow = TCDL BCLL BCDL	= 30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-S	0.67 0.53 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.13 -0.12 0.02	(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 3-7-11 oc 2-0-0 oc p Rigid ceilir bracing. (size) Max Horiz 	0.2 0.3 wood she purlins, e urlins (6-0 ng directly 2=0-3-0, t 2=49 (LC	athing directly appli xcept end verticals, I-0 max.): 3-4. applied or 4-8-2 oc 5=0-1-8 7)	ied or and	 This truss h load of 20.0 overhangs Provide add Bearing at j using ANSI designer sh Provide me bearing plai One RT7A truss to bea This connec lateral force 	as been designe psf or 2.00 time non-concurrent v equate drainage to oint(s) 5 conside (TPI 1 angle to g ould verify capac chanical connector e at joint(s) 5. MiTek connector ring walls due to ction is for uplift o s.	ed for greate s flat roof k vith other liv to prevent v rs parallel t rain formula city of beari tion (by oth s recomme b UPLIFT at only and do	er of min roo bad of 30.0 p re loads. water pondin o grain value a. Building ng surface. ers) of truss nded to com jt(s) 2 and 5 es not consi	f live sf on g. e to nect der					
FORCES	Max Uplift Max Grav (lb) - Maxii	2=-144 (L 2=698 (L0 mum Com	C 7), 5=-112 (LC 7) C 1), 5=581 (LC 1) ppression/Maximum)	9) This truss is Internationa R802.10.2 a	designed in acc Residential Co and referenced s	cordance w de sections tandard AN	th the 2018 R502.11.1 a ISI/TPI 1.	and					
TOP CHORD	1-2=0/35, 4-5=-233/1 2-6=-1325	2-3=-1321 138 /1220, 5-6	1/1330, 3-4=-112/11 6=-1287/1207	13,	10) Graphical p or the orien bottom chor LOAD CASE(S	urlin representat tation of the purli [.] d.) Standard	ion does no in along the	e top and/or	SIZE					
VVEBS NOTES 1) Wind: AS Vasd=100 Ke=1.00; and C-C to 6-0-0, 10-2-15 tr C for mer	3-5=-398/1 3mph; TCDL= Cat. II; Exp E Exterior(2E) - Exterior(2R) (o 11-10-4 zor mbers and for	t=130mph =6.0psf; Bi 3; Enclose 1-2-5 to 1 5-0-0 to 10 ne; porch I rces & MW	(3-second gust) CDL=6.0psf; h=25ft d; MWFRS (envelo) -9-11, Interior (1) 1- -2-15, Interior (1) eft and right expose /FRS for reactions	;; pe) ·9-11 ed;C-								A NOT	SEA	

shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate 2) DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) This truss has been checked for uniform snow load only, except as noted.

annun annun anna ann an th SEAL 28228 GANG 11111 June 11,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	НМ	Half Hip Girder	1	1	Job Reference (optional)	146540604

Special

Carter Components (Sanford), Sanford, NC - 27332,

-1-2-8

1-2-8 4-0-0

4-0-0

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 12:47:24 ID:4?YZiK5ce4h4D2v9ShAkfay8NK_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

12-0-0

4-1-12

NAILED

Page: 1

7-10-4

3-10-4

NAILED

Scale = 1:32

Plate Offsets (X, Y): [2:0-2-12,Edge], [6:0-2-7,0-1-7], [7:0-2-8,0-1-12]

