

10401 Chapel Hill Rd Morrisville, NC 27560 Ph. 919-467-9988 Fax. 919-481-3255

DO210810 BLACK CREEK 32 THORNTON'S CREEK RD ERWIN, NC

Trenco

818 Soundside Rd Edenton, NC 27932

Re: DO210810 BLACK CREEK

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Truss Builders, Inc..

Pages or sheets covered by this seal: I47453442 thru I47453478

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

August 18,2021

Johnson, Andrew

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco

818 Soundside Rd Edenton, NC 27932

Re: DO210810 BLACK CREEK

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Truss Builders, Inc..

Pages or sheets covered by this seal: I47477338 thru I47477338

My license renewal date for the state of North Carolina is December 31, 2021.

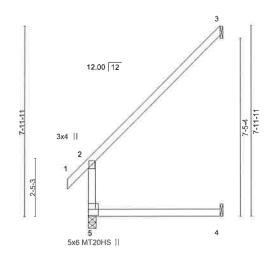
North Carolina COA: C-0844

August 17,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1	Job	Truss	Truss Type	Qly	Ply	BLACK CREEK	2
	DO210810	CJ1	Jack-Open	5	1	Job Reference (optional)	-


Truss Builders, Inc.,

Morrisville, NC - 27560,

8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:39 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-yzY1TVVPcOXvmRMWaescv73RoO9f6suEAupKn9yoFqE

	ID.AGVERAVIVEZAGINARI
-0-10-8	5-6-8
0-10-8	5-6-8

Scale = 1:46.0

LOADING (p	sf)								1	
TCLL (roof) Snow (Pf) TCDL BCLL	20.0 15.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.65 BC 0.68 WB 0.00	Vert(LL) Vert(CT) Horz(CT)	0.12 -0.11 -0.36	(loc) 4-5 4-5 3	l/defl >526 >592 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDI	0.0 * 10.0	Code IBC2015/TPI2014	Matrix-MR						Weight: 25 lb	FT = 6%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-6-8 oc purlins,

except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

WEBS

(size) 5=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 5=165(LC 10)

2x4 SP No.2

Max Uplift 3=-145(LC 10), 4=-22(LC 10)

Max Grav 5=280(LC 2), 3=172(LC 22), 4=104(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

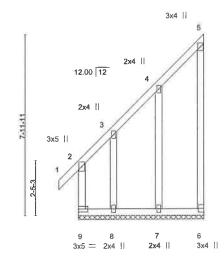
NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=145.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIF-7473 rev. 8/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of Irusses and truss systems, see ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK I47453443
DO210810	CJ1G2	Jack-Open Supported Gable	1	1	
					Job Reference (optional)


Truss Builders, Inc.,

Morrisville, NC - 27560.

8,430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:40 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-Q96PgrW1NifmNbxi8LNrSLcb6oanrlqNOYYuJbyoFqD

-0-10-8 5-6-8 0-10-8 5-6-8

Scale: 1/4"=1"

Plate Offsets (X,Y)- [6:Edg	ge,0-3-8]									
LOADING (ps TCLL (roof) Snow (Pf) TCDL	20.0 15.0 10.0	Plate Grip DOL 1. Lumber DOL 1.	0-0 CSI, 15 TC 15 BC ES WB	0.74 0.37 0.08	DEFL. Vert(LL) Vert(CT) Horz(CT)	0.00 0.00 -0.00	(loc) 2 2 6	I/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IBC2015/TPI201			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Weight: 49 lb	FT = 6%

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 5-6-8 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 5-6-8.

(lb) - Max Horz 9=231(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 6, 7 except 9=-216(LC 8), 8=-376(LC 7)

Max Grav All reactions 250 lb or less at joint(s) 6 except 9=425(LC 7), 7=261(LC 23), 8=346(LC 8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-264/170

NOTES-

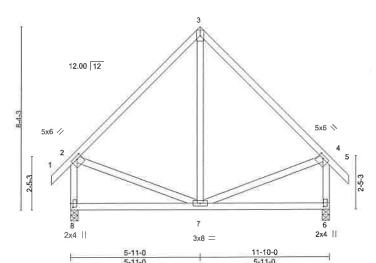
- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7 except (jt=lb) 9=216, 8=376.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AISTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qly Ply BLACK CREEK
			14745
DO210810	CT1	Common	3 1 1
			Job Reference (optional)
Truss Builders, Inc.,	Morrisville, NC - 2756	50.	8,430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:41 2021 Page
			ID:YdVEHXV1W240iKAREW0Pu1ygy8H-uMgguBXf80nd2lWyi2u4_Y8nVCxiakJXdClRr2ygEg0

4x6 ||


11-10-0 12-8-8 5-11-0 5-11-0

Scale = 1:50.1

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

[2:0-2-12,0-1-8], [4:0-2-12,0-1-8], [6:0-2-0,0-0-4], [8:0-2-0,0-1-4] Plate Offsets (X,Y)-LOADING (psf) **PLATES** GRIP SPACING-2-0-0 CSI. DEFL în (loc) I/defl L/d TCLL (roof) Snow (Pf) 20.0 TC BC 240 MT20 244/190 Plate Grip DOL 1.15 0.58 Vert(LL) -0.027-8 >999 15.0 180 Lumber DOL 1.15 0.26 Vert(CT) -0.047-8 >999 TCDL 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 6 n/a n/a 0.0 **BCLL** Weight: 82 lb FT = 6% Code IBC2015/TPI2014 Matrix-MR 10.0 BCDL

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

2x4 SP No.3 WEBS

REACTIONS. (size) 8=0-4-0, 6=0-4-0 Max Horz 8=194(LC 9)

Max Uplift 8=-10(LC 11), 6=-10(LC 10)

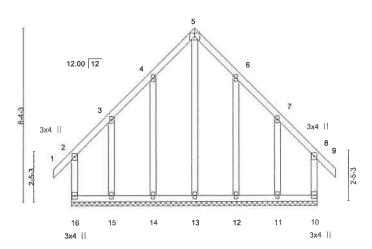
Max Grav 8=523(LC 2), 6=523(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-388/86, 3-4=-388/86, 2-8=-464/40, 4-6=-464/40 TOP CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/20/20 BEFORE USE. Design valid for use only with MT ek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of the overall design. Facility of the applicability and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK	53445
DO210810	CT1GE	Common Supported Gable	1	1	1474	13443
	1				Job Reference (optional)	
Truss Builders, Inc.	Morrisville NC - 2756	0		8.430 s Ju	un 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:47 2021 Page	a 1


Truss Builders, Inc., Morrisville, NC - 27560

8.430 s Jun 2 2021 Millek Industries, Inc. Fri Aug 13 12:50:97 2021 Page 1
ID:XdVEHXV1W240jKARFW0Pu1yqv8U-jW138EcQjsYnjgz22J?UEpOshd?I_Q_P?8ll3hyoFq6
11-10-0 12-8-8

-0-10-8 5-11-0 11-10-0 12-8-0-10-8 5-11-0 5-11-0 0-10-

4x6 =

Scale = 1:52.8

11-10-0 LOADING (psf) SPACING-CSI. DEFL I/defl Ľ∕d PLATES GRIP 2-0-0 (loc) TCLL (roof) 20.0 244/190 1.15 Plate Grip DOL TC 0.40 Vert(LL) -0.00 9 120 MT20 n/r Snow (Pf) 15.0 Lumber DOL 1.15 вС 0.22 Vert(CT) -0.00 9 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.25 Horz(CT) -0.0010 n/a n/a 0.0 BCLL FT = 6% Weight: 93 lb Code IBC2015/TPI2014 Matrix-R BCDL 10.0

11-10-0

LUMBER-TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 11-10-0.

(lb) - Max Horz 16=194(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 14, 12 except 16=-151(LC 6), 10=-144(LC 7), 15=-169(LC 7),

11=-164(LC 6)

Max Grav All reactions 250 lb or less at joint(s) 16, 10, 14, 12 except 13=280(LC 25), 15=305(LC 22), 11=301(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WFBS

OTHERS

- 1) Unbalanced roof live loads have been considered for this design,
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 12 except (jt=lb) 16=151, 10=144, 15=169, 11=164.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, slorage, delivery, erection and bracing of trusses and truss systems, see AITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

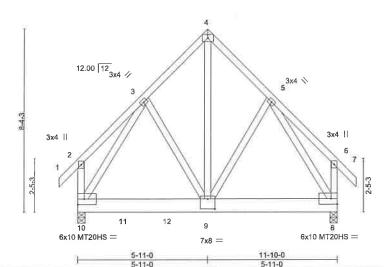
Job Qty BLACK CREEK Truss Truss Type Ply 147453446 DO210810 CT1GT Common Girder 2 Job Reference (optional)

Truss Builders, Inc.,

Morrisville, NC - 27560,

8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:48 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-BibRMac2U9geLqYFc1Wjm1xw80BQjqJYEoUJb8yoFq5

Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

11-10-0 5-11-0 8-8-12 2-9-12 3-1-4

4x6 =

Scale = 1:50.1

Plate Offsets (X,Y)- [9:0-4-	0,0-5-8]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2015/TPI2014	CSI. TC 0.87 BC 0.89 WB 0.44 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.05 9-10 -0.10 9-10 0.00 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 226 lb	GRIP 244/190 187/143 FT = 6%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No 2

2x8 SP No.2 BOT CHORD WEBS

2x4 SP No.3 *Except*

2-10.6-8: 2x4 SP No.2

(size) 10=0-4-0, 8=0-4-0 Max Horz 10=-190(LC 32)

Max Uplift 10=-382(LC 11), 8=-330(LC 10)

Max Grav 10=3212(LC 2), 8=1673(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=678/134, 3-4=-1684/427, 4-5=-1689/427, 2-10=-623/129

BOT CHORD 9-10=-257/1056, 8-9=-187/964

WEBS 4-9=-531/2102, 5-9=-177/482, 3-9=-172/365, 3-10=-1265/310, 5-8=-1893/331

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
- Top chords connected as follows: 2x4 1 row at 0-9-0 oc.
- Bottom chords connected as follows: 2x8 2 rows staggered at 0-6-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 5) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15
- Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- All plates are MT20 plates unless otherwise indicated.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=382, 8=330.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1577 lb down and 60 lb up at 2-0-8, 1577 lb down and 60 lb up at 4-0-8, and 140 lb down and 76 lb up at 5-11-12, and 725 lb down and 530 lb up at 6-2-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MT ek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK	147453446
DO210810	CT1GT	Common Girder	1			147433440
	10				Job Reference (optional)	

Truss Builders, Inc.,

Morrisville, NC - 27560,

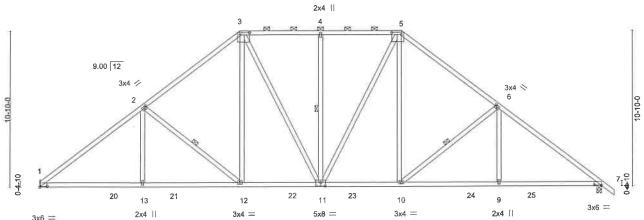
8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:48 2021 Page 2 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-BibRMac2U9geLqYFc1Wjm1xw80BQjqJYEoUJb8yoFq5

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-50, 2-4=-50, 4-6=-50, 6-7=-50, 8-10=-20


Concentrated Loads (lb)


Vert: 9=-652(B=-569) 11=-1349(B) 12=-1349(B)

Job	Truss	Truss Type		Qt	/ Pl	у	BLACK CREEK			
									[4745	3447
DO210810	CT2	Piggyback Base		3		1				
1							Job Reference (option	al)		
Truss Builders, Inc.,	Morrisville, NC - 27560.				8.4	130 s Ju	un 2 2021 MiTek Indust	ries, Inc. Fri Aug 13	3 12:50:49 2021 Page	1
255-257/100-100				ID:XdVEHXV	W240jKA	RFW0	Pu1yqv8U-fu9pZwdhFT	oUz_7RAk1yJEU8L	_QZ4SIBiTSEs7ayoFq4	4
W.	7-1-12	13-11-3	19-6-12	25-2-	5 .	0	31-11-12	39-1-8	40-0-0	
-	7-1-12	6-9-7	5-7-9	5-7-9			6-9-7	7-1-12	0-10-8	

