
RENAISSANCE RESIDENTIAL DESIGN, INC. RALEIGH, NC 27612 (919) 649-4128 WWW.RRDCAROLINA.COM he art of transforming your vision into rea RENAISSANCE RESIDENTIAL DESIGN, INC.. RESERVES THE RIGHT TO MAKE MODIFICATIONS TO FLOOR PLANS, DIMENSIONS, MATERIALS, AND SPECIFICATIONS WITHOUT NOTICE. THESE DRAWINGS ARE FOR THE PURPOSE OF CONVEYING AN ARCHITECTURAL CONCEPT ONLY. RENAISSANCE RESIDENTIAL DESIGN, INC. HERBAY EXPRESSLY RESERVES, INC. HEREBY EXPRESSLY RESERVES, ITS COMMON LAW COPYRIGHT AND OTHER PROPERTY RIGHTS IN THESE PLANS. THESE PLANS AND DRAWINGS ARE NOT TO BE REPRODUCED, CHANGED, OR TO BE REPRODUCED, CHANGED, OR COPIED IN ANY FORM OR MANNER WITHOUT FIRST OBTAINING THE EXPRESS WRITTEN CONSENT OF RENAISSANCE RESIDENTIAL DESIGNS, INC., NOR ARE THEY TO BE ASSIGNED TO ANY THIRD PARTY WITHOUT FIRST OBTAINING SAID WRITTEN PERMISSION AND CONSENT. Ľ S WE TIVES, FEATURE DESIGNS, MATE D CHANGE WITH VSIONS ARE EST ICTION ACTIVAL MOTIONS, II NS, ELEVAT ARE SUBJE DTAGE AND I TION WEAVER HOMES CAROLINA COLLEC LE DRIVE CAROLINA I HICKORY D DATE: AUGUST 25, 2020 REV.: SCALE: AS NOTED DRAWN BY: WG ENGINEERED BY: **REVIEWED BY:** A - ELEVATIONS A-1

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

<image><section-header>

DATE: AUGUST 25, 2020 REV.:
REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:
FIRST FLOOR ELECTRICAL PLAN

E-1

ELECTRICAL LAYOUT NOTES:

1.) BLOCK AND WIRE FOR ALL CELING FANG PER PLAN.

2.) VANITY LIGHTS TO BE SET @ 30" AFF. (TYP.)

3.) ADDITIONAL EXTERIOR OUTLETS REQUIRED BY CODE TO BE LOCATED BY ELECTRICIAN.

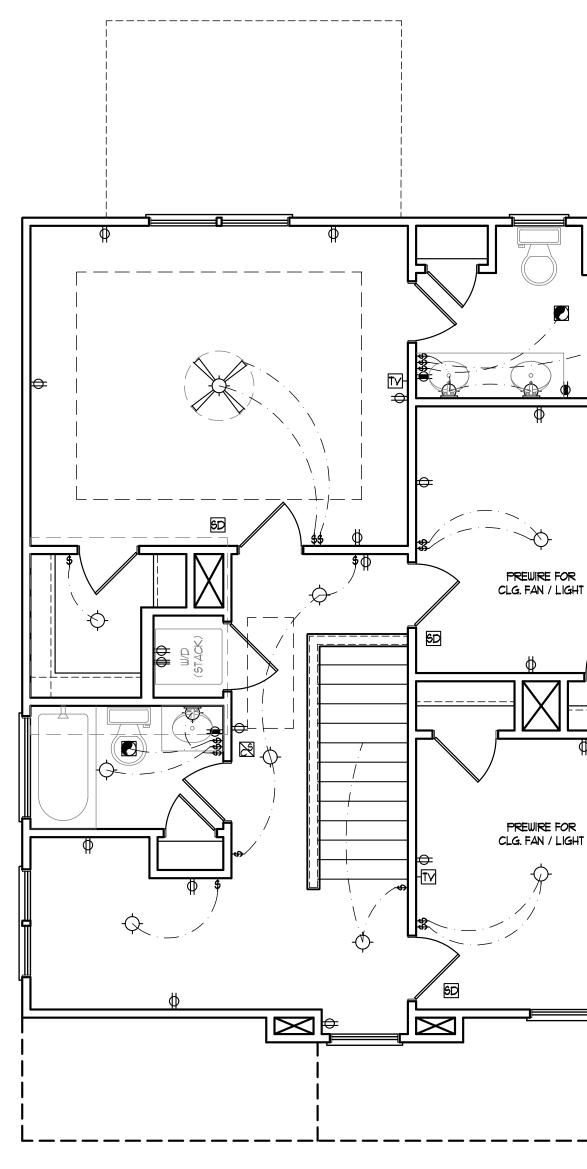
4.) PLACE SWITCHES 8" (MIN.) FROM ROUGH OPENINGS.

ELECTRICAL LEGEND

- BB 🕂 110 V BASEBOARD OUTLET
- -∯H 4-PLEX
- COUNTER OR FLOOR MOUNTED
- COUNTER OR FLOOR MOUNTED 110V GFI

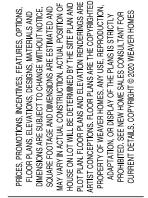
- 120 V DEDICATED CIRCUIT
- H SPECIAL PURPOSE (240 V, ETC.)
- WALL MOUNT LIGHT
- CEILING MOUNT LIGHT
- PENDANT LIGHT
- MINI CAN LIGHT
- FLUORESCENT LIGHT

- \$ SWITCH
- \$_D DIMMER SWITCH


- TELEPHONE AND DATA
- TY- TY CONNECTION
- CD- CONDUIT FOR COMPONENT WIRING
- 6P SPEAKER
- 110 V SMOKE/ CM DETECTOR
- 5D 110 Y SMOKE DETECTOR
- EXHAUST FAN
- LOW VOLTAGE PANEL
- ALARM ALARM PANEL

CEILING FAN W/ LIGHT

NG TAN W/LIGHT


SCALE NOTE: 18x24 PRINTS ARE

TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

DATE: AUGUST 25, 2020
REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:

DRAWN BY: WG	
ENGINEERED BY:	
REVIEWED BY:	
SECOND FLOOR ELCTRICAL PLAN	
E-2	

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. **11x17 PRINTS ARE NOT TO SCALE**

ELECTRICAL LAYOUT NOTES:

1.) BLOCK AND WIRE FOR ALL CELING FANS PER PLAN.

2.) VANITY LIGHTS TO BE SET @ 90/" A.F.F. (TY.P.)

3.) ADDITIONAL EXTERIOR OUTLETS REQUIRED BY CODE TO BE LOCATED BY ELECTRICIAN.

4.) PLACE SWITCHES S" (MIN.) FROM ROUGH OPENINGS.

ELECTRICAL LEGEND

- 😑 110 V GFI OUTLET
- BB 110 V BASEBOARD OUTLET
- + 4-PLEX
- COUNTER OR FLOOR MOUNTED
- COUNTER OR FLOOR MOUNTED 110V GFI

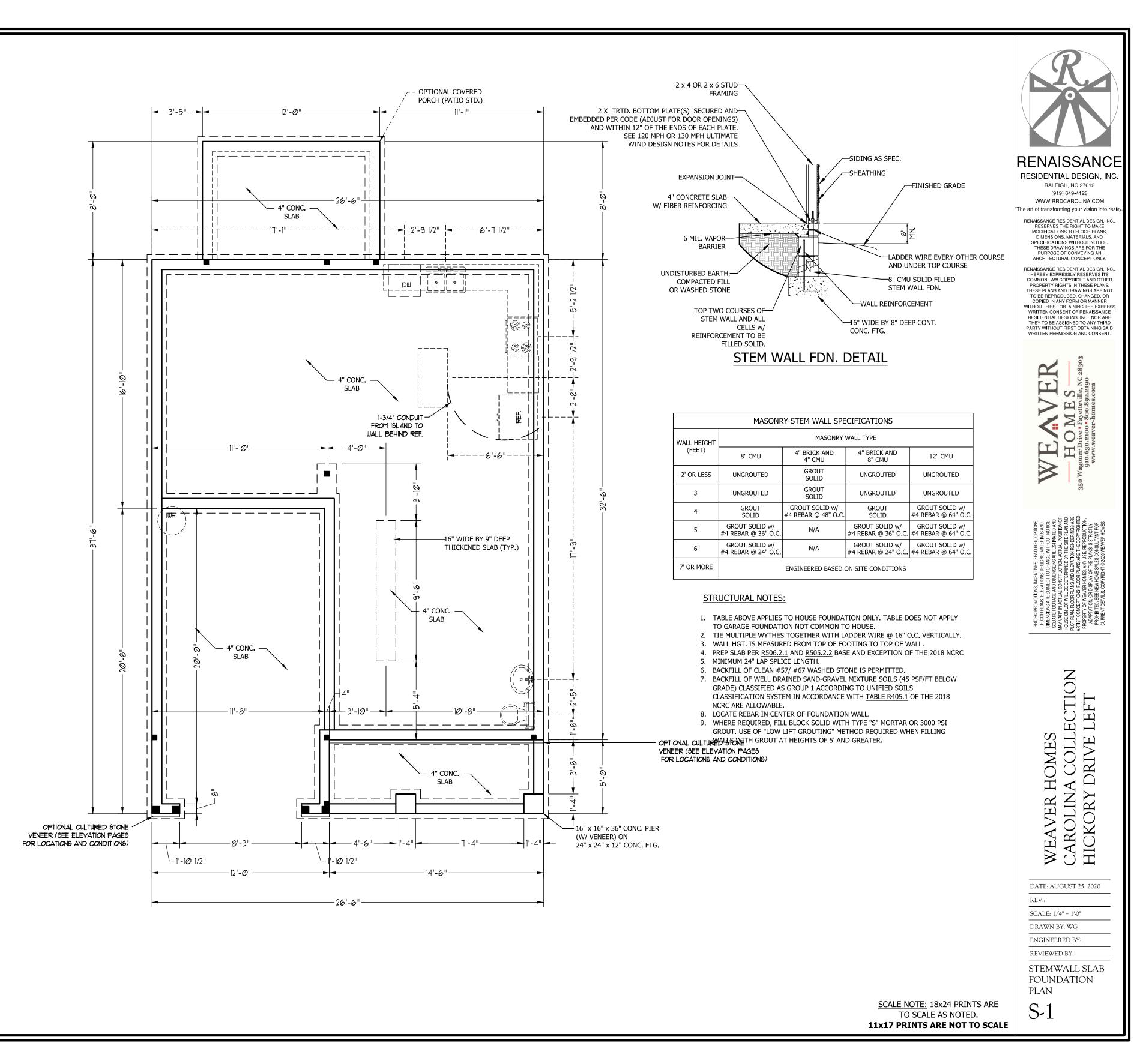
- Ø 110 V DEDICATED CIRCUIT
- 120 V DEDICATED CIRCUIT
- SPECIAL PURPOSE (240 V, ETC.)
- WALL MOUNT LIGHT
- CEILING MOUNT LIGHT
- PENDANT LIGHT
- MINI CAN LIGHT
- UNDERCABINET LIGHT
- SWITCH \$
- \$_D DIMMER SWITCH
- TELEPHONE
- TELEPHONE AND DATA
- TV- TV CONNECTION
- CD- CONDUIT FOR COMPONENT WIRING
- 6P SPEAKER
- K 110 V SMOKE/ CO DETECTOR
- SD 110 V SMOKE DETECTOR
- EXHAUST FAN
- LOW VOLTAGE PANEL
- ALARM ALARM PANEL

