

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23480-23480A JMS 1270 Charleston

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I40367503 thru I40367522

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

February 24,2020

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	<u>10-0-0</u> 10-0-0		<u>20-0-0</u> 10-0-0		<u>30-0-0</u> 10-0-0	
Plate Offsets (X,Y)	[2:0-0-0,0-1-0], [8:0-0-0,0-1-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.98 WB 0.36 Matrix-MS	DEFL. in Vert(LL) -0.29 1 Vert(CT) -0.55 1 Horz(CT) 0.09 1	(loc) l/defl L/d 10-12 >999 240 10-12 >653 180 8 n/a n/a	PLATES MT20 MT18HS Weight: 149 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE	No.2 No.2 No.3		BRACING- TOP CHORD	Structural wood sheathing d 2-0-0 oc purlins (4-4-15 max Rigid ceiling directly applied	irectly applied or 3-7-4 or .): 4-6. or 2-2-0 oc bracing.	c purlins, except

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=1260/0-3-8, 8=1260/0-3-8 Max Horz 2=108(LC 11) Max Uplift 2=-167(LC 12), 8=-167(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-2126/521, 3-4=-1844/431, 4-5=-1587/424, 5-6=-1587/424, 6-7=-1844/431, 7-8=-2126/521
- BOT CHORD 2-12=-371/1834, 10-12=-274/1769, 8-10=-375/1834
- WEBS 3-12=-277/202, 4-12=-48/523, 5-12=-357/111, 5-10=-357/111, 6-10=-48/523, 7-10=-277/202

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint 2 and 167 lb uplift at ioint 8.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BCDL	10.0	Code IRC2015/TP	12014	Matrix	<-MS	. ,				Weight: 157 lb	FT = 20%	
TCDL BCLL	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.73 0.38	Vert(CT) Horz(CT)	-0.21 12-13 0.08 7	>999 n/a	180 n/a			
LOADING TCLL	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.64	DEFL. Vert(LL)	in (loc) -0.10 12-13	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190	

BOT CHORD

WEBS

2-0-0 oc purlins (3-10-7 max.): 4-5.

1 Row at midpt

Rigid ceiling directly applied or 10-0-0 oc bracing

4-10

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 2x4 SP No.3

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=1260/0-3-8, 7=1260/0-3-8 Max Horz 2=-127(LC 10) Max Uplift 2=-167(LC 12), 7=-167(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-2122/493, 3-4=-1679/445, 4-5=-1429/442, 5-6=-1679/445, 6-7=-2121/493
- BOT CHORD 2-13=-339/1821, 12-13=-339/1821, 10-12=-171/1429, 9-10=-343/1820, 7-9=-343/1820
- WEBS 3-12=-455/197, 4-12=-25/409, 5-10=-25/409, 6-10=-455/197

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat.
 II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint 2 and 167 lb uplift at joint 7.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-1-0	14-0-0	10-0-0	22-11-0	30-0-0	
	7-1-0	6-11-0	2-0-0	6-11-0	7-1-0	
Plate Offsets ()	K,Y) [2:0-0-0,0-1-0], [9:0-0-0,0-1-0], [13:0-3-12,0-3-0]				
LOADING (psi TCLL 20.1 TCDL 10.4 BCLL 0.1 BCDL 10.4	f) SPACING- 2- 0 Plate Grip DOL 1 0 Lumber DOL 1 0 * Rep Stress Incr Y 0 Code IRC2015/TPI20	0-0 CSI. .15 TC 0.60 .15 BC 0.67 ES WB 0.70 14 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.10 13-14 >999 240 -0.24 13-14 >999 180 0.08 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 163 lb FT = 20%	
LUMBER-			BRACING			

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=1260/0-3-8, 9=1260/0-3-8 Max Horz 2=147(LC 11) Max Uplift 2=-167(LC 12), 9=-167(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- 2-3=-2100/501, 3-5=-1517/436, 5-6=-1272/441, 6-8=-1526/438, 8-9=-2098/501 TOP CHORD
- BOT CHORD 2-14=-335/1794, 13-14=-335/1794, 12-13=-126/1272, 11-12=-339/1793, 9-11=-339/1793
- WEBS 3-14=0/279, 3-13=-613/242, 5-13=-62/387, 6-12=-65/385, 8-12=-606/241, 8-11=0/274

