

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21060008 1134 ACC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I46536333 thru I46536412

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

June 11,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	CJ1	Jack-Open	2	1	Job Reference (optional)	146536333

Run: 8,51 S Jun 1 2021 Print: 8,510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 09:46:46 ID:sjMgUC18SkzNCjXHopVsGPyxoU?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-7

Scale	- 1	1.22.2	
Scale	=		

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.25 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC20	15/TPI2014	Matrix-MP							Weight: 11 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-8-7 oc purlins. Rigid ceiling directly bracing.	eathing directly applie	5 d or 6 7 :	 * This truss I on the bottor 3-06-00 tall I chord and ar Refer to gird Provide mec bearing plate 3. One RT16A 	has been designe n chord in all area oy 2-00-00 wide w y other members er(s) for truss to t thanical connection e capable of withs MiTek connectors	d for a liv as where <i>v</i> ill fit betv s. truss con n (by oth tanding s s recomm	e load of 20.0 a rectangle veen the both nections. ers) of truss t 0 b uplift at jo ended to cor	Dpsf om o int				<u> </u>	
REACTIONS	(size) 2=0-3-14 Mechanic Max Horiz 2=33 (LC Max Uplift 2=-65 (LC Max Grav 2=241 (L (LC 32)	, 3= Mechanical, 4= cal 11) C 11), 3=-9 (LC 15) C 2), 3=49 (LC 2), 4=	9 24	 one ref forces. One RT7A M truss to bear 	Announce of the second	JPLIFT at d does no recomme JPLIFT at d does no	i jt(s) 4. This ot consider la ended to conr i jt(s) 2. This ot consider la	teral lect					
FORCES	(lb) - Maximum Con	npression/Maximum		forces.				lor al					
TOP CHORD BOT CHORD	1-2=0/30, 2-3=-81/9 2-4=-102/69	8	1	0) This truss is International R802.10.2 a	Residential Code nd referenced sta	rdance w sections ndard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	ind					
NOTES 1) Wind: ASC Vasd=1030 Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60	E 7-10; Vult=130mpf mph; TCDL=6.0psf; B b B; Enclosed; MWFR) zone; cantilever left and right exposed;C WFRS for reactions s plate grip DOL=1.33	n (3-second gust) CDL=6.0psf; h=25ft; IS (envelope) and C-(and right exposed ; e -C for members and shown; Lumber	L C Ind	OAD CASE(S)	Standard					(1 miles	OR FESS	ROLIN

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 4) overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

SEAL

45844

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	CJ2	Jack-Open	2	1	Job Reference (optional)	146536334

-1-8-8

1-8-8

Carter Components (Sanford), Sanford, NC - 27332,

1-4-1

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:49 ID:6ddUvnn5IHEo5?78ombse_yxoRk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

2-8-7

4

2-8-7

2-8-7

Scale = 1:22.2													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES	10.0 2x4 SP No.2 2x4 SP No.2 Structural wood she 2-8-7 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-14, Mechanic Max Horiz 2=33 (LC (LC 32) (b) - Maximum Com Tension 1-2=0/30, 2-3=-81/9 2-4=-102/69	eathing directly applied v applied or 10-0-0 or , 3= Mechanical, 4= al 11) C 11), 3=-9 (LC 15) C 2), 3=49 (LC 2), 4= npression/Maximum 8	5) ed or 6) 7) 2 8) -24 9) 10	* This truss I on the bottor 3-06-00 tall It chord and ar Refer to gird Provide mec bearing plate 3. One RT16A truss to bear connection is forces. One RT7A M truss to bear connection is forces.) This truss is International R802.10.2 a	has been designed in chord in all area by 2-00-00 wide w by other members er(s) for truss to t hanical connection a capable of withst MiTek connectors ing walls due to U is for uplift only and the connectors r ing walls due to U is for uplift only and designed in accor Residential Code ind referenced star Standard	d for a livits where ill fit betw rruss con n (by oth tanding 9 PLIFT at d does no recomme IPLIFT at d does no dates no dates no date at a does no	e load of 20.0 a rectangle veen the botte nections. ers) of truss t I b uplift at jo uended to corr jt(s) 4. This ot consider la ended to conr jt(s) 2. This ot consider la ith the 2015 c R502.11.1 a ISI/TPI 1.	Opsf om to oint anect ateral ateral				Weight: 11 lb	FT = 20%
 Wind: AS(Vasd=103) Cat. II; Ex Exterior (2 vertical lefe forces & M DOL=1.66 TCLL: AS DOL=1.15 snow); Pf- Plate DOL Ct=1.10 Unbalanco design. This truss load of 12 overhange 	CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; B p B; Enclosed; MWFR 2) zone; cantilever left a: ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf 67 Plate DOL=1.15); Pg: =13.9 psf (flat roof snor L=1.15); Category II; E: ed snow loads have be has been designed fo .0 psf or 2.00 times flat s non-concurrent with o	 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed; e C for members and shown; Lumber (roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1; xp B; Fully Exp.; een considered for the r greater of min roof t roof load of 13.9 psother live loads. 	C and 5 is live if on							Continue	20	SEA 4584	ROKING INTERNET

- 2) 0 pst (root live load: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 4) overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Unnum June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F1	Floor	7	1	Job Reference (optional)	146536335

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:49 ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.3

Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

Loa TCL TCC BCL BCC	ding L DL L DL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC 0.42 BC 0.84 WB 0.33 Matrix-SH	2 \ 4 \ 8 H	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.19 0.04	(loc) 12-13 12-13 9	l/defl >999 >900 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%F, 11%E
LUN TOF BOT WEI OTH BRA	MBER P CHORD F CHORD BS HERS ACING P CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shee	athing directly applie	LOAD CASE(S)	Standard							2	
BOT	CHORD	6-0-0 oc purlins, exc Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc										
REA	ACTIONS	(size) 9=0-3-8, 1 Max Gray 9-769 (10	6=0-3-8										
FOF	RCES	(lb) - Maximum Com	pression/Maximum										
TOF	P CHORD	1-16=-41/0, 8-9=-37/ 3-4=-2374/0, 4-5=-26 6-7=-1532/0, 7-8=-2/	/0, 1-2=0/0, 2-3=-153 625/0, 5-6=-2376/0, /0	33/0,									
BOT	r Chord	15-16=0/913, 14-15= 12-13=0/2625, 11-12 9-10=0/913	=0/2120, 13-14=0/26 2=0/2625, 10-11=0/2	625, 2117,									
WE	BS	4-13=-126/141, 5-12 2-16=-1165/0, 2-15= 3-14=0/383, 4-14=-4 6-11=0/390, 6-10=-7 7-9=-1163/0	=-122/150, 0/807, 3-15=-764/0, 57/0, 5-11=-461/0, 62/0, 7-10=0/806,							~	and the	HTH CA	ROLIN
NOT	TES									()	Fre	vialta	entres
1)	Unbalance this design	ed floor live loads have n.	been considered fo	r								·2 -	Ki E
2) 3) 4)	All plates a This truss Internation R802.10.2 Recomme 10-00-00 c (0.131" X 3 at their out	are 3x5 MT20 unless o is designed in accorda al Residential Code se and referenced standi nd 2x6 strongbacks, o oc and fastened to eacl 3") nails. Strongbacks ter ends or restrained to	therwise indicated. ince with the 2015 actions R502.11.1 at ard ANSI/TPI 1. n edge, spaced at h truss with 3-10d to be attached to with by other means.	nd alls						tran the second s	P. A.	SEAL	4 EPRONIUM DHNSUUM
5)	CAUTION	, Do not erect truss bad	ckwards.									1111111	IIIII

June 11,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F1GE	Floor Supported Gable	1	1	Job Reference (optional)	146536336

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:50 ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.1

Plate Offsets (X, Y): [1:Edge.0-1-8]. [24:Edge.0-1-8]

Fiale Oliseis (∧, ו). [ו.⊑	uye,0-1-0],	[24.Euge,0-1-0]												
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%F, 1	11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size)	lo.2(flat) lo.2(flat) lo.3(flat) lo.3(flat) lo.3(flat) il wood she purlins, ex ling directly 13=13-8-{ 16=13-8-{ 19=13-8-{	athing directly applie cept end verticals. applied or 10-00 oc 3, 14=13-8-8, 15=13- 3, 17=13-8-8, 18=13- 3, 20=13-8-8, 21=13-	4) 5) ed or c L(-8-8, -8-8, -8-8, -8-8,	Gable studs : This truss is of International R802.10.2 ar Recommend 10-00-00 oc : (0.131" X 3") at their outer DAD CASE(S)	spaced at 1-4-0 or designed in accord Residential Code nd referenced stan 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained Standard	2. dance w sections dard AN on edge ach truss (s to be d by othe	ith the 2015 R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to w er means.	nd						
	Max Grav	22=13-8-8 13=0 (LC 15=152 (L 17=147 (L 19=147 (L 21=147 (L 23=148 (L	3, 23=13-8-8, 24=13- 1), 14=103 (LC 1), .C 1), 16=145 (LC 1) .C 1), 18=147 (LC 1) .C 1), 20=147 (LC 1) .C 1), 22=146 (LC 1) .C 1), 24=58 (LC 1)	-8-8),),),											
FORCES	(lb) - Max	kimum Com	pression/Maximum												
TOP CHORD	1-24=-54 3-4=-6/0, 7-8=-6/0, 11-12=-6	/0, 12-13=0 4-5=-6/0, 5 8-9=-6/0, 9 /0	0/8, 1-2=-6/0, 2-3=-6/ 5-6=-6/0, 6-7=-6/0, 9-10=-6/0, 10-11=-6/0	/0, 0,							Λ	A. M. C.	ORTH CA	ROLIN	in .
BOT CHORD	23-24=0/ 19-20=0/ 15-16=0/	6, 22-23=0/ 6, 18-19=0/ 6, 14-15=0/	/6, 21-22=0/6, 20-21 /6, 17-18=0/6, 16-17 /6, 13-14=0/6	=0/6, =0/6,							V			A.	
WEBS	2-23=-13 5-20=-13 8-17=-13 11-14=-1	3/0, 3-22=- 3/0, 6-19=- 4/0, 9-16=- 02/0	134/0, 4-21=-133/0, 133/0, 7-18=-133/0, 132/0, 10-15=-138/0),							THUN,		4584	L 4	unnun
NOTES												-7	· En	Rick	3
 All plates a Gable required Truss to be braced again 	are 1.5x3 N uires contin e fully shea ainst latera	1T20 unless uous botto thed from o I movemen	otherwise indicated m chord bearing. one face or securely t (i.e. diagonal web).	1.									DEW J	OHNSUI	5

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F2	Floor	2	1	Job Reference (optional)	146536337

Run: 8,51 S Jun 1 2021 Print: 8,510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:51 ID:7AwWHmpvz8C316C7GUcnRBylykz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:32.9

Plate Offsets (X, Y): [6:0-1-8,Edge], [9:0-1-8,Edge], [15:0-1-8,Edge]

			; -3-1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.50	Vert(LL)	-0.20	Ì14	>922	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.94	Vert(CT)	-0.28	14-15	>672	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.06	10	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-SH		- (-)					Weight: 80 lb	FT = 20%F, 11%E
									-			, ,
LUMBER			5) CAUTION	I, Do not erect truss	s backward	ds.						
TOP CHORD	2x4 SP No.2(flat)		LOAD CASE	(S) Standard								
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	С									
	2-2-0 oc bracing: 1/	1-15 13-14										
DEACTIONS	(ai=a) 10.02.0	40.000										
REACTIONS	(SIZE) 10=0-3-8	, 18=0-3-8	\									
		LC 1), 10=050 (LC 1)									
FORCES	(Ib) - Maximum Con	npression/Maximum										
		52/0 1 2 0/0										
TOP CHORD	2-3-1734/0 3-4-2	02/0, 1-2=0/0, 0777/0 /1-53107/0										
	5-6=-3197/0 6-7=-2	962/0 7-8=-2120/0										
	8-9=-608/0	.002/0, 7 0= 2120/0,										
BOT CHORD	17-18=0/1018 16-1	7=0/2415 15-16=0/3	3119									
201 0110112	14-15=0/3197, 13-1	4=0/3197, 12-13=0/2	2701.									
	11-12=0/1511, 10-1	1=0/51	- ,									11.
WEBS	5-15=-193/69, 6-14=	=-120/109, 2-18=-13	00/0,								UNI CA	DUN
	2-17=0/932, 3-17=-8	386/0, 3-16=0/471,							•		N'TH UA	ROIL
	4-16=-446/0, 4-15=-	175/413, 6-13=-467	/4,						\sim	5	N stok	in shirt
	7-13=0/419, 7-12=-7	756/0, 8-12=0/793,								FR	ratit	min
	8-11=-1175/0, 9-11=	=0/953								NV	Sec. 1	11. 2
NOTES									-			
 Unbalanc this desig 	ed floor live loads have n.	e been considered fo	or						Ξ		SEA	L
2) All plates	are 3x5 MT20 unless of	otherwise indicated.							=	6 B	4584	4 : :
3) This truss	is designed in accorda	ance with the 2015							-	S - 2	•	1 5
Internatio	nal Residential Code s	ections R502.11.1 a	nd								1. A.	A 1 3 3
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.								2.11	LISNGIN	EENO
4) Recomme	end 2x6 strongbacks, c	on edge, spaced at								11	Open	S. S. IN
10-00-00	oc and fastened to eac	ch truss with 3-10d								1.0	TEW I	OHI
(0.131" X	3") nails. Strongbacks	s to be attached to w	alls								11111	unin.
at their ou	ater ends or restrained	by other means.									lung	11 2021
											June	; 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F2GE	Floor Supported Gable	1	1	Job Reference (optional)	146536338

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:52 ID:7AwWHmpvz8C316C7GUcnRBylykz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.9

Plate Offsets (X, Y): [30:Edge,0-1-8]

	, , , t== ·3·,														
Loading	(p	sf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40).Ó	Plate Grip DOL	1.00		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	1(0.0	Lumber DOL	1.00		BC	0.02	Vert(TL)	n/a	-	n/a	999			
BCLL	(0.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	16	n/a	n/a			
BCDL	ŧ	5.0	Code	IRC201	5/TPI2014	Matrix-R							Weight: 69 lb	FT = 20%F, 11%E	Ξ
				N	OTES	•									
	2v4 SP No 2(fl	ot)		1)	All plates are	1 5x3 MT20 unl	ass other	wise indicated	4						
	2x4 SP N0.2(11	al) ot)		2)	Cable requir	es continuous ho	ttom chor	d bearing	J.						
WERS	2x4 SF No.2(11	al) at)		2)	Truss to be f	ully sheathed fro	m one fac	e or securely							
OTHERS	2x4 SP No 3(fl:	at)		0)	braced again	ist lateral movem	nent (i e d	liagonal web)							
BRACINC	2/10/110:0(11	ut)		4)	Gable studs	spaced at 1-4-0	00		-						
	Structural woo	debo	othing directly applie	dor 5)	5) This truss is designed in accordance with the 2015										
	6-0-0 oc purlin	6-0-0 oc purlins, except end verticals.													
BOT CHORD	bracing. 6) Recommend 2x6 strongbacks, on edge, spaced at 10.00 oc and factored to each truce with 2.10d														
REACTIONS	(size) 16= 19= 22= 25= 28= Max Grav 16= 18= 20= (LC 1), 2 29=	15-6-0 15-6-0 15-6-0 15-6-0 15-6-0 27 (LC 153 (L 149 (L 62 (LC 1), 25 ?7=14), 17=15-6-0, 18=15-), 20=15-6-0, 21=15-), 23=15-6-0, 24=15-), 26=15-6-0, 27=15-), 29=15-6-0, 30=15- C 1), 17=113 (LC 1), LC 1), 19=144 (LC 1), C 1), 21=138 (LC 1), C 1), 23=76 (LC 1), 2 i=100 (LC 1), 26=15- 5 (LC 1), 28=147 (LC LC 1), 30=59 (LC 1)	-6-0, -6-0, -6-0, 7) -6-0 L (),), 24=58 1 (LC C 1),	(0.131" X 3") at their outer CAUTION, E DAD CASE(S)	nails. Strongba ends or restrain o not erect truss Standard	cks to be ed by othe backward	attached to w attached to w er means. ds.	ralls					111	
FORCES	(lb) - Maximum Tension	1 Com	pression/Maximum										"TH CA	RO	
TOP CHORD	1-30=-55/0, 15 3-4=-7/0, 4-5=- 7-8=-7/0, 8-9=- 11-12=-7/0, 12 14-15=-7/0	-16=-; -7/0, 5 -7/0, 9 -13=-	21/0, 1-2=-7/0, 2-3=- 5-6=-7/0, 6-7=-7/0, 9-10=-7/0, 10-11=-7/0 7/0, 13-14=-7/0,	-7/0, 0,							\mathcal{L}	~~~	on the start	Right	~
BOT CHORD	29-30=0/7, 28- 25-26=0/7, 24- 21-22=0/7, 20- 17-18=0/7, 16-	29=0/ 25=0/ 21=0/ 17=0/	7, 27-28=0/7, 26-27 7, 23-24=0/7, 22-23 7, 19-20=0/7, 18-19 7	=0/7, =0/7, =0/7,									4584	44	
WEBS	7-24=-53/0, 9-2 3-28=-134/0, 4 6-25=-91/0, 8-2 11-20=-136/0, 14-17=-107/0	22=-5 -27=- 23=-6 12-19	7/0, 2-29=-133/0, 132/0, 5-26=-138/0, 8/0, 10-21=-125/0, I=-131/0, 13-18=-139	9/0,								The state of the s	NGIN SPEW J	EER. ON	

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F3	Floor	5	1	Job Reference (optional)	146536339

1-2-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:52 ID:7AwWHmpvz8C316C7GUcnRBylykz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.5

Plate Offsets (X, Y): [7:0-1-8,Edge], [10:0-1-8,Edge], [16:0-1-8,Edge]

_																_
Loa TCL TCL	ading _L DL		(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00		CSI TC BC	0.71 0.94	DEFL Vert(LL) Vert(CT)	in -0.11 -0.16	(loc) 14-15 14-15	l/defl >999 >995	L/d 360 240	PLATES MT20	GRIP 244/190	
BCI	LL DL		0.0 5.0	Rep Stress Incr Code	YES IRC2015	/TPI2014	wв Matrix-SH	0.41	Horz(CT)	0.02	11	n/a	n/a	Weight: 82 lb	FT = 20%F, 11%E	
LUI TOF BO WE OTF BR/ TOF BO RE/	MBER P CHORD T CHORD BS HERS ACING P CHORD T CHORD T CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Uplift Max Grav	0.2(flat) 0.2(flat) 0.3(flat) 0.3(flat) 0.3(flat) wood sheat wurlins, exc ng directly 11=0-3-8, Mechanica 19=-501 (l 11=613 (l	athing directly applied sept end verticals. applied or 2-2-0 oc 18=0-3-8, 19= al LC 4) C 4) 18=1473 (I C 1	5) 6) d or 7) LO	This truss is of International R802.10.2 an Recommend 10-00-00 oc a (0.131" X 3") at their outer CAUTION, D AD CASE(S)	designed in accord Residential Code s d referenced stand 2x6 strongbacks, o and fastened to ea nails. Strongbacks ends or restrained o not erect truss ba Standard	ance wi ections dard AN on edge ch truss s to be a by othe ackward	th the 2015 R502.11.1 a ISI/TPI 1. , spaced at with 3-10d attached to w r means. Is.	nd ralls						-
	PCES	(lb) - Mavi	19=-28 (L0	C 3)),											
rui	NUEJ	Tension		pression/iviaximum												
TOF	P CHORD	1-19=-56/ 2-3=0/115 5-6=-1432 8-9=-1365	0, 10-11=-6 2, 3-4=0/1 2/0, 6-7=-14 5/0 9-10=-4	615/0, 1-2=0/0, 153, 4-5=-437/0, 432/0, 7-8=-1626/0, 422/0												
BO	T CHORD	18-19=-68 15-16=0/1 12-13=0/1	80/0, 17-18 432, 14-15 034, 11-12	=-187/0, 16-17=0/11 5=0/1432, 13-14=0/10 2=0/37	00, 678,									TH CA	Route	
WE	BS	3-18=-83/ 2-19=0/85 4-17=0/80 7-14=-28/ 9-13=0/43	0, 6-16=-37 3, 2-18=-8 4, 5-17=-8 316, 8-14= 1, 9-12=-7	75/0, 7-15=-224/0, 03/0, 4-18=-1216/0, 64/0, 5-16=0/706, -121/93, 8-13=-408/0 96/0, 10-12=0/659	О,							0		CALLES SEA	tration	
NO	TES											Ξ	:	JEA		
1) 2) 3) 4)	 Unbalanced floor live loads have been considered for this design. All plates are 3x5 MT20 unless otherwise indicated. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 501 lb uplift at joint 19. 											1111	Pilli	4584	E.P. OTINI	

June 11,2021

ENGINEERING BY ENGINEERING BY A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F4	Floor	6	1	Job Reference (optional)	146536340

1-2-0

1.5x3 u

0-4-12

4x5 =

4 5

15

4x5 =

21

Carter Components (Sanford), Sanford, NC - 27332,

1-3-0

1

f

3x6 =

2

-

17

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:52 ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16

3

1

0-4-12

Page: 1

1-2-0

Scale = 1:32.1

1-2-0

Plate Offsets (X, Y): [6:0-1-8,Edge], [15:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-SH	0.45 0.87 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.24 0.05	(loc) 14 14 10	l/defl >999 >754 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 6-0-0 cc purlins, exc Rigid ceiling directly bracing. (size) 10= Mech Max Grav 10=823 (L (lb) - Maximum Com Tension 1-18=-42/0, 9-10=-82 2-3=-1679/0, 3-4=-22	athing directly applied cept end verticals. applied or 10-0-0 oc anical, 18= Mechani C 1), 18=823 (LC 1) pression/Maximum 25/0, 1-2=0/0, 521/0, 4-5=-2938/0, 210/0, 4-5=-2938/0,	LOAD CASE(S) d or cal	Standard								
BOT CHORD WEBS 1) Unbalance this design 2) All plates a 3) Refer to gir 4) This truss i Internationa R802.10.2 5) Recommer 10-00-00 o (0.131" X 3 at their out	5-6=-2938/0, 6-7=-2: 8-9=-380/0 17-18=0/1014, 16-17 14-15=0/2938, 13-14 11-12=0/1266, 10-11 5-15=-253/177, 6-14 2-18=-1272/0, 2-17= 3-16=0/407, 4-16=-4 6-13=-442/0, 7-13=0 8-12=0/792, 8-11=-1 d floor live loads have re 3x5 MT20 unless o rder(s) for truss to trus s designed in accorda al Residential Code se and referenced stand: d 2x6 strongbacks, o c and fastened to eac t") nails. Strongbacks er ends or restrained to	710/0, 7-8=-1874/0, 7=0/2308, 15-16=0/2 1=0/2938, 12-13=0/2 1=0/0 =-110/100, 0/866, 3-17=-819/0, 14/0, 4-15=-266/409 /4/03, 7-12=-754/0, 153/0, 9-11=0/849 been considered for therwise indicated. is connections. Ince with the 2015 bections R502.11.1 an ard ANSI/TPI 1. In edge, spaced at h truss with 3-10d to be attached to wa by other means.	919, 454, ,						Contraction of the second seco		SEAL 4584	ROL 11 4 4 5 HNS 11,2021

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F4A	Floor	1	1	Job Reference (optional)	146536341

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:53 ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37

Plate Offsets (X, Y): [7:0-1-8,Edge], [16:0-1-8,Edge]

Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-SH	0.54 0.89 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.16 0.03	(loc) 14-15 14-15 11	l/defl >999 >962 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%F,	11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceill bracing. (size) Max Uplift Max Grav	o.2(flat) o.2(flat) o.3(flat) o.3(flat) l wood shea ourlins, exc ing directly 11= Mech 19=2-6-8, 19=-32 (Li 11=692 (L 19=133 (L	athing directly applie cept end verticals. applied or 10-0-0 or anical, 18=2-6-8, 20=2-6-8 C 4) .C 4), 18=812 (LC 1) .C 3), 20=66 (LC 1)	6) 7) ed or 8) c 9) LC	One RT7A M truss to beari connection is forces. This truss is (International R802.10.2 ar Recommend 10-00-00 oc : (0.131" X 3") at their outer CAUTION, D DAD CASE(S)	iTek connectors re ng walls due to UF for uplift only and designed in accord Residential Code s ad referenced stand 2x6 strongbacks, o and fastened to ea nails. Strongback ends or restrained o not erect truss ba Standard	comme PLIFT at does no ance wisections dard AN on edge ch truss s to be by othe ackward	nded to conn jt(s) 19. This ot consider lat ith the 2015 R502.11.1 a ISI/TPI 1. a, spaced at with 3-10d attached to w er means. Is.	ect teral nd alls						
TOP CHORD	(ID) - Max Tension 1-20=-56/ 3-4=0/0, 4	/0, 10-11=-(4-5=-1292/(696/0, 1-2=0/0, 2-3=), 5-6=-2011/0,	=0/0,											
BOT CHORD WEBS	6-7=-201 9-10=-31 19-20=0/0 16-17=0/ ⁻ 13-14=0/ ⁻ 3-18=-140 4-18=-100 5-16=0/5- 8-13=-56 10-12=0/7	1/0, 7-8=-20 5/0 0, 18-19=0/ 1813, 15-16 1932, 12-13 0/0, 6-16=-2 07/0, 4-17= 45, 7-14=-1 5/0, 9-13=0 704, 2-19=-	017/0, 8-9=-1498/0, 0, 17-18=0/802, 3=0/2011, 14-15=0/2 3=0/1041, 11-12=0/0 291/0, 7-15=-168/16 0/638, 5-17=-679/0, 99/151, 8-14=0/220 /594, 9-12=-946/0, 133/10	2011, D S, ,							U		SEA	ROLIN	
 NOTES Unbalance this design All plates a Truss to b braced ag Gable stud Refer to gi 	ed floor live n. are 3x5 MT2 e fully shea ainst lateral ds spaced a irder(s) for t	loads have 20 unless o thed from o movement t 1-4-0 oc. russ to trus	been considered fo therwise indicated. Ine face or securely (i.e. diagonal web). Is connections.	or							11111	The second se	4584	4 EFR.60 OHNS 11,2021	"ninnin

- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc. 4)
- 5) Refer to girder(s) for truss to truss connections.