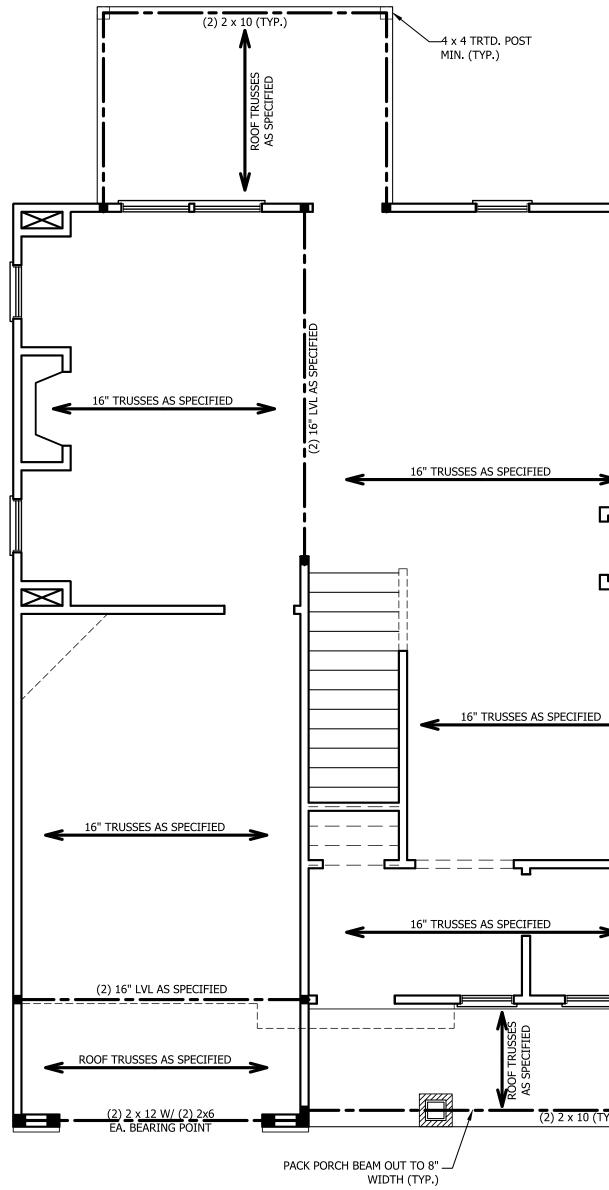
CEILING FAN

- CEILING FAN W/ LIGHT

PREWIRE FOR CLG. FAN / LIGHT

Ø


₽ ₽


ULTIMATE DESIGN WIND SPEED NOTES FOR LESS THAN 30' MEAN ROOF HEIGHT:

- 1. STRUCTURAL DESIGN PER NORTH CAROLINA
- RESIDENTIAL CODE, 2018 EDITION.
 2. FOR 120 MPH WIND ZONES INSTALL 1/2" ANCHOR BOLTS 6'-0" O.C. AND WITHIN 1'-0" FROM END OF EACH CORNER. ANCHOR BOLTS MUST EXTEND A MINIMUM OF 7" INTO CONCRETE OR 15" INTO MASONRY. LOCATE BOLT WITHIN MIDDLE THIRD OF PLATE WIDTH.
- 3. FOR 130 MPH WIND ZONES INSTALL 1/2" ANCHOR BOLTS 4'-0" O.C. AND WITHIN 1'-0" FROM END OF EACH CORNER. ANCHOR BOLTS MUST EXTEND A MINIMUM OF 7" INTO CONCRETE OR 15" INTO MASONRY. LOCATE BOLT WITHIN MIDDLE THIRD OF PLATE WIDTH.
- MEAN ROOF HEIGHT IS LESS THAN 30 FEET.
 EXTERIOR WALLS DESIGNED FOR 120 OR 130 MPH WINDS.
- 6. INSTALL 7/16" OSB SHEATHING ON ALL EXTERIOR
 WALLS OF ALL STORIES IN ACCORDANCE WITH SECTION R602.10.3 OF THE NCRC, 2018 EDITION.
- 7. ENERGY EFFICIENCY COMPLIANCE AND INSULATION VALUES OF THE BUILDING TO BE IN ACCORDANCE WITH CHAPTER 11 OF THE NCRC, 2018 EDITION.

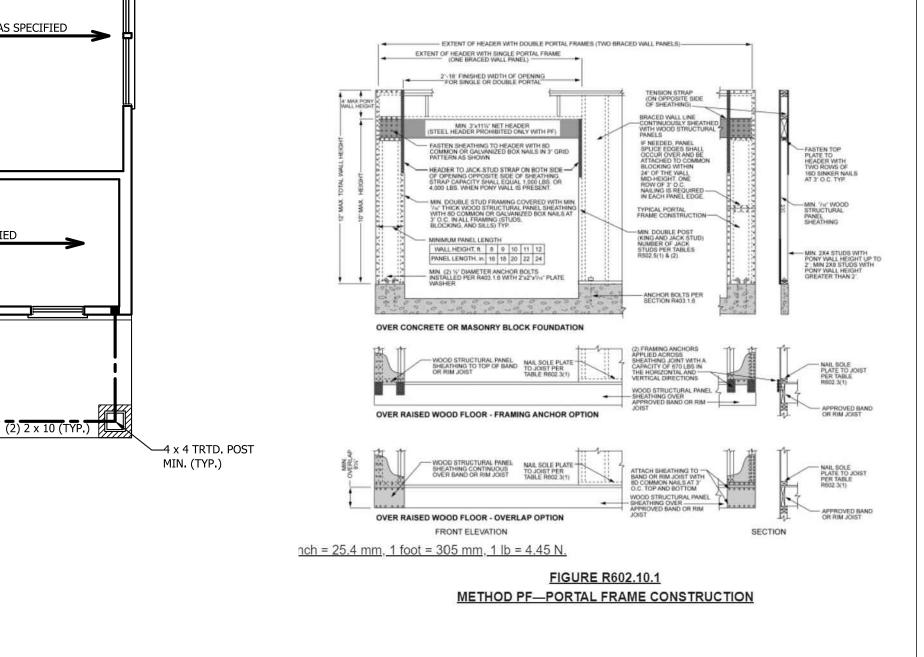
ANCHOR SPACING AND EMBEDMENT						
WIND ZONE	120 MPH	130 MPH				
SPACING	6'-0" O.C.	O.C. 4'-0" O.C.				
EMBEDMENT	7"	7" INTO CONCRETE 15" INTO MASONRY				

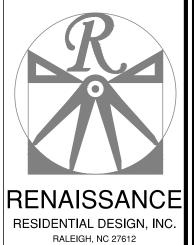
NOTE: HORIZONTAL FOOTING REBAR REQUIRED IN HIGH WIND ZONES ONLY (140-150 MPH)

STRUCTURAL NOTES:

- 1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 4 (UNO). 3. INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
- 4. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 5. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)
- 6. ALL 4 X 4 POSTS SHALL BE ANCHORED TO SLABS W/ SIMPSON ABU44 POST BASES (OR EQUAL) AND 6 X 6 POSTS W/ ABU66 POST BASES (OR EQUAL) (UNO). ALL 4 X 4 AND 6 X 6 POSTS TO BE INSTALLED WITH 700 LB CAPACITY UPLIFT CONNECTORS AT TOP (UNO.)
- 7. FOR FIBERGLASS, ALUMINUM, OR COLUMN ENG. BY OTHERS, SECURE TO SLAB W/ (2) METAL ANGLES USING 2" CONC. SCREWS. FASTEN ANGLES TO COLUMNS W/ 1/4" THROUGH BOLTS W/ NUTS AND WASHERS. LOCATE ANGLES ON OPPOSITE SIDES OF COLUMN. THROUGH BOLTS MUST BE INSTALLED PRIOR TO SETTING COLUMN.

BRACE WALL PANEL NOTES:


EXTERIOR WALLS: ALL EXTERIOR WALLS TO BE SHEALTHED WITH CS-WSP OR CS-SFB IN ACCORDANCE WITH SECTION R602.10.3 UNLESS NOTED OTHERWISE.

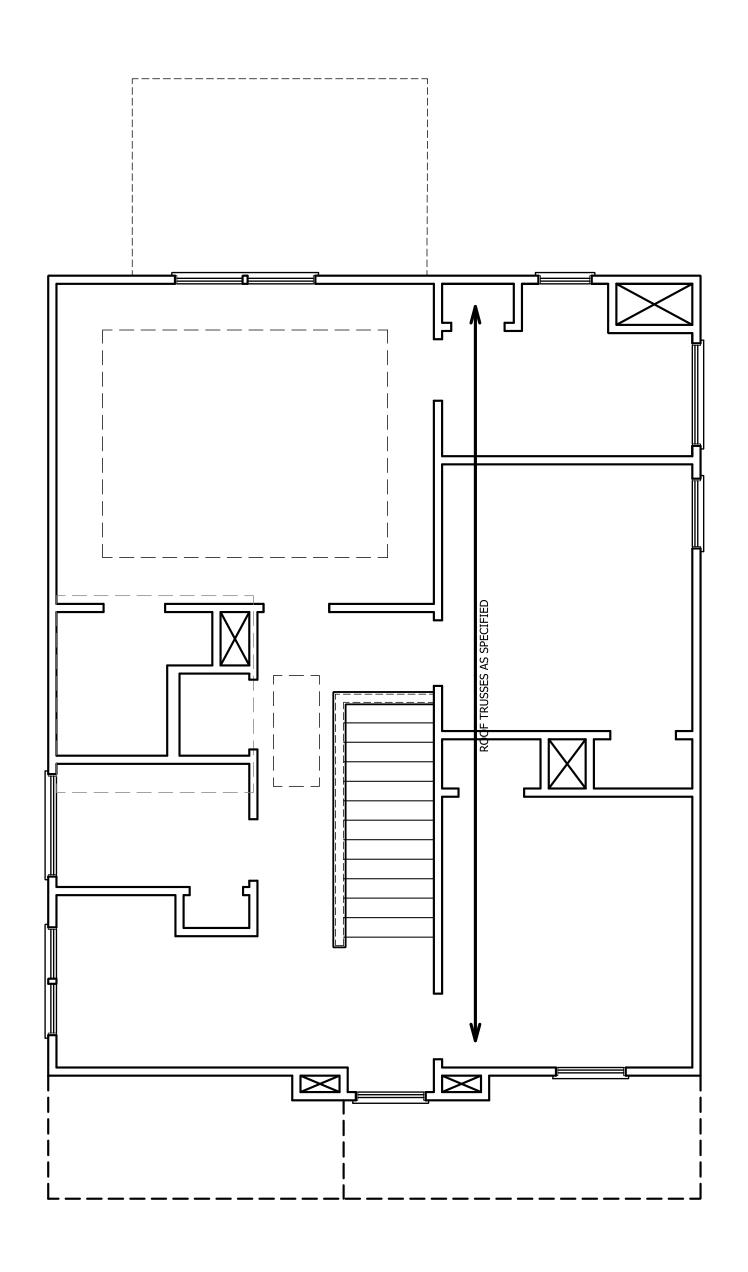

REQUIRED LENGTH OF BRACING: REQUIRED BRACE WALL LENGTH FOR EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE ARE INTERPOLATED PER TABLE R602.10.3. METHODS CS-WSP AND CS-SFB CONTRIBUTE THIER ACTUAL LENGTH. METHOD GB CONTRIBUTES 0.5 ITS ACTUAL LENGTH, METHOD PF CONTRIBUTES 1.5 TIMES ITS ACTUAL LENGTH.


GYPSUM: ALL INTERIOR SIDES OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS TO HAVE 1/2" GYPSUM INSTALLED. WHEN NOT USING METHOD GB GYPSUM TO BE FASTENED PER TABLE R702.3.5. METHOD GB TO BE FASTENED PER TABLE R602.10.1.