8x10 MT20HS =

	1	7-1-12 7-1-12	13-11-3 6-9-7	19-6-12	25-2-5 5-7-9		11-12 -9-7	- 1	39-1-8 7-1-12	
Plate Offsets (X.Y)- [1:0-6	Add to the first		0], [5:0-8-0,0-2-0], [6:0-1-12					151314/	
LOADING (ps TCLL (roof) Snow (Pf) TCDL	20.0 15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC 0.65 BC 0.74 WB 0.33	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.12 11-12 -0.22 11-12 0.10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCLL BCDL	0.0 *	Code IBC2015/TF	PI2014	Matrix-MR	,				Weight: 249 lb	FT = 6%

LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 2-9-12 oc purlins,

except

2-0-0 oc purlins (4-5-11 max.): 3-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS

2-12, 4-11, 6-10 1 Row at midpt

REACTIONS. (size) 1=Mechanical, 7=0-4-0

2x4 SP No.2

2x4 SP No.3

Max Horz 1=-211(LC 8)

Max Uplift 1=-40(LC 10), 7=-52(LC 11) Max Grav 1=1597(LC 3), 7=1642(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=2377/81, 2-3=-1865/131, 3-4=-1527/118, 4-5=-1527/118, 5-6=-1865/131, TOP CHORD

6-7=2374/79

1-13-94/1898, 12-13-94/1898, 11-12-0/1411, 10-11-0/1410, 9-10-0/1827, 7-9-0/1827

WEBS 2-13=0/306, 2-12=633/158, 3-12=-16/582, 3-11=-123/370, 4-11=-338/118,

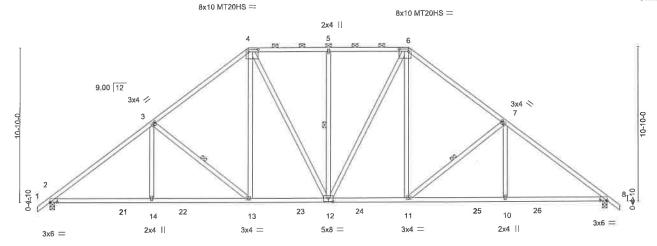
5-11=-123/370, 5-10=-16/580, 6-10=-630/156, 6-9=0/305

BOT CHORD

BOT CHORD

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system, Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job BLACK CREEK Truss Type Qty Ply Truss 147453448 DO210810 CT2A Piggyback Base 4 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:51 2021 Page 1
ID:XdVEHXV1W240jKARFW0Pu1yqv8U-cHGa_cfxn42CCHHqH93QOfZV4EEjwCh7wljzCTyoFq2
25-2-5 31-11-12 39-1-8 40-0-0 Truss Builders, Inc., Morrisville, NC - 27560, 40-0-0 0-10-8 19-6-12 25-2-5 5-7-9

Scale = 1:76.9

14	7-1-12	(A	13-11-3	19-	6-12	25-2-5	31-	11-12		39-1-0	
	7-1-12		6-9-7	5-	7-9	5-7-9	6	9-7	317	7-1-12	
Plate Offsets (X,Y)-	[2:0-6-0,0-0-6]	, [3:0-1-12,0-1-8]	[4:0-8-0,0-2-0], [6:0-8-0,0-2	-0], [7:0-1-1	2,0-1-8], [8:0-6-0,	0-0-6], [12:0-4	0,0-3-0]			
TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0	Pl Lu Ro	PACING- late Grip DOL umber DOL ep Stress Incr ode IBC2015/TP	2-0-0 1.15 1.15 YES 12014	BC	0.63 0.73 0.33 MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.12 11-12 -0.22 11-12 0.10 8	I/defi >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 251 lb	GRIP 244/190 187/143 FT = 6%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

2x4 SP No.3 WEBS

BRACING.

TOP CHORD

Structural wood sheathing directly applied or 2-10-6 oc purlins,

except

2-0-0 oc purlins (4-5-11 max.): 4-6. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 3-13, 5-12, 7-11 WEBS

6-9-7

REACTIONS.

(size) 2=0-4-0, 8=0-4-0

Max Horz 2=-216(LC 8)

Max Uplift 2-52(LC 10), 8=-52(LC 11) Max Grav 2=1641(LC 3), 8=1641(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=2373/79, 3-4=-1864/131, 4-5=-1526/118, 5-6=-1526/118, 6-7=-1864/131, TOP CHORD

7-8=-2373/79

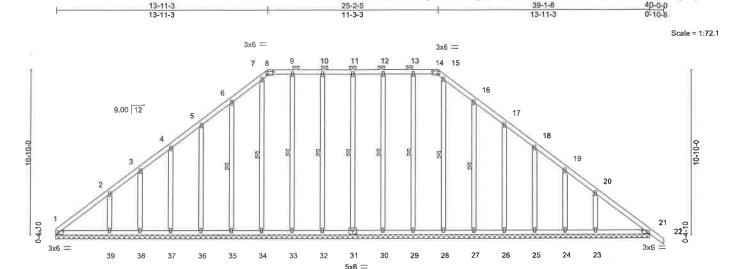
2-14=-92/1894, 13-14=-92/1894, 12-13=0/1410, 11-12=0/1410, 10-11=0/1826, BOT CHORD

8-10=0/1826 **WEBS**

3-14=0/305, 3-13=-629/156, 4-13=-16/580, 4-12=-123/370, 5-12=-338/118,

6-12=-123/370, 6-11=-16/580, 7-11=-630/156, 7-10=0/305

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Bracing individual temporary and permanent bracing is always required for slability and to prevent ucallapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qly	Ply	BLACK CREEK
D0040040	0.700.5	0.00			147453449
DO210810	CT2GE	GABLE	1	1	Job Reference (optional)
Truss Builders, Inc.,	Morrisville, NC - 27560,	· ·		8.430 s Ju	un 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:53 2021 Page 1

Plate Offsets	(X,Y) [1:0-3-1	3,0-1-8], [8:0-4-8,0-2-4], [14:0-4-8,0-2	39-1 -4], [21:0-3-13,0-1-8], [3	-8					70	
LOADING (p. TCLL (roof) Snow (Pf) TCDL BCLL BCDL		SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.15 BC 0.10 WB 0.12 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.01 0.01	(loc) 22 22 21	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 317 lb	GRIP 244/190 FT = 6%
LUMBER- TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	2-0-0	oc purl	ins (6-0-0	max.): 8-14.	applied or 6-0-0 oc pur 0-0 oc bracing.	lins, except

WEBS

1 Row at midpt

39-1-8

REACTIONS. All bearings 39-1-8.

(lb) - Max Horz 1=-212(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1, 31, 32, 33, 35, 36, 37, 38, 39, 30, 29, 27, 26, 25, 24, 23 Max Grav All reactions 250 lb or less at joint(s) 1, 31, 32, 33, 34, 35, 36, 37, 38, 30, 29, 28, 27, 26, 25,

24, 21 except 39=299(LC 22), 23=285(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 31, 32, 33, 35, 36, 37, 38, 39, 30, 29, 27, 26, 25, 24, 23.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11-31, 10-32, 9-33, 7-34, 6-35, 12-30,

13-29, 15-28, 16-27

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 ray, 6/19/2020 BEFORE USE.

Design valid for use only with MTIek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BLACK CREEK Job Qty Ply Truss Type Truss 147453450 DO210810 Piggyback Base Girder CT2GT 2 Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:55 2021 Page 1 Truss Builders Inc. Morrisville NC - 27560. ID:XdVEHXV1W240jKARFW0Pu1yqv8U-U2W4q_iRrJYehvabW78MZVkBwrj6s0sarNhBLEyoFq_ 4-7-12 8-11-13 11-8-3 14-8-0 4-4-1 4-4-1 9.00 12 Scale = 1:61:5 2x4 || 4x8 = 4x6 / 1 2 3x4 N 5 2x4 || 10-10-0 10-10-0 10-7-4 6-6-14 11 12 13 14 15 16 17 9 8 3x4 = 3x8 = 8-11-13 14-8-0 4-7-12 4-4-1

Plate Offsets (X,Y)- [1:0-3	3-8,0-1-4], [4:0-6-0,0-2-0]			
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL	f) 20.0 15.0 10.0 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.58 BC 0.31 WB 0.38	DEFL. İn (loc) I/defl L/d PLATES GRIF Vert(LL) -0.03 7-8 >999 240 MT20 244/ Vert(CT) -0.05 7-8 >999 180 Horz(CT) 0.00 10 n/a n/a	190
BCDL	10.0	Code IBC2015/TPI2014	Matrix-MR	Weight: 340 lb FT	= 6%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

REACTIONS.

WEBS

TOP CHORD 2x4 SP No.2

BOT CHORD 2x6 SP No.2

2x4 SP No.3

(size) 10=0-3-8, 7=0-4-0

Max Horz 7=-299(LC 6) Max Uplift 10=-504(LC 6), 7=-336(LC 11) Max Grav 10=1772(LC 44), 7=1600(LC 45)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2-896/269, 2-3-557/191, 3-4-557/191, 4-5-799/232, 1-10-1263/367 TOP CHORD

8-9=-285/681, 7-8=-274/503 BOT CHORD WFBS

2-9=-396/1341, 3-9=-324/128, 4-9=-304/155, 4-8=-217/589, 5-8=-215/671,

5-7=-1230/287

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.


- 4) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

6) Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=504, 7=336,
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 307 lb down and 99 lb up at 0-7-4, 305 lb down and 104 lb up at 2-7-4, 324 lb down and 104 lb up at 4-7-4, 304 lb down and 104 lb up at 6-7-4, 307 lb down and 104 lb up at 8-7-4, and 305 lb down and 104 lb up at 10-7-4, and 302 lb down and 104 lb up at 12-7-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-4.

1-10

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK	147453450
DO210810	СТ2СТ	Piggyback Base Girder	1	2	Job Reference (optional)	

Truss Builders, Inc.,

Morrisville, NC - 27560.

B.430 s Jun 2 2021 MTek Industries, Inc. Fri Aug 13 12:50:55 2021 Page 2 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-U2W4q_iRrJYehvabW?8MZVkBwrj6s0sarNhBLEyoFq_

LOAD CASE(S) Standard

Uniform Loads (plf)
Vert: 2-4=-50, 4-6=-50, 7-10=-20
Concentrated Loads (lb)

Vert: 9=-216(B) 8=-216(B) 11=-221(B) 12=-216(B) 14=-216(B) 15=-216(B) 16=-216(B)

Job BLACK CREEK Truss Truss Type Oly Ply 147453451 DO210810 CT3 14 Piggyback Base Job Reference (optional) Morrisville, NC - 27560, Truss Builders, Inc., 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:56 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-yE4T1Jj4bdgVl29n4ifb5jGRVF2ZbSek41QksgyoFpz

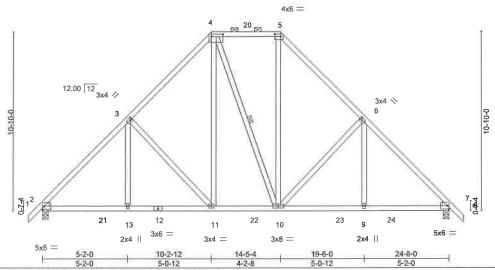
14-5-4

19-6-0

24-8-0

Structural wood sheathing directly applied or 5-2-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


2-0-0 oc purlins (6-0-0 max.): 4-5.