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint 2 and 167 lb uplift at joint 9

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 3-6-5 oc purlins, except

2-0-0 oc purlins (4-11-2 max.): 5-6.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road

Edenton, NC 27932

	9-9-14	10-Q ₁ 11	19-11-5	20 ₁ 2-2	30-0-0	1	
	9-9-14	0-2-13	9-10-10	0-2-13	9-9-14	l	
Plate Offsets (X,Y)	[2:0-0-0,0-1-0], [6:0-2-0,Edge], [10:Edg	e,0-1-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.69 BC 0.99 WB 0.48 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.30 12-22 >999 -0.47 12-22 >765 0.06 10 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF 13-15: WEBS 2x4 SF WEDGE Left: 2x4 SP No.3 , Rig	P No.2 P No.2 *Except* 2x8 SP No.2 P No.3 ght: 2x4 SP No.3		BRACING- TOP CHORI BOT CHORI	D Structural woo D Rigid ceiling di	d sheathing direct rectly applied or 2	lly applied or 3-1-13 2-2-0 oc bracing.	oc purlins.
REACTIONS. (Ib/siz Max H Max U	e) 2=1260/0-3-8, 10=1260/0-3-8 Horz 2=-159(LC 10) Jplift 2=-167(LC 12), 10=-167(LC 12)						
FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-16 WEBS 7-12	. Comp./Max. Ten All forces 250 (lb) o -2041/515, 3-5=-1821/527, 7-9=-1821/5 =-338/1824, 12-16=-175/1353, 10-12=-3 =-106/677, 9-12=-441/247, 5-16=-106/6	r less except when showr 27, 9-10=-2041/515 340/1736 77, 3-16=-441/247, 5-7=-	n. 1244/464				
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; V II; Exp B; Enclosed; exposed;C-C for me 3) This truss has been	e loads have been considered for this do Vult=130mph (3-second gust) Vasd=103 MWFRS (directional) and C-C Exteriori embers and forces & MWFRS for reaction designed for a 10.0 psf bottom chord in	esign. mph; TCDL=6.0psf; BCD 2) zone; cantilever left ar ns shown; Lumber DOL= re load nonconcurrent wit	DL=6.0psf; h=30ft; B nd right exposed ; er =1.60 plate grip DOL th any other live load	=45ft; L=45ft; eave=6f nd vertical left and righ =1.60 ds.	t; Cat. t		

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 425 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint 2 and 167 lb uplift at joint 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

	7-6-8	7-7 ₆ 8	14-11-8	22-5	5-0	1	30-0-0	I
	7-6-8	0-1-0	7-4-0	7-5	-8	1	7-7-0	-
Plate Offsets (X,Y)-	 [2:0-0-13,Edge], [2:0-3-4 	,Edge], [8:Edge	,0-0-12]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.99 BC 0.81 WB 0.86 Matrix-MS	DEFL. ir Vert(LL) -0.25 Vert(CT) -0.56 Horz(CT) 0.25	l (loc) //defl 11-12 >999 11-12 >648 8 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 8-1 WEBS 2x4 WEDGE Left: 2x4 SP No.3,	SP No.2 SP No.1 *Except* 1: 2x4 SP No.2 SP No.3 Right: 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood Rigid ceiling dire 1 Row at midpt	sheathing dire ectly applied or 3-	ectly applied. 7-10-1 oc bracing. 11, 7-11	
REACTIONS. (Ib/ Ma Ma	size) 2=1260/0-3-8, 8=126 x Horz 2=-159(LC 10) x Uplift 2=-167(LC 12), 8=-1	60/0-3-8 67(LC 12)						
FORCES.(lb) - MTOP CHORD2-BOT CHORD2-WEBS3-	ax. Comp./Max. Ten All fo 3=-3598/806, 3-5=-1435/432 12=-624/3234, 11-12=-625/3 11=-2216/561, 5-11=-163/76	rces 250 (lb) or 2, 5-7=-1437/43 3242, 10-11=-3: 66, 7-11=-693/2	less except when shown. 3, 7-8=-2083/504 35/1775, 8-10=-335/1775 62, 7-10=0/307, 3-12=-212	2/1641				
NOTES-	live loads have been consid	ered for this de	sian					

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat.