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F5	Floor	2	1	Job Reference (optional)	146536342

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:53 ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.9

Plate Offsets (X, Y): [6:0-1-8,Edge], [15:0-1-8,Edge]

Loa TCL TCC BCL	i ding _L DL _L	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.46 0.89 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.26 0.05	(loc) 14-15 14-15 10	l/defl >982 >715 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190	
BC)L	5.0	Code	IRC2015/TPI2014	Matrix-SH							Weight: 79 lb	FT = 20%F, 1	1%E
LUN TOF BOT WEI BRA	MBER P CHORD T CHORD BS ACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat)		LOAD CASE(S)	Standard									
TOF	P CHORD	Structural wood shea 6-0-0 oc purlins, exc	athing directly applie cept end verticals.	ed or										
BOT	T CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	5										
RE/	ACTIONS	(size) 10= Mech Max Grav 10=842 (L	anical, 18=0-3-8 .C 1), 18=842 (LC 1))										
FOF	RCES	(lb) - Maximum Com Tension	pression/Maximum											
TOF	P CHORD	1-18=-38/0, 9-10=-84 2-3=-1694/0, 3-4=-2 5-6=-3076/0, 6-7=-28 8-9=-389/0	44/0, 1-2=0/0, 700/0, 4-5=-3076/0, 813/0, 7-8=-1930/0,											
BOT	T CHORD	17-18=0/998, 16-17= 14-15=0/3076, 13-14 11-12=0/1299, 10-11	=0/2357, 15-16=0/30 4=0/3076, 12-13=0/2 1=0/0	021, 2531,										
WEI	BS	5-15=-180/77, 6-14= 2-17=0/907, 3-17=-8 4-16=-417/0, 4-15=- ⁻ 7-13=0/432, 7-12=-7 8-11=-1184/0, 9-11=	-109/116, 2-18=-12 62/0, 3-16=0/448, 192/383, 6-13=-485/ '83/0, 8-12=0/822, 60/870	74/0, /0,						\wedge		HTH CA	ROLIN	
NOT	TES											CHESS STREET	mila	an.
1)	Unbalance this design	ed floor live loads have	been considered fo	r						U	~~~	2	North	
∠) 3)	All plates a	are 3x5 IVI I 20 UNIESS 0	s connections									SEA	L :	Ξ
4)	This truss i	is designed in accorda	ance with the 2015 ections R502.11.1 a	nd								4584	14	un.
C)	K802.10.2	and referenced stand	ard ANSI/TPT1.								:7	·	-a.i.2	5
5)	Recomment	nu 2x6 strongbacks, 0	h truce with 2 10-								11	GIN	EFICON	

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F6	Floor	2	1	Job Reference (optional)	146536343

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:54

ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:23.9

Plate Offsets (X, Y): [6:0-1-8,Edge]

	(, .). [
Loading TCLL TCDL BCU	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.32 0.14 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01	(loc) 8-9 8-9 7	l/defl >999 >999	L/d 360 240 p/a	PLATES MT20	GRIP 244/190	
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-P	0.11	11012(01)	0.00		n/a	11/0	Weight: 48 lb	FT = 20%F. 1	11%E
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD 3OT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 10 (size) 7=0-1-10, Mechanic Max Uplift 11=-85 (L Max Grav 7=296 (L)	athing directly applie cept end verticals. applied or 10-0-0 oc -11. 10=0-3-8, 11= al C 4) C 4), 10=643 (LC 1),	7) Recommen 10-00-00 oc (0.131" X 3' at their out 8) CAUTION, d or LOAD CASE(S	d 2x6 strongbacks and fastened to e) nails. Strongbac r ends or restraine Do not erect truss) Standard	, on edge ach truss ks to be a d by othe backward	e, spaced at s with 3-10d attached to w ar means. ds.	alls						
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1-11=-57/0, 6-7=-29 3-4=0/267, 4-5=-316	3/0, 1-2=0/0, 2-3=0/2 6/0, 5-6=-213/0	266,										
BOT CHORD	10-11=-139/28, 9-10 7-8=0/0)=0/171, 8-9=0/432,											
WEBS	3-10=-87/0, 2-11=-3 4-10=-537/0, 4-9=0/ 5-8=-285/0, 6-8=0/2	6/174, 2-10=-271/0, 193, 5-9=-155/0, 94									TH CA	Ro	
									∧			·· JAIA	
1) Unbalance this design	ed floor live loads have n.	e been considered for	r						Ø	tix	patra	lan	in .
 All plates Refer to g Provide m 	are 3x5 MT20 unless of irder(s) for truss to trus techanical connection	otherwise indicated. ss connections. (by others) of truss to)						ti nu		SEA	L	11111
bearing plprovide mbearing pl	ate at joint(s) 7. nechanical connection late capable of withstar	(by others) of truss to nding 85 lb uplift at jo	o vint						111.	- P		.a>	nun.
 This truss Internation R802.10.2 	is designed in accorda nal Residential Code s 2 and referenced stand	ance with the 2015 ections R502.11.1 ar lard ANSI/TPI 1.	nd								REW J	OHNSON	

June 11,2021

Page: 1

ENGINEERING BY A MITCH Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F6GR	Floor Girder	1	1	Job Reference (optional)	146536344

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 09:46:54 ID:cd0K3w1CkgTVBtabJGx?A_ylykh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NOTES

WEBS

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

LUMBER

Unbalanced floor live loads have been considered for 1) this design.

6-9=-108/148, 7-9=-107/129

4-11=-224/0, 2-14=-260/18, 2-13=0/54

3-13=-8/40, 3-12=-282/0, 4-12=0/232,

5-11=-262/133, 5-10=-4/112, 6-10=-72/47,

- Provide mechanical connection (by others) of truss to 2) bearing plate at joint(s) 8.
- 3) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 14. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2015 4) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

annunnin ann Vinner and SEAL 5844 mm June 11,2021

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Concentrated Loads (lb)

17=135 (B), 18=135 (B)

Vert: 4=135 (B), 3=135 (B), 15=135 (B), 16=-109 (F),

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F7GR	Floor Girder	1	1	Job Reference (optional)	146536345

1-3-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:54 ID:fFuZeE0xC3DnyZQCCruX5Zylykj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-9-0

3x5 II

Page: 1

Scale = 1:27.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.27	Vert(LL)	0.00	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.09	Vert(CT)	0.00	5-6	>999	240		
BCLL	0.0	Rep Stress Incr	NO	WB	0.06	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 21 lb	FT = 20%F, 11%E
BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Refer to g 3) Provide The Struss Internatio R802102, 5) Recomme 10-00-00 (0.131" X at their ou 6) Use MiTe nails into to connec 7) Fill all nai	0.0 5.0 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) Structural wood she 3-7-8 oc purlins, exx Rigid ceiling directly bracing. (size) 4= Mecha Max Uplift 4=-29 (LC (lb) - Maximum Com Tension 1-6=-34/0, 3-4=-211. 5-6=0/172, 4-5=0/0 2-6=-219/0, 2-5=-11: ed floor live loads have n. proder(s) for truss to trus the chanical connection (late capable of withstar is designed in accorda nal Residential Code si 2 and referenced stand end 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks ter ends or restrained 1 k MSH422 (With 10d n Truss) or equivalent at t truss(es) to front face I holes where hanger is	Rep Stress Incr Code athing directly applie cept end verticals. applied or 10-0-0 oc anical, 6=0-3-8 (3) C 1), 6=181 (LC 1) pression/Maximum /26, 1-2=0/0, 2-3=-80 5/0, 3-5=0/129 e been considered for ss connections. (by others) of truss to holing 29 lb uplift at jo ance with the 2015 ections R502.11.1 ar lard ANSI/TPI 1. in edge, spaced at th truss with 3-10d to be attached to was by other means. ails into Girder & 6-1 1-3-4 from the left er of top chord. s in contact with lumb	NO IRC2015/TPI2014 8) Hanger(s) provided s down and selection of responsibi ed or 9) In the LOA of the truss LOAD CASE(: 1) Dead + F Plate Inci Uniform I Vert: 4 Concentr Vert: 2 3/0 r bint nd alls 10d nd per.	WB Matrix-P or other connection ufficient to support of 147 lb up at 3-6-0 of f such connection du ity of others. D CASE(S) section, are noted as front (5) Standard loor Live (balanced) ease=1.00 .oads (lb/ft) -6=-10, 1-3=-100 ated Loads (lb) =13 (F), 3=-25 (F)	0.06 device(s oncentra n top ch evice(s) loads a (F) or ba : Lumbe	Horz(CT) s) shall be ated load(s) 2 ord. The des is the pplied to the f ck (B). r Increase=1.	0.00 5 lb ign/ face 00,	4	n/a	n/a	Weight: 21 lb	FT = 20%F, 11%E
										10	ILEW J	OHIM

818 Soundside Road Edenton, NC 27932

Junin Man June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F8	Floor	2	1	Job Reference (optional)	146536346

1-2-0

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:55 ID:0xA178tQ1NiUWjVuVKhjb1ylykv-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

1-2-0

0-9-10

Page: 1

Scale = 1:22.3

			ì		· · · · ·								
Loadin	g	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL		40.0	Plate Grip DOL	1.00	TC	0.24	Vert(LL)	0.00	6	>999	360	MT20	244/190
TCDL		10.0	Lumber DOL	1.00	BC	0.11	Vert(CT)	-0.01	6-7	>999	240		
BCLL		0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	5	n/a	n/a		
BCDL		5.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%F, 11%E
LUMBE	R												
TOP CH	ORD	2x4 SP No.2(flat)											
BOT CH	IORD	2x4 SP No.2(flat)											
WEBS		2x4 SP No.3(flat)											
BRACI	NG												
TOP CH	IORD	Structural wood she 4-11-2 oc purlins, e	athing directly appli xcept end verticals.	ed or									
BOT CH	IORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACT	IONS	(size) 5=0-1-10, Max Grav 5=261 (LC	7= Mechanical C 1), 7=261 (LC 1)										
FORCE	S	(lb) - Maximum Com Tension	pression/Maximum										
TOP CH	IORD	1-7=-37/0, 4-5=0/6, 3-4=0/0	1-2=0/0, 2-3=-265/0),									
BOT CH	IORD	6-7=0/280, 5-6=0/21	5										
WEBS		2-7=-352/0, 2-6=-20	/0, 3-6=0/65, 3-5=-3	337/0									
NOTES													
1) Ref	er to gi	irder(s) for truss to trus	ss connections.										
2) Pro	vide m	echanical connection ((by others) of truss t	0									
bea	ring pl	ate at joint(s) 5.											
3) This	s truss	is designed in accorda	ance with the 2015										
Inte	rnatior	nal Residential Code se	ections R502.11.1 a	Ind								mm	111.
R80)2.10.2	and referenced stand	ard ANSI/TPI 1.									White CA	Dalle
4) Red	comme	nd 2x6 strongbacks, o	n edge, spaced at								1.5	athor	TO III
10-	00-00	oc and fastened to eac	h truss with 3-10d								5	OTTESS	is Mile
(0.1	31" X :	3") nails. Strongbacks	to be attached to w	alls							FR	initi	History
at t	neir ou	ter ends or restrained l	by other means.										1

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F8GR	Floor Girder	1	1	Job Reference (optional)	146536347

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:55 ID:fFuZeE0xC3DnyZQCCruX5Zylykj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.3

Plate Offsets (X, Y): [6:0-1-8,Edge], [12:Edge,0-1-8]

1-2-0

Loa	ding		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCL	.L		40.0	Plate Grip DOL	1.00		тс	0.40	Vert(LL)	-0.01	8-9	>999	360	MT20	244/190	
TCE	DL		10.0	Lumber DOL	1.00		BC	0.26	Vert(CT)	-0.02	8-9	>999	240			
BCL	.L		0.0	Rep Stress Incr	NO		WB	0.23	Horz(CT)	0.01	7	n/a	n/a			
BCE	DL		5.0	Code	IRC2015	/TPI2014	Matrix-P							Weight: 46 lb	FT = 20%F, 1	1%E
LUN TOF BOT WEE DTH BRA TOF BOT	MBER P CHORD C CHORD BS HERS ACING P CHORD C CHORD ACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (size)	0.2(flat) 0.3(flat) 0.3(flat) 0.3(flat) 0.3(flat) 0.000 sheat 0.000 sheat 0.0000 sheat 0.000 sheat 0.000 sheat 0.000 sheat 0.0	athing directly applied cept end verticals. applied or 10-0-0 oc 10=2-7-0, 11=2-7-0,	8) 9) 10) d or LO . 1)	Use MiTek M nails into Tru to connect tru Fill all nail ho In the LOAD of the truss a AD CASE(S) Dead + Floo Plate Increa Uniform Loa Vert: 7-12	ISH422 (With 10d ss) or equivalent a uss(es) to front fac les where hanger i CASE(S) section, re noted as front (I Standard or Live (balanced): use=1.00 ads (lb/ft) 2=-10, 1-6=-100 ed Loads (lb) 248 (E)	nails inti t 3-7-12 e of top is in con loads ap F) or ba Lumber	o Girder & 6- from the left chord. ttact with lum plied to the ck (B).	-10d t end hber. face .00,						
		Max Grav	7=416 (LC 11=137 (L	C 7), 10=687 (LC 7), _C 3), 12=57 (LC 7)		Vert: 4=-2	248 (F)									
FOF	RCES	(lb) - Max Tension	imum Com	pression/Maximum												
TOF	P CHORD	1-12=-50/	0, 6-7=-41	2/0, 1-2=0/0, 2-3=0/0	,											
		3-4=0/0, 4	1-5=-728/0,	, 5-6=-372/0												
301	CHORD	11-12=0/0	0, 10-11=0/	/0, 9-10=0/706,												
		8-9=0/725	5, 7-8=0/0													
NE	BS	3-10=-120	0/0, 4-10=-	885/0, 4-9=-56/56,												
		5-9=-21/9	3, 5-8=-45	9/0, 6-8=0/488,										minin	1111	
		2-11=-132	2/0											W'TH CA	Ro	
NOI	IES											∧	1	R	. ALING	
1)	Unbalance this design	d floor live	loads have	been considered for									Fin	NIFEDY	China har	s~
2)	All plates a	ne 3v5 MT:	20 unless o	therwise indicated									A M			1
-) 3)	Truss to be	fully sheat	thed from c	one face or securely										. Q. /		-
-)	braced aga	ainst lateral	movement	t (i.e. diagonal web).								-	:	SEA		=
4)	Gable stud	is spaced a	t 1-4-0 oc.									-	-	ULA		Ξ
5)	This truss i	is designed	in accorda	ance with the 2015										4584	4 :	Ξ
'	Internation	al Resident	ial Code se	ections R502.11.1 an	d							-	1		÷	-
	R802.10.2	and referen	nced stand	ard ANSI/TPI 1.										N	~ · · >	2
5)	Recommer	mend 2x6 strongbacks, on edge, spaced at										2.11	V.S.NGINI	ENO		
	10-00-00 o	oc and faste	ned to eac	h truss with 3-10d									11	Oping	TIS IN	99
	(0.131" X 3	(3") nails. Strongbacks to be attached to walls											100	TEW I	OHICIN	

- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and 5) R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 6) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

JOY

June 11,2021

mmm

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F9GR	Floor Girder	1	1	Job Reference (optional)	146536348

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:55 ID:B3KBRu?JRI5wKQr0e8NIYMylykk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0 - 4 - 81-3-0

1-2-0

3x5 u 4x6 =3x5 = 2 8 7 3

5

4x5 =

3x6 =

				•	0 + 0								
Scale = 1:27.6													
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.57	Vert(LL)	0.00	5-6	>999	360	MT20	244/190	
FCDL	10.0	Lumber DOL	1.00	BC	0.13	Vert(CT)	-0.01	5-6	>999	240			
BCLL	0.0	Rep Stress Incr	NO	WB	0.10	Horz(CT)	0.00	4	n/a	n/a			
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 22 lb	FT = 20%F, 11%E	

LUMBER

	Structural wood aboathin
BRACING	
WEBS	2x4 SP No.3(flat)
BOT CHORD	2x4 SP No.2(flat)
TOP CHORD	2x4 SP No.2(flat)

DIGGONG		
TOP CHORD	Structura	I wood sheathing directly applied or
	3-4-8 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4= Mechanical, 6= Mechanical
	Max Grav	4=348 (LC 1), 6=361 (LC 1)
FORCES	(lb) - Max	kimum Compression/Maximum
	Tension	
TOP CHORD	1-6=-129	/0, 3-4=-356/0, 1-2=0/0, 2-3=-93/0
	F C 0/20	0 4 5 0/0

BOT CHORD	5-6=0/290, 4-5=0/0
WEBS	2-6=-364/0, 2-5=-258/0, 3-5=0/214

NOTES

1) Refer to girder(s) for truss to truss connections. 2) This truss is designed in accordance with the 2015

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Recommend 2x6 strongbacks, on edge, spaced at 3)
- 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- Use MiTek MSH422 (With 10d nails into Girder & 6-10d 4) nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-7-12 from the left end to 2-7-12 to connect truss(es) to front face of top chord.
- 5) Fill all nail holes where hanger is in contact with lumber. 6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00

Uniform Loads (lb/ft) Vert: 4-6=-10, 1-3=-100 Concentrated Loads (lb)

Vert: 7=-185 (F), 8=-180 (F)

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F10	Floor	6	1	Job Reference (optional)	146536349

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:56 ID:0xA178tQ1NiUWjVuVKhjb1ylykv-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff

Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:33.9

1 [10:0 1 9 Edge] [14:0 4 9 Ed 4054

Plate Offsets (X, Y): [7:0-4-8,Edge],	[10:0-1-8,Edge], [14	1:0-4-8,Edgej									
Loading	(psf)	Spacing	2-0-0	CSI	0.50	DEFL	in 0.05	(loc)	l/defl	L/d	PLATES	GRIP
	40.0		1.00	BC	0.39	Vert(CT)	-0.05	16-18	>999 >000	240	101120	244/190
BCU	0.0	Ren Stress Incr	VES	WB	0.51	Horz(CT)	-0.07	10-10	>333 n/a	240 n/a		
BCDI	5.0	Code	IRC2015/TPI20	14 Matrix-SH	0.51	11012(01)	0.01	14	Π/a	n/a	Weight [.] 94 lb	FT = 20%F 11%F
	0.0	0000				I				1	troigini o tho	20701,11702
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 11=0-1-10	athing directly applie cept end verticals. applied or 6-0-0 oc 0, 14=0-3-8, 20=0-3-	5) This t Intern R802 6) Reco (0.10 (0.13 ed or 7) CAUT LOAD CA	russ is designed in acco ational Residential Cod 10.2 and referenced st mmend 2x6 strongback -00 oc and fastened to 0" X 3") nails. Strongba ir outer ends or restrain TION, Do not erect truss (SE(S) Standard	ordance w le sections andard AN s, on edge each truss icks to be ied by othe s backward	ith the 2015 5 R502.11.1 a ISI/TPI 1. 4, spaced at 5 with 3-10d attached to w er means. ds.	nd ralls					
	Max Uplift 11=-101 (Max Grav 11=261 (L 20=540 (L	LC 3) _C 4), 14=1312 (LC 7 _C 3)	1),									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-20=-37/0, 10-11=- 2-3=-985/0, 3-4=-12 5-7=0/235, 7-8=0/12 9-10=-170/117	259/102, 1-2=-2/0, 74/0, 4-5=-910/0, 208, 8-9=-203/524,										
BOT CHORD	19-20=0/651, 18-19= 15-16=0/552, 14-15= 12-13=-285/351, 11-	=0/1285, 16-18=0/12 =-1120/0, 13-14=-79 -12=0/0	236, 4/25,									11111
WEBS	7-14=-830/0, 2-20=- 3-19=-391/0, 3-18=- 4-16=-441/0, 5-16=0 7-15=0/1068, 8-14=- 9-13=-410/0, 9-12=-	814/0, 2-19=0/435, 30/0, 4-18=0/65, 0/483, 5-15=-910/0, -760/0, 8-13=0/447, 237/218, 10-12=-167	7/241						0	tin	OBTH CA	HOLING MARK
NOTES			.,						=		CEA	n 19 E .
 Unbalance this design 	ed floor live loads have n.	e been considered fo	r								4584	4
 All plates a 	are 3x5 MT20 unless c	otherwise indicated.							-	1		1 - E
 Provide m bearing plate 	echanical connection (ate at joint(s) 11.	(by others) of truss to	D							-7		ER A
 4) One RT7A truss to be connectior forces. 	A MiTek connectors rec earing walls due to UPI n is for uplift only and c	commended to conne LIFT at jt(s) 11. This does not consider late	ect eral								June	0HN90111 0HN901111 9 11,2021
WARN	IING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED	MITEK REFERENCE PAGE M	II-7473 rev. 5	/19/2020 BEFOR	E USE.				ENGINEER	ING BY

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F10GR	Floor Girder	1	1	Job Reference (optional)	146536350

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:56 ID:fFuZeE0xC3DnyZQCCruX5Zylykj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.2

Plate Offsets (X, Y): [14:0-1-8.Edge], [28:Edge.0-1-8]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	o i o,∟ago], [20:2090,0 1 0]												
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-SH	0.40 0.26 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 16-17 16-17 15	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%F, 1	1%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Grav	lo.2(flat) lo.2(flat) lo.3(flat) lo.3(flat) lo.3(flat) ling directly 15=0-3-8, 21=12-0-(27=12-0-(15=419 (L 20=132 (L 24=147 (L 24=147 (L 28=48 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 19=12-0-0, 20=12-0 0, 22=12-0-0, 23=12- 0, 25=12-0-0, 26=12- 0, 28=12-0-0 C 7), 19=702 (LC 7) C 3), 21=153 (LC 7) C 3), 23=147 (LC 7) C 3), 25=147 (LC 7) C 3), 27=153 (LC 7) C 3)	2) 3) 4) 5) -0, 6) -0, 7) 0-0, 8) -, 9) -, 10 -, LC -, 1)	All plates are Truss to be f braced agair Gable studs This truss is International R802.10.2 au Recommend 10-00-00 oc (0.131" X 3") at their outer CAUTION, E Use MiTek M nails into Tru end to conne Fill all nail hc) In the LOAD of the truss a Dead + Filo Dead + Filo	a) 1.5X3 MI 20 Unlet ully sheathed from sist lateral moveme spaced at 1-4-0 oc designed in accorr Residential Code nd referenced stan 1 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained bo not erect truss b MSH422 (With 10d uss) or equivalent a cot truss(es) to bac bles where hanger CASE(S) section, are noted as front (Standard or Live (balanced): are to 0	ss other one fac one fac on efac stance w sections dard AN on edge ach truss s to be d by othe ackwarc nails int ackwarc nails int ackwarc packac by othe ackwarc nails int tat 13-0-1 k face o is in cor loads a F) or ba	Wise indicate e or securely iagonal web) ith the 2015 c R502.11.1 a ISJ/TPI 1. a, spaced at s with 3-10d attached to we remeans. Is. o Girder & 6- 2 from the le f top chord. ttact with lum oplied to the inck (B).	a. / and valls .10d .ft .ber. face						
FORCES	(lb) - Max Tension 1-28=-44 2-3=-3/0, 6-7=-3/0, 10-11=-3	ximum Com /0, 14-15=- , 3-4=-3/0, 4 , 7-8=-3/0, 8 /0, 11-13=-	pression/Maximum 415/0, 1-2=-3/0, I-5=-3/0, 5-6=-3/0, 3-9=-3/0, 9-10=-3/0, 738/0, 13-14=-375/0		Uniform Los Vert: 15- Concentrate Vert: 11=	ase=1.00 ads (lb/ft) 28=-10, 1-14=-100 ed Loads (lb) 261 (B))				\wedge		NITH CA	ROLIN	2. \
BOT CHORD	27-28=0/ 23-24=0/ 19-20=0/ 15-16=0/	(3, 26-27=0) (3, 22-23=0) (3, 17-19=0) (0	/3, 25-26=0/3, 24-25= /3, 21-22=0/3, 20-21= /719, 16-17=0/731,	=0/3, =0/3,							U	502	SEA	L	4-1-1-1-
WEBS NOTES 1) Unbalance	10-19=-1 13-17=-1 2-27=-13 5-24=-13 8-21=-13	27/0, 11-19 7/98, 13-16 9/0, 3-26=- 3/0, 6-23=- 7/0, 9-20=- loads have	9=-899/0, 11-17=-60/: =-463/0, 14-16=0/49 132/0, 4-25=-134/0, 134/0, 7-22=-133/0, 127/0 ₽ been considered for	52, 02, r							11111	N. A.	4584 NGIN REW J	EFR. ON	unnu,
this desigr	า.												in the second se	in the second se	

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F11	Floor	1	1	Job Reference (optional)	146536351

1-3-0

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:56 ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-6-4

Scale = 1:26.7

Plate Offsets	(X,	Y):	[7:0-1	-8,Edge]
---------------	-----	-----	--------	----------

										_		
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.32	DEFL Vert(LL)	in -0.01	(loc) 9-10	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.15	Vert(CT)	-0.01	9-10	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.00	8	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-SH							Weight: 67 lb	FT = 20%F, 11%E
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
NER2	2x4 SP No.3(flat)											
	2X4 OF 110.3(11at)											
	Structural wood she	athing directly applie	ad or									
	6-0-0 oc purlins, exc	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc										
REACTIONS	(size) 8=0-3-8, 1	11=0-3-8, 14= Mech	anical									
	14=273 (L	LC 3)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-14=-38/0, 7-8=-29 3-4=0/203, 4-5=0/38	1/0, 1-2=0/0, 2-3=-2 9, 5-6=-322/6,	97/9,									
	6-7=-232/0	70/004 44 40 00	0/0									
BOICHORD	13-14=0/295, 12-13=	=-78/264,11-12=-38)=0/446 8-9=0/17	39/0,									
WEBS	4-11=-438/0. 2-14=-3	370/0. 2-13=-45/3.										
	3-13=0/91, 3-12=-46	60/0, 4-12=0/352,										116.
	5-11=-567/0, 5-10=0)/235, 6-10=-197/0,									White CA	Dalle
	6-9=-278/0, 7-9=0/29	92							~		athon	70/11
NOTES										5.	0 .: EE89	id N/2
1) Unbalance	ed floor live loads have	been considered fo	or							XX	worth	amers
this design). Aro 2x5 MT20 unlogo o	thorwing indicated									:2	K
2) All plates a 3) Refer to di	rder(e) for trues to true	s connections							=		CEA.	r 19 E -
 This truss i 	is designed in accorda	ance with the 2015							=	:	SLA	- : =
Internation	al Residential Code se	ections R502.11.1 a	nd								4584	4 : :
R802.10.2	and referenced stand	ard ANSI/TPI 1.								5 B		1 E -
5) Recomme	nd 2x6 strongbacks, o	n edge, spaced at								- 7	· ~	A123
10-00-00 c	oc and fastened to eac	h truss with 3-10d								2.1	NGIN	EFRON
(0.131" X 3	3") nails. Strongbacks	to be attached to w	alls							11	Op	NS.II
at their out	er ends or restrained l	by other means.								100	ILEW J	OHIM
o, ononon,		onwarus.									in min	mm.