1 Row at midpt

6x10 MT20HS =

10-2-12

Scale = 1:66.5

Plate Offsets (X,Y) [3:0-1	1-4,0-1-8], [4:0-8-4,0-1-12], [5:0-4-4,0-1-	-12], [6:0-1-4,0-1-8]		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 B	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.27 BC 0.30 WB 0.41 Matrix-MR	DEFL. in (loc) l/defl L/d PLAT Vert(LL) -0.03 10-11 >999 240 MT20 Vert(CT) -0.07 11-13 >999 180 MT20 Horz(CT) 0.03 7 n/a n/a Weigh	244/190

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 BOT CHORD 2x4 SP No.3

WFRS

WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (size) 2=0-4-0.7=0-4-0

Max Horz 2=-216(LC 8)

Max Uplift 2=-20(LC 10), 7=-20(LC 11)

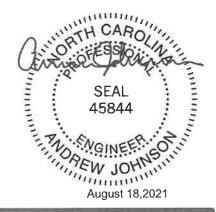
-0-10-8 0-10-8

Max Grav 2=1045(LC 3), 7=1039(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1215/37, 3-4=-922/120, 4-5=-585/137, 5-6=-919/120, 6-7=-1203/37

TOP CHORD BOT CHORD

2-13=-59/914, 11-13=-59/914, 10-11=-4/653, 9-10=0/792, 7-9=0/792

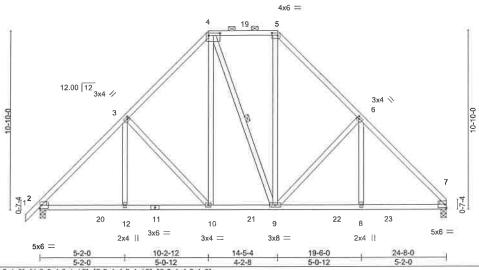

3-11-385/158, 4-11--55/424, 5-10--52/392, 6-10--380/159

WEBS NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/20/20 6EFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer, must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracting indicated is to prevent buckling of individual truss web and/for chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK
					147453452
DO210810	CT3A	Piggyback Base	5	1	
					Job Reference (optional)
Truss Builders, Inc.,	Morrisville, NC - 27560,			8.430 s J	un 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:57 2021 Page 1
			ID:XdVEHXV1W24	0jKARFW0	Pu1yqv8U-QRdrFfjiMwoMwCkzeQAqewpcFfOoKvutJhAHO6yoFpy
	-0-10-8	5-2-0 10-2-12	14-5-4	19-6-0	24-8-0

6x10 MT20HS =

Scale = 1:66.5

						1					1	
COADING (ps TCLL (roof) Snow (Pf) TCDL	20.0 15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.27 0.30 0.41	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.03	(loc) 9-10 10-12 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCLL	0.0 *	Code IBC2015/TF			x-MR						Weight: 173 lb	FT = 6%

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEB\$ 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-2-8 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 4-9

REACTIONS.

(size) 2=0-4-0, 7=0-4-0

Max Horz 2=210(LC 7) Max Uplift 2=20(LC 10), 7=-7(LC 11)

Max Grav 2=1045(LC 3), 7=992(LC 3)

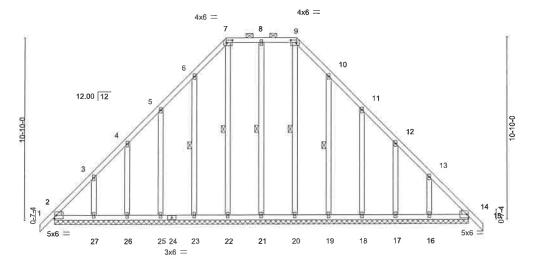
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-1216/37, 3-4=-923/121, 4-5=-585/138, 5-6=-921/120, 6-7=-1207/39 TOP CHORD

2-12=-71/906, 10-12=-71/906, 9-10=-11/645, 8-9=0/795, 7-8=0/795 BOT CHORD **WEBS** 3-10=-385/158, 4-10=-55/424, 5-9=-52/393, 6-9=-384/161

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of irusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801

Job Ply BLACK CREEK Truss Truss Type Qty 147453453 DO210810 GARLE CT3GE Job Reference (optional) 8.430 s Jun 2 2021 MTek Industries, Inc. Fri Aug 13 12:50:58 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-vdBDS?kK7EwDYMJAC7h3A8Lqz2ol3Rs1XLvrxZyoFpx Truss Builders, Inc., Morrisville, NC - 27560,

10-2-12 0-10-8 4-2-8 10-2-12

Scale = 1:65.3

Plate Offsets	(X,Y)- [7:0-4	-4,0-1-12], [9:0-4-4,0-1-1:	2]									
LOADING (p TCLL (roof) Snow (Pf) TCDL	20.0 15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.08 0.06 0.11	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 14 14 14	I/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0 *	Code IBC2015/TF	. — .	Matri	x-R						Weight: 201 lb	FT = 6%

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 BOT CHORD

2x4 SP No.3 OTHERS WEDGE

Left: 2x4 SP No.3, Right: 2x4 SP No.3

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 7-9.

Rigid ceiling directly applied or 10-0-0 oc bracing. **BOT CHORD**

WEBS 1 Row at midpt 8-21, 7-22, 6-23, 9-20, 10-19

REACTIONS. All bearings 24-8-0.

Max Horz 2=-216(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 21, 23, 25, 26, 19, 18, 17, 14 except 27=-108(LC 10),

All reactions 250 lb or less at joint(s) 2, 21, 22, 23, 25, 26, 27, 20, 19, 18, 17, 14, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 21, 23, 25, 26, 19, 18, 17, 14 except (it=lb) 27=108, 16=104.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system, Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guildance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

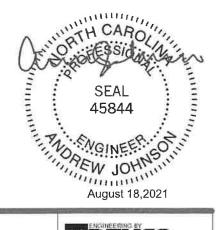
818 Soundside Road

Job BLACK CREEK Truss Truss Type Qty Ply 147453454 DO210810 CT4 Piggyback Base Structural Gable COMMON 5 Job Reference (optional) Truss Builders, Inc., Morrisville, NC - 27560, 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:59 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-NplbfLlyuY249WuMlqDljLutNSzJoqSAm?fOT?yoFpw 13-11-3 7-1-12 18-3-4 22-7-5 28-3-8 0-10-8 6-9-7 Scale: 3/16"=1" 5x6 MT20HS == 4x6 // 3x4 = B 4x6 N 9.00 12 3x4 // 6-6-14 15 19 16 17 18 11 10 2x4 || 2x4 || 5x8 = 3x8 = 3x6 = 13-11-3 6-9-7 7-1-12 22-7-5 28-3-8 Plate Offsets (X,Y)-[2:0-3-13,0-1-8], [3:0-1-12,0-1-8], [6:0-4-0,0-2-0], [7:0-3-0,0-1-12], [10:0-3-8,0-3-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL I/defl Ľ∕ď **PLATES** GRIP (loc) TCLL (roof) 20.0 244/190 Plate Grip DOL 1.15 TÇ 0.61 Vert(LL) -0.23 9-10 >999 240 MT20 Snow (Pf) 15.0 MT20HS Lumber DOL 1.15 вс 0.74 Vert(CT) -0.359-10 >957 180 187/143 TCDL 10.0 Rep Stress Incr YES WB 0.35 Horz(CT) 0.04 8 n/a n/a **BCLL** 0.0 FT = 6% Weight: 198 lb Code IBC2015/TPI2014 Matrix-MR BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 3-9-10 oc purlins, TOP CHORD BOT CHORD 2x4 SP No.2 except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-6. 2x4 SP No.3 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS WEBS 1 Row at midpt 3-10, 5-9, 7-8 REACTIONS. (size) 2=0-4-0, 8=0-4-0

Max Horz 2=277(LC 9) Max Uplift 2=-50(LC 10), 8=-14(LC 11)

Max Grav 2=1188(LC 22), 8=1179(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

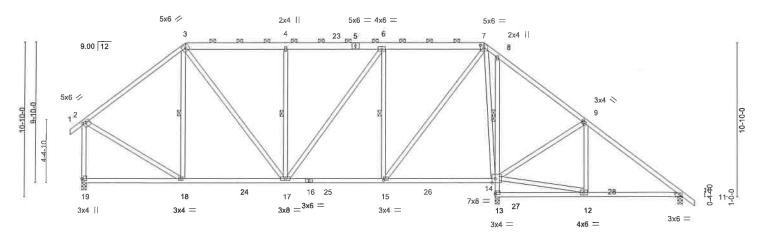

TOP CHORD 2-3=-1607/78, 3-4=-1115/125, 4-5=-805/153, 5-6=-530/98, 6-7=-739/100, 7-8=-1099/39

BOT CHORD 2-11=-114/1322, 10-11=-114/1322, 9-10=-87/702

WEBS 3-11=0/288, 3-10=-615/161, 4-10=0/329, 5-10=-63/371, 5-9=-520/102, 7-9=-26/767

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AISTP19 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	BLAC	K CREEK		
DO210810	CT5	Piggyback Base	9	1		1			147453455
		337				Job Re	eference (optional)	77	
Truss Builders, Inc.,	Morrisville, NC - 27560,							Inc. Fri Aug 13 12:5	
				ID:XdVEHXV	W240jKARF	W0Pu1yq	v8U-r0JzthmafrBxng	TYJYkXGZRySsIAX	DwJ?fOx?RyoFpv
-Q-10 ₇ 8	7-3-3	14-4-0	21-3-0	28-	3-13	29-1₁8	35-6-1	42-3-0	43-1-8
0-10-8	7-3-3	7-0-13	6-11-1	7-0	-13	0-9-11	6-4-9	6-8-15	0-10-8

Scale = 1:77.1

	7-3	-3 1	4-4-0	2	1-3-0	29-1-	8	35	-6-1	42-3-0	-0
	7-3	-3 ' 7	-0-13	6	11-1	7-10-	8 '	6-	4-9	6-8-15	-94
Plate Offsets	(X,Y)- [2:0-3-	-0,0-1-8], [7:0-3-0,0-2-2],	[9:0-1-12,0-1-	8], [10:0-3-1	3,0-1-8], [14:0	J-2-12,Edge], [15:	0-1-12,0-1-8], [19:0-1-12	2,0-1-4]		
LOADING (ps TCLL (roof) Snow (Pf) TCDL	20.0 15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.91 0.77 0.52	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.10 17-18 -0.17 14-15 0.02 13	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IBC2015/TF	PI2014	Matri	x-MR					Weight: 319 lb	FT = 6%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD 2x4 SP No.2 *Except*

5-7,3-5: 2x6 SP No.2

2x4 SP No.2 *Except* BOT CHORD 8-13: 2x4 SP No.3

WFBS 2x4 SP No.3

REACTIONS. (size) 13=0-3-8, 10=0-4-0, 19=0-4-0

Max Horz 19=248(LC 8)

Max Uplift 13-31(LC 11), 10-61(LC 11), 19-71(LC 10) Max Grav 13=1835(LC 3), 10=519(LC 27), 19=1219(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3-976/106, 3-4-933/132, 4-6-932/131, 6-7-757/132, 9-10-505/94,

TOP CHORD

BOT CHORD 17-18-121/762, 15-17-126/756, 13-14-1789/70, 8-14-332/119, 10-12-0/325 **WEBS** 4-17=-440/152, 6-17=-56/328, 6-15=-721/157, 7-15=-81/1150, 7-14=-1061/137,

12-14=0/448, 9-14=-506/153, 3-17=-139/431, 2-18=-46/765

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 10, 19.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-2-8 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-7.

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

8-14

4-17, 6-15, 7-14, 3-18

2-11-1 oc bracing: 13-14

6-0-0 oc bracing: 12-13. 1 Row at midpt

1 Row at midpt

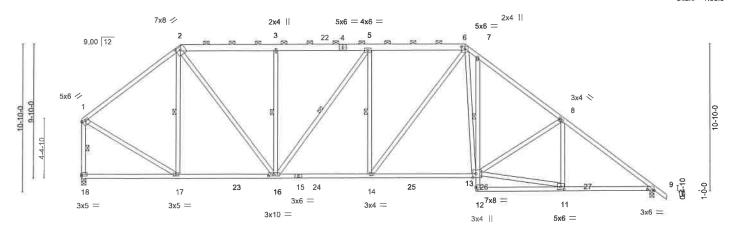
🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MIYEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the labrication, storage, delivery, erection and bracing of Invases and truss systems, see ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	BLACK	CREEK		147453456
O210810 CT5A		Piggyback Base		2	1				147433450
						Job Refe			
Truss Builders, Inc.,	Morrisville, NC - 27560.				8.430 s J	un 2 2021	MiTek Industri	es, Inc. Fri Aug 13 1	2:51:01 2021 Page 1
			IC	:XdVEHXV1W240	KARFW0P	u1yqv8U-J	ICtL41nCQ9JnF	q2ltFFmomz6QGdp	GbHTDJ8VXuyoFpu
71-2	7-3-3	14-4-0	21-3-0	28-3-13		1,8	35-6-1	42-3-0	43-1-8
	7-3-3	7-0-13	6-11-1	7-0-13	0.29	-11	6-4-9	6-8-15	0-10-8

Structural wood sheathing directly applied or 2-11-11 oc purlins,

except end verticals, and 2-0-0 oc purlins (5-0-15 max.): 2-6.

