

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21040028-B 72 Carolina Lakes-Roof-Sterling

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I46292676 thru I46292708

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844



May 26,2021

Sevier, Scott

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job        | Truss | Truss Type             | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------------------|-----|-----|---------------------------------|-----------|
| 21040028-B | A01   | Common Supported Gable | 1   | 1   | Job Reference (optional)        | 146292676 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:15 ID:V6qbZzEgg25mJIQE2RQXSUzd719-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Scale = | 1:62.9 |
|---------|--------|
|---------|--------|

| Plate Offsets (                                                             | (X, Y): [2:0-0-12,0-0-2]                                                                                                                                                                                                                                                     | ], [2:0-0-12,0-9-11], [2                                                                                                                                                                                                                                                                                                                                                                                        | 0:0-0-12,0-0-2], [20:0                                                             | -0-12,0-9-1                                                                                                                                                                                                                 | 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                 |                                          |                                                                                                                  |                                                                                     |                                                                                                                                        |                                                                                                                         |                                                                                                                         |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-f                                                                                                                                                                                           | 0.05<br>0.04<br>0.22<br>MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                 | in<br>n/a<br>n/a<br>0.01                                                                        | (loc<br>21                               | c) l/defl<br>- n/a<br>- n/a<br>0 n/a                                                                             | L/d<br>999<br>999<br>n/a                                                            | PLATES<br>MT20<br>Weight: 248                                                                                                          | <b>GRIP</b><br>244/19<br>3 lb FT = 2                                                                                    | 90<br>20%                                                                                                               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD | 2x6 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3 *Excep<br>Left: 2x4 SP No.3<br>Right: 2x4 SP No.3<br>Structural wood shea                                                                                                                                                          | t* 0-0:2x4 SPF No.2(fl<br>athing directly applied                                                                                                                                                                                                                                                                                                                                                               | at)<br>or                                                                          | Max Grav                                                                                                                                                                                                                    | 2=170 (LC 21), 2<br>22=224 (LC 35),<br>24=164 (LC 35),<br>26=177 (LC 22),<br>29=237 (LC 22),<br>31=237 (LC 21),<br>34=177 (LC 21),<br>36=164 (LC 34),<br>29=224 (LC 34),                                                                                                                                                                                                                                                                                                                                                            | 20=170 (LC<br>23=141 (L<br>25=159 (L<br>28=230 (L<br>30=181 (L<br>35=159 (L<br>37=141 (L | C 22),<br>C 22),<br>C 1),<br>C 22),<br>C 22),<br>C 27),<br>C 21),<br>C 21),<br>C 21),<br>C 21), | 2) V<br>V<br>C<br>2<br>(2<br>2<br>2<br>2 | Vind: ASC<br>/asd=103r<br>Cat. II; Exp<br>cone and C<br>2-6-3 to 13<br>2N) 20-4-3<br>cone; canti<br>und right e: | E 7-16<br>nph; T(<br>B; End<br>-C Col<br>-6-13, (<br>3 to 31-<br>lever le<br>kposed | ; Vult=130mp<br>CDL=6.0psf; E<br>closed; MWFF<br>rner(3E) -0-10<br>Corner(3R) 13<br>4-13, Corner(<br>eft and right en<br>l;C-C for mem | 1 (3-second<br>3CDL=6.0ps<br>3C (envelop<br>-8 to 2-6-3,<br>3-6-13 to 20<br>3E) 31-4-13<br>(posed ; end<br>bers and for | l gust)<br>sf; h=25ft;<br>be) exterior<br>Exterior(2N)<br>)-4-3, Exterior<br>3 to 34-9-8<br>d vertical left<br>proces & |
| BOT CHORD                                                                   | 6-0-0 oc purlins.<br>Rigid ceiling directly                                                                                                                                                                                                                                  | applied or 10-0-0 oc                                                                                                                                                                                                                                                                                                                                                                                            | FORCES                                                                             | (lb) - Max                                                                                                                                                                                                                  | 42=170 (LC 22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on/Maximu                                                                                | m                                                                                               | g<br>3) T                                | rip DOL='<br>Truss desi                                                                                          | I.60<br>gned fo                                                                     | or wind loads                                                                                                                          | in the plane                                                                                                            | e of the truss                                                                                                          |
| WEBS                                                                        | T-Brace:<br>Fasten (2X) T and I<br>of web with 10d (0.1)<br>o.c.,with 3in minimum<br>Brace must cover 9                                                                                                                                                                      | 2x4 SPF No.2 - 11-30<br>braces to narrow edg<br>31"x3") nails, 6in<br>m end distance.<br>90% of web length.                                                                                                                                                                                                                                                                                                     | e TOP CHORD                                                                        | Tension<br>1-2=0/23,<br>4-5=-90/1<br>8-9=-71/1<br>11-12=-10<br>13-14=-7                                                                                                                                                     | 2-3=-158/89, 3-4<br>11, 5-7=-71/134,<br>91, 9-10=-91/240<br>05/272, 12-13=-9 <sup>-</sup><br>1/191, 14-15=-55/                                                                                                                                                                                                                                                                                                                                                                                                                      | =-114/91,<br>7-8=-61/15<br>, 10-11=-10<br>1/240,<br>146,                                 | 7,<br>05/272,                                                                                   | 0<br>5<br>4) T<br>P<br>C                 | only. For s<br>see Standa<br>or consult o<br>CLL: ASC<br>Plate DOL=<br>DOL=1.15)                                 | tuds ex<br>ard Indu<br>qualifie<br>E 7-16<br>=1.15);<br>; Is=1.(                    | xposed to win<br>ustry Gable En<br>d building des<br>5; Pr=20.0 psf<br>Pf=20.0 psf (<br>0; Rough Cat                                   | d (normal to<br>nd Details a<br>igner as pe<br>(roof LL: Lu<br>Lum DOL=1<br>B; Fully Exp                                | ) the face),<br>is applicable,<br>ir ANSI/TPI 1.<br>JM DOL=1.15<br>1.15 Plate<br>p.; Ce=0.9;                            |
|                                                                             | (312)<br>22=33-11:<br>24=33-11:<br>26=33-11:<br>31=33-11:<br>34=33-11:<br>36=33-11:<br>38=33-11:<br>38=33-11:<br>38=33-11:<br>Max Horiz 2=-141 (LI<br>Max Uplift 2=-24 (LC<br>23=-37 (LI<br>25=-43 (LI<br>31=-28 (LI<br>31=-28 (LI<br>34=-44 (LI<br>36=-45 (LI<br>38=-72 (LI | , 20-33-11-0,<br>-0, 23=33-11-0,<br>-0, 28=33-11-0,<br>-0, 30=33-11-0,<br>-0, 30=33-11-0,<br>-0, 35=33-11-0,<br>-0, 35=33-11-0,<br>-0, 35=33-11-0,<br>-0, 39=-33-11-0,<br>-0<br>C 15), 39=-141 (LC 15)<br>C 15), 22=-67 (LC 15),<br>C 15), 24=-45 (LC 15)<br>C 15), 26=-44 (LC 15)<br>C 15), 26=-44 (LC 15)<br>C 15), 28=-50 (LC 14)<br>C 14), 35=-43 (LC 14)<br>C 14), 37=-35 (LC 14)<br>C 14), 39=-24 (LC 15) | BOT CHORD<br>WEBS<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | 15-17=-4<br>19-20=-82<br>2-38=-32<br>36-37=-33<br>31-32=-32<br>29-38=-32<br>29-38=-32<br>24-25=-33<br>22-23=-32<br>11-30=-15<br>9-32=-190<br>5-36=-122<br>12-29=-15<br>14-26=-11<br>17-24=-12<br>19-22=-16<br>d roof live l | 7/100, 17-18=-46/<br>3/42, 20-21=0/23<br>(128, 37-38=-32/1<br>2/128, 35-36=-32/2<br>2/128, 30-31=-32/2<br>2/128, 20-29=-32/2<br>2/128, 20-22=-32/2<br>2/128, 20-22=-32/2<br>2/128, 20-22=-32/2<br>50/23, 10-31=-197<br>50/23, 10-31=-107<br>50/23, 10-23=-107<br>50/117<br>oads have been of | 55, 18-19=<br>28,<br>128,<br>128,<br>128,<br>128,<br>128,<br>128,<br>128,                | -59/17,<br>20/77,<br>66/117,<br>for                                                             | 5) U                                     | /S=1.00; C<br>Jnbalance<br>lesign.                                                                               | d snow                                                                              | SI<br>044                                                                                                                              | EAL<br>1925                                                                                                             | ered for this                                                                                                           |

May 26,2021

Page: 1



| Job                            | Truss               | Truss Type             | Qty           | Ply          | 72 Carolina Lakes-Roof-Sterling                    |           |
|--------------------------------|---------------------|------------------------|---------------|--------------|----------------------------------------------------|-----------|
| 21040028-B                     | A01                 | Common Supported Gable | 1             | 1            | Job Reference (optional)                           | 146292676 |
| Carter Components (Sanford), S | anford, NC - 27332, | Run: 8.5 S 0 May 17    | 2021 Print: 8 | .500 S May 1 | 17 2021 MiTek Industries, Inc. Tue May 25 15:03:15 | Page: 2   |

ID:V6qbZzEgg25mJIQE2RQXSUzd719-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, and 22. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | A02   | Common     | 4   | 1   | Job Reference (optional)        | 146292677 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries. Inc. Tue May 25 15:03:18 ID:g0F??pf01Y3\_LJPZWnXljVzLq?Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



(1) 20-4-3 to 31-4-13, Exterior(2E) 31-4-13 to 34-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

mm May 26,2021

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | A03   | Common     | 2   | 1   | Job Reference (optional)        | 146292678 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:18 ID:fv1?20dBTWjoXKIMXuuuKzzLpv8-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | A04   | Common     | 5   | 1   | Job Reference (optional)        | 146292679 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:19 ID:z8edV58DoEbwfhNawL8RRXzLptA-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | A05   | Common     | 4   | 1   | Job Reference (optional)        | 146292680 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:19 Page: 1 ID:?w0cRT0WIMa9CGaJsKQF5jzLppS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 5-9-3 22-6-11 11-4-5 16-11-8 28-1-13 33-8-0 0-10-8 5-9-3 5-7-3 5-7-3 5-7-3 5-7-3 5-6-3 5x6= 6 20 21 2x4 ı 2x4 II 12 61 5 7 4x6 ≠ 4x6 👟 4 8 5-0-6 9-5-2 2x4 👟 2x4 💋 3 9 22 19 10 9-9-0 1-7-0 12 23 24 11 3x8= MT20HS 8x12 = 5x10= 3x10 =11-4-5 22-6-11 33-8-0 11-4-5 11-2-5 11-1-5 Scale = 1:62.8 Plate Offsets (X, Y): [2:0-10-0,0-0-14], [10:Edge,0-0-2], [11:0-5-0,0-3-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.43 11-12 >941 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.63 Vert(CT) -0.65 11-12 >617 180 MT20HS 187/143 TCDL Rep Stress Incr WB 10.0 YES 0.48 Horz(CT) 0.07 10 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code BCDL 10.0 Weight: 206 lb FT = 20% LUMBER 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 WEBS 2x4 SP No.3 WEDGE Right: 2x4 SP No.3 4) Unbalanced snow loads have been considered for this desian. BRACING 5) This truss has been designed for greater of min roof live TOP CHORD Structural wood sheathing directly applied or load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4-3-14 oc purlins. overhangs non-concurrent with other live loads. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc All plates are MT20 plates unless otherwise indicated. bracing. This truss has been designed for a 10.0 psf bottom 7) REACTIONS (size) 2=0-3-8, 10= Mechanical chord live load nonconcurrent with any other live loads. Max Horiz 2=151 (LC 14) 8) \* This truss has been designed for a live load of 20.0psf Max Uplift 2=-148 (LC 14), 10=-128 (LC 15) on the bottom chord in all areas where a rectangle Max Grav 2=1519 (LC 3), 10=1475 (LC 3) 3-06-00 tall by 2-00-00 wide will fit between the bottom FORCES (Ib) - Maximum Compression/Maximum chord and any other members, with BCDL = 10.0psf. Tension Refer to girder(s) for truss to truss connections. 9) TOP CHORD 1-2=0/23, 2-3=-2646/293, 3-5=-2339/255, 10) Provide mechanical connection (by others) of truss to 5-6=-2376/360, 6-7=-2353/361, bearing plate capable of withstanding 128 lb uplift at 7-9=-2307/256. 9-10=-2573/295 joint 10. BOT CHORD 2-10=-310/2342 11) One RT7A MiTek connectors recommended to connect WEBS 5-12=-477/215, 3-12=-397/184, truss to bearing walls due to UPLIFT at jt(s) 2. This 7-11=-494/216, 6-12=-193/1161, connection is for uplift only and does not consider lateral 6-11=-191/1125, 9-11=-327/178 forces 12) This truss is designed in accordance with the 2018 NOTES and and a state of the state of International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-5-14, Interior (1) 2-5-14 to 13-7-2, Exterior(2R) 13-7-2 to 20-3-14, Interior (1) 20-3-14 to 30-3-10, Exterior(2E) 30-3-10 to 33-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



S

mm May 26,2021

SEAL

044925

Manunun III

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | A06   | Common     | 1   | 1   | Job Reference (optional)        | 146292681 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:20 ID:QsLtvZ5j1OfgmoID0p?ufHzLpo4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | A07   | Common     | 1   | 1   | Job Reference (optional)        | 146292682 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:20 ID:ojqlxzbUqUH4ern3HsDzhQzLpm8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



# Scale = 1:62.8

# Plate Offsets (X, Y): [2:0-0-12,0-0-2], [2:0-0-12,0-9-11], [21:0-1-8,0-1-8]

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                |                                                                                                                                                                         | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-11-4<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05<br>0.04<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                       | in<br>n/a<br>n/a<br>0.01                                            | (loc)<br>-<br>-<br>21                                                                                                                                                                                                | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                           | L/d<br>999<br>999<br>n/a                                                                                                                                                | PLATES<br>MT20<br>Weight: 245                                                                                                                                                                                                                                                                | <b>GRIP</b><br>244/1<br>Ib FT =                                                                                                                                                                                 | 90<br>20%                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>WEDGE<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x6 SP N<br>2x4 SP N<br>2x4 SP N<br>Left: 2x4 3<br>Right 2x4<br>Structural<br>6-0-0 oc p<br>Rigid ceil<br>bracing.<br>T-Brace:<br>Fasten (2<br>of web with 3<br>Brace m | o.2<br>o.3 *Excep<br>SP No.3<br>SP No.3<br>I wood shea<br>ourlins.<br>ing directly<br>X) T and I<br>th 10d (0.1<br>3in minimur<br>ust cover 9                                              | t* 0-0:2x4 SPF No.2<br>1-1-14<br>athing directly applie<br>applied or 10-0-0 oc<br>2x4 SPF No.2 - 11-3<br>braces to narrow ed<br>31*x3*) nails, 6in<br>m end distance.<br>10% of we benoth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (flat)<br>d or<br><b>FORCES</b><br>80<br>ge TOP CHORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ()<br>Т<br>О 1<br>4<br>8<br>1                                                                    | ax Grav 2=166<br>22=215<br>24=155<br>26=172<br>29=230<br>31=230<br>34=172<br>36=155<br>38=217<br>42=98<br>lb) - Maximum Cr<br>Tension<br>-2=0/23, 2-3=-15<br>1-5=-91/102, 5-7<br>1-5=-74/177, 9-10<br>1-12=-106/256,                                                                                                                                                                                                                                           | (LC 1), 2 <sup>-</sup><br>5 (LC 35),<br>3 (LC 35),<br>2 (LC 22),<br>0 (LC 22),<br>0 (LC 22),<br>0 (LC 21),<br>2 (LC 34),<br>7 (LC 34),<br>12 (LC                                                                                                                                                                                              | 1=98 (LC 22),<br>23=138 (LC<br>25=154 (LC<br>25=154 (LC<br>30=171 (LC<br>32=223 (LC<br>35=154 (LC<br>37=137 (LC<br>39=166 (LC<br>on/Maximum<br>4=-115/82,<br>7-8=-62/147,<br>1, 10-11=-106<br>3/224,           | , 22),<br>1),<br>22),<br>27),<br>21),<br>1),<br>21),<br>1),<br>21), | <ol> <li>Wii</li> <li>Va</li> <li>Ca</li> <li>zo</li> <li>(2I</li> <li>Ex</li> <li>33</li> <li>ve</li> <li>for</li> <li>DC</li> <li>3) Tr</li> <li>on</li> <li>se</li> <li>or</li> <li>4) TC</li> <li>Pla</li> </ol> | nd: ASC<br>sd=103n<br>t. II; Exp<br>ne and C<br>V) 2-5-14<br>terior(2N<br>8-0 zonc<br>trical left<br>ces & MV<br>D_=1.60  <br>uss desii<br>V). For s<br>e Standa<br>consult c<br>:LL: ASC<br>ate DOL= | E 7-16<br>nph; T(<br>B; End<br>-C Coi-<br>to 13-<br>) 20-3-<br>e; cant<br>and rig<br>VFRS<br>plate g<br>gned for<br>tuds ex<br>rd Indu<br>jualifie<br>E 7-16<br>=1.15); | ; Vult=130mpf<br>CDL=6.0psf; B<br>closed; MWF<br>rner(3E) -0-10<br>-7-2; Corner(3I<br>-14 to 30-3-10,<br>ilever left and<br>ght exposed; C<br>for reactions s<br>rip DOL=1.60<br>or wind loads i<br>xposed to wind<br>ustry Gable En<br>d building desi<br>S; Pr=20.0 psf (<br>Pf=20.0 psf ( | n (3-second<br>CDL=6.0p<br>S (envelop<br>8 to 2-5-1<br>R) 13-7-2 t<br>Corner(3)<br>right expos<br>C for men<br>shown; Lur<br>n the pland<br>d (normal t<br>d Details a<br>gner as pe<br>(roof LL: Li<br>um DOL= | d gust)<br>sf; h=25ft;<br>be) exterior<br>4, Exterior<br>o 20-3-14,<br>E) 30-3-10 to<br>sed ; end<br>hbers and<br>hber<br>e of the truss<br>o the face),<br>as applicable,<br>er ANSI/TPI 1.<br>um DOL=1.15<br>1.15 Plate |
| REACTIONS                                                                                                  | (size)<br>Max Horiz<br>Max Uplift                                                                                                                                       | 2=33-8-0,<br>23=33-8-0<br>26=33-8-0<br>30=33-8-0<br>37=33-8-0<br>2=146 (LC<br>23=-33 (LI<br>23=-33 (LI<br>25=-42 (LI<br>24=-51 (LC<br>23=-33 (LI<br>34=-24 (LI<br>36=-44 (LI<br>36=-74 (LI | 21=33-8-0, 22=33-8<br>), 24=33-8-0, 25=33-<br>), 28=33-8-0, 29=33-<br>), 31=33-8-0, 32=33-<br>), 35=33-8-0, 39=33-<br>), 38=33-8-0, 39=33-<br>), 38=33-8-0, 39=33-<br>), 38=33-8-0, 39=33-<br>), 38=33-8-0, 39=33-<br>), 32=-74 (LC 14<br>C 15), 22=-74 (LC 15<br>C 15), 24=-44 (LC 14<br>C 15), 26=-42 (LC 14<br>C 14), 35=-42 (LC 14<br>C 14), 35=-24 (LC 14<br>C 14), 39=-21 (LC 14<br>), 39=-21 (LC 14)<br>), 30=-21 | -0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8-0,<br>8 | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 3-14=-74/177, 1:<br>5-17=-47/89, 17:<br>9-21=-90/35<br>2-38=-31/105, 37:<br>36-37=-31/105, 3:<br>31-32=-31/105, 3:<br>31-32=-31/105, 2:<br>22-23=-31/105, 2:<br>31-32=-18/76, 1:<br>9-22=-160/147<br>roof live loads ha | 4-15=-56,<br>-18=-47/4<br>-38=-31/1<br>5-36=-31/<br>2-34=-31/<br>0-31=-31/<br>8-29=-31/<br>3-24=-31/<br>3-24=-31/<br>3-24=-31/<br>3-24=-31/<br>3-24=-31/<br>3-21-104/6<br>3-28=-18<br>5-25=-11/<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-23=-104/0<br>8-24=-104/0<br>8-23=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0<br>8-24=-104/0 | <ul> <li>(133, 15, 18-19=-62)</li> <li>(105, 1/105, 1/105, 1/105, 1/105, 1/105, 1/105, 1/105, 1/151, 1/51, 1/51, 1/51, 1/51, 3/6, 3-38=-161</li> <li>4/85, 6/74, 4/65, 2003</li> <li>considered for</li> </ul> | /13,<br>/74,<br>/114,<br>r                                          | Cs<br>5) Ur<br>de                                                                                                                                                                                                    | JL=1.13)<br>=1.00; C<br>balanced<br>sign.                                                                                                                                                             | , is=1.10<br>d snow                                                                                                                                                     | viologia Carro                                                                                                                                                                                                                                                                               | ARO<br>SSION<br>AL<br>925<br>NEF                                                                                                                                                                                | lered for this                                                                                                                                                                                                            |