2) White ASOL 7-10, White (Sompling) (Second gust) Vasue (Osmplin, FODL=0.0ps), BODL=0.0ps), field(1, B=43), E=43), eave=01, e

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 425 psi.

6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint 8.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
connection is for uplift only and does not consider lateral forces.

Contraction of the second WILLING STREET SEAL 044925 S Μ. //////// February 24,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	7-7-8	14-11-8	16-0-0	22-11-0		30-0-0	
	7-7-8	7-4-0	1-0-8	6-11-0		7-1-0	·
Plate Offsets (X,Y)	[2:0-3-4,Edge], [2:0-0-13,Edge], [5:0-11-	0,0-1-12], [6:0-2-12,Edge	ej, [9:0-0-0,0-1-0], [1:	3:0-3-0,0-2-12], [*	14:0-4-0,0-3-10]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.95 BC 0.76 WB 0.98 Matrix-MS	DEFL. Vert(LL) -(Vert(CT) -(Horz(CT) (in (loc) l/d 0.25 13-14 >99 0.56 13-14 >64 0.24 9 r	efl L/d 99 240 45 180 /a n/a	PLATES MT20 MT18HS Weight: 163 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 4-5,6-7 BOT CHORD 2x4 SP 2-14: 2 WEBS 2x4 SP WEDGE Left: 2x4 SP No.3 , Rig REACTIONS. (lb/size Max H	P No.2 *Except* : 2x4 SP No.1 P No.2 *Except* x4 SP No.1 No.3 ht: 2x4 SP No.3 e) 2=1260/0-3-8, 9=1260/0-3-8 orz 2=-147(LC 10) pit 2= 167(LC 12) 0= 167(LC 12)		BRACING- TOP CHORD BOT CHORD	Structural w 2-0-0 oc pu Rigid ceiling 8-1-3 oc bra	rood sheathing dire rlins (4-11-1 max.): g directly applied of acing: 2-14.	ectly applied, except 5-6. r 10-0-0 oc bracing, 1	Except:
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-14= WEBS 3-14= 8-11=	Comp./Max. Ten All forces 250 (lb) or 3597/784, 3-5=-3566/937, 5-6=-1276/43 602/3230, 13-14=-150/1360, 12-13=-12 334/271, 5-14=-571/2369, 5-13=-343/7 =0/278	less except when shown. 9, 6-81511/433, 8-92 24/1274, 11-12338/179: 3, 6-1251/379, 8-126	098/500 2, 9-11=-338/1792 15/243,				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V II; Exp B; Enclosed; exposed;C-C for me 3) Provide adequate dr 4) All plates are MT20 5) The Fabrication Tole 6) This truss has been 7) * This truss has been 7) * This truss has been 7) * All bearings are assis 9) Bearing at joint(s) 2 capacity of bearing s 10) Provide mechanica 11) One H2.5A Simpso connection is for up 12) Graphical purlin rep 	e loads have been considered for this det (ult=130mph (3-second gust) Vasd=1037 MWFRS (directional) and C-C Exterior(2 mbers and forces & MWFRS for reactior ainage to prevent water ponding. plates unless otherwise indicated. erance at joint 5 = 0% designed for a 10.0 psf bottom chord live n designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on ti ottom chord and any other members. umed to be User Defined crushing capace considers parallel to grain value using A surface. al connection (by others) of truss to beari on Strong-Tie connectors recommended bift only and does not consider lateral for presentation does not depict the size or the presentation does not depict the size or the surface.	sign. nph; TCDL=6.0psf; BCDL) zone; cantilever left and is shown; Lumber DOL=1 e load nonconcurrent with ne bottom chord in all are sity of 425 psi. NSI/TPI 1 angle to grain f ng plate capable of withst to connect truss to bearin rces. he orientation of the purli	=6.0psf; h=30ft; B=/ d right exposed ; end .60 plate grip DOL= n any other live loads as where a rectangle ormula. Building de tanding 167 lb uplift ng walls due to UPLI n along the top and/	45ft; L=45ft; eave t vertical left and r 1.60 s. e 3-6-0 tall by 2-0 signer should ver at joint 9. FT at jt(s) 2. This or bottom chord.	=6ft; Cat. right -0 wide ify	R CONTRACT	CARO ESSION SEAL 44925 GINEEP, IE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 24,2020