7-13


3-16, 5-16, 5-14, 1-18, 2-17

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 11-12. 1 Row at midpt

1 Row at midpt

Scale = 1:80,8

78	7-3-3	14-4-0	21-3-0	29-1-8	35-6-1	42-3-0	
	7-3-3	7-0-13	6-11-1	7-10-8	6-4-9	6-8-15	
Plate Offsets (X,Y)- [1:E	dge,0-1-8], [2:0-4-0,0-2-8]	, [6:0-3-0,0-2-2]	, [8:0-1-12,0-1-8], [9:0-6-0,	0-0-10], [11:0-3-0,0-2-0], [12	0-2-0,0-0-12], [13	:0-2-12,Edge], [16:0-4-12,0-1	-8]
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2015/T	2-0-0 1.15 1.15 YES	CSI. TC 0.96 BC 0.87 WB 0.84 Matrix-MR	DEFL. in (lor Vert(LL) -0.19 13-1 Vert(CT) -0.38 13-1 Horz(CT) 0.11	4 >999 240	MT20	GRIP 244/190 FT = 6%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD 2x4 SP No.2 *Except*

2-4,4-6: 2x6 SP No.2 2x4 SP No.2 *Except*

BOT CHORD 7-12: 2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS. (size) 18=0-4-0, 9=0-4-0

Max Horz 18=-251(LC 6) Max Uplift 18=-33(LC 10), 9=-82(LC 11)

Max Grav 18=1695(LC 3), 9=1737(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1492/74, 2-3=-1764/93, 3-5=-1763/92, 5-6=-1991/151, 6-7=-2195/231, TOP CHORD

7-8-2346/159, 8-9-2522/127, 1-18-1636/65

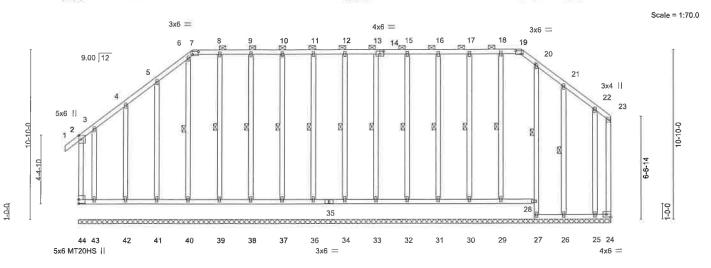
16-17=-82/1125, 14-16=-17/1989, 13-14=0/1726, 9-11=0/1950

BOT CHORD WEBS 3-16=-450/151, 5-16=-400/99, 5-14=-258/205, 6-14=-140/527, 6-13=-109/828,

11-13=0/2017, 8-13=-288/150, 2-17=-464/110, 1-17=-38/1239, 2-16=-121/1125

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 9.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 GEFORE USE. Design valid for use only with MTTak® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss was the property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Job
 Truss
 Truss Type
 Qty
 Ply
 BLACK CREEK
 I47453457

 DO210810
 CT5GE
 GABLE
 1
 1
 Job Reference (optional)

 Truss Builders, Inc.,
 Morrisville, NC - 27560,
 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:03 2021 Page 1

Plate Offsets (X,Y)- I2:0-3-	29-1-8 29-1-8 29-1-8 Plate Offsets (X,Y) [2:0-3-0,0-1-12], [7:0-4-8,0-2-4], [14:0-2-12,0-2-4], [19:0-4-8,0-2-4], [20:0-2-0,0-0-12], [24:Edge,0-2-0]											
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.76 BC 0.56 WB 0.15 Matrix-R	DEFL. in (loc) Vert(LL) 0.00 1 Vert(CT) -0.00 2 Horz(CT) -0.01 24	l/defl L/d n/r 120 n/r 120 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143 Weight: 338 lb FT = 6%							

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD 2x4 SP No.2

TOP CHORD 2x4 SP No.2
BOT CHORD 2x4 SP No.2 *Except*

20-27: 2x4 SP No.3

2x4 SP No.2 *Except*

23-24: 2x4 SP No.3

OTHERS 2x4 SP No.3

REACTIONS. All bearings 34-0-0.

(lb) - Max Horz 44=265(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 27, 34, 36, 37, 38, 39, 40, 41, 42,

33, 32, 31, 30, 29, 26 except 44=-634(LC 6), 24=-309(LC 7), 43=-733(LC 7),

25=-290(LC 6)

Max Grav All reactions 250 lb or less at joint(s) 27, 34, 36, 37, 38, 39, 40, 41,

42, 33, 32, 31, 30, 29, 26, 28 except 44=774(LC 9), 24=291(LC 8), 43=742(LC

8), 25=435(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-44=-383/299, 2-3=-307/257

WEBS 3-43=-299/313

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
- Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Bearing at joint(s) 28 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify Continuación objecting surface.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

20-28

12-34, 11-36, 10-37, 9-38, 8-39, 6-40,

13-33, 15-32, 16-31, 17-30, 18-29, 21-26

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-19.

Rigid ceiling directly applied or 6-0-0 oc bracing, Except:

10-0-0 oc bracing: 27-28.

1 Row at midpt

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 8EFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system, Before use, the building designer must verify the applicability of design parameters and properly incorporate his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, cerction and bracing of trusses and truss systems, see _____ASTIFP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK
					147453457
DO210810	CT5GE	GABLE	1	1	Job Reference (optional)
The state of the s					Job Reference (optional)

Truss Builders, Inc.,

Morrisville, NC - 27560.

8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:03 2021 Page 2 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-Fb76VjoTymZVe7C7_gHEtB3W73N6kgVmhddccmyoFps

NOTES-

- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 27, 34, 36, 37, 38, 39, 40, 41, 42, 33, 32, 31, 30, 29, 26 except (jt=lb) 44=634, 24=309, 43=733, 25=290.
- 16) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 44, 34, 36, 37, 38, 39, 40, 41, 42, 43, 33, 32, 31, 30, 29.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job BLACK CREEK Truss Truss Type Qly Ply 147453458 DO210810 СТ6 2 Piggyback Base Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:05 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-Bz6swOqjUOpDtRLW65Jizc8vFt?JCUY38x6igfyoFpq Truss Builders, Inc., Morrisville, NC - 27560. 43-1-8 0-10-8 Scale = 1:82.5 3x4 = 5x6 4 3x4 = 3x6 = 2x4 || 7x8 = 2x4 || 10 6 29 4x6 < 9.00 12 4x6 🛇 11 3x4 // 12 3 13 44-10 [6 [6] 3x5 = 15 22 20 197x8 = 14 30 32 21 33 31 25 4x8 = 4x6 = 24 3x4 == 3x6 = 3x4 = 4x6 = 3x4 = 2x4 || 3x6 = 3x4 = 7x8 34-11-13 1-6-13 13-1-8 26-11-1 33-5-0 7-3-10 6-5-15 [2:0-3-13,0-1-8], [3:0-1-12,0-1-8], [5:0-2-12,0-2-8], [10:0-6-0,0-2-0], [11:0-2-8,0-2-0], [12:0-2-14,0-2-0], [16:0-2-4,0-1-8], [18:0-2-12,Edge], [19:Edge,0-1-8], [10:0-2-12,0-2-8],Plate Offsets (X,Y)-[22:0-1-12,0-1-8], [23:0-2-12,Edge], [24:Edge,0-1-8] LOADING (psf) PLATES **GRIP** SPACING-2-0-0 CSI. DEFL. in (loc) I/defl 1/d TCLL (roof) 20,0 244/190 Plate Grip DOL 1.15 TC 0.52 Vert(LL) -0.07 20-22 >999 240 MT20 15.0 Snow (Pf) Lumber DOL 1.15 BC 0.77 Vert(CT) -0.13 22-23 >999 180 TCDL 10.0 Rep Stress Incr YES WR 0.56 Horz(CT) 0.07 14 n/a n/a BCLL 0.0 Code IBC2015/TPI2014 Weight: 345 lb FT = 6% Matrix-MR BCDL 10.0 **BRACING-**LUMBER-TOP CHORD 2x4 SP No 2 TOP CHORD Structural wood sheathing directly applied or 5-4-12 oc purlins, 2x4 SP No.2 *Except* except end verticals, and 2-0-0 oc purlins (5-10-7 max.): 5-10. BOT CHORD Rigid ceiling directly applied or 3-2-8 oc bracing. Except: **BOT CHORD**

WEBS

1 Row at midpt

1 Row at midpt

4-23, 9-18

5-23, 6-22, 8-20, 8-18, 10-17

4-24,9-19,11-15: 2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-4-0, 24=0-3-8, 14=0-4-0

Max Horz 2=248(LC 9)

Max Uplift 2=-12(LC 10), 24=-96(LC 10), 14=-63(LC 11) Max Grav 2=486(LC 26), 24=1838(LC 3), 14=1200(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-451/32, 3-4=-54/302, 5-6=-646/147, 6-8=-869/151, 8-9=-815/140, 9-10=-808/137 10-11=1026/116, 11-12=464/59, 12-14=-1277/69

BOT CHORD 2-25-90/334, 23-24-1792/134, 4-23-288/122, 20-22-104/646, 9-18--270/115,

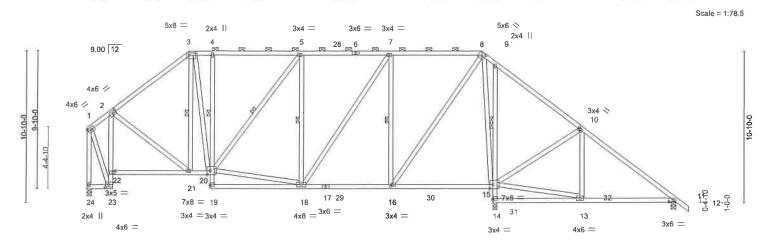
17-18=-34/737, 16-17=-47/400, 15-16=-784/71, 11-16=-748/106

WEBS 3-25=0/257, 23-25=-79/469, 3-23=-503/139, 5-23=-1186/88, 5-22=-51/1090,

6-22=-752/128, 6-20=-68/419, 8-20=-332/137, 18-20=-121/709, 10-18=-138/447,

11-17=-51/422, 12-15=-62/950

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 24, 14.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 5/19/2020 6EFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see ANS/ITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss		Truss Type			Qty	Ply	BLACK	CREEK			
D0040040	O210810 CT6A											1474534
DO210810	C16A		Piggyback Base			2	1					
							I	Job Refe	rence (optior	naf)		
Truss Builders, Inc.	Morrisville, NO	- 27500.					8,430 s Ju	in 2 2021	MiTek Indus	tries, Inc	Fri Aug 13 12	2:51:06 2021 Page 1
					ID:XdVEH	XV1W240	KARFWOR	u1yqv8U	g9gE8kqLFI	1x4Vbwi	garxVph4_HLS	xxmCNbrGD5voFpp
1-10-0	7-3-3	8-10-0,	15-4-8	21-9-5		28-3-13	29-1-	18	35-6-1		42-3-0	43-1-8
1-10-0	5-5-3	1-6-13	6-6-8	6-4-12		6-6-8	0-9-1	1	6-4-9		6-8-15	0-10-8

10	1-10-0	7-3-3 8-10-0,	15-4-8	21-9-5	29-1-	8	35-6-1		42-3-0	
T.	1-10-0	5-5-3 1-6-13	6-6-8	6-4-12	7-4-3		6-4-9	7(07)	6-8-15	
Plate Offsets (X.	Y)- [2:0-2	2-12,0-2-0], [3:0-6-0,0-2-0	1. [8:0-2-8.0-2-	81. [10:0-1-12.0-1-8]. [11:0-3-13.0-1-81. [15:	0-2-12.Edgel, [16:0-1-12.0-	1-81. [20:0-	2-12.Edgel, [22:0-2-4	
52,747,032,003		81. [23:0-2-12.0-2-0]	AVIANCE SUMMOCE			AT COMMENT A PERSON AS A STATE OF THE COMMENT AND A STATE OF THE COMMENT AN	ADVECTOR DESCRIPTION	3. 1	. 5 3.1	
		A CONTRACTOR OF TA		1						
OADING (psf)		SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0					٠,,				
Snow (Pf)	15.0	Plate Grip DOL	1.15	TC 0.52	Vert(LL)	-0.07 15-16	>999	240	MT20	244/190
		Lumber DOL	1.15	BC 0.78	Vert(CT)	-0.13 15-16	>999	180		
CDL	10.0	Rep Stress Incr	YES	WB 0.56	Horz(CT)	0.07 14	n/a	n/a		
BCLL	0.0	'			11012(01)	0.07	11/4	1176	14/-: 244 Ib	ET - C0/
BCDL	10.0	Code IBC2015/T	P12014	Matrix-MR					Weight: 344 lb	FT = 6%