# NOTES



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling  |        |
|------------|-------|------------|-----|-----|----------------------------------|--------|
| 21040028-B | A07   | Common     | 1   | 1   | I462<br>Job Reference (optional) | 292682 |

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, and 22. This connection is for uplift only and does not consider lateral forces.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 21.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:20 ID:ojqlxzbUqUH4ern3HsDzhQzLpm8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

A MiTek 818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type             | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------------------|-----|-----|---------------------------------|-----------|
| 21040028-B | B01   | Common Supported Gable | 1   | 1   | Job Reference (optional)        | 146292683 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:22 ID:xKJ7yNkb6J8lK7P9S0\_DtuzLqNz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

<u>19</u>-9-6 33-11-8 19-9-6 14-2-2 4x5= 13 Ŧ



Scale = 1:63

| Plate Offsets (2                                                                                 | X, Y): [2:E                                                                                                       | dge,0-0-15]                                                                                                                                                                                                         | ], [2:0-2-6,Edge], [27:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-3-0,0-3-0], [34:0-3-0                                                                                              | 0,0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                   |                                                           |                                                                             |                                                                                                                                    |                                                                                                                    |                                                                                                                                                                                                   |                                                                                                                                                            |                                                                                                                                     |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                      |                                                                                                                   | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                       | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-11-4<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                     | E<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07<br>0.03<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                          | in<br>n/a<br>n/a<br>0.00                                  | (loc)<br>-<br>-<br>22                                                       | l/defl<br>n/a<br>n/a<br>n/a                                                                                                        | L/d<br>999<br>999<br>n/a                                                                                           | PLATES<br>MT20<br>Weight: 200 I                                                                                                                                                                   | <b>GRIP</b><br>244/19<br>b FT = 2                                                                                                                          | 90                                                                                                                                  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Left: 2x4 S<br>Structural<br>6-0-0 oc p<br>Rigid ceil<br>bracing. | o.2<br>o.3<br>o.3<br>SP No.3<br>I wood shea<br>purlins, exc<br>ing directly                                                                                                                                         | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d or<br>FORCES                                                                                                       | Max<br>(Ib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grav 2=125 (LC 23=170 (l 25=157 (l 27=213 (l 27=213 (l 29=152 (l 31=212 (l 31=212 (l 35=157 (l 35=157 (l 35=157 (l 35=157 (l 37=159 (l 39=125 ( | C 1), 22<br>_C 35),<br>_C 22),<br>_C 22),<br>_C 27),<br>_C 21),<br>_C 21), 3<br>_C 21), 3<br>_C 1), 3<br>_C 1)<br>_D 19, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2=69 (LC 22),<br>24=151 (LC<br>26=200 (LC :<br>28=225 (LC :<br>30=223 (LC :<br>32=198 (LC :<br>36=154 (LC :<br>88=143 (LC :<br>98=143 (LC :<br>90/Maximum                                                                                         | 1),<br>22),<br>22),<br>21),<br>21),<br>4),<br>34),<br>4), | 2) Wir<br>Vas<br>Cat<br>zon<br>2-6-<br>(2N<br>zon<br>Lun<br>3) Tru<br>only  | id: ASCE<br>d=103m<br>. II; Exp<br>e and C<br>-4 to 16-<br>) 23-2-2<br>e; cantile<br>mbers ar<br>nber DO<br>uss desig<br>/. For st | E 7-16;<br>nph; TC<br>B; Enc<br>-C Cor<br>4-10, C<br>to 30-4<br>ever le<br>nd forc<br>L=1.60<br>gned for<br>uds ex | Vult=130mph<br>CDL=6.0psf; B0<br>(losed; MWFRS<br>ner(3E) -0-10-<br>Corner(3R) 16-<br>5-0, Corner(3R)<br>ft and right exp<br>es & MWFRS i<br>0 plate grip DO<br>or wind loads in<br>posed to wind | (3-second)<br>CDL=6.0ps<br>S (envelope<br>B to 2-6-4,<br>4-10 to 23-<br>) 30-5-0 to<br>0 ossed; C-C<br>for reaction<br>L=1.60<br>D the plane<br>(normal to | gust)<br>f; h=25ft;<br>e) exterior<br>Exterior(2N)<br>-2-2, Exterior<br>33-9-12<br>for<br>hs shown;<br>of the truss<br>the face),   |
| REACTIONS                                                                                        | Max Horiz<br>Max Uplift                                                                                           | 2=33-11-8<br>23=33-11-<br>25=33-11-<br>27=33-11-<br>31=33-11-<br>35=33-11-<br>35=33-11-<br>37=33-11-<br>2=149 (LC<br>23=-44 (LC<br>25=-33 (LC<br>27=-34 (LC<br>32=-32 (LC<br>34=-32 (LC<br>36=-33 (LC<br>38=-47 (LC | 8, 22=33-11-8,<br>-8, 24=33-11-8,<br>-8, 26=33-11-8,<br>-8, 28=33-11-8,<br>-8, 30=33-11-8,<br>-8, 32=33-11-8,<br>-8, 34=33-11-8,<br>-8, 36=33-11-8,<br>-8, 36=33-11-8,<br>-8, 36=33-11-8,<br>-8, 36=33-11-8,<br>-8, 36=33-11-8,<br>-8, 36=33-11-8,<br>-8, 36=33-11-8,<br>-15), 22=-6 (LC 11),<br>C 15), 24=-30 (LC 14),<br>C 15), 24=-30 (LC 15),<br>C 14), 31=-33 (LC 10),<br>C 14), 33=-34 (LC 10),<br>C 14), 33=-31 (LC 10),<br>C 14), 33=-31 (LC 10),<br>C 14), 37=-32 (LC 10),<br>C 14), 39=-17 (LC 15),<br>-14), 30=-17 (LC 15), -14), 30=-17 (LC 15),<br>-14), 30=-17 (LC 15), -14), 30=-17 (LC 15),<br>-14), 30=-17 (LC 15), -14), 30 | DOT CHORD<br>BOT CHORD<br>)<br>), WEBS<br>),<br>),<br>),<br>),<br>),<br>),<br>),<br>),<br>),<br>),<br>),<br>),<br>), | Te<br>T-2<br>4-5<br>7-5<br>7-5<br>7-5<br>11<br>13<br>15<br>19<br>2-5<br>35<br>31<br>26<br>22<br>23<br>5-3<br>14<br>16<br>19<br>2-5<br>35<br>11<br>26<br>6<br>7<br>1<br>19<br>2-5<br>31<br>10<br>2-5<br>35<br>11<br>26<br>19<br>2-5<br>5<br>10<br>2<br>2<br>2<br>13<br>10<br>2-5<br>5<br>10<br>2<br>2<br>2<br>2<br>13<br>10<br>2<br>-5<br>5<br>10<br>2<br>2<br>2<br>2<br>13<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>10<br>2<br>-5<br>5<br>-5<br>10<br>2<br>-5<br>5<br>-5<br>10<br>2<br>-5<br>5<br>-5<br>10<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5<br>-5 | , maximum commission<br>2=0/16, 2-3=-134/<br>5=-91/73, 5-6=-73<br>8=-42/111, 8-10=-<br>-12=-66/154, 12<br>-14=-77/174, 14-1<br>-16=-54/112, 16-1<br>-20=-23/38, 20-21<br>38=-28/20, 37-38=<br>-32=0/6, 30-31=0.<br>-28=0/6, 25-26=0.<br>-23=0/6<br>-29=-114/0, 12-30<br>-31=-173/64, 10-5<br>33=-116/56, 7-34=<br>36=-115/56, 4-37=<br>-28=-185/102, 15<br>-26=-162/56, 17-2<br>-24=-114/53, 20-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60, 3-4<br>(83, 6-5)<br>3=-77/<br>7=-43/<br>7=-43/<br>7=-210,<br>2/10,<br>2/10,<br>2/10,<br>(6, 29-3)<br>(6, 29-3)<br>(7, 2 | =-115/66,<br>~=-58/97,<br>, 10-11=-55/1<br>174,<br>138,<br>87, 17-19=-3;<br>8, 21-22=-52;<br>36-37=-2/10,<br>32-33=0/6,<br>00=0/6, 28-29<br>2:5=0/6, 23-24<br>102,<br>3/56,<br>5, 6-35=-116/,<br>7, 3-38=-101/<br>*/66,<br>*/66<br>considered for | 39,<br>2/62,<br>19<br>=0/6,<br>=0/6,<br>56,<br>56,        | see<br>or c<br>Plat<br>DO<br>Cs=<br>5) Unt<br>des<br>6) This<br>load<br>ove | Standar<br>consult q<br>LL: ASCI<br>te DOL=<br>L=1.15);<br>1.00; Ct<br>palanced<br>ign.<br>s truss h<br>d of 12.0<br>rhangs r      | rd Indu<br>ualified<br>E 7-16<br>I.1.15);<br>Is=1.0<br>Isnow<br>as bee<br>psf or<br>non-co                         | stry Gable End<br>d building desig<br>; Pr=20.0 psf (Lu<br>; Rough Cat B<br>loads have be<br>in designed for<br>1.00 times flat<br>ncurrent with d<br>CHESS<br>SE<br>044                          | a Details as<br>ner as per<br>roof LL: Lu<br>m DOL=1<br>; Fully Exp<br>en conside<br>greater of<br>roof load of<br>ther live lo<br>ARO<br>SIO<br>AL<br>925 | s applicable,<br>r ANSI/TPI 1.<br>m DOL=1.15<br>.15 Plate<br>.; Ce=0.9;<br>ered for this<br>min roof live<br>of 20.0 psf on<br>ads. |

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 26,2021

| Job                             | Truss               | Truss Type             | Qty           | Ply          | 72 Carolina Lakes-Roof-Sterling                    |           |
|---------------------------------|---------------------|------------------------|---------------|--------------|----------------------------------------------------|-----------|
| 21040028-B                      | B01                 | Common Supported Gable | 1             | 1            | Job Reference (optional)                           | 146292683 |
| Carter Components (Sanford), Sa | anford, NC - 27332, | Run: 8.5 S 0 May 17 2  | 2021 Print: 8 | .500 S May 1 | 17 2021 MiTek Industries, Inc. Tue May 25 15:03:22 | Page: 2   |

ID:xKJ7yNkb6J8lK7P9S0\_DtuzLqNz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.

chord and any other members.

- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

12) n/a

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | B02   | Common     | 3   | 1   | Job Reference (optional)        | 146292684 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:23

Page: 1

2-4-7

11

ID:4XtIMxyO0XBnoFvKgym8nUzLqL6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 13-3-6 33-11-8 6-9-7 19-9-6 26-3-6 0-10-8 6-9-7 6-6-0 6-6-0 6-6-0 7-8-2 4x5= 6 3x5 = 22 21 3x5 = 5x8≈ 412 41 5 7 4 T 23 2x4 🐝 5x8≈ 3 89 20 3x8 II 2 ģ⊥ X • 16 25 15 14 24 12 10 13 3x5= 3x5= 3x5= 3x5 =2x4 u 5.49

| 7-9-3 15-3-0 23-8-12 <sup>23-1</sup> 1-8 31-0-1 33-8-0 | 3x5=           |                  |                   | 5X8=                    |                        |                       |
|--------------------------------------------------------|----------------|------------------|-------------------|-------------------------|------------------------|-----------------------|
| 7-9-3 7-5-12 8-5-12 0-2-12 7-0-9 2-7-15 0-3-8          | 7-9-3<br>7-9-3 | 15-3-0<br>7-5-12 | 23-8-12<br>8-5-12 | 23-11-8<br>  <br>0-2-12 | <u>31-0-1</u><br>7-0-9 | 33-11-8<br>33-8-0<br> |

Scale = 1:63

7-2-5 7-1-3

| Plate Offsets                                                                                               | (X, Y): [2:Edge,0-0-15]                                                                                                                                                                                                                                                                       | ], [2:0-2-6,Edge], [7:0                                                                                                                                                              | 0-4-0,0-3-4                                 | l], [13:0-4-0,0-3                                                                                                                                                                                                                                                                                 | 3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   |                                                                                                                               |                                   |                                                |                                      |                                                               |                                               |                        |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------------|---------------------------------------------------------------|-----------------------------------------------|------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                 | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018     | 3/TPI2014                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.91<br>0.69<br>0.58                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                          | in<br>-0.19<br>-0.29<br>0.03                                                                                                  | (loc)<br>13-14<br>13-14<br>13     | l/defl<br>>999<br>>971<br>n/a                  | L/d<br>240<br>180<br>n/a             | PLATES<br>MT20<br>Weight: 175 It                              | <b>GRIP</b><br>244/190<br>• FT = 20%          | ,<br>0                 |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Left: 2x4 SP No.3<br>Structural wood shea<br>2-2-0 oc purlins, exc<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 2=0-3-8, 1<br>Max Horiz 2=153 (LC<br>Max Uplift 2=-137 (LI<br>13=-228 (I<br>Max Grav 2=892 (LC<br>13=2170 ( | athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc<br>6-13<br>1= Mechanical, 13=<br>2 14)<br>C 10), 11=-222 (LC 3<br>LC 10)<br>2 5), 11=153 (LC 35)<br>(LC 4)      | 2)<br>d or<br>3)<br>0-5-8<br>(4)<br>34), 5) | Wind: ASCE<br>Vasd=103mp<br>Cat. II; Exp E<br>zone and C-(<br>2-6-4 to 16-4<br>(1) 23-2-2 to<br>zone; cantile<br>members and<br>Lumber DOL<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15); I<br>Cs=1.00; Ct=<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 g<br>overhangs no               | 7-16; Vult=130m,<br>h; TCDL=6.0pst;<br>b; Enclosed; MWF<br>C Exterior(2E) -0-<br>-10, Exterior(2E) -0-<br>10, Exterior(2 | bh (3-sec<br>BCDL=6<br>RS (envi<br>10-8 to 2<br>16-4-10<br>(2E) 30-6<br>xpposed<br>S for rea<br>DOL=1.60<br>f (roof LL<br>(Lum DC<br>t B; Fully<br>been cor<br>for greated<br>lat roof Ich<br>o other lin<br>o other lin | cond gust)<br>.0psf; h=25ft;<br>elope) exterior<br>-6-4, Interior to<br>23-2-2, Inte<br>-12 to 33-11-<br>C-C for<br>ctions shown<br>)<br>:: Lum DOL=:<br>DL=1.15 Plate<br>Exp.; Ce=0.5<br>isidered for th<br>er of min roof<br>bad of 20.0 ps<br>re loads.        | (1)<br>erior<br>8<br>;<br>1.15<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | 12) This<br>Inte<br>R80<br>LOAD C | s truss is<br>rnationa<br>02.10.2 a<br>CASE(S) | desig<br>I Resid<br>and ref<br>) Sta | ned in accordar<br>dential Code se<br>erenced standa<br>ndard | Ice with the 2<br>xtions R502.<br>rd ANSI/TPI | 2018<br>11.1 and<br>1. |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalanc<br>this desig                              | (lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-3=-1721<br>5-6=-699/175, 6-8=-5<br>8-11=-129/236<br>2-16=-295/1607, 14-<br>12-14=-660/113, 11-<br>3-16=-363/169, 5-16<br>5-14=-783/239, 6-14<br>6-13=-1596/285, 7-1<br>7-12=-33/580, 8-12=<br>ed roof live loads have<br>n.                      | pression/Maximum<br>/249, 3-5=-1618/261<br>98/958, 8-9=0/6,<br>.16=-139/866,<br>.12=-52/87, 10-11=0/<br>.=-118/838,<br>.=-144/1173,<br>3=-693/229,<br>404/157<br>been considered for | 6)<br>, 7)<br>/0 8)<br>9)<br>10<br>11       | This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Refer to girdk<br>Provide mecl<br>bearing plate<br>joint 11.<br>) One RT7A M<br>truss to beari<br>connection is<br>forces.<br>) One RT16A I<br>truss to beari<br>connection is<br>forces. | s been designed<br>id nonconcurrent<br>ias been designed<br>ias been designed<br>iy 2-00-00 wide w<br>y other members<br>er(s) for truss to tr<br>nanical connection<br>i capable of withst<br>iTek connectors r<br>ing walls due to U<br>for uplift only and<br>MiTek connectors<br>ing walls due to U<br>if or uplift only and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | for a 10.0<br>with any<br>d for a liv<br>is where<br>swhere<br>uss conr<br>n (by oth<br>canding 2<br>recomme<br>PLIFT at<br>d does no<br>recomm<br>PLIFT at<br>d does no                                                 | D psf bottom<br>other live loa<br>e load of 20.0.<br>a rectangle<br>ween the bott<br>DL = 10.0psf<br>nections.<br>ers) of truss t<br>:22 lb uplift at<br>anded to conn<br>jt(s) 2. This<br>ot consider lai<br>mended to conn<br>jt(s) 13. This<br>ot consider lai | ds.<br>Dpsf<br>om<br>ect<br>teral<br>inect                                                                                    |                                   | A CONTRACTOR OF A                              |                                      | SEA<br>0449                                                   | AROLI<br>AL<br>925<br>SEVIN                   |                        |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | B03   | Common     | 5   | 1   | Job Reference (optional)        | 146292685 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:24 ID:Zue57ocJldSLjltfCDkGrNzLqIz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:63