L	7-7-8	12-0-0	14-11-8	18-0-0		23-11-0	30-0-0	
1	7-7-8	4-4-8	2-11-8	3-0-8	1	5-11-0	6-1-0	
Plate Offsets (X,Y)	[2:0-5-7,Edge], [2:0-3-1,0-11-3], [2	2:0-0-9,0-1-10], [4:	0-2-12,0-1-4], [8	3:0-1-0,0-1-12],	12:0-3-0,0-2-1	2], [14:0-2-12,0-3-8	3]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC BC WB Matri	0.95 0.99 0.97 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.24 13-14 -0.48 13-14 0.25 8	l/defl L/d >999 240 >744 180 n/a n/a	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 4-6: 2x BOT CHORD 2x4 SP 2-14: 2 WEBS 2x4 SP WEDGE Left: 2x4 SP No.3 , Rigi	DSS *Except* 4 SP No.2 No.2 *Except* x4 SP DSS No.3 ht: 2x4 SP No.3			BRACING- TOP CHOR BOT CHOR	D Structu 2-0-0 o D Rigid c	aral wood sheathing to purlins (3-10-4 m eiling directly applie	directly applied, except ax.): 4-6. ed or 7-5-6 oc bracing.	
REACTIONS. (Ib/size Max H Max U	e) 2=1500/0-3-8, 8=1500/0-3-8 prz 2=-127(LC 10) plift 2=-193(LC 12), 8=-193(LC 12)	?)						
FORCES. (lb) - Max. TOP CHORD 2-3=- 7-8=- 2-14= BOT CHORD 2-14= 8-10: WEBS 4-14= 7-11=	Comp./Max. Ten All forces 250 4527/1029, 3-4=-4321/975, 4-5=- 2617/607 839/4080, 13-14=-339/2231, 12- =-444/2257 462/2350, 5-13=-28/336, 5-12=- 423/186	(Ib) or less except 2163/592, 5-6=-18 13=-322/2090, 11 488/104, 5-11=-42	when shown. 95/549, 6-7=-21 -12=-312/2027, 6/72, 6-11=-99/	196/568, 10-11=-444/225 594,	7,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V II; Exp B; Enclosed; exposed;C-C for me 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) All bearings are assu 7) Bearing at joint(s) 2 capacity of bearing s 8) Provide mechanical 9) One H2.5A Simpson connection is for upil 10) Graphical purlin rep	loads have been considered for t ult=130mph (3-second gust) Vaso MWFRS (directional) and C-C Ex mbers and forces & MWFRS for r ainage to prevent water ponding, designed for a 10.0 psf bottom ch n designed for a live load of 20.0p ottom chord and any other memb urned to be User Defined crushing considers parallel to grain value u uarface. connection (by others) of truss to Strong-Tie connectors recommen ift only and does not consider late presentation does not depict the s fard	his design. I=103mph; TCDL= terior(2) zone; can eactions shown; L ord live load nonc sf on the bottom c ers. capacity of 425 p sing ANSI/TPI 1 a bearing plate capa ded to connect tr ral forces. ize or the orientati	6.0psf; BCDL=6 tilever left and ri umber DOL=1.6 oncurrent with a hord in all areas si. ngle to grain for uble of withstand uss to bearing w	5.0psf; h=30ft; E ight exposed ; e i0 plate grip DO ny other live loa where a rectan mula. Building (ding 193 lb uplift valls due to UPL along the top an	=45ft; L=45ft; d nd vertical left =1.60 ds. gle 3-6-0 tall b designer should at joint 8. IFT at jt(s) 2. T d/or bottom ch	eave=6ft; Cat. and right y 2-0-0 wide d verify ⁻ his ord.	LIND RT	SEAL GINEER, HALLING
							11	unnur,