BOT CHORD

WEBS

1 Row at midpt

1 Row at midpt

 LUMBER BRACING

 TOP CHORD
 2x4 SP No.2
 TOP CHORD

BOT CHORD 2x4 SP No.2 *Except*

2-23,4-19,9-14: 2x4 SP No.3

WEBS 2x4 SP No.3

REACTIONS. (size) 24=0-4-0, 14=0-3-8, 11=0-4-0

Max Horz 24=-252(LC 6)

Max Uplift 24=-58(LC 10), 14=-12(LC 11), 11=-73(LC 11) Max Grav 24=1138(LC 26), 14=1838(LC 3), 11=487(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-463/67, 2-3=-1030/113, 3-4=-811/133, 4-5=-818/136, 5-7=-870/124, 7-8=-650/145,

9-10=0/283, 10-11=-451/113, 1-24=-1216/63

BOT CHORD 22-23=-794/103, 2-22=-758/135, 21-22=-160/499, 20-21=-128/750, 4-20=-275/115,

16-18=-111/650, 14-15=-1792/51, 9-15=-281/116, 11-13=0/282

WEBS 2-21=-90/417, 3-20=-192/449, 18-20=-161/708, 5-18=-332/129, 7-18=-58/418,

 $7\textbf{-}16\textbf{=-}749/149, \, 8\textbf{-}16\textbf{=-}78/1088, \, 8\textbf{-}15\textbf{=-}1190/161, \, 13\textbf{-}15\textbf{=-}0/395, \, 10\textbf{-}15\textbf{=-}513/151, \, 13\textbf{-}15\textbf{=-}0/395, \, 10\textbf{-}15\textbf{=-}513/151, \, 13\textbf{-}15\textbf{=-}0/395, \, 10\textbf{-}15\textbf{=-}0/395, \, 10\textbf{-}0/395, \, 10$

10-13=0/257, 1-23=-70/962

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 11.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 5-4-11 oc purlins,

4-20, 9-15

3-21, 5-20, 5-18, 7-16, 8-15

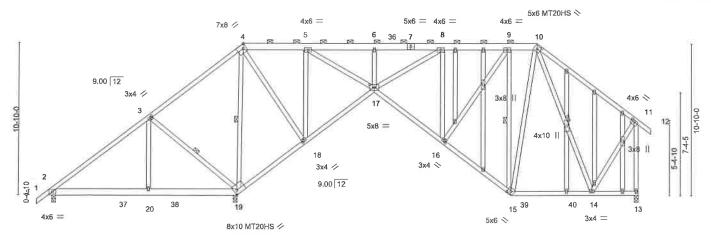
except end verticals, and 2-0-0 oc purlins (5-10-6 max.): 3-8.

Rigid ceiling directly applied or 3-2-2 oc bracing. Except:

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK
DO210810	CT14	GABLE Gable I Gable COMMON	1	1	147453460
					Job Reference (optional)
Truss Builders, Inc.,	Morrisville, NC - 27560,			8.430 s J	un 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:42 2021 Page 1
		ID;Xo	IVEHXV1W240jk	ARFW0Pu1	yqv8U-NYDA5XYHuJvUdv55GmPJXmhuocGJJ?qgss1?NUyoFqB

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-10.


3-19, 4-19, 10-14, 9-15

Rigid ceiling directly applied or 5-10-0 oc bracing.

1 Row at midot

-Q-10₇8 0-10-8 7-1-12 7-1-12 13-11-3 18-4-14 23-3-12 28-2-10 33-1-8 34-11-13 42-3-0 43-1-8 0-10-8 6-9-7 4-10-14 4-10-14

Scale = 1:78.4

0-2-14 7-1-	2 13-6-0	13-6-6	18-4-14	23-3-12	28-2-10	33-	1-8 34	-11-13	41-11-10 42-3-0	1
0-2-14 6-10-	14 6-4-4	0-0-6	4-10-8	4-10-14	4-10-14	4-10)-14	-10-5	6-11-13 0-3-6	
Plate Offsets (X,Y)- [3:0-	1-12,0-1-8], [4:0-2-8,Edge]	. [10:0-3-4,0-	2-8], [11:0-2-1	12,0-1-8], [15:0-3	-0,0-2-2], [16:	0-1-12,0-1-8], [17:0-4-0.0	2-4], [18:0)-1-12,0-1-8], [19:0-2-8,E	[dge]
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2015/TF	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.92 0.36 0.88	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.06 14-15 -0.11 16-17 0.10 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 386 lb	GRIP 244/190 187/143 FT = 6%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

7-10.4-7: 2x6 SP No 2

2x4 SP No.2 *Except*

BOT CHORD 2-19: 2x6 SP No.2

WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

REACTIONS.

(size) 2=0-3-8, 19=0-3-8, 13=0-3-8

Max Horz 2=269(LC 9)

Max Uplift 2=-334(LC 27), 19=-167(LC 7), 13=-69(LC 11) Max Grav 2=190(LC 9), 19=2628(LC 2), 13=913(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3-278/824, 3-4-188/1164, 4-5-45/363, 5-6-642/77, 6-8-642/77, 8-9-630/134,

9-10=-425/136, 10-11=-497/122, 11-13=-875/61 2-20=-623/209, 19-20=-623/209, 18-19=-996/110, 17-18=-481/96, 16-17=-92/817,

15-16-53/569, 14-15-27/406 WEBS

3-20=0/321, 3-19=-622/152, 4-19=-1614/214, 6-17=-293/91, 5-18=-892/136, 8-16=-331/128, 4-18=-62/789, 5-17=-110/1136, 10-14=-345/33, 11-14=0/490,


9-15=-417/148, 9-16=-57/343, 10-15=-62/255

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 2=334, 19=167.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify to properly design. Bracing indicated is to prevent localizes with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and furues systems, see ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qly	Ply	BLACK CREEK
00040040			~~~		147453461
DO210810	CT15	PIGGYBACK BASE STRUC Gable Gable COMM	DNII	1	Job Reference (optional)
Truss Builders, Inc.,	Morrisville, NC - 27560,	SHE CONTROLLUS	5-000 CMT (F-E)		un 2 2021 MTek Industries, Inc. Fri Aug 13 12:50:43 2021 Page 1 Pu1yqv8U-rknYJtZwfd1LF3gHpTwY3zE3Y?bY2S4p5WnYwwyoFqA

28-2-10

Scale = 1:78.4

43-1-8 0-10-8

42-3-0

34-11-13

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-10.

3-19, 4-19, 10-14, 9-15

Rigid ceiling directly applied or 5-10-0 oc bracing.

1 Row at midpt

33-1-8

4-10-14

0-21	14 7-	1-12	13-6-0	13-6-6	18-4-14	23-3-12	28-2-10) , 33	-1-8	34-11-13	41-11-10 42:3-0	
0-2	14 6-1	0-14	6-4-4	0-0-6	4-10-8	4-10-14	4-10-14	4-1	0-14	1-10-5	6-11-13 0-3-6	<u></u>
Plate Offsets (X	(,Y)- [3:0)-1-12,0-1-8], [4:0-	2-8,Edge]	[10:0-3-4,0-2	2-8], [11:0-2-	12,0-1-8], [15:	0-3-0,0-2-2], [16:	0-1-12,0-1-8], [17:0-4-0,	0-2-4], [18:	0-1-12,0-1-8], [19:0-2-8,E	dge]
LOADING (psf TCLL (roof) Snow (Pf) TCDL	20.0 15.0 10.0	SPACIN Plate Gri Lumber i Rep Stre	p DOL DOL	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.92 0.36 0.88	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.06 14-15 -0.11 16-17 0.10 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCLL BCDL	0.0 * 10.0	Code IB	C2015/TP	12014	Matri	x-MR					Weight: 334 lb	FT = 6%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

7-10,4-7: 2x6 SP No.2

BOT CHORD 2x4 SP No.2 *Except*

2-19: 2x6 SP No.2

WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 19=0-3-8, 13=0-3-8

Max Horz 2=269(LC 9)

Max Uplift 2=334(LC 27), 19=-167(LC 7), 13=-69(LC 11)

Max Grav 2=190(LC 9), 19=2628(LC 2), 13=913(LC 27)

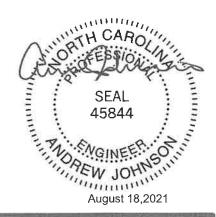
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-278/824, 3-4=-188/1164, 4-5=-45/363, 5-6=-642/77, 6-8=-642/77, 8-9=-630/134,

9-10=-425/136, 10-11=-497/122, 11-13=-875/61

BOT CHORD 2-20=-623/209, 19-20=-623/209, 18-19=-996/110, 17-18=-481/96, 16-17=-92/817,

15-16=-53/569, 14-15=-27/406

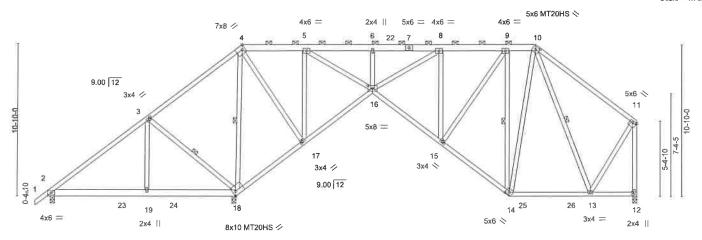

WEBS 3-20=0/321, 3-19=-622/152, 4-19=-1614/214, 6-17=-293/91, 5-18=-892/136,

8-16-331/128, 4-18-62/789, 5-17-110/1136, 10-14-345/33, 11-14-0/490,

9-15=-417/148, 9-16=-57/343, 10-15=-62/255

NOTES-

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 2=334, 19=167.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system, Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see _____ASTIPH1 Quality Criteria, DSB-99 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK	
DO210810	CT16	PIGGYBACK BASE STRUC Gable able I Gable C	CBMMON	1		147453462
			1		Job Reference (optional)	
Truss Builders, Inc.,	Morrisville, NC - 27560,		111	8.430 s J	un 2 2021 MiTek Industrie	es, Inc. Fri Aug 13 12:50:45 2021 Page 1
		ID:XdVEH:	<v1w240j< td=""><td>KARFW0P</td><td>u1yqv8U-n7vIjZaABEI3UI</td><td>Mqgxuy09OJNKpH?WMZ6YqGf_pyoFq8</td></v1w240j<>	KARFW0P	u1yqv8U-n7vIjZaABEI3UI	Mqgxuy09OJNKpH?WMZ6YqGf_pyoFq8
-Q-10 ₇ 8	7-1-12	13-11-3 18-4-14 23-3-12	28-2-10)	33-1-8 34-11-13	42-3-0
0 <u>-</u> 10-8	7-1-12	6-9-7 4-5-11 4-10-14	4-10-14	4 10	4-10-14 '1-10-5'	7-3-3