| Plate Offsets                                                                                               | (X, Y): [2:Edge,0-0-15]                                                                                                                                                                                                                                                                       | ], [2:0-2-6,Edge], [7:0                                                                                                                                                         | 0-4-0,0-3-4                                     | 4], [13:0-4-0,0-3                                                                                                                                                                                                                                                                                                 | 3-0]                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |                                                                   |                                    |                                                |                             |                                                             |                                                       |                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|------------------------------------------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                 | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201          | 8/TPI2014                                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                               | 0.91<br>0.74<br>0.58                                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                       | in<br>-0.12<br>-0.21<br>0.03                                      | (loc)<br>13-14<br>16-19<br>13      | l/defl<br>>999<br>>999<br>n/a                  | L/d<br>240<br>180<br>n/a    | PLATES<br>MT20<br>Weight: 175                               | <b>GRIP</b><br>244/19<br>Ib FT = 2                    | 90<br>20%                                                                                                            |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Left: 2x4 SP No.3<br>Structural wood shea<br>2-2-0 oc purlins, exa<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 2=0-3-8, 1<br>Max Horiz 2=153 (LC<br>Max Uplift 2=-136 (L<br>13=-229 (LC<br>Max Grav 2=895 (LC<br>13=2151 ( | athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc<br>6-13<br>1= Mechanical, 13=<br>2 14)<br>C 10), 11=-214 (LC 3<br>LC 10)<br>2 5), 11=159 (LC 35)<br>(LC 4) | 2)<br>d or<br>3)<br>0-3-8<br>34), 4)<br>34), 5) | Wind: ASCE<br>Vasd=103mp<br>Cat. II; Exp E<br>zone and C-(<br>2-6-4 to 16-4<br>(1) 23-2-2 to<br>zone; cantile<br>members and<br>Lumber DOL<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15); I<br>CS=1.00; Ct=<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 p<br>overhangs no                               | 7-16; Vult=130m<br>h; TCDL=6.0psf;<br>3; Enclosed; MWF<br>C Exterior(2E) -0-<br>-10, Exterior(2E) -0<br>30-6-12, Exterior<br>wer left and right e<br>d forces & MWFR<br>=1.60 plate grip E<br>7-16; Pr=20.0 psf<br>is=1.0; Rough Cat<br>=1.10<br>snow loads have<br>s been designed<br>opsf or 1.00 times f<br>on-concurrent witt | oh (3-sec<br>BCDL=6<br>RS (env<br>10-8 to 2<br>16-4-10<br>(2E) 30-6<br>sxposed<br>S for rea<br>DOL=1.6(<br>f (roof LL<br>(Lum DC<br>t B; Fully<br>been cor<br>for greate<br>lat roof Ic | cond gust)<br>.0psf; h=25ft;<br>elope) exterior<br>-6-4, Interior to<br>23-2-2, Inte<br>.5-12 to<br>33-11-<br>;C-C for<br>ctions shown<br>.:<br>Lum DOL=:<br>DL=1.15 Plate<br>Exp.; Ce=0.5<br>nsidered for th<br>er of min roof<br>bad of 20.0 ps<br>ve loads. | (1)<br>erior<br>8<br>;<br>1.15<br>;<br>);<br>his<br>live<br>sf on | 12) This<br>Inter<br>R8(<br>LOAD ( | s truss is<br>rnationa<br>02.10.2 a<br>CASE(S) | s desig<br>and ref<br>) Sta | ned in accord:<br>dential Code s<br>ferenced stand<br>ndard | ance with tl<br>ections R5<br>lard ANSI/ <sup>-</sup> | he 2018<br>02.11.1 and<br>ITPI 1.                                                                                    |
| FORCES                                                                                                      | (lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-3=-1727<br>5-6=-593/155, 6-8=-1<br>8-11=-153/207                                                                                                                                                                                                 | pression/Maximum<br>/251, 3-5=-1586/243<br>99/939, 8-9=0/6,                                                                                                                     | 6)<br>3, 7)                                     | <ul> <li>This truss has been designed for a 10.0 psf bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>* This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle</li> <li>2.00 0.00 coll but 0.00 00 mill the bottom</li> </ul> |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                |                                                                   |                                    |                                                |                             |                                                             | 1.                                                    |                                                                                                                      |
| BOT CHORD                                                                                                   | 2-16=-297/1613, 14-<br>12-14=-646/113, 11-<br>3-16=-372/171, 5-16<br>5-14=-808/237, 6-14<br>6-13=-1598/281, 7-1<br>7-12=-41/636, 8-12=                                                                                                                                                        | 16=-143/863,<br>12=-55/86, 10-11=0,<br>=-91/824,<br>=-125/1089,<br>3=-689/230,<br>-348/166                                                                                      | /0 8)<br>9)<br>1(                               | chord and an<br>Refer to girde<br>Provide mech<br>bearing plate<br>joint 11.                                                                                                                                                                                                                                      | y other members<br>er(s) for truss to tr<br>hanical connection<br>capable of withst                                                                                                                                                                                                                                               | , with BC<br>russ conr<br>n (by oth<br>tanding 2                                                                                                                                        | DL = 10.0psf<br>nections.<br>ers) of truss t<br>214 lb uplift at                                                                                                                                                                                               | 0                                                                 |                                    |                                                | Se                          | ORTHO                                                       | SIC                                                   | ween                                                                                                                 |
| NOTES<br>1) Unbalanc<br>this desig                                                                          | ed roof live loads have<br>n.                                                                                                                                                                                                                                                                 | been considered for                                                                                                                                                             | . 11                                            | <ul> <li>(i) Chick Transformer (Connection is forces.</li> <li>(i) One RT16A   truss to bear connection is forces.</li> </ul>                                                                                                                                                                                     | Mittek connectors<br>for uplift only and<br>Mittek connectors<br>ing walls due to U<br>s for uplift only and                                                                                                                                                                                                                      | PLIFT at<br>d does no<br>recomm<br>PLIFT at<br>d does no                                                                                                                                | ; jt(s) 2. This<br>ot consider la<br>nended to con<br>; jt(s) 13. This<br>ot consider la                                                                                                                                                                       | teral<br>inect<br>teral                                           |                                    | HILLE.                                         |                             | 044                                                         | 925<br>NEER<br>SE                                     | <b>H</b><br><b>H</b><br><b>H</b><br><b>H</b><br><b>H</b><br><b>H</b><br><b>H</b><br><b>H</b><br><b>H</b><br><b>H</b> |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | B04   | Common     | 1   | 1   | Job Reference (optional)        | 146292686 |

19-9-6

Carter Components (Sanford), Sanford, NC - 27332,

6-9-7

13-3-6

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:24 ID:Pd2d69iulgHC1MgHXIFhbyzLq9p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1 26-3-6 33-11-8



Plate Offsets (X, Y): [6:0-4-0.0-3-4]. [12:0-4-0.0-3-0]

| Loading      | (nsf)                     | Spacing                | 2-0-0  |                        | CSI                         |               | DEFL           | in      | (loc) | l/defl      | l /d | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GRIP      |     |
|--------------|---------------------------|------------------------|--------|------------------------|-----------------------------|---------------|----------------|---------|-------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| TCLL (roof)  | 20.0                      | Plate Grin DOI         | 1 15   |                        | TC                          | 0.91          | Vert(LL)       | -0.13   | 12-13 | >999        | 240  | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244/190   |     |
| Snow (Pf)    | 20.0                      |                        | 1 15   |                        | BC                          | 0.75          | Vert(CT)       | -0.22   | 15-18 | >999        | 180  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,         |     |
|              | 10.0                      | Ren Stress Incr        | VES    |                        | WB                          | 0.70          | Horz(CT)       | 0.22    | 10 10 | >000<br>n/a | n/a  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| BCU          | 0.0*                      | Code                   | IRC201 | 8/TDI2014              | Matrix-MSH                  | 0.00          | 11012(01)      | 0.00    | 12    | Π/α         | n/a  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| BCDL         | 10.0                      | Code                   | IKC201 | 0/1112014              | IVIAUIX-IVIOI I             |               |                |         |       |             |      | Weight: 173 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT = 20%  |     |
|              |                           |                        | 2      | Wind <sup>.</sup> ASCE | 7-16 <sup>.</sup> Vult=130m | nph (3-sec    | cond aust)     |         |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| TOP CHORD    | 2x4 SP No 2               |                        | _,     | Vasd=103m              | ph: TCDL=6.0psf             | : BCDL=6      | .0psf: h=25f   | t:      |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| BOT CHORD    | 2x4 SP No.2               |                        |        | Cat. II; Exp I         | B; Enclosed; MWI            | FRS (env      | elope) exteri  | or      |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| WEBS         | 2x4 SP No.3               |                        |        | zone and C-            | C Exterior(2E) 0-           | 0-0 to 3-4    | -12, Interior  | (1)     |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| BRACING      |                           |                        |        | 3-4-12 to 16           | -4-10, Exterior(2F          | R) 16-4-10    | ) to 23-2-2,   |         |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| TOP CHORD    | Structural wood shea      | athing directly applie | ed or  | Interior (1) 2         | 3-2-2 to 30-6-12,           | Exterior(2    | 2E) 30-6-12 t  | 0       |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | 2-2-0 oc purlins. exc     | ept end verticals.     |        | 33-11-8 zon            | e; cantilever left a        | and right e   | xposed ;C-C    | ; for   |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| BOT CHORD    | Rigid ceiling directly a  | applied or 6-0-0 oc    |        | members an             | d forces & MWFF             | RS for rea    | ctions show    | ר;      |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | bracing.                  |                        | -      | Lumber DOL             | =1.60 plate grip            | DOL=1.60      | )              |         |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| WEBS         | 1 Row at midpt 5          | 5-12                   | 3      | TCLL: ASCE             | : 7-16; Pr=20.0 p           | st (root LL   | : Lum DOL=     | 1.15    |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| REACTIONS    | (size) 1=0-3-8, 10        | 0= Mechanical, 12=     | =0-3-8 | Plate DOL=1            | 1.15); Pt=20.0 pst          | r (Lum DC     | L=1.15 Plate   | e<br>0. |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | Max Horiz 1=144 (LC       | 14)                    |        | DOL=1.15);             | IS=1.0; Rough Ca<br>_1.10   | at B; Fully   | Exp.; Ce=0.    | 9;      |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | Max Uplift 1=-102 (LC     | C 10), 10=-237 (LC     | 33), 4 | Unhalanced             | snow loads have             | heen cor      | sidered for t  | his     |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | 12=-234 (L                | _C 10)                 | ·· +,  | design                 | Show loads have             | Deen coi      |                | 1113    |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | Max Grav 1=841 (LC        | 5), 10=148 (LC 34)     | ), 5   | This truss ha          | as been designed            | for a 10 (    | ) psf bottom   |         |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | 12=2184 (I                | LC 4)                  | . 0    | chord live lo          | ad nonconcurrent            | t with any    | other live loa | ads     |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| FORCES       | (lb) - Maximum Comp       | pression/Maximum       | 6      | * This truss I         | nas been designe            | ed for a liv  | e load of 20.  | 0psf    |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | Tension                   |                        | - /    | on the bottor          | m chord in all are          | as where      | a rectangle    |         |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
| TOP CHORD    | 1-2=-1725/268, 2-4=-      | -1561/258,             |        | 3-06-00 tall I         | oy 2-00-00 wide v           | vill fit betv | veen the bott  | om      |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | 4-5=-564/156, 5-7=-1      | 05/986, 7-8=0/6,       |        | chord and a            | ny other members            | s, with BC    | DL = 10.0ps    | f.      |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |     |
|              | 7-10=-143/229             |                        | 7)     | Refer to gird          | er(s) for truss to t        | truss conr    | nections.      |         |       |             |      | minin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1111.     |     |
| BOT CHORD    | 1-15=-298/1590, 13-1      | 15=-139/836,           | 8)     | Provide med            | hanical connection          | on (by oth    | ers) of truss  | to      |       |             |      | I'L CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pall      |     |
|              | 11-13=-684/119, 10-1      | 11=-55/86, 9-10=0/0    | 0      | bearing plate          | e capable of withs          | standing 2    | 37 lb uplift a | t       |       |             |      | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0/11      |     |
| WEBS         | 2-15=-378/179, 4-15=      | =-92/829,              |        | joint 10.              |                             |               |                |         |       |             | 1.a  | O' EESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10: 1.    | 5   |
|              | 4-13=-809/235, 5-13=      | =-125/1090,            | 9)     | One RT7A N             | liTek connectors            | recomme       | nded to con    | nect    |       |             | 3 K  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Viller 7  | 4   |
|              | 5-12=-1627/286, 6-12      | 2=-693/231,            |        | truss to bear          | ing walls due to l          | JPLIFT at     | jt(s) 1. This  |         |       |             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | serie     | 2   |
|              | 6-11=-43/663, 7-11=-      | -374/168               |        | connection is          | s for uplift only an        | nd does no    | ot consider la | ateral  |       |             |      | 054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | -   |
| NOTES        |                           |                        | 4      | TOFCES.                |                             |               |                |         |       |             |      | SEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L         | =   |
| 1) Unbalance | ed roof live loads have b | been considered for    | r I    | J) One RTI6A           | ing walls due to l          |               | iended to col  | nect    |       |             |      | 0449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25        | - 5 |
| this desigi  | n.                        |                        |        | connection is          | s for unlift only an        | of does no    | t consider la  | ateral  |       |             |      | . 0445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23 :      | - 5 |
|              |                           |                        |        | forces                 | o ioi upint only an         | 10 0003 M     |                | atorai  |       |             | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -   |
|              |                           |                        | 1      | 1) This truss is       | designed in acco            | ordance w     | ith the 2018   |         |       |             | 20   | · En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A: a      | -   |
|              |                           |                        |        | International          | Residential Code            | e sections    | R502.11.1      | and     |       |             | 11   | GIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EF        |     |
|              |                           |                        |        | R802.10.2 a            | nd referenced sta           | andard AN     | ISI/TPI 1.     |         |       |             | 11   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EVIN      |     |
|              |                           |                        | 1      | OAD CASE(S)            | Standard                    |               |                |         |       |             |      | 11. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.11     |     |
|              |                           |                        | L.     |                        | Ganuaru                     |               |                |         |       |             |      | in the second se | mm        |     |
|              |                           |                        |        |                        |                             |               |                |         |       |             |      | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / 26 2021 |     |

818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type    | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|---------------|-----|-----|---------------------------------|-----------|
| 21040028-B | C01   | Common Girder | 1   | 2   | Job Reference (optional)        | 146292687 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:25 ID:Hil1qPxACFu9nuniVnMSvIzd6uV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|                                                                 | 4-11-8                | 9-7-8 | 14-3-8 | 19-3-0 | J |
|-----------------------------------------------------------------|-----------------------|-------|--------|--------|---|
|                                                                 | 4-11-8                | 4-8-0 | 4-8-0  | 4-11-8 | 1 |
| Scale = 1:67.5                                                  |                       |       |        |        |   |
| Plate Offsets (X_Y): [1:Edge 0-2-4] [1:0-10-7 0-1-8] [12:Edge ( | 0-1-11] [13:0-6-4 0-2 | -81   |        |        |   |

|                                                                                                             | X, I). [I.E                                                                                                                                                | uge,o z +j,                                                                                                                                                                                                                                        | [1.0 10 7,0 1 0], [12                                                                                                                                                                                                                                                                           | Lugo,o                                                                               | 1 11], [10.0 0                                                                                                                                                                                                                                                                                                                           | 4,0 Z 0j                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               |                                                                                                                                                                                                                      |                                                                                               |                                                                                                         |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                 |                                                                                                                                                            | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                       | 1-11-4<br>1.15<br>1.15<br>NO<br>IRC20 <sup>7</sup>                                   | 18/TPI2014                                                                                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                  | 0.32<br>0.29<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEFL<br>Vert(LL) -(<br>Vert(CT) -(<br>Horz(CT) (                                                                                                                                                                                                                        | in<br>0.04<br>0.08<br>0.01         | (loc)<br>13-15<br>13-15<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L/d<br>240<br>180<br>n/a                                                                                      | PLATES<br>MT20<br>Weight: 358 lb                                                                                                                                                                                     | <b>GRIP</b><br>244/190<br>FT = 20%                                                            | %                                                                                                       |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>SLIDER<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>JOINTS | 2x4 SP N<br>2x8 SP 24<br>2x4 SP N<br>2x4 SP N<br>Left 2x4 S<br>1-6-0<br>Structural<br>5-10-13 c<br>Rigid ceill<br>bracing,<br>10-0-0 oc<br>1 Brace a<br>24 | o.2<br>400F 2.0E<br>o.3<br>o.3<br>SP No.3 1<br>I wood shea<br>oc purlins.<br>ing directly<br>Except:<br>bracing: 1:<br>t Jt(s): 22,                                                                                                                | -6-0, Right 2x4 SP I<br>athing directly applie<br>applied or 6-0-0 oc<br>3-15,12-13.                                                                                                                                                                                                            | E<br>V<br>No.2<br>ed or<br>1                                                         | OT CHORD<br>VEBS<br>OTES<br>) 2-ply truss<br>(0.131"X3")<br>Ton chorde                                                                                                                                                                                                                                                                   | 1-20=-583/167, 19-<br>18-19=-583/167, 17-<br>16-17=-583/167, 15-<br>13-15=-52/3281, 12-<br>15-21=-101/1580, 7-<br>10-15=-2948/234, 1-<br>2-3=-55/2173, 22-<br>15-22=-62/2442, 4-<br>21-24=-124/24, 9-2-<br>16-22=-446/100, 5-<br>17-23=-688/61, 3-1<br>8-24=-92/37<br>to be connected togonalis as follows:<br>connected a confilment                                                                                                | 20=-58<br>7-18=-55<br>7-13=-57<br>7-21=-11<br>10-13=-1<br>23=-59<br>18=-22<br>4=-65/2<br>23=-51<br>9=-396<br>ether wither withe | 3/167,<br>33/167,<br>33/167,<br>2/3281<br>28/1650,<br>30/3610,<br>22296,<br>00/60,<br>, 6-22=-248/98,<br>4/68,<br>'89, 2-20=-29/17<br>th 10d                                                                                                                            | 6<br>7<br>8<br>9<br>7<br>5, 1<br>1 | <ul> <li>Finite State</li> <li>Finit</li></ul> | L: ASCI<br>e DOL=<br>_=1.15);<br>1.00; Ct<br>alanced<br>ign.<br>ole studs<br>truss hi<br>rd live lo<br>is truss<br>he botto<br>5-00 tall<br>rd and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 7-16;<br>1.15); I<br>Is=1.0<br>=1.10<br>I snow<br>space<br>ad nor<br>has bee<br>m choi<br>by 2-0<br>ny othe | ; Pr=20.0 psf (rcr<br>Pf=20.0 psf (Lur<br>); Rough Cat B;<br>loads have bee<br>ed at 2-0-0 oc.<br>n designed for a<br>nconcurrent with<br>sen designed for<br>rd in all areas w<br>0-00 wide will fit<br>er members. | a 10.0 psf br<br>a a 10.0 psf br<br>a rorsidere<br>a inv other I<br>a live load<br>between th | DOL=1.15<br>5 Plate<br>Ce=0.9;<br>d for this<br>ottom<br>ive loads.<br>of 20.0psf<br>angle<br>ie bottom |
| FORCES<br>TOP CHORD                                                                                         | (size)<br>Max Horiz<br>Max Uplift<br>Max Grav<br>(lb) - Max<br>Tension<br>1-2=-174,<br>4-5=-118;<br>6-7=-145;<br>8-9=-152;<br>10-12=-4;                    | 1=8-7-8, 1<br>17=8-7-8,<br>20=8-7-8<br>1=182 (LC<br>1=-663 (Ll<br>16=-311 (l<br>18=-139 (l<br>20=-216 (l)<br>18=3851 (l<br>20=1281 (l<br>18=3851 (l<br>20=1281 (l<br>imum Com<br>720, 2-3=<br>2/91, 5-6=-<br>5/169, 7-8=<br>0/104, 9-10<br>346/170 | 2=0-3-8, 16=8-7-8,<br>18=8-7-8, 19=8-7-8<br>2 9)<br>C 32), 12=-153 (LC<br>LC 12), 17=-784 (LC<br>LC 13), 19=-190 (LC<br>LC 12)<br>2 12), 12=4846 (LC<br>LC 18), 17=-39 (LC<br>LC 19), 19=1673 (L1<br>LC 21)<br>pression/Maximum<br>106/845, 3-4=-56/63<br>1458/136,<br>-1424/139,<br>=-1584/97, | ,<br>13), 2<br>; 19), 2<br>; 12),<br>19), 3<br>(7 3), 3<br>(7 3), 4<br>8,<br>8,<br>5 | <ul> <li>oc.</li> <li>Bottom cho<br/>staggered a</li> <li>Web conne<br/>except if nc<br/>CASE(S) si<br/>provided to<br/>unless othe</li> <li>Unbalanced<br/>this design.</li> <li>Wind: ASC<br/>Vasd=103n<br/>Cat. II; Exp<br/>zone; cantil<br/>DOL=1.60</li> <li>Truss desi<br/>only. For s<br/>see Standa<br/>or consult of</li> </ul> | rds connected as fol<br>at 0-7-0 oc.<br>cted as follows: 2x4<br>e considered equally<br>ted as front (F) or by<br>cection. Ply to ply con<br>distribute only loads<br>rwise indicated.<br>d roof live loads have<br>E 7-16; Vult=130mpl<br>nph; TCDL=6.0psf; E<br>B; Enclosed; MWFF<br>ever left and right ep<br>olate grip DOL=1.60<br>gned for wind loads<br>tuds exposed to win<br>rd Industry Gable Er<br>jualified building des | lows: 2<br>- 1 row<br>y applied<br>ack (B)<br>nection<br>noted<br>been of<br>a been of<br>CDL=6<br>SC (env.<br>posed<br>in the p<br>d (norm<br>nd Deta<br>igner as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x8 - 2 rows<br>at 0-7-0 oc.<br>d to all plies,<br>face in the LOAE<br>s have been<br>as (F) or (B),<br>considered for<br>cond gust)<br>.0psf; h=25ft;<br>elope) exterior<br>; Lumber<br>lane of the truss<br>al to the face),<br>ils as applicable,<br>s per ANSI/TPI 1 | 1                                  | 2) <sub>N</sub> /A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and the second s |                                                                                                               | SEA<br>0449                                                                                                                                                                                                          | IL<br>SEFR                                                                                    | A A A A A A A A A A A A A A A A A A A                                                                   |

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 26,2021

| Job        | Truss | Truss Type    | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|---------------|-----|-----|---------------------------------|-----------|
| 21040028-B | C01   | Common Girder | 1   | 2   | Job Reference (optional)        | 146292687 |

- 13) One LUGT2 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Use MiTek THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-3-0 from the left end to 18-3-0 to connect truss(es) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.

17) Minimum of a double stud required directly beneath this truss to attach LUGT2 tiedown.

# LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft) Vert: 1-7=-58, 7-12=-58, 25-29=-19

Concentrated Loads (lb)

Vert: 13=-1427 (B), 33=-1327 (B), 34=-1327 (B), 35=-1327 (B), 36=-1327 (B), 37=-1427 (B), 38=-1427 (B), 39=-1427 (B), 40=-1429 (B)

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:25 ID:Hil1qPxACFu9nuniVnMSvIzd6uV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type             | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------------------|-----|-----|---------------------------------|-----------|
| 21040028-B | D01   | Common Supported Gable | 1   | 1   | Job Reference (optional)        | 146292688 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:26 ID:kLxR?z897Vj7TSTZ4IuaZPzd790-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:40.5

| Plate Offsets (                                                                                       | (X, Y): [2:E                                                                                                                                                    | dge,0-0-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ], [2:0-2-6,Edge], [12:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :Edge,0                               | -0-15], [12:0-2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5,Edge], [15:0-3-0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )-3-0]                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |                                                                                                                                                                                                                                              |                                                               |                                                                                                                                 |                                                                                                                                                                |                                                                     |                          |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                           |                                                                                                                                                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC20 | )18/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.07<br>0.03<br>0.05                                                                                                                                                                                                                                                                                                                  | DEFL<br>Vert(LL) r<br>Vert(CT) r<br>Horz(CT) 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | in<br>n/a<br>n/a<br>.00                            | (loc)<br>-<br>-<br>26                                                                                                                                                                                                                        | l/defl<br>n/a<br>n/a<br>n/a                                   | L/d<br>999<br>999<br>n/a                                                                                                        | PLATES<br>MT20<br>Weight: 90 lb                                                                                                                                | <b>GRIP</b><br>244/190<br>FT = 20%                                  |                          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Left: 2x4<br>Right: 2x-<br>Structura<br>6-0-0 oc<br>Rigid ceil<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav | lo.2<br>lo.2<br>lo.3<br>SP No.3<br>4 SP No.3<br>4 SP No.3<br>l wood sheat<br>purlins.<br>ing directly<br>2=19-11-C<br>14=19-11-<br>16=19-11-<br>20=19-11-<br>20=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=19-11-<br>26=29 (LC<br>26=29 (LC<br>26=20 (LC<br>2 | athing directly applied<br>applied or 10-0-0 oc<br>0, 12=19-11-0,<br>-0, 15=19-11-0,<br>-0, 17=19-11-0,<br>-0, 21=19-11-0,<br>-0, 23=19-11-0,<br>-0, 23=19-11-0,<br>-0, 23=19-11-0,<br>-0, 23=19-11-0,<br>-0, 23=19-11-0,<br>-0, 23=19-11-0,<br>-0, 23=10, 12=33 (LC 15),<br>15), 15=-33 (LC 22),<br>10), 22=-40 (LC 11),<br>21), 12=-138 (LC 22),<br>C 22), 17=232 (LC 2),<br>C 22), 19=231 (LC 2),<br>C 22), 21=206 (LC 2),<br>C 34), 23=133 (LC 2),<br>C 22) | , , , , , , , , , , , , , , , , , , , | TOP CHORD<br>BOT CHORD<br>WEBS<br>1) Unbalanced<br>this design.<br>2) Wind: ASCI<br>Vasd=103m<br>Cat. II; Exp<br>zone and C<br>1-11-8 to 6-<br>(2N) 12-11-<br>zone; cantil<br>and right es<br>(2N) 12-11-<br>zone; cantil<br>and right es<br>(2N) 12-11-<br>zone; cantil<br>and right es<br>for<br>grip DOL=1<br>3) Truss desig<br>only. For si<br>see Standa<br>or consult q<br>4) TCLL: ASC<br>Plate DOL=<br>DOL=1.15;<br>Cs=1.00; C<br>5) Unbalanced<br>design. | 1-2=0/17, 2-3=-53,<br>4-5=-34/54, 5-6=-3<br>7-8=-39/119, 8-9=<br>10-11=-36/19, 11-<br>2-22=-13/55, 21-2;<br>19-20=-12/55, 18-<br>16-17=-12/55, 14-<br>7-18=-107/13, 6-1;<br>4-21=-167/81, 3-2;<br>9-16=-177/80, 10-<br>1 roof live loads have<br>5 7-16; Vult=130mg<br>ph; TCDL=6.0psf;<br>B; Enclosed; MWF<br>-C Corner(3R) 6<br>8 to 17-9-8, Corner<br>ever left and right e<br>posed; C-C for men<br>reactions shown; I<br>.60<br>gned for wind loads<br>uds exposed to wir<br>rd Industry Gable E<br>ualified building de<br>5 7-16; Pr=20.0 psf<br>1.15); Pf=20.0 psf<br>1.10<br>I snow loads have I | (35, 3-4=<br>33/78, 6-<br>-32/78, §<br>12=-24/1<br>2=-12/55<br>16=-12/5<br>9=-191/1<br>2=-110/6<br>15=-163.<br>we been we<br>be (3-sec<br>BCDL=6<br>RS (env<br>0-8 to 1-<br>-11-8 to<br>(3E) 17-<br>xxposed<br>mbers ar<br>_umber l<br>in the p<br>nd (norm<br>ind Deta<br>signer a:<br>f (roof LL<br>(Lum DC<br>B; Fully<br>been con | 41/41,<br>7=-39/119,<br>1-10=-32/45,<br>4, 12-13=0/17<br>5, 20-21=-12/55,<br>15, 17-18=-12/55,<br>15, 17-18=-12/58,<br>15, 17-18=-12/58,<br>10, 5-20=-177/80<br>8, 8-17=-191/107<br>(79, 11-14=-109/6<br>considered for<br>considered for<br>considered for<br>considered for<br>considered for<br>11-8, Exterior(2N]<br>12-11-8, Exterior<br>9-8 to 20-9-8;<br>end vertical left<br>d forces &<br>DOL=1.60 plate<br>lane of the truss<br>al to the face),<br>ils as applicable,<br>s per ANS/ITPI 1.<br>.: Lum DOL=1.15<br>DL=1.15 Plate<br>Exp.; Ce=0.9;<br>histored for this | е<br>5<br>7, 1<br>58<br>1<br>1<br>1<br>1<br>1<br>1 | <ul> <li>B) Gat</li> <li>Gat</li> <li>Gat</li> <li>Cho</li> <li>This</li> <li>Cho</li> <li>This</li> <li>Cho</li> <li>N/A</li> <li>N/A</li> <li>N/A</li> <li>N/A</li> <li>N/A</li> <li>N/A</li> <li>N/A</li> <li>N/A</li> <li>N/A</li> </ul> | reled pla<br>acce with<br>s truss is<br>rnationa<br>b2.10.2 a | res coor<br>space<br>as bee<br>ad non<br>has bé<br>m cho<br>by 2-0<br>ny oth<br>te or s<br>truss<br>desig<br>I Resia<br>and ref | him required to p<br>chord at joint(s)<br>an designed for a<br>neoncurrent with<br>een designed for<br>rd in all areas wh<br>0-00 wide will fit<br>er members. | rovide full b<br>2, 23.<br>re with the 2<br>ions R502.1<br>ANSI/TPI | earing<br>018<br>1.1 and |
| FURGES                                                                                                | (ID) - MAX<br>Tension                                                                                                                                           | amum Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pression/Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     | <ul> <li>6) This truss h<br/>load of 12.0<br/>overhangs n</li> <li>7) All plates ar</li> </ul>                                                                                                                                                                                                                                                                                                                                                                     | as been designed f<br>psf or 1.00 times f<br>non-concurrent with<br>e 2x4 MT20 unless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for great<br>lat roof le<br>o other lin<br>o otherwi                                                                                                                                                                                                                                                                                  | er of min roof live<br>bad of 20.0 psf on<br>ve loads.<br>se indicated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ١                                                  |                                                                                                                                                                                                                                              |                                                               |                                                                                                                                 | MGIN<br>May                                                                                                                                                    | 26,2021                                                             | C. I.                    |



| Job                             | Truss               | Truss Type             | Qty           | Ply         | 72 Carolina Lakes-Roof-Sterling                   |           |
|---------------------------------|---------------------|------------------------|---------------|-------------|---------------------------------------------------|-----------|
| 21040028-B                      | D01                 | Common Supported Gable | 1             | 1           | Job Reference (optional)                          | 146292688 |
| Carter Components (Sanford), Sa | anford, NC - 27332, | Run: 8.5 S 0 May 17 2  | 2021 Print: 8 | 500 S May 1 | 7 2021 MiTek Industries, Inc. Tue May 25 15:03:26 | Page: 2   |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:26 ID:kLxR?z897Vj7TSTZ4luaZPzd790-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | D02   | Common     | 1   | 1   | Job Reference (optional)        | 146292689 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:27 ID:ZO\_iEjfZhvTOzfXbu2eu7mzd773-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:40.5

3-11-0

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

|                                                                                                                                                                                                                                                                                                                                                                | , , [ , ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                             |                               |                          |                                 |                                    |                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|-------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                    | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )/TPI2014                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                              | 0.54<br>0.93<br>0.35                                                                                                                                                                                                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                 | in<br>-0.15<br>-0.32<br>0.05                                                                                                                                                                                                                  | (loc)<br>8-11<br>8-14<br>6                                                  | l/defl<br>>999<br>>747<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 84 lb | <b>GRIP</b><br>244/190<br>FT = 20% |                                     |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this design<br>this design<br>Cat. II; Exp<br>zone and 0<br>(2-1-8 to 6-<br>(1) 12-11-{<br>zone; cant<br>and right e<br>MWFRS for<br>grip DOL=<br>3) TCLL: ASC<br>Plate DOL<br>DOL=1.15<br>Cs=1.00; 0 | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she:<br>4-0-9 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-8, 6<br>Max Horiz 2=-57 (LC<br>Max Uplift 2=-126 (L<br>Max Grav 2=906 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=0/17, 2-3=-1896<br>4-5=-1304/290, 5-6=<br>2-6=-325/1755<br>4-8=-2/541, 5-8=-62<br>ad roof live loads have<br>b<br>CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B4<br>o B; Enclosed; MWFR:<br>C-C Exterior(2E) -0-10<br>11-8, Exterior(2Z) -0-10<br>12-10, Exte | athing directly applied<br>applied or 2-2-0 oc<br>3=0-3-8<br>(15)<br>C 10), 6=-126 (LC 11)<br>C 21), 6=906 (LC 22)<br>pression/Maximum<br>6/422, 3-4=-1304/290<br>e-1896/422, 6-7=0/17<br>7/201, 3-8=-627/200<br>been considered for<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>-8 to 2-1-8, Interior (1<br>1-8 to 12-11-8, Interior (1<br>1-8 to 20-9.8<br>bosed ; end vertical levers and forces &<br>mber DOL=1.60 plate<br>roof LL: Lum DOL=1.<br>um DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9; | 4)<br>5)<br>d or 6)<br>7)<br>8)<br>9)<br><b>LO</b> | Unbalanced<br>design.<br>This truss ha<br>load of 12.0 p<br>overhangs nu<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottom<br>chord and ar<br>One RT7A M<br>truss to beari<br>This connect<br>lateral forces<br>This truss is<br>International<br>R802.10.2 ar<br>AD CASE(S) | snow loads have b<br>s been designed f<br>part or 1.00 times fl<br>on-concurrent with<br>is been designed<br>n chord in all areas<br>by 2-00-00 wide wi<br>y other members.<br>liTek connectors re-<br>ing walls due to UI<br>ion is for uplift only.<br>designed in accord<br>Residential Code<br>nd referenced stan<br>Standard | opeen cor<br>or greate<br>at roof lo<br>other liv<br>or a 10.0<br>with any<br>l for a liv<br>s where<br>II fit betw<br>ecomme<br>PLIFT at<br>y and do<br>dance w<br>sections<br>idard AN | sidered for t<br>er of min roo<br>aad of 20.0 p<br>ve loads.<br>) psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>nded to com<br>jt(s) 2 and 6<br>es not consi<br>ith the 2018<br>.R502.11.1 a<br>ISI/TPI 1. | this<br>f live<br>sof on<br>ads.<br>Opsf<br>tom<br>nect<br>S.<br>der<br>and |                               |                          |                                 | SEA<br>0449                        | ROL<br>L<br>25<br>SEVILL<br>26,2021 |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                             |                               |                          |                                 |                                    |                                     |



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | D03   | Common     | 3   | 1   | Job Reference (optional)        | 146292690 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:27 ID:6IUA9?3Gw2djQkYwKTkdzjzd76Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|                                                    |                                                                                                  |                                                                                          |            |                                                                  |                                                                     |                             |                                                |       |       |        |     |               |          | _ |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|------------------------------------------------|-------|-------|--------|-----|---------------|----------|---|
| Loading                                            | (psf)                                                                                            | Spacing                                                                                  | 2-0-0      |                                                                  | CSI                                                                 |                             | DEFL                                           | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |   |
| TCLL (roof)                                        | 20.0                                                                                             | Plate Grip DOL                                                                           | 1.15       |                                                                  | TC                                                                  | 0.53                        | Vert(LL)                                       | -0.15 | 6-12  | >999   | 240 | MT20          | 244/190  |   |
| Snow (Pf)                                          | 20.0                                                                                             | Lumber DOL                                                                               | 1.15       |                                                                  | BC                                                                  | 0.93                        | Vert(CT)                                       | -0.32 | 6-12  | >744   | 180 |               |          |   |
| TCDL                                               | 10.0                                                                                             | Rep Stress Incr                                                                          | YES        |                                                                  | WB                                                                  | 0.35                        | Horz(CT)                                       | 0.05  | 5     | n/a    | n/a |               |          |   |
| BCLL                                               | 0.0*                                                                                             | Code                                                                                     | IRC2018    | 3/TPI2014                                                        | Matrix-MSH                                                          |                             |                                                |       |       |        |     |               |          |   |
| BCDL                                               | 10.0                                                                                             |                                                                                          |            |                                                                  |                                                                     |                             | -                                              |       |       |        |     | Weight: 81 lb | FT = 20% |   |
|                                                    | 2×4 SP No 2                                                                                      |                                                                                          | 4)         | Unbalanced design                                                | snow loads have b                                                   | een cor                     | sidered for t                                  | his   |       |        |     |               |          |   |
| BOT CHORD                                          | 2x4 SP No.2                                                                                      |                                                                                          | 5)         | This truss ha                                                    | s been designed fo                                                  | ora 10 (                    | ) psf bottom                                   |       |       |        |     |               |          |   |
| WEBS                                               | 2x4 SP No.3                                                                                      |                                                                                          | 0)         | chord live loa                                                   | ad nonconcurrent w                                                  | ith anv                     | other live loa                                 | ads.  |       |        |     |               |          |   |
| BRACING                                            |                                                                                                  |                                                                                          | 6)         | * This truss h                                                   | as been designed                                                    | for a liv                   | e load of 20.                                  | Opsf  |       |        |     |               |          |   |
| TOP CHORD                                          | Structural wood she                                                                              | athing directly applie                                                                   | ,<br>d or  | on the bottor                                                    | n chord in all areas                                                | where                       | a rectangle                                    | •     |       |        |     |               |          |   |
|                                                    | 4-0-14 oc purlins.                                                                               | annig anoony applie                                                                      |            | 3-06-00 tall b                                                   | y 2-00-00 wide will                                                 | fit betv                    | veen the bott                                  | om    |       |        |     |               |          |   |
| BOT CHORD                                          | Rigid ceiling directly<br>bracing.                                                               | applied or 2-2-0 oc                                                                      | 7)         | chord and ar<br>One RT7A N                                       | iy other members.<br>IiTek connectors re                            | comme                       | nded to conr                                   | nect  |       |        |     |               |          |   |
| REACTIONS                                          | (size) 1=0-3-8, 5<br>Max Horiz 1=-53 (LC<br>Max Uplift 1=-94 (LC<br>Max Grav 1=853 (LC           | 5=0-3-8<br>5 15)<br>5 10), 5=-94 (LC 11)<br>C 20), 5=853 (LC 21)                         | ) 8)       | truss to bear<br>This connect<br>lateral forces<br>This truss is | ing walls due to UP<br>ion is for uplift only<br>designed in accord | LIFT at<br>and do<br>ance w | jt(s) 1 and 5<br>es not consid<br>ith the 2018 | der   |       |        |     |               |          |   |
| FORCES                                             | (lb) - Maximum Com<br>Tension                                                                    | pression/Maximum                                                                         |            | R802.10.2 a                                                      | nd referenced stand                                                 | dard AN                     | ISI/TPI 1.                                     |       |       |        |     |               |          |   |
| TOP CHORD                                          | 1-2=-1908/459, 2-3=<br>3-4=-1310/311, 4-5=                                                       | 1310/311,<br>1908/459                                                                    |            | JAD CASE(S)                                                      | Standard                                                            |                             |                                                |       |       |        |     |               |          |   |
| BOT CHORD                                          | 1-5=-380/1767                                                                                    |                                                                                          |            |                                                                  |                                                                     |                             |                                                |       |       |        |     |               |          |   |
| WEBS                                               | 3-6=-19/544, 4-6=-63                                                                             | 34/213, 2-6=-634/21                                                                      | 3          |                                                                  |                                                                     |                             |                                                |       |       |        |     |               |          |   |
| NOTES                                              |                                                                                                  |                                                                                          |            |                                                                  |                                                                     |                             |                                                |       |       |        |     |               |          |   |
| 1) Unbalanc<br>this desig                          | ed roof live loads have<br>n.                                                                    | been considered for                                                                      | r          |                                                                  |                                                                     |                             |                                                |       |       |        |     | UNIT CA       | Rollin   |   |
| 2) Wind: AS<br>Vasd=103<br>Cat. II; Ex<br>zone and | CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; B0<br>cp B; Enclosed; MWFRS<br>C-C Exterior(2E) 0-0-0 | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>to 3-0-0, Interior (1) | r<br>)     |                                                                  |                                                                     |                             |                                                |       |       | 4      | Sc  | of the ss     | guter    | ) |
| 3-0-0 to 6                                         | -11-8, Exterior(2R) 6-11                                                                         | 2E) 16-11-0 to 19-11                                                                     | lor<br> -0 |                                                                  |                                                                     |                             |                                                |       |       | 3      |     | SEA           | L 1 E    |   |
| zone; can                                          | tilever left and right exp                                                                       | osed ; end vertical                                                                      | left       |                                                                  |                                                                     |                             |                                                |       |       | =      |     | 0440          |          |   |
| and right                                          | exposed;C-C for memb                                                                             | ers and forces &                                                                         |            |                                                                  |                                                                     |                             |                                                |       |       | =      |     | 0449          | 25 : 5   |   |
| MWFRS f                                            | for reactions shown; Lu                                                                          | mber DOL=1.60 pla                                                                        | te         |                                                                  |                                                                     |                             |                                                |       |       | -      | 1.1 |               | 1 2      |   |
| grip DOL=                                          | =1.60                                                                                            |                                                                                          |            |                                                                  |                                                                     |                             |                                                |       |       |        | 2.  | ·             | alas     |   |
| <ol> <li>TCLL: AS<br/>Plate DOI</li> </ol>         | CE 7-16; Pr=20.0 psf (i<br>L=1.15); Pf=20.0 psf (Li                                              | roof LL: Lum DOL=1<br>um DOL=1.15 Plate                                                  | 1.15       |                                                                  |                                                                     |                             |                                                |       |       |        | 110 | COSNGIN       | EFF      |   |
| DOL=1.15                                           | 5); Is=1.0; Rough Cat B                                                                          | ; Fully Exp.; Ce=0.9                                                                     | );         |                                                                  |                                                                     |                             |                                                |       |       |        |     | TTA           | CEVIN    |   |

grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



mm May 26,2021

| Job        | Truss | Truss Type    | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|---------------|-----|-----|---------------------------------|-----------|
| 21040028-B | D04   | Common Girder | 1   | 2   | Job Reference (optional)        | 146292691 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:27

Page: 1 ID:?0\_yxwflmGEuVRfvBDcKYMzLb9I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-1-7 9-11-8 14-9-9 19-11-0 5-1-7 4-10-1 4-10-1 5-1-7 4x5 = 3 12 4 Г 3x5 ≠ 3x5 🕿 2 4 3-9-14 16 17 5 0 0 ΙſΓ́Π X Ø 18 19 9 20 8 23 21 22 7 6 24 2x4 II 6x8 = 4x6 = 3x5 = 3x5 = JUS26 2x4 II JUS26 JUS26 JUS26 JUS26 JUS26 MSH29 JUS26 JUS26 14-9-9 19-11-0 5-1-7 9-11-8 5-1-7 4-10-1 4-10-1 5-1-7 Scale = 1:37 Plate Offsets (X, Y): [8:0-4-0,0-4-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.32 Vert(LL) -0.10 6-8 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.39 Vert(CT) -0.12 6-8 >999 180 TCDL Rep Stress Incr WB Horz(CT) 10.0 NO 0.25 0.03 5 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code Weight: 203 lb FT = 20% BCDL 10.0 LUMBER 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Increase=1.15 TOP CHORD 2x4 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior BOT CHORD 2x6 SP No.2 Uniform Loads (lb/ft) zone; cantilever left and right exposed ; end vertical left WEBS 2x4 SP No.3 Vert: 1-3=-60, 3-5=-60, 10-13=-20 and right exposed; Lumber DOL=1.60 plate grip Concentrated Loads (lb) BRACING DOL=1.60 Vert: 7=-92 (B), 8=-92 (B), 18=-87 (B), 19=-87 (B), TOP CHORD Structural wood sheathing directly applied or TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5) 20=-87 (B), 21=-92 (B), 22=-92 (B), 23=-92 (B), 6-0-0 oc purlins. Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 24=-78 (B) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; bracing. Cs=1.00; Ct=1.10 **REACTIONS** (size) 1=0-3-8, 5=0-3-8 6) Unbalanced snow loads have been considered for this Max Horiz 1=-53 (LC 51) desian. Max Uplift 1=-575 (LC 45), 5=-585 (LC 44) This truss has been designed for a 10.0 psf bottom 7) Max Grav 1=1405 (LC 2), 5=1410 (LC 2) chord live load nonconcurrent with any other live loads. FORCES (Ib) - Maximum Compression/Maximum \* This truss has been designed for a live load of 20.0psf 8) Tension on the bottom chord in all areas where a rectangle

6-8=-1360/3096. 5-6=-1360/3096 WEBS 3-8=-760/1194, 4-8=-969/503, 4-6=-438/393, 2-8=-962/514, 2-9=-448/381

1-2=-3295/1460, 2-3=-2392/977,

3-4=-2392/977, 4-5=-3304/1449

1-9=-1371/3088. 8-9=-1371/3088.