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

February 24,2020

Job	Truss	Truss Type	Qty	Ply	JMS 1270 Charleston	
						140367509
23480-23480A	A7	Hip	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.3	330 s Feb '	3 2020 MiTek Industries, Inc. Mon Feb 24 13:00:30 2020	Page 2

ID:v48ned?VYJXdl012W?HcWnzjGFo-rZFMYImErpOJn5r9Tw1EDaV6uy9m3N?PErKeOtzhwCl

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-6=-140, 6-9=-60, 14-15=-20, 12-14=-20, 12-18=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	7-7-8	10-0-0	14-11-8	20-0-	-0	1	30-	-0-0	
	7-7-8	2-4-8	4-11-8	5-0-6	8	1	10·	-0-0	
Plate Offsets (X,Y)-	- [2:0-0-13,Edge], [2:0-3-4,E	Edge], [8:0-0-0,0-1-4], [1	1:0-3-0,0-2-12], [13:	0-3-0,0-2-11]					
LOADING (psf)	SPACING-	2-0-0 CS	I.	DEFL.	in (loc)	l/defl	L/d 240	PLATES	GRIP
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL Rep Stress Incr Code IRC2015/TP	1.15 BC 1.15 WE YES WE 12014 Ma	1.00 6 0.70 trix-MS	Vert(CT) -(Horz(CT) (0.20 10-19 0.43 10-19 0.21 8	>834 >834 3 n/a	180 n/a	Weight: 155 lb	FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 WEDGE Left: 2x4 SP No.3 ,	I SP No.2 I SP No.2 I SP No.3 Right: 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Struc 2-0-0 Rigid	tural wood s oc purlins (ceiling dired	sheathing directl 3-9-3 max.): 4-6 ctly applied.	y applied or 2-4-0 o	c purlins, except
REACTIONS. (Ib)	/size) 2=1260/0-3-8, 8=1260	0/0-3-8							

Max Horz 2=108(LC 11)

Max Uplift 2=-167(LC 12), 8=-167(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-3506/725, 3-4=-3385/805, 4-5=-2060/501, 5-6=-1575/428, 6-7=-1831/436, 7-8=-2119/524
- BOT CHORD
 2-13=-546/3140, 12-13=-287/2117, 11-12=-278/1853, 10-11=-266/1795, 8-10=-377/1830

 WEBS
 4-13=-402/1685, 5-12=-13/375, 5-11=-368/107, 5-10=-412/95, 6-10=-54/518, 7-10=-287/200

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 167 lb uplift at joint 8.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

With the state of MULLIUM III SEAL 044925 S //////// February 24,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

8) All bearings are assumed to be User Defined crushing capacity of 425 psi.

9) Two H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 6-0-0 oc max. starting at 2-0-12 from the left end to 27-11-4 to connect truss(es) to front face of bottom chord

- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

Continued on page 2 LOAD CASE(S) Standard

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every contractors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

MI. MI.

February 24,2020

S

Job	Truss	Truss Type	Qty	Ply	JMS 1270 Charleston	
					140367	7511
23480-23480A	GDR1	HIP GIRDER	1	2		
				-	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	330 s Feb	13 2020 MiTek Industries, Inc. Mon Feb 24 13:00:33 2020 Page 2	2

ID:v48ned?VYJXdl012W?HcWnzjGFo-F8wVAnp68kmueZak92bxrD7gy9EqGtarwpZI?CzhwCi

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 6-9=-60, 16-19=-20

Concentrated Loads (lb)