			i											
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		30.0	Plate Grip DOL	1.15		тс	0.55	Vert(LL)	-0.11	7-8	>999	240	MT20	244/190
(Roof Snow =	30.0)		Lumber DOL	1.15		BC	0.74	Vert(CT)	-0.19	7-8	>750	180		
TCDL		10.0	Rep Stress Incr	NO		WB	0.85	Horz(CT)	0.03	6	n/a	n/a		
BCLL		0.0	Code	IRC20	18/TPI2014	Matrix-S								
BCDL		10.0											Weight: 52 lb	FT = 20%
LUMBER				e) Bearing at io	int(s) 6 considers	parallel	o grain value						
TOP CHORD	2x4 SP No	.2			using ANSI/1	PI 1 angle to grain	n formul	a. Building						
BOT CHORD	2x4 SP No	.2			designer sho	uld verify capacity	of bear	ing surface.						
WEBS	2x4 SP No	.3		7) Provide mec	hanical connectior	n (by oth	ers) of truss t	0					
BRACING					bearing plate	e at joint(s) 6.								
TOP CHORD	Structural	wood shea	athing directly applie	d or ⁸) One RT7A N	liTek connectors r	ecomme	nded to conn	nect					
	3-7-4 oc p	urlins, exc	cept end verticals, ar	nd	truss to bear	ing walls due to UI	PLIFT at	; jt(s) 2 and 6.	•					
	2-0-0 oc p	urlins (3-5	-13 max.): 3-5.		This connect	ion is for uplift only	y and do	es not consid	ler					
BOT CHORD	Rigid ceilir	ng directly	applied or 8-10-8 oc	;	lateral forces	i. 								
	bracing.			5) This truss is	Designed in accord	dance w	In the 2018	nd					
REACTIONS	(size)	2=0-3-0, 6	6=0-1-8		R802 10 2 a	nd referenced star	dard AN	, R502.11.1 a JSI/TPI 1	ina					
	Max Horiz	2=36 (LC	3)	1	0) Graphical pu	rlin representation	does n	at denict the s	size					
	Max Uplift	2=-192 (L	C 3), 6=-162 (LC 3)		or the orient	ation of the purlin a	along the	top and/or	120					
	Max Grav	2=884 (LC	C 1), 6=782 (LC 1)		bottom chord	l.								
FORCES	(lb) - Maxii	mum Com	pression/Maximum	1	1) "NAILED" ind	dicates 3-10d (0.14	48"x3") d	or 3-12d						
	Tension				(0.148"x3.25	") toe-nails per ND)S guidli	nes.						
TOP CHORD	1-2=0/35,	2-3=-2236 ///5 5 6-	/454, 3-4=-2129/445 712/144	5, 1	2) Hanger(s) or	other connection	device(s) shall be						
	2-8445/2	/443, 3-0= 2116 7-8-	-112/144	1/2	provided suff	icient to support c	oncentra	ated load(s) 1	76					
WERS	3-8-35/12	20 3-750	0/75 1-7-137/83	142	Ib down and	69 lb up at 4-0-0	on top c	nord, and 62	D					
WEBS	5-7=-430/2	20, 3-7	5/75, 4-7=-457/05,		design/selec	tion of such conne	oction de	vice(s) is the					minin	111.
NOTES	0. 100/2				responsibility	of others.	cuon de						I'''L CA	Rollin
1) Wind AS(CE 7-16: Vult	-130mnh	(3-second quist)	1	3) In the LOAD	CASE(S) section.	loads a	oplied to the f	ace				a''	
Vasd=103	mph: TCDL=	=6.0psf: B0	CDL=6.0psf: h=25ft:		of the truss a	re noted as front ((F) or ba	ck (B).				3.	W EESS	Nr. N. S.
Ke=1.00:	Cat. II: Exp E	B: Enclose	d: MWFRS (envelop	e): I	OAD CASE(S)	Standard	. ,	()				: <	XAAAA	TANY =
porch left	and right exp	osed; Lun	nber DOL=1.60 plate	÷ 1) Dead + Sno	w (balanced): Lur	nber Inc	rease=1.15. F	Plate					
grip DOL=	1.60				Increase=1	.15		,			- 5		CEA	, <u>1</u> E .
2) TCLL: AS	CE 7-16; Pf=	30.0 psf (l	Lum DOL=1.15 Plate	9	Uniform Loa	ads (Ib/ft)					=	- 1	SEA	
DOL=1.15); Is=1.0; Ro	ugh Cat B	; Partially Exp.; Ce=	1.0;	Vert: 1-3	=-80, 3-5=-80, 2-6	=-20				=	:	2822	28 : =
Cs=1.00;	Ct=1.10				Concentrate	ed Loads (lb)								· · · · ·
This truss	has been ch	ecked for	uniform snow load o	nly,	Vert: 8=-	43 (F), 7=-18 (F), 3	3=-128 (F), 4=-54 (F)	,				1	1 3
except as	noted.				9=-54 (F), 10=-54 (F), 11=-	-18 (F), ⁻	2=-18 (F)				2	· ENO	ER. S
 I his truss 	nas been de	signed for	greater of min roof l	live								11	+, GIN	5. 10 1
ioad of 20	.0 psi 0r 2.00	root with a	ther live leads									1	EGAN	GLUN
5) Provide of	hoguato drai		when the loads.										GAN	in the second se
J FIUNILE al	requate utali	age to pre	event water ponding	•									- COLINE	1111

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	J1	Monopitch	8	1	Job Reference (optional)	146540605

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:25 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	3-11-0
Scale = 1:29.6	
Plate Offsets (X, Y): [2:0-2-3.0-0-3]	

	A, TJ. [2.0-2-	0,0-0 - 0]													
Loading TCLL (Roof Snow = 3 TCDL BCLL BCDL	30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.32 0.21 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 0.03 n/a	(loc) 2-5 2-5 -	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103r Ke=1.00; C and C-C E: to 3-10-12 members as Lumber DC 2) TCLL: ASC DOL=1.15 Cs=1.00; C 3) This truss I load of 16.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP Structural w 4-0-8 oc pu Rigid ceiling bracing. (size) 2 Max Horiz 2 Max Horiz 2 Max Grav 2 (lb) - Maxim Tension 1-2=0/30, 2 2-5=0/0 4-5=-142/13 CE 7-16; Vult= mph; TCDL=6 Cat. II; Exp B; xterior(2E) -1 zone; porch I and forces & I DL=1.60 plate CE 7-16; Pf=3); Is=1.0; Rou Ct=1.10 has been che noted. has been des 0 psf or 2.00	2 2 3 No.3 2 yood shear rlins. g directly =0-3-0, 5 =64 (LC =-12 (LC =-303 (LC num Comp -4=-98/48 37 =130mph 6.0psf; BC Enclosed -2-1 to 1- eft and rig WWFRS fi g grip DO 0.0 psf (L ugh Cat B acked for times flat	2-1-7 athing directly applied applied or 10-0-0 oc i=0-1-8 11) 8), 5=-35 (LC 8) 21), 5=181 (LC 1) pression/Maximum 3 (3-second gust) CDL=6.0psf; h=25ft; 4; MWFRS (envelope 9-15, Interior (1) 1-9- ght exposed;C-C for for reactions shown; L=1.60 um DOL=1.15 Plate ; Partially Exp.; Ce=1 uniform snow load or greater of min roof li roof load of 30.0 psf	5; 6; 7; d or 8; L 2) -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	 Bearing at jo using ANSI/ designer sho Provide mec bearing plate One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 at OAD CASE(S) 	int(s) 5 considers IPI 1 angle to gra uld verify capacit hanical connectio a t joint(s) 5. IITek connectors ing walls due to L ion is for uplift on c. designed in acco Residential Code nd referenced sta Standard	e parallel t in formula y of bearing n (by other recomme JPLIFT at ly and do rdance with e sections undard AN	o grain value a. Building ng surface. ers) of truss tr nded to conn- jt(s) 2 and 5. es not consid ith the 2018 .R502.11.1 ar ISI/TPI 1.	D ect er nd				SEA 2822		
overnallys													111111	mm	

June 11,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	J2	Monopitch	1	1	Job Reference (optional)	146540606

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:25 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-11-0

Scale = 1:35.7		
Plate Offsets (X, Y).	[2.0-3-3.0-0-3] [4.0-2-8.0-2-4]	