#### NOTES

TOP CHORD

BOT CHORD

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

- Web connected as follows: 2x4 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, 2) except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- connection is for uplift only and does not consider lateral forces. 10) One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

chord and any other members

R802.10.2 and referenced standard ANSI/TPI 1. 12) Use MiTek JUS26 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent spaced at 2-0-0 oc max.

3-06-00 tall by 2-00-00 wide will fit between the bottom

One RT7A MiTek connectors recommended to connect

truss to bearing walls due to UPLIFT at jt(s) 1. This

- starting at 2-0-0 from the left end to 16-0-0 to connect truss(es) to back face of bottom chord 13) Use MiTek MSH29 (With 10d nails into Girder & 4-10d
- nails into Truss) or equivalent at 18-0-0 from the left end to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard

0 Contraction of the SEAL 044925 mm May 26,2021



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9)

| Job        | Truss | Truss Type             | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------------------|-----|-----|---------------------------------|-----------|
| 21040028-B | E01   | Common Supported Gable | 1   | 1   | Job Reference (optional)        | 146292692 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:28 ID:XDsImjXoBX?P3TtNT5wEwSzd74e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|                                        |                       |  | 10 11 0 |  |  |
|----------------------------------------|-----------------------|--|---------|--|--|
| Scale = 1:38.7                         | Г                     |  |         |  |  |
| Plate Offsets (X, Y): [10:0-4-12,0-1-4 | 8], [16:0-4-12,0-1-8] |  |         |  |  |
|                                        |                       |  |         |  |  |

|              |                        |                          |                         |         |                              |                          |             |                  |             |          |            |         |                   |                     | _ |
|--------------|------------------------|--------------------------|-------------------------|---------|------------------------------|--------------------------|-------------|------------------|-------------|----------|------------|---------|-------------------|---------------------|---|
| Loading      |                        | (psf)                    | Spacing                 | 1-11-4  |                              | csi                      |             | DEFL             | in          | (loc)    | l/defl     | L/d     | PLATES            | GRIP                |   |
| TCLL (roof)  |                        | 20.0                     | Plate Grip DOL          | 1.15    |                              | TC                       | 0.15        | Vert(LL)         | n/a         | -        | n/a        | 999     | MT20              | 244/190             |   |
| Snow (Pf)    |                        | 20.0                     | Lumber DOL              | 1.15    |                              | BC                       | 0.05        | Vert(CT)         | n/a         | -        | n/a        | 999     |                   |                     |   |
| TCDL         |                        | 10.0                     | Rep Stress Incr         | YES     |                              | WB                       | 0.10        | Horz(CT)         | 0.00        | 10       | n/a        | n/a     |                   |                     |   |
| BCLL         |                        | 0.0*                     | Code                    | IRC201  | 8/TPI2014                    | Matrix-MR                |             |                  |             |          |            |         |                   |                     |   |
| BCDL         |                        | 10.0                     |                         |         |                              |                          |             |                  |             |          |            |         | Weight: 64 lb     | FT = 20%            |   |
| LUMBER       |                        |                          |                         | 2)      | Wind: ASCE                   | 7-16: Vult=130mp         | oh (3-seo   | cond aust)       |             | 14) This | s truss is | desic   | ned in accordance | ce with the 2018    |   |
| TOP CHORD    | 2x4 SP N               | 0.2                      |                         | ,       | Vasd=103mp                   | h; TCDL=6.0psf;          | BCDL=6      | .0psf; h=25ft;   |             | Ínte     | rnationa   | l Resi  | dential Code sect | tions R502.11.1 and |   |
| BOT CHORD    | 2x4 SP N               | 0.2                      |                         |         | Cat. II; Exp E               | ; Enclosed; MWF          | RS (env     | elope) exterio   | r           | R80      | )2.10.2 a  | and ret | ferenced standar  | d ANSI/TPI 1.       |   |
| WEBS         | 2x4 SP N               | 0.3                      |                         |         | zone and C-0                 | C Corner(3E) -0-10       | 0-8 to 2-   | 1-8, Exterior(2  | 2N)         | LOAD     | CASE(S     | ) Sta   | ndard             |                     |   |
| OTHERS       | 2x4 SP N               | 0.3                      |                         |         | 2-1-8 to 2-5-8               | 3, Corner(3R) 2-5-       | -8 to 8-5   | -8, Exterior(2N  | V)          |          |            | ,       |                   |                     |   |
| BRACING      |                        |                          |                         |         | 8-5-8 to 8-9-8               | 3, Corner(3E) 8-9-       | 8 to 11-9   | 9-8 zone;        |             |          |            |         |                   |                     |   |
| TOP CHORD    | Structura              | I wood she               | athing directly applie  | d or    | cantilever lef               | t and right expose       | d;end\      | ertical left and | d           |          |            |         |                   |                     |   |
|              | 6-0-0 oc i             | purlins, exc             | cept end verticals.     |         | right exposed                | d;C-C for members        | s and for   | ces & MWFR       | S           |          |            |         |                   |                     |   |
| BOT CHORD    | Rigid ceil<br>bracing. | ing directly             | applied or 6-0-0 oc     |         | for reactions<br>DOL=1.60    | shown; Lumber D          | OL=1.60     | ) plate grip     |             |          |            |         |                   |                     |   |
| REACTIONS    | (size)                 | 10-10-11                 | -0 11-10-11-0           | 3)      | Truss desigr                 | ned for wind loads       | in the p    | lane of the tru  | SS          |          |            |         |                   |                     |   |
| REAGNONO     | (3120)                 | 12=10-11                 | -0 13=10-11-0           |         | only. For stu                | ds exposed to wir        | nd (norm    | al to the face)  | ,           |          |            |         |                   |                     |   |
|              |                        | 14=10-11                 | -0. 15=10-11-0.         |         | see Standard                 | Industry Gable E         | nd Deta     | ils as applicat  | ble,        |          |            |         |                   |                     |   |
|              |                        | 16=10-11                 | -0                      | 4)      |                              | allited building des     | signer as   |                  | 11.<br>. 45 |          |            |         |                   |                     |   |
|              | Max Horiz              | 16=-142 (                | LC 12)                  | 4)      | Ploto DOI -1                 | 15): Pf=20.0 psf         |             | Lum DOL=1        | .15         |          |            |         |                   |                     |   |
|              | Max Uplift             | 10=-41 (L                | C 11), 11=-95 (LC 1     | 5),     |                              | . 15), FI=20.0 pSI (     |             | Exp : Co=0.9     |             |          |            |         |                   |                     |   |
|              |                        | 12=-73 (L                | C 15), 14=-73 (LC 14    | 4),     | $C_{S=1} 00^{\circ} C_{t=1}$ | 3–1.0, Rough Cat<br>₁ 10 | D, Tuny     | Lxp., 06-0.3     | ,           |          |            |         |                   |                     |   |
|              |                        | 15=-99 (L                | C 14), 16=-59 (LC 10    | 0) 5)   | Unbalanced                   | snow loads have h        | heen cor    | sidered for th   | is          |          |            |         |                   |                     |   |
|              | Max Grav               | 10=126 (L                | .C 28), 11=155 (LC 2    | 22), "  | design                       |                          |             |                  |             |          |            |         |                   |                     |   |
|              |                        | 12=272 (L                | _C 22), 13=170 (LC 2    | 27), 6) | This truss ha                | s been designed f        | or areat    | er of min roof   | live        |          |            |         |                   |                     |   |
|              |                        | 14=272 (L                | .C 21), 15=159 (LC 2    | 24),    | load of 12.0                 | osf or 1.00 times fl     | lat roof le | bad of 20.0 ps   | fon         |          |            |         |                   | 111.                |   |
|              |                        | 16=141 (L                | -C 25)                  |         | overhangs no                 | on-concurrent with       | other liv   | /e loads.        |             |          |            |         | N' I CA           | D'''                |   |
| FORCES       | (lb) - Max             | timum Com                | pression/Maximum        | 7)      | All plates are               | 2x4 MT20 unless          | otherwi     | se indicated.    |             |          | ۰.         |         | "ATH UA           | NO                  |   |
|              | Tension                |                          |                         | 8)      | Gable require                | es continuous bott       | om chor     | d bearing.       |             |          |            | 5       | ONVESS            | ina Ala             |   |
| TOP CHORD    | 2-16=-11               | 5/96, 1-2=0              | /38, 2-3=-88/86,        | 9)      | Truss to be f                | ully sheathed from       | n one fac   | e or securely    |             |          |            | X       |                   | Noten               |   |
|              | 3-4=-61/1              | 15, 4-5=-1               | 10/224, 5-6=-110/22     | 4,      | braced again                 | st lateral moveme        | ent (i.e. d | iagonal web).    |             |          |            | K       | cour_             |                     |   |
|              | 6-7=-58/1              | 15, 7-8=-6               | 7/65, 8-9=0/38,         | 10      | ) Gable studs                | spaced at 2-0-0 or       | с.          |                  |             |          |            |         |                   |                     |   |
|              | 8-10=-10               | 5/96<br>C/447 444        | E 00/447                | 11      | ) This truss ha              | s been designed f        | or a 10.0   | ) psf bottom     |             |          | =          |         | SEA               | L : =               |   |
| BUICHURD     | 12 14 6                | 0/117,14-1<br>6/117,101  | D=-00/117,              |         | chord live loa               | ad nonconcurrent v       | with any    | other live load  | ds.         |          | =          |         | 0440              | 25 : 2              |   |
|              | 13-14=-0               | 6/117,12-1<br>6/117,10,1 | 3=-00/117,<br>1- 66/117 | 12      | ) * This truss h             | as been designed         | for a liv   | e load of 20.0   | psf         |          | =          |         | 0449              | 20 ; 2              |   |
| WERS         | 5 12-20                | 5/12 1 1/-               | - 222/1/17              |         | on the botton                | n chord in all area      | s where     | a rectangle      |             |          | -          |         |                   |                     |   |
| WEBS         | 3-1512                 | 6/1/3 6-12               | -232/147                |         | 3-06-00 tall b               | y 2-00-00 wide wi        | II fit betv | veen the botto   | m           |          |            |         | 1. 0.             | ains                |   |
|              | 7-11=-12               | 6/143                    | - 202/17/,              | 40      | chord and an                 | iy other members.        |             |                  |             |          |            | -10     | O VGIN            | EENAN               |   |
| NOTES        | = 12                   | 0, 1 10                  |                         | 13      | 9 N/A                        |                          |             |                  |             |          |            | 11      | 0                 | - Aller             |   |
| 1) Unbalance | od roof live           | loade have               | boon considered for     |         |                              |                          |             |                  |             |          |            |         | M. F.M.           | SEIN                |   |
| this design  | n.                     | iuaus nave               |                         |         |                              |                          |             |                  |             |          |            |         | in min            | mm.                 |   |

#### NOTES

818 Soundside Road Edenton, NC 27932

May 26,2021

| Job        | Truss | Truss Type             | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------------------|-----|-----|---------------------------------|-----------|
| 21040028-B | G01   | Common Supported Gable | 1   | 1   | Job Reference (optional)        | 146292693 |

2-5-6

2-6-8

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:28 ID:\_r1nF4pXwr?5CS5Ru\_qAqRzLq4W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

May 26,2021

818 Soundside Road Edenton, NC 27932



# Scale = 1:27.6 Plate Offsets (X, Y): [2:Edge,0-0-15], [2:0-2-6,Edge], [8:Edge,0-0-15], [8:0-2-6,Edge]

|                                                                                                       | · ·, · /· <b>·</b> -·-·                                                                                                                                                  | -9-,                                                                                                                                                                                                                                                                        | ], [=:= = =,==:3=], [=:=                                                                                                                                                                                                                                                                                               |                                                                                                                  | -], [,                                                                                                                                                                                                                                                                                                                                                                  | 9-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                   |                                                 |                                       |                                                                     |                                      |                              |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|--------------------------------------|------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                           |                                                                                                                                                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                     | 1-11-4<br>1.15<br>1.15<br>YES<br>IRC2018                                                                         | 3/TPI2014                                                                                                                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08<br>0.03<br>0.04                                                                                                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                      | in<br>n/a<br>n/a<br>0.00                                                                | (loc)<br>-<br>-<br>19             | l/defl<br>n/a<br>n/a<br>n/a                     | L/d<br>999<br>999<br>n/a              | PLATES<br>MT20<br>Weight: 49 lb                                     | <b>GRIP</b><br>244/190<br>FT = 20    | )<br>)%                      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No<br>2x4 SP No<br>2x4 SP No<br>Left: 2x4 S<br>Right: 2x4<br>Structural<br>6-0-0 oc p<br>Rigid ceili<br>bracing.<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav | 0.2<br>0.2<br>0.3<br>SP No.3<br>SP No.3<br>SP No.3<br>wood shear<br>purlins.<br>ng directly<br>2=11-8-0,<br>11=11-8-0<br>14=11-8-0<br>2=-34 (LC<br>2=-38 (LC<br>2=-38 (LC<br>10=-31 (LI<br>13=-37 (LC<br>10=193 (LI<br>12=139 (LI<br>12=139 (LI<br>12=139 (LI<br>14=193 (LI | athing directly applied<br>applied or 10-0-0 oc<br>8=11-8-0, 10=11-8-0<br>, 12=11-8-0, 13=11-1<br>15), 15=-34 (LC 15)<br>10), 8=-44 (LC 11),<br>C 15), 11=-37 (LC 14)<br>C 10), 14=-33 (LC 14)<br>C 10), 19=-44 (LC 11)<br>2 1), 8=177 (LC 22),<br>C 22), 11=229 (LC 2<br>C 21), 13=229 (LC 2<br>C 21), 15=177 (LC 22) | 2)<br>d or<br>3)<br>),<br>8-0,<br>8-0<br>4)<br>(),<br>(),<br>(),<br>(),<br>(),<br>(),<br>(),<br>(),<br>(),<br>() | Wind: ASCE<br>Vasd=103mp<br>Cat. II; Exp E<br>zone and C-C<br>(2N) 1-10-0 t<br>Exterior(2N)<br>zone; cantile<br>and right exp<br>MWFRS for n<br>grip DOL=1.6<br>Truss design<br>only. For stu<br>see Standarc<br>or consult qu<br>TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15); I<br>Cs=1.00; Ct=<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0 p<br>overhangs or | 7-16; Vult=130mp<br>bh; TCDL=6.0psf; E<br>5; Enclosed; MWFF<br>C Corner(3E) -0-10<br>o 2-10-0, Corner(3<br>8-10-0 to 9-6-8, CC<br>ver left and right e:<br>osed;C-C for mem<br>reactions shown; L<br>60<br>hed for wind loads<br>ds exposed to wind<br>I Industry Gable Ei<br>alified building des<br>7-16; Pr=20.0 psf<br>(s=1.0; Rough Cat<br>±1.10<br>snow loads have b<br>s been designed fo<br>psf or 1.00 times fi<br>pon-concurrent with<br>2x4 MT20 unless | h (3-sec<br>BCDL=6<br>RS (env)-8 to 1-<br>SR) 2-10<br>prmer(3E<br>xposed<br>bers an<br>umber I<br>in the p<br>d (norm<br>nd Deta<br>signer as<br>(roof LL<br>Lum DC<br>B; Fully<br>been cor<br>or great<br>at roof k<br>other kin<br>other kin | ond gust)<br>.0psf; h=25ft;<br>elope) exterior<br>10-0, Exterior<br>ot os 8-10-0,<br>) 9-6-8 to 12-<br>end vertical<br>d forces &<br>DOL=1.60 pla<br>ane of the tru<br>al to the face<br>is as applical<br>is per ANSI/TF<br>: Lum DOL=-<br>iL=1.15 Plate<br>Exp.; Ce=0.5<br>isidered for th<br>er of min roof<br>pad of 20.0 ps<br>ve loads.<br>se indicated | ;<br>or<br>r<br>left<br>uss<br>),<br>ble,<br>PI 1.<br>1.15<br>;<br>his<br>live<br>sf on | 13) This<br>Inte<br>R8(<br>LOAD ( | s truss is<br>ernationa<br>02.10.2 a<br>CASE(S) | desig<br>I Resic<br>and ref<br>) Star | ned in accordance<br>dential Code sect<br>erenced standard<br>ndard | e with the<br>ions R502<br>J ANSI/TF | 9 2018<br>2.11.1 and<br>기 1. |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this design                      | (lb) - Max<br>Tension<br>1-2=0/24,<br>4-5=-38/9<br>7-8=-19/1<br>2-14=-14/<br>11-12=-5/<br>5-12=-100<br>6-11=-191<br>ed roof live le                                      | 19=177 (L<br>imum Com<br>2-3=-23/2(<br>6, 5-6=-38/<br>9, 8-9=0/24<br>48, 13-14=<br>48, 10-11=<br>0/54, 4-13=<br>1/150, 7-10<br>oads have                                                                                                                                    | C 22)<br>pression/Maximum<br>5, 3-4=-32/41,<br>'96, 6-7=-32/41,<br>4<br>-5/48, 12-13=-5/48,<br>-5/48, 8-10=-14/48<br>-191/150, 3-14=-146<br>=-146/99<br>been considered for                                                                                                                                            | 8)<br>9)<br>10<br>11<br>/99, 12                                                                                  | Gable require<br>Gable studs 1<br>) This truss ha<br>chord live loa<br>) * This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>) N/A                                                                                                                                                                                                                     | es continuous botto<br>spaced at 2-0-0 oc<br>s been designed fo<br>d nonconcurrent v<br>las been designed<br>n chord in all areas<br>by 2-00-00 wide wil<br>y other members.                                                                                                                                                                                                                                                                                       | om chor<br>c.<br>or a 10.<br>vith any<br>for a liv<br>s where<br>Il fit betv                                                                                                                                                                   | d bearing.<br>) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>ween the botto                                                                                                                                                                                                                                                               | ds.<br>Dpsf<br>om                                                                       |                                   |                                                 |                                       | SEA<br>0449                                                         | L<br>25<br>SEV                       | A CONTRACTION OF THE STATE   |