Scale = 1:78.4

0-2		7-1-12	13-6-	0 13-5-6	18-4-14	23-3-12	28-2-			-1-8	34-11-13	41-11-10 42-3	
0-2	-14 6	-10-14	6-4-4	0-0-6	4-10-8	4-10-14	4-10-	14	4-1	0-14	1-10-5	6-11-13 0-3-	5
late Offsets (X,Y)- [3	:0-1-12.0-1-81, [4:	0-2-8.Edge1	. f10:0-3-4.0-2	-81. [11:Edg	e.0-1-81, [12:0-2-	0.0-0-81, [14:0	-3-0.0-2	-21. [15:	0-1-12.0	-1-81, I16:0-4	1-0,0-2-4], [17:0-1-12,0-	1-81.
ACTUACIONE EN ACTUA		8:0-2-8.Edgel		Alberta a the m	-3, [Complete Com	and the same of th	,-	-31 [,-	- 11		1000000
		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							_			T	
LOADING (ps	f)	SPAC	NC	2-0-0	CSI.		DEFL.	in	(loc)	I/defl	L∕d	PLATES	GRIP
TCLL (roof)	20.0						-	in	, ,				
Snow (Pf)	15.0	Plate 0	Grip DOL	1.15	TC	0.97	Vert(LL)	-0.06	13-14	>999	240	MT20	244/190
,		Lumbe	r DOI	1.15	BC	0.36	Vert(CT)	-0.11	15-16	>999	180	MT20HS	187/143
CDL	10.0		tress Incr	YES	WB	0.88	/					141720110	1017140
BCLL	0.0 *				–		Horz(CT)	0.10	12	n/a	n/a		
BCDL	10.0	Code	IBC2015/TP	12014	Matri	x-MR						Weight: 332 lb	FT = 6%
BUDL	10.0												

BRACING-

TOP CHORD

BOT CHORD

1 Row at midpt

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

7-10.4-7: 2x6 SP No.2 2x4 SP No.2 *Except* **BOT CHORD**

2-18: 2x6 SP No.2

WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 18=0-3-8, 12=0-3-8

Max Horz 2=264(LC 9)

Max Uplift 2=-334(LC 27), 18=-172(LC 7), 12=-52(LC 11) Max Grav 2=187(LC 9), 18=2629(LC 2), 12=851(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-284/823, 3-4=-194/1164, 4-5=-49/362, 5-6=-645/77, 6-8=-645/77, 8-9=-632/127,

9-10=-427/125, 10-11=-496/113, 11-12=-810/43

BOT CHORD 2-19=623/207, 18-19=623/207, 17-18=996/108, 16-17=480/91, 15-16=96/820,

14-15=-56/572, 13-14=-37/409

WEBS 3-19=0/321, 3-18=-622/152, 4-18=-1615/220, 6-16=-293/91, 5-17=-894/138,

8-15=-332/129, 4-17=-64/791, 5-16=-114/1139, 10-13=-345/39, 11-13=0/487,

9-14=-416/149, 9-15=-58/344, 10-14=-61/254

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=334, 18=172.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purfins (6-0-0 max.): 4-10. Rigid ceiling directly applied or 5-10-0 oc bracing.

3-18, 4-18, 10-13, 9-14

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTRMC connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of Iusses and Iruss systems, see AISTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK
DO210810	CT17	PIGGYBACK BASE STRUC Gable able I Gable C	OBMMON I	le 1	147453463
					Job Reference (optional)
Truss Builders, Inc.,	Morrisville, NC - 27560,			8.430 s Ju	un 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:46 2021 Page 1
0x 17x		ID:XdVEHXV1	W240jKAF	RFW0Pu1y	qv8U-FJThxvboyYQw6WOsVcUFhcsbcDcCFo6GnU?CWFyoFq7

28-2-10 4-10-14

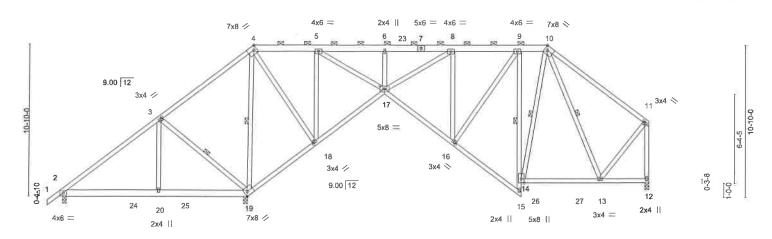
4-10-14

23-3-12

4-10-14

Scale = 1:78.4

42-3-0 7-3-3


Structural wood sheathing directly applied or 6-0-0 oc purlins, except

3-19, 4-19, 9-15, 10-14, 10-13

2-0-0 oc purlins (6-0-0 max.): 4-10.

1 Row at midpt

Rigid ceiling directly applied or 5-1-10 oc bracing.

0-2:14	7-1-12	13-6-0	13-6-6	18-4-14	23-3-12	100	28-2-10	33-	1-8	34-11-13	41-1	11-10	42,3-0	
0-2-14	6-10-14	6-4-4	0-0-6	4-10-8	4-10-14	1	4-10-14	4-10	0-14	1-10-5	6-1	1-13	0-3-6	
Plate Offsets (X	,Y) [3:0-1-	-12,0-1-8], [4:0-2-8,Edge]	[10:0-2-8	3,Edge], [11:0-	1-12,0-1-8], [1	6:0-1-	-12,0-1-8], [17	:0-4-0,0-2	-4], [1	8:0-1-12,0-1	-8], [19:0-2	2-8,Edge]		
LOADING (psf TCLL (roof) Snow (Pf) TCDL	20.0 15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CS TO BO	0.81 0.43		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (I -0.10 13 -0.19 13 0.22		>999 2 >999 1	/d 40 80 n/a	PLAT MT20		GRIP 244/190
BCLL BCDL	0.0 • 10.0	Code IBC2015/TP	12014	Ma	atrix-MR		_(,					Weig	ht: 327 lb	FT = 6%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

0-10-8

TOP CHORD 2x4 SP No.2 *Except*

7-10.4-7: 2x6 SP No.2 BOT CHORD

2x4 SP No.2 *Except* 2-19: 2x6 SP No.2

WEBS 2x4 SP No.3 *Except*

9-15: 2x4 SP No.1D

REACTIONS. (size) 2=0-3-8, 19=0-3-8, 12=0-3-8

Max Horz 2=241(LC 10)

Max Uplift 2-511(LC 27), 19=-114(LC 7), 12=-66(LC 11) Max Grav 2=146(LC 6), 19=2884(LC 2), 12=765(LC 27)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-212/1119, 3-4=-121/1453, 4-5=-7/651, 8-9=-464/145, 9-10=-371/152,

TOP CHORD

10-11=-437/96 2-20=860/201, 19-20=-860/202, 18-19=-1281/97, 17-18=-840/95, 16-17=-43/609,

15-16=-9/461, 13-14=-13/392

WEBS 3-20=0/320, 3-19=-622/152, 4-19=-1698/155, 6-17=-291/92, 5-18=-755/129,

4-18=-56/678, 5-17=-58/883, 8-17=-428/94, 10-13=-269/63, 11-12=-749/75,

11-13=0/471

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=511, 19=114.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 (ev. 5/19/2020 BEFORE USE. Design valid for use only with MTEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designs, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent uclinates with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSITH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Type Qly Ply BLACK CREEK Truss 147453464 DO210810 CT20 Piggyback Base Job Reference (optional) 6.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:50:50 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-84iBnGeJ0nwLa7idkRYBsS0Jgq_TBI7ri5zQf0yoFq3 Truss Builders, Inc., Morrisville, NC - 27560, 14-8-0 8-11-13 0-3-11 5-8-3 9.00 12 8x10 MT20HS = Scale: 3/16"=1" 5x6 MT20HS = 2x4 || 4x6 > 5 10-7-4 6-6-14 12 2x4 || 10 11 8 7 3x8 = 3x4 = 4-7-12 8-11-13 4-7-12 Plate Offsets (X,Y)-[1:0-8-0,0-2-0], [4:0-4-0,0-1-12], [5:0-3-0,0-1-8], [6:0-2-0,0-0-4] LOADING (psf) **PLATES** GRIP SPACING-DEFL. L/d 2-0-0 CSI. (loc) I/defl TCLL (roof) 20.0 244/190 Plate Grip DOL TC BC 0.68 Vert(LL) -0.03 8-9 >999 240 MT20 1.15 Snow (Pf) 15.0 MT20HS Vert(CT) -0.05 6-7 >999 180 187/143 Lumber DOL 1.15 0.34 TCDL 10.0 Rep Stress Incr WB 0.01 9 YES 0.35 Horz(CT) n/a n/a 0.0 **BCLL** Code IBC2015/TPI2014 Weight: 146 lb FT = 6% Matrix-MR BCDL 10.0 **BRACING-**LUMBER-Structural wood sheathing directly applied or 6-0-0 oc purlins, TOP CHORD 2x4 SP No.2 TOP CHORD except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 2-4. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3 WEBS **WEBS** 1-9, 3-8, 4-7, 4-8 1 Row at midpt REACTIONS. (size) 9=0-3-8, 6=0-4-0 Max Horz 6=-302(LC 6) Max Uplift 9=-139(LC 6), 6=-31(LC 11) Max Grav 9=614(LC 3), 6=638(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-368/92, 4-5=-347/50, 1-9=-516/133, 5-6=-531/50

BOT CHORD 7-8=-162/277, 6-7=-269/222

WEBS 3-8=-303/123, 2-8=-140/467, 5-7=-74/340

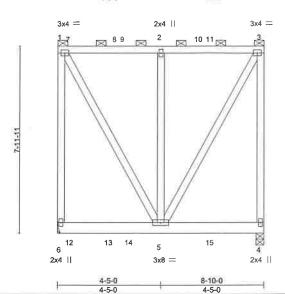
NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 9=139.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL 7473 rev. 5/19/2020 DEFORE USE WARNING - VOR JOSE AND METERS AND NOTES ON THIS AND INCLUDED METER REFERENCE PAGE MINTAY NEW STREAM DEFORE USE. Design valid for use only with MITERS connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITTH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plale Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:08 2021 Page 1
ID:XdVEHXV1W240jKARFW0Pu1yqv8U-cYo?YQsbnJBoku45nDtPaEmSl4D5Px0VqvKNH_yoFpn
4-5-0
8-10-0

2-0-0 oc purlins (6-0-0 max.): 1-3, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:46.8

LOADING (p	sf)					1						
TCLL (roof)	20.0		-11-4	CSI.	0.44	DEFL.	in	(loc)	I/defl	L/d	PLATES	GRIP
Snow (Pf)	15.0	Plate Grip DOL Lumber DOL	1,15 1,15	TC BC	0.44 0.06	Vert(LL) Vert(CT)	0.01 -0.01	5	>999 >999	240 180	MT20	244/190
TCDL	10.0	Rep Stress Incr	NO	WB	0.06	Horz(CT)	-0.01	2	>999 n/a	n/a		
BCLL	0.0 *	Code IBC2015/TPI2		Matri		11012(01)	-0.00	7	ri/a	IIIa	Weight: 181 lb	FT = 6%
BCDL	10.0	Code IBC2013/1F12	2014	IVIALIT	K-1011						Weight. 101 ID	11-070

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

(size) 6=Mechanical, 4=0-4-0

Max Horz 6=-208(LC 6)

Max Uplift 6=-511(LC 6), 4=-608(LC 7) Max Grav 6=810(LC 41), 4=887(LC 40)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-6=-656/487, 3-4=-788/610

WEBS 1-5=-352/516, 2-5=-530/419, 3-5=-352/516

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=511, 4=608.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 133 lb down and 149 lb up at 0-6-0, 136 lb down and 150 lb up at 2-6-0, 136 lb down and 150 lb up at 8-8-4, and 126 lb down and 115 lb up at 8-8-4 on top chord, and 78 lb down and 35 lb up at 0-6-0, 69 lb down and 41 lb up at 2-6-0, and 69 lb down and 41 lb up at 8-8-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK	
DO210810	FL1G	Flat Girder	1			53465
				2	Job Reference (optional)	

Truss Builders, Inc.,

Morrisville, NC - 27560,

8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:08 2021 Page 2 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-cYo?YQsbnJBoku45nDtPaEmSl4D5Px0VqvKNH_yoFpn

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf)
Vert: 1-3=-48, 4-6=-19

Concentrated Loads (lb)

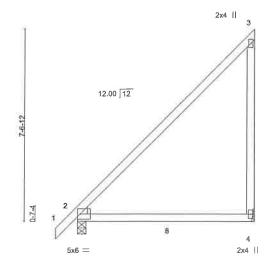
Vert: 5=-41(F) 2=-73(F) 3=-123(F=-92) 7=-88(F) 8=-73(F) 11=-73(F) 12=-48(F) 14=-41(F) 15=-41(F)

Job	Truss	Truss Type	Qty	Ply	BLACK CREEK
DO210810	M1	Monopitch	7	1	147453466
		Worldpitch	<i>'</i>		Job Reference (optional)

Truss Builders, Inc.,

Morrisville, NC - 27560,

8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:08 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-cYo?YQsbnJBoku45nDtPaEmNl43LPz3VqvKNH_yoFpn


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

10:X0VEHXV | W240JKARF W0F 10-10-8 6-11-8 0-10-8 6-11-8

Scale = 1:43.2

6-11-8 6-11-8

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.76 BC 0.69 WB 0.00	DEFL. in (loc) l/defi L/d Vert(LL) 0.17 4-7 >483 240 Vert(CT) -0.28 4-7 >291 180 Horz(CT) 0.03 2 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IBC2015/TPI2014	Matrix-MP		Weight: 38 lb FT = 6%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

WEDGE Left: 2x4 SP No.3

REACTIONS.