	(,, ,). [2.0.0.0	0,0 0 0] ,	[4.0 2 0,0 2 4]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.52 0.38 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 0.07 n/a	(loc) 2-6 2-6	l/defl >657 >818 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	_
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Wind: AS(Vasd=103 Ke=1.00; and C-C E to 4-4-12, and right of	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP Structural w 5-0-8 oc pur 2-0-0 oc pur Rigid ceiling bracing. (size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2= (lb) - Maximu Tension 1-2=0/30, 2- 2-6=0/0 5-6=-179/20 CE 7-16; Vult= Bmph; TCDL=6 Cat. II; Exp S; Exterior(2E) -1- Exterior(2E) -4-	10.0 2 3 No.3 2 ood sheat lins, exc lins: 4-5. directly =0-3-0, 6 =70 (LC =-18 (LC =350 (LC um Com 4=-116/4 13 130mph .0psf; BC Encloseet -2-1 to 1- -4-12 to 1- -4-	2-10-2 athing directly applied ept applied or 10-0-0 oc =0-1-8 11) 8), 6=-45 (LC 8) 1), 6=234 (LC 1) pression/Maximum 47, 4-5=0/0 (3-second gust) DL=6.0psf; h=25ft; d; MWFRS (envelope 9-15, Interior (1) 1-9 4-10-12 zone; porch ers and forces &	4) 5) 6) d or 7) 8) 9) 10 LC e) -15 left	This truss ha load of 20.0 overhangs n Provide aded Bearing at jo using ANSI/I designer sho Provide mec bearing plate One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar O Graphical pu or the orienta bottom chore DAD CASE(S)	I s been designed psf or 2.00 times f on-concurrent witi quate drainage to int(s) 6 considers. TPI 1 angle to grai ould verify capacity hanical connectio e at joint(s) 6. TiTek connectors i ing walls due to U ion is for uplift onli- designed in accor Residential Code do referenced stai rflin representation ation of the purlin J. Standard	for greate lat roof lo n other lin prevent v parallel t in formula y of bearin n (by oth recomme PLIFT at y and do rdance w sections ndard AN n does no along the	er of min roof bad of 30.0 p: re loads. water ponding o grain value a. Building ng surface. ers) of truss t nded to conrr jt(s) 2 and 6 es not consic ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	live sf on g. der der size				Weight: 25 ID	P0	
MWFRS f grip DOL= 2) TCLL: AS DOL=1.15 Cs=1.00; 3) This truss except as	for reactions sh =1.60 ICE 7-16; Pf=3(5); Is=1.0; Roug Ct=1.10 thas been check noted.	nown; Lui 0.0 psf (L gh Cat B cked for	mber DOL=1.60 plate _um DOL=1.15 Plate ; Partially Exp.; Ce=' uniform snow load or	e 1.0; nly,							111100 C	A A A A A A A A A A A A A A A A A A A	2822 KNGIN	E.B.	

June 11,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	J3	Jack-Open	2	1	Job Reference (optional)	146540607

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:25 ID:ynn4Xi87hJBWhfDxhXEgqQy8NJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-7

Page: 1

Scale =	1:25
---------	------

Plate Offsets (X, Y): [2:Edge,0-0-0]

Loading TCLL (Roof Snow = TCDL BCLL	30.0)	(psf) 30.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.44 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 0.01 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 13 lb	FI = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP Nc 2x4 SP Nc Left 2x4 SI Structural 2-8-7 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift Max Grav	.2 .2 P No.3 1 wood shea urlins. ng directly 2=0-3-14, Mechanica 2=42 (LC 2=-74 (LC (LC 7) 2=364 (LC (LC 1)	-5-12 athing directly applie applied or 10-0-0 or 4= Mechanical, 5= al 7) 7), 4=-49 (LC 17), 5 C 17), 4=63 (LC 1), 5	5) 6) 7) 6d or 5 5=-7 9) 5=-7 5=-26 LC	Refer to girdd Provide mecl bearing plate 4. One RT16A I truss to beari connection is forces. One RT7A M truss to beari connection is forces. This truss is International R802.10.2 ar DAD CASE(S)	er(s) for truss to tru- nanical connection capable of withsta MiTek connectors r ng walls due to UP for uplift only and iTek connectors re ng walls due to UP for uplift only and designed in accord Residential Code s of referenced stand Standard	Uss coning 4 (by oth- inding 4 ecomme LIFT at does no comme PLIFT at does no ance wisections dard AN	nections. ers) of truss t 9 lb uplift at j ended to con jt(s) 5. This ot consider lai nded to conn jt(s) 2. This ot consider lai th the 2018 .R502.11.1 a ISI/TPI 1.	o point nect reral reral reral					
FORCES	(lb) - Maxi	mum Com	pression/Maximum											
	Tension	2-180/21	1											
BOT CHORD	2-5=0/0	2- 4 = - 00/2	1											
NOTES													mun	un.
1) Wind: ASC Vasd=103 Ke=1.00; and C-C C exposed;C reactions DOL=1.60	CE 7-16; Vult Bmph; TCDL= Cat. II; Exp E Corner (3) zo C-C for memi shown; Lumt	t=130mph =6.0psf; B0 3; Enclosed ne; porch l pers and fo per DOL=1	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop left and right prces & MWFRS for .60 plate grip	e)								A NIN	SEA	
 TCLL: AS DOL=1.15 Cs=1.00; 	CE 7-16; Pf= 5); Is=1.0; Ro Ct=1.10	30.0 psf (l ough Cat B	um DOL=1.15 Plate ; Partially Exp.; Ce=	e 1.0;									2822	28
3) This truss	has been ch	ecked for	uniform snow load c	only,							3	1	··ENIO	ER. S
except as 4) This truss load of 16 overhangs	noted. has been de 0.0 psf or 2.00 s non-concur	signed for times flat rent with o	greater of min roof roof load of 30.0 ps ther live loads.	live f on								ann.	TUEGAN	GLIU
													June	9 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	J4	Jack-Open	4	1	Job Reference (optional)	146540608

<u>-1-2-8</u> 1-2-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:26 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-0

4-0-0

4-0-0

Scale = 1:24.8

Plate Offsets (X, Y): [2:0-2-12,Edge]