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F11GE	Floor Supported Gable	1	1	Job Reference (optional)	146536352

Run: 8.51 E Jun 1 2021 Print: 8.510 E Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 11:42:02 ID:7RSxsa1ZzMLeZj?OmZPmdnylyki-6N7w2o6rzFJpcDtVADIQS6DVS2lgfQgMgaDzIrz7Mqa

Page: 1

1-2-0

818 Soundside Road Edenton, NC 27932

Scale = 1:16.4

Plate Offsets (X, Y): [12:Edge,0-1-8]

Loading (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-SH	0.16 0.02 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) BRACING TOP CHORD Structural wood she 5-9-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	athing directly appliec cept end verticals. applied or 10-0-0 oc	LOAD CASE(S 1) Dead + Fil Plate Incre Uniform Li Vert: 7- Concentra d or Vert: 1=) Standard bor Live (balanced): L iase=1.00 bads (lb/ft) 12=-10, 1-6=-100 ted Loads (lb) -106 (F), 4=-95 (F), 1	_umbe	Fincrease=1.00),					
REACTIONS All bearings 5-9-0. (lb) - Max Uplift All uplift 1 Max Grav All reactic (s) 7, 8, 9	00 (lb) or less at joint(ns 250 (lb) or less at , 10, 11, 12	t(s) 7 joint									
FORCES (lb) - Max. Comp./Ma (lb) or less except w	ax. Ten All forces 29 hen shown.	250									
 NOTES 1) All plates are 1.5x3 MT20 unless 2) Gable requires continuous bottor 3) Truss to be fully sheathed from c braced against lateral movement 4) Gable studs spaced at 1-4-0 oc. 5) One RT4 MiTek connectors record truss to bearing walls due to UPL connection is for uplift only and c forces. 6) Recommend 2x6 strongbacks, on 10-00-00 oc and fastened to eac (0.131" X 3") nails. Strongbacks, on 10-00-00 oc restrained 1 7) Hanger(s) or other connection du provided sufficient to support con lb down at 0-1-8, and 95 lb dow down at 4-1-4 on top chord. Th such connection device(s) is the 8) In the LOAD CASE(S) section, k of the truss are noted as front (F 	otherwise indicated. n chord bearing. ine face or securely : (i.e. diagonal web). mmended to connect JFT at jt(s) 7. This loes not consider late n edge, spaced at h truss with 3-10d to be attached to wal by other means. avice(s) shall be ncentrated load(s) 106 n at 2-1-4, and 95 lb e design/selection of responsibility of other ads applied to the fac) or back (B).	t eral IIIs 6 rrs. ice						Contraction of the second seco		SEAL 4584	4 HNS 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F12	Floor	8	1	Job Reference (optional)	146536353

Run: 8,51 S Jun 1 2021 Print: 8,510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:57 ID:0xA178tQ1NiUWjVuVKhjb1ylykv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.8

Plate Offsets (X, Y): [13:0-1-8,Edge],	, [16:0-1-8,Edge], [17	7:0-1-8,Ed	ge], [29:0-3-0,	Edge], [30:0-3-0,8	Edge], [3	6:0-1-8,Edge], [37:0-	1-8,Edge	9]			
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-SH	0.81 0.98 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.53 0.04	(loc) 25-26 25-26 21	l/defl >598 >445 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 168 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1(flat) *Ex No.2(flat) 2x4 SP No.1(flat) *Ex No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shea 4-2-2 oc purlins, excr Rigid ceiling directly a bracing. (size) 21=0-3-8, 5 Max Uplift 39=-50 (LC Max Grav 21=935 (LC	cept* 14-20:2x4 SP cept* 39-31:2x4 SP thing directly applied ept end verticals. applied or 2-2-0 oc 34=0-3-8, 39=0-1-10 2 4), 34=2168 (LC 1)	WE d or 1)), 3)	TES S	9-34=-91/0, 16-25 17-23=-755/0, 18- 19-22=0/1056, 19- 2-39=-803/105, 8- 5-35=-1013/0, 3- 3-37=-603/0, 4-37 10-34=-1849/0, 16 10-32=0/1440, 15 11-32=-1749/0, 15 13-28=0/1311, 12- floor live loads ha e 3x5 MT20 unless hanical connection at joint(s) 39.	=-227/6, 23=0/61(21=-143 35=0/95(8=-366/2 =-8/226, :-26=-190 :-28=-55: 30=-302 ve been s otherwin n (by oth	17-24=0/272 5, 18-22=-10(5/0, 8-34=-11(0, 2-38=-146) (53, 6-36=0/1 5-36=-450/0, (258, (42, 7/0, 11-30=0/ /0, 13-29=-84 considered for se indicated. ers) of truss t	, 01/0, 395/0, (441, 032, (1643, 49/0 or					
FORCES TOP CHORD BOT CHORD	(b) - Maximum Comp Tension 1-39=-40/0, 20-21=-3 2-3=-967/194, 3-4=-1 4-5=-1210/791, 5-6=- 6-8=-235/1717, 8-9=C 10-11=-4/679, 11-12= 12-13=-2595/0, 13-15 15-16=-3783/0, 16-17 17-18=-3180/0, 18-19 38-39=-82/629, 37-38 36-37=-791/1210, 35- 34-35=-2088/0, 32-34 30-32=-117/1347, 29	3/0, 1-2=0/0, 210/791, 1210/791, 0/3011, 9-10=0/3011 =-2595/0, ==-3498/0, 7=-3737/0, 9=-1937/0, 19-20=-2/ 3=-389/1248, -36=-1309/806, 4=-1594/0, -30=0/2595.	4) 5) , 6) /0 7) LO	One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar Recommend 10-00-00 oc (0.131" X 3") at their outer CAUTION, D AD CASE(S)	liTek connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to e nails. Strongbacks ends or restraine to not erect truss I Standard	ecomme PLIFT at d does no dance w sections ndard AN on edge ach truss ks to be d by othe backward	inded to conr jt(s) 39. This of consider la ith the 2015 is R502.11.1 a JSI/TPI 1. a, spaced at is with 3-10d attached to w ar means. Is.	nect teral and valls		Q	kan'i	ORTEESS SEA	ROLIN
	30-32=-117/1347, 29- 28-29=0/2595, 26-28- 24-25=0/3737, 23-24- 21-22=0/1126	-30=0/2595, =0/3859, 25-26=0/37 =0/3737, 22-23=0/27	737, 706,							11111	N. N	4584	4 0HN50 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F12A	Floor	1	1	Job Reference (optional)	146536354

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:58 ID:YIcfwosnG3aduaxixc9U3qylykw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 11,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:54.8

Plate Offsets	(X, Y): [42:0-1-8,Edge	e], [43:0-1-8,Edge]												
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-SH	0.49 0.59 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.10 0.02	(loc) 43-44 43-44 40	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 149 lb	GRIP 244/190 FT = 20%F, 11%	Ε
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 40	eathing directly applie cept end verticals. / applied or 10-0-0 oc 0-41,39-40,37-39.	E d or V	BOT CHORD	44-45=0/665, 43-4 41-42=0/1026, 40 37-39=-197/273, 3 34-35=0/1, 33-34= 30-31=0/1, 29-30= 26-27=0/1, 25-26= 9-40=-91/0, 12-36 9-40=-91/0, 12-36 9-40=-91/0, 12-36 10-39=0/345, 11-5 12-37=-108/189, 8 8-41=0/716, 2-44= 3-44=-412/0, 6-42	44=0/135 -41=-202 36-37=0/ =0/1, 32-3 =0/1, 28-2 =0/1 39=-311/0 3-40=-113 =0/481, 6 =0/529, 3 =2025/0	1, 42-43=0/1 //0, 39-40=-6; 1, 35-36=0/1, 33=0/1, 31-32 29=0/1, 27-26 , 10-40=-722 0, 11-37=-25; 31/0, 2-45=-8 -41=-706/0, 3-43=-105/19	371, 39/75, 2=0/1, 3=0/1, 2/200, 2/200, 49/0, 9,						
REACTIONS	(size) 25=14-3- 28=14-3- 31=14-3- 34=14-3- 40=0-3-8 Max Uplift 36=-42 (L Max Grav 25=26 (L) 27=151 (l 29=147 (l 31=147 (l 33=147 (l 35=153 (l 40=1246	8, 26=14-3-8, 27=14- 8, 29=14-3-8, 30=14- 8, 32=14-3-8, 33=14- 8, 35=14-3-8, 36=14- , 45=0-1-10 C 5), 26=130 (LC 4), LC 5), 28=146 (LC 4) LC 5), 32=147 (LC 4) LC 5), 32=147 (LC 4) LC 5), 34=151 (LC 4) LC 5), 36=320 (LC 4) (LC 3), 45=571 (LC 4)	3-8, 3-8, 3-8, 3-8, 1 , , , 3-8, 1 , , 3-8, 1 , , 3-8, , 4, , 5)	 IOTES Unbalanced this design. All plates are braced again Gable studs Provide mec bearing plate 	4-43=103/11, 5-4 15-34=-136/0, 16- 18-31=-133/0, 19- 21-28=-132/0, 22- floor live loads ha e 1.5x3 MT20 unle fully sheathed from nst lateral moveme spaced at 1-4-0 o chanical connectio e at joint(s) 45.	2=-235/0 33=-133/ 30=-133/ 27=-137/ we been ess other n one fac ent (i.e. d cc. n (by oth	 (1, 13-33)=-130 (0, 17-32=-13) (0, 20-29=-13) (0, 23-26=-11) considered for wise indicates wise indicates wise indicates wise or securely liagonal web) ers) of truss to 	/0, ;4/0, ;4/0, 8/0 or d.				WITH CA	BO	
FORCES TOP CHORD	(b) - Maximum Con Tension 1-45=-36/0, 24-25=- 2-3=-1034/0, 3-4=-1 5-6=-1371/0, 6-8=-4 9-10=0/1014, 10-11 12-13=-1/0, 13-15=- 16-17=-1/0, 17-18=- 19-20=-1/0, 20-21=- 22-23=-1/0, 23-24=-	24/0, 1-2=0/0, 371/0, 4-5=-1371/0, 92/0, 8-9=0/1014, =-188/404, 11-12=-7: 1/0, 15-16=-1/0, 1/0, 18-19=-1/0, 1/0, 21-22=-1/0, 1/0	°, 6 9/44, 8 g L	 One RT7A M truss to bear connection i forces. This truss is International R802.10.2 a Recommend 10-00-00 oc (0.131" X 3" at their outed CAUTION, I CAD CASE(S) 	MiTek connectors in ring walls due to U s for uplift only and designed in accord Residential Code ind referenced stard 2x6 strongbacks and fastened to e) nails. Strongbac r ends or restraine Do not erect truss in Standard	recomme IPLIFT at d does no rdance w s sections ndard AN , on edge ach truss ks to be d by othe backward	ended to conr jt(s) 36. This ot consider la ith the 2015 is R502.11.1 a ISI/TPI 1. a, spaced at is with 3-10d attached to w er means. ds.	teral und valls		Continue	A CONTRACTOR	SEA 4584	ER.OTIN	Jun 1000

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	F12B	Floor	1	1	Job Reference (optional)	146536355

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:46:59 ID:bMUuV6qXkSKwfGnJqB70_Pylyky-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:54.8

Plate Offsets ((X, Y): [16:0-1	-8,Edge]	l, [17:0-1-8,Edge], [34:0-1-8	,Edge], [35:0-1-8	,Edge]								
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-SH	0.61 0.86 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.15 0.03	(loc) 23-24 23-24 21	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 21 37	2(flat) 2(flat) 3(flat) 3(flat) ood shea rlins, exc g directly 1=0-3-8, 7=0-1-10	athing directly appli cept end verticals. applied or 6-0-0 oc 28=0-3-8, 32=0-3-8	ed or 3,	WEBS NOTES 1) Unbalanced	9-32=-89/0, 12- 17-24=-187/47, 10-31=-351/21(11-29=-748/0, 1 13-27=0/964, 1; 18-22=-592/0, 1 8-32=-1128/0, 2 2-36=0/495, 6-3 6-34=0/504, 3-3 5-34=-225/0 floor live loads	28=-603/0, 10-32=-574), 11-31=-1 12-29=0/527 5-27=-922/(17-23=-213) 9-22=0/626 2-37=-863/0 33=-701/0, 3 55=-80/224, have been	16-25=-29/2 9/105, 75/391, 7, 13-28=-13), 15-26=0/5 133, 18-23= 3, 19-21=-97 , 8-33=0/71: 3-36=-428/0, 4-35=-113/2	213, 559/0, 34, 60/215, 0/0, 3, 2, for					
FORCES TOP CHORD BOT CHORD	Max Grav 21 32 (lb) - Maximu Tension 1-37=-36/0, 2-3=-1056/0 5-6=-1423/0 9-10=0/985, 12-13=0/160 16-17=-1834 18-19=-1245 36-37=0/676 33-34=0/109 29-31=-1210 27-28=-524/ 24-25=0/183 21-22=0/762	1=052 (L 2=1156 (um Com 20-21=-(), 3-4=-14), 6-8=-57 , 10-11=(07, 13-15 4/(0, 17-1 5/0, 19-2 6, 35-36= 97, 32-33 0/0, 28-2 7(0, 26-27 34, 23-24 2	C 5), 28=1462 (LC LC 3), 37=581 (LC pression/Maximum 38/0, 1-2=0/0, 423/0, 4-5=-1423/0, 76/0, 8-9=0/985, 1/1055, 11-12=0/14 5=-314/0, 15-16=-14 8=-1804/0, 0=-2/0 e-1/1385, 34-35=0/1 3=-106/54, 31-32=-5 9=-1607/0, =0/1012, 25-26=0/7 I=0/1834, 22-23=0/	4), 5) 15, 410/0, 423, 929/0, 1834, 1699,	 chistatesign. 2) All plates and provide mec bearing plate 4) This truss is International R802.10.2 a 5) Recommend 10-00-00 oc (0.131" X 3" at their oute 6) CAUTION, I LOAD CASE(S) 	e 3x5 MT20 unle hanical connec e at joint(s) 37. designed in acc Residential Co nd referenced s d 2x6 strongbac and fastened to) nails. Strongb r ends or restrai Do not erect trus Standard	ess otherwi tion (by oth cordance w de sections standard AN ks, on edge o each truss acks to be ned by othe ss backward	se indicated ers) of truss ith the 2015 R502.11.1 ISI/TPI 1. , spaced at with 3-10d attached to v er means. Is.	to and walls		0		ORTH CA	ROLIN

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	G01	Common Girder	1	1	Job Reference (optional)	146536356

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:00 ID:fWQ?D2DcCHMNUBDThwiWH9ylykS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

JUS26	

	3-9-8	7-7-0
Γ	3-9-8	3-9-8

Scale = 1:31.9													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.32 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r Cat. II; Exp left and rigi exposed; L 3) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 4) Unbalance design. 5) * This truss on the bott 3-06-00 tal chord and	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-0, 3 Max Horiz 1=20 (LC Max Grav 1=220 (LC (lb) - Maximum Com Tension 1-2=-852/149, 2-3=- 1-4=-108/717, 3-4=- 2-4=-96/541 d roof live loads have E 7-10; Vult=130mph mph; TCDL=6.0psf; B4 B; Enclosed; MWFR; ht exposed; end vertii cumber DOL=1.60 plat 2E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= 13.9 psf (flat roof snov =1.15); Category II; E) d snow loads have be s has been designed f om chord in all areas	athing directly applie applied or 10-0-0 oc 3=0-3-0 33) C 11), 3=-134 (LC 12 C 2), 3=763 (LC 2) pression/Maximum 853/149 108/717 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope); cantiler cal left and right te grip DOL=1.33 roof live load: Lumber 20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; een considered for thi or a live load of 20.0] where a rectangle fit between the bottor	 6) One RT7A M truss to bear This connec lateral forces 7) This truss is International R802.10.2 a 8) Use MiTek J nails into Truss(es) to l 10) In the LOAD of the truss a 10) In the LOAD of the truss a 11) Dead + Sm Increase=1 Uniform Lo Vert: 1-2 Concentrat Vert: 10: 13=-184 13 	AiTek connectors i ring walls due to U tion is for uplift on s. designed in accou l Residential Code nd referenced sta IUS26 (With 4-10c Juss) or equivalent -9-12 from the left back face of botto back face of botto back face of botto cles where hange 0 CASE(S) section are noted as front Standard ow (balanced): Lu .15 ads (Ib/ft) 2-48, 2-3-48, 5-5 ed Loads (Ib) =-188 (B), 11=-186 (B)	recomme JPLIFT at ly and dc rdance w s sections ndard AN d nails int spaced a end to 6- m chord. r is in cor l, loads a (F) or ba mber Inc B=-20 6 (B), 12=	ended to conr i jt(s) 1 and 3 les not consid- ith the 2015 is R502.11.1 a ISI/TPI 1. o Girder & 4- at 2-2-0 oc m. -11-12 to con- ntact with lum pplied to the ck (B). rease=1.15, =-184 (B),	nect der and 10d ax. nect ber. face Plate				SEA 4584 VORTH CA SEA 4584	L DHNS L OHNS	and an annumber of the second s

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

JULIU

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	G02	Common Girder	1	3	Job Reference (optional)	146536357

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:00 ID:Q3v0unJdJkMESPr?9brObrylykK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f _

Page: 1

Scale = 1:73.1

Plate Offsets (X, Y): [8:0-6-0,0-1-8], [9:0-6-0,0-5-8], [11:0-6-0,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.33 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.04	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 631 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x6 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 *Excep Left: 2x8 SP No.2 Right: 2x8 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=-203 (L Max Grav 1=9314 (L (lb) - Maximum Com Tension 1-3=-10813/0, 3-4=- 5-7=-11273/0 1-11=0/8158, 9-11=(7-8=0/8531 3-11=0/4216, 3-9=-3 5-9=-3879/0, 5-8=0/4	t* 9-4:2x4 SP No.2 athing directly applie applied or 10-0-0 oc 7=0-3-8 C 5) .C 2), 7=9902 (LC 21 pression/Maximum 7686/0, 4-5=-7686/0, 0/8158, 8-9=0/8531, 348/0, 4-9=0/9275, 4793	3) 4) d or 5) 6)) 7) 8)	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp Eleft and right exposed; Lur TCLL: ASCE DOL=1.15 PI snow); Pf=13 Plate DOL=1 Ct=1.10 * This truss h on the botton 3-06-00 tall b chord and an This truss is of International R802.10.2 ar Use MiTek T 12-10d x 1-1, 2-0-0 oc max 23-3-8 to con chord.	roof live loads have 7-10; Vult=130mpt h; TCDL=6.0psf; B ;; Enclosed; MWFR exposed; end verti mber DOL=1.60 pla 7-10; Pr=20.0 psf ate DOL=1.15); Pg .9 psf (flat roof sno 15); Category II; E as been designed in a chord in all areas y 2-00-00 wide will y other members. designed in accord. Residential Code s do referenced stanc HD26 (With 18-16d /2 nails into Truss) . starting at 1-3-8 fi nect truss(es) to ba	e been of (3-sec CDL=6 (CDL	considered for ond gust) .0psf; h=25fi elope); cartiil and right DOL=1.33 e load: Lumb ber DOL=1. ully Exp.; e load of 20. a rectangle veen the bott ith the 2015 R502.11.1 kto Girder & valent space left end to e of bottom	or t; lever ber 15 tom and ed at				WITH CA	Rotin	
 3-ply truss (0.131"x3 Top chord staggered Web comr All loads a except if n CASE(S) provided t unless oth 	s to be connected toget ") nails as follows: Is connected as follows I at 0-9-0 oc. ords connected as follo I at 0-5-0 oc. nected as follows: 2x4 - are considered equally noted as front (F) or bad section. Ply to ply conn to distribute only loads nerwise indicated.	ther with 10d 5: 2x6 - 2 rows 5: 2x8 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO, lections have been noted as (F) or (B),	9) LC 1)	Fill all nail ho Dead + Sno Increase=1. Uniform Loa Vert: 1-4: Concentrate Vert: 18= 21=-1557 (B), 25=- 28=-1353	les where hanger is Standard w (balanced): Lum 15 ads (lb/ft) =-48, 4-7=-48, 12-1 ed Loads (lb) -1338 (B), 19=-145 7 (B), 22=-1164 (B), 1353 (B), 26=-1353 6 (B), 29=-1353 (B)	s in cor ber Inc 5=-20 9 (B), 2 , 23=-1 3 (B), 27	ttact with lun rease=1.15, 20=-1503 (B) 164 (B), 24= '≥-1353 (B),	nber. Plate), :-1164			The second se	SEA 4584	4 EP. OT	Summing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H01	Hip Girder	1	1	Job Reference (optional)	146536358

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:04 ID:fWQ?D2DcCHMNUBDThwiWH9ylykS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.7

Plate Offsets (X, Y): [7:0-3-0,Edge], [8:0-2-12,0-2-0], [17:0-2-12,0-2-0]

				-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.64 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.11 -0.17 0.04	(loc) 21-22 21-22 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-2-13 oc purlins, ex 2-0-0 oc purlins (4-5 Rigid ceiling directly bracing.	t* 3-7,7-11:2x4 SP N athing directly applie ccept i-11 max.): 3-11. applied or 3-11-11 c	2) Io.1 Id or 3)	Wind: ASCE Vasd=103mp Cat. II; Exp E left and right exposed; poo grip DOL=1.1 TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1	7-10; Vult=130mpl bh; TCDL=6.0psf; E 3; Enclosed; MWFF exposed ; end vert rch left exposed; Lu 33 7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snc 1.15); Category II; E	h (3-sed 3CDL=6 RS (env tical left umber D (roof liv g=20.0 p w: Lum Exp B; F	cond gust) .0psf; h=25ft; elope); cantile and right OOL=1.60 plat e load: Lumbor saf (ground uber DOL=1.1 ully Exp.;	ever ie er 5	14) "NA (0.1 15) In ti of ti LOAD (1) De Ind Ur	ILED" ir 48"x3.2 ne LOAE ne truss CASE(S) ead + Sn crease= niform Lo Vert: 1-3 oncentra	ndicate 5") toe D CASE are no O Star now (ba 1.15 bads (It 3=-48, ted Loa	s 3-10d (0.148"x nails per NDS g E(S) section, loa ted as front (F) c ndard alanced): Lumbe 5/ft) 3-11=-58, 11-13 ads (Ib)	3") or 3-12d uidlines. Js applied to r back (B). r Increase=1 =-48, 23-26=	the face .15, Plate 20
REACTIONS	(size) 2=0-3-0, Max Horiz 2=19 (LC Max Uplift 2=-254 (L 18=-603 (Max Grav 2=836 (LC 18=2606	12=0-3-8, 18=0-3-8 53) C 7), 12=-157 (LC 8) LC 7) C 49), 12=809 (LC 50 (LC 33)	4)), 5) 0), 6)	Unbalanced design. This truss ha load of 12.0 overhangs n Provide adeo	snow loads have b so been designed for psf or 2.00 times fla on-concurrent with	een cor or great at roof lo other liv	nsidered for th er of min roof bad of 13.9 ps ve loads. water ponding	iis live sf on 1.	Concentrated Loads (lb) Vert: 3=-30 (B), 7=-25 (B), 11=-30 (B), 20=-26 (E 22=-26 (B), 14=-26 (B), 16=-26 (B), 18=-26 (B), 9=-25 (B), 30=-25 (B), 31=-25 (B), 32=-25 (B), 33=-25 (B), 34=-25 (B), 35=-25 (B), 36=-25 (B), 37=-25 (B), 38=-25 (B), 39=-25 (B), 40=-25 (B), 42=-69 (B), 43=-26 (B), 44=-26 (B), 45=-26 (B), 42=-69 (B), 43=-26 (B), 44=-26 (B), 45=-26 (B),					26 (B), (B), (B), (B), (B), (B), (B),
FORCES	(lb) - Maximum Com Tension 1-2=0/30, 2-3=-1761 4-5=-1870/593, 5-6= 6-8=-704/3092, 8-9= 9-10=-1820/318, 10 11-12=-1692/303, 12	npression/Maximum 1/519, 3-4=-1680/511 =-283/196, =-280/53, -11=-1610/298, 2-13=0/30	7) 8) 1, 9)	All plates are * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate	3X5 MT20 unless has been designed in chord in all areas by 2-00-00 wide will by other members. hanical connection a tioint(s) 2	otherwi for a liv where I fit betv (by oth	se indicated. e load of 20.0 a rectangle veen the botto ers) of truss to)psf om o		40=-20 50=-26	(B), 47 (B), 51	=-26 (B), 48=-26 =-26 (B), 52=-26	(B), 49=-26 (B), 53=-69	(B), (B)
BOT CHORD	2-22=-468/1650, 21- 19-21=-390/1202, 14 17-18=-1945/499, 14 14-15=-267/1820, 12	-22=-587/2000, 8-19=-729/128, 5-17=-83/620, 2-14=-244/1586	10) One RT7A M truss to bear This connect lateral forces	hiTek connectors re ing walls due to UF tion is for uplift only	ecomme PLIFT at and do	nded to conn jt(s) 2 and 12 es not consid	ect 2. Ier		l		wolfs	lang	en
WEBS	3-22=-96/306, 11-14 6-18=-2616/690, 6-1 8-18=-1732/364, 8-1 9-17=-864/198, 9-15 10-15=-297/88, 10-1 4-21=-225/54, 4-22= 5-21=-190/762, 5-19	I=-21/241, 19=-343/1278, 17=-442/2301, 15=-272/1278, 14=-292/37, 14=-292/37, 14=-1133/286	11	 One RT16A truss to bear connection is forces. This truss is International R802.10.2 au 	MiTek connectors i ing walls due to UF s for uplift only and designed in accord Residential Code s nd referenced stan-	recomm PLIFT at does no lance w sections dard AN	ended to con i jt(s) 18. This of consider lat ith the 2015 i R502.11.1 a ISI/TPI 1.	nect teral nd		111111	P.I.I.	SEA 4584	L 14 E.E.R.SO	A. T.

NOTES

- Unbalanced roof live loads have been considered for this design.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 11,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H02	Нір	1	1	Job Reference (optional)	146536359

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:06 ID:U7kPLUt2ogqL7t4531Cy8Fylyku-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.8

Plate Offsets (X, Y): [5:0-3-0,Edge],	[11:0-3-0,0-3-0], [13:	0-2-12,0-3	3-0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	1.00 0.58 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.12 0.04	(loc) 14-17 14-17 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 *Excep 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-5-15 oc purlins, ex 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-0, 8 Max Horiz 2=-23 (LC Max Uplift 2=-206 (LI 12=-206 (LI 12=2000 ((lb) - Maximum Com Tension 1-2=0/30, 2-3=-1214 4-6=-578/1651, 6-7= 8-9=0/30 2-14=-768/1116, 12- 10-12=-61/1052, 8-1 3-14=-155/163, 3-13 4-13=-321/417, 4-12 6-12=-2083/513, 6-1 7-10=0/165	t* 3-5,5-7:2x4 SP No. athing directly applied (cept -0 max.): 3-7. applied or 6-0-0 oc 4-12 3=0-3-8, 12=0-3-8 (12) C 11), 8=-39 (LC 12), LC 11) C 38), 8=660 (LC 38), (LC 37) (LC 37	2) 1 1 1 1 1 3) 4) 5) 6) 7) 3, 8) 293, 9) 10] 11]	Wind: ASCE Vasd=103m; Cat. II; Exp E Exterior (2) z vertical left a for members Lumber DOL TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader * This truss for on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This truss to bear Chard and ar One RT16A truss to bear connection is forces. 1 This truss is International R802,10.2 au o graphical pu	1 7-10; Vult=130mpt bh; TCDL=6.0psf; E 3; Enclosed; MWFR cone; cantilever left nd right exposed; p and forces & MWF =1.60 plate grip DC ; 7-10; Pr=20.0 psf late DOL=1.15); Category II; E :50-00 snow loads have b sow loads have b is been designed for psf or 2.00 times flaton-concurrent with quate drainage to p has been designed for phase been designed for phase of the designed in chord in all areas by 2-00-00 wide will yo other members. ItTek connectors re ing walls due to UP ion is for uplift only and designed in accord Residential Code s and referenced stand rlin representation ation of the purlina all ston of the purlina all store ston ston ston ston ston ston ston ston	In (3-sect CDL=6 S (env and rig orch le RS for DL=1.3: (roof liv) =20.0 p w: Lurr xp B; F een cor or great at troof liv where fit betw comme LIFT at and dc ecomm LIFT at addes n ance w sections adar An does n	cond gust) .0.ps; h=25ft; elope) and C- th exposed; - reactions sho sf (ground ber DOL=1.1 ully Exp.; asidered for th er of min roof pad of 13.9 p; ve loads. water ponding e load of 20.0 a rectangle ween the bottor inded to connr jt(s) 2 and 8, es not consider la the the 2015 a R502.11.1 a ISI/TP1 1. bt depict the ss to consider the so the control of the control of the control of the so the control of the cont	C end C own; er 5 live sf on 3. Dpsf om ect der der teral nd		Continue		SEAL 4584	ROUMA 4
			LO	bottom chord	d. Standard	5	•				11	REW JO	OHN

818 Soundside Road Edenton, NC 27932

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H03	Нір	1	1	Job Reference (optional)	146536360

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:06 ID:QWr9I9vIKI43NBETASEQDgylyks-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.7

Plate Offsets	(X, Y): [2:0-2-8,Edge],	, [9:0-2-8,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.92 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.30 -0.29 0.03	(loc) 13-15 15-18 9	l/defl >719 >752 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 155 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins (5-9	ot* 3-5,5-8:2x4 SP No eathing directly applie cept 3-9 max.): 3-8.	3) b.2 d or 4) 5)	TCLL: ASCE DOL=1.15 P snow); Pf=1: Plate DOL= Ct=1.10, Lu: Unbalanced design. This truss ha	E 7-10; Pr=20.0 ps/ late DOL=1.15); P 8.9 psf (flat roof sn 1.15); Category II; I =50-0-0 snow loads have t as been designed f	[:] (roof liv g=20.0 γ ow: Lum Exp B; F been cor or great	e load: Luml osf (ground iber DOL=1. fully Exp.; nsidered for t er of min roo	ber 15 this f live					
BOT CHORD	2 0	y applied or 2-2-0 oc 9=0-3-8, 13=0-3-8 C 16) .C 11), 9=-45 (LC 12) (LC 11) C 38), 9=727 (LC 38) (LC 37)	6) 7) , 8)	load of 12.0 overhangs n Provide ade * This truss I on the botton 3-06-00 tall I chord and an One RT7A N	psf or 2.00 times fl on-concurrent with quate drainage to p has been designed m chord in all area by 2-00-00 wide wi hy other members. AITek connectors r	at roof lo other lip prevent l for a liv s where ll fit betw ecomme	bad of 13.9 p ve loads. water pondin e load of 20. a rectangle veen the both	osf on Ig. Opsf tom nect					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum		This connec	tion is for uplift only	and do	es not consi	der					
TOP CHORD	1-2=0/30, 2-3=-1033 4-6=-294/907, 6-7=- 8-9=-1032/92, 9-10=	3/805, 3-4=-927/801, 294/907, 7-8=-926/13 =0/30	9) 33,	This truss is International R802.10.2 a	designed in accord Residential Code nd referenced star	dance w sections idard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	and				mmm	1111
BOT CHORD	2-15=-668/921, 13-1 11-13=-3/346, 9-11=	15=-236/318, =-26/920	10) Graphical pu or the orient	Irlin representation ation of the purlin a	does no along the	ot depict the top and/or	size		1	1.5	"ATH CA	ROLIN
WEBS	3-15=-118/74, 8-11= 4-13=-1371/740, 6-1 7-13=-1393/378, 7-1	=-99/160, 4-15=-481/ 13=-391/147, 11=-99/748	//1, LC	DAD CASE(S)	d. Standard					Ŭ	(A)	NOT	an kin
NOTES 1) Unbalanci this desig 2) Wind: ASI Vasd=103 Cat. II; Ex Exterior (2 vertical lei for momb	ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B mph; TCDL=6.0psf; B p; B; Enclosed; MWFR 2) zone; cantilever left ft and right exposed; p or and roce 8. MWFR	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-6 and right exposed; c-6 orch left exposed; C-6 S for rooting choice	C nd C							COLUMN S	N. M.	SEA 4584	L 4 EP. O

Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

100000

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H04	Нір	1	1	Job Reference (optional)	146536361

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 09:47:07 ID:r5XIOBxAcDSeEez2ran7rlylykp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.99 0.63 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.24 -0.27 0.03	(loc) 14-17 10-20 8	l/defl >899 >802 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Except* 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-7-7 oc purlins, exce 2-0-0 oc purlins (2-2-1)	* 4-6:2x4 SP No.1 thing directly applied apt 0 max.): 4-6.	3) d or 4) 5)	TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha	7-10; Pr=20.0 psf ate DOL=1.15); Pg 8.9 psf (flat roof sno .15); Category II; E 50-0-0 snow loads have b s been designed fo	(roof liv g=20.0 µ ow: Lum Exp B; F een cor	e load: Lumb osf (ground lber DOL=1.' ully Exp.; nsidered for t er of min roo	ber 15 his f live					
BOT CHORD	Rigid ceiling directly a bracing.	applied or 6-0-0 oc	0	load of 12.0 j overhangs n	osf or 2.00 times fla on-concurrent with	at roof le other li	pad of 13.9 p /e loads.	sf on					
WEBS REACTIONS	1 Row at midpt 5 (size) 2=0-3-0, 8= Max Horiz 2=36 (LC 1 Max Uplift 2=-206 (LC 12=-240 (L Max Grav 2=744 (LC 12=-744 (LC	5-14, 6-12 =0-3-8, 12=0-3-8 [9] C 11), 8=-42 (LC 12) .C 11] 38), 8=728 (LC 38).	6) 7) , 8)	* This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear	Juate drainage to p has been designed in chord in all areas by 2-00-00 wide will by other members. ITEk connectors re ing walls due to UF	for a liv s where I fit betw comme PLIFT at	water pondin e load of 20. a rectangle ween the bott ended to conr jt(s) 2 and 8	g. Opsf com nect					
FORCES	(lb) - Maximum Comp	pression/Maximum	0)	I his connect lateral forces	ion is for uplift only Mittal: approactors	and do		der					
TOP CHORD	1-2=0/30, 2-3=-1264/ 4-5=-691/604, 5-6=-2 7-8=-1214/206, 8-9=0	853, 3-4=-765/615, 26/742, 6-7=-701/34 0/30	9) 4,	truss to bear connection is forces	ing walls due to UF for uplift only and	PLIFT at does n	t consider la	ateral					
BOT CHORD	2-14=-747/1177, 12-1 10-12=0/607, 8-10=-1	14=-694/347, 130/1131	10) This truss is International	designed in accord Residential Code	lance w	ith the 2015 R502.11.1 a	and			. 6	"TH CA	RO
WEBS	4-14=-144/58, 5-14=- 5-12=-1144/576, 6-12 6-10=0/422, 3-14=-67	846/1343, 2=-1332/308, 72/329, 7-10=-674/2	11 43	R802.10.2 ar) Graphical pu or the orienta	nd referenced stan rlin representation ation of the purlin a	dard AN does no long the	ISI/TPI 1. ot depict the e top and/or	size		(lin	OR EESS	Rinning
NOTES										2			
1) Unbalanc	ed roof live loads have b	been considered for	LC	DAD CASE(S)	Standard					=	:	SEA	L : =
2) Wind: AS Vasd=103 Cat. II; Ex Exterior (2 vertical lei for memb Lumber D	n. CE 7-10; Vult=130mph (mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left ar ft and right exposed; pou ers and forces & MWFR OL=1.60 plate grip DOL	(3-second gust) iDL=6.0psf; h=25ft; 6 (envelope) and C-C nd right exposed; ei rch left exposed;C-C S for reactions shov _=1.33	C nd C vn;							1111	A MARINE	4584	4 F.R. ON MAN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

100000

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H05	Нір	1	1	Job Reference (optional)	146536362

Run; 8.51 S Jun 1 2021 Print; 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:08 ID:JH5gbXypNWaVroYEPIJMOWylyko-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:66.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.62 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.22 -0.26 0.02	(loc) 14-17 14-17 8	l/defl >999 >837 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 163 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-9-15 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly	athing directly applie cept 0-0 max.): 4-6. applied or 6-0-0 oc	3) d or 4) 5)	TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0	7-10; Pr=20.0 ps late DOL=1.15); F 8.9 psf (flat roof sr .15); Category II; .50-0-0 snow loads have s been designed osf or 2.00 times i	f (roof liv g=20.0 p now: Lum Exp B; F been cor for great	e load: Lumb osf (ground uber DOL=1.1 'ully Exp.; nsidered for the er of min roof oad of 13.9 p	ber 15 his f live sf on					
WEBS REACTIONS	rtigid cening directly bracing. 1 Row at midpt (size) 2=0-3-0, 8 Max Horiz 2=-43 (LC Max Uplift 2=-199 (LI 12- 245 (l	6-12, 4-12 =0-3-8, 12=0-3-8 20) C 11), 8=-35 (LC 12)	6) 7)	overhangs no Provide adec * This truss h on the bottor 3-06-00 tall b chord and an	on-concurrent with quate drainage to has been designer n chord in all area by 2-00-00 wide w by other members	h other liv prevent v d for a liv as where vill fit betw	ve loads. water ponding e load of 20.0 a rectangle ween the botto	g. Opsf om					
FORCES	Max Grav 2=704 (LC 12=1858 ((lb) - Maximum Com	C 38), 8=685 (LC 38) LC 2) pression/Maximum	, 8)	One RT7A M truss to bear This connect lateral forces	liTek connectors ing walls due to U ion is for uplift on	recomme IPLIFT at ly and do	nded to conr jt(s) 2 and 8 es not consid	nect der					
TOP CHORD	1-2=0/30, 2-3=-1060 4-5=-309/994, 5-6=-3 7-8=-1005/96, 8-9=0	/739, 3-4=-634/567, 318/1003, 6-7=-596/- /30	9) 43,	One RT16A truss to bear connection is forces.	MiTek connectors ing walls due to U s for uplift only and	recomm IPLIFT at d does no	iended to cor jt(s) 12. This ot consider la	nnect s iteral					
BOT CHORD	2-14=-627/976, 12-1 10-12=-88/225, 8-10	4=-110/245, =-39/930	10) This truss is International	designed in accor Residential Code	dance w	ith the 2015 R502.11.1 a	and				TH CA	Ro
WEBS	5-12=-536/180, 6-12 6-10=-35/680, 7-10= 4-14=-491/661, 3-14 4-12=-1271/714	=-1236/346, -635/262, =-651/309,	11	R802.10.2 ar) Graphical pu or the orienta bottom chore	nd referenced sta rlin representation ation of the purlin I.	ndard AN n does no along the	ISI/TPI 1. ot depict the s e top and/or	size		0	L.	of the solution	- Anti-
NOTES			LC	DAD CASE(S)	Standard						:	SEA	1 1 1
 Unbalance this design Wind: ASG Vasd=103 Cat. II; Ex Exterior (2 vertical let for member Lumber D 	ed roof live loads have n. CE 7-10; Vult=130mph \$mph; TCDL=6.0psf; BG p B; Enclosed; MWFR 2) zone; cantilever left a ft and right exposed; pc ers and forces & MWFR OL=1.60 plate grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(and right exposed; e orch left exposed;C-(RS for reactions shov L=1.33	C nd C wn;	(-)						111111	Number of	4584 4584 VOREW J	EER. ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

JOHN

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H06	Half Hip Girder	2	1	Job Reference (optional)	146536363

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:08 ID:fFuZeE0xC3DnyZQCCruX5Zylykj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-2-8 2-0-0 4-0-0 1-2-8 2-0-0 2-0-0

Special

Special 2-1-12 4-0-0 2-1-12 1-10-4

Scale = 1:28.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 18.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	JTPI2014	CSI TC BC WB Matrix-MP	0.14 0.33 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.04 0.01	(loc) 6 6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	INCZUIE	WTF12014	IVIALITX-IVIF							Weight: 15 lb	FT = 20%	, D
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 4-0-0 oc purlins, exc 2-0-0 oc purlins: 3-4. Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Mechanic: Max Horiz 2=34 (LC Max Uplift 2=-80 (LC (LC 8) Max Grav 2=279 (LC	athing directly applied ept applied or 10-0-0 oc l= Mechanical, 5= al 7) . 7), 4=-14 (LC 7), 5= 2 31), 4=75 (LC 30), 5	5) 6) 7) 1 or 8) 9) 10) -26 5=91 11'	This truss ha load of 12.0 p overhangs no Provide adeo * This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mect bearing plate 4.) One RT16A I truss to beari connection is forces.) One RT7A M	s been designed for osf or 2.00 times fit on-concurrent with juate drainage to p as been designed in chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tra- nanical connection capable of withsta WiTek connectors in g walls due to UF for uplift only and iTek connectors re	or greate at roof lo other lix revent v for a liv s where I fit betw uss conn (by oth anding 1 recomm PLIFT at does no	er of min roof aad of 13.9 p: re loads. vater ponding e load of 20.0 a rectangle veen the bottu nections. ers) of truss t 4 lb uplift at j ended to cor jt(s) 5. This ot consider la nded to conr	f live sf on g. Dpsf oom to joint nnect uteral	Co	Vert: 6=	ted Loa -5 (F)	ads (lb)		
FORCES TOP CHORD BOT CHORD	(LC 2) (lb) - Maximum Com Tension 1-2=0/30, 2-3=-57/44 2-6=-47/38, 5-6=0/0	pression/Maximum 4, 3-4=0/0	12)	truss to beari connection is forces. This truss is International	ng walls due to UF for uplift only and designed in accord Residential Code	PLIFT at does no lance wi	it(s) 2. This ot consider la th the 2015 R502.11.1 a	iteral						
 WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex left and rig exposed; j DOL=1.60 3) TCLL: ASI DOL=1.15 snow); Pf-Plate DOL Ct=1.10, L 4) Unbalance design. 	3-6=-133/33 ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BC pb B; Enclosed; MWFRS ght exposed ; end vertic porch left and right exp porch left and right exp spl texp spl	been considered for (3-second gust) DDL=6.0psf; h=25ft; S (envelope); cantilev cal left and right osed; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; en considered for this	13; 14; ver 15; L0 1)	R802.10.2 ar Graphical pu or the orienta bottom chord Hanger(s) or provided suff down and 24 down and 27 design/select responsibility In the LOAD of the truss a AD CASE(S) Dead + Snot Increase=1. Uniform Loa Vert: 1-3:	nd referenced stan rlin representation tion of the purlin a l. other connection of icient to support co lb up at 2-0-0 on ib up at 2-0-0 on ion of such connec of others. CASE(S) section, re noted as front (I Standard w (balanced): Lurr 15 ads (lb/ft) =-48, 3-4=-58, 5-7=	dard AN does no long the device(s poncentra top choi bottom ction de loads ap F) or bar nber Inco	ISI/TPI 1. ti depict the s top and/or) shall be ted load(s) 3 rd, and 42 lb chord. The vice(s) is the oplied to the f ck (B). rease=1.15, l	size 32 lb face Plate		Continue	A A A A A A A A A A A A A A A A A A A	SEA 4584	RO(11 4 4 5 11,202	And Annual Annua

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H07	Half Hip	1	1	Job Reference (optional)	146536364

Run; 8.51 S Jun 1 2021 Print; 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:09 ID:cvYlekFskuc5kUNspKk_MaylykQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.5

Plate Offsets (X, Y): [3:0-5-0,0-1-13]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.18 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exa 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-0, 6 Max Horiz 2=28 (LC Max Uplift 2=-97 (LC (LC 11) Max Grav 2=329 (LC 7=486 (LC (lb) - Maximum Com Tancion	athing directly applie cept end verticals, ar -0 max.): 3-5. applied or 8-7-8 oc 5= Mechanical, 7=0- 14) : 11), 6=-9 (LC 34), 7 2 35), 6=16 (LC 11), 2 34) pression/Maximum	3) ed or 4) 5) 3-8 6) 7) 7=-89 8) 9)	TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 p overhangs ne Provide adec * This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate	7-10; Pr=20.0 psf ate DOL=1.15); Pg 3.9 psf (flat roof snc .15); Category II; E 50-0-0 snow loads have b s been designed fr pas for 2.00 times fla on-concurrent with uate drainage to p uate drainage to p	(roof liv ==20.0 p bw: Lum Exp B; F een cor or greate at roof k other liv revent v for a liv s where I fit betw uss conr (by oth	⇒ load: Lumb sf (ground ber DOL=1.1 ully Exp.; sidered for the r of min roof aad of 13.9 p re loads. vater pondin. e load of 20.1 a rectangle reen the bott nections. ers) of truss	ber 15 his f live sf on g. 0psf om to	 15) Har provides dow des resp 16) In the of the des response of the des respons	nger(s) o vided su vn and 3 vn and 2 iign/selee ponsibilit he LOAE he truss CASE(S) aad + Sn crease=' niform Lc Vert: 1-3 oncentra Vert: 8=	r other fficient 8 lb up 7 lb up ction of y of ot 0 CASE are no 0 Star ow (ba 1.15 bads (lt 3=-48, ted Los -5 (B),	connection devi to support conce at 2-0-0 on top at 2-0-0 on bot f such connection hers. E(S) section, load ted as front (F) o ndard lanced): Lumber o/ft) 3-5=-58, 6-9=-20 ads (lb) 13=-2 (B)	ce(s) shall be intrated load(s) chord, and 138 om chord. The indevice(s) is the sapplied to the r back (B). Increase=1.15,	32 lb lb face Plate
TOP CHORD BOT CHORD WEBS 1) Unbalance this design 2) Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical lef for membe Lumber D	1-2=0/30, 2-3=-408/ 4-5=-29/41, 5-6=-7/6 2-8=-433/382, 7-8= 3-8=-114/71, 3-7=-3 4-7=-341/188 ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=6.0psf; B(p B; Enclosed; MWFR; 2) zone; cantilever left a ft and right exposed; po ers and forces & MWFF OL=1.60 plate grip DO	428, 3-4=-29/41, 455/391, 6-7=-13/14 67/415, 5-7=-41/31, been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed; c- roch left exposed; C-1 RS for reactions sho L=1.33	r 12 r 12 C C C 14 Wwn;	 b) Provide meci- bearing plate 6. c) One RT7A M truss to bearing This connect lateral forces c) This truss is International R802.10.2 ar c) Graphical puo or the orienta bottom chord c) "NAILED" ind (0.148"x3.25) 	interface connection capable of withsta iTek connectors re- ing walls due to UF ion is for uplift only designed in accord Residential Code s ad referenced stan- rlin representation tion of the purlin a l. dicates 3-10d (0.14 ") toe-nails per ND	(by oth anding 9 comme 2LIFT at and do lance w sections dard AN does no long the 8"x3") c S guidlin	ars) of truss I Ib uplift at jo nded to conr jt(s) 2 and 7 es not consid th the 2015 R502.11.1 a (SI/TPI 1. the depict the side top and/or ir 3-12d nes.	to nect der and size		Contraction of the second seco	A A A A A A A A A A A A A A A A A A A	SEA 4584	ROU AUAAA L 4 EERSON	Samurun

Junnin . June 11,2021

bottom chord. 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H08	Half Hip	1	1	Job Reference (optional)	146536365

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:09 ID:FgCR0D_3v8qD56idXjLqTxylykm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30

Plate Offsets (X, Y): [2:0-0-8,0-0-4], [3:0-5-0,0-1-13]														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.41 0.24 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 0.00	(loc) 7-10 7-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins; ex 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing.	athing directly applie cept end verticals, ar applied or 10-0-0 oc	3) ed or 4) nd 5) c	TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader	E 7-10; Pr=20.0 ps late DOL=1.15); F 8.9 psf (flat roof sr 1.15); Category II; -50-0-0 snow loads have as been designed psf or 2.00 times i on-concurrent with guate drianae to	of (roof liv Pg=20.0 now: Lun Exp B; F been con for great flat roof l h other li prevent	re load: Lumt osf (ground bler DOL=1.' 'ully Exp.; nsidered for t er of min roo oad of 13.9 p ve loads. water oondin	ber 15 his f live isf on						
REACTIONS	(size) 2=0-3-0, 5 Max Horiz 2=50 (LC Max Uplift 2=-100 (L 6=-73 (LC Max Grav 2=374 (LC 6=340 (LC	5= Mechanical, 6=0- 14) C 11), 5=-7 (LC 16), 11) C 35), 5=78 (LC 34), C 2)	3-8 7) 8) 9)	 6) Provide adequate drainage to prevent water ponding. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of trues to 										
FORCES	(lb) - Maximum Com Tension	pression/Maximum	- /	bearing plate	e capable of withs	tanding 7	' lb uplift at jo	pint						
TOP CHORD	1-2=0/30, 2-3=-279/	260, 3-4=-114/104,	10)) One RT7A N	ITek connectors	recomme	ended to con	nect						
BOT CHORD WEBS	2-7=-284/240, 6-7=- 3-7=-164/109, 3-6=-	29	connection is for uplift only and does not consider lateral forces.											
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 			. 11 C 2 12 C 2 13 Wn; LC	 One RT16A truss to bear connection is forces. This truss is International R802.10.2 ar Graphical pu or the orientz bottom chore DAD CASE(S) 	MiTek connectors ing walls due to U s for uplift only and designed in accou Residential Code nd referenced sta urlin representation ation of the purlin d. Standard	s recomm IPLIFT a d does n rdance w e sections ndard Al n does n along the	ended to con ; jt(s) 6. This ot consider la ith the 2015 5 R502.11.1 a ISI/TPI 1. ot depict the b top and/or	nnect ateral and size			A STATE	SEA 4584	L H4 EER. OTIM	

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H09	Half Hip	1	1	Job Reference (optional)	146536366

4-0-0

4-0-0

-1-2-8

1-2-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 09:47:10 ID:jsmpEZ_hgRz3iGGp4Qs3?8ylykl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-8

3-0-8

Scale = 1:29.1

Plate Offsets (X, Y): [2:0-0-8,0-0-4], [3:0-5-0,0-1-13]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.25 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 0.00	(loc) 7-10 7-10 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical lef for membe Lumber D 2) TCLL: AS DOL=1.15 snow); Pf= Plate DOL Ct=1.10, L	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins; 3-4. Rigid ceiling directly bracing. (size) 2=0-3-0,5 Max Horiz 2=50 (LC Max Uplift 2=-108 (LC 6=-7 (LC 1 Max Grav 2=405 (LC (LC 34) (lb) - Maximum Com Tension 1-2=0/30, 2-3=-363/3 4-5=-112/64 2-7=-381/320, 6-7=-5 3-7=-150/98, 3-5=-36 CE 7-10; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed; po CE 7-10; Pr=20.0 psf (ri 5) Plate DOL=1.15); Pg= =18.9 psf (filat roof snov .=1.15); Category II; Ex. .u=50-0-0	athing directly applied rept end verticals, an applied or 9-2-14 oc i= Mechanical, 6=0-3 14) C 11), 5=-54 (LC 11), (2) C 35), 5=226 (LC 2), 6 pression/Maximum 360, 3-4=-25/27, 396/329, 5-6=-396/32 35/421 (3-second gust) DDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; er orch left exposed; cr S for reactions show L=1.33 roof live load: Lumber -20.0 psf (ground v: Lumber DOL=1.15 p B; Fully Exp.;	3) 4) 4) 5) 6 -8 7) 8) -8 8) 9) 50 50 10 29 11 20 12 20 11 20 11 20 11 20 11 20 11 20 11 20 11 20 20 11 20 20 11 20 20 20 20 20 20 20 20 20 20 20 20 20	Unbalanced design. This truss ha load of 12.0 j overhangs ni Provide adec * This truss f on the bottor 3-06-00 tall b chord and ar Refer to girdi Provide mec bearing plate 5. One RT7A M truss to bear connection is forces.) One RT16A truss to bear connection is forces.) One RT16A truss to bear connection is forces.) This truss is International R802.10.2 ar bottom chorc DAD CASE(S)	snow loads have b s been designed for concurrent with uate drainage to p has been designed in chord in all areas y 2-00-00 wide will yo other members. er(s) for truss to tru- hanical connection capable of withsta iTek connectors re- ing walls due to UF of uplift only and MiTek connectors r ing walls due to UF for uplift only and designed in accord Residential Code s and referenced stam- rlin representation tion of the purlin all. Standard	een cor or great at roof lo other liv revent ' for a liv where lift betw ss conrr (by oth nding 5 comme 'LIFT at does no cance w sections dard AN does no long the	e load of 13.9 p ve loads. water pondin, e load of 20.1 a rectangle veen the bott nections. ers) of truss t 4 lb uplift at j ended to comr jt(s) 2. This ot consider la uended to corr jt(s) 6. This ot consider la isth the 2015 s R502.11.1 a ISI/TPI 1. ot depict the s top and/or	his i live sf on g. Dpsf om oint hect teral hnect teral size			A CO	SEA 4584	L L H4 OHNSUIII 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H10	Half Hip	1	1	Job Reference (optional)	146536367

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:10 ID:jsmpEZ_hgRz3iGGp4Qs3?8ylykl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.7

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.61 0.55 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.11 0.00	(loc) 6-9 6-9 2	l/defl >783 >702 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sht 6-0-0 oc purlins, ex 2-0-0 oc purlins: 3 Rigid ceiling directly bracing.	eathing directly applie ccept end verticals, ar 4. y applied or 10-0-0 oc	4) 5) 6) d or id 7) 8)	This truss has load of 12.0 p overhangs no Provide adeq * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mect	s been designed for osf or 2.00 times fla on-concurrent with uate drainage to p as been designed n chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru nanical connection	or great at roof lo other liv revent for a liv where I fit betv ss conr (by oth	er of min roof bad of 13.9 p ve loads. water ponding e load of 20.0 a rectangle veen the bott nections. ers) of truss t	live sf on g. Dpsf om					
REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Exy Exterior (2 vertical lef for membe Lumber DC 2) TCL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10, L 3) Unbalance design.	(size) 2=0-3-0, Max Horiz 2=71 (LC Max Upliff 2=-92 (L) 6=-130 (U) Max Grav 2=375 (L 6=557 (L (lb) - Maximum Cor Tension 1-2=0/30, 2-3=-91/5 2-6=-118/70, 5-6=-3 3-6=-198/154 CE 7-10; Vult=130mpl mph; TCDL=6.0psf; E p B; Enclosed; MWFF 0L=1.60 plate grip DC CE 7-10; Pr=20.0 psf e18.9 psf (flat roof snc =1.15); Category II; E u=50-0-0 ed snow loads have b	5= Mechanical, 6=0-3 (14) C 11), 5=-209 (LC 35) LC 11) C 35), 5=56 (LC 11), C 35) npression/Maximum 31, 3-4=-36/39, 4-5=-3 36/39 n (3-second gust) SCDL=6.0psf; h=25ft; IS (envelope) and C-C and right exposed; C-C RS for reactions show DL=1.33 (roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; een considered for thi	+-8 9) , 10) 55/20 11) 12) 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Provide mech bearing plate joint 5. O One RT7A M truss to beari This connecti lateral forces This truss is of International R802.10.2 ar Graphical pui or the orienta bottom chord	at joint(s) 2. hanical connection capable of withsta iTek connectors re ng walls due to UP ion is for uplift only designed in accord Residential Code s dreferenced stand rlin representation tion of the purlin al - Standard	(by oth inding 2 comme PLIFT at and do lance w sections dard AN does no long the	ers) of truss t 109 lb uplift at inded to comr jt(s) 2 and 6 es not consid ith the 2015 i R502.11.1 a ISI/TPI 1. ot depict the s to p and/or	o lect Ind size		Comme		SEA 4584	EEFR. 60

- Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- 3) Unbalanced snow loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H11	Hip Girder	1	2	Job Reference (optional)	146536368

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:14 ID:0gecZKfl18Zvz6id?FtkPSylyIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:64.6

Plate Offsets (X, Y): [4:0-5-12,0-2-0]], [9:0-5-12,0-2-0], [1	5:0-4-0,0-	1-12], [17:0-2-1	12,0-2-8], [22:Edg	e,0-6-2]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.68 0.84 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.58 0.20	(loc) 17-18 15-16 12	l/defl >999 >716 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 393 I	GRIP 244/190 b FT = 20 ^c	%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 *Except 2.0E 2x4 SP No.2 *Except 2.0E 2x4 SP No.3	t* 7-9:2x4 SP 2400F t* 21-3:2x4 SP 2400I	1) F	2-ply truss to (0.131"x3") n Top chords c oc. Bottom chord 0-9-0 oc. Web connect	be connected tog ails as follows: connected as follow ds connected as fo ted as follows: 2x ²	lether wi ws: 2x4 bllows: 2	th 10d - 1 row at 0-9- x4 - 1 row at at 0-9-0 oc.	-0	11) This Inte R80 12) Gra or th bott 13) "NA	s truss is rnationa)2.10.2 a phical p ne orient om chor ILED" in	desig I Resid and ref urlin re ation d d. dicate	ned in accorda dential Code se erenced standa presentation d of the purlin alc s 3-10d (0.148	nce with the ictions R502 ard ANSI/TP oes not depi- ing the top ar "x3") or 3-12	2015 .11.1 and I 1. ct the size nd/or d
BOT CHORD	Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (4-7- Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 20-	athing directly applied cept end verticals, ar -7 max.): 4-9. applied or 10-0-0 oc -21,12-13.	d or 2) nd 3)	All loads are except if note CASE(S) sec provided to d unless other Unbalanced	considered equal ed as front (F) or b stion. Ply to ply con listribute only load wise indicated. roof live loads hav	y applie back (B) nnection s noted re been	d to all plies, face in the LC s have been as (F) or (B), considered fo	DAD or	(0.1 LOAD (1) De Inc Ur	48"x3.2 ASE(S) ad + Sn crease=1 iform Lo Vert: 1-2	5") toe Sta ow (ba 1.15 bads (ll 2=-48,	-nails per NDS ndard alanced): Lumb b/ft) 2-4=-48, 4-9=-	guidlines. er Increase= 58, 9-10=-48	=1.15, Plate
REACTIONS	(size) 12=0-3-8, Max Horiz 22=-86 (LC Max Uplift 12=-317 (L Max Grav 12=1639 (22=0-3-8 C 9) LC 7), 22=-336 (LC 8 (LC 33), 22=1675 (LC	4) 3) C 33)	this design. Wind: ASCE Vasd=103mp Cat. II; Exp E left and right	7-10; Vult=130mp bh; TCDL=6.0psf; B; Enclosed; MWF exposed : end ver	oh (3-seo BCDL=6 RS (env rtical left	cond gust) 6.0psf; h=25ft; elope); cantile and right	; ever	Co	10-11=- ncentra	48, 21 ted Lo	-22=-20, 17-20 ads (lb)	<i>=</i> -20, 12-16=	-20
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	exposed; Lur TCLL: ASCE	mber DOL=1.60 pl 7-10: Pr=20.0 psi	ate grip f (roof liv	DOL=1.33 re load: Lumb	er						
TOP CHORD	1-2=0/68, 2-3=-2012 4-5=-5283/1231, 5-6 6-8=-6326/1531, 8-9 9-10=-2298/501, 10- 2-22=-1773/379, 10-	/446, 3-4=-3265/766 =-6539/1559, =-4486/1054, 11=0/68, 12=-1616/336	s, ⁻ , 6)	DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced	ate DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; 50-0-0 snow loads have b	g=20.0 µ ow: Lum Exp B; F	osf (ground aber DOL=1.1 fully Exp.;	15 his		^		WITH C	AROL	
BOT CHORD	21-22=-109/282, 20- 3-20=-385/101, 19-2 18-19=-656/2783, 17 16-17=0/119, 6-17=- 15-16=-122/664, 13- 12-13=-21/119	21=-254/72, 0=-718/2992, 7-18=-1229/5283, 398/133, 15=-367/1902,	8) 9)	design. This truss ha load of 12.0 p overhangs no Provide adeo * This truss h	s been designed f osf or 2.00 times fl on-concurrent with quate drainage to p as been designed	for great lat roof le other lin prevent	er of min roof bad of 13.9 ps ve loads. water ponding e load of 20.0	ilive sf on g. Dpsf		0	J	SE 458	AL 844	rizin
WEBS NOTES	3-19=-363/77, 4-19= 15-17=-942/3958, 8- 8-15=-1200/377, 9-1: 9-13=-131/80, 2-21= 10-13=-420/1902, 5- 5-18=-1000/220, 4-1:	-109/450, 17=-487/1822, 5=-709/2795, -272/1352, 17=-393/1426, 8=-667/2770	10	on the botton 3-06-00 tall b chord and an 0) One RT7A M truss to bear This connect lateral forces	n chord in all area by 2-00-00 wide wi by other members. ITek connectors r ing walls due to U ion is for uplift only.	s where Il fit betw ecomme PLIFT at y and do	a rectangle veen the botto ended to conn jt(s) 22 and es not consid	om nect 12. der			A. A.		VEEP.	Muniture Muniture M