HD: 800 LBS HOLD DOWN DEVICE FASTENED TO THE EDGE OF THE BRACE WALL PANEL NEAREST TO THE CORNER

METHODS: PER TABLE R602.10.1

AVER HOMES	OLINA COLLECTION	KORY DRIVE LEFT
WEAVE	CAROL	HICKO


DATE: AUGUST 25, 2020
REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:
SECOND FLOOR

SECOND FI FRAMING PLAN

S-2

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. **11x17 PRINTS ARE NOT TO SCALE**

l r

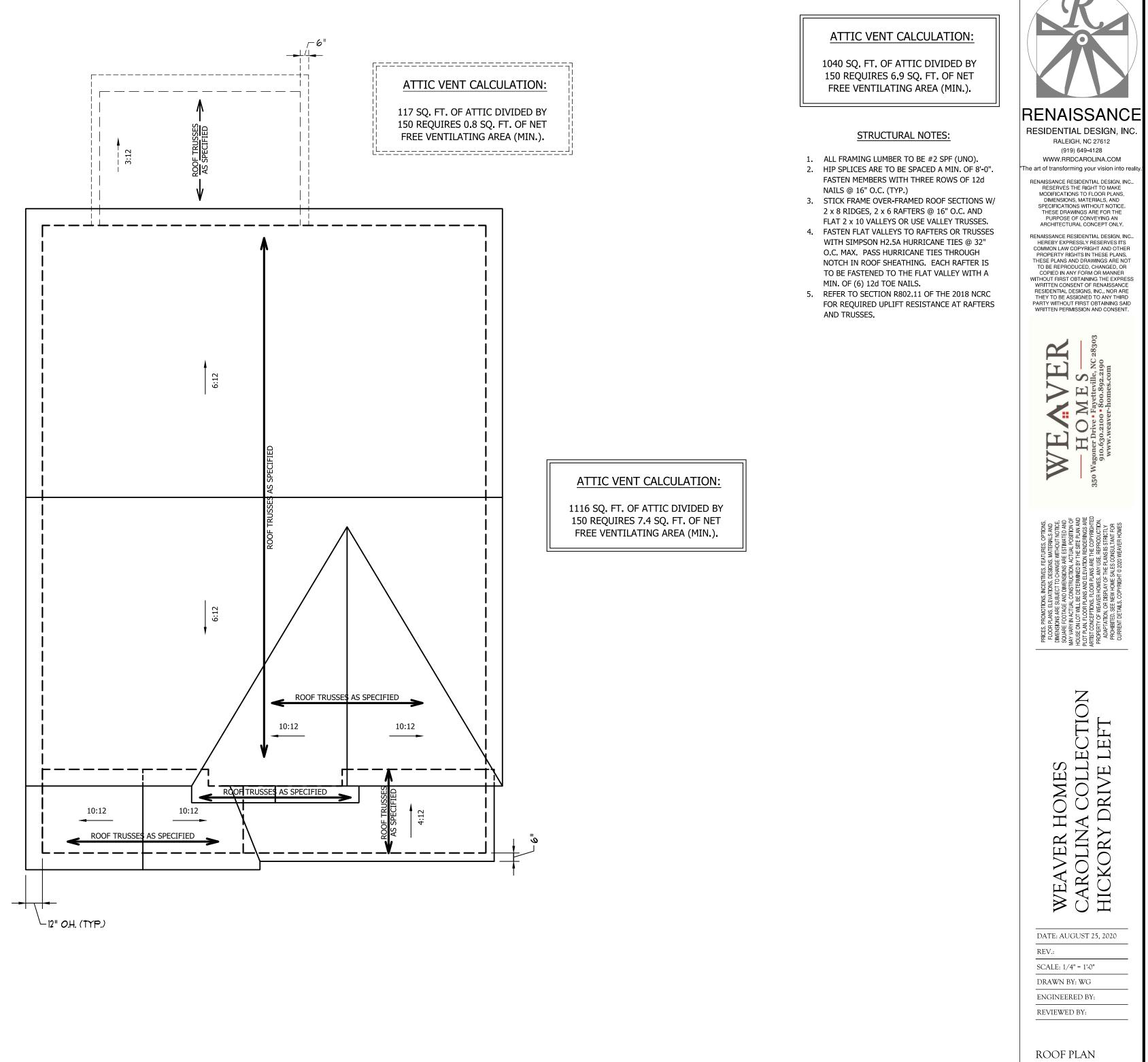
TABLE R602.7.5
MINIMUM NUMBER OF FULL HEIGHT STUDS
T EACH END OF HEADERS IN EXTERIOR WALLS

HEADER SPAN (FEET)								
(. == .)	16	24						
UP TO 3'	1	1						
4'	2	1						
8'	3	2						
12'	5	3						
16'	6	4						

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 6 (UNO).
- 3. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 4. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)

DSP - DOUBLE STUD POCKET TSP - TRIPLE STUD POCKET


DATE: AUGUST 25, 2020

REV.:
SCALE: 1/4" = 1'-0"
DRAWN BY: WG
ENGINEERED BY:
REVIEWED BY:

ATTIC FLOOR FRAMING PLAN

S-3

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

ROOF PLAN

S-4

RALEIGH, NC 27612

(919) 649-4128

WWW.RRDCAROLINA.COM

T

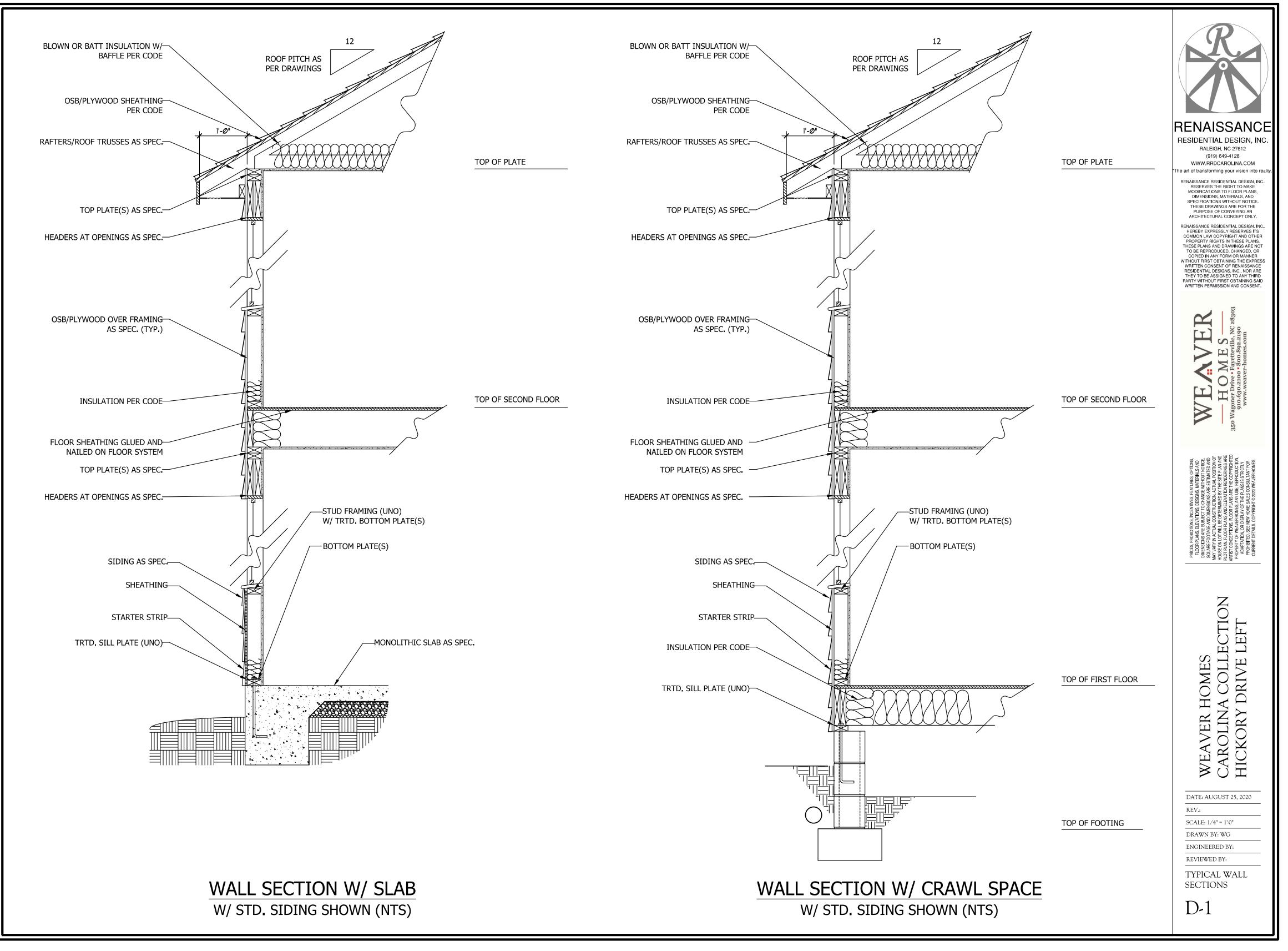
T

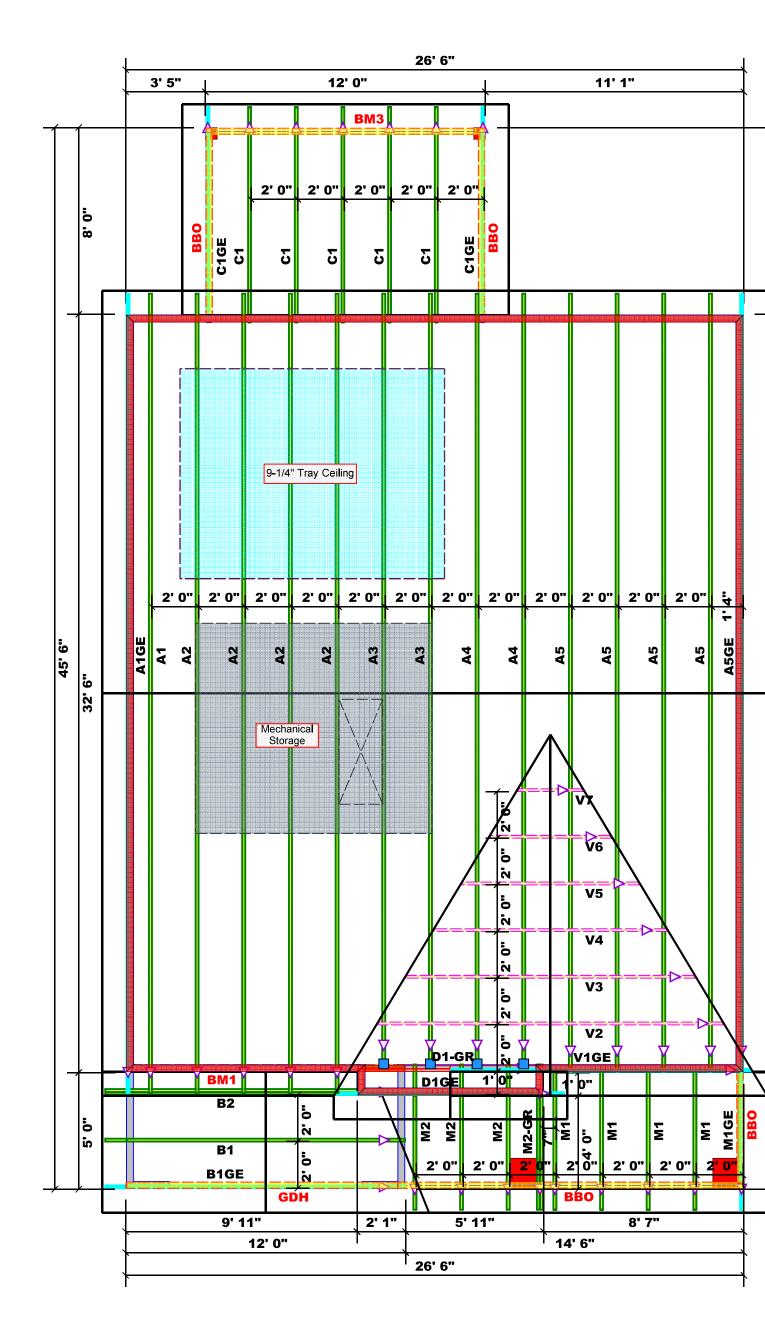
 \geqslant

TION

Ц Ц,

DRIVE

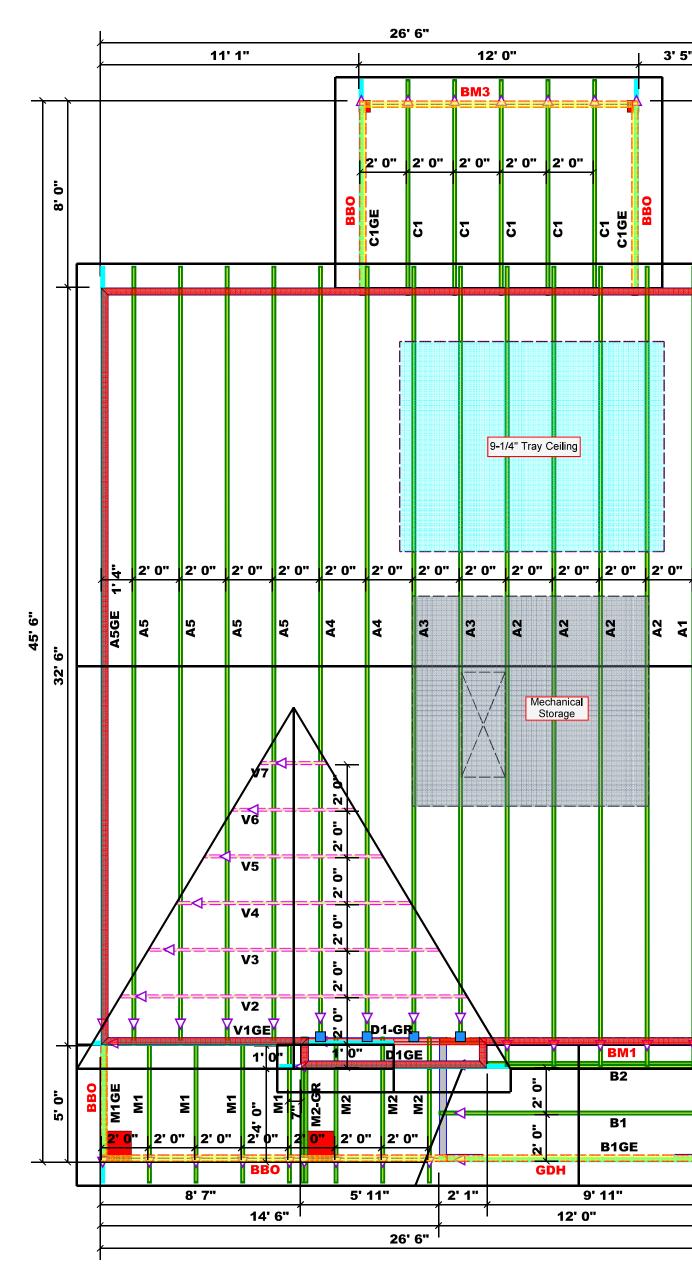

CAROLINA HICKORY


DATE: AUGUST 25, 2020

SCALE: 1/4" = 1'-0" DRAWN BY: WG ENGINEERED BY: **REVIEWED BY:**

REV.:

WEAVER HOMES



	Dimension Notes 1. All exterior wall to mall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise	を 500 5100 5100 5100 6800 10200 11900 13600 15300	3 4 5 6 7 8 9	255% 5100 <u>1275</u> 1530) 1) 2) 3) 4 0 5	<u>1020</u> 1360	
32' 6" 15' 5"	Roof Area = 1468.1 sq.ft. Hatch Legend Ridge Line = 52.07 ft. Padded HVAC Hip Line = 0 ft. 2nd Floor Walls Horiz. OH = 98.57 ft. Tray Ceiling	Sanford / Harnett	4912 Barbecue Church Rd.	Roof	05/12/21	David Landry	Lenny Norris
	Drop Beam Connector Information Nail Information Sym Product Manuf Qty Supported Member Header Truss HUS26 USP 4 NA 16d/3-1/2" 16d/3-1/2"	CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.
· 5·0" ·	ProductsPlotIDLengthProductPliesNet QtyBM112' 0"1-3/4"x 16" LVL Kerto-S22BM215' 0"1-3/4"x 16" LVL Kerto-S22BM312' 0"2x10 SPF No.222GDH12' 0"2x12 SPF No.222Truss Placement PlanScale: $1/4$ "=1'	Weaver Development Co. Inc.	Lot 5 Barbecue Church Rd.	Hickory "A"			J0521-2894
		BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

5"		Baaring reactions deemed to comply requirements. The second second secon				OF & SES Soad Ir teville e: (910) : (9	vid Landry avid Landry FOR JACK STUDS VALUES REGISTRED VALUES REGISTRED VALUES REGISTRED VALUES REGISTRED VALUES REGISTRED VALUES REGISTRED			
A1] ³ A1GE		32 0 45'6"		1700 3400 5100 10200 113600 113600 113600 113600 113600	1 2 3 4 5 6 7 8 9 9 4912 Barbecue Church Rd.	2550 5100 7650 10200 12750	. 05/12/21 . 05/12/21	340 680 1360 1770	DEP 	
			Sym Product Manuf Qty Supported Meader Truss HUS26 USP 4 NA 16d/3-1/2" 16d/3-1/2" HUS26 USP 4 NA 16d/3-1/2" 16d/3-1/2" Member Products Plies Net Qty BM1 12' 0" 1-3/4"x 16" LVL Kerto-S 2 2 BM3 12' 0" 2x10 SPF No.2 2 2 GDH 12' 0" 2x12 SPF No.2 2 2	Weaver Development Co. Inc.	Lot 5 Barbecue Church Rd. ADDRESS	Hickory "A" MODEL	DATE REV	DRAWN BY		
,	ł			BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	TOB #	

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

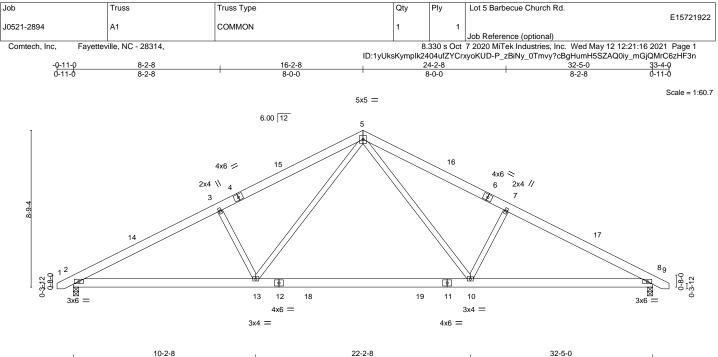
▲ = Indicates Left End of Truss
Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0521-2894 Lot 5 Barbecue Church Rd.

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15721922 thru E15721946


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

May 12,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	10-2-8			12-0-0		10-2-8
LOADING (osf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 2	0.0	Plate Grip DOL 1.15	TC 0.28	Vert(LL) -0.34 10-13	>999 360	MT20 244/190
TCDL 1	0.0	Lumber DOL 1.15	BC 0.64	Vert(CT) -0.47 10-13	>824 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.27	Horz(CT) 0.05 8	n/a n/a	
BCDL 1	0.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 2-13	>999 240	Weight: 208 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

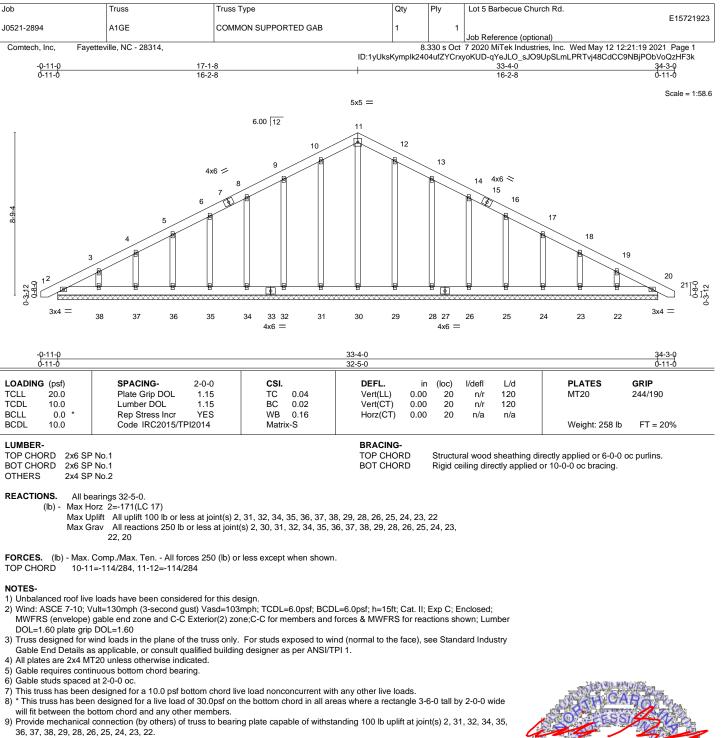
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

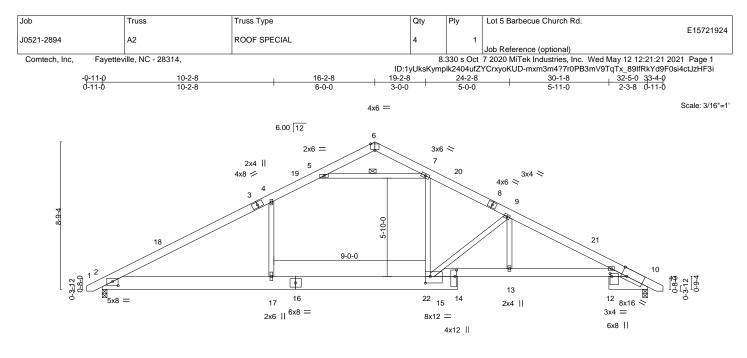
6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 4-11-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

MARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT IN EXPECTED EXECT PAGE MIT-F473 (eV. 319/2/20 BEFORE USE. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

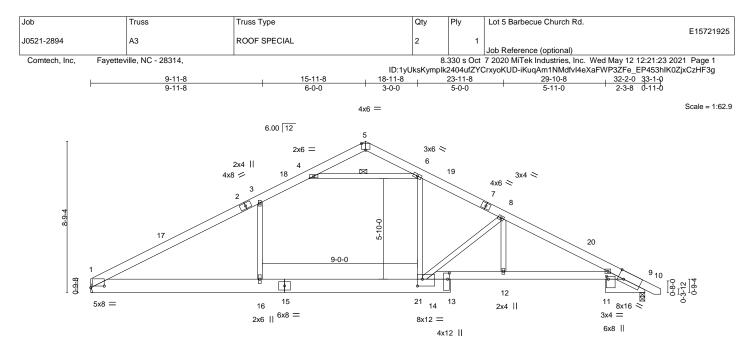
ł	<u>10-2-8</u> 10-2-8	<u> </u>	<u> </u>		30-1-8	32-5-0	4
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4			0.110	200		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.70 Matrix-S	DEFL. in Vert(LL) -0.21 Vert(CT) -0.38 Horz(CT) 0.09 Wind(LL) 0.17	8 17 >999 9 10 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x10 10-15 WEBS 2x4 S REACTIONS. (siz Max Max	P No.1 SP No.1 *Except* :: 2x6 SP 2400F 2.0E IP No.2 ze) 2=0-3-8, 10=0-3-8 Horz 2=-110(LC 10) Uplift 2=-90(LC 12), 10=-90(LC 13) Grav 2=1393(LC 2), 10=1353(LC 2)		BRACING- TOP CHORD BOT CHORD WEBS		d sheathing directly ectly applied or 10 5-7		oc purlins.
TOP CHORD 2-4= BOT CHORD 2-17	x. Comp./Max. Ten All forces 250 (lb) or =-2217/403, 4-5≕1870/483, 7-9=-2258/5 7=-193/1848, 15-17=-195/1860, 13-15=-3 7=-29/402, 7-15=-114/967, 9-15=-1075/2	19, 9-10=-2889/551 371/2525, 10-13=-380/252					
	ve loads have been considered for this de Vult=130mph (3-second gust) Vasd=103		=6.0psf; h=15ft; Cat. II;	Exp C; Enclosed	ļ.		

MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

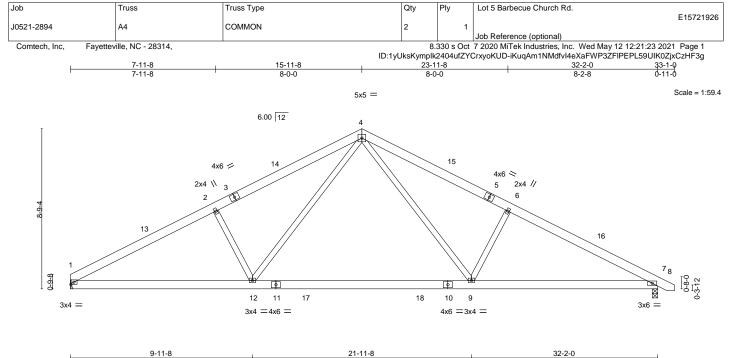

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

L	9-11-8	18-11-8				-8 32-2-0	
	9-11-8	9-0-0	1-11-0		0 5-11-	0 2-3-8	
Plate Offsets (X,Y)	[1:0-9-6,0-1-2], [5:0-3-0,Edge], [9:0-4-0	Edge], [11:0-2-0,0-1-4], [1	3:0-4-4,0-1-4], [14:0-3-	8,0-4-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.76 BC 0.66 WB 0.70 Matrix-S	Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.0	5 16	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%
OT CHORD 2x10 9-14:	P No.1 SP No.1 *Except* 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		iling directly applied	rectly applied or 3-10-0 or 10-0-0 oc bracing. I-6	oc purlins.
Max I Max I	ze) 1=Mechanical, 9=0-3-8 Horz 1=-111(LC 8) Uplift 1=-76(LC 12), 9=-90(LC 13) Grav 1=1345(LC 2), 9=1347(LC 2)						
TOP CHORD 1-3= BOT CHORD 1-16	. Comp./Max. Ten All forces 250 (ib) oi 2189/401, 3-4=-1853/491, 6-8=-2237/5 198/1827, 14-16=-200/1839, 12-14=-5 117/966, 3-16=-53/392, 4-6=-1931/47	17, 8-9=-2874/549 375/2511, 9-12=-384/2511					
 Wind: ASCE 7-10; MWFRS (envelope to 32-10-10 zone;C This truss has beer 	ve loads have been considered for this de Vult=130mph (3-second gust) Vasd=103) and C-C Exterior(2) 0-0-12 to 4-5-9, Int C-C for members and forces & MWFRS for designed for a 1.0.0 psf bottom chord liv en designed for a live load of 30.0psf on	mph; TCDL=6.0psf; BCDI erior(1) 4-5-9 to 15-11-8, f or reactions shown; Lumbe re load nonconcurrent with	Exterior(2) 15-11-8 to 2 or DOL=1.60 plate grip any other live loads.	0-4-5, Inte DOL=1.60	rior(1) 20-4-5	24a01988.##	05

ıg will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		9-11-8		1		12-0-0			1		10-2-8	
Plate Offsets	5 (X, Y)	[1:0-1-14,0-1-8]										
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.34	9-12	>999	360	MT20	244/190
TCDL 1	0.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.47	9-12	>822	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.05	7	n/a	n/a		
BCDL 1	0.0	Code IRC2015/TF	PI2014	Matri	x-S	Wind(LL)	0.05	12	>999	240	Weight: 204 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 7=0-3-8 Max Horz 1=-111(LC 8) Max Uplift 1=-76(LC 12), 7=-89(LC 13) Max Grav 1=1278(LC 1), 7=1331(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2276/496, 2-4=-2096/546, 4-6=-2113/532, 6-7=-2294/484

BOT CHORD 1-12=-319/1973, 9-12=-109/1291, 7-9=-324/1953

WEBS 4-9=-147/922, 6-9=-454/288, 4-12=-144/897, 2-12=-437/286

NOTES-

1) Unbalanced roof live loads have been considered for this design.

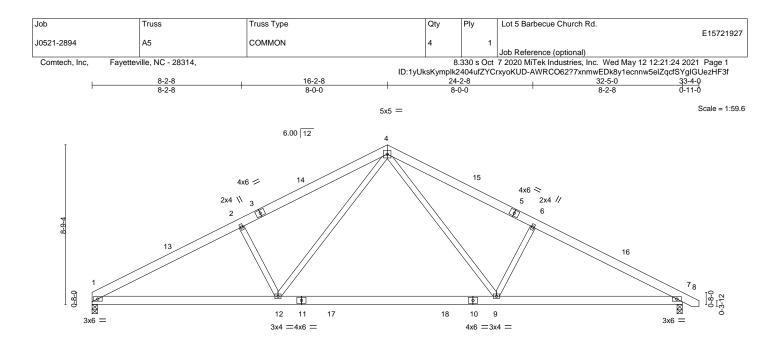
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 15-11-8, Exterior(2) 15-11-8 to 20-4-5, Interior(1) 20-4-5 to 32-10-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



Structural wood sheathing directly applied or 4-11-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the appliciability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Componen Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	10-2-8 10-2-8	22-2-8 12-0-0				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. TC 0.29 Vert(LL) BC 0.65 Vert(CT) WB 0.27 Horz(CT) Matrix-S Wind(LL)	in (loc) -0.34 9-12 -0.47 9-12 0.05 7 0.05 12	l/defl L/d >999 360 >822 240 n/a n/a >999 240	PLATES MT20 Weight: 206 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

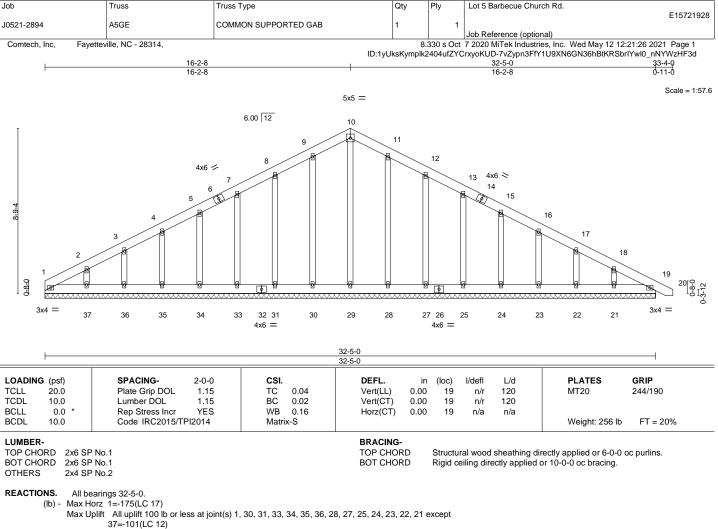
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.


Structural wood sheathing directly applied or 4-10-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 12,2021

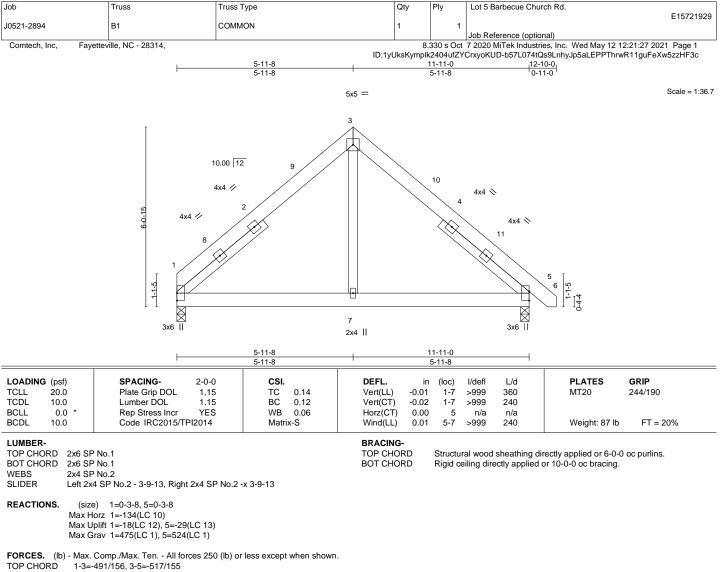
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav All reactions 250 lb or less at joint(s) 1, 29, 30, 31, 33, 34, 35, 36, 37, 28, 27, 25, 24, 23, 22, 21, 19

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 9-10=-114/284, 10-11=-114/284

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.

May 12,2021

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid of use only with MTek® connectors. This skew invCLOBED with REFERENCE FAGE MIF 4/3 FeV, 519/2020 BEFORE 052. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Braching indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 1-3=-491/156, 3-5=-51 BOT CHORD 1-7=0/307, 5-7=0/307

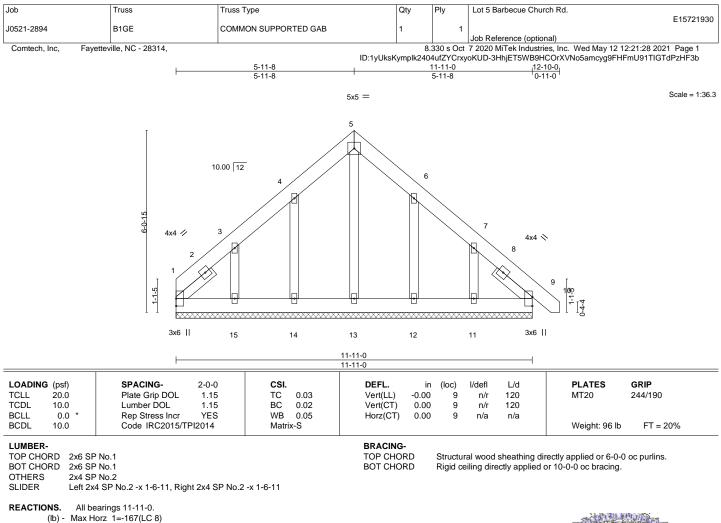
WEBS 3-7=0/277

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0 to 4-4-13, Interior(1) 4-4-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

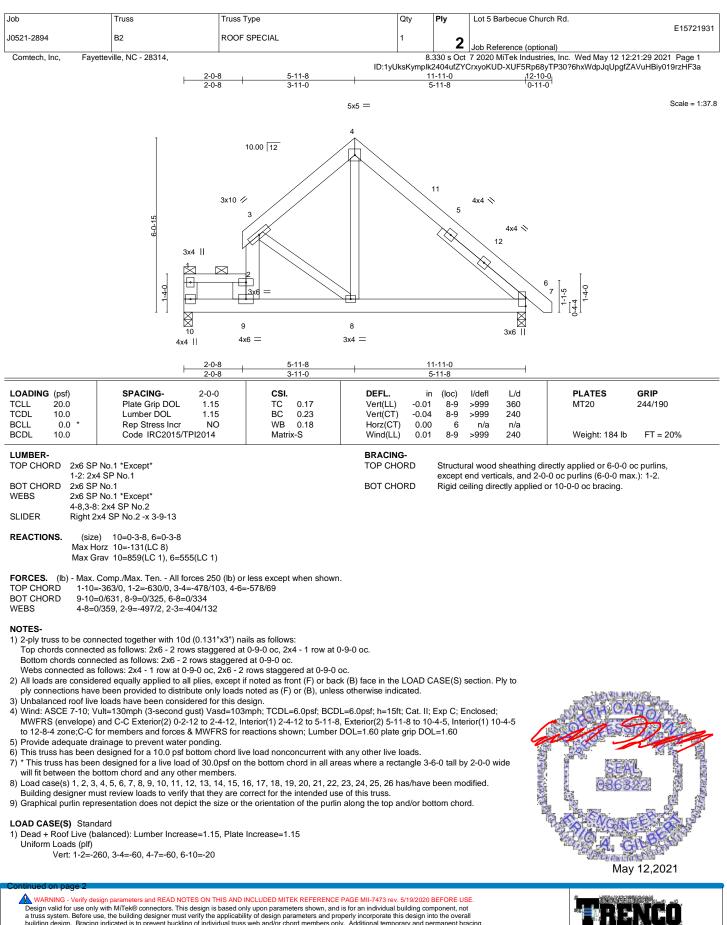
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 14, 12 except 15=-181(LC 12), 11=-169(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 9, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 14, 12 except (it=lb) 15=181, 11=169.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 9.