Loading TCLL (Roof Snow = TCDL	30.0)	(psf) 30.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	8/TPI2014	CSI TC BC WB Matrix-P	0.28 0.25 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 0.03 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0	Code	11(0201	0/11/2014	Widunx-I							Weight: 14 lb	FT = 20%	
LUMBER FOP CHORD SOT CHORD SRACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No 2x4 SP No Structural 4-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 wood she purlins. ng directly 2=0-3-0, 1 Mechanic 2=36 (LC 2=-72 (LC (LC 7) 2=314 (LC (LC 1)	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 7) 2 7), 3=-27 (LC 11), 4 C 1), 3=134 (LC 1), 4	6 7 2 8 4=-10 4=38 L	 Provide mec bearing plate 3. One RT16A truss to bear connection is forces. One RT7A N truss to bear connection is forces. This truss is International R802.10.2 a 	hanical connection e capable of withst MiTek connectors ing walls due to U s for uplift only and MiTek connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star Standard	n (by oth anding 2 recomm PLIFT at d does no recomme PLIFT at d does no dance w sections ndard AN	ers) of truss i 7 lb uplift at j ended to corr jt(s) 4. This of consider la nded to conr jt(s) 2. This of consider la ith the 2018 R502.11.1 a ISI/TPI 1.	to joint nnect nect nect nteral						
ORCES	(lb) - Max	imum Corr	pression/Maximum												
TOP CHORD BOT CHORD	1-2=0/35, 2-4=0/0	2-3=-45/2	7												
NOTES															
 Wind: ASC Vasd=103 Ke=1.00; (and C-C E to 3-11-4 z members : Lumber DU TCLL: ASC DOL=1.15 Cs=1.00; (This truss except as load of 20. overhangs 	CE 7-16; Vu imph; TCDL Cat. II; Exp I ixterior(2E) zone; porch and forces & OL=1.60 pla CE 7-16; Pfs CE 7-16; Pfs i); Is=1.0; Rc Ct=1.10 has been cl noted. has been du .0 psf or 2.0 s non-concu	It=130mph =6.0psf; B B; Enclose -1-2-5 to 1 left and rig MWFRS tte grip DC =30.0 psf (bugh Cat E necked for esigned fo 0 times fla rrent with o	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop 9-11, Interior (1) 1-5 pht exposed;C-C for for reactions shown; 0L=1.60 Lum DOL=1.15 Plate ; Partially Exp.; Ce= uniform snow load c r greater of min roof t roof load of 30.0 ps other live loads.	be) ; e :1.0; bnly, live								and the second second	SEA 2822		SWITTING ST
Refer to gi	irder(s) for 1	truss to tru	ss connections.										in the second se	ann.	

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	J6	Jack-Open	1	1	Job Reference (optional)	146540609

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:26

	5-6-6	
Scale = 1:22.9		
Plate Offsets (X, Y): [2:0-3-13,Edge]		

Loading TCLL (Roof Snow = TCDL BCLL	30.0)	(psf) 30.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.57 0.57 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.16 0.13 0.00	(loc) 2-4 2-4 3	l/defl >408 >499 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 19 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 5-6-6 oc Rigid ceil bracing. (size)	0.2 0.2 I wood she purlins. ing directly 2=0-3-14, Mechanic	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al	6 7 ed or 2 8	 Provide mec bearing plate 3. One RT16A truss to bear connection is forces. One RT7A N truss to bear connection is forces 	hanical connecti e capable of with MiTek connector ing walls due to s for uplift only au IiTek connectors ing walls due to s for uplift only au	on (by oth standing 3 rs recomm UPLIFT at nd does no s recomme UPLIFT at nd does no	ers) of truss i i6 lb uplift at j iended to corr i jt(s) 4. This ot consider la ended to conrr i jt(s) 2. This ot consider la	to joint nnect ateral nect ateral					
	Max Horiz Max Uplift Max Grav	2=35 (LC 2=-104 (L 4=-14 (LC 2=440 (LC (LC 1)	7) C 7), 3=-36 (LC 11), C 7) C 1), 3=186 (LC 1), 4	9 ¹⁼⁵³ L) This truss is International R802.10.2 a OAD CASE(S)	designed in acco Residential Cod nd referenced sta Standard	ordance w le sections andard AN	ith the 2018 8 R502.11.1 a NSI/TPI 1.	and					
FORCES	(lb) - Max	imum Com	pression/Maximum											
	Tension													
TOP CHORD	1-2=0/35,	2-3=-45/2	7											
BOT CHORD	2-4=0/0													
NOTES														1150
 Wind: ASC Vasd=103 Ke=1.00; (and C-C C 5-5-10 zor members Lumber Di 2) TCLL: ASC DOL=1.15 Cs=1.00; (3) This truss except as 4) This truss load of 20. overhangs 5) Refer to gi 	CE 7-16; Vu mph; TCDL Cat. II; Exp Corner (3) -1 he; porch le and forces of OL=1.60 pla CE 7-16; Pf Ct=1.10 has been c noted. has been d .0 ps for 2.0 s non-concu	It=130mph =6.0psf; B/ B; Enclose B; Enclose B; Enclose A=0 to 2-6 ft and right & MWFRS ate grip DC =30.0 psf (ough Cat E hecked for esigned for 0 times fla rrent with c	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop -9, Exterior(2R) 2-6- exposed;C-C for for reactions shown; L=1.60 Lum DOL=1.15 Plat; B; Partially Exp.; Ce= uniform snow load c r greater of min roof t roof load of 30.0 ps other live loads. ss connections	e) 9 to ; e :1.0; inly, live if on							. ettilline.	in the second second	SEA 2822	EER.