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H11	Hip Girder	1	2	Job Reference (optional)	146536368

Vert: 17=-16 (F), 6=-1 (F), 24=-1 (F), 25=-1 (F), 26=-1 (F), 27=-1 (F), 29=0 (F), 30=0 (F), 31=0 (F), 33=0 (F), 34=0 (F), 35=0 (F), 36=0 (F), 37=0 (F), 39=-1 (F), 40=-23 (F), 41=-16 (F), 42=-16 (F), 43=-16 (F), 44=-16 (F), 45=-8 (F), 46=-8 (F), 47=-8 (F), 48=-8 (F), 49=-8 (F), 50=-8 (F), 51=-8 (F), 52=-8 (F), 53=-6 (F), 54=-1 (F)

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:14 ID:0gecZKfI18Zvz6id?FtkPSylyIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H12	Нір	1	1	Job Reference (optional)	146536369

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:15 ID:XgVxeY18HA0Hk7keyKxYIUylym_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.5

Plate Offsets ()	K, Y): [3:0-1-4,0-1-8],	[4:0-4-0,0-1-9], [8:0-	-4-0,0-1-9]	, [11:Edge,0-6	-2], [14:0-3-8,0-3-0], [16:0-	7-0,Edge], [1	8:0-2-8,I	Edge], [2	20:Edge,	0-6-2]			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2019	5/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.89 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.51 0.25	(loc) 15 14-15 11	l/defl >999 >810 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 208 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance- this design	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 *Excep 6-15:2x4 SP No.3 2x4 SP No.3 *Excep 14-16,20-2,11-9,2-18 Structural wood shea 2-9-15 oc purlins, ex 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 20=117 (L Max Grav 11=1520 ((Ib) - Maximum Com Tension 1-2=0/68, 2-3=-3316 4-6=-2313/411, 6-7= 7-8=-1810/367, 8-9= 2-20=-1522/325, 9-1 19-20=-82/111, 18-1 17-18=-433/3001, 16 15-16=0/73, 6-16=0/ 12-14=-370/3119, 11 3-17=-930/217, 4-17 6-17=-1990/314, 14- 7-16=-135/994, 7-14 7-12=-67/1581, 2-18 2-19=-103/300 d roof live loads have	t* 4-5,5-8:2x4 SP 24 t* 18-16:2x4 SP No.? t* 3:2x4 SP No.2 athing directly applie xcept end verticals, a -12 max.): 4-8. applied or 6-0-0 oc 6-17, 7-12 20=0-3-8 .C 14) (LC 37), 20=1520 (LC pression/Maximum i/516, 3-4=-2748/442 -4015/680, -2207/376, 9-10=0/6 1=-1459/342 9=-52/39, 3-18=-24/3 -17=-499/4085, '249, 14-15=-22/213, i-12=-148/514 '=-94/1111, 16=-352/2942, :=-311/153, 2=-33/808, :=-315/2432, been considered for	2) 00F 1, 3) 4) 5) C 37) 6) 7) 2, 88, 8) 521, 9) LC	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pf Snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded * This truss f on the bottor 3-06-00 tall b chord and ar This truss is International R802.10.2 ai Graphical pu or the orienta bottom chorc DAD CASE(S)	7-10; Vult=130mp bh; TCDL=6.0ps; E B; Enclosed; MWFF one; cantilever left nd right exposed;C FRS for reactions ate grip DOL=1.33 7-10; Pr=20.0 psf late DOL=1.15); P(8.9 psf (flat roof snc .15); Category II; E .50-0-0 snow loads have b ss been designed for pas bea	h (3-sec 3CDL=6 RS (env and rig c-C for n shown; (roof liv g=20.0 p ow: Lur Exp B; F een cor or great at roof le orther li revent of for a liv s where I fit betw lance w sections dard AN does no long the	cond gust) .0ps; h=25ft; elope) and C- ht exposed ; nembers and Lumber re load: Lumb osf (ground lober DOL=1.1 'ully Exp.; insidered for th er of min roof pad of 13.9 ps ve loads. water ponding e load of 20.0 a rectangle veen the bottor ith the 2015 s R502.11.1 a ISI/TP1 1. ot depict the s e top and/or	-C end er 5 live sf on g. Dpsf om and size				SEA 4584	ROX DHNS	- Americano

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H13	Нір	1	1	Job Reference (optional)	146536370

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:16 ID:QFJkBLieK3xTqaRCgOQR14ylyl7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:65.2

Plate Offsets ((X, Y): [3:0-0-12,0-2-4]	, [4:0-4-0,0-1-9], [8:0-	4-0,0-1-9	, [9:0-3-8,Edg	ge], [13:0-3-0,0-1-1	2], [15:0	-6-4,0-4-4], [19:0-2-0	,0-7-4]				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.97 0.91 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.31 0.20	(loc) 15-16 13-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 220 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Except 8-9:2x4 SP 2400F 2.0 2x4 SP No.2 *Except 2x4 SP No.3 *Except Structural wood sheat except end verticals, (3-0-3 max.): 4-8. Rigid ceiling directly a	* 1-4:2x4 SP No.1, 0E * 5-14:2x4 SP No.3 * 10-9:2x4 SP No.2 athing directly applied and 2-0-0 oc purlins applied or 6-0-0 oc	2) , 3)	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1	7-10; Vult=130mp bh; TCDL=6.0psf; E 3; Enclosed; MWFF cone; cantilever left nd right exposed;C (FRS for reactions ate grip DOL=1.33 ; 7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof snc .15); Category II: 8	n (3-sec 3CDL=6 3S (env and rig -C for n shown; (roof liv j=20.0 p w: Lum Exp B; F	ond gust) .0psf; h=25ft elope) and C ht exposed ; nembers and Lumber e load: Lumb sf (ground ber DOL=1.1 ully Exp.;	; -C end ber					
WEBS REACTIONS	1 Row at midpt 3 (size) 10= Mecha Max Horiz 19=146 (Li Max Grav 10=1372 (3-16, 5-16, 7-11 anical, 19=0-3-8 C 12) LC 2), 19=1493 (LC 3	4) 5) 38)	Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0	50-0-0 snow loads have b s been designed fo psf or 2.00 times fla	een cor or greate at roof le	isidered for the er of min roof bad of 13.9 p	his [:] live sf on					
FORCES	(lb) - Maximum Comp Tension 1-2=0/68, 2-3=-2987/ 4-5=-1882/406, 5-7=- 7-8=-1568/370, 8-9=- 2-19=-1493/317, 9-11	pression/Maximum /566, 3-4=-2294/419, -2558/507, -1944/352, D=-1290/288	6) 7)	overhangs n Provide adeo * This truss h on the bottor 3-06-00 tall b	on-concurrent with quate drainage to p has been designed n chord in all areas by 2-00-00 wide wil	other liv revent for a liv where fit betv	ve loads. vater ponding e load of 20.0 a rectangle veen the botto DL = 10.0pc	g. Opsf om					11.
BOT CHORD	18-19=-130/113, 17- 3-17=-12/462, 16-17= 15-16=-318/2568, 14 13-14=0/124, 11-13= 10-11=-155/553		8) 9) 1, 10)	Refer to gird This truss is International R802.10.2 at Graphical pu	er(s) for truss to tru designed in accord Residential Code s and referenced stan rlin representation	ss conr ance w sections dard AN does no	ections. th the 2015 R502.11.1 a SI/TPI 1.	ind size		0	A.L.	ORTH CA	ROLIN
WEBS	3-16=-1477/408, 4-16 5-16=-1035/152, 13- 7-15=-66/472, 7-13=- 7-11=-900/126, 8-11= 2-17=-397/2195, 2-18	6=-83/966, 15=-274/2112, -285/124, =0/674, 9-11=-44/132 8=-132/393	_{2,} LO	or the orienta bottom choro AD CASE(S)	ation of the purlin a J. Standard	long the	top and/or			and the second se		SEAI 4584	4
NOTES 1) Unbalance this design	ed roof live loads have l n.	been considered for									T	ENGINE	EPEON

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H14	Нір	1	1	Job Reference (optional)	146536371

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:17 ID:MdRVc1jushBB4tbbopTv6Vylyl5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:67.2
---------	--------

Plate Offsets (X, Y): [2:0-3-3,0-1-8],	[5:0-4-0,0-1-9], [7:0-	4-0,0-1-9]	, [15:0-5-8,0-2-	12], [17:0-7-0,0-2-4	8]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.88 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.27 0.17	(loc) 11-13 15-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 235 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep No.3 2x4 SP No.3 *Excep Structural wood shee 3-0-1 oc purlins, exi 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing, Except: 8-5-7 oc bracing: 16	t* 18-3,15-14:2x4 SP t* 19-2,2-17:2x4 SP I athing directly applier cept end verticals, an -7 max.): 5-7. applied or 10-0-0 oc -17	1) 2) No.2 d or d 3)	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) zvertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1	roof live loads have 7-10; Vult=130mpl bh; TCDL=6.0psf; E s; Enclosed; MWFF one; cantilever left nd right exposed;C FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf ate DOL=1.15); Pg 8.9 psf (flat roof snc _15); Category II: 8	e been of SCDL=6 SC (env and rig -C for n shown; (roof liv =20.0 p wv: Lum	considered for ond gust) .0psf; h=25ft elope) and C ht exposed ; nembers and Lumber e load: Lumb sef (ground ber DOL=1.1 ully Exp.:	or -C end per 15						
WEBS REACTIONS FORCES	6-0-0 oc bracing: 13 1 Row at midpt (size) 10= Mech Max Horiz 19=179 (L Max Grav 10=1479 ((lb) - Maximum Com	-14. 8-10, 6-13 anical, 19=0-3-8 .C 12) (LC 38), 19=1541 (LC pression/Maximum	4) C 38) ⁵⁾	Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 p	50-0-0 snow loads have b s been designed fo osf or 2.00 times fla	een cor or great at roof le	nsidered for the side of min roof bad of 13.9 p	his f live sf on						
TOP CHORD	Tension 1-2=0/57, 2-3=-3222 4-5=-2269/510, 5-6= 6-7=-1451/383, 7-8= 8-9=-379/134, 2-19= 9-10=-333/118	//530, 3-4=-2347/422 1618/403, 1884/448, 1480/277,	, 6) , 7) 8)	Provide adeo * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird	juate drainage to p has been designed in chord in all areas by 2-00-00 wide will by other members, i r(s) for truss to tru	for a liv where fit betw with BC	vater ponding e load of 20.0 a rectangle veen the botto DL = 10.0ps	g. Opsf om f.			2.44	WITH CA	ROLIN	Ļ
BOT CHORD	18-19=-48/222, 17-1 16-17=-485/2910, 15 14-15=0/67, 13-14=- 10-11235/1548	8=0/16, 3-17=-32/51 5-16=-147/1480, 11/68, 11-13=-126/1	6, <u>9)</u> 285,	This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stand	ance w sections	ith the 2015 R502.11.1 a ISI/TPI 1.	and		0	L'NO	in the second	Minic	K.
WEBS	5-15=-36/459, 8-10= 6-15=-116/181, 2-17 17-19=-161/159, 6-1 7-13=-29/499, 13-15 7-11=-97/504, 8-11= 4-16=-403/176, 5-16 3-16=-1036/231	1698/256, '=-382/2487, 3=-598/142, :=-190/1619, 284/187, :=-149/823,	10 LC) Graphical pu or the orienta bottom chorc DAD CASE(S)	rin representation titon of the purlin al I. Standard	does no	ot depict the s	SIZE		111111	P.I.I.	SEAI 4584	4 ER.ON	WILLING .
NOTES												Thinney JC	in in in its	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H15	Нір	1	1	Job Reference (optional)	146536372

Run: 8 51 S. Jun. 1 2021 Print: 8 510 S. Jun. 1 2021 MiTek Industries. Inc. Fri Jun 11 09:47:18 ID:nC7dE3mm9cZmxLJATx0ck8ylyl2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H16	Нір	1	1	Job Reference (optional)	146536373

11-10-13

Scale = 1:79.1

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:19 ID:f_M84QpHCq4CPydxin5Yu_ylyl_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [5:0	0-3-0,0-3-0], [6:0-4-0,0-1-9], [7	7:0-4-0,0-1-9], [8:0-5-0,0-3-0],	[9:Edge,0-1-12], [10:Edge,0-1-8	3], [15:0-6-0,0-2-8], [17:0-2-8,Edge]	, [19:Edge,0-6-2]
----------------------------	-----------------------------------	----------------------------------	---------------------------------	---------------------------------------	-------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.95 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.28 0.20	(loc) 11-13 11-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 242 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E * No.2, 8-9:2x4 SP No 2x4 SP No.2 *Except 2x4 SP No.3 *Except 15-6,13-6,13-7,17-2: Structural wood sheat except end verticals, (3-11-13 max.): 6-7. Rigid ceiling directly	*Except* 6-7:2x4 SP .1 t* 15-14:2x4 SP No.3 t* 2x4 SP No.2 athing directly applie and 2-0-0 oc purlins applied or 2-2-0 oc	2) 3 d, 3)	Wind: ASCE Vasd=103m Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 p TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10. Lu	7-10; Vult=130mpl bh; TCDL=6.0psf; E 3; Enclosed; MWFF tone; cantilever left ind right exposed; C (FRS for reactions : ate grip DOL=1.33 5 7-10; Pr=20.0 psf late DOL=1.15); Pc 3.9 psf (flat roof snc 1.15); Category II; E 50-0-0	n (3-sec SCDL=6 SS (env and rig -C for r shown; (roof liv j=20.0 p w: Lun Exp B; F	cond gust) 0.0psf; h=25ft elope) and C ht exposed ; nembers and Lumber re load: Lumb osf (ground iber DOL=1.1 rully Exp.;	; -C end Per						
WEBS REACTIONS	bracing. 1 Row at midpt (size) 10= Mech Max Horiz 19=245 (L Max Grav 10=1577 (6-13, 8-13 anical, 19=0-3-8 .C 12) (LC 38), 19=1635 (L0	4) 5) C 38)	Unbalanced design. This truss ha load of 12.0	snow loads have b as been designed for psf or 2.00 times fla	een cor or great at roof le	nsidered for the er of min roof bad of 13.9 p	his live sf on						
FORCES	(lb) - Maximum Com Tension 1-2=0/55, 2-3=-3641 4-6=-2116/409, 6-7= 7-9=-2233/372, 2-19 9-10=-1501/258	pression/Maximum /525, 3-4=-2686/402 -1287/375, =-1637/291,	6) 7)	Provide ader * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird	quate drainage to p has been designed n chord in all areas by 2-00-00 wide wil by other members, er(s) for truss to tru	revent for a liv where fit betw with BC	water ponding e load of 20.0 a rectangle veen the both CDL = 10.0ps pections	g. Opsf om f.					11111	
BOT CHORD	18-19=-197/235, 17- 3-17=-56/766, 16-17 15-16=-240/2235, 14 11-13=-181/1789, 10 3-16=-1172/236, 4-1 13-15=0/1333, 6-15= 6-13=-350/156, 7-13 8-13=-700/225, 8-11	18=-63/62, =-473/3286, I-15=0/36, 13-14=-10)-11=-86/283 6=0/292, 4-15=-861/ =-119/926, =-89/527, =0/205 9-11=-97/15	9) 0/25, /260, ¹⁰	This truss is International R802.10.2 a)) Graphical pu or the orienta bottom chore CAD CASE(S)	designed in accord Residential Code s and referenced stan- rrlin representation ation of the purlin a d. Standard	ance w sections dard AN does no long the	ith the 2015 s R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size		0) No	SEA 4584	din to	in the manual
	2-17=-382/2752, 2-1	8=-127/320	,										7	- HI

NOTES

1) Unbalanced roof live loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H17	Hip Girder	1	1	Job Reference (optional)	146536374

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:23 ID:ynExPBULZXg1gp3ldc6DIHylyIP-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

June 11,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:64.6

Plate Offsets ((X, Y): [3:0-2-12,0-2-0	0], [8:0-3-0,0-2-0], [11	:Edge,0-6	-2], [19:Edge,0	-6-2]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.92 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.65 0.16	(loc) 15 13-15 11	l/defl >999 >643 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 186 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2.0E, 5-8:2x4 SP No. 2x4 SP No.1 2x4 SP No.3 Structural wood she 3-7-14 oc purlins, e 2-0-0 oc purlins (2 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8 Max Horiz 19=-86 (L Max Uplift 11=-342 Max Grav 11=1641 (lb) - Maximum Con Tension 1-2=0/68, 2-3=-2300 4-6=-4705/1130, 6- 7-8=-1886/475, 8-9 2-19=-1603/360, 9- 18-19=-90/226, 17- 15-17=-981/4177, 1 3-18=-184/952, 8-11 2-18=-184/952, 8-11 2-18=-184/952, 8-11 2-18=-2410/595, 7-	bt* 3-5:2x4 SP 2400F b.1 eathing directly applie except end verticals, a 4-8 max.): 3-8. / applied or 5-11-11 o 4-18, 7-12 , 19=0-3-8 _C 9) (LC 7), 19=-342 (LC 8 (LC 43), 19=1641 (LC mpression/Maximum 6/518, 3-4=-1984/474 7=-4142/983, =-2307/519, 9-10=0/6 11=-1603/359 18=-981/4177, 3-15=-1129/4742, 1-12=-39/165 2=-183/950, 12=-429/1825, 12=-2409/594, 400/070 of 5, 415/0	2) d or and c 4) 5) 3) (c 4) 7) 8) (c 41) 7) 8) (c 41) 7) 8) 10 11	Wind: ASCE Vasd=103mµ Cat. II; Exp E left and right exposed; Luu TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec All plates are * This truss f on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces) This truss is International R802.10.2 ai	7-10; Vult=130mpt bh; TCDL=6.0psf; B 3; Enclosed; MWFR exposed ; end vert mber DOL=1.60 pla 5; 7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof sno .15); Category II; E 50-0-0 snow loads have but as been designed for psf or 2.00 times fla on-concurrent with quate drainage to psf as been designed for psf or 2.00 times fla on-concurrent with quate drainage to psf as been designed in chord in all areas by 2-00-00 wide will by other members. IiTek connectors re ing walls due to UP ion is for uplift only casing designed in accord Residential Code s and referenced stance rulin representation	n (3-sect CCL=6 CS (env ical left tte grip (roof livi =20.0 p w: Lurr xp B; F een cor r great tt roof lk where fin for a livi where fit betv comme LIFT at and dc ance w eections dard AN does nn	cond gust) cond gust) copsf; h=25ft; elope); cantile and right DOL=1.33 e load: Lumbu ber DOL=1.1: ully Exp.; asidered for the er of min roof bad of 13.9 ps ve loads of 13.9 ps ve loads of 20.0 a rectangle veen the botto ended to conn- jt(s) 19 and 1 es not consid ith the 2015 is R502.11.1 and ISI/TPI 1. ot depict the s	ever er 5 live sf on g. d. lpsf om ect l1. er nd ize	1) De In Ur Co	ead + Sr crease= inform Lc Vert: 1-: 11-19=- oncentra Vert: 15 (B), 22= (B), 32= (B), 34= (B), 44= (B), 49= (B)	ow (ba 1.15 2=-48, 20 ted Lo. 	alanced): Lumber b/ft) 2-3=-48, 3-8=-58 ads (lb)), 6=0 (B), 22=0 (33=0 (B), 28=0 (33=0 (B), 34=0 (40=-8 (B), 41=-6 (50=-8 (B), 51=-6 (50=-6 (B), 51=-6 (Increase=1.1 i, 8-9=-48, 9-1 i), 29=0 (B), 3 i), 29=0 (B), 3 i), 35=0 (B), 3 i), 42=-8 (B) i) (B), 42=-8 (B) i) (B), 42=-8 (B) i) (B), 52=-6 (B) i) (B), 52=-6 (B) i) (B), 52=-6 (B) i) (B), 52=	5, Plate 0=-48, 24=0 31=0 38=-1 38=-1 3, 43=-8 3, 48=-8 3, 53=-1
	2-18=-422/1818, 9- 4-18=-2410/595, 7- 4-17=0/205, 4-15=- 6-13=-674/189, 7-1	12=-429/1825, 12=-2409/594, 189/676, 6-15=-115/9 3=-69/481	11 3,	R802.10.2 at) Graphical pu or the orienta bottom chore	nd referenced stand Irlin representation ation of the purlin al d.	tard AN does no ong the	ISI/TPI 1. ot depict the s e top and/or	ize				SEA 4584	L 14	ALC: LA COMPANY

NOTES

- Unbalanced roof live loads have been considered for this design.
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
 In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H18	Нір	1	1	Job Reference (optional)	146536375

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:24 ID:xEA4HZ30a5OsbaTDdTVFw7ylylx-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.3

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [7	7:0-4-0,0-1-9], [10:Ee	dge,0-6-2	:], [17:Edge,0-6	6-2]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.88 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.39 0.12	(loc) 13-14 13-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES	2x4 SP No.2 *Except* 2.0E 2x4 SP No.2 2x4 SP No.3 *Except* Structural wood sheat 3-1-2 oc purlins, exce 2-0-0 oc purlins (4-3-8 Rigid ceiling directly a bracing. 1 Row at midpt 4- (size) 10=0-3-8, 1 Max Horiz 17=117 (LC Max Grav 10=1518 (L (lb) - Maximum Compi Tension	3-5,5-7:2x4 SP 240 17-2,10-8:2x4 SP N hing directly applied pt end verticals, and 8 max.): 3-7. pplied or 9-7-8 oc -16, 4-13, 6-11 7=0-3-8 ; 14) C 37), 17=1517 (LC ression/Maximum	2) 0F 0.2 or 1 3) 4) 37) 5)	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 p overhangs no	7-10; Vult=130mph bh; TCDL=6.0psf; B s; Enclosed; MWFR one; cantilever left nd right exposed;C- FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf (ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E 50-0-0 snow loads have be s been designed fo psf or 2.00 times fla on-concurrent with o	(3-sec CDL=6 S (env and rig -C for n hown; -C for n hown; =20.0 p w: Lurr xp B; F een cor r great t roof k other h	cond gust) cond gust) consr; h=25ft elope) and C ht exposed; nembers and Lumber e load: Lumb srf (ground ber DOL=1.1 ully Exp.; nsidered for the er of min roof bad of 13.9 pro- re loads.	; -C end I5 his flive sf on					
TOP CHORD BOT CHORD	1-2=0/68, 2-3=-2204/3 4-6=-3097/559, 6-7=-1 7-8=-2204/375, 8-9=0, 8-10=-1457/342 16-17=-155/565, 14-11 13-14=-371/3094, 11-1 0-11=-148/513	375, 3-4=-1807/366, 1807/366, /68, 2-17=-1457/342 6=-371/3094, 13=-370/3097,	8)	* This truss h on the botton 3-06-00 tall b chord and an This truss is International R802.10.2 ar	as been designed for a chord in all areas y 2-00-00 wide will y other members. designed in accorda Residential Code s ad referenced stance	for a liv where fit betw ance w ections lard AN	e load of 20.0 a rectangle veen the botto the the 2015 5 R502.11.1 a ISI/TPI 1.	om and		/	Jun	WTH CA	ROUT
WEBS NOTES 1) Unbalance	3-16=-33/805, 4-16=-1 4-13=-45/47, 6-13=0/1 7-11=-33/806, 2-16=-5 ed roof live loads have bi	1527/234, 4-14=0/14 171, 6-11=-1530/234 58/1579, 8-11=-66/1 een considered for	6, 9) , 578 LC	Graphical pu or the orienta bottom chord OAD CASE(S)	rlin representation o tion of the purlin al Standard	does no ong the	ot depict the s top and/or	size		(FT.	SEA	Minter

this design.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H19	Нір	1	1	Job Reference (optional)	146536376

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:25 ID:udlqiF5G5ieZqucbluXj?Yylylv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.7	
----------------	--

Plate Offsets	(X, Y): [2:Edge,0-3-0],	[4:0-4-0,0-1-9], [7:0-	4-0,0-1-9]	, [11:Edge,0-3	-0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.97 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.30 0.11	(loc) 14-16 14-16 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 204 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x4 SP No.3 *Excep No.2, 17-2,11-9:2x4 Structural wood she: 3-9-8 oc purlins, exc 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 17=-150 (Max Grav 11=1502 ((lb) - Maximum Com Tension 1-2=0/68, 2-3=-454// 4-6=-1608/366, 6-7= 7-8=-1942/389, 8-9= 2-17=-512/147, 9-11 16-17=-215/1515, 1/ 4-16=-50/663, 6-16= 6-12=-923/150, 7-12 3-16=-192/182, 3-17 8-12=-192/181, 8-11 ed roof live loads have n.	t* 4-5,5-7:2x4 SP 244 t* 16-6,12-6:2x4 SP SP No.1 athing directly applie- cept end verticals, ar -9 max.): 4-7. applied or 2-2-0 oc 6-16, 6-12 17=0-3-8 LC 13) (LC 38), 17=1502 (L0 pression/Maximum 114, 3-4=-1942/389, 1611/366, e-454/113, 9-10=0/68 =-512/147 4-16=-234/2347, 1-12=-209/1515 -923/150, 6-14=0/41 2=-51/664, '=-1572/318, =-1572/318 been considered for	2) DOF 3) d or 3) (d 4) 5) C 38) 6) 7) , 8) 4, 9) LC	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded * This truss f on the bottor 3-06-00 tall b chord and ar This truss is International R802.10.2 au Graphical pu or the orienta bottom chore DAD CASE(S)	7-10; Vult=130mp bh; TCDL=6.0psf; 1 8; Enclosed; MWFI one; cantilever lefi nd right exposed; 0 FRS for reactions ate grip DOL=1.33 7-10; Pr=20.0 psf late DOL=1.15); P 8.9 psf (flat roof sn. 15); Category II; 1 50-0-0 snow loads have to so been designed f psf or 2.00 times ff on-concurrent with quate drainage to p as been designed in chord in all areas by 2-00-00 wide wi y other members, designed in accord Residential Code nd referenced stan rlin representation ation of the purlin a standard	h (3-sec BCDL=6 RS (envt and rig C-C for n shown; f (roof liv g=20.0 p ow: Lurr Exp B; F been cor or great at roof h for a liv for a liv	cond gust) .0psf; h=25ft; elope) and C- ht exposed ; hembers and Lumber e load: Lumb sf (ground ber DOL=1.1 ully Exp.; isidered for th er of min roof bad of 13.9 p; re loads. water ponding e load of 20.0 a rectangle veen the bottd DL = 10.0psf ith the 2015 r F502.11.1 a ISI/TPI 1. ot depict the se top and/or	-C end er 5 live sf on g. Dpsf om 				SEAL SEAL SEAL SEAL SEAL	A POLINE A POLINE A POLINE	and an and a start of the start