June o

May 12,2021

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Tru	SS	Truss Type	Qty	Ply	Lot 5 Barbecue Church Rd.
						E15721931
J0521-2894	B2		ROOF SPECIAL	1	່າ	
					2	Job Reference (optional)
Comtech, Inc,	Fayetteville,	NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 12:21:29 2021 Page 2
			ID:4.4	بالمعمد كامدا	404.471/0	

ID:1yUksKymplk2404ufZYCrxyoKUD-XUF5Rp68yTP30?6hxWdpJqUpgfZAVuHBiy019rzHF3a

LOAD CASE(S) Standard
2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
Uniform Loads (plf)
Vert: 1-2=-250, 3-4=-50, 4-7=-50, 6-10=-20
 Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf) Vert: 1-2=-220, 3-4=-20, 4-7=-20, 6-10=-40
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-156, 3-4=27, 4-12=35, 6-12=27, 6-7=20, 6-10=-12
Horz: 3-4=-39, 4-12=47, 6-12=39, 6-7=32
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-170, 3-4=35, 4-11=27, 6-11=35, 6-7=58, 6-10=-12
Horz: 3-4=-47, 4-11=39, 6-11=47, 6-7=70 6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-235, 3-4=-58, 4-6=-58, 6-7=-51, 6-10=-20
Horz: 3-4=38, 4-6=-38, 6-7=-31
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-235, 3-4=-58, 4-6=-58, 6-7=11, 6-10=-20
Horz: 3-4=38, 4-6=-38, 6-7=31
 Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-179, 3-4=-13, 4-6=11, 6-7=4, 6-10=-12
Horz: 3-4=1, 4-6=23, 6-7=16
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-191, 3-4=11, 4-6=-13, 6-7=2, 6-10=-12
Horz: 3-4=-23, 4-6=-1, 6-7=14
 Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-201, 3-4=-35, 4-6=-11, 6-7=-4, 6-10=-20
Horz: 3-4=15, 4-6=9, 6-7=16
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-213, 3-4=-11, 4-6=-35, 6-7=-28, 6-10=-20
Horz: 3-4=-9, 4-6=-15, 6-7=-8 13) Deed - 0.6 MWERS Wird (Reg. Internet) 4rt Berellel: Lumber Increase, 4.60, Plate Increase, 4.60
 Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-179, 3-4=21, 4-6=9, 6-7=2, 6-10=-12
Horz: 3-4=-33, 4-6=21, 6-7=14
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-191, 3-4=9, 4-6=21, 6-7=14, 6-10=-12
Horz: 3-4=-21, 4-6=33, 6-7=26 14) Deed - 0.6 MWERS Wird (Reg. Internet) 2rd Decellel: Lumber Increase 1.60 Plate Increase 1.60
 Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-179, 3-4=21, 4-6=9, 6-7=2, 6-10=-12
Horz: 3-4=-33, 4-6=21, 6-7=14
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-191, 3-4=9, 4-6=21, 6-7=14, 6-10=-12
Horz: 3-4=-21, 4-6=33, 6-7=26
 Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-201, 3-4=-1, 4-6=-13, 6-7=-6, 6-10=-20
Horz: 3-4=19, 4-6=7, 6-7=14
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-213, 3-4=-13, 4-6=-1, 6-7=6, 6-10=-20
Horz: 3-4=-7, 4-6=19, 6-7=26 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
Uniform Loads (plf)
Vert: 1-2=-220, 3-4=-20, 4-7=-20, 6-10=-20
19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-236, 3-4=-61, 4-6=-43, 6-7=-38, 6-10=-20
Horz: 3-4=11, 4-6=7, 6-7=12
 Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
Vert: 1-2=-245, 3-4=-43, 4-6=-61, 6-7=-56, 6-10=-20
Horz: 3-4=-7, 4-6=-11, 6-7=-6
21) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1

ued on page 3

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclaul truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1	Job	Truss	Truss Type	Qty	Ply	Lot 5 Barbecue Church Rd.
						E15721931
	J0521-2894	B2	ROOF SPECIAL	1	ົ່	
						Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 12:21:29 2021 Page 3

ID:1yUksKymplk2404ufZYCrxyoKUD-XUF5Rp68yTP30?6hxWdpJqUpgfZAVuHBiy019rzHF3a

LOAD CASE(S) Standard Uniform Loads (plf)

Vert: 1-2=-236, 3-4=-36, 4-6=-45, 6-7=-40, 6-10=-20

Horz: 3-4=-14, 4-6=5, 6-7=10

22) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-245, 3-4=-45, 4-6=-36, 6-7=-31, 6-10=-20 Horz: 3-4=-5, 4-6=14, 6-7=19

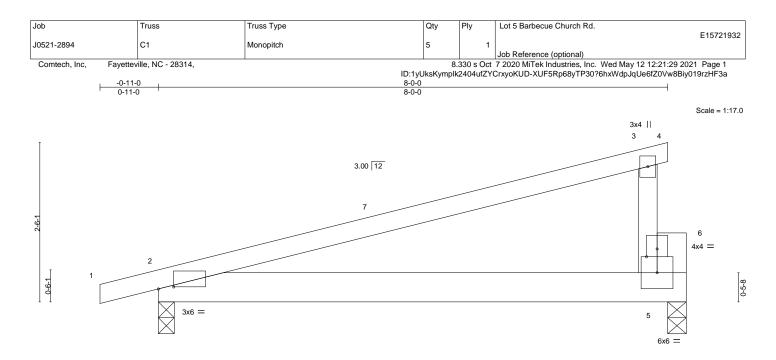
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-260, 3-4=-60, 4-7=-20, 6-10=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-220, 3-4=-20, 4-7=-60, 6-10=-20

25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-2=-250, 3-4=-50, 4-7=-20, 6-10=-20 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-220, 3-4=-20, 4-7=-50, 6-10=-20

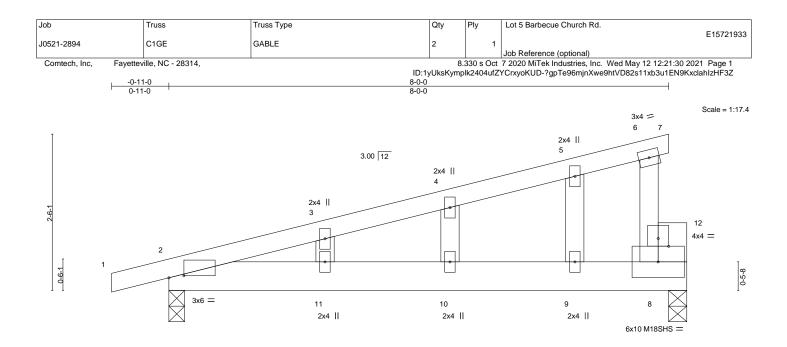
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			0-3-0				
	1		8-3-8				
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:0-2-0,0-1-8]						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. jr	n (loc) l/defl L/	d PLATES	GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.84	Vert(LL) -0.05	(,		244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.10	2-5 >969 24	0		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) 5 n/a n/a	a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10	0 2-5 >886 24	0 Weight: 37 lb	FT = 20%	
LUMBER-		1	BRACING-				
TOP CHORD 2x4 SP	' No.1		TOP CHORD	TOP CHORD Structural wood sheathing directly applied or 5-3-4 oc purlins,			
BOT CHORD 2x6 SP	' No.1			except end verticals.			
WEBS 2x4 SP	No.2		BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc bracing.		
OTHERS 2x6 SP	' No.1						

8-3-8

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	 		<u>8-3-8</u> 8-3-8		I
Plate Offsets (X,Y) [[2:0-2-14,0-0-6], [12:0-2-0,0-1-8]		0-0-0		-
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.35 BC 0.26 WB 0.01 Matrix-S	Vert(LL) 0.09	n (loc) I/defl L/d 9 10-11 >999 240 8 10-11 >999 240 9 8 n/a n/a	PLATES GRIP MT20 244/190 M18SHS 244/190 Weight: 41 lb FT = 20%
	No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 8=0-3-8 Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8)

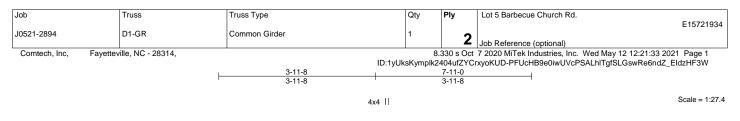
Max Grav 2=375(LC 1), 8=314(LC 1)

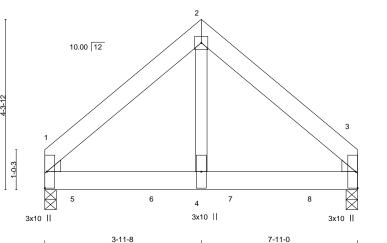
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are MT20 plates unless otherwise indicated.


4) Gable studs spaced at 2-0-0 oc.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [1:0-0-4,0-0-5], [1:0-0-8,0-3	3-6], [3:0-0-4	,0-0-5], [3:0-0-	8,0-3-6]	1						
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.02	3-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.04	3-4	>999	240		
BCLL 0.0 *	Rep Stress Incr	NO	WB	0.39	Horz(CT)	0.01	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI	2014	Matrix-	·P	Wind(LL)	0.01	3-4	>999	240	Weight: 100 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No 2 WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8

Max Horz	1=91(LC 24)
Max Uplift	1=-191(LC 8), 3=-180(LC 9)
Max Grav	1=2919(LC 1), 3=2779(LC 2)

FORCES. (lb)	- Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
TOP CHORD	1-2=-2418/177, 2-3=-2418/177
BOT CHORD	1-4=-100/1678, 3-4=-100/1678
WEBS	2-4=-154/3142

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 1-3=-20

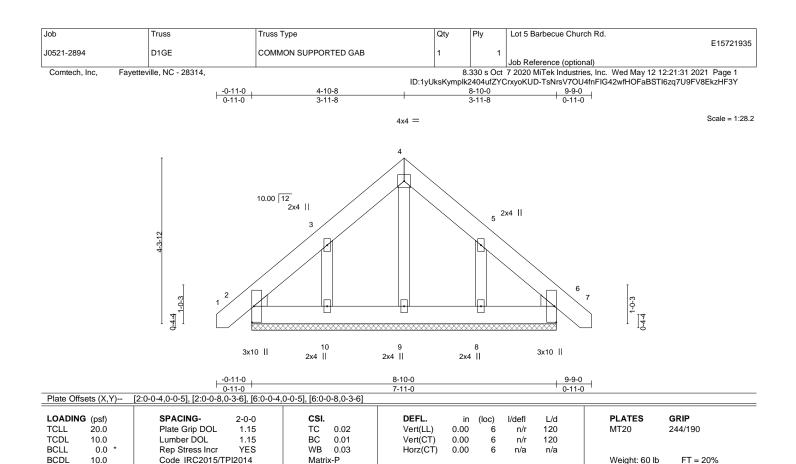
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1-0-3

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 12,2021


Job		Truss	Truss Type	Qty	Ply	Lot 5 Barbecue Church Rd.
10504 0004		54.05				E15721934
J0521-2894		D1-GR	Common Girder	1	2	Lab Deferrance (anthrough)
					-	Job Reference (optional)
Comtech, Inc,	Fayettevi	lle, NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 12:21:33 2021 Page 2
			ID:1yUk	sKymplk2	404ufZYC	rxyoKUD-PFUcHB9e0iwUVcPSALhITgfSLGswRe6ndZ_EIdzHF3W

LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

ш	IMBER	

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 OTHERS 2x4 SP No 2

WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

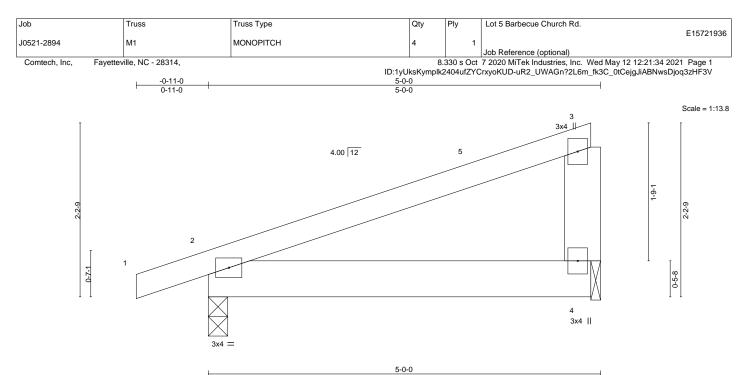
(lb) - Max Horz 2=-118(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152.8=148.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 12,2021

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTE k® connectors. This sket on LCULCUL MIT IN EXPECTED EXECT PAGE MIT-F473 (eV. 319/2/20 BEFORE USE. Design valid for use only with MTE k® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Comport Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			1			5-0-0					1	
LOADING (ps	i)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	o l	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL 10.	0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL 0.	0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.	D	Code IRC2015/TF	912014	Matri	k-P	Wind(LL)	0.01	2-4	>999	240	Weight: 24 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=63(LC 8) Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

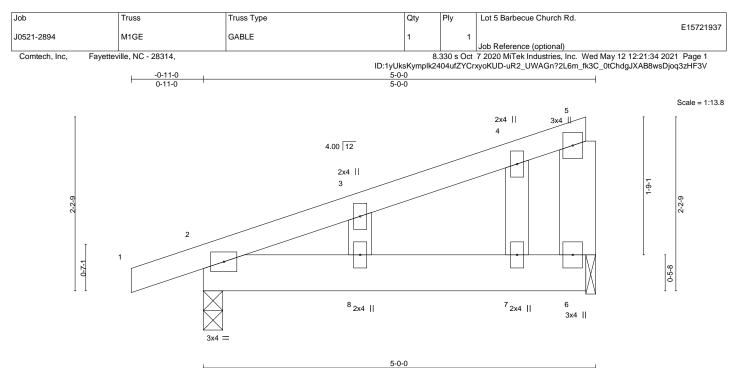
2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

capacity of bearing surface.

- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		5-0-0	
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09 Vert(LL) 0.01 8 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09 Vert(CT) -0.01 8 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02 Horz(CT) -0.00 6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. BOT CHORD

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8)

Max Uplift 2=-147(LC 8), 6=-115(LC 8) Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

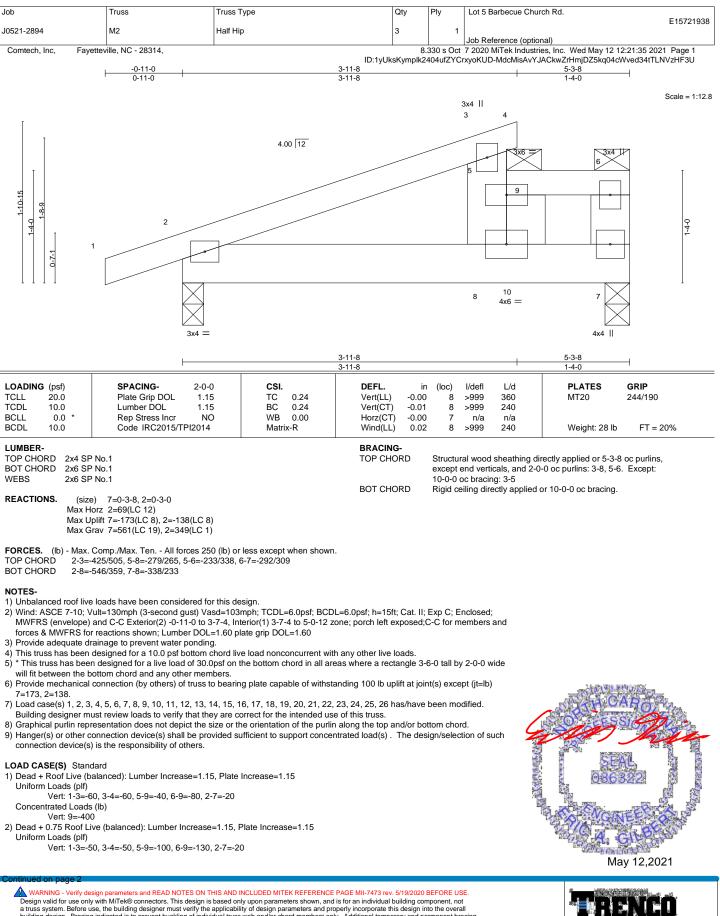
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147.6=115.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses systems, see **AUSEPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

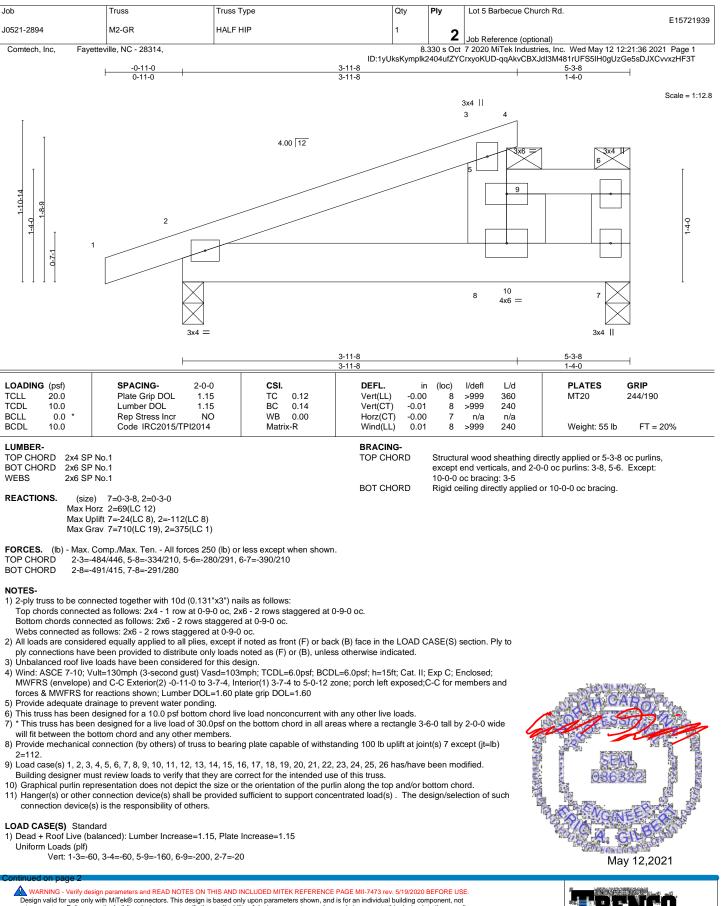
818 Soundside Road Edenton, NC 27932

1	dop	Truss	Truss Type	Qty	Ply	Lot 5 Barbecue Church Rd.
						E15721938
	J0521-2894	M2	Half Hip	3	1	
						Job Reference (optional)
	Comtech, Inc, Fayettevi	lle, NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 12:21:35 2021 Page 2

8.330 s Oct 7 2020 MiTek Industries, Inc. Wed May 12 12:21:35 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-MdcMisAvYJACkwZrHmjDZ5kq04cWved34tTLNVzHF3U

LOAD CASE(S) Orested
LOAD CASE(S) Standard Concentrated Loads (Ib)
Vert 9=350
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
Uniform Loads (plf)
Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40
Concentrated Loads (lb) Vert: 9=-300
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
Concentrated Loads (lb) Vert: 9=548
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52
Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
Concentrated Loads (lb) Vert: 9=566
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51
Concentrated Loads (lb) Vert: 9=-420
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9
Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
Concentrated Loads (lb) Vert: 9=-420
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-11, 2-8=10, 8-10=33, 7-10=10
Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
Concentrated Loads (lb) Vert: 9=154
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12
Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (lb)
Vort: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34 Concentrated Loads (lb)
Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20
Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb)
Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Concentrated Loads (lb)
Vert: 9=43
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
Concentrated Loads (lb)
Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60
Uniform Loads (plf)
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
Concentrated Loads (lb)
Vert: 9=43
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 5 Barbecue Church Rd.
					E15721938
J0521-2894	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	lle, NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 12:21:35 2021 Page 3

8.330 s Oct 7 2020 MiTek Industries, Inc. Wed May 12 12:21:35 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-MdcMisAvYJACkwZrHmjDZ5kq04cWved34tTLNVzHF3U

	ID: I JUKSKYMPIKZ40401Z Y CIXYOKUD-INIGONISAV Y JACKWZ
10	AD CASE(S) Standard
20.	Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
16)	Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb)
	Vert: 9=-234
17)	Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (plf)
	Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20
	Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-234
18)	Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20 Concentrated Loads (lb)
	Vert: 9=-200
19)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (pif)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26
	Concentrated Loads (lb)
	Vert: 9=-454
20)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
	Concentrated Loads (Ib)
	Vert: 9=-375
21)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
	Concentrated Loads (lb)
22)	Vert: 9=-375 Dead + 0.25 Packtive (hal) + 0.25 Attic Floor + 0.25(0.6 MW/FDS Wind (blog lat) and Pacellel) + Lumber laterage 4.60 Plote laterage 4.60
22)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Viniti Loads (pn) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20
	Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-375
23)	1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20
	Concentrated Loads (lb)
24	Vert: 9=-400
24)	2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20
	Vert: 9=-400
25)	3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
,	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350
26)	4th Dead + 0.75 Koof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20 Concentrated Loads (lb)
	Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 erv. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss systems, see fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Job	Truss	Truss Type	Qty	Ply	Lot 5 Barbecue Church Rd.
						E15721939
	J0521-2894	M2-GR	HALF HIP	1	2	
					_	Job Reference (optional)
	Comtech, Inc, Fayettevi	lle, NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 12:21:36 2021 Page 2

8.330 s Oct 7 2020 MiTek Industries, Inc. Wed May 12 12:21:36 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-qqAkvCBXJdI3M481rUFS5IH0gUzGe5sDJXCvvxzHF3T

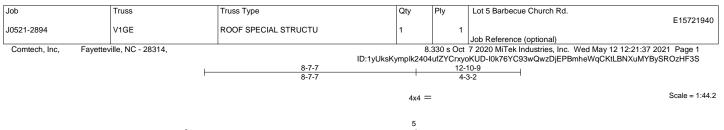
	Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20
	Concentrated Loads (lb)
3)	Vert: 9=-350 Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
,	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40 Concentrated Loads (lb)
	Vert: 9=-300
	Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55 Concentrated Loads (lb)
	Vert: 9=548
	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55 Concentrated Loads (lb)
	Vert: 9=566
	Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51 Concentrated Loads (lb)
	Vert: 9=-420
	Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51 Concentrated Loads (lb)
	Vert: 9=-420
	Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10
	Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7 Concentrated Loads (lb)
	Vert: 9=154
	Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12
	Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27 Concentrated Loads (lb)
	Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34 Concentrated Loads (lb)
	Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20
	Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb)
	Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
	Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)
	Vert: 9=43
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb)
	Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

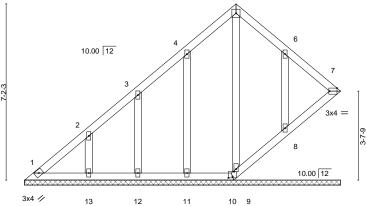
2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-400

Uniform Loads (plf)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Lot 5 Barbecue Church Rd.
				-	E15721939
J0521-2894	M2-GR	HALF HIP	1	ົ່	
				_	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 12:21:36 2021 Page 3


8.330 s Oct 7 2020 MiTek Industries, Inc. Wed May 12 12:21:36 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-qqAkvCBXJdI3M481rUFS5IH0gUzGe5sDJXCvvxzHF3T