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | G02   | Common     | 5   | 1   | Job Reference (optional)        | 146292694 |



|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                               |                                                                                                                                                                                                                                                                                                                                                    | 5-10-0                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                     |                            | 11-8-0                        |                          |                |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|-------------------------------|--------------------------|----------------|------------------------|
|                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                               |                                                                                                                                                                                                                                                                                                                                                    | 5-10-0                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                     |                            | 5-10-0                        |                          |                |                        |
| Scale = 1:31                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                               |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                     |                            |                               |                          |                |                        |
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL                                                                                                                                                                | (psf)<br>20.0<br>20.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                | 1-11-4<br>1.15<br>1.15<br>YES | 19/TDI2014                                                                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                        | 0.59<br>0.42<br>0.09                                                                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                         | in<br>0.07<br>-0.08<br>0.01                                         | (loc)<br>6-12<br>6-12<br>4 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
| BCDL                                                                                                                                                                                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                            | Code                                                                                                                                                                                                                                      | 11(0201                       | 10/11/2014                                                                                                                                                                                                                                                                                                                                         | Matrix-Mort                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                     |                            |                               |                          | Weight: 41 lb  | FT = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=103 | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>5-2-7 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-0, -<br>Max Horiz 2=-34 (LC<br>Max Uplift 2=-184 (L<br>Max Grav 2=613 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=0/24, 2-3=-803/<br>4-5=0/24<br>2-6=-970/685, 4-6=-<br>3-6=-420/239<br>ed roof live loads have<br>n.<br>CE 7-16; Vult=130mph<br>mph: TCD=6.0psf: B | athing directly applied<br>applied or 5-8-8 oc<br>4=0-3-0<br>2 15)<br>C 10), 4=-184 (LC 11<br>2 21), 4=613 (LC 22)<br>pression/Maximum<br>1120, 3-4=-803/1120<br>970/685<br>been considered for<br>(3-second gust)<br>CDL=6.0psf: h=25ft; | 5<br>dor 7<br>8<br>)<br>9     | <ul> <li>This truss ha<br/>load of 12.0<br/>overhangs n</li> <li>This truss ha<br/>chord live loa</li> <li>* This truss f<br/>on the bottor<br/>3-06-00 tall t<br/>chord and ar</li> <li>One RT7A M<br/>truss to bear<br/>This connect<br/>lateral forces</li> <li>This truss is<br/>International<br/>R802.10.2 a</li> <li>OAD CASE(S)</li> </ul> | as been designed<br>psf or 1.00 times<br>ion-concurrent wii<br>as been designed<br>ad nonconcurrent<br>has been designed<br>m chord in all are<br>by 2-00-00 wide v<br>y 2-00-00 wide v<br>y other members<br>diTek connectors<br>ing walls due to I<br>tion is for uplift or<br>s.<br>designed in acco<br>Residential Code<br>nd referenced sta<br>Standard | for great<br>flat roof I<br>th other Ii<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>vill fit betw<br>s.<br>recomme<br>JPLIFT at<br>JPLIFT at<br>ally and do<br>rdance w<br>e sections<br>andard AN | er of min roo<br>bad of 20.0 p<br>ve loads.<br>0 psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>ended to com<br>it (s) 2 and 4<br>ies not consi<br>ith the 2018<br>5 R502.11.1 i<br>ISI/TPI 1. | f live<br>Isf on<br>ads.<br>Opsf<br>iom<br>nect<br>i.<br>der<br>and |                            |                               |                          |                | NRO/ MA                |
| Cat. II; Ex                                                                                                                                                                                                | p B; Enclosed; MWFR<br>C-C Exterior(2E) -0-10                                                                                                                                                                                                                                                                                                                                                                   | S (envelope) exterior                                                                                                                                                                                                                     | 1)                            |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                |                                                                                                                                                                                                                                  |                                                                     |                            |                               | 1                        | ONEESS         | ich Nie                |

- 2-1-8 to 2-10-0, Exterior(2R) 2-10-0 to 8-10-0, Interior (1) 8-10-0 to 9-6-8, Exterior(2E) 9-6-8 to 12-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

This many COLOR WARDEN SEAL 044925 S mm May 26,2021

3x5 =

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x5 =

| Job        | Truss | Truss Type                | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|---------------------------|-----|-----|---------------------------------|-----------|
| 21040028-B | H01   | Monopitch Supported Gable | 1   | 1   | Job Reference (optional)        | 146292695 |

4-7-12

-0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:30 ID:pxcNqEOCZK1tAt77PejzZQzd767-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





## Scale = 1:28.6

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                        | (psf)<br>20.0<br>20.0<br>10.0<br>0.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                                                                     | 8/TPI2014                                                                                                                                                                                                                                                                                                       | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                           | 0.38<br>0.42<br>0.02                                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                           | in<br>0.09<br>0.07<br>-0.01                                   | (loc)<br>8-11<br>8-11<br>2 | l/defl<br>>604<br>>708<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLATES<br>MT20<br>Weight: 19 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=103<br>Cat. II; Exp<br>zone and C<br>exposed ;<br>and forces<br>DOL=1.60<br>2) Truss des<br>only. For s<br>see Standa<br>or consult | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>2x4 SP No.3<br>Structural wood sf<br>4-7-12 oc purlins,<br>Rigid ceiling direct<br>bracing.<br>(size) 2=0-3-8<br>Max Horiz 2=71 (L<br>Max Uplift 2=-89 (I<br>Max Grav 2=323 (<br>(Ib) - Maximum Co<br>Tension<br>1-2=0/25, 2-3=-76<br>4-7=-160/205<br>2-8=-110/49, 7-8=<br>3-8=-81/46<br>CE 7-16; Vult=130mr<br>mph; TCDL=6.0psf;<br>b; Enclosed; MWF<br>C-C Corner(3E) zono<br>porch left and right of<br>a MWFRS for reac<br>plate grip DOL=1.60<br>igned for wind loads<br>studs exposed to win<br>ard Industry Gable E<br>qualified building de | eathing directly applie<br>except end verticals.<br>ly applied or 10-0-0 oc<br>, 7= Mechanical<br>C 10)<br>.C 10), 7=-77 (LC 10)<br>LC 21), 7=261 (LC 21)<br>mpression/Maximum<br>'32, 3-4=-72/38, 4-5=-4<br>D/0, 6-7=0/0<br>wh (3-second gust)<br>BCDL=6.0psf; h=25ft;<br>RS (envelope) exterion<br>; cantilever left and rig<br>xposed; C-C for memt<br>ions shown; Lumber<br>)<br>in the plane of the tru<br>od (normal to the face)<br>in d Details as applicat<br>signer as per ANSI/TP | 5)<br>6)<br>7)<br>8d or 8)<br>5<br>9)<br>10<br>10<br>11<br>8/0, <b>LC</b><br>8/0, <b>LC</b><br>ss<br>ss<br>,<br>ole,<br>11. | This truss ha<br>load of 12.0 p<br>overhangs no<br>Gable studs :<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Refer to girdd<br>Provide meci<br>bearing plate<br>7 and 89 lb u<br>) This truss is<br>International<br>R802.10.2 ar<br>DAD CASE(S) | s been designed<br>sof or 1.00 times 1<br>spaced at 2-0-0 o<br>s been designed<br>id nonconcurrent<br>ias been designed<br>y 2-00-00 wide w<br>by other members<br>ar(s) for truss to tr<br>hanical connectio<br>capable of withsi<br>plift at joint 2.<br>designed in accor<br>Residential Code<br>and referenced stat<br>Standard | for great<br>flat roof ld<br>h other liv<br>c.<br>for a 10.0<br>with any<br>d for a liv<br>as where<br>"uss conr<br>n (by oth<br>tanding 7<br>rdance w<br>sections<br>ndard AN | er of min roof<br>pad of 20.0 p<br>ve loads.<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss i<br>7 lb uplift at j<br>ith the 2018<br>R 502.11.1 a<br>ISI/TPI 1. | f live<br>sef on<br>ads.<br>Opsf<br>com<br>to<br>joint<br>and |                            |                               | and the second se | Viegin: 13 ib                   | ROL<br>L<br>25                     |
| <ul> <li>Plate DOL<br/>DOL=1.15<br/>Cs=1.00; (</li> <li>Unbalance<br/>design.</li> </ul>                                                                                                                                                                                                                                           | =1.15); Pf=20.0 psf<br>); Is=1.0; Rough Cat<br>Ct=1.10<br>ed snow loads have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Lum DOL=1.15 Plate<br>B; Fully Exp.; Ce=0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ;<br>is                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                               |                            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COTT M.                         | SEVIEN                             |



May 26,2021

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | H02   | Monopitch  | 5   | 1   | Job Reference (optional)        | 146292696 |

4-7-12 4-7-12

-0-10-8 0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:31 ID:AvQGtxRLNtfAGe?4CBI8GTzd762-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





Scale = 1:27.7

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>3CLL<br>3CDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                           | /TPI2014                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                           | 0.40<br>0.36<br>0.00                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                    | in<br>0.07<br>0.06<br>-0.01      | (loc)<br>6-9<br>6-9<br>2 | l/defl<br>>747<br>>911<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 18 lb | <b>GRIP</b><br>244/190<br>FT = 20% |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|--------|
| LUMBER<br>TOP CHORD<br>3OT CHORD<br>3OT CHORD<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>TOP CHORD<br>BOT CHORD<br>TOP CHORD<br>BOT CHORD<br>TOTES<br>1) Wind: ASC<br>Vasd=103r<br>Cat. II; Exp<br>zone and C<br>exposed ; p<br>and forces<br>DOL=1.60<br>2) TCLL: ASC<br>Plate DOL=<br>DOL=1.15)<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.00;<br>Cas=1.0 | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>4-7-12 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-8, 6<br>Max Horiz 2=71 (LC<br>Max Uplift 2=-89 (LC<br>Max Grav 2=323 (LC<br>(Ib) - Maximum Com<br>Tension<br>1-2=0/25, 2-3=-68/90<br>2-6=-100/77, 5-6=0/0<br>2: 6 -100/77, 5-6=0/0<br>2: 7-16; Vult=130mph<br>mph; TCDL=6.0psf; BC<br>0- B; Enclosed; MWFRS<br>C-C Exterior(2E) zone;<br>porch left and right ext<br>& MWFRS for reaction<br>plate grip DOL=1.60<br>DE 7-16; Pr=20.0 psf (LC<br>); Is=1.0; Rough Cat B<br>Ct=1.10<br>d snow loads have be<br>has been designed for<br>0 psf or 1.00 times flat<br>non-concurrent with 0<br>has been designed for<br>load nonconcurrent with | athing directly applied<br>copt end verticals.<br>applied or 10-0-0 oc<br>S= Mechanical<br>10)<br>10), 6=-77 (LC 10)<br>21), 6=261 (LC 21)<br>pression/Maximum<br>0, 3-4=-8/0, 3-6=-193<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rig<br>bosed;C-C for membrane<br>ns shown; Lumber<br>roof LL: Lum DOL=1.<br>um DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9;<br>en considered for this<br>roof lad of 20.0 psf<br>ther live loads.<br>a 10.0 psf bottom<br>th any other live loads. | 6)<br>7) 8)<br>9)<br>LO<br>/167<br>/167<br>15<br>s<br>ve on<br>s. | * This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Refer to girde<br>Provide mecl<br>bearing plate<br>6 and 89 lb u<br>This truss is of<br>International<br>R802.10.2 ar<br>AD CASE(S) | as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members.<br>er(s) for truss to tru-<br>nanical connection<br>capable of withsta<br>plift at joint 2.<br>designed in accord<br>Residential Code :<br>nd referenced stan<br>Standard | for a liv<br>s where<br>Il fit betw<br>uss conr<br>(by oth<br>anding 7<br>dance wi<br>sections<br>dard AN | e load of 20.<br>a rectangle<br>veen the bott<br>ections.<br>ers) of truss i<br>7 lb uplift at j<br>th the 2018<br>R502.11.1 a<br>SI/TPI 1. | Opsf<br>om<br>to<br>joint<br>and |                          |                               |                          | SEA<br>0449                     | ROLINE<br>25<br>EFNIE              | Ammin. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                              |                                                                                                           |                                                                                                                                             |                                  |                          |                               |                          | "minin                          | inni.                              |        |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 26,2021

| Job        | Truss | Truss Type   | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|--------------|-----|-----|---------------------------------|-----------|
| 21040028-B | H03   | Roof Special | 4   | 1   | Job Reference (optional)        | 146292697 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:31 ID:mgNG4\_Rm33\_X6FGr?QmMbmzd74m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





Scale = 1:29.1

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL                                                                    | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                      | 0.66<br>0.58<br>0.00                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                              | in<br>0.17<br>0.14<br>-0.02 | (loc)<br>4-7<br>4-7<br>2 | l/defl<br>>385<br>>473<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L/d<br>240<br>180<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |       |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------------|-------|
| BCDL                                                                                                                   | 10.0                                                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | Weight: 22 lb  | FT = 20%               |       |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                             | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>5-7-4 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 2=0-3-8,<br>Max Horiz 2=81 (LC<br>Max Holift, 2=-102.0 | eathing directly applie<br>cept end verticals.<br>y applied or 10-0-0 oc<br>4=0-3-8<br>10)                                                                      | <ul> <li>6) * This truss<br/>on the botto<br/>3-06-00 tall<br/>chord and a</li> <li>7) Provide med<br/>bearing plat<br/>4 and 103 lb</li> <li>8) This truss is<br/>Internationa<br/>R802.10.2 a</li> </ul> | has been designed<br>m chord in all areas<br>by 2-00-00 wide wi<br>ny other members.<br>chanical connection<br>e capable of withsta<br>uplift at joint 2.<br>designed in accord<br>I Residential Code<br>nd referenced stan<br>Standard | I for a liv<br>s where<br>II fit betw<br>h (by oth<br>anding 9<br>dance w<br>sections<br>idard AN | e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>3 lb uplift at j<br>ith the 2018<br>i R502.11.1 a<br>ISI/TPI 1. | Dpsf<br>om<br>oint<br>und   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                |                        |       |
|                                                                                                                        | Max Uplift 2=-103 (L<br>Max Grav 2=382 (L)                                                                                                                                                      | .C 10), 4=-93 (LC 10)<br>C 21)  4=291 (LC 21)                                                                                                                   | )                                                                                                                                                                                                          |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                |                        |       |
| FORCES                                                                                                                 | (lb) - Maximum Con<br>Tension                                                                                                                                                                   | npression/Maximum                                                                                                                                               |                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                |                        |       |
| TOP CHORD<br>BOT CHORD                                                                                                 | 1-2=0/25, 2-3=-88/1<br>2-4=-131/106                                                                                                                                                             | 21, 3-4=-212/209                                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                |                        |       |
| NOTES<br>1) Wind: ASC<br>Vasd=1033<br>Cat. II; Exp<br>zone and (<br>exposed;<br>and forces<br>DOL=1.60<br>2) TCLL: ASC | CE 7-16; Vult=130mph<br>mph; TCDL=6.0psf; B<br>b B; Enclosed; MWFR<br>C-C Exterior(2E) zone<br>porch left and right ex<br>& MWFRS for reaction<br>plate grip DOL=1.60<br>CE 7-16; Pr=20.0 psf   | n (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>; cantilever left and ri<br>posed;C-C for memb<br>ons shown; Lumber<br>(roof LL: Lum DOL=1 | ght<br>vers<br>.15                                                                                                                                                                                         |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | NITH CA        | ROLIN                  |       |
| Plate DOL<br>DOL=1.15<br>Cs=1.00; 0                                                                                    | =1.15); Pf=20.0 psf (L<br>); Is=1.0; Rough Cat E<br>Ct=1.10                                                                                                                                     | um DOL=1.15 Plate<br>3; Fully Exp.; Ce=0.9                                                                                                                      | ;                                                                                                                                                                                                          |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          | , and the second s |                          | SEA            | L                      |       |
| <ol> <li>Unbalance<br/>design.</li> </ol>                                                                              | ed snow loads have be                                                                                                                                                                           | een considered for th                                                                                                                                           | is                                                                                                                                                                                                         |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          | Ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 0449           | 25                     | Ξ     |
| <ul> <li>4) This truss<br/>load of 12.<br/>overhands</li> </ul>                                                        | has been designed fo<br>0 psf or 1.00 times fla<br>non-concurrent with                                                                                                                          | r greater of min roof l<br>t roof load of 20.0 ps<br>other live loads.                                                                                          | live<br>f on                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                | -R. Q.                 | 11111 |
| 5) This truss<br>chord live                                                                                            | has been designed fo<br>load nonconcurrent w                                                                                                                                                    | r a 10.0 psf bottom<br>ith any other live load                                                                                                                  | ls.                                                                                                                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                       |                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and a second             | OTT M.         | SEVIET                 |       |

May 26,2021

Page: 1



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL3   | Valley     | 1   | 1   | Job Reference (optional)        | 146292698 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:31 ID:NA28YURLFYKTf0vGQfY0zozLbRe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-9-5

1-2-10



Page: 1





3-1-8

1-6-12

1-6-12

| Scale = | 1:25.2 |
|---------|--------|
|---------|--------|

# Plate Offsets (X, Y): [2:0-2-8,Edge]

| Loading                                       | (psf)                                     | Spacing                | 2-0-0    |                                 | CSI                                       | 0.00      | DEFL                          | in<br>n/c | (loc) | l/defl | L/d        | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>GRIP</b> |
|-----------------------------------------------|-------------------------------------------|------------------------|----------|---------------------------------|-------------------------------------------|-----------|-------------------------------|-----------|-------|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TCLL (FOOT)                                   | 20.0                                      | Plate Grip DOL         | 1.15     |                                 |                                           | 0.08      | Vert(LL)                      | n/a       | -     | n/a    | 999        | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 244/190     |
|                                               | 20.0                                      | Ren Stress Incr        | VES      |                                 | WB                                        | 0.07      | Horiz(TL)                     | 0.00      | - 3   | n/a    | 999<br>n/a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| BCU                                           | 0.0*                                      | Code                   | IRC2018  | 7PI2014                         | Matrix-MP                                 | 0.00      | 110112(11)                    | 0.00      | 5     | Π/a    | Π/α        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| BCDL                                          | 10.0                                      | oode                   | 11(02010 | /1112014                        |                                           |           |                               |           |       |        |            | Weight: 9 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT = 20%    |
| LUMBER                                        |                                           |                        | 7)       | Gable studs                     | spaced at 4-0-0 or                        | с.        |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| TOP CHORD                                     | 2x4 SP No.2                               |                        | 8)       | This truss ha                   | s been designed f                         | or a 10.  | ) psf bottom                  |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| BOT CHORD                                     | 2x4 SP No.2                               |                        |          | chord live loa                  | ad nonconcurrent v                        | with any  | other live loa                | ds.       |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| BRACING                                       |                                           |                        | 9)       | * This truss h                  | as been designed                          | for a liv | e load of 20.0                | )psf      |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| TOP CHORD                                     | Structural wood shea<br>3-1-8 oc purlins. | athing directly applie | ed or    | on the bottor<br>3-06-00 tall b | n chord in all area<br>by 2-00-00 wide wi | s where   | a rectangle<br>veen the botto | om        |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| BOT CHORD                                     | Rigid ceiling directly<br>bracing.        | applied or 10-0-0 or   | , 10)    | chord and ar<br>Provide mec     | y other members.<br>hanical connectior    | n (by oth | ers) of truss t               | 0         |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| REACTIONS                                     | (size) 1=3-1-8, 3                         | 3=3-1-8                |          | bearing plate                   | capable of withst                         | anding 1  | 0 lb uplift at jo             | oint      |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|                                               | Max Horiz 1=27 (LC                        | 13)                    | 11)      | Tand TUID L                     | ipliπ at joint 3.                         | donoow    | ith the 2019                  |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|                                               | Max Uplift 1=-10 (LC                      | 14), 3=-10 (LC 15)     | 11)      | International                   | Residential Code                          | sections  | R502 11 1 a                   | nd        |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|                                               | Max Grav 1=144 (LC                        | C 20), 3=144 (LC 21)   | )        | R802.10.2 a                     | nd referenced star                        | Idard AN  | ISI/TPI 1.                    | nu        |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| FORCES                                        | (lb) - Maximum Com<br>Tension             | pression/Maximum       | LO       | AD CASE(S)                      | Standard                                  |           |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| TOP CHORD                                     | 1-2=-182/74, 2-3=-18                      | 82/74                  |          |                                 |                                           |           |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| BOT CHORD                                     | 1-3=-43/132                               |                        |          |                                 |                                           |           |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| NOTES                                         |                                           |                        |          |                                 |                                           |           |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| <ol> <li>Unbalance<br/>this design</li> </ol> | ed roof live loads have n.                | been considered for    |          |                                 |                                           |           |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| 2) Wind: AS                                   | CE 7-16; Vult=130mph                      | (3-second gust)        |          |                                 |                                           |           |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Vasd=103                                      | Bmph; TCDL=6.0psf; B0                     | CDL=6.0psf; h=25ft;    |          |                                 |                                           |           |                               |           |       |        |            | , in the second |             |
| Cat. II; Ex                                   | p B; Enclosed; MWFR                       | S (envelope) exterio   | r        |                                 |                                           |           |                               |           |       |        |            | "TH CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rollin      |
| zone and                                      | C-C Exterior(2E) zone;                    | cantilever left and r  | ight     |                                 |                                           |           |                               |           |       | ٦      | R          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the state   |
| exposed;                                      | and forces & MW/ERS                       | for reactions shown    |          |                                 |                                           |           |                               |           |       |        | 312        | 6550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QN: A       |
| Lumber D                                      | OI =1 60 plate grip DO                    | I = 1.60               |          |                                 |                                           |           |                               |           |       | 6      | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Somer/      |
| 3) Truss des                                  | signed for wind loads in                  | the plane of the tru   | ss       |                                 |                                           |           |                               |           |       |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| only. For                                     | studs exposed to wind                     | (normal to the face)   | ,        |                                 |                                           |           |                               |           |       | =      |            | SEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L 1 1       |
| see Stand                                     | ard Industry Gable End                    | d Details as applicat  | ole,     |                                 |                                           |           |                               |           |       | =      | :          | 0440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 : 2      |
| or consult                                    | qualified building desig                  | gner as per ANSI/TF    | Y 1.     |                                 |                                           |           |                               |           |       | =      |            | 0449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 3        |
| 4) TCLL: AS                                   | CE 7-16; Pr=20.0 psf (                    | roof LL: Lum DOL=1     | .15      |                                 |                                           |           |                               |           |       |        |            | <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 E         |
| Plate DOL                                     | _=1.15); Pf=20.0 psf (L                   | um DOL=1.15 Plate      |          |                                 |                                           |           |                               |           |       |        |            | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0105        |