JUN June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H20	Нір	1	1	Job Reference (optional)	146536377

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:26 ID:IC_zKH79Od08hLLAQ04QdAylyls-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.7

Plate Offsets	(X, Y): [4:0-5-1,Edge],	[6:0-5-1,Edge], [10:	Edge,0-6-2	2], [12:0-2-8,0-3	3-0], [14:0-2-8,0-3-	-0], [16:E	Edge,0-6-2]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.60 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.06	(loc) 12-13 12-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 3-6-6 oc purlins, exc 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 10=0-3-8, Max Horiz 16=-183 (I Max Grav 10=1552 ((lb) - Maximum Comp Tension 1-2=0/57, 2-3=-2073, 4-5=-1335/376, 5-6= 6-7=-1685/394, 7-8= 2-16=-156/324, 7-8= 2-16=-156/476, 13- 11-13=-169/1629, 10 3-15=-26/88, 3-14=-4	athing directly applie sept end verticals, ar -5 max.): 4-6. applied or 10-0-0 oc 5-14, 5-12 16=0-3-8 LC 13) LC 38), 16=1552 (Li pression/Maximum /356, 3-4=-1685/394 -1335/376, -2073/356, 8-9=0/57 0=-1491/324 15=-173/1629, 0-11=-75/374	3) nd or 4) 5) 5 (C 38) (C 38)	TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 1 overhangs n Provide adec * This truss fa on the bottor 3-06-00 tall b chord and ar This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	7-10; Pr=20.0 psf ate DOL=1.15); P 8.9 psf (flat roof sm .15); Category II; I 50-0-0 snow loads have b s been designed f psf or 2.00 times fl pon-concurrent with juate drainage to p as been designed in chord in all areas by 2-00-00 wide wi yo other members, designed in accorre Residential Code nd referenced stan rlin representation tition of the purlin a L. Standard	f (roof liv g=20.0 p ow: Lum Exp B; F peen cor or greate lat roof le to revent 1 f for a liv s where II fit betw with BC dance w sections dard AN does no along the	e load: Lumb sf (ground iber DOL=1.1 ully Exp.; asidered for th er of min roof bad of 13.9 ps ve loads. water ponding e load of 20.0 a rectangle tween the bott DL = 10.0psf ith the 2015 ; R502.11.1 a ISJ/TPI 1. bt depict the s e top and/or	er 5 live sf on 9 ppsf om nd				WH CA	Ro	
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10: Cat. II; E> Exterior (; vertical le forces & I DOL=1.6(3-15=-26/88, 3-14=- 5-14=-498/92, 5-13= 6-12=-75/588, 7-12= 2-15=-121/1262, 8-1 ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; BC pB; Enclosed; MWFRS 2) zone; cantilever left a ft and right exposed;C-(WWFRS for reactions sf 0 plate grip DQL=1.33	438/139, 4-14=-75/5 0/318, 5-12=-498/91 -438/139, 7-11=-26/ 1=-121/1262 been considered for (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) and C- ind right exposed ; e C for members and hown; Lumber	88, I, 88, C							C. minimum	ALL AND	SEA 4584	4 ER ON	

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H21	Нір	1	1	Job Reference (optional)	146536378

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:26 ID:jnf6yIA1hYOjYp4l58e7Foylylp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	1.00 0.67 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.27 0.06	(loc) 14-15 14-15 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 223 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she: except end verticals, (6-0-0 max.): 5-6. Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=216 (L Max Grav 11=1600 ((lb) - Maximum Com Tension 1-2=0/57, 2-3=-2205 5-6=-1307/378, 6-8= 8-9=-2205/350, 9-10 9-11=-1529/324 17-18=-194/563, 15- 14-15=-5/1307, 12-1 11-12=-127/488 3-17=0/101, 3-15=-5 5-14=-144/146, 6-14 8-14=-557/184, 8-12 9-12=-49/1356	t* 5-6:2x4 SP 2400F t* 14-5:2x4 SP No.2 athing directly applied , and 2-0-0 oc purlins applied or 10-0-0 oc 3-15, 5-14, 8-14 18=0-3-8 .C 14) (LC 38), 18=1600 (LC pression/Maximum 5/350, 3-5=-1760/386 .=10/57, 2-18=-1530/3 17=-150/1752, 4=-147/1752, 58/184, 5-15=-31/58 =-30/523, =0/101, 2-17=-48/13	2) , 3) , 3) , 4) , 5) , 6) , 7) 24, 8) 4, 9) 57, LC	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left af forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 j overhangs n Provide adec * This truss ha on the bottor 3-06-00 tall b chord and ar This truss is International R802.10.2 ai Graphical pu or the orienta bottom chorc	7-10; Vult=130mp bh; TCDL=6.0psf; E 8; Enclosed; MWFF one; cantilever left nd right exposed;C FRS for reactions ate grip DOL=1.33 7-10; Pr=20.0 psf ate DOL=1.15); Pg .39 psf (flat roof sm .15); Category II; E .50-0-0 snow loads have b s been designed for post or 2.00 times flat on-concurrent with quate drainage to p ias been designed n chord in all areas by 2-00-00 wide will y other members, designed in accord Residential Codes and referenced stan flin representation tion of the purlin a l. Standard	h (3-sec BCDL=6 RS (env: and rig C-C for n shown; (roof liv g=20.0 p ow: Lum Exp B; F been cor or great at roof lo order liv order liv s where I fit betw with BC dance w sections dard AN does no long the	cond gust) 5.0psf; h=25ft elope) and C ht exposed; nembers and Lumber e load: Lumb bosf (ground bosf (ground bosr ODL=1.1 fully Exp.; asidered for th er of min roof pad of 13.9 p; ve loads. water ponding e load of 20.0 a rectangle veen the botti DL = 10.0psl ith the 2015 s R502.11.1 a JSI/TPI 1. ot depict the s e top and/or	; -C end ber 5 5 his 5 live sf on g. Dpsf c m f. nd size		C	L'un	WITH CA	ROLINI
NOTES				(-)						-		458/	и : Е

 Unbalanced roof live loads have been considered for this design.

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H22	Hip	1	1	Job Reference (optional)	146536379

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 09:47:28 ID:bYvcogDYInu91QNWK_j3Peylyll-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [3:0-4-0,0-3-4], [4:0-4-0,0-1-9], [5:0-4-0,0-1-9], [6:0-4-0,0-3-4], [9:Edge,0-6-2], [16:Edge,0-6-2]

3)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.95	Vert(LL)	-0.14	13-15	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.27	13-15	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.06	9	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 239 lb	FT = 20%
			2) Wind: ASCI	E 7-10: Vult=130r	mph (3-sec	cond aust)						
TOP CHORD	2x4 SP 2400F 2.0E	*Except* 4-5:2x4 SF	Vasd=103m	ph; TCDL=6.0ps	f; BCDL=6	.0psf; h=25ft	;					
	No.2, 1-3,6-8:2x4 SF	P No.1	Cat. II; Exp	B; Enclosed; MV	/FRS (env	elope) and C	-C					
BOT CHORD	2x4 SP No.2		Exterior (2)	zone; cantilever l	left and rig	ht exposed ;	end					
WEBS	2x4 SP No.3 *Except	t* 13-4,12-4,12-5:2x	4 SP vertical left	and right exposed	d;C-C for n	nembers and						
	No.2		forces & M	VFRS for reaction	ns shown;	Lumber						
BRACING			DOL=1.60	plate grip DOL=1.	33							

BIUU	
TOP CHORD	Structural wood sheathing directly applied or 2-11-12 oc purlins, except end verticals, and
	2-0-0 oc purlins (4-0-3 max.): 4-5.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 3-13, 4-12, 6-12
REACTIONS	(size) 9=0-3-8, 16=0-3-8
	Max Horiz 16=-248 (LC 13)
	Max Grav 9=1647 (LC 38), 16=1647 (LC 38)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/55, 2-4=-2308/375, 4-5=-1306/378,
	5-7=-2307/375, 7-8=0/55, 2-16=-1568/321,
	7-9=-1568/321
BOT CHORD	15-16=-226/689, 13-15=-128/1881,
	12-13=0/1304, 10-12=-125/1841,
	9-10=-176/609
WEBS	3-15=0/232, 3-13=-736/227, 4-13=-79/547,
	4-12=-192/206, 5-12=-79/551,
	6-12=-732/226, 6-10=0/230, 2-15=0/1419,
	7-10=0/1415
NOTES	

Unbalanced roof live loads have been considered for

1)

this design.

grip DOL TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

- DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 6) * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H23	Half Hip	1	1	Job Reference (optional)	146536380

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:28 ID:MYKnLnvEtndrvROWpXFzMAylym9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

June 11,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:45.9

Plate Offsets (X, Y): [4:0-3-0,Edge]

			_											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.17 0.13 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood shea 2-10-12 oc purlins, of Rigid ceiling directly bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=94 (LC Max Uplift 4=-17 (LC Max Grav 4=42 (LC (LC 2)	t* 7-3:2x4 SP No.3 athing directly applied except end verticals. applied or 6-0-0 oc nical, 5= Mechanical, 10) 10), 5=-28 (LC 10) 25), 5=66 (LC 25), 8=	3) 4) f or 5) 6) 7) =-207 8)	This truss ha load of 12.0 p overhangs no * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 5. One RT7A M truss to beari connection is forces. This truss is a	s been designed for osf or 2.00 times file on-concurrent with as been designed in chord in all areas y 2-00-00 wide will y other members. ar(s) for truss to tru- ranical connection capable of withsta iTek connectors re ng walls due to UP for uplift only and designed in accord	or great at roof lo other liv for a liv where fit betv uss con (by oth nding 2 comme LIFT at does no	er of min roof pad of 13.9 ps re loads. e load of 20.0 a rectangle even the botto nections. ers) of truss to 8 lb uplift at jo nded to commi- jt(s) 4. This ot consider lat tith the 2015	live f on psf m opint ect eral						
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/65, 2-3=-91/57	7, 3-4=-51/57, 4-5=0/	0, 9)	R802.10.2 ar Gap betweer	Residential Code s nd referenced stand n inside of top chore	ections dard AN d bearir	ISI/TPI 1. ISI/TPI 1. Ig and first	nd						
BOT CHORD	2-8=-188/110 7-8=-172/150, 6-7=-{	51/68, 3-6=-43/38,	LC	diagonal or v AD CASE(S)	ertical web shall no Standard	ot excee	ed 0.500in.							
WEBS NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.6C 2) TCLL: AS DOL=1.15 snow); Pf= Plate DOL Ct=1.10	2-7=-103/140 CE 7-10; Vult=130mph imph; TCDL=6.0psf; BG p B; Enclosed; MWFRS 2) zone; cantilever left at t and right exposed;C-1 WFRS for reactions sl plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (i Plate DOL=1.15); Pg= =13.9 psf (flat roof snov _=1.15); Category II; Ex	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; er C for members and hown; Lumber roof live load: Lumber -20.0 psf (ground w: Lumber DOL=1.15 sp B; Fully Exp.;	e nd							Continue	Liza Print	SEA 4584	ROU ROU L 4	Samering

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H24	Half Hip Girder	4	1	Job Reference (optional)	146536381

0-10-3

2-10-12 2-0-9

Carter Components (Sanford), Sanford, NC - 27332,

Scale = 1:41.5

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

3)

TOP CHORD

BOT CHORD

this design.

Ct=1.10. Lu=50-0-0

REACTIONS (size)

bracing.

Max Horiz

Tension

TCLL (roof)

Snow (Pf/Pg)

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 09:47:29 ID:UJ87e2G2o?PaW2hHZqn?aUylylh-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	H25	Half Hip	3	1	Job Reference (optional)	146536382

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:29 ID:MYKnLnvEtndrvROWpXFzMAylym9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-12

2-10-12

Scale = 1:31.7

Plate Offsets (X, Y): [3:0-3-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.06 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	$\begin{array}{l} 2x4 \ SP \ No.2\\ 2x4 \ SP \ No.2\\ 2x4 \ SP \ No.2\\ 2x4 \ SP \ No.3\\ \end{array}$ Structural wood she: 2-10-12 oc purlins, or Rigid ceiling directly bracing. (size) 3= Mecha $5=0-3-8\\ Max \ Horiz 5=106 \ (LC\\ Max \ Grav 3=70 \ (LC\\ (LC 2)\\ (lb) - Maximum \ Com$	athing directly applie except end verticals. applied or 10-0-0 oc nical, 4= Mechanical C 10) C 10), 4=-10 (LC 10) 25), 4=43 (LC 11), 5 upression/Maximum	3) 4) d or 5) 6) 1, 7) =207 8)	This truss ha load of 12.0 (overhangs m * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4. One RT7A M truss to bear This connect lateral forcess This truss is International	s been designed for on-concurrent with has been designed n chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tr hanical connection capable of withsta liTek connectors re ing walls due to UF ion is for uplift only designed in accord Residential Code	or greate at roof k other lin for a liv s where I fit betw uss con (by oth anding 1 ecomme PLIFT at and do dance w sections	er of min roof pad of 13.9 p: ve loads. e load of 20.0 a rectangle veen the bottu nections. ers) of truss t 0 lb uplift at j nded to conr jt(s) 5 and 3 es not consid th the 2015 R502.11.1 a	live sf on Opsf om oint dect der					
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=103 Cat. II; Ext Exterior (2 vertical lef forces & M DOL=1.60 2) TCLL: ASI DOL=1.15 snow); Pf= Plate DOL Ct=1.10	1-2=0/65, 2-3=-108/ 2-5=-180/121 4-5=-227/205 2-4=-170/199 CE 7-10; Vult=130mph mph; TCDL=6.0psf; BG p B; Enclosed; MWFR! 2) zone; cantilever left at t and right exposed; C- MWFRS for reactions s1 p Date grip DOL=1.33 CE 7-10; Pr=20.0 psf (filt poly sector) i Plate DOL=1.15); Pg= =13.9 psf (flat roof snov.=1.15); Category II; Ex	101, 3-4=0/0, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; e C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 kp B; Fully Exp.;	9) LC nd 9r	R802.10.2 ar Gap betweer diagonal or v DAD CASE(S)	nd referenced stan n inside of top chor ertical web shall n Standard	dard AN d bearir ot excee	(SI/TPI 1. g and first ed 0.500in.				Oto	SEA 4584	ROLANS L L EER. SO MUSIC

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground
 - snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

818 Soundside Road Edenton, NC 27932

100000 June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J01	Jack-Open	15	1	Job Reference (optional)	146536383

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:30 ID:nUf2ptzR8qiMTy7Rz?qbwjylykn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 =

4-0-0

Scale = 1:25.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/	TPI2014	CSI TC BC WB Matrix-MP	0.19 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.02 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No Structural 4-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	5.2 wood she purlins. ng directly 2=0-3-0, 3 Mechanic 2=51 (LC 2=-75 (LC 2=-75 (LC 2=-241 (LC (LC 2)	athing directly appli applied or 10-0-0 o 3= Mechanical, 4= al 11), 3=-28 (LC 11) ; 11), 3=-28 (LC 2), 4	ed or bc), =49	5) 6) 7) 8) 9)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 3. One RT16A I truss to beari connection is forces. One RT7A M truss to beari connection is forces.	as been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tri hanical connection e capable of withsta MiTek connectors in ing walls due to UF s for uplift only and liTek connectors re ing walls due to UFs for uplift only and	for a live s where I fit betw uss con (by oth anding 2 recomme PLIFT at does n ecomme PLIFT at does n	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 8 lb uplift at j nended to con jt(s) 4. This of consider la ended to conn i jt(s) 2. This of consider la	Dpsf om oint nect teral ect						
FORCES TOP CHORD BOT CHORD	(lb) - Maxi Tension 1-2=0/29, 2-4=-60/5	imum Com 2-3=-46/3 5	pression/Maximum 5		10) -	This truss is o International R802.10.2 ar	designed in accord Residential Code s nd referenced stan Standard	lance w sections dard AN	ith the 2015 8 R502.11.1 a NSI/TPI 1.	nd						
NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical left	CE 7-10; Vul 3mph; TCDL: p B; Enclose 2) zone; cant ft and right e	t=130mph =6.0psf; Bo ed; MWFR ilever left a	(3-second gust) CDL=6.0psf; h=25ft S (envelope) and C and right exposed ;	; -C end		(-)						0		HTH CA	ROLIN	

righ exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2)

- DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Samona 11111111111 June 11,2021

SEAL

45844

Yuunnoon

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J02	Jack-Open	2	1	Job Reference (optional)	146536384

-1-2-8 1-2-8

2

P

2x4 =

2-0-0

Carter Components (Sanford), Sanford, NC - 27332,

1-4-8

Q-4-3

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:30 ID:nUf2ptzR8qiMTy7Rz?qbwjylykn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

M

4

1-0-3

2-0-0

2-0-0

12 4 Г

Page: 1

Scale = 1:26.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	4-7	>999	240	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-7	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 8 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, : Mechanic Max Horiz 2=34 (LC Max Uplift 2=-63 (LC (LC 12) Max Grav 2=174 (LC (LC 2)	eathing directly applie 7 applied or 10-0-0 oc 3= Mechanical, 4= 31 11) 2 11), 3=-10 (LC 11), C 2), 3=38 (LC 2), 4=	5) * This trus on the boi 3-06-00 ta chord and 6) Refer to g 7) Provide m bearing pl 4. 8) One RT7/ truss to ba connectio 4=-7 9) One RT16 truss to ba connectio	s has been design tom chord in all are any other membe irder(s) for truss to echanical connect ate capable of with MiTek connectors earing walls due to h is for uplift only a GA MiTek connectoo earing walls due to h is for uplift only a	ed for a liv ass where will fit betv rs. b truss con ion (by oth isstanding 7 s recomme UPLIFT at nd does no rs recomm UPLIFT at nd does no	e load of 20.0 a rectangle veen the botto nections. ers) of truss t ' lb uplift at jo ended to conn ; jt(s) 2. This of consider la nended to conn ; jt(s) 3. This of consider la	Dpsf om o int ect teral inect teral						
FORCES	(lb) - Maximum Com	npression/Maximum	forces. 10) This truss	is designed in acc	ordance w	ith the 2015							
		4	Internation	nal Residential Coo	de sections	R502.11.1 a	nd						
	1-2=0/29, 2-3=-21/4	4	R802.10.2	and referenced st	andard AN	ISI/TPI 1.							
	2-4=-40/22		LOAD CASE(Standard 									
NOTES													
1) Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left exposed;C reactions s DOI = 1 33	he r-10; Vuit=130mpn mph; TCDL=6.0psf; B b B; Enclosed; MWFR) zone; cantilever left and right exposed; p -C for members and f shown; Lumber DOL=	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(and right exposed ; e orch left and right orces & MWFRS for 1.60 plate grip	C nd						C		ORTH CA	ROLIN	المتيمة
2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL= Ct=1.10	CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg 13.9 psf (flat roof sno =1.15); Category II; E	(roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.;	5						THE REAL		SEA 4584	.L 44	ann nu
3) Unbalance	d snow loads have be	een considered for thi	is							-7	1. ENG	-ER. A	2.3
design.										1	O, GIN	F.F. GU	5
4) This truss I	has been designed fo	r greater of min roof I	ive							1	NE	-UN N	

- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J03	Jack-Partial	4	1	Job Reference (optional)	146536385

3-3-6

3-3-6

Carter Components (Sanford), Sanford, NC - 27332,

2-4-6

0-4-3

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:31 ID:MYKnLnvEtndrvROWpXFzMAylym9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

 $4 \frac{12}{12}$ 2x4 = 9 2 $4 \frac{12}{12}$ 2x4 = 9 $4 \frac{12}{12}$ $4 \frac{$

54

3x5 =

6-0-8

2-9-2

3x5 =

Scale = 1:31.4

Plate Offsets (X, Y): [1:0-1-4,Edge]

(, , , , , , , , , , , , , , , , , , , ,													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T	FPI2014	CSI TC BC WB Matrix-MP	0.29 0.27 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 0.05 0.00	(loc) 5-8 5-8 4	l/defl >945 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD 3OT CHORD 3OT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Exj Exterior (2 Vertical lef exposed;C reactions s DOL=1.33 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1= Mecha Machanic Max Horiz 1=54 (LC Max Uplift 1=-54 (LC 4=-54 (LC Max Grav 1=239 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-355/265, 2-3=-i 1-5=-354/336, 4-5=0 2-5=-362/380 CE 7-10; Vult=130mph mph; TCDL=6.0psf; BK D B; Enclosed; MWFR3) zone; cantilever left at t and right exposed; po CC for members and ff shown; Lumber DOL=1 CE 7-10; Pr=20.0 psf (I Plate DOL=1.15); Pg= =13.9 psf (flat roof snou =1.15); Category II; E) ed snow loads have be	athing directly applied applied or 9-1-10 oc nical, 3= Mechanical al 11) 11) 11) 22), 3=65 (LC 2), 4= pression/Maximum 35/15 //0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; e orch left and right orces & MWFRS for 1.60 plate grip roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; een considered for thi	4)	This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 1 and 24 lb u One RT16A N rruss to beari connection is forces. This truss is of nternational R802.10.2 an D CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru anical connection capable of withsta plift at joint 3. MiTek connectors I ng walls due to UF for uplift only and designed in accord Residential Code s ad referenced stand Standard	for a liv where fit betw ss conr uss con (by oth nding 5 recomm LIFT at does no ance w sections dard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 4 lb uplift at ju ended to con jt(s) 4. This of consider la ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf om oint inect teral nd		Continue.		SEA 4584	RO 4 4 5HNS0111 11,2021	Summing.

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J04	Jack-Open	3	1	Job Reference (optional)	146536386

-1-2-8

1-2-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 09:47:31 ID:B3KBRu?JRI5wKQr0e8NIYMylykk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

2-0-0

12 4 Г

3

4

-0-3

(loc)

4-7

4-7

0.00

l/defl

>999

>999

L/d

240

180

PLATES

MT20

GRIP

244/190

FT = 20%

Page: 1

Scale = 1:26.5

Loading

TCLL (roof)

Snow (Pf/Pg)

TCDL		10.0	Rep Stress Incr	YES		WB
BCLL		0.0*	Code	IRC2015	/TPI2014	Mati
BCDL		10.0				
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Structural 2-0-0 oc p Rigid ceili bracing	o.2 o.2 I wood shea purlins. ing directly	athing directly appliec	5) I or 6) 7)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mecl bearing plate 4.	ias be n chor y 2-00 y othe er(s) fe hanica capa
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=0-3-0, 3 Mechanica 2=34 (LC 2=-63 (LC (LC 12) 2=174 (LC	= Mechanical, 4= al 11) 11), 3=-10 (LC 11), 4 2 2), 3=38 (LC 2), 4=1	8) 4=-7 9) 19	One RT7A M truss to bear connection is forces. One RT16A I truss to bear connection is	liTek o ing wa for u MiTek ing wa
FORCES TOP CHORD BOT CHORD	(lb) - Max Tension 1-2=0/29, 2-4=-48/2	(LC 2) imum Com 2-3=-21/44	pression/Maximum 1	10)	forces. This truss is International R802.10.2 ar	desigr Resid nd refe
NOTES				10	AD CASE(S)	Jidi

Spacing

Plate Grip DOL

Lumber DOL

1-4-8

2-0-0

1.15

1 15

Wind: ASCE 7-10; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.33

(psf)

20.0

13 9/20 0

- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 3) desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

DEFL in 0.12 Vert(LL) 0.00

Vert(CT)

2-0-0

CSI

тс

вс

2

0

2x4 =

0.02

TRENCO
818 Soundside Road
Edenton, NC 27932

Manual Internet

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J05	Jack-Open	1	1	Job Reference (optional)	146536387

2-0-0

12 4 Г

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:18.9 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

5)

TOP CHORD

BOT CHORD

Ct=1.10

desian.

REACTIONS (size)

BRACING

Snow (Pf/Pg)

(psf)

20.0

10.0

0.0

Mechanical Max Horiz 1=18 (LC 11) Max Uplift 2=-10 (LC 11)

(LC 2)

forces & MWFRS for reactions shown: Lumber

10.0

13 9/20 0

2x4 SP No.2

2x4 SP No.2

bracing.

Max Grav

Tension

DOL=1.60 plate grip DOL=1.33

chord and any other members.

1-2=-42/13

1-3=-23/34

2-0-0 oc purlins.

Spacing

Code

Lumber DOL

1-0-3

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 09:47:31 ID:B3KBRu?JRI5wKQr0e8NIYMylykk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J06	Jack-Open Supported Gable	1	1	Job Reference (optional)	146536388

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:32 ID:B3KBRu?JRI5wKQr0e8NIYMylykk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-0-0

2x4 =

2-0-0

12 4 Г

1-0-3

Scale = 1:18.7		

Plate Offsets (X, Y): [3:1-1-12,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg)	1:	(psf) 20.0 3.9/20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.04 0.04	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 6 3-6	I/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
TCDL		10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	1	n/a	n/a		
BCLL		0.0*	Code	IRC2015	/TPI2014	Matrix-MP								
BCDL		10.0											Weight: 7 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 2-0-0 oc p Rigid ceili bracing. (size) Max Horiz	0.2 0.2 0.3 I wood shea burlins, exc ing directly 1=2-0-0, 2 4=2-0-0 1=21 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 2= Mechanical, 3=2-0 14), 4=21 (LC 14)	4) 5) 6) d or 7) 8) 0-0, 9)	Unbalanced : design. Gable studs a * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 2. One RT7A M truss to beari	snow loads have be spaced at 2-0-0 oc. as been designed a chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta iTek connectors re ng walls due to UP	een cor for a liv where fit betw ss conr (by oth nding 8 comme PLIFT at	e load of 20.0 a rectangle veen the botto ections. ers) of truss to lb uplift at joi nded to conn it(s) 1. This	is psf m o nt ect					
	Max Uplift Max Grav	1=-2 (LC 7 (LC 11) 1=74 (LC (LC 2), 4=	11), 2=-8 (LC 15), 4= 2), 2=45 (LC 2), 3=2 .74 (LC 2)	-2 9 10)	connection is forces. This truss is o International	for uplift only and designed in accord Residential Code s	does no ance w	th the 2015 R502.11.1 a	eral nd					
FORCES	(lb) - Max	imum Com	pression/Maximum		R802.10.2 ar	d referenced stand	dard AN	ISI/TPI 1.						
	1-2=-39/2	2-3=0/0		11)	Gap between	inside of top chore	d bearir	ig and first						
BOT CHORD	1-3=-26/3	10, <u>2</u> 0 0, 0		10		Stondord		u 0.500in.						
NOTES				LU	AD CASE(S)	Standard							mm	1111.
 Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 Truss des only. For see Stand or consult TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 	CE 7-10; Vu mph; TCDL p B; Enclose) zone; can t and right e MWFRS for r o plate grip ID signed for w studs expos ard Industry qualified bu CE 7-10; Pr is Plate DOL: =13.9 psf (fla .=1.15); Cat	It=130mph =6.0psf; BC ed; MWFR3 ed; MWFR3 exposed;C-1 reactions sl DOL=1.33 ind loads in sed to wind / Gable End ilding desig =20.0 psf (i =1.15); Pg= at roof snow egory II; Ex	(3-second gust) CDL=6.0pst; h=25ft; S (envelope) and C-C and right exposed; e C for members and hown; Lumber a the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 sp B; Fully Exp.;	C nd ss le, l 1. r								A CONTRACTOR OF THE STATE	SEA 458 SEA	EEP. SOLUTION

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground 3)
- snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J07	Jack-Open Supported Gable	1	1	Job Reference (optional)	146536389

Run: 8 51 E. Jun 1 2021 Print: 8 510 E. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 11:43:42 ID:nUf2ptzR8qiMTy7Rz?qbwjylykn-fpk6FKKCBH2TEI5vbw362QundmmLp5TDuoAppVz7Mp?