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	JM	Half Hip Girder	1	1	Job Reference (optional)	146540610

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 12:47:26

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	JM1	Half Hip Girder	1	1	Job Reference (optional)	I46540611

2-4-12 2-4-12

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:27 ID:10Kek6XoJCWI8xWoeuzHtDzVTSF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-8

2-7-12

Page: 1

-1-2-8 1-2-8

NAILED NAILED

Scale = 1:36.3

Plate Offsets (X, Y): [2:0-2-3,0-0-3], [4:0-3-0,0-2-0]

Loading		(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		30.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
(Roof Snow =	30.0)		Lumber DOL	1.15		BC	0.09	Vert(CT)	0.00	6-7	>999	180		
TCDL		10.0	Rep Stress Incr	NO		WB	0.05	Horz(CT)	0.00	6	n/a	n/a		
BCLL		0.0	Code	IRC2018	3/TPI2014	Matrix-P								
BCDL		10.0											Weight: 27 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.	2		6)	Bearing at jo using ANSI/T designer sho	nt(s) 6 considers p PI 1 angle to grain	arallel f formula	o grain value a. Building						
WERS	2x4 SP No.	2		7)	Provide mec	nanical connection	(by oth	ers) of truss to	r					
SLIDER	Left 2x4 SF	0 No 3 1	-6-8	• • • •	bearing plate	at joint(s) 6.			5					
BRACING	LON EXTON	110.0	00	8)	One RT7A M	iTek connectors re	comme	nded to conn	ect					
TOP CHORD	Structural	wood she	athing directly applied	l or	truss to bear	ng walls due to UP	LIFT at	jt(s) 2 and 6.						
	5-0-8 oc pu 2-0-0 oc pu	irlins, exc irlins: 4-5.	cept end verticals, an	d	This connect lateral forces	on is for uplift only	and do	es not consid	er					
BOT CHORD	Rigid ceilin bracing.	g directly	applied or 10-0-0 oc	9)	I his truss is International	designed in accord Residential Code s	ance w ections	ith the 2018 R502.11.1 a	nd					
REACTIONS	(size) 2 Max Horiz 2 Max Uplift 2 Max Gray 2	2=0-3-0, 6 2=43 (LC 2=-45 (LC 2=346 (LC	5=0-1-8 7) 4), 6=-68 (LC 4) 2 1), 6=237 (LC 1)	10) Graphical pu or the orienta bottom chord	Id referenced stand rlin representation tion of the purlin al	does no	ot depict the s top and/or	ize					
FORCES	(lb) - Maxin	num Com	pression/Maximum	11	(0.148"x3.25) toe-nails per ND	8"x3") c S guidli	nes.						
	1 2_0/20 2	1_ 202/	SO 1 5-0/0 5 6- 07/	12) In the LOAD	CASE(S) section, I	oads a	oplied to the f	ace					
BOT CHORD	2-7=-58/18	6 6-7=-56	5/180		of the truss a	re noted as front (F) or ba	ск (В).						
WEBS	4-7=-20/67	. 4-6=-21	3/66		DAD CASE(S)	Standard			N-4-					
NOTES		,		1)	Dead + Sho	w (balanced): Lum	ber inc	rease=1.15, F	late				minin	1111.
1) Wind: ASC Vasd=103 Ke=1.00; (porch left a grip DOL=	CE 7-16; Vult= mph; TCDL= Cat. II; Exp B; and right exp 1.60	=130mph 6.0psf; B0 Enclosed osed; Lun	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelope hber DOL=1.60 plate	e);	Uniform Loa Vert: 1-4 Concentrate Vert: 7=-	ads (lb/ft) =-78, 4-5=-78, 2-6= ed Loads (lb) 9 (F), 8=-2 (F), 9=0	-19 (F), 10	=-6 (F)			-	N.V.	CA CESS	ROLLIN
 TCLL: AS(DOL=1.15 Cs=1.00; (CE 7-16; Pf=3 i); Is=1.0; Rou Ct=1.10	30.0 psf (l ugh Cat B	_um DOL=1.15 Plate ; Partially Exp.; Ce=1	.0;									SEA 2822	
3) This truss	has been che	ecked for	uniform snow load or	nly,									2022	~ / Ē
 4) This truss load of 20. overhangs 	has been des .0 psf or 2.00 s non-concurr	signed for times flat ent with o	greater of min roof li roof load of 30.0 psf ther live loads.	ve on							3		TUE	EF. P. W. INNY
5) Provide ad	dequate drain	age to pre	event water ponding.										GAN	Guinn

- overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	К1	Half Hip Girder	2	1	Job Reference (optional)	146540612

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:27 ID:QzLSI29ISdJNJpo7FElvMdy8NJv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED 2-4-12

Scale = 1:31.4

Plate Olisets	(X, Y): [2:0	-3-3,0-0-3],	[4:0-3-3,Edge]												
Loading TCLL (Roof Snow = TCDL BCLL BCDL	: 30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018)/TPI2014	CSI TC BC WB Matrix-P	0.24 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-6 2-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD 80T	2x4 SP N 2x4 SP N Left 2x4 S Structura 2-4-12 oc 2-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/30 2-6=0/0 CE 7-16; VL Cat. II; Exp and right ex= 1.60 CE 7-16; FCDL Cat. II; Exp and right ex= 1.60 CE 7-16; PL S); Is=1.0; R CE=1.10 has been co noted. s non-concc. dequate dra	lo.2 lo.2 SP No.3 1 l wood shear c purlins: 4-5 ing directly 2=0-3-0, 5 Mechanic 2=40 (LC 2=-15 (LC (LC 4) 2=254 (LC (LC 1) kimum Com , 2-4=-72/1; lt=130mph =6.0psf; B0 B; Enclose qosed; Lun =30.0 psf (I ough Cat B thecked for lesigned for 00 times flat urrent with c inage to pro-	I-5-5 athing directly applie cept applied or 10-0-0 oc i= Mechanical, 6= al 7) 3), 5=-28 (LC 4), 6= C 13), 5=72 (LC 1), 6 pression/Maximum 3, 4-5=0/0 (3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop her DOL=1.60 plate com DOL=1.15 Plate ; Partially Exp.; Ce= uniform snow load o greater of min roof I roof load of 30.0 ps ther live loads.	6) 7) 8) d or 9) 9 =29 11) 12) 12) 13) LO 1) e); e); e); o nlu, ive f on	Refer to gird Provide mec bearing plate 5. One RT16A truss to bear connection is forces. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 au Graphical pu or the orienta bottom chord "NAILED" init (0.148"x3.255 In the LOAD of the truss a AD CASE(S) Dead + Snc Increase=1 Uniform Lo: Vert: 1-4 Concentrativ	er(s) for truss to t hanical connection capable of withst MiTek connectors ing walls due to U s for uplift only and titek connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star rlin representation ation of the purlin dicates 3-10d (0.1 ") toe-nails per NE CASE(S) section, are noted as front Standard bw (balanced): Lur 15 ads (lb/ft) ==80, 4-5=-80, 2-6 ed Loads (lb) 9 (F)	russ con n (by oth tanding 2 recomme PLIFT at d does no dace w sections ndard AN n does no along the 48"x3") c DS guidlii, loads aț (F) or ba mber Inc	nections. ers) of truss t 8 lb uplift at j ended to com jt(s) 6. This to consider la nded to conn jt(s) 2. This to consider la the 2018 R502.11.1 a to depict the s top and/or r 2-12d nes. oplied to the f ck (B). rease=1.15, F	o obint nect teral ect teral nd ize ace Plate			Annual	SEA 2822	RO KLP E B G L IU	A MANANA AND AND AND AND AND AND AND AND AN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	К2	Jack-Open Girder	5	1	Job Reference (optional)	146540613