(size) 4=Mechanical, 2=0-4-0

Max Horz 2=218(LC 9)

Max Uplift 4=84(LC 7)

Max Grav 4=387(LC 22), 2=358(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate his design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see _____ASTIPT1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Job. Truss Truss Type Qly BLACK CREEK Ply 147453467 DO210810 PB1 Piggyback Job Reference (optional) Truss Builders, Inc., 8,430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:09 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-4kMNmmtDYcJfM2fHLxOe7SJeOUVe8P5e3Z4wpQyoFpm Morrisville, NC - 27560, Scale = 1:26.3 4x6 | 9.00 12 0-1-10 6 3x6 = 3x6 = 2x4 || 11-3-3 Plate Offsets (X,Y)- [2:0-3-13,0-1-8], [4:0-3-13,0-1-8] LOADING (psf) SPACING-2-0-0 CSL DEFL. I/defl Ľ∕d PLATES GRIP TCLL (roof) TC BC 244/190 Plate Grip DOL 1.15 0.32 Vert(LL) 0.01 5 n/r 120 MT20 Snow (Pf) 15.0 Lumber DOL 1.15 0.23 Vert(CT) 0.01 5 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.08 Horz(CT) 0.00 n/a n/a BCLL 0.0 * Code IBC2015/TPI2014 Weight: 41 lb FT = 6%Matrix-R BCDL LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD

OTHERS

BOT CHORD 2x4 SP No.2 **BOT CHORD**

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

2x4 SP No.3

(size) 2=9-10-8, 4=9-10-8, 6=9-10-8

Max Horz 2=-78(LC 8)

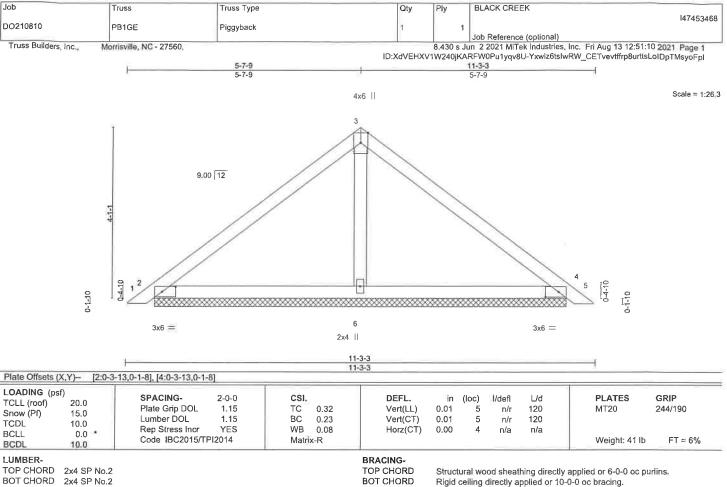
Max Uplift 2=-17(LC 10), 4=-27(LC 11)

Max Grav 2=220(LC 2), 4=220(LC 2), 6=401(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev, 5/19/2020 6EFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system, Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent tracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 SP No.3 OTHERS

REACTIONS.

(size) 2=9-10-8, 4=9-10-8, 6=9-10-8

Max Horz 2=-78(LC 8)

Max Uplift 2=-17(LC 10), 4=-27(LC 11)

Max Grav 2=220(LC 2), 4=220(LC 2), 6=401(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 5/19/2020 BEFORE USE. WANNING - YOR OSSIGN PARAMETER SINCE ALSO NOTES ON THIS AND INCLUDED MEET REFERENCE - PAGE MIRAY FOR, 6719/200 BEFORE USE.

Design valid for use only with MITEKO connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/of chord members only. Additional temporary and permanent bracing is always required for stability and to prevent callapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recction and bracing of trusses systems, see ANSITH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20801

Job Truss Truss Type Qty BLACK CREEK Ply 147453469 DO210810 PB2 Piggyback 19 Job Reference (optional) 8.430 s Jun 2 2021 MTek Industries, Inc. Fri Aug 13 12:51:10 2021 Page 1
ID:XdVEHXV1W240jKARFW0Pu1yqv8U-Yxwlz6lslwRW_CETvevtffruculntlZoIDpTMsyoFpl Truss Builders, Inc., Morrisville, NC - 27560, 2-1-4 3 x6 = Scale = 1:12.6 12,00 12 1-11-10 2 0-5-3 0-5-3 0-1-10 0-1-10 3x6 == 3x6 == Plate Offsets (X,Y)- [2:0-4-6,0-1-8], [3:0-3-0,Edge], [4:0-4-6,0-1-8] LOADING (psf) PLATES GRIP SPACING-2-0-0 CSI. DEFL. (loc) I/defi L/d TCLL (roof) 20.0 0.04 120 MT20 244/190 Plate Grip DOL 1.15 TC Vert(LL) 0.00 n/r Snow (Pf) 15.0 BC 120 Vert(CT) 0.00 Lumber DOL 1 15 0.11 n/r TCDL 10.0 WB Rep Stress Incr YES 0.00 Horz(CT) 0.00 n/a n/a 0.0 **BCLL** Weight: 13 lb FT = 6% Code IBC2015/TPI2014 Matrix-P BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-2-8 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD 2x4 SP No.2

REACTIONS.

(size) 2=3-0-14, 4=3-0-14

Max Horz 2=-36(LC 8)

Max Uplift 2=-4(LC 10), 4=-4(LC 11) Max Grav 2=143(LC 2), 4=143(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

C VET THE THE RE

Job Truss Type Qty Ply BLACK CREEK Truss 147453470 DO210810 PB2GE Piggyback Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:11 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-07U7BSuU3EZNbMpgSMQ6Ct03MID0cKpxXtZ1ulyoFpk Truss Builders, Inc. Morrisville, NC - 27560, 3 3x6 = Scale = 1:12,6 12.00 12 -11-10 2 0-1-10 0-1-10 3x6 = 3x6 =4-2-8 Plate Offsets (X,Y)- [2:0-4-6,0-1-8], [3:0-3-0,Edge], [4:0-4-6,0-1-8] LOADING (psf) SPACING-**PLATES** GRIP 2-0-0 CSI. DEFL. (loc) I/defl L/d TCLL (roof) 20.0 120 MT20 244/190 Plate Grip DOL 1.15 TC 0.04 Vert(LL) 0.00 n/r Snow (Pf) 15.0 BC 120 0.11 Lumber DOL 1 15 Vert(CT) 0.00 n/r TCDL 10.0 WB Horz(CT) Rep Stress Incr YES 0.00 0.00 n/a n/a 0.0 BCLL Code IBC2015/TPI2014 Weight: 13 lb FT = 6% Matrix-P BCDL 10.0 LUMBER-**BRACING-**TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-2-8 oc purlins.

BOT CHORD 2x4 SP No.2

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 2=3-0-14, 4=3-0-14

Max Horz 2=-36(LC 8)

Max Uplift 2=-4(LC 10), 4=-4(LC 11) Max Grav 2=143(LC 2), 4=143(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 5/19/2020 BEFORE USE, Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Job Qty BLACK CREEK Truss Truss Type Ply 147453471 DO210810 РВ3 Piggyback Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:12 2021 Page 1 Truss Builders, Inc., Morrisville, NC - 27560, ID:XdVEHXV1W240jKARFW0Pu1yqv8U-UJ2WOov6qXhEDWOs03xLl4xBoiYuLnT5lXlaQlyoFpj 4-4-1 8-8-3 Scale = 1:21.3 4x6 = 3 9.00 12 45 0-4-10 0-4-10 0-1-10 0-1-10 6 3x6 =3x6 =2x4 || 8-8-3 Plate Offsets (X,Y)- [2:0-3-13,0-1-8], [4:0-3-13,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. l/defl **PLATES** GRIP L/d TCLL (roof) TC BC Plate Grip DOL 1.15 0.25 Vert(LL) 0.01 5 n/r 120 MT20 244/190 Snow (Pf) 15.0 Lumber DOL 1.15 0.13 Vert(CT) 0.01 5 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.04 Horz(CT) 0.00 4 n/a n/a 0.0 BCLL Code IBC2015/TPI2014 Weight: 31 lb Matrix-P FT = 6%BCDL LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. **BOT CHORD** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3

REACTIONS. (size) 2=7-3-8, 4=7-3-8, 6=7-3-8

Max Horz 2=59(LC 9)

Max Uplift 2=-25(LC 10), 4=-33(LC 11)

Max Grav 2=190(LC 2), 4=190(LC 2), 6=255(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design, Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property amage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Qty BLACK CREEK Truss Truss Type Ply 147453472 DO210810 PB3GE Piggyback Job Reference (optional) Truss Builders, Inc., Morrisville, NC - 27560, 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:12 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-UJ2WOov6qXhEDWOs03xLl4x8FiUbLjN5lXlaQlyoFpj 21-0-11 10-6-5 10-6-5 10-6-5 Scale = 1:46.9 5x6 🚿 9.00 12 2x4 || 2x4 || 5 3 3x6 3x6 = 9 8 10 11 12 2x4 || 2x4 || 2x4 || 21-0-11 21-0-11 Plate Offsets (X,Y)-[2:0-3-13,0-1-8], [4:0-3-1,0-2-8], [6:0-3-13,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL I/defl **PLATES** GRIP Ľď TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.41 Vert(LL) -0.00 ĥ n/r 120 MT20 244/190 Snow (Pf) 15.0 Lumber DOL 1.15 вс 0.41 Vert(CT) 0.00 6 n/r 120 TCDL 10.0 Rep Stress Incr YES WB 0.30 Horz(CT) 0.00 6 n/a n/a **BCLL** 0.0 Weight: 87 lb FT = 6%Code IBC2015/TPI2014 Matrix-R 10.0 BCDL LUMBER-BRACING-2x4 SP No.2 TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.2 BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SP No.3

REACTIONS. All bearings 19-8-0.