2-0-0

2-0-0

12 4 Г

Page: 1

2x4 =6x10 = 2-0-0 PLATES DEFL in (loc) l/defl L/d 0.12 Vert(LL) 0.00 >999 240 MT20 7 0.02 Vert(CT) 0.00 7 >999 180 0.00 Horz(CT) 0.00 2 n/a n/a Matrix-MP Weight: 9 lb s truss has been designed for greater of min roof live d of 12.0 psf or 2.00 times flat roof load of 13.9 psf on rhangs non-concurrent with other live loads. le studs spaced at 2-0-0 oc. is truss has been designed for a live load of 20.0psf he bottom chord in all areas where a rectangle 5-00 tall by 2-00-00 wide will fit between the bottom rd and any other members. er to girder(s) for truss to truss connections. vide mechanical connection (by others) of truss to ring plate capable of withstanding 100 lb uplift at RT4 MiTek connectors recommended to connect s to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral

11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

LOAD CASE(S) Standard

forces

FORCES NOTES

Wind: ASCE 7-10; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

(lb) or less except when shown.

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GRIP

244/190

FT = 20%

CSI

тс

BC

WB

-1-2-8

1-2-8

Scale = 1:21.9 Plate Offsets (X, Y): [4:1-1-12,0-1-4]

Loading

TCDL

TCLL (roof)

Snow (Pf/Pg)

BCLL		0.0*	Code	IRC2015	/TPI2014
BCDL		10.0			
LUMBER				5)	This trus
TOP CHORD	2x4 SP N	0.2			load of 12
WEBS	2x4 SP N 2x4 SP N	0.2 0.3		6)	Gable stu
BRACING	-			7)	* This tru
TOP CHORD	Structural 2-0-0 oc p	l wood shea ourlins, exc	athing directly applied cept end verticals.	lor	3-06-00 t
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc	8)	Refer to
REACTIONS (lb) -	All bearing Max Horiz	s 2-0-0. exc 2=27 (LC	cept 3= Mechanical 14), 5=27 (LC 14)	9)	bearing p ioint(s) 3.
	Max Uplift	All uplift 1 2, 3, 5	00 (lb) or less at joint	(s) 10)	One RT4
	Max Grav	All reactio (s) 2, 3, 4,	ns 250 (lb) or less at 5	joint	connectio

(lb) - Max. Comp./Max. Ten. - All forces 250

Spacing

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

10.0

13.9/20.0

2-0-0

1.15

1.15

YES

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J08	Jack-Open	21	1	Job Reference (optional)	146536390

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:33 ID:bYvcogDYInu91QNWK_j3Peylyll-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.06 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00 0.00	(loc) - 4-5 3	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-10-12 oc purlins, Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=79 (LC Max Uplift 3=-37 (LC	athing directly applied except end verticals. applied or 10-0-0 oc inical, 4= Mechanical 13) 2 13), 4=-8 (LC 13)	4) 5) d or 6) , 7)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girdd One RT7A M truss to beari connection is forces. One RT16A I truss to beari connection is forces. This truss is	as been designed n chord in all areas y 2-00-00 wide will y other members. ar(s) for truss to tru- iTek connectors re ng walls due to UF for uplift only and MiTek connectors ri ng walls due to UF for uplift only and designed in accord	for a liv s where I fit betw uss con PLIFT at does no PLIFT at does no PLIFT at does no	e load of 20. a rectangle veen the bot nections. nded to con jt(s) 3. This ot consider la ended to co jt(s) 4. This ot consider la th the 2015	.0psf tom nect ateral nnect ateral					
FORCES	Max Grav 3=68 (LC (LC 2) (Ib) - Maximum Com Tension	25), 4=41 (LC 11), 5-	=210 ⁰⁾ L(International R802.10.2 ar	Residential Code s nd referenced stand Standard	sections dard AN	R502.11.1 ISI/TPI 1.	and					
TOP CHORD BOT CHORD WEBS	2-5=-182/53, 1-2=0/ 4-5=-155/122 2-4=-127/162	65, 2-3=-65/68											
 NOTES Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 TCLL: ASI DOL=1.15 snow); Pf= Plate DOL Ct=1.10 This truss load of 12 overhangs 	CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; Br p B; Enclosed; MWFR 2) zone; cantilever left at ft and right exposed;C- WFRS for reactions s 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; E: has been designed for .0 psf or 2.00 times flat s non-concurrent with c	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; er C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 kp B; Fully Exp.; r greater of min roof lit t roof load of 13.9 psf other live loads.	r r vve on							t and the second		SEA 4584	EER. ON

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J09	Jack-Open	5	1	Job Reference (optional)	146536391

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:33 ID:MYKnLnvEtndrvROWpXFzMAylym9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MR	0.21 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-10-12 oc purlins, of Rigid ceiling directly bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=79 (LC Max Uplift 4=-13 (LC Max Grav 4=48 (LC (LC 2) (b) - Maximum Com	athing directly applie except end verticals. applied or 6-0-0 oc nical, 5= Mechanical 13) : 13), 5=-33 (LC 13) 25), 5=57 (LC 25), 8	4) d or 6) 7) , =209 LO	* This truss h on the bottom 3-06-00 tall b chord and ar Refer to girdt Provide mect bearing plate 4. One RT16A truss to beari connection is forces. This truss is International R802.10.2 ar AD CASE(S)	has been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tri- hanical connection capable of withsta MiTek connectors in ing walls due to UF for uplift only and designed in accord Residential Codes and referenced stan Standard	for a liv s where Il fit betw uss con (by oth anding 1 recomm PLIFT at does no dance w sections dard AN	e load of 20.0 a rectangle even the botton nections. ers) of truss tr 3 lb uplift at jo ended to con jt(s) 5. This of consider lat th the 2015 R502.11.1 a ISI/TPI 1.	opsf om oint nect teral					
TOP CHORD	Tension 2-8=-183/70, 1-2=0/6	65. 2-3=-75/22.											
	3-4=-24/32												
BOT CHORD	7-8=-42/47, 6-7=-15/	/38, 3-6=-59/64, 5-6=	=0/0										
 NOTES Wind: AS(Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 TCLL: AS DOL=1.15 snow); Pf: Plate DOL Ct=1.10 This truss load of 12 overhange 	CE 7-10; Vult=130mph smph; TCDL=6.0psf; BG p B; Enclosed; MWFRS 2) zone; cantilever left at t and right exposed;C-1 MWFRS for reactions si 0 plate grip DOL=1.33 CE 7-10; Pr=20.0 psf (till 5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov .=1.15); Category II; Ex- has been designed for .0 psf or 2.00 times flat s non-concurrent with o	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-f and right exposed; e C for members and hown; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; r greater of min roof I t roof load of 13.9 psi other live loads.	C nd r 5 ive f on							O Comme	C'S	SEA 4584	L EER. SOLUTION

- 2) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- This truss has been designed for greater of min roof live 3) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

Junin Man June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	J10	Jack-Open	4	1	Job Reference (optional)	146536392

 -1-2-8
 1-4-12

 1-2-8
 1-4-12

2

3x8 II

1-4-12

2-1-1

0-10-0

12 8 г

3

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:34 ID:bYvcogDYInu91QNWK_j3Peylyll-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(13.9/	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.16 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wo 1-4-12 oc pur Rigid ceiling of bracing. (size) 3= 5=: Max Horiz 5=: Max Horiz 5=: Max Grav 3= (LC Max Grav 3)	ood shea rlins, ex directly Mechai 0-3-8 38 (LC -26 (LC C 13) 12 (LC C 19)	athing directly applie ccept end verticals. applied or 10-0-0 oc nical, 4= Mechanica 10) 19), 4=-6 (LC 19), 5 11), 4=13 (LC 11), 5	4 5 6 7 1, 5=-2 8 5=-2 8 5=-2 8	 * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 4. One RT7A M truss to bearing This connect lateral forces This truss is International R802.10.2 ar 	as been designed in chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta iTek connectors re ng walls due to UP ion is for uplift only designed in accord Residential Code s and referenced stand Standard	for a liv where I fit betv uss con (by oth nding 6 comme PLIFT at and do ance w sections dard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss tr b uplift at joi ended to conn i jt(s) 5 and 3. ies not consid ith the 2015 is R502.11.1 a ISI/TPI 1.	Dpsf om o int ect ler nd					
FORCES	(lb) - Maximu Tension 2-5=-153/97, 4-5=0/0	m Com 1-2=0/5	pression/Maximum i7, 2-3=-38/26											
NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp Exterior (2 vertical lef forces & M DOL=1.60 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL Ct=1.10 3) This truss load of 12. overhangs	4-5=0/0 CE 7-10; Vult=1 imph; TCDL=6.(p B; Enclosed; I) zone; cantilew t and right expcd /WFRS for reac 0 plate grip DOL CE 7-10; Pr=20 i Plate DOL=1.1 =13.9 psf (flat rcc =1.15); Catego has been desig 0 psf or 2.00 tir s non-concurren	30mph 0psf; BC MWFRS ver left a ssed;C-(ctions sh =1.33 .0 psf (r 15); Pg= bof snow ry II; Ex gned for mes flat t with o	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-4 ind right exposed; e C for members and nown; Lumber cof live load: Lumber cof live load: Lumber cof live load: Lumber cof live load: Lumber p B; Fully Exp.; greater of min roof l roof load of 13.9 ps ther live loads.	C end 5 live f on							Continue		SEA 4584	ROLL L H4 OHNSOUTHING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TREENCO A MI Tek Affiliate 818 Soundside Road Edenton, NC 27932

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	M01	Monopitch Supported Gable	1	1	Job Reference (optional)	146536393

2-0-8

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:34 ID:FgCR0D_3v8qD56idXjLqTxylykm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 6 2x4 II

4-0-0

1-8-3

818 Soundside Road Edenton, NC 27932

5

2x4 II

Page: 1

-1-2-8 4-0-0 1-2-8 4-0-0 12 4 Г 2x4 🛛 2x4 🛛 4 3 ø 0 2 0 0 -4-3

2x4 =

Scale = 1:25.2

Plate Offsets (X, Y): [2:Edge,0-0-4]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.11 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD DOTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Ext Exterior (2 vertical lef forces & M DOL=1.60 2) Truss des only. For see Stand or consult 3) TCLL: ASC DOL=1.15 snow); Pfa- Plate DOL Ct=1.10	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 2=4-0-0,5 Max Horiz 2=48 (LC Max Uplift 2=-41 (LC Max Grav 2=186 (LC (LC 2), 7= (Ib) - Maximum Com Tension 1-2=0/29, 2-3=-66/50 2-6=-46/37, 5-6=-24/ 3-6=-145/95 CE 7-10; Vult=130mph mph; TCDL=6.0psf; BK p B; Enclosed; MWFRS b D; B; Enclosed; MWFRS b D; B; Enclosed; MWFRS b D; D; CDL=6.0psf; BK p B; Enclosed; MWFRS b D; CDL=6.0psf; BK D; D; CDL=6.0psf; BK D; D; CDL=6.0psf; BK D; D; CDL=6.0psf; BK D; D; CDL=1.33 igned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-10; Pr=20.0 psf (I Plate DOL=1.15); Pg= -13.9 psf (flat roof snov =1.15); Category II; Ex	athing directly applied cept end verticals. applied or 10-0-0 oc 5=4-0-0, 6=4-0-0, 7=4 14), 7=48 (LC 14) 11), 7=-48 (LC 14) 2), 5=55 (LC 2), 6= 136 (LC 2) pression/Maximum 0, 3-4=-33/21, 4-5=-1 /26 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; en C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.;	4) 5) d or 7) 8) 1-0-0 9) 194 10) 194 10) 0/24 LO 0/24 LO	Unbalanced design. This truss ha load of 12.0 overhangs n Gable require Gable studs * This truss t on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear connection is forces. This truss is International R802.10.2 ar PAD CASE(S)	snow loads have b s been designed f por-concurrent with es continuous bott spaced at 1-4-0 or has been designed in chord in all area: y 2-00-00 wide wi by other members. IiTek connectors r ing walls due to UI s for uplift only and designed in accord Residential Code nd referenced star Standard	been cor for greats lat roof lo o other lin om chor c. I for a liv s where II fit betw ecomme PLIFT at I does no dance w sections adard AN	nsidered for the er of min roof oad of 13.9 ps /e loads. d bearing. e load of 20.0 a rectangle veen the botto ended to connu- jt(s) 2. This ot consider lat ith the 2015 R502.11.1 ar ISI/TPI 1.	iis live of on ect eral nd			A A A A A A A A A A A A A A A A A A A	SEA 4584 SEA June	ROL L L OHNS OHNS OHNS OHNS OHNS OHNS OHNS OHNS	Ammuniter.
▲												1		

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	M02	Monopitch	9	1	Job Reference (optional)	146536394

<u>-1-2-8</u> 1-2-8 4-0-0

4-0-0

4-0-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:34 ID:FgCR0D_3v8qD56idXjLqTxylykm-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Cool	-	_	- 1	· 25 0
SUd	e.	=		.20.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/7	TPI2014	CSI TC BC WB Matrix-MP	0.18 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=48 (LC Max Horiz 2=48 (LC Max Uplift 2=-43 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-3=-67/4 2-4=-34/48	athing directly applied cept end verticals. applied or 10-0-0 oc 4= Mechanical 14) C 11), 4=-6 (LC 15) C 2), 4=143 (LC 2) upression/Maximum 1, 3-4=-94/79	5) (6) (or 7) (8) (9) (1) (9) (1) (1) (1) (1) (1) (1) (1) (1	* This truss h on the botton 3-06-00 tall b chord and ar Refer to girdd Provide mecl bearing plate 4. One RT7A M truss to bearin connection is forces. This truss is International R802.10.2 ar AD CASE(S)	as been designe n chord in all area by 2-00-00 wide w y other members er(s) for truss to t hanical connectic c capable of withs liTek connectors ing walls due to L s for uplift only an designed in acco Residential Code nd referenced sta Standard	d for a liv as where vill fit betw s russ conr in (by oth tanding 6 recomme JPLIFT at d does no rdance wi s sections ndard AN	e load of 20.0 a rectangle veen the bottw nections. ers) of truss t lb uplift at jo nded to conr jt(s) 2. This ot consider la ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf om int nect teral					
NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60	E 7-10; Vult=130mph mph; TCDL=6.0psf; Bi b B; Enclosed; MWFR) zone; cantilever left a and right exposed;C- WFRS for reactions s plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; end C for members and hown; Lumber	d							^		WITH CA	ROLIN

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

SEAL 45844 June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	M03	Monopitch	3	1	Job Reference (optional)	146536395

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:35 ID:jsmpEZ_hgRz3iGGp4Qs3?8ylykl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-8

Page: 1

Scale = 1:28.7			
Plate Offsets (X, X):	[2.Edge 0-0-4]		

Loading (ps) Spacing 2-0-0 CSI 0 DEFL in (uc) Udit Udit 4-7 5-68 100 Marci (PMP) 13.92:00 Limits PD.0L 1.15 EC 0.38 Vert(L1) 0.41 4-7 5-68 100 BCLL 10.01 Code Verticity 0.12 1.15 EC 0.38 Verticity 4-7 5-68 100 BCLL 10.01 Code Verticity 0.12 1.15 EC 0.38 Verticity 4-7 5-68 100 Verticity 4-7 5-68 100 Verticity 4-7 5-68 100 Verticity 4-7 5-68 100	Plate Offsets	(X, Y): [2:Edge,0-0-4]													
 BOT CHORD 2: 44 SP No.2 WEBS 2: 44 SP No.3 BRACING GOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2:-0-3-0, 4= Mechanical Max Horiz 2:edg (LC 14) Max Horiz 2:edg (LC 14) Max Koriz 2:e	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014 * This truss h on the bottor	CSI TC BC WB Matrix-MP mas been designer n chord in all area	0.51 0.39 0.00 d for a liv as where	DEFL Vert(LL) Vert(CT) Horz(CT) e load of 20.0 a rectangle	in 0.14 -0.12 0.00 Dpsf	(loc) 4-7 4-7 2	l/defl >508 >588 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1.2=0/29, 2-3=-89/76, 3-4=-152/150 BOT CHORD 2-4=-131/72 NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=-25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; cond yeat DOL=1.35 TOLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15): Category II; Exp B; Fully Exp.; C1-1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live loads. load 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.	 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-0, 4= Mechanical Max Horiz 2=69 (LC 14) Max Grav 2=316 (LC 2), 4=228 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29, 2-3=-89/76, 3-4=-152/150 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9-07 vide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 4. One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 														
4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. June 11,2021	 REACTIONS (size) 2=0-3.0, 4= Mechanical Max Horiz 2=69 (LC 14) Max Grav 2=69 (LC 14) Max Grav 2=316 (LC 2), 4=228 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/29, 2-3=-89/76, 3-4=-152/150 BOT CHORD 2-4=-131/72 NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; cord left and right exposed; cord left and right exposed; porch left and right exposed; cord left and right exposed; porch left and right exposed; porch left and right exposed; cord left and right exposed; porch left and right exposed; cord left and right exposed; porch left a												C.Manutter		
	 4) This truss load of 12 overhangs 	nas been designed foi 2.0 psf or 2.00 times fla s non-concurrent with c	r greater of min roof t roof load of 13.9 ps other live loads.	live f on									June	OHN5 11,2021	

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	M04	Monopitch	2	1	Job Reference (optional)	146536396

7-0-8

-1-2-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:35 ID:jsmpEZ_hgRz3iGGp4Qs3?8ylykl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.6

Loading	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.63	DEFL Vert(LL)	in 0.12	(loc) 5-8	l/defl >641	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.12	5-8	>646	180		210,100
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MP								
BCDL	10.0				-							Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=80 (LC Max Uplift 2=-94 (LC 5=-118 (L Max Grav 2=314 (LC (L 2 2)	5) d or 7) 8) 8-8 9) =399	 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 4. 8) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. 9) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces. 										
FORCES	(lb) - Maximum Com	pression/Maximum	10	forces.) This truss is (designed in accord	ance w	ith the 2015						
	l ension	7 3-1167/152		International	Residential Code s		8 R502.11.1 a	and					
BOT CHORD	2-5=-128/76. 4-5=-4	1/45	10		Standard	Jaiu Ar	131/1711.						
NOTES	,			AD CASE(3)	Stanuaru								
 Wind: AS Vasd=100 Cat. II; Ex Exterior (2 vertical le exposed; reactions DOL=1.33 TCIL: AS 	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(pg; B; Enclosed; MWFR2 2) zone; cantilever left a ft and right exposed; pr C-C for members and fr shown; Lumber DOL=' 3 CF 7-10; Pr=20.0 psf ((3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; ei orch left and right orces & MWFRS for 1.60 plate grip	C nd							l		OR ESS	ROLIN
 2) TOLL AS DOL=1.15 snow); Pf Plate DOI Ct=1.10 3) Unbalance 	5 Plate DOL=1.15); Pg= =13.9 psf (flat roof snov L=1.15); Category II; Ex ed snow loads have be	=20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; een considered for thi	s							11111	R	SEA 4584	L 4
design.4) This truss load of 12	s has been designed for 2.0 psf or 2.00 times flat	r greater of min roof li t roof load of 13.9 psf	ive								11	DREW J	OHNSUIT

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

10 unnin

June 11,2021

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	PB01	Piggyback	11	1	Job Reference (optional)	146536397

-0-8-9

1-5-9

2-11-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:35 ID:mj_3aSOjLA9D?dJuB4V8RoylwTd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-11-2

3-7-11

Page: 1

1 45

818 Soundside Road Edenton, NC 27932

Scale = 1:26.3

Plate Offsets (X, Y): [3:0-2-8,Edge]

Lo TC Sn TC BC BC	ading LL (roof) ow (Pf/Pg) DL LL DL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUTCE BC BFC TC BC FC TC BC NC 1) 2) 3) 4)	MBER P CHORD T CHORD ACING P CHORD T CHORD T CHORD T CHORD ACTIONS ACTIONS ACTIONS ACTIONS P CHORD DT CHORD DT CHORD DT CHORD DT CHORD T CH	2x4 SP No.2 2x4 SP No.2 Structural wood shea 4-5-0 oc purlins. Rigid ceiling directly bracing. (size) 2=2-11-2, 10=2-11-2 Max Horiz 2=25 (LC Max Uplift 2=-3 (LC - Max Grav 2=146 (LC (LC 2), 10 (Ib) - Maximum Com Tension 1-2=0/20, 2-3=-86/3 2-4=0/69 ed roof live loads have b CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFR3 cr cantilever left at t and right exposed; C- IWFRS for reactions sl plate grip DOL=1.33 signed for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-10; Pr=20.0 psf (I P late DOL=1.15); Pg= 13.9 psf (flat roof snou =1.15); Category II; Ex	athing directly applied applied or 10-0-0 oc 4=2-11-2, 6=2-11-2, 2 12), 6=25 (LC 12) 13), 6=-3 (LC 13) C 2), 4=153 (LC 2) pression/Maximum 2, 3-4=-87/30, 4-5=0/ been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; e C for members and hown; Lumber n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.;	5) d or 8) 9) =146 10) /20 11) /20 LO C nd ss le, 11. sr	er of min roof bad of 13.9 p: ve loads. d bearing. e load of 20.0 a rectangle veen the botto ended to comr jt(s) 2. This bot consider la ith the 2015 5 R502.11.1 a JSI/TPI 1. s Connection applicable, or	live sf on Opsf om teral ind				SEA 4584 SEA 4584	L L H4 OHNSUIT	Rammin			
1									5 1105				10 10 10 10 10 10 10 10 10 10 10 10 10 1	10012 0 dd 5	

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	T01	Roof Special	1	1	Job Reference (optional)	146536398

Run: 8,51 S Jun 1 2021 Print: 8,510 S Jun 1 2021 MiTek Industries. Inc. Fri Jun 11 09:47:36 ID:YHfV2QG6FVspzoXEwImSR?ylykO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Special NAILED

Scale = 1:33.5

Plate Offsets (X, Y): [3:0-5-0,0-1-13]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.42 0.20 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	LUMBER TOP CHORD 2x4 SP No.2 3OT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING 500 CHORD Structural wood sheathing directly applied on 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-0, 6= Mechanical, 7=0-3-8				snow loads have as been designed psf or 2.00 times on-concurrent with quate drainage to has been designed n chord in all area	been cor for great ilat roof lin other lin prevent d for a liv is where	nsidered for t er of min roo bad of 13.9 p ve loads. water pondin e load of 20. a rectangle	his f live sf on g. 0psf	Ur Co	hiform Lo Vert: 1-3 oncentra Vert: 4=	bads (II 3=-48, ted Lo -4 (F),	b/ft) 3-4=-58, 4-5=-48 ads (Ib) 8=-5 (F), 13=-10	, 6-9=-20 (F)
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	3-06-00 tall t chord and ar	by 2-00-00 wide w ny other members	ill fit betv	veen the bott	om						
REACTIONS (size) 2=0-3-0, 6= Mechanical, 7=0-3-8 Max Horiz 2=37 (LC 14) Max Uplift 2=-48 (LC 11), 6=-21 (LC 60) Max Grav 2=334 (LC 39), 6=30 (LC 39), 7=320 (LC 38) 7=320 (LC 38)				 Refer to gird Provide mec bearing plate 6. One RT7A M truss to bear 	er(s) for truss to the hanical connectio capable of withs liTek connectors if ing walls due to U	russ conr n (by oth tanding 2 recomme IPLIFT at	nections. ers) of truss 1 lb uplift at ended to conr i it(s) 2. This	to joint nect					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		connection is forces.	s for uplift only and	d does n	ot consider la	ateral					
TOP CHORD	1-2=0/30, 2-3=-438/ 4-5=-22/19, 5-6=-33/	131, 3-4=-29/15, /25	1	 This truss is International 	designed in accor Residential Code	dance w	ith the 2015 R502.11.1 a	and					
WEBS	2-8=-173/412, 7-8=- 3-8=0/67, 3-7=-401/ 4-6=-67/44	163/419, 6-7=-45/51 134, 4-7=-132/88,	1	R802.10.2 at 1) Graphical pu or the orient:	nd referenced sta Irlin representation Internation of the purlin	ndard AN n does no along the	ISI/TPI 1. ot depict the : o top and/or	size					
NOTES 1) Wind: AS Vasd=103 Cat. II; Ex Exterior (2 vertical le forces & N DOL =1 60	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(cp B; Enclosed; MWFR3 2) zone; cantilever left a ft and right exposed;C- WWFRS for reactions s1 volate grip DQI = 1 33	1 C 1 end	or the orientation of the purlin along the top and/or bottom chord. 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 32 lb down and 39 lb up at 2-0-0 on top chord, and 19 lb down and 27 lb up at 2-0-0 on bottom chord. The 158.14								L L		

- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- e(s) responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

THE RADE .10 unun June 11,2021

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	T01GE	Common Supported Gable	1	1	Job Reference (optional)	146536399

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:36 ID:FgCR0D_3v8qD56idXjLqTxylykm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x8 II	2x4 u	2x4 u	2x4 u	3x8 II
		7-7-0		

Scale = 1:27.8 Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-3-8,Edge]

	, , , , , , , , , , , , , , , , , , ,	. , 01												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=7-7-0, 6 9=7-7-0, 1 15=7-7-0 Max Horiz 2=27 (LC Max Uplift 2=-10 (LC 8=-23 (LC 11=-10 (L Max Grav 2=191 (LC (LC 34), 9 33), 11=1	athing directly applied applied or 6-0-0 oc 3=7-7-0, 8=7-7-0, 10=7-7-0, 11=7-7-0, 14), 11=27 (LC 14) : 15), 6=-15 (LC 16), : 16), 10=-24 (LC 15), C 15), 15=-15 (LC 16) C 2), 6=191 (LC 2), 8=' 1=53 (LC 21), 10=167 (91 (LC 2), 15=191 (LC	2) or 3) 4) 5) 167 6) (LC 2) 7)	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Unbalanced design. This truss ha load of 12.0 g overhangs nu Gable require	7-10; Vult=130mpl bh; TCDL=6.0psf; E 8; Enclosed; MWFF one; cantilever left nd right exposed;C FRS for reactions : tate grip DOL=1.33 hed for wind loads ds exposed to wind l ndustry Gable Er alified building des 7-10; Pr=20.0 psf ate DOL=1.15); Pg 0.9 psf (flat roof snc .15); Category II; E snow loads have b s been designed for psf or 2.00 times file on-concurrent with es continuous botto	n (3-sec 3CDL=6 8S (env and rig -C for n shown; in the p d (norm nd Deta igner a: (roof liv j=20.0 p w: Lum ixp B; F een cor or greate at roof liv other liv or other liv om chor	ond gust) .0psf; h=25ft; elope) and C- ht exposed ; and C- ht exposed ; and C- ht exposed ; and C- ht exposed ; and C- ane of the true ane of the true ane of the true ane of the true ane of the true is as applicat ber DOL=1.1 ully Exp.; ully Exp.; usidered for the part of min roof ber of min roof ber of al.9 ps re loads. d bearing.	C end iss , ble, pl 1. er 5 nis live sf on					1117.	
	Tension		8) 9)	Gable studs * This truss h	spaced at 1-4-0 oc las been designed	for a liv	e load of 20.0)psf				TH CA	ROLIN	
I OP CHORD	1-2=0/41, 2-3=-46/5 4-5=-64/86, 5-6=-46	/, 3-4=-65/87, /57, 6-7=0/41		on the botton 3-06-00 tall b	n chord in all areas y 2-00-00 wide wil	where fit betv	a rectangle /een the botto	om			NA.	U. FESS	aning	
BOT CHORD	2-10=-51/54, 9-10=- 6-8=-51/57	5/54, 8-9=-5/54,	10)	chord and an One RT7A M	iy other members. IiTek connectors re	comme	nded to conn	ect				ier P	K.	1
NEBS NOTES	4-9=-36/19, 3-10=-1	16/101, 5-8=-116/102	,	truss to bear	ing walls due to UF ection is for uplift of	LIFT at	jt(s) 2, 6, 10, does not	and				SEA	L	
 Unbalance this design 	ed roof live loads have n.	been considered for	11)	This truss is International	designed in accord Residential Code s	ance w	ith the 2015 R502.11.1 a	nd		1111		4004		

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	T01SGE	Common Structural Gable	1	1	Job Reference (optional)	146536400

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:37 ID:75pp0W?F_Fditf?3HCOrhsylym1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-11	16-3-13	24-7-8
8-3-11	8-0-3	8-3-11

Plate Offsets (X, Y): [29:0-6-0,0-2-12]