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:28 ID:u9vqyNANDwRExzNJpyH8vry8NJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:28.1 Plate Offsets (X, Y): [2:0-1-8.0-0-3]

	(X, 1). [2.0	1 0,0 0 0]													
Loading TCLL (Roof Snow = TCDL BCLL BCDL	30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.21 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-5 2-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASI Vasd=100 Ke=1.00; and C-C E to 2-4-0 z; members Lumber D 2) TCLL: AS DOL=1.16 CS=1.00; 3) This truss	2x4 SP No 2x4 SP No Left 2x4 S Structural 2-4-12 oc Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/30, 2-5=0/0 CE 7-16; Vu 3mph; TCDL Cat. II; Exp I Exterior(2E) one; porch & and forces & OL=1.60 pla CE 7-16; Pf= 5); Is=1.0; RC	10.0 10.0 10.2	1-5-8 athing directly applie applied or 10-0-0 oc 4= Mechanical, 5= al 11) 5 7), 4=-26 (LC 11), 5 C 17), 4=70 (LC 1), 5 c 17), 4=70 (LC 1), 5 pression/Maximum 8 (3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop -9-15, Interior (1) 1-5 t exposed;C-C for for reactions shown; L=1.60 Lum DOL=1.15 Plate b; Partially Exp.; Ce=	e) -11.0; -1.0	Refer to gird Provide mec bearing plate 4. One RT16A truss to bear connection is forces. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar	er(s) for truss to t hanical connection capable of withst MiTek connectors ing walls due to U s for uplift only and tiTek connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star Standard	truss conin n (by oth- tanding 2 s recomme IPLIFT at d does no recomme IPLIFT at d does no rdance wi e sections ndard AN	nections. ers) of truss t 6 lb uplift at j eended to conn jt(s) 5. This ot consider la ended to conn jt(s) 2. This ot consider la it the 2018 sR502.11.1 a ISI/TPI 1.	o oint nect teral teral			And And	Weight: 12 lb	FT = 20%	
except as 4) This truss load of 16 overhang	noted. has been do 0 psf or 2.0 s non-concu	esigned for 0 times flat rrent with c	r greater of min roof t roof load of 30.0 ps other live loads.	live f on								in the	June	EE!!! G_LIU e 11,2021	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Braching indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent braching is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent braching is always required for stability and to prevent buckling of individual truss systems, see abs/DTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	V	Valley	1	1	Job Reference (optional)	146540614

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:28 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.3													
Loading TCLL (Roof Snow = TCDL BCLL BCDL	(psf) 30.0 30.0) 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-S	0.22 0.09 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=13-4-3 7=13-4-3 Max Horiz 1=-98 (LC Max Uplift 1=-17 (LC (LC 11) Max Grav 1=120 (LL) 6=377 (LL 8=378 (LL)	Pathing directly applie r applied or 10-0-0 oc , 5=13-4-3, 6=13-4-3 8=13-4-3 2 9) 2 7), 6=-79 (LC 12), 8 C 19), 5=106 (LC 18) C 19), 7=297 (LC 1), C 18)	ed or c , 3=-80),	 TCLL: ASCE DOL=1.15); Cs=1.00; Ct This truss ha except as no Gable studs Gable studs One RT7A N truss to bear This connec lateral forces This truss is International R802.10.2 a 	E 7-16; Pf=30.0 p Is=1.0; Rough C =1.10 as been checked oted. es continuous bo spaced at 4-0-0 AiTek connectors ing walls due to tion is for uplift o s. designed in acco Residential Cod nd referenced st Standard	osf (Lum D iat B; Parti- l for uniforr ottom chor oc. s recomme UPLIFT at nly and do ordance w de sections iandard AN	OL=1.15 Plai ally Exp.; Ce- n snow load of d bearing. anded to conr jt(s) 1, 8, an- es not consic ith the 2018 ; R502.11.1 a ISI/TPI 1.	te =1.0; only, nect d 6. der					
FORCES	(lb) - Maximum Con Tension 1-2=-124/81 2-3=-1	npression/Maximum	15										
BOT CHORD	4-5=-103/52 1-8=-28/71, 7-8=-28	8/71, 6-7=-28/71,	,									mun	900.
WEBS	5-6=-28/71	7/108 /-6307/108	2									"'TH CA	ROUL
NOTES 1) Wind: ASC Vasd=103 Ke=1.00; and C-C E 3-4-13 to 0 9-8-6 to 1: exposed; members Lumber D 2) Truss des only. For see Stand or consult	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Cat. II; Exp B; Enclose Exterior(2E) 0-4-13 to 3 6-8-6, Exterior(2R) 6-8 2-11-15 zone; cantilev end vertical left and ri and forces & MWFRS IOL=1.60 plate grip DC signed for wind loads i studs exposed to winc tard Industry Gable En qualified building desi	a (3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop 3-4-13, Interior (1) 1-6 to 9-8-6, Interior (1) er left and right ght exposed;C-C for for reactions shown; DL=1.60 n the plane of the tru l (normal to the face) d Details as applicab gner as per ANSI/TP	re) 1) ; ss , ole, 211.								in which which is the second s	SEA 2822 HUEGAN	EER.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