- 3
- 4 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) Gable requires continuous bottom chord bearing.





| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL3A  | Valley     | 1   | 1   | Job Reference (optional)        | 146292699 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:32 ID:aCZ\_x9HZgZu9bVwOOF2riWzd76G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1







## Scale = 1:20.2

| Loading         (psf)           TCLL (roof)         20.0           Snow (Pf)         20.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                         | 3/TPI2014                                                                                                                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                | 0.06<br>0.08<br>0.00                                                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                           | in<br>n/a<br>n/a<br>0.00        | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 7 lb | <b>GRIP</b><br>244/190<br>FT = 20% |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-----------------------------|--------------------------|--------------------------------|------------------------------------|----------|
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>WEBS 2x4 SP No.3<br>BRACING<br>TOP CHORD Structural wood she<br>2-7-12 oc purlins, e<br>BOT CHORD Rigid ceiling directly<br>bracing.<br>REACTIONS (size) 1=2-7-0, 3<br>Max Horiz 1=25 (LC<br>Max Uplift 1=-12 (LC<br>Max Grav 1=122 (LC<br>FORCES (lb) - Maximum Com<br>Tension<br>TOP CHORD 1-2=-179/76, 2-3=-6<br>BOT CHORD 1-3=-111/162<br>NOTES<br>1) Wind: ASCE 7-16; Vult=130mph<br>Vasd=103mph; TCDL=6.0psf;<br>Cat. II; Exp B; Enclosed; MWFR<br>zone and C-C Exterior(2E) zone<br>exposed ;C-C for members and<br>reactions shown; Lumber DOL=:<br>DOL=1.60<br>2) Truss designed for wind loads in<br>only. For studs exposed to wind<br>see Standard Industry Gable En<br>or consult qualified building desi<br>3) TCLL: ASCE 7-16; Pr=20.0 psf (L<br>DOL=1.15); Is=1.0; Rough Cat E<br>Cs=1.00; Ct=1.10<br>4) Unbalanced snow loads have be<br>design.<br>5) Gable requires continuous botto<br>6) Gable studs spaced at 4-0-0 oc. | athing directly applied<br>xcept end verticals.<br>applied or 10-0-0 oc<br>3=2-7-0<br>10)<br>2 10), 3=-19 (LC 10)<br>2 20), 3=-19 (LC 20)<br>apression/Maximum<br>3/44<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>; cantilever left and rig<br>forces & MWFRS for<br>1.60 plate grip<br>n the plane of the trus:<br>(normal to the face),<br>d Details as applicable<br>gner as per ANSI/TPI<br>roof LL: Lum DOL=1.<br>d Details as applicable<br>gner as per ANSI/TPI<br>roof LL: Lum DOL=1.<br>S; Fully Exp.; Ce=0.9;<br>even considered for this<br>m chord bearing. | 7)<br>8)<br>107<br>9)<br>10<br>11<br>12<br>LC<br>LC<br>s<br>s,<br>1.<br>15<br>5 | This truss has<br>chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Bearing at joi<br>using ANSI/T<br>designer shoi<br>) Provide mect<br>bearing plate<br>1 and 19 lb u<br>) This truss is of<br>International<br>R802.10.2 ar<br>) Gap between<br>diagonal or vo<br><b>AD CASE(S)</b> | s been designed fo<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide will<br>y other members.<br>nt(s) 3 considers p<br>PI 1 angle to grain<br>uld verify capacity<br>nanical connection<br>capable of withsta<br>plift at joint 3.<br>designed in accord<br>Residential Code s<br>d referenced stand<br>inside of top chord<br>ertical web shall no<br>Standard | or a 10.0<br>ith any<br>for a liv<br>where<br>fit betw<br>arallel t<br>formula<br>of beari<br>(by oth-<br>nding 1<br>ance wi<br>sections<br>dard AN<br>d bearir<br>ot excee | a) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>o grain value<br>a. Building<br>ng surface.<br>ers) of truss t<br>2 lb uplift at ju<br>th the 2018<br>R502.11.1 a<br>(SI/TPI 1.<br>og and first<br>d 0.500in. | ds.<br>Jpsf<br>om<br>oint<br>nd |                      |                             |                          | SEA<br>0449                    | ROUNT<br>NONSE<br>25<br>SEVIENT    | Summing. |

- desian. 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL3B  | Valley     | 1   | 1   | Job Reference (optional)        | 146292700 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:33 ID:pU?ySK8LwSvSQWMS1AydcQzLbGP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛







2x4 =

3-5-12

1-2-3

Scale = 1:21.1

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                            | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                     | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                             | 0.14<br>0.19<br>0.00                                                                                                                      | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                   | in<br>n/a<br>n/a<br>0.00        | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 10 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|--|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                                                                                                                                                             | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>3-5-12 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>(size) 1=3-5-12,<br>Max Horiz 1=36 (LC<br>Max Uplift 1=-16 (LC                                                                                                                                                                                                                  | athing directly applie<br>xcept end verticals.<br>applied or 10-0-0 oc<br>3=3-5-12<br>10)<br>2 10), 3=-26 (LC 10)                                                                                                                                                                                                                                            | 7) This truss<br>chord live<br>8) * This trus<br>on the bo<br>3-06-00 ta<br>chord and<br>9) Provide n<br>9 Provide n<br>9 and 16<br>10) This truss<br>Internatio<br>R802.10 | has been designed<br>load nonconcurrent<br>is has been designe<br>tom chord in all aree<br>and the second second second<br>the second second second<br>echanical connection<br>ate capable of withs<br>buplift at joint 1.<br>is designed in acco<br>nal Residential Code<br>and referenced sta<br>S) Standard | for a 10.<br>with any<br>d for a liv<br>as where<br>vill fit betv<br>s.<br>on (by oth<br>tanding 2<br>rdance w<br>e sections<br>indard AN | D psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss tr<br>26 lb uplift at jo<br>ith the 2018<br>s R502.11.1 a<br>JSI/TPI 1. | ds.<br>)psf<br>om<br>oint<br>nd |                      |                             |                          |                                 |                                    |  |
| Max Holiz       1=05 (LC 10)       R802.10.2 and referenced standard ANSI/TPI 1.         Max Uplift       1=-16 (LC 10), 3=-26 (LC 10)       LOAD CASE(S)         Max Grav       1=173 (LC 20), 3=173 (LC 20)       LOAD CASE(S)         FORCES       (lb) - Maximum Compression/Maximum Tension       Standard         TOP CHORD       1-2=-323/139, 2-3=-104/80       BOT CHORD         BOT CHORD       1-3=-195/297 |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                             |                                 |                      |                             |                          |                                 |                                    |  |
| NOTES<br>1) Wind: ASt<br>Vasd=102<br>Cat. II; Ex<br>zone and<br>exposed ;<br>reactions<br>DOL=1.6(<br>2) Truss dee:<br>only. For<br>see Stanc<br>or consult<br>3) TCLL: AS<br>Plate DOI<br>DOL=1.15<br>Cs=1.00;<br>4) Unbalanc<br>design.<br>5) Gable req<br>6) Gable stu                                                                                                                                              | CE 7-16; Vult=130mph<br>3mph; TCDL=6.0psf; Br<br>c-C Exterior(2E) zone<br>(C-C for members and i<br>shown; Lumber DOL='<br>signed for wind loads ir<br>studs exposed to wind<br>ard Industry Gable En-<br>t qualified building design<br>(CE 7-16; Pr=20.0 psf (L<br>L=1.15); Pf=20.0 psf (L<br>L=1.15); Pf=20.0 psf (L<br>ct=1.10<br>ed snow loads have be<br>quires continuous bottoo<br>ds spaced at 4-0-0 oc. | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>; cantilever left and ri<br>forces & MWFRS for<br>1.60 plate grip<br>In the plane of the trus<br>(normal to the face),<br>d Details as applicab<br>gner as per ANSI/TP<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>B; Fully Exp.; Ce=0.9;<br>een considered for thi<br>m chord bearing. | r<br>ght<br>ss<br>le,<br>l 1.<br>.15<br>;<br>is                                                                                                                             |                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                             |                                 |                      |                             |                          | SEA<br>0449                     | EER. HALL                          |  |





| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL5   | Valley     | 1   | 1   | Job Reference (optional)        | 146292701 |

2-0-3

0-0-4

2-3-14

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:33 ID:4Yc3WH9HvAltnK3f0d6O?kzLbS0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-2

2-5-0

5-6-4



4x5 = 2 12 10 Г

2-9-2

2-9-2



5-6-4



Scale = 1:26.2

| Loading<br>TCLL (ro<br>Snow (P<br>TCDL<br>BCLL<br>BCLL<br>BCDL              | pof)<br>f)                                                                   |                                                                                                                                                       | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                              | 0.12<br>0.15<br>0.05                                                                     | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                        | in<br>n/a<br>n/a<br>0.00  | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 20 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBE<br>TOP CH<br>BOT CH<br>OTHERS<br>BRACIN<br>TOP CH<br>BOT CH<br>REACTI | R<br>ORD<br>ORD<br>G<br>ORD<br>ORD<br>ORD                                    | 2x4 SP N<br>2x4 SP N<br>2x4 SP N<br>Structural<br>5-6-4 oc p<br>Rigid ceili<br>bracing.<br>(size)                                                     | 0.2<br>0.2<br>0.3<br>wood shea<br>ourlins.<br>ng directly<br>1=5-6-4, 3                                                            | athing directly applie<br>applied or 6-0-0 oc<br>3=5-6-4, 4=5-6-4                                                                                                                                                          | 5)<br>6<br>7]<br>8]<br>ed or 9]        | <ul> <li>Unbalanced<br/>design.</li> <li>Gable require</li> <li>Gable studs :</li> <li>This truss ha<br/>chord live loa</li> <li>* This truss h</li> <li>on the bottom<br/>3-06-00 tall b<br/>chord and an</li> <li>Bravide mod</li> </ul> | snow loads have b<br>es continuous botto<br>spaced at 4-0-0 oc<br>s been designed fr<br>d nonconcurrent v<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members. | oeen cor<br>om chor<br>c.<br>or a 10.<br>with any<br>for a liv<br>s where<br>Il fit betw | nsidered for the<br>d bearing.<br>D psf bottom<br>other live load<br>e load of 20.1<br>a rectangle<br>veen the botto<br>orc) of truce 1 | his<br>ads.<br>Opsf<br>om |                      |                             |                          |                                 |                                    |
|                                                                             |                                                                              | Max Horiz<br>Max Uplift<br>Max Grav                                                                                                                   | 1=50 (LC<br>3=-5 (LC<br>1=95 (LC<br>(LC 20)                                                                                        | 11)<br>15), 4=-43 (LC 14)<br>20), 3=95 (LC 21), 4                                                                                                                                                                          | l=355 1                                | bearing plate<br>and 43 lb upl<br>1) This truss is<br>International                                                                                                                                                                        | capable of withsta<br>ift at joint 4.<br>designed in accord                                                                                                                                     | dance w                                                                                  | ib uplift at jo<br>th the 2018                                                                                                          | io<br>vint 3              |                      |                             |                          |                                 |                                    |
| FORCE                                                                       | 6                                                                            | (lb) - Max<br>Tension                                                                                                                                 | mum Com                                                                                                                            | pression/Maximum                                                                                                                                                                                                           |                                        | R802.10.2 ar                                                                                                                                                                                                                               | nd referenced stan                                                                                                                                                                              | dard AN                                                                                  | ISI/TPI 1.                                                                                                                              |                           |                      |                             |                          |                                 |                                    |
| TOP CH                                                                      | ORD                                                                          | 1-2=-86/1                                                                                                                                             | 34, 2-3=-8                                                                                                                         | 6/134                                                                                                                                                                                                                      | L                                      | OAD CASE(S)                                                                                                                                                                                                                                | Standard                                                                                                                                                                                        |                                                                                          |                                                                                                                                         |                           |                      |                             |                          |                                 |                                    |
| BOT CH                                                                      | ORD                                                                          | 1-4=-101/                                                                                                                                             | 107, 3-4=-                                                                                                                         | 101/107                                                                                                                                                                                                                    |                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                         |                           |                      |                             |                          |                                 |                                    |
| WEBS                                                                        |                                                                              | 2-4=-231/                                                                                                                                             | 126                                                                                                                                |                                                                                                                                                                                                                            |                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                         |                           |                      |                             |                          |                                 |                                    |
| NOTES                                                                       |                                                                              |                                                                                                                                                       |                                                                                                                                    |                                                                                                                                                                                                                            |                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                         |                           |                      |                             |                          |                                 |                                    |
| 1) Unb                                                                      | alance                                                                       | ed roof live l                                                                                                                                        | oads have                                                                                                                          | been considered for                                                                                                                                                                                                        | •                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                         |                           |                      |                             |                          |                                 | 180 mm                             |
| <ol> <li>Wind Vase Cat. zone exponent Lum</li> <li>Tru: only see</li> </ol> | d: AS(<br>d=103<br>II; Ex<br>and<br>bsed;<br>ber D<br>ss des<br>For<br>Stand | DE 7-16; Vu<br>mph; TCDL<br>p B; Enclose<br>C-C Exterio<br>end vertical<br>and forces &<br>OL=1.60 pla<br>signed for w<br>studs expos<br>ard Industry | t=130mph<br>=6.0psf; B0<br>ed; MWFR3<br>(2E) zone;<br>left and rig<br>MWFRS<br>te grip DO<br>nd loads ir<br>ed to wind<br>Gable En | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and r<br>ht exposed;C-C for<br>for reactions shown;<br>L=1.60<br>t he plane of the tru<br>(normal to the face)<br>d Details as applicab | r<br>ight<br>ss<br>,                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                         |                           |                      | - Annun                     | ela<br>Ba                | SEA                             | ROLINE<br>Service<br>L<br>25       |
| 4) TCL<br>Plate<br>DOL<br>Cs=                                               | onsult<br>L: AS<br>e DOL<br>=1.15<br>1.00;                                   | qualified bu<br>CE 7-16; Pr<br>=1.15); Pf=<br>;); Is=1.0; Ro<br>Ct=1.10                                                                               | ilding desig<br>=20.0 psf (l<br>20.0 psf (L<br>ough Cat B                                                                          | gner as per ANSI/TP<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>; Fully Exp.; Ce=0.9                                                                                                                                     | PI 1.<br>.15<br>;                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                          |                                                                                                                                         |                           |                      |                             |                          | OTT M.                          | SEVIER                             |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



М. mm May 26,2021

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL5A  | Valley     | 1   | 1   | Job Reference (optional)        | 146292702 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:33 ID:aCZ\_x9HZgZu9bVwOOF2riWzd76G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





4-7-0

3x5 =

1-6-9

2x4 🛚

2x4 🛛

|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                     |                                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      | 4-7-0                                                                                                                                             | )                                                                                                                                                                     |                                  |                      | -                           |                          |                                 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Scale = 1:20.2                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i                                                                                                                                                                                                                                                                                                                   |                                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                       |                                  |                      |                             |                          |                                 |                                    |
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                      | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                     | 8/TPI2014                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                   | 0.31<br>0.39<br>0.00                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                             | in<br>n/a<br>n/a<br>0.01         | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 14 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>3OT CHORD<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: AS<br>Vasd=10:<br>Cat. II; E:<br>zone and<br>exposed<br>reactions | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.2</li> <li>2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>Structural wood she<br/>4-7-0 oc purlins, ex</li> <li>Rigid ceiling directly<br/>bracing.</li> <li>(size) 1=4-7-0, :</li> <li>Max Horiz 1=49 (LC<br/>Max Uplift 1=-21 (LC<br/>Max Grav 1=239 (L1<br/>(lb) - Maximum Conr<br/>Tension</li> <li>1-2=-509/217, 2-3=-</li> <li>1-3=-298/473</li> <li>CE 7-16; Vult=130mph<br/>3mph; TCDL=6.0psf; B<br/>xp B; Enclosed; MWFR<br/>C-C Exterior(2E) zone<br/>;C-C for members and<br/>shown; Lumber DOL=</li> </ul> | I<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>3=4-7-0<br>10)<br>2 10), 3=-36 (LC 10)<br>2 20), 3=239 (LC 20)<br>apression/Maximum<br>153/118<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>; cantilever left and r<br>forces & MWFRS for<br>1.60 plate grip | 7)<br>8)<br>2d or<br>9)<br>5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | This truss ha<br>chord live loo<br>* This truss I<br>on the bottoo<br>3-06-00 tall I<br>chord and an<br>Provide mec<br>bearing plate<br>3 and 21 lb (<br>0) This truss is<br>International<br>R802.10.2 a<br><b>DAD CASE(S)</b> | I<br>ss been designed<br>ad nonconcurreni<br>nas been designe<br>n chord in all are<br>yy 2-00-00 wide v<br>ny other members<br>hanical connectite<br>e capable of with<br>e capable of with<br>designed in accc<br>Residential Cod<br>nd referenced sta<br>Standard | I for a 10.<br>t with any<br>ed for a liv<br>as where<br>will fit betw<br>s.<br>on (by oth<br>standing 3<br>ordance wi<br>e sections<br>andard AN | ) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>6 lb uplift at j<br>ith the 2018<br>R502.11.1 a<br>ISI/TPI 1. | ds.<br>Dpsf<br>om<br>oint<br>ind |                      |                             |                          |                                 |                                    |
| DOL=1.6<br>2) Truss de<br>only. For<br>see Stan<br>or consul<br>3) TCLL: AS<br>Plate DO<br>DOL=1.1<br>CS=1.00;<br>4) Unbalanc<br>design.<br>5) Gable rec<br>6) Gable stu                                         | 0<br>signed for wind loads in<br>studs exposed to wind<br>dard Industry Gable En<br>t qualified building desi<br>SCE 7-16; Pr=20.0 psf (L<br>L=1.15); Pf=20.0 psf (L<br>5); Is=1.0; Rough Cat E<br>Ct=1.10<br>sed snow loads have be<br>quires continuous botto<br>ids spaced at 4-0-0 oc.                                                                                                                                                                                                                                                                | n the plane of the tru<br>I (normal to the face)<br>d Details as applicat<br>gner as per ANS/ITP<br>roof LL: Lum DOL=1<br>um DOL=1.15 Plate<br>3; Fully Exp.; Ce=0.9<br>een considered for th<br>m chord bearing.                                                                                                   | ss<br>,<br>ble,<br>Pl 1.<br>I.15<br>;<br>iis                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                                       |                                  |                      | R                           |                          | SEA<br>0449                     | L<br>25<br>SEVILUTION              |



| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL5B  | Valley     | 1   | 1   | Job Reference (optional)        | 146292703 |

1-9-15

# Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:34 ID:\_36FdTtwLO0j9\_61Bq1EAZzLbGm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