Scale = 1:73.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.42 0.51 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.19 0.01	(loc 29-30 29-30 10) l/defl) >999) >753 6 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 282	GRIP 244/190 b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	3CDL 10.0 LUMBER FOP CHORD 2x4 SP No.2 3OT CHORD 2x4 SP No.3 *Except* 22-8,29-8:2x4 SP No.2 STHERS 2x4 SP No.3 *Except* 26-8:2x4 SP No.2 OTHERS 2x4 SP No.3 *Except* 26-8:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 3-30, 8-26 JOINTS 1 Brace at Jt(s): 31, 32, 33, 43, 55, 36.		Bi No.2 ed or W	OT CHORD 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DRD 29-30=-90/413, 28-29=-114/171, 27-28=-114/171, 26-27=-114/171, 25-26=-118/170, 24-25=-118/170, 22-24=-118/170, 21-22=-2/108, 20-21=-2/108, 19-20=-2/108, 18-19 17-18=-2/108, 16-17=-2/108 8-34=-155/21, 34-35=-199/23, 22-35=-212/25, 22-36=-477/358, 13-36=-417/311, 29-32=-198/621, 31-32=-211/601, 8-31=-234/688, 3-33=-341/241, 29-33=-334/229, 3-30=-209/74, 13-37=-108/79, 37-38=-112/106, 38-39=-97/86, 39-40=-100/89, 16-40=-100/89, 8-				71, 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 170, snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15) 18, Plate DOL=1.15); Category II; Exp B; Fully Exp.; 18-19=-2/108, Ct=1.10 5) All plates are 2x4 MT20 unless otherwise indicated. 35, 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 729, 0 Ble studs spaced at 1-4-0 oc. 36, 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 36, 9) One RTZA MiTek connectors recommended to connect				ber .15 ./y .0psf ttom sf. nnect		
REACTIONS	(size) Max Horiz Max Uplift Max Grav	16=12-3-8 19=12-3-8 22=12-3-8 30=-220 (16=-41 (L 22=-186 (25=-2 (LC 16=259 (L 18=27 (LC 20=98 (LC 22=586 (L 25=110 (L 30=507 (L)	8, 17=12-3-8, 18=12 8, 20=12-3-8, 21=12 9, 24=12-3-8, 25=12 1, 30=0-3-8 LC 9) C 14), 21=-178 (LC LC 14), 24=-40 (LC 9), 26=-13 (LC 10) C 29), 17=50 (LC 2; C 18), 19=31 (LC 18) C 29), 21=133 (LC 12) C 2), 21=133 (LC 12) C 2), 21=132 (LC 2) C 31), 26=459 (LC 2) C 2)	-3-8, -3-8, -3-8, 14), N 5), 1)), 2) 4), 2) 25), 24),	7 2 9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	7-31=-95/51, 27-31=-12/30 28-32=-153/15, 5-29=-3/74 3-34=-109/9, 25-34=-101/1 24-35=-88/71, 11-22=-81/5 12-36=-122/170, 21-36=-1 20-37=-71/7, 19-38=-23/31 17-40=0/0 roof live loads have been roof live loads have been roof live loads have been roof live loads have been trobal second roof live loads have been roof live loads have been second condition to the loads have been second condition to the loads have been roof live loads hav		 1, 6-32=-131/30, ↓, 4-33=-13/8, 3, 10-35=-95/71, 38, 71/233, ↓, 18-39=-5/4, considered for cond gust) c).0psf; h=25ft; elope) and C-C ht exposed ; end porthere and		tr 2 d 10) C tr c fc	uss to bea 4, 21, and bes not co one RT16A uss to bea onnection orces.	ring w 17. Th nsider MiTel ring w is for u	alls due to UPL is connection i lateral forces. < connectors re alls due to UPL plift only and c	IFT at jt(s) 16, 26, s for uplift only and commended to co IFT at jt(s) 22. Thi oes not consider la	25, d innect is ateral
FORCES TOP CHORD	(lb) - Max Tension 1-3=-416/ 5-6=-423/ 8-9=-201/ 10-11=-13 12-13=-21 1-30=-373	203, 3-4= 270, 6-7= 252, 9-10= 32/183, 11- 19/202, 13- 3/181, 15-1	-456/226, 4-5=-440/228, =-475/299, 7-8=-513/341, 0=-178/239, 1-12=-99/134, 3-15=-256/214, -16=-277/186 3) Truss desig only. For st see Standar or consult q			nd right exposed;C-C for members and /FRS for reactions shown; Lumber late grip DOL=1.33 ned for wind loads in the plane of the truss Jds exposed to wind (normal to the face), d Industry Gable End Details as applicable, Jalified building designer as per ANSI/TPI 1.							AL 344 JOHNSON	WILLING.	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design runst verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 11,2021

Job	Truss	Truss Type	Qty Ply 1134 ACC		1134 ACC	
21060008	T01SGE	Common Structural Gable	1	1	Job Reference (optional)	146536400

LOAD CASE(S) Standard

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:37 ID:75pp0W?F_Fditf?3HCOrhsylym1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	T02	Piggyback Base	5	1	Job Reference (optional)	146536401

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:38

Page: 1

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	T02GE	Common Supported Gable	1	1	Job Reference (optional)	146536402

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:38 $ID:Aih3bqz?SdN_dMrg9nMNcRylym3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ff$

Page: 1

_

Scale = 1:41.4	Scale	=	1:41	.4
----------------	-------	---	------	----

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MR	0.17 0.05 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size)	0.2 0.2 0.3 0.3 0.3 wood shea ourlins, exc ng directly 14=12-7-8 17=12-7-8	athing directly applied rept end verticals. applied or 6-0-0 oc , 15=12-7-8, 16=12- , 18=12-7-8, 19=12-	d or 7-8, 7-8,	WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m Cat. II; Exp B Exterior (2) z vertical left a forces & MW	7-19=-188/106, 6- 4-22=-101/75, 3-2 9-17=-103/79, 10- roof live loads ha 7-10; Vult=130m ph; TCDL=6.0psf; 3; Enclosed; MWF cone; cantilever le and right exposed; /FRS for reactions	20=-93/5 23=-106/6 -16=-101/ ve been c ph (3-sec BCDL=6 FRS (envi ft and rig C-C for n s shown;	0, 5-21=-103 0, 8-18=-92/3 75, 11-15=-1 considered for ond gust) .0psf; h=25ft leope) and C nt exposed ; nembers and Lumber	;/79, 50, 12/59 r r -C end	12) This Inter R80 LOAD C	truss is nationa 2.10.2 a ASE(S)	desigi I Resic Ind refi Star	ned in accordand lential Code sec erenced standar ndard	e with the 20 ions R502.11 d ANSI/TPI 1.	15 .1 and
	Max Horiz Max Uplift Max Grav	20=12-7-8 23=12-7-8 24=-147 (I 14=-73 (LC 16=-23 (LC 21=-35 (LC 23=-96 (LC 14=167 (L 16=116 (L 18=118 (L 20=120 (L 22=116 (L 22=116 (R	, 21=12-7-8, 22=12- , 24=12-7-8 , C 11) C 10), 15=-81 (LC 9) C 14), 17=-35 (LC 14 C 14), 20=-18 (LC 13 C 13), 22=-23 (LC 13 C 10), 24=-97 (LC 9) C 25), 15=109 (LC 1 C 30), 17=114 (LC 2 C 26), 19=140 (LC 2 C 25), 21=113 (LC 2 C 29), 23=127 (LC 1 C 26)	7-8, 4), 3), 3), 20), 26), 28), 25), 1),	 DOL=1.60 pl Truss desig only. For stusee Standar or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=12 Plate DOL=1 Ct=1.10 This truss haload of 12.0 overhangs n All plates are 	late grip DOL=1.3 ned for wind loads uds exposed to wi d Industry Gable E ualified building de 7-10; Pr=20.0 ps late DOL=1.15; F 3.9 psf (flat roof sr 1.15); Category II; as been designed psf or 2.00 times on-concurrent wit 2 x4 MT20 unles	3 s in the pl nd (norm End Detai esigner as sf (roof liv Pg=20.0 p now: Lum Exp B; F for greate flat roof lo h other liv s otherwis	ane of the tru al to the face Is as applica per ANSI/TI e load: Lumb ber DOL=1.1 ully Exp.; er of min roof pad of 13.9 p; re loads. se indicated.	uss), ble, Pl 1. er 5 live sf on				NITH CA	ROLIN	
FORCES	(lb) - Maxi	imum Com	pression/Maximum		 Gable requir Truss to be f 	es continuous bot ully sheathed fror	tom chor n one fac	d bearing. e or securely			U	xx	inorty	dine	in
TOP CHORD	2-24=-151 3-4=-62/8 6-7=-152/ 9-10=-66/ 12-13=0/6	l/96, 1-2=0 1, 4-5=-66/ 191, 7-8=- ⁻ 88, 10-11= 55, 12-14=-	/65, 2-3=-97/94, 88, 5-6=-115/148, 52/191, 8-9=-115/14 -43/67, 11-12=-77/74 151/94	48, 4,	braced agair 9) Gable studs 10) * This truss f on the bottor 3-06-00 tall b	nst lateral movem spaced at 1-4-0 c nas been designe m chord in all area by 2-00-00 wide w	ent (i.e. d oc. d for a liv as where rill fit betw	iagonal web) e load of 20.0 a rectangle veen the botto	Opsf om		annun an		SEA 4584	L 14	WILLING
BOT CHORD	23-24=-83 20-21=-83 17-18=-83 14-15=-83	8/91, 22-23 8/91, 19-20 8/91, 16-17 8/91	=-83/91, 21-22=-83/9 =-83/91, 18-19=-83/9 =-83/91, 15-16=-83/9	91, 91, 91,	chord and ar 11) One RT7A M truss to bear 21, 22, 23, 1 uplift only an	ny other members MiTek connectors ing walls due to L 8, 17, 16, and 15. Id does not consid	: recomme IPLIFT at This con ler lateral	nded to conr jt(s) 24, 14, 1 nection is for forces.	nect 20,			- P	REW J	EEP.	

June 11,2021

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE	
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall	
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing	
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the	
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Co	omponent
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601	

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	Т03	Piggyback Base	3	1	Job Reference (optional)	146536403

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:39 ID:QiGu2jHJKdfIlLrghFpTfvylylf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	Т04	Piggyback Base	3	1	Job Reference (optional)	146536404

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:40 ID:uMmP7Ruc6UV_IHpKFpkjpyylymA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:68.5

Plate Offsets (X, Y): [5:0-5-12,0-2-0], [6:0-2-12,0-2-0], [11:Edge,0-6-2], [18:Edge,0-6-2]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.62 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.23 0.06	(loc) 15-17 15-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (5-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 11=0-3-8, Max Horiz 18=-235 (Max Grav 11=1466 (lb) - Maximum Com Tension 1-2=0/57, 2-3=-1940 5-6=-1114/377, 6-8 8-9=-1939/345, 9-10 9-11=-1394/322 17-18=-217/623, 15- 14-15=0/1174, 12-14 11-12=-155/549 3-17=0/195, 3-15=-5 5-14=-156/159, 6-14 8-14=-591/212, 8-12 9-12=-8/1105	ot* 15-5,14-5,14-6:2x4 athing directly applied cept end verticals, and l-10 max.): 5-6. applied or 10-0-0 oc 3-15, 5-14, 8-14 (LC 11) (LC 2), 18=1466 (LC 2) apression/Maximum 0/345, 3-5=-1473/380, -1474/380, 0=0/57, 2-18=-1395/32 -17=-138/1641, 4=-134/1511, 592/212, 5-15=-61/537 4=-60/498, 2=0/195, 2-17=-8/1098	2) SP d or d 3) 4) 2) 5) 6) , 22, 7) 8) 1, 8, LC	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 Pl snow); Pf=16 Plate DOL=1 Ct=1.10, Lu= This truss ha load of 12.0 p overhangs n Provide aded * This truss ha load of 12.0 p overhangs n Provide aded * This truss ha load of 0.0 tall b chord and ar This truss in International R802.10.2 ar Graphical pu or the orienta bottom chorce	7-10; Vult=130mph h; TCDL=6.0psf; B i; Enclosed; MWFR one; cantilever left nd right exposed;C- FRS for reactions s ate grip DOL=1.33 7-10; Pr=20.0 psf (ate DOL=1.15); Pg .9 psf (flat roof sno .15); Category II; E 50-0-0 s been designed for bas been designed for puate drainage to pr as been designed for as been designed in n-cord in all areas y 2-00-00 wide will y other members, y designed in accorda Residential Code s d referenced stance rlin representation of tion of the purlin alle. Standard	(13-secc (CDL=6 S (env and rig C for n 	sond gust) .0psf; h=25ft; elope) and C- ht exposed ; nembers and Lumber e load: Lumb osf (ground loer DOL=1.1 'ully Exp.; er of min roof bad of 13.9 ps re loads. water ponding e load of 20.0 a rectangle veen the botto DL = 10.0psf ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s e top and/or	-C end 5 live sf on g. Dpsf c. ind size		<i>O</i>		OR CASS	ROLINI
NOTES										-		4504	A : I

1) Unbalanced roof live loads have been considered for

this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V01	Valley	1	1	Job Reference (optional)	146536405

2-9-5

2-9-5

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 09:47:40 ID:qkuAY7vse5liXazjNEmCvNylym8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-11-12

2-2-6

5-6-11

0-6-15

5-6-11

TOP CHORD

BOT CHORD

this design.

WFBS

1)

2)

3)

4)

Ct=1.10

NOTES

Scale = 1:22.4				1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-P								
BCDL	10.0										Weight: 17 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		5) Unbalance design.	d snow loads ha	ve been cor	nsidered for t	his					

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-7-11 oc	purlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=5-6-11, 3=5-6-11, 4=5-6-11
	Max Horiz	1=-12 (LC 11)
	Max Uplift	1=-7 (LC 15), 3=-9 (LC 16)
	Max Grav	1=89 (LC 2), 3=89 (LC 2), 4=173
		(LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·

1-2=-39/29, 2-3=-39/29

Unbalanced roof live loads have been considered for

Exterior (2) zone; cantilever left and right exposed ; end

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15

Plate DOL=1.15); Category II; Exp B; Fully Exp.;

vertical left and right exposed;C-C for members and

forces & MWFRS for reactions shown; Lumber

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C

1-4=0/15, 3-4=0/15

2-4=-118/77

DOL=1.60 plate grip DOL=1.33

chord and any other members. 9) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

7)

8)

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Gable studs spaced at 2-0-0 oc.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V02	Valley	1	1	Job Reference (optional)	146536406

1)

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 09:47:41 ID:3IT??0EAW410fayiuhElysylylk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V03	Valley	1	1	Job Reference (optional)	146536407

Run: 8 51 S. Jun 1 2021 Print: 8 510 S. Jun 1 2021 MiTek Industries Inc. Fri Jun 11 09:47:41 ID:3IT??0EAW410fayiuhElysylylk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER			2)
TOP CHORD	2x4 SP N	0.2	
BOT CHORD	2x4 SP N	0.2	
OTHERS	2x4 SP N	0.3	
BRACING			
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or purlins.	
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc	3)
REACTIONS	(size)	1=19-11-11, 7=19-11-11,	
		8=19-11-11, 9=19-11-11,	4)
		10=19-11-11, 11=19-11-11,	4)
		12=19-11-11	
	Max Horiz	1=-158 (LC 9)	
	Max Uplift	1=-63 (LC 11), 7=-34 (LC 12),	
		8=-69 (LC 14), 9=-99 (LC 14),	5)
		11=-98 (LC 13), 12=-68 (LC 13)	6)
	Max Grav	1=108 (LC 10), 7=85 (LC 14),	7)
		8=267 (LC 25), 9=431 (LC 25),	8)
		10=368 (LC 27), 11=430 (LC 24), 12=267 (LC 24)	0)
FORCES	(lb) - Max	imum Compression/Maximum	
	Tension	·····	0)
TOP CHORD	1-2=-169/	134, 2-3=-167/102, 3-4=-176/163,	5)
	4-5=-176/	163, 5-6=-131/62, 6-7=-155/122	
BOT CHORD	1-12=-83/	/123, 10-12=-84/123, 9-10=-84/123,	
	8-9=-84/1	23, 7-8=-84/123	1(
WEBS	4-10=-154	4/9, 3-11=-310/216, 2-12=-235/166,	
	5-9=-311/	/216, 6-8=-235/166	
NOTES			L

- Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.;
- Ct=1 10 All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 7, 11, 12, 9, and 8. This connection is for uplift only and does not consider lateral forces.
- 0) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Scale = 1:56.6

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V04	Valley	1	1	Job Reference (optional)	146536408

TCDL

BCLL

BCDL

WFBS

1)

2)

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:41 ID:Xx1NDMEoHO9sGkXvSPIXV3ylylj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

forces & MWFRS for reactions shown; Lumber

818 Soundside Road Edenton, NC 27932

mm

June 11,2021

WWWWWWWWW

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V05	Valley	1	1	Job Reference (optional)	146536409

Scale = 1:41.7 Loading

TCLL (roof)

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:42 ID:Xx1NDMEoHO9sGkXvSPIXV3ylylj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

Snow (Pf/Pg	1) 1	3.9/20.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999	
TCDL		10.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a	
BCLL BCDL		0.0* 10.0	Code	IRC20	15/TPI2014	Matrix-SH	_						Weight: 58 lb
LUMBER TOP CHORI BOT CHORI OTHERS BRACING TOP CHORI BOT CHORI REACTIONS	 D 2x4 SP N D 2x4 SP N 2x4 SP N 2x4 SP N D Structura 6-0-0 oc D Rigid ceil bracing. S (size) Max Horiz Max Uplift Max Grav 	lo.2 lo.3 ll wood she purlins. ling directly 1=13-6-1 7=13-6-1 1=-106 (L 1=-18 (LC (LC 13) 1=109 (L 6=327 (L) 8=327 (L)	eathing directly applie v applied or 10-0-0 or 4, 5=13-6-14, 6=13-6 4, 8=13-6-14 .C 9) C 9), 6=-89 (LC 14), 1 C 25), 5=94 (LC 24), C 25), 7=243 (LC 2), C 24)	ed or c 6-14, 8=-89	 4) TCLL: ASCE DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 5) Gable requii 6) Gable studs 7) * This truss on the botto 3-06-00 tall chord and a 8) One RT7A N truss to bea This connec lateral force 6) This truss is Internationa 80 R02 D0 2 	E 7-10; Pr=20.0 Vate DOL=1.15) 3.9 psf (flat roof 1.15); Category res continuous b spaced at 4-0-C has been desigr m chord in all ar by 2-00-00 wide ny other membe MiTek connector ring walls due to tion is for uplift of s. designed in acc I Residential Coo designed an acc	psf (roof liv ; Pg=20.0 j snow: Lun II; Exp B; F ottom choi oc. eed for a liv eed for a liv eed for a liv eas where will fit betv rs. s recomme UPLIFT a nnly and dc vordance w de sections	ve load: Lumi psf (ground hber DOL=1. Fully Exp.; rd bearing. ve load of 20. a rectangle ween the bott ended to comi t jt(s) 1, 8, ar pses not consi ith the 2015 s R502.11.1	oper 15 Opsf om hect der and				
FORCES	(lb) - Max Tension	kimum Con	npression/Maximum	I	LOAD CASE(S)	Standard							
TOP CHOR	D 1-2=-114 4-5=-90/5	/86, 2-3=-1 55	40/106, 3-4=-133/10	06,									
BOT CHOR	D 1-8=-39/7 5-6=-39/7	72, 7-8=-39 72	0/72, 6-7=-39/72,										annun
WEBS	3-7=-159	/0, 2-8=-27	7/197, 4-6=-277/197	7									"TH C
NOTES													On it i
 Unbalan this desi 	ced roof live	loads have	been considered fo	r							U	KN,	int
2) Wind: A Vasd=10 Cat. II; E Exterior vertical I forces & DOL=1.0	SCE 7-10; Vu D3mph; TCDL Exp B; Encloss (2) zone; car eft and right MWFRS for 60 plate grip	ult=130mph _=6.0psf; B ed; MWFR htilever left exposed;C reactions s DOL=1.33	n (3-second gust) CDL=6.0psf; h=25ft; IS (envelope) and C- and right exposed ; c -C for members and shown; Lumber	-C end							THILD.	R	SE 458

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Summun SEAL 5844 mmm June 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V06	Valley	1	1	Job Reference (optional)	146536410

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:42 ID:?7alQiFQ2iHjuu6506Gm1Hylyli-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-4-8

Scolo	_	1.25.0
Scale	=	1:35.9

Loading TCLL (roof Snow (Pf/F TCDL BCLL BCDL	(psf) 20.0 (g) 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-SH	0.29 0.23 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHOI BOT CHOI OTHERS BRACING TOP CHOI BOT CHOI REACTION FORCES	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-4-8. Max Horiz 1=-79 (LC Max Uplift 1=-5 (LC Max Grav 1=198 (Ld (LC 2))) (b) - Maximum Com 	athing directly applie applied or 10-0-0 oc 3=10-4-8, 4=10-4-8 29 14), 3=-12 (LC 14) C 2), 3=198 (LC 2), 4 apression/Maximum	5) 6) 7) 8d or 8) 5 9) 4=374 LC	Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar DAD CASE(S)	es continuous bott spaced at 4-0-0 oc las been designed n chord in all areas by 2-00-00 wide wil y other members. ITEk connectors re ing walls due to UF ion is for uplift only designed in accord Residential Code nd referenced stan Standard	om chor for a liv s where ll fit betw ecomme PLIFT at / and do dance w sections dard AN	d bearing. e load of 20.0 a rectangle ween the botto anded to conn jt(s) 1 and 3 es not consic ith the 2015 s R502.11.1 a ISI/TPI 1.	Opsf om der und						
TOP CHOI BOT CHOI WEBS	Tension RD 1-2=-158/70, 2-3=-1 RD 1-4=-14/63, 3-4=-14 2-4=-209/60	56/70 /63												
NOTES 1) Unbala this de 2) Wind: - Vasd= Cat. II; Exteric vertica forces DOL=1 3) Truss only. f see St or cons 4) TCLL: DOL=1 snow; Plate [Ct=1.1]	nced roof live loads have sign. ASCE 7-10; Vult=130mph I03mph; TCDL=6.0psf; B Exp B; Enclosed; MWFR r (2) zone; cantilever left. left and right exposed;C- & MWFRS for reactions s 60 plate grip DOL=1.33 designed for wind loads in for studs exposed to wind andard Industry Gable In ault qualified building desi ASCE 7-10; Pr=20.0 psf (.15 Plate DOL=1.15); Pg Pf=13.9 psf (flat roof sno 00L=1.15); Category II; E	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1! xp B; Fully Exp.;	C end ss , jole, , le, 11. er 5							Ocument		SEA 4584	ROLIN L L HA	and an annumber

June 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V07	Valley	1	1	Job Reference (optional)	l46536411

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:43 ID:?7alQiFQ2iHjuu6506Gm1Hylyli-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-2-2

Scale = 1:28.9

-

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-P								
BCDL	10.0											Weight: 27 lb	FT = 20%
LUMBER			5)	Gable require	es continuous botto	m chor	d bearing.						
TOP CHORD	2x4 SP No.2		6)	Gable studs	spaced at 4-0-0 oc.								
BOT CHORD	2x4 SP No.2		7)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf					
OTHERS	2x4 SP No.3			on the botton	n chord in all areas	where	a rectangle						
BRACING				3-06-00 tall b	y 2-00-00 wide will	fit betv	veen the botto	om					
TOP CHORD	Structural wood she	athing directly applie	ed or	chord and an	y other members.								
	6-0-0 oc purlins.	3	8)	One RT7A M	Tek connectors re		ended to conn	nect					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	0	This connect	ion is for uplift only	and do	es not consid	der					
REACTIONS	(size) 1=7-2-2,	3=7-2-2, 4=7-2-2	9)	This truss is	designed in accord:	ance w	ith the 2015						
	Max Horiz 1=-53 (LC	C 9)	0)	International	Residential Code s	ections	R502.11.1 a	nd					
	Max Uplift 1=-12 (LC	C 14), 3=-16 (LC 14)		R802.10.2 ar	nd referenced stand	ard AN	ISI/TPI 1.						
	Max Grav 1=147 (L	C 2), 3=147 (LC 2), 4	¹⁼²¹⁹ 10	AD CASE(S)	Standard								
	(LC 2)		20	/12 0/102(0)	otandara								
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD	1-2=-97/46, 2-3=-91	/46											
BOT CHORD	1-4=-11/42, 3-4=-11	/42											
WEBS	2-4=-139/47												
NOTES													
1) Unbalanc	ed roof live loads have	been considered for	r										
this desig	n.											mun	1111
Wind: AS	CE 7-10; Vult=130mph	n (3-second gust)									2	N'L CA	Pall
Vasd=103	3mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;								1	1	al	
Cat. II; Ex	<pre>kp B; Enclosed; MWFR</pre>	S (envelope) and C-	C .								S.	O' ERSS	is: All
Exterior (2	2) zone; cantilever left	and right exposed ; e	end							- 11	TAS	rial	Marian
vertical le	It and right exposed;C-	-C for members and								\mathcal{O}	00	:0 9	- K
	n ploto grip DOI -1 22	snown, Lumber								-	6 B	054	
2) Truce do	signed for wind loads i	n the plane of the tru	CC									SEA	
only For	stude expected to wind	f the plane of the tru	55									4584	14 : 3
see Stand	ard Industry Gable En	d Details as applicab	, ne										1 E E
or consult	t qualified building desi	oner as per ANSI/TP	910, 911.								1		1. 2
4) TCLL: AS	CE 7-10: Pr=20.0 psf ((roof live load: Lumbe	er								-7	· En	R. ZS
DOL=1.1	5 Plate DOL=1.15): Pa	=20.0 psf (ground	-								1	GIN	EF. CON
snow); Pf	=13.9 psf (flat roof sno	w: Lumber DOL=1.1	5								1	AFIL	UN IN
Plate DO	L=1.15); Category II; E	xp B; Fully Exp.;									1.0	MISW J	01
Ct=1.10												"IIIIII	11111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1134 ACC	
21060008	V08	Valley	1	1	Job Reference (optional)	146536412

1-11-14

1-11-14

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.51 S Jun 1 2021 Print: 8.510 S Jun 1 2021 MiTek Industries, Inc. Fri Jun 11 09:47:43 ID:?7alQiFQ2iHjuu6506Gm1Hylyli-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 3-7-9 1-7-12

3-11-11

3

2x4 💊

Page: 1

3-11-11

Scale = 1:24.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.04 0.02 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER 5) TOP CHORD 2x4 SP No.2 6) BOT CHORD 2x4 SP No.2 7) OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 4-0-5 oc purlins. 8) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 9) REACTIONS (size) 1=3-11-11, 3=3-11-11, 4=3-11-11 Max Horiz 9) Max Uplift 1=-6 (LC 14), 3=-8 (LC 14) Max Grav 1=74 (LC 2), 3=74 (LC 2), 4=110 (LC 2) LO				Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 au	es continuous bot spaced at 2-0-0 o nas been designed n chord in all aree y 2-00-00 wide w y other members tiTek connectors i ing walls due to U ion is for uplift on is designed in accor Residential Code nd referenced sta	tom chor ic. d for a liv is where ill fit betw recomme IPLIFT at ly and do rdance w s sections ndard AN	d bearing. e load of 20.0 a rectangle veen the bottu ended to conr jt(s) 1 and 3 es not consic ith the 2015 § R502.11.1 a USI/TPI 1.	Dpsf om nect der					
FORCES	(LC 2) (Ib) - Maximum Co Tension	mpression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-48/24, 2-3=-4 1-4=-5/21, 3-4=-5/ 2-4=-70/25	46/24 21											
NOTES 1) Unbalance this desig 2) Wind: AS Vasd=100 Cat. II; Ex Exterior (2 vertical le forces & I DOL=1.60	ed roof live loads have n. CE 7-10; Vult=130m βmph; TCDL=6.0psf; φ B; Enclosed; MWF 2) zone; cantilever le ft and right exposed; WWFRS for reactions 0 plate grip DOL=1.3	ve been considered for bh (3-second gust) BCDL=6.0psf; h=25ft RS (envelope) and C ft and right exposed ; C-C for members and s shown; Lumber 3	or ; -C end							0	Cit	NITH CA	ROLING

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

and a second - IIIIIIII PS 45844 100000 June 11,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