11111 June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	VA	Valley	1	1	Job Reference (optional)	146540615

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:28 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-1-13

Scale = 1:35.5	
00010 - 110010	

Loading TCLL (Roof Snow = 30.0) TCDL BCLL BCDL	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.38 0.19 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No OTHERS 2x4 SP No BRACING TOP CHORD Structural 6-0-0 oc pi BOT CHORD Rigid ceilir bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxir	.2 .2 .3 wood she urlins. g directly 1=10-1-13 1=-73 (LC 1=-5 (LC 1=-55 (LC (LC 1) num Com	athing directly applied applied or 10-0-0 oc 3, 3=10-1-13, 4=10-1- 7) 12), 3=-12 (LC 12) C 1), 3=253 (LC 1), 4- pression/Maximum	5) 6) 7) d or 8) -13 LO =433	Gable requirr Gable studs One RT7A M truss to beari This connect lateral forces This truss is International R802.10.2 ar AD CASE(S)	es continuous bot spaced at 4-0-0 o liTek connectors r ing walls due to U ion is for uplift onl designed in accor Residential Code nd referenced star Standard	tom chor c. recomme PLIFT at ly and do rdance wi sections ndard AN	d bearing. nded to conn jt(s) 1 and 3. es not consid th the 2018 R502.11.1 a ISI/TPI 1.	ect ler nd						
Tension Top CHORD 1-2=-204/8 3OT CHORD 1-4=-12/78 WEBS 2-4=-284/8 NOTES 1) Wind: ASCE 7-16; Vult Vasd=103mph; TCDL= Ke=1.00; Cat. II; Exp B and C-C Exterior(2E) 0 3-4-13 to 5-1-3, Exteric 8-1-3 to 9-9-9 zone; ca end vertical left and rig forces & MWFRS for re DOL=1.60 plate grip DI 2) Truss designed for wir only. For studs expose see Standard Industry or consult qualified buil 3) TCLL: ASCE 7-16; Pf= DOL=1.15); Is=1.0; Ro Cs=1.00; Ct=1.10 4) This truss has been ch except as noted.	5, 2-3=-2 , 3-4=-12 0 =130mph 6.0psf; Bt 4-13 to 3 vr(2R) 5-1 ntilever le ht expose actions s DL=1.60 nd loads ir d to wind Gable End ding desig 30.0 psf (l ugh Cat E ecked for	04/81 (3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelope -4-13, Interior (1) -3 to 8-1-3, Interior (1 ft and right exposed d;C-C for members a hown; Lumber In the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI Lum DOL=1.15 Plate ; Partially Exp.; Ce=1 uniform snow load on	e) ; ind ss le, 1. 1. 0; hly,							annua.	Annual	SEA 2822	RO 0 8 6 11,2021	anna anna anna anna anna anna anna ann

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	VC	Valley	1	1	Job Reference (optional)	146540616

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:28 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-11-6

Loading TCLL (Roof Snow = 3 TCDL BCLL	(psf) 30.0 30.0) 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.24 0.07 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 26 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-11-6 Max Horiz 1=-48 (LC Max Grav 1=182 (L (LC 1)	eathing directly applie / applied or 10-0-0 or , 3=6-11-6, 4=6-11-6 C 9) 12), 3=-13 (LC 12) C 1), 3=182 (LC 1), 4	7) One RT7A truss to bea This conne lateral force 8) This truss i Internationa R802.10.2 c LOAD CASE(S	MiTek connecto aring walls due to ction is for uplift as. I designed in ac al Residential Co and referenced s Standard	ors recomme o UPLIFT a only and do coordance w ode sections standard AN	ended to coni t jt(s) 1 and 3 nes not consi ith the 2018 s R502.11.1 a NSI/TPI 1.	nect der and					
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD BOT CHORD WEBS NOTES	1-2=-118/56, 2-3=-1 1-4=-9/47, 3-4=-9/4 2-4=-178/71	18/61 7										
1) Wind: ASC Vasd=103r Ke=1.00; C	E 7-16; Vult=130mph nph; TCDL=6.0psf; B Cat. II; Exp B; Enclose	n (3-second gust) CDL=6.0psf; h=25ft; ed; MWFRS (envelop	be)								WITH CA	RO

- and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate 3)
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been checked for uniform snow load only, except as noted.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)

SEAL

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	VD	Valley	1	1	Job Reference (optional)	146540617

1-10-8

1-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:29 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-4-14

1-6-6

3-9-0

3-9-0

h-4-'