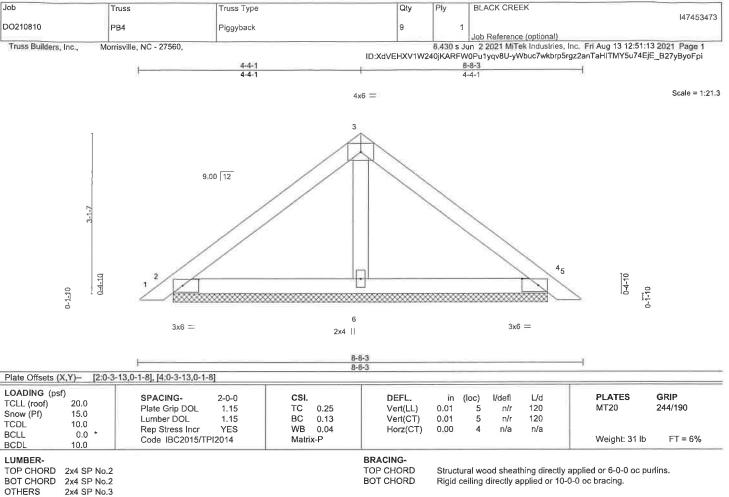
Max Horz 2=-149(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2 except 10=-137(LC 10), 8=-136(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 2, 6 except 9=576(LC 22), 10=516(LC 22), 8=515(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-9=-282/1, 3-10=-341/197, 5-8=-341/196

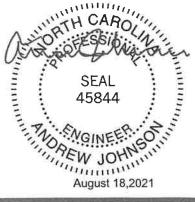

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 10=137, 8=136
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MH-7473 (ev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for slability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AISTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 2=7-3-8, 4=7-3-8, 6=7-3-8

Max Horz 2=59(LC 9)


Max Uplift 2=-25(LC 10), 4=-33(LC 11)

Max Grav 2=190(LC 2), 4=190(LC 2), 6=255(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE. ARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIN-747 evs. 6/19/20/0 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job BLACK CREEK Truss Truss Type Qly Ply 147453474 DO210810 14 PB5 Piggyback Job Reference (optional) Truss Builders, Inc., Morrisville, NC - 27560, 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:14 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-Ri9GpTxMM9xxTpXE8U_pqV0UIVA3pdsNDqnhVdyoFph 10-6-5 10-6-5 21-0-11 10-6-5 Scale = 1:46.9 5x6 < 9.00 12 2x4 |] 2x4 || 5 3 0-4-10 0-1-10 3x6 = 3x6 = 10 11 9 12 8 2x4 || 2x4 || 2x4 || 21-0-11 21-0-11 Plate Offsets (X,Y)-[2:0-3-13,0-1-8], [4:0-3-1,0-2-8], [6:0-3-13,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. L/d **PLATES** GRIP I/defl TCLL (roof) 20.0 244/190 Plate Grip DOL 1.15 TC 0,41 Vert(LL) -0.00 6 n/r 120 MT20 Snow (Pf) 15.0 ВС Lumber DOL 1.15 0.41 Vert(CT) 0.00 6 n/r 120 TCDL 10.0 Rep Stress Incr YES WR 0.30 Horz(CT) 0.00 6 n/a n/a 0.0 **BCLL** Weight: 87 lb FT = 6%Code IBC2015/TPI2014 Matrix-R BCDL 10.0 BRACING-LUMBER-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 2x4 SP No.2 BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 19-I

ONS. All bearings 19-8-0.
(lb) - Max Horz 2=-149(LC 8)

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 2 except 10=-137(LC 10), 8=-136(LC 11)

Max Grav All reactions 250 lb or less at joint(s) 2, 6 except 9=576(LC 22), 10=516(LC 22), 8=515(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-9=-282/1, 3-10=-341/197, 5-8=-341/196

NOTES

OTHERS

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 10=137, 8=136
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 8EFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see _____AST/FP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type		Qty	Ply	BLACK CRE	EK		147453475
DO210810		PB6	Piggyback		1	1				147433473
			337				Job Referenc			
Truss Builders, Inc.	, Mo	orrisville, NC - 27560,				8.430 s Ju	n 2 2021 MiT	ek Industries,	Inc. Fri Aug 13 12:51:15	2021 Page 1
330				ID	:XdVEHXV1W240	0jKARFW0	Pu1yqv8U-vuj	e0px_7S3o4z	6RhBV2MjŽfVvVIY46XRI	JXE14yoFpg
			10-6-5				10-6-5			
		in.	10-6-5				10-6-5			
				5x6 🔇						Scale = 1:46.9
				3,0 \	•					
				4						
		9.00 12		//:						
			//				90			
						11				
	2	2x4				11	24	4		
	ġ						5	* 11		
	']	3					11			
			3				18/			
	- !	//								
	}	//								
		//					- 11			
		2 //								
	9	1//	71	i i			153		6718 0	
0-1=10	0.4-10		3. 3.	CXXXXXXXXXXXXXXX	000000000000000000000000000000000000000	**********	XXXXXXXXXXX	2000000000	14 6	
0-1	0								Ó	
		3x6 =	0 11	9		1	2 8		3x6 =	
			. 11	0.4.11			2x4			
		2x	4	2x4 i 21-0-11			2X4			
		 		21-0-11						
Plate Offsets (X,Y)	- [2:0	-3-13,0-1-8], [4:0-3-1,0-2-8],	[6:0-3-13,0-1-8]							
LOADING (psf)										
	0.0	SPACING-		CSI.	DEFL.		oc) I/defl	L/d		GRIP
	5.0	Plate Grip DOL		TC 0.41	Vert(LL)	-0.00	6 n/r	120	MT20	244/190
	0.0	Lumber DOL		BC 0.41	Vert(CT)	0.00	6 n/r	120		
	0.0	Rep Stress Incr		WB 0.30	Horz(CT)	0.00	6 n/a	n/a	141 : 14 07 11	FT 60/
	0.0	Code IBC2015/TPI	2014	Matrix-R					Weight: 87 lb	FT = 6%
				D	RACING-					
LUMBER-	4 CD N-	2			OP CHORD	Structure	al wood shoo	Ibina directly	applied or 6-0-0 oc pur	ine
TOP CHORD 2x4					OT CHORD				0-0 oc bracing.	

2x4 SP No.3 OTHERS

REACTIONS. All bearings 19-8-0.

(lb) - Max Horz 2=-149(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 2 except 10=-137(LC 10), 8=-136(LC 11)

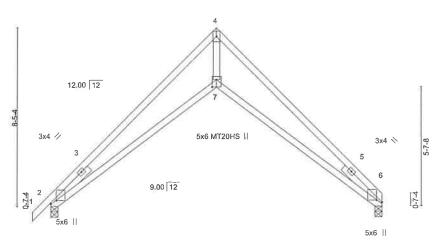
Max Grav All reactions 250 lb or less at joint(s) 2, 6 except 9=576(LC 22), 10=516(LC 22), 8=515(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4-9-282/1, 3-10-341/197, 5-8-341/196 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Cl=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 10=137, 8=136,
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MIYEK REFERENCE PAGE MII 7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply BLACK CREEK 147453476 DO210810 SC1 Scissor Job Reference (optional) 8.430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:16 2021 Page 1 Truss Builders, Inc., Morrisville, NC - 27560, ID:XdVEHXV1W240jKARFW0Pu1yqv8U-N5H0E9ycumCfi7hdFv0Hvw5kcJn_HQ5gg8GoZWyoFpf -0-10-8 0-10-8 7-10-0 7-10-0 7-10-0 Scale = 1:51,9 4x6 11

7-10-0 Plate Offsets (X,Y)- [2:0-2-1,0-3-1], [6:0-1-2,0-3-1], [7:0-4-4,0-2-8] LOADING (psf) **PLATES** DEFL. GRIP SPACING-2-0-0 CSI. in (loc) I/defl L/d TCLL (roof) Plate Grip DOL TC Vert(LL) 0.17 7-10 >999 240 MT20 244/190 1.15 0.71 Snow (Pf) 15.0 >679 180 MT20HS 187/143 BC 0.70 Vert(CT) -0.287-14 Lumber DOL 1.15 TCDL 10.0 WB Rep Stress Incr YES 0.77 Horz(CT) 0.30 6 n/a n/a **BCLL** 0.0 Code IBC2015/TPI2014 Weight: 75 lb FT = 6% Matrix-MR BCDL

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS. (size) 2=0-4-0, 6=0-4-0

Max Horz 2=163(LC 7) Max Uplift 2=-7(LC 10)

Max Uplift 2=-7(LC 10) Max Grav 2=681(LC 2), 6=625(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1723/3, 4-6=-1724/64

BOT CHORD 2-7=0/1517, 6-7=0/1503

WEBS 4-7=0/1900

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

Structural wood sheathing directly applied or 3-0-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 6EFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, defivery, erection and bracing of trusses and truss systems, see _____AST/PTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Job BLACK CREEK Truss Truss Type Qly Ply 147453477 DO210810 SC1A Scisso Job Reference (optional) 8,430 s Jun 2 2021 MiTek Industries, Inc. Fri Aug 13 12:51:17 2021 Page 1 Truss Builders, Inc., Morrisville, NC - 27560, ID:XdVEHXV1W240jKARFW0Pu1yqv8U-rHrPRVzFf4KWKHGppcXWS8ewXj6g0tQqvo0L6yyoFpe 7-10-0 7-10-0 15-8-0 7-10-0

4x6 ||

12.00 12 3x4 / 5x6 MT20HS || 3x4 \ 9.00 12 4x6 4x6 >

7-10-0

Plate Offsets (X,Y)- 12:0-2-	-1,0-1-8], [6:0-1-8,0-2-4], [8:0-4-4,0-2-8]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.70 BC 0.74 WB 0.76 Matrix-MR	DEFL, Vert(LL) Vert(CT) Horz(CT)	in (ld 0.17 8- -0.27 8- 0.30	11 >999	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 77 lb	GRIP 244/190 187/143 FT = 6%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

SLIDER Left 2x4 SP No.3 2-6-0, Right 2x4 SP No.3 2-6-0

REACTIONS.

(size) 2=0-4-0, 6=0-4-0

Max Horz 2=169(LC 9)

Max Uplift 2=-7(LC 10), 6=-7(LC 11) Max Grav 2=679(LC 2), 6=679(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-1714/0, 4-6=-1744/29

BOT CHORD WEBS

2-8=0/1544, 6-8=0/1529 4-8=0/1929

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ff; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) 2, 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

Structural wood sheathing directly applied or 3-0-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:53.1

🛕 WARNING - Verify dasign parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 (ev. 5/19/2020 BEFORE USE, Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type BLACK CREEK Qtv Ply 147477338 DO210810 SC2 Scissor Job Reference (optional) Truss Builders, Inc., Morrisville, NC - 27560 8.430 s Jun 2 2021 MiTek Industries, Inc. Mon Aug 16 15:30:44 2021 Page 1 ID:XdVEHXV1W240jKARFW0Pu1yqv8U-eHTwoo2MfOV1kKPl3VxFlgfQkK_h4rHzn84qsJynEC9 5-11-0 9-5-0 11-10-0 2-5-0 3-6-0 4x6 = Scale = 1:41.6 12,00 12 3x8 / 3x8 N 7x8 = 2x4 [[2x4 || 9,00 12 0-2-7 3x4 // 3x4 💸 10 2-5-0 [3:0-2-12,0-1-8], [5:0-2-12,0-1-8] Plate Offsets (X,Y)-LOADING (psf) SPACING-2-0-0 CSI. DEFL. **PLATES** GRIP (loc) I/defl L/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.17 Vert(LL) -0.04 9-10 >999 240 MT20 244/190 Snow (Pf) 15.0 Lumber DOL 1.15 -0.10 BC 0.41 Vert(CT) 9-10 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.39 Horz(CT) 0.11 8 n/a n/a BCLL 0.0 Code IBC2015/TPI2014 Matrix-MR Weight: 79 lb FT = 6%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

BCDL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No 2 WERS

2x4 SP No.3

10.0

REACTIONS. (size) 10=0-3-8, 8=0-3-8

Max Horz 10=-131(LC 8)

Max Uplift 10=-6(LC 10), 8=-6(LC 11) Max Grav 10=523(LC 2), 8=523(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-913/0, 4-5=-932/0

BOT CHORD 9-10=146/790, 8-9=-3/655

WEBS 4-9=0/1026, 3-10=-882/34, 5-8=-866/0, 5-9=-59/284

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 10, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 8.

Structural wood sheathing directly applied or 5-11-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent tracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

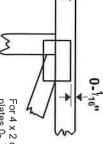

Symbols

PLATE LOCATION AND ORIENTATION

offsets are indicated. Center plate on joint unless x, y Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

and fully embed teeth.

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

00

တ

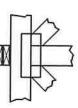
GI

connector plates. required direction of slots in This symbol indicates the

*Plate location details available in MiTek 20/20 software or upon request

PLATE SIZE

4 × 4

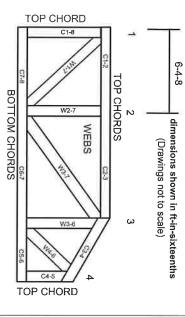

to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

if indicated. output. Use T or I bracing by text in the bracing section of the Indicated by symbol shown and/or

BEARING

Min size shown is for crushing only, number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings


Industry Standards:

ANSI/TPI1: National Design Specification for Metal Plate Connected Wood Truss Construction. Guide to Good Practice for Handling, Building Component Safety Information, Installing & Bracing of Metal Plate Design Standard for Bracing

Connected Wood Trusses

DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

section 6.3 These truss designs rely on lumber values established by others Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- stack materials on inadequately braced trusses Never exceed the design loading shown and never
- all other interested parties. designer, erection supervisor, property owner and Provide copies of this truss design to the building
- Cut members to bear tightly against each other.
- locations are regulated by ANSI/TPI 1. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- shall not exceed 19% at time of fabrication. Unless otherwise noted, moisture content of lumber
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative trealed, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.