Vert: 13=-290(F) 15=-80(F) 14=-290(F) 11=-290(F) 10=-290(F) 24=-292(F) 25=-88(F) 26=-290(F) 27=-290(F) 28=-290(F) 29=-290(F) 30=-290(F) 31=-290(F) 32=-292(F) 32=-292

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TCLL 20.0 TCDL 10.0 BCLL 0.0 * 200	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	TC 0.12 BC 0.18 WB 0.10	Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	18 n/r 19 n/r 18 n/a	120 90 n/a	MT20	244/190
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP OTHERS 2x4 SP	No.2 No.3	Matrix-S	BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire	sheathing dire (6-0-0 max.): ectly applied o	ectly applied or 6-0-0 6-14. r 10-0-0 oc bracing.	oc purlins, except
REACTIONS. All be (lb) - Max Ho Max Up Max Gi	arings 30-0-0. brz 2=90(LC 11) blift All uplift 100 lb or less at joint(s) 2, 29=-135(LC 12), 33=-111(LC 12), 2 rav All reactions 250 lb or less at joint(30=555(LC 21), 31=483(LC 21), 32= 22=473(LC 22), 21=381(LC 1), 20=6	ept 26=-155(LC 12), 28 C 12), 23=-100(LC 9), 21), 28=962(LC 21), 2), 25=753(LC 22), 24={	=-154(LC 12), 20=-110(LC 12) 9=760(LC 22), 587(LC 21), 23=5:	93(LC 22),			
FORCES. (lb) - Max. WEBS 10-26 12-24	Comp./Max. Ten All forces 250 (lb) or =-280/93, 9-28=-279/91, 8-29=-286/99, =-286/99, 13-23=-259/62	less except when shown. 7-30=-259/62, 11-25=-279	/91,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vo II; Exp B; Enclosed; I	loads have been considered for this de: ult=130mph (3-second gust) Vasd=103n MWFRS (directional) and C-C Exterior(2	sign. nph; TCDL=6.0psf; BCDL=) zone; cantilever left and l	6.0psf; h=30ft; B=45ft; right exposed ; end ver	L=45ft; eave=2ft; tical left and right	Cat.		

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) All bearings are assumed to be User Defined crushing capacity of 425 psi.

11) N/A

- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 27-11-4 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	JMS 1270 Charleston	
					1403675	12
23480-23480A	GDR2	GABLE	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.3	330 s Feb	13 2020 MiTek Industries, Inc. Mon Feb 24 13:00:35 2020 Page 2	

ID:v48ned?VYJXdl012W?HcWnzjGFo-BW2FbTqMgL0butj7GTdPweC9dz3Wkrr8N72P35zhwCg

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-6=-60, 6-14=-140, 14-19=-60, 2-18=-20

Concentrated Loads (lb)

Vert: 27=-599(B) 36=-292(B) 37=-290(B) 38=-290(B) 39=-290(B) 40=-290(B) 41=-599(B) 42=-599(B) 43=-290(B) 44=-290(B) 45=-290(B) 46=-290(B) 47=-290(B) 46=-290(B) 46=-2 48=-292(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 3=46/Mechanical, 2=155/0-3-8, 4=19/Mechanical Max Horz 2=57(LC 12) Max Uplift 3=-20(LC 12), 2=-42(LC 12) Max Grav 3=46(LC 17), 2=155(LC 1), 4=35(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat.

II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 425 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towasons beroke osc. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. (lb/size) 2=378/0-3-8, 5=310/Mechanical Max Horz 2=90(LC 12) Max Uplift 2=-62(LC 12), 5=-42(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-375/97