Page: 1

Scale = 1:24

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		30.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
(Roof Snow =	30.0)	40.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES	VVB	0.02	Horiz(IL)	0.00	3	n/a	n/a		
BCLL		0.0	Code	IRC2018/1PI2014	Matrix-P								FT 000/
BCDL		10.0		-								weight: 13 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3	2 2 3		7) One RT truss to This cor lateral fo 8) This true	7A MiTek connectors bearing walls due to l inection is for uplift or prces.	recomme UPLIFT at nly and do	ended to conr t jt(s) 1 and 3 bes not consid	nect der					
TOP CHORD	Structural w 3-9-10 oc p	vood shea urlins.	athing directly applied	d or R802.10	onal Residential Cod 0.2 and referenced sta	le sections andard AN	s R502.11.1 a NSI/TPI 1.	and					
BOT CHORD	Rigid ceiling bracing.	g directly	applied or 10-0-0 oc	LOAD CAS	E(S) Standard								
REACTIONS (size) $1=3-9-0, 3=3-9-0, 4=3-9-0$ Max Horiz $1=23$ (LC 8) Max Uplift $1=-4$ (LC 12), $3=-6$ (LC 12) Max Grav $1=88$ (LC 1), $3=88$ (LC 1), $4=124$ (LC 1) $1=88$ (LC 1), $4=124$													
FORCES	(lb) - Maxim Tension	ium Com	pression/Maximum										
TOP CHORD	1-2=-57/31,	2-3=-57/	/34										
BOT CHORD	1-4=-5/23, 3	8-4=-5/23	3										
WEBS	2-4=-86/42												
NOTES													
1) Wind: ASC Vasd=103 Ke=1.00; and C-C E exposed ; members Lumber D	CE 7-16; Vult= 3mph; TCDL=6 Cat. II; Exp B; Exterior(2E) zo end vertical le and forces & I OL=1.60 plate	130mph 6.0psf; B0 Enclose one; canti oft and rig WWFRS grip DO	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelope ilever left and right ght exposed;C-C for for reactions shown; vL=1.60	e)							Arres A	A FESS	ROUT
 Truss des only. For see Stand or consult TCLL: AS 	signed for wind studs exposed lard Industry G qualified build CE 7-16: Pf-3	d loads ir d to wind Gable End ling desig	n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP Lum DOI =1 15 Plate	ss , le, l 1.						11111		SEA 2822	L 28
DOL=1.15 Cs=1.00;	5); Is=1.0; Rou Ct=1.10	igh Cat B	3; Partially Exp.; Ce=	, 1.0;								- ENGIN	EER
 4) This truss except as 	has been che noted.	cked for	uniform snow load of	nly,							11	TUEGAN	GLIUM
 able requires continuous bottom chord bearing. able requires continuous bottom chord bearing. 									mm.				

6) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	VF	Valley	1	1	Job Reference (optional)	146540618

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:29 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

гd

9-9-4

Loading TCLL (Roof Snow = TCDL BCLL BCDL	30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.33 0.17 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 wood she purlins. ng directly 1=-55 (LC 1=-6 (LC 1=221 (LC (LC 1)	athing directly applie applied or 10-0-0 or 3=9-9-4, 4=9-9-4 : 9) 11), 3=-12 (LC 12) C 1), 3=221 (LC 1), 4	5) 6) 7) ed or 8) c L(4=444	Gable requird Gable studs One RT16A I truss to beari This connect lateral forces This truss is International R802.10.2 ar	es continuous bott spaced at 4-0-0 or MiTek connectors ing walls due to U ion is for uplift onl designed in accor Residential Code nd referenced star Standard	tom chor c. PLIFT at y and do dance w sections ndard AN	d bearing. ended to cor jt(s) 1 and 3 es not consid ith the 2018 i R502.11.1 a ISI/TPI 1.	inect ler ind					
FORCES	(lb) - Max Tension	mum Com	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-160/ 1-4=-8/61 2-4=-305/	62, 2-3=-1 , 3-4=-8/61 95	60/62											
NOTES 1) Wind: AS(Vasd=103; Ke=1.00; and C-C 3-5-12 to (1) 7-11-0 exposed; members Lumber D 2) Truss des only. For	CE 7-16; Vu Bmph; TCDL Cat. II; Exp I Exterior(2E) 4-11-0, Exter to 9-4-4 zor end vertical and forces & iOL=1.60 pla signed for wi	it=130mph =6.0psf; Bi 3; Enclose 0-5-12 to 3 rior(2R) 4- ne; cantilev left and rig & MWFRS the grip DC nd loads ir ed to wind	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop -5-12, Interior (1) 11-0 to 7-11-0, Inter rer left and right ght exposed;C-C for for reactions shown L=1.60 the plane of the tru. (normal to the face)	; be) rior ; ; uss								and a second	SEA	

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 3) TCLL: ASCE 7-16; Pf=30.0 psf (Lum DOL=1.15 Plate

3) TOLL: ASCE 7-16, PI=30.0 psi (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been checked for uniform snow load only, except as noted.

Job	Truss	Truss Type	Qty	Ply	1135 ACC	
21060009	VG	Valley	1	1	Job Reference (optional)	146540619

2-10-10

2-10-10

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 12:47:29 ID:fQsR3I3kL9IVMaBbnZc11xy8NK1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-4-1

2-5-7

5-9-4

.

5-9-4

Scale = 1:24.6

Loading TCLL (Roof Snow = TCDL BCLL BCDL	30.0)	(psf) 30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.14 0.04 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 5-10-0 oc Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.3 wood shea purlins. ng directly 1=5-9-4, 3 1=30 (LC 1=-7 (LC 1=134 (LC	athing directly applie applied or 10-0-0 or 3=5-9-4, 4=5-9-4 8) 11), 3=-10 (LC 12) 2 1), 3=134 (LC 1), 4	7) 8) cd or c LO.	One RT16A truss to bear This connect lateral forces This truss is International R802.10.2 ar AD CASE(S)	MiTek connectors ing walls due to U ion is for uplift only designed in accor Residential Code nd referenced star Standard	recomm PLIFT at y and do dance wi sections ndard AN	ended to con jt(s) 1 and 3 es not consic th the 2018 R502.11.1 a SI/TPI 1.	inect ler ind					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Ke=1.00; (and C-C E exposed; members Lumber Di 2) Truss des only. For see Stand or consult 3) TCLL: ASC DOL=1.15 Cs=1.00; (4) This truss except as	(lb) - Maxi Tension 1-2=-76/4 1-4=-5/30, 2-4=-158/0 CE 7-16; Vul 3mph; TCDL= Cat. II; Exp E Exterior(2E) z Exterior(2E) z Exterior(2E) a Studs expos and forces & OL=1.60 pla signed for wi studs expos and Industry qualified bui CE 7-16; Pf= 5); Is=1.0; Rc Ct=1.10 has been ch noted.	mum Com 1, 2-3=-76/ 3-4=-5/30 3-4=-5/30 3-4=-1000 1-1000	(3-second gust) CDL=6.0psf; h=25ft; d; MWFRS (envelop lever left and right pht exposed;C-C for for reactions shown L=1.60 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF Lum DOL=1.15 Plat ; Partially Exp.; Ce= uniform snow load com	e) ss , ole, 11. e 1.0; only,							"THUMME	And	SEA 2822	L 28 EF. LULIUM
except as noted. 5) Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. June 11,2021											11,2021			