12 4 □ 1 3 0-0-4 2x4 🛚 3x5 🚅 5-5-0

Page: 1

1-9-15



5-5-0

| Scale = 1:21.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                                              |                                 |                      |                             |                          |                                 |                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|--|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-11-4<br>1.15<br>1.15<br>YES<br>IRC2018/1                                                                                                             | TPI2014                                                                                                                                                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                | 0.48<br>0.55<br>0.00                                                                                                              | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                    | in<br>n/a<br>n/a<br>0.01        | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 17 lb | <b>GRIP</b><br>244/190<br>FT = 20% |  |
| LUMBER<br>TOP CHORD 2x4 SP No<br>BOT CHORD 2x4 SP No<br>BEACING<br>TOP CHORD Structural<br>5-5-0 oc p<br>BOT CHORD Rigid ceilin<br>bracing.<br>REACTIONS (size)<br>Max Horiz<br>Max Uplift<br>Max Uplift<br>(b) - Maxi<br>Tension<br>TOP CHORD 1-2=-629/2<br>BOT CHORD 1-2=-629/2<br>BOT CHORD 1-3=-361/3<br>NOTES<br>1) Wind: ASCE 7-16; Vul<br>Vasd=103mph; TCDL=<br>Cat. II; Exp B; Enclose<br>zone and C-C Exterior<br>exposed (:C- for mem<br>reactions shown; Luml<br>DOL=1.60<br>2) Truss designed for wir<br>only. For studs expose<br>see Standard Industry<br>or consult qualified bui<br>3) TCLL: ASCE 7-16; Pr=<br>Plate DOL=1.15); Is=1.0; Rc<br>Cs=1.00; Ct=1.10<br>4) Unbalanced snow load<br>design.<br>5) Gable requires continu<br>6) Gable studs spaced at | 2.2<br>2.2<br>2.3<br>wood shee<br>urlins, exe<br>ng directly<br>1=5-5-0, 3<br>1=58 (LC<br>1=-23 (LC<br>1=-23 (LC<br>1=-278 (LC<br>mum Com<br>264, 2-3=<br>586<br>t=130mph<br>6-0.0psf; B-<br>6-0.0psf; B | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>i=5-5-0<br>10)<br>10), 3=-41 (LC 10)<br>20), 3=278 (LC 20)<br>pression/Maximum<br>183/141<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>5 (envelope) exterior<br>cantilever left and ri<br>orces & MWFRS for<br>.60 plate grip<br>the plane of the trus<br>(normal to the face),<br>d Details as applicab<br>gner as per ANSI/TP<br>roof LL: Lum DCL=1.<br>Jm DCL=1.15 Plate<br>; Fully Exp.; Ce=0.9;<br>en considered for thi<br>n chord bearing. | 7) -<br>8) -<br>10) -<br>10) -<br>10) -<br>10) -<br>10) -<br>10<br>10) -<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>Provide mecl<br>bearing plate<br>3 and 23 lb u<br>This truss is<br>International<br>R802.10.2 ar | s been designed<br>ad nonconcurrent<br>has been designen<br>n chord in all area<br>y 2-00-00 wide w<br>hy other members<br>hanical connectio<br>e capable of withs<br>plift at joint 1.<br>designed in accoo<br>Residential Code<br>do referenced sta<br>Standard | for a 10.0<br>with any<br>d for a liv<br>as where<br>ill fit betw<br>n (by oth<br>tanding 4<br>rdance w<br>s sections<br>ndard AN | 0 psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss to<br>11 lb uplift at jo<br>ith the 2018<br>s R502.11.1 at<br>ISI/TPI 1. | ds.<br>Dpsf<br>o<br>Doint<br>nd |                      |                             |                          | SEA<br>0449                     | ROJUL<br>25<br>SEVIE               |  |

# 818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL8   | Valley     | 1   | 1   | Job Reference (optional)        | 146292704 |

## Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:34 ID:7uytWnwNNLva?P6?O7HxkjzLbSJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





7-11-1

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018              | 8/TPI2014                                                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                | 0.33<br>0.32<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                          | in<br>n/a<br>n/a<br>0.00                      | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 30 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>7-11-1 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=7-11-1<br>Max Horiz 1=-74 (LC<br>Max Uplift 1=-32 (LC<br>4=-88 (LC<br>Max Grav 1=105 (LL<br>4=613 (L)<br>(lb) - Maximum Con<br>Tension<br>1-2=-107/274, 2-3=:<br>1-4=-188/170, 3-4=:<br>2-4448/220 | eathing directly applie<br>/ applied or 6-0-0 oc<br>, 3=7-11-1, 4=7-11-1<br>C 12)<br>C 21), 3=-32 (LC 20),<br>C 14)<br>C 20), 3=105 (LC 21)<br>C 20)<br>npression/Maximum<br>-107/274<br>-188/170 | 4)<br>5)<br>d or<br>6)<br>7)<br>8)<br>9)<br>9)<br>11 | TCLL: ASCE<br>Plate DOL=1<br>DOL=1.15);<br>Cs=1.00; Ct:<br>Unbalanced<br>design.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loc<br>* This truss ha<br>chord live loc<br>* This truss ha<br>chord and ar<br>) Provide mec<br>bearing plate<br>1, 32 lb uplif<br>) This truss is<br>International<br>R802.10.2 a | 7-16; Pr=20.0 ps<br>1.15); Pf=20.0 ps<br>1.15); Pf=20.0 ps<br>1s=1.0; Rough Cat<br>=1.10<br>snow loads have<br>spaced at 4-0-0 o<br>as been designed<br>ad nonconcurrent<br>as been designed<br>in chord in all area<br>by 2-00-00 wide w<br>hy other members<br>thanical connection<br>e capable of withst<br>t at joint 3 and 88<br>designed in accor<br>Residential Code<br>nd referenced star | f (roof LL<br>(Lum DC<br>B; Fully<br>been cor<br>com chor<br>c.<br>for a 10.<br>with any<br>d for a liv<br>s where<br>a liv<br>the toty<br>of the set<br>of the | L: Lum DOL=<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for the<br>d bearing.<br>0 psf bottom<br>other live loa<br>re load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>32 lb uplift at j<br>32 lb uplift at j<br>450 ft uss t<br>35 R502.11.1 at<br>VSI/TPI 1. | 1.15<br>);<br>ds.<br>)psf<br>om<br>oint<br>nd |                      |                             |                          |                                 |                                    |
| NOTES                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                   |                                                      | JAD CASE(S)                                                                                                                                                                                                                                                                                                                       | Stanuard                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                               |                      |                             |                          |                                 |                                    |

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 4-11-6, Exterior(2E) 4-11-6 to 7-11-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

With Hilling COLONNAL STREET SEAL 044925 unun May 26,2021



| Job        | Truss | Truss Type | Qty Ply 72 Carolina Lakes-Roof-Sterling |   | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----------------------------------------|---|---------------------------------|-----------|
| 21040028-B | VL10  | Valley     | 1                                       | 1 | Job Reference (optional)        | 146292705 |

5-1-15

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:34 ID:fQt4ldi4dpe7rekYLLyj?wzLbSb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-11-12

10-3-14

Page: 1

GRIP

244/190

FT = 20%

2 9 10 4-0-3 12 10 □ 3 4 3x5 🍫 2x4 II 3x5 💊 10-3-14 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) Plate Grip DOL 1.15 TC 0.53 Vert(LL) n/a n/a 999 MT20 BC Lumber DOL 1 15 0.49 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.23 Horiz(TL) 0.01 4 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 39 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this desian. or 6) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 7) 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 58 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 1, 67 lb uplift at joint 3 and 124 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

# NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-4-3, Exterior(2E) 7-4-3 to 10-4-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1. on north and mm May 26,2021

818 Soundside Road Edenton, NC 27932

SEAL

044925

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Scale | = | 1:36 |  |
|-------|---|------|--|

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

| LUMBER    |             |                                   |
|-----------|-------------|-----------------------------------|
| TOP CHORD | 2x4 SP N    | 0.2                               |
| BOT CHORD | 2x4 SP N    | 0.2                               |
| OTHERS    | 2x4 SP N    | 0.3                               |
| BRACING   |             |                                   |
| TOP CHORD | Structural  | wood sheathing directly applied o |
|           | 10-0-0 oc   | purlins.                          |
| BOT CHORD | Rigid ceili | ng directly applied or 6-0-0 oc   |
|           | bracing.    |                                   |
| REACTIONS | (size)      | 1=10-3-14, 3=10-3-14, 4=10-3-14   |
|           | Max Horiz   | 1=-97 (LC 10)                     |
|           | Max Uplift  | 1=-67 (LC 21), 3=-67 (LC 20),     |
|           |             | 4=-124 (LC 14)                    |
|           | Max Grav    | 1=91 (LC 20), 3=91 (LC 21), 4=8   |
|           |             | (LC 20)                           |
| FORCES    | (lb) - Max  | imum Compression/Maximum          |
|           | Tension     |                                   |
| TOP CHORD | 1-2=-131/   | 424, 2-3=-131/424                 |
| BOT CHORD | 1-4=-241/   | 187, 3-4=-241/187                 |
| WEBS      | 2-4=-670/   | 295                               |

(psf)

20.0

20.0

10.0

0.0

10.0

| Job        | Truss | Truss Type | Qty Ply 72 Carolina Lakes-Roof-Sterling |   | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----------------------------------------|---|---------------------------------|-----------|
| 21040028-B | VL13  | Valley     | 1                                       | 1 | Job Reference (optional)        | 146292706 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:34 ID:f9LeApVQdaVY11xHrH8kpLzLbSs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



12-8-11

Scale = 1:40.4

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*                                                                                                                                                                                                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018             | /TPI2014                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                   | 0.32<br>0.12<br>0.09                                                                                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                         | in<br>n/a<br>n/a<br>0.00                                             | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|----------------|------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=12-8-11<br>7=12-8-11<br>Max Horiz 1=120 (LC<br>Max Uplift 1=-30 (LC<br>8=-143 (LC<br>6=435 (LC<br>8=435 (LC | athing directly applied<br>applied or 10-0-0 oc<br>1, 5=12-8-11, 6=12-8-<br>1, 8=12-8-11<br>C 11)<br>C 11)<br>C 10), 6=-140 (LC 15),<br>C 14)<br>C 24), 5=81 (LC 27),<br>C 21), 7=270 (LC 21),<br>C 20) | 3)<br>4)<br>1 or<br>5)<br>111, 6)<br>7)<br>8)<br>9) | Truss desig<br>only. For stu<br>see Standar<br>TCLL: ASCE<br>Plate DOL=<br>DOL=1.15);<br>Cs=1.00; Ct:<br>Unbalanced<br>design.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loc<br>* This truss l<br>on the bottoo<br>3-06-00 tall l | I<br>ned for wind load<br>uds exposed to w<br>d Industry Gable<br>Jalified building d<br>z-16; Pr=20.0 ps<br>Is=1.0; Rough C<br>=1.10<br>snow loads have<br>es continuous bo<br>spaced at 4-0-0<br>as been designed<br>an onconcurren<br>nas been designed<br>n chord in all are<br>by 2-00-00 wide v | Is in the p<br>ind (norm<br>End Deta<br>esigner a:<br>sf (roof LL<br>f (Lum DC<br>at B; Fully<br>been cor<br>to been cor<br>to c.<br>I for a 10.0<br>t with any<br>ad for a liv<br>as where<br>will fit betw | lane of the tru-<br>lal to the face<br>ills as applical<br>is per ANSI/TH<br>:: Lum DOL=:<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>nsidered for th<br>d bearing.<br>0 psf bottom<br>other live loa<br>re load of 20.0<br>a rectangle<br>veen the botto | uss<br>),<br>ble,<br>Pl 1.<br>1.15<br>9;<br>his<br>ds.<br>Dpsf<br>pm |                      |                             |                          | vveignt: 53 ib | FT = 20%               |
| FORCES                                                                                       | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                      | pression/Maximum                                                                                                                                                                                        | 10)                                                 | Provide mec<br>bearing plate                                                                                                                                                                                                                          | hanical connections<br>capable of with                                                                                                                                                                                                                                                                | s.<br>on (by oth<br>standing 3                                                                                                                                                                               | ers) of truss t<br>30 lb uplift at j                                                                                                                                                                                                              | o<br>oint                                                            |                      |                             |                          |                |                        |
| TOP CHORD                                                                                    | 1-2=-129/106, 2-3=-<br>4-5=-102/66                                                                                                                                                                                                                                 | 208/116, 3-4=-208/11                                                                                                                                                                                    | 6,<br>11                                            | 1, 143 lb upl<br>This truss is                                                                                                                                                                                                                        | ift at joint 8 and 1<br>designed in acco                                                                                                                                                                                                                                                              | 40 lb upli<br>ordance w                                                                                                                                                                                      | ft at joint 6.<br>ith the 2018                                                                                                                                                                                                                    |                                                                      |                      |                             |                          |                |                        |
| BOT CHORD                                                                                    | 1-8=-37/94, 7-8=-37,<br>5-6=-37/79                                                                                                                                                                                                                                 | /79, 6-7=-37/79,                                                                                                                                                                                        | ,                                                   | International<br>R802.10.2 a                                                                                                                                                                                                                          | Residential Cod<br>nd referenced sta                                                                                                                                                                                                                                                                  | e sections<br>andard AN                                                                                                                                                                                      | s R502.11.1 a<br>NSI/TPI 1.                                                                                                                                                                                                                       | ind                                                                  |                      |                             |                          |                | 11111                  |
| WEBS                                                                                         | 3-7=-184/0, 2-8=-38                                                                                                                                                                                                                                                | 4/204, 4-6=-384/204                                                                                                                                                                                     | LO                                                  | AD CASE(S)                                                                                                                                                                                                                                            | Standard                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                      |                      |                             | 1 3                      | "TH UA         | HO                     |
| NOTES                                                                                        |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                         |                                                     | (-)                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                      |                      |                             | 5                        | ONFESS         | in In                  |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASI</li> </ol>                             | ed roof live loads have<br>n.<br>CE 7-16: Vult=130mph                                                                                                                                                                                                              | been considered for<br>(3-second gust)                                                                                                                                                                  |                                                     |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                      |                      |                             | Y                        | tothe          | Servie                 |

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-4-10, Exterior(2R) 3-4-10 to 9-4-10, Interior (1) 9-4-10 to 9-9-0, Exterior(2E) 9-9-0 to 12-9-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



Page: 1

E. ENGINEERING BY CAMERING BY

| Job        | Truss | Truss Type | Qty Ply 72 Carolina Lakes-Roof-Sterling |   | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----------------------------------------|---|---------------------------------|-----------|
| 21040028-B | VL15  | Valley     | 1                                       | 1 | Job Reference (optional)        | 146292707 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:35 ID:XkSDE70u\_2SIb6?7Idu0YWzLppT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scol | o — ' | 1.117  |
|------|-------|--------|
| Judi |       | 1.44./ |

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                             | (222                                                                                                                                                                                                        | psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                       | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2 | 018/TPI2014                                                                                                                                                                                                                                                                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.31<br>0.16<br>0.17                                                                                                                                                    | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                       | in<br>n/a<br>n/a<br>0.00                                    | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 66 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                            | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural woo<br>6-0-0 oc purlin<br>Rigid ceiling of<br>bracing.<br>(size) 1=-<br>7=-<br>Max Horiz 1=-<br>Max Uplift 1=-<br>8=-<br>Max Grav 1=-<br>6=4<br>8=- | od shea<br>ns.<br>directly<br>15-1-8,<br>-144 (LC<br>-23 (LC<br>-165 (LC<br>126 (LC<br>467 (LC | athing directly applied<br>applied or 6-0-0 oc<br>5=15-1-8, 6=15-1-8,<br>8=15-1-8<br>C 10)<br>10), 6=-162 (LC 15)<br>C 14)<br>2 24), 5=100 (LC 23),<br>2 20)                                                    | d or                                 | <ol> <li>Truss desig<br/>only. For stu<br/>see Standar<br/>or consult qu</li> <li>TCLL: ASCE<br/>Plate DOL=1</li> <li>TCL: ASCE<br/>Plate DOL=1.15);<br/>Cs=1.00; Cts</li> <li>Unbalanced<br/>design.</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss ha<br/>chord live loa<br/>* This truss for<br/>on the botton<br/>3-06-00 tall back</li> </ol> | ned for wind loads<br>dids exposed to wind<br>d Industry Gable E<br>tailified building des<br>7-16; Pr=20.0 psf<br>(15); Pf=20.0 psf<br>(1 | in the p<br>d (norm<br>nd Deta<br>signer a:<br>(roof LL<br>Lum DC<br>B; Fully<br>eeen cor<br>om chor<br>;<br>or a 10.<br>vith any<br>for a liv<br>s where<br>I fit bett | lane of the tru<br>al to the face)<br>ils as applicat<br>s per ANSI/TF<br>.: Lum DOL=1<br>DL=1.15 Plate<br>Exp.; Ce=0.9<br>asidered for th<br>d bearing.<br>D psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the bottom | ss<br>,<br>ble,<br>11.<br>.15<br>;<br>is<br>ds.<br>psf<br>m |                      |                             |                          | <u>.</u>                        |                                    |
| FORCES                                                                                                                                  | (lb) - Maximuı<br>Tension                                                                                                                                                                                   | m Com                                                                                          | pression/Maximum                                                                                                                                                                                                |                                      | 10) Provide mec<br>bearing plate                                                                                                                                                                                                                                                                                                                                   | hanical connection<br>capable of withsta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (by oth<br>anding 2                                                                                                                                                     | ers) of truss to<br>3 lb uplift at jo                                                                                                                                                                                                           | o<br>pint                                                   |                      |                             |                          |                                 |                                    |
| TOP CHORD                                                                                                                               | 1-2=-154/168<br>4-5=-123/131                                                                                                                                                                                | , 2-3=-1                                                                                       | 160/136, 3-4=-160/11                                                                                                                                                                                            | 15,                                  | 1, 165 lb upl<br>11) This truss is                                                                                                                                                                                                                                                                                                                                 | ft at joint 8 and 16<br>designed in accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 lb upli<br>lance w                                                                                                                                                    | ft at joint 6.                                                                                                                                                                                                                                  |                                                             |                      |                             |                          |                                 |                                    |
| BOT CHORD                                                                                                                               | 1-8=-73/131,<br>5-6=-73/109                                                                                                                                                                                 | 7-8=-73                                                                                        | 3/109, 6-7=-73/109,                                                                                                                                                                                             |                                      | International<br>R802.10.2 a                                                                                                                                                                                                                                                                                                                                       | Residential Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sections                                                                                                                                                                | R502.11.1 a                                                                                                                                                                                                                                     | nd                                                          |                      |                             |                          | , mining                        | 110m                               |
| WEBS                                                                                                                                    | 3-7=-244/0, 2                                                                                                                                                                                               | -8=-378                                                                                        | 3/201, 4-6=-378/200                                                                                                                                                                                             |                                      | LOAD CASE(S)                                                                                                                                                                                                                                                                                                                                                       | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                             |                      |                             | -                        | TH CA                           | Roilin                             |
| NOTES<br>1) Unbalanc                                                                                                                    | ed roof live load                                                                                                                                                                                           | s have                                                                                         | been considered for                                                                                                                                                                                             |                                      |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                             |                      |                             | Į.                       | O HESS                          | Quiter                             |
| this desig<br>2) Wind: AS<br>Vasd=102<br>Cat. II; Ex<br>zone and<br>3-0-5 to 4<br>10-7-1 to<br>cantilever<br>right expo<br>for reaction | n.<br>CE 7-16; Vult=1:<br>Bmph; TCDL=6.C<br>p B; Enclosed; N<br>C-C Exterior(2E<br>-7-1, Exterior(2F<br>12-1-12, Exterio<br>left and right ex<br>sed;C-C for mer<br>ons shown; Lumb                         | 30mph<br>Dpsf; BC<br>WWFRS<br>0 0-0-5<br>() 4-7-1<br>(2E) 12<br>(posed ;<br>mbers a<br>ber DO  | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>to 3-0-5, Interior (1)<br>to 10-7-1, Interior (1<br>2-1-12 to 15-1-12 zo<br>end vertical left and<br>and forces & MWFRS<br>L=1.60 plate grip | )<br>ne;<br>S                        |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                             |                      | A manage                    |                          | SEA<br>0449                     | L<br>25<br>EER HAIN                |

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-7-1, Exterior(2R) 4-7-1 to 10-7-1, Interior (1) 10-7-1 to 12-1-12, Exterior(2E) 12-1-12 to 15-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



unun May 26,2021

| Job        | Truss | Truss Type | Qty | Ply | 72 Carolina Lakes-Roof-Sterling |           |
|------------|-------|------------|-----|-----|---------------------------------|-----------|
| 21040028-B | VL18  | Valley     | 1   | 1   | Job Reference (optional)        | 146292708 |

Run: 8.5 S 0 May 17 2021 Print: 8.500 S May 17 2021 MiTek Industries, Inc. Tue May 25 15:03:35 ID:Vy4FHI7b1wT31XoNMedCvKzLptB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%



- 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 1=17-6-4, 5=17-6-4, 6=17-6-4, 8=17-6-4, 9=17-6-4 Max Horiz 1=167 (LC 11) Max Uplift 1=-21 (LC 10), 6=-191 (LC 15), 9=-194 (LC 14) 1=119 (LC 24), 5=85 (LC 21), Max Grav 6=550 (LC 24), 8=520 (LC 23), 9=554 (LC 23) FORCES (lb) - Maximum Compression/Maximum Tension
- TOP CHORD 1-2=-154/285, 2-3=-89/210, 3-4=-90/190, 4-5=-115/242 BOT CHORD 1-9=-138/141, 8-9=-138/141, 6-8=-138/141,

# 5-6=-138/141 WEBS 3-8=-340/0, 2-9=-405/228, 4-6=-404/227

## NOTES

Scale = 1:51.8

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-9-7, Exterior(2R) 5-9-7 to 11-9-7, Interior (1) 11-9-7 to 14-2-1, Exterior(2E) 14-2-1 to 17-2-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1, 194 lb uplift at joint 9 and 191 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
   LOAD CASE(S) Standard