BOT CHORD 2-6=-124/281, 5-6=-121/287 3-5=-332/140

WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y) [2:0-0-4,0-1-4]			
LOADING (psf) SPACING- 2-0 TCLL 20.0 Plate Grip DOL 1.7	0 CSI. 5 TC 0.79	DEFL. in (loc) I/defl L/d Vert(LL) 0.18 4-7 >536 240	PLATES GRIP MT20 244/190
TCDL 10.0 Lumber DOL 1.7 BCLL 0.0 * Rep Stress Incr YE	5 BC 0.71 5 WB 0.08	Vert(CT) -0.38 4-7 >249 180 Horz(CT) 0.04 2 n/a n/a	
BCDL 10.0 Code IRC2015/TPI2014	Matrix-MP		Weight: 34 lb FT = 20%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=378/0-3-8, 4=310/Mechanical Max Horz 2=153(LC 12) Max Uplift 2=-37(LC 12), 4=-68(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			8-0-0
Plate Offsets (X,Y)	[2:0-0-4,0-1-4]		
LOADING (psf)	SPACING- 2-0-0	0 CSI.	DEFL. in (loc) //defl L/d PLATES GRIP Vert/(L) 0.18 4.7 >536 240 MT20 244/(90)
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr YES	5 BC 0.71 S WB 0.08	Vert(CT) -0.38 4-7 >249 180 Horz(CT) 0.04 2 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Weight: 34 lb FT = 20%
			BRACING-

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

REACTIONS. (lb/size) 2=378/0-3-8, 4=310/Mechanical Max Horz 2=153(LC 12) Max Uplift 2=-37(LC 12), 4=-68(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

					5-3-6			0-	0-0	2=0=0		
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	0.03	7-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.05	7-10	>999	180		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matrix	x-MP						Weight: 35 lb	FT = 20%
TCDL BCLL BCDL	10.0 0.0 * 10.0	Lumber DOL Rep Stress Incr Code IRC2015/TF	1.15 YES Pl2014	BC WB Matrix	0.40 0.05 x-MP	Vert(CT) Horz(CT)	-0.05 0.01	7-10 7-10 2	>999 n/a	180 n/a	Weight: 35 lb	FT = 20%

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins: 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=271/0-3-8, 5=108/Mechanical, 7=309/0-3-8 Max Horz 2=123(LC 12) Max Uplift 2=-38(LC 12), 5=-28(LC 12), 7=-39(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

9) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This

connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

			4-0-0 4-0-0			5-1-12 1-1-12			8-0-0 2-10-4		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES TPI2014	CSI. TC BC WB Matri	0.29 0.38 0.05 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.06 0.01	(loc) 7-10 7-10 2	l/defl >999 >970 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 2=260/0-3-8, 5=85/Mechanical, 6=343/0-3-8 Max Horz 2=90(LC 12) Max Uplift 2=-48(LC 12), 5=-25(LC 8), 6=-41(LC 12) Max Grav 2=260(LC 1), 5=100(LC 22), 6=343(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat.

- II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 425 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5.

One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This
connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-8=-20

Concentrated Loads (lb) Vert: 7=-1(B) 13=-1(B) 14=-1(B)

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

M. M.

February 24,2020

S

	2-8-7								
LOADING (psf) SPA TCLL 20.0 Plate TCDL 10.0 Lum BCLL 0.0 * Rep BCDL 10.0 Code	CING- 2-0-0 6 Grip DOL 1.15 0er DOL 1.15 Stress Incr NO a IRC2015/TPI2014 A	CSI. TC 0.15 BC 0.06 WB 0.00 Matrix-MP	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) l/defl 4-7 >999 4-7 >999 3 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%		

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-8-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 3=60/Mechanical, 2=213/0-4-9, 4=23/Mechanical Max Horz 2=55(LC 12) Max Uplift 3=-20(LC 12), 2=-68(LC 12) Max Grav 3=60(LC 1), 2=213(LC 1), 4=45(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 7) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD

BOT CHORD

WEBS

LUMBER-

WEBS

BOT CHORD

REACTIONS.

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

2-3=-803/224

2-5=-344/638

3-5=-719/388

Max Horz 2=153(LC 12)

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=45ft; L=45ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 425 psi.

(lb/size) 2=777/0-3-8, 5=619/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Max Uplift 2=-81(LC 12), 5=-101(LC 12)

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 5=101.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-140, 5-6=-20

Structural wood sheathing directly applied or 5-11-9 oc purlins.

Rigid ceiling directly applied or 9-9-4 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