LO	AD CASE(S) Standard
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
	Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
	Concentrated Loads (lb) Vert: 9=43
15)	vert: 9=43 Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60
15)	Dead + 0.0 MWTKS Wind (FOS. Internal) 4th Parallel. Lumber increase=1.00, Plate increase=1.00 Uniform Loads (plf)
	Vert 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
16)	Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb)
	Vert 9=-234
17)	Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
,	Uniform Loads (plf)
	Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20
	Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
	Concentrated Loads (lb)
4.01	Vert: 9=-234
18)	Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf)
	Vent: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-200
19)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3
	Horz: 1-2=-19, 2-23=-14, 3-4=-19, 3-5=26
	Concentrated Loads (lb) Vert: 9=-454
20)	Veil. 3=-434 Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
20)	
	Vert. 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20
	Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
	Concentrated Loads (lb)
	Vert: 9=-375
21)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (pl)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
	Concentrated Loads (lb)
	Vert: 9=375
22)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20
	Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
	Concentrated Loads (lb) Vert: 9=-375
23)	veil. 9=-575 1 st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
20)	Uniform Loads (plf)
	Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-400
24)	2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20
	Concentrated Loads (lb) Vert: 9=-400
25)	3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
20)	Uniform Loads (pf)
	Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350
26)	4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
	Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20 Concentrated Loads (lb)
	Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL	1.15	тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	2014	Matri	x-S						Weight: 75 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No 2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

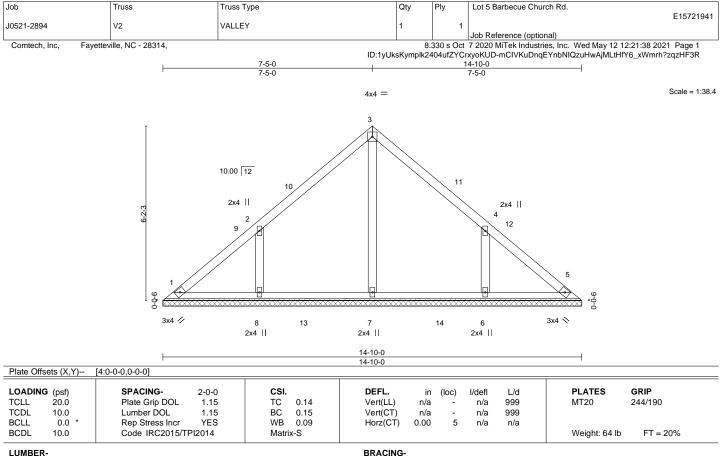
Н

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.


- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

May 12,2021

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design values for use only with MTek® connectors. This should be used only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracking indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 14-10-0.

(lb) - Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

WEBS 2-8=-338/247, 4-6=-338/247

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

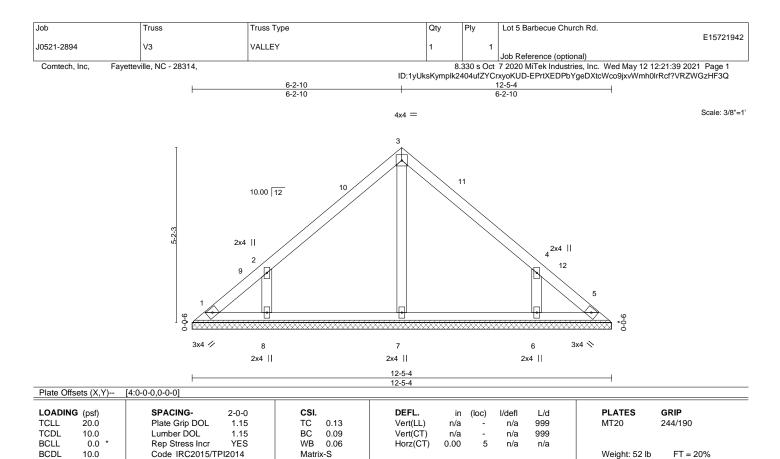
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135,

Structural wood sheathing directly applied or 6-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sk0 includue unterpretended by the presence includue of the sk0 includue and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

LUMBER-	
---------	--

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No 2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-5-4.

(lb) - Max Horz 1=-116(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

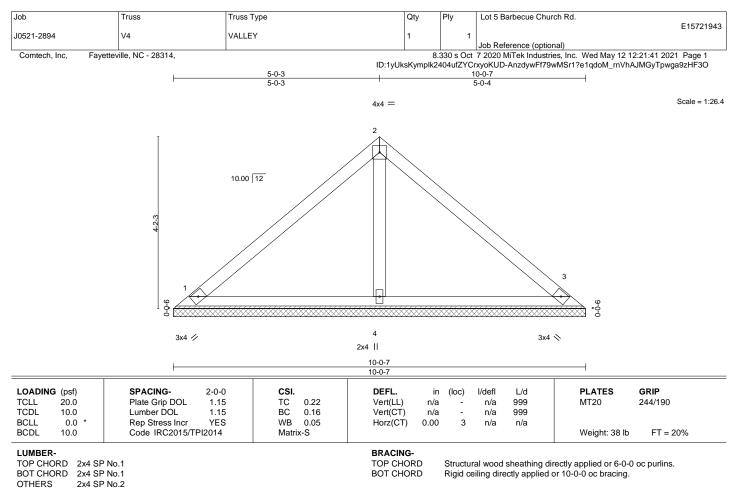
1) Unbalanced roof live loads have been considered for this design.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123, 6=123.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the appliciability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusse systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

²⁾ Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

REACTIONS. (size) 1=10-0-7, 3=10-0-7, 4=10-0-7

Max Horz 1=-92(LC 8)

Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

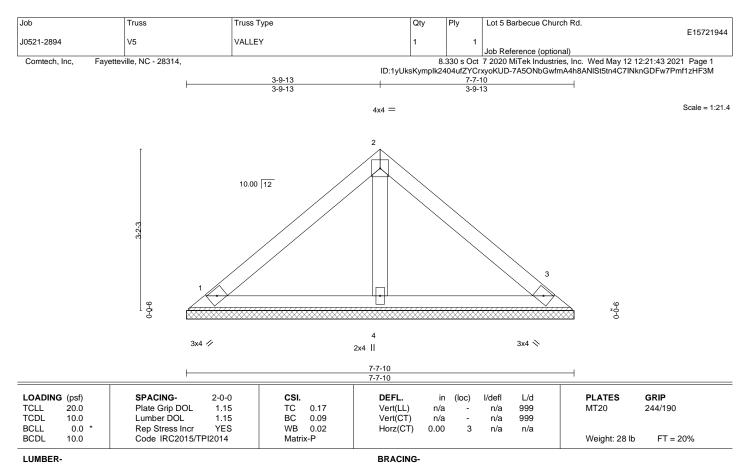
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component and the prevent personal prevent personal injury and property damage. For general guidance regarding the fabrication stability for the prevent personal injury and property damage. For general guidance regarding the fabrication stability and to prevent personal injury and property damage. For general guidance regarding the fabrication stability and to prevent personal injury and property damage. For general guidance regarding the fabrication stability and to prevent personal injury and property damage. For general guidance regarding the fabrication stability an

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10

Max Horz 1=68(LC 9)

Max Uplift 1=-24(LC 13), 3=-30(LC 13)

Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

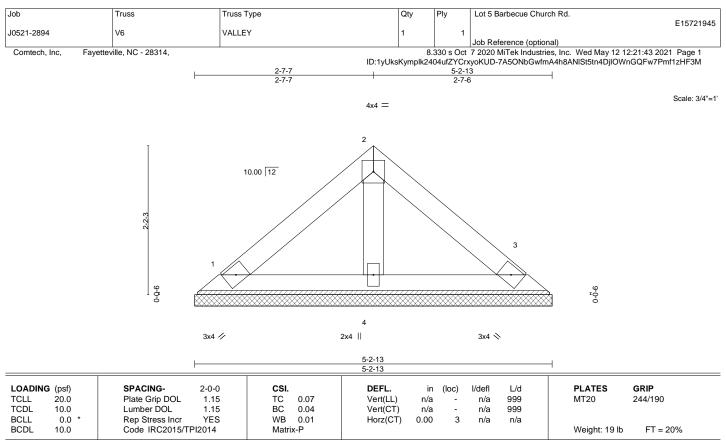
arip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13

Max Horz 1=-44(LC 8) Max Uplift 1=-15(LC 13), 3=-19(LC 13)

Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

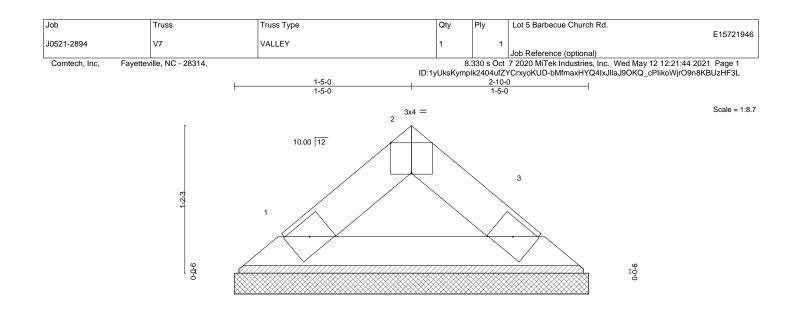
arip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 5-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

3x4 📎

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.01	Vert(LL) n/a -	n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n/a -	n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 8 lb FT = 20%

2-10-0

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0

Max Horz 1=-20(LC 8) Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

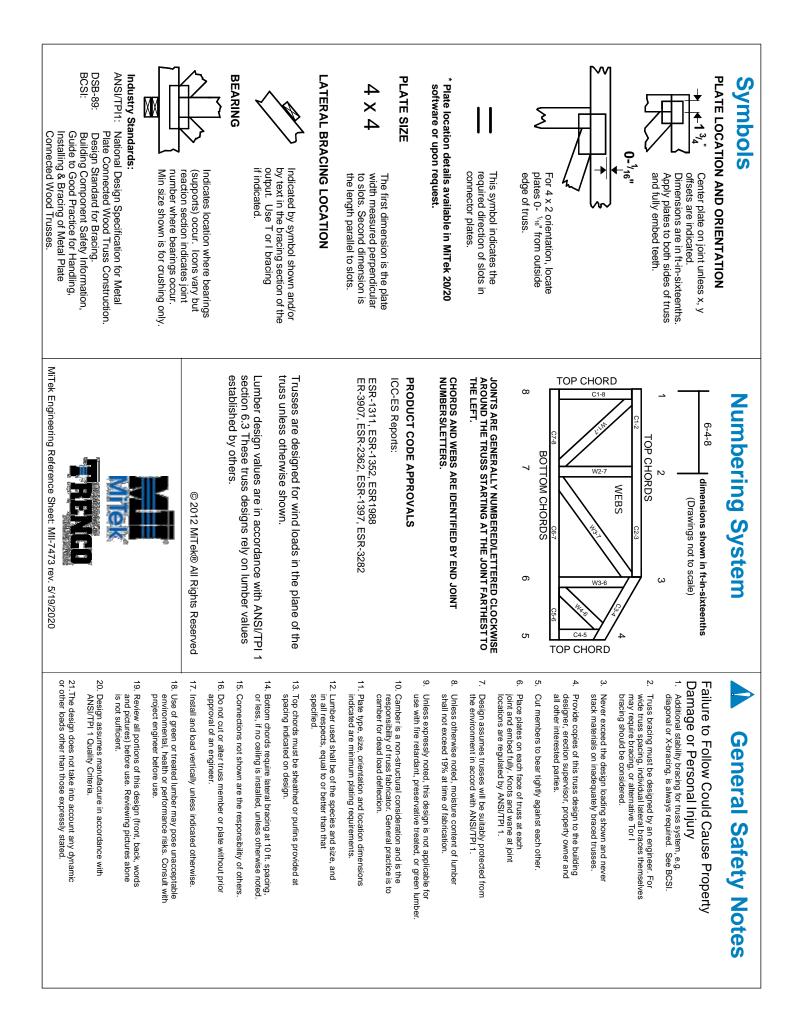
grip DOL=1.60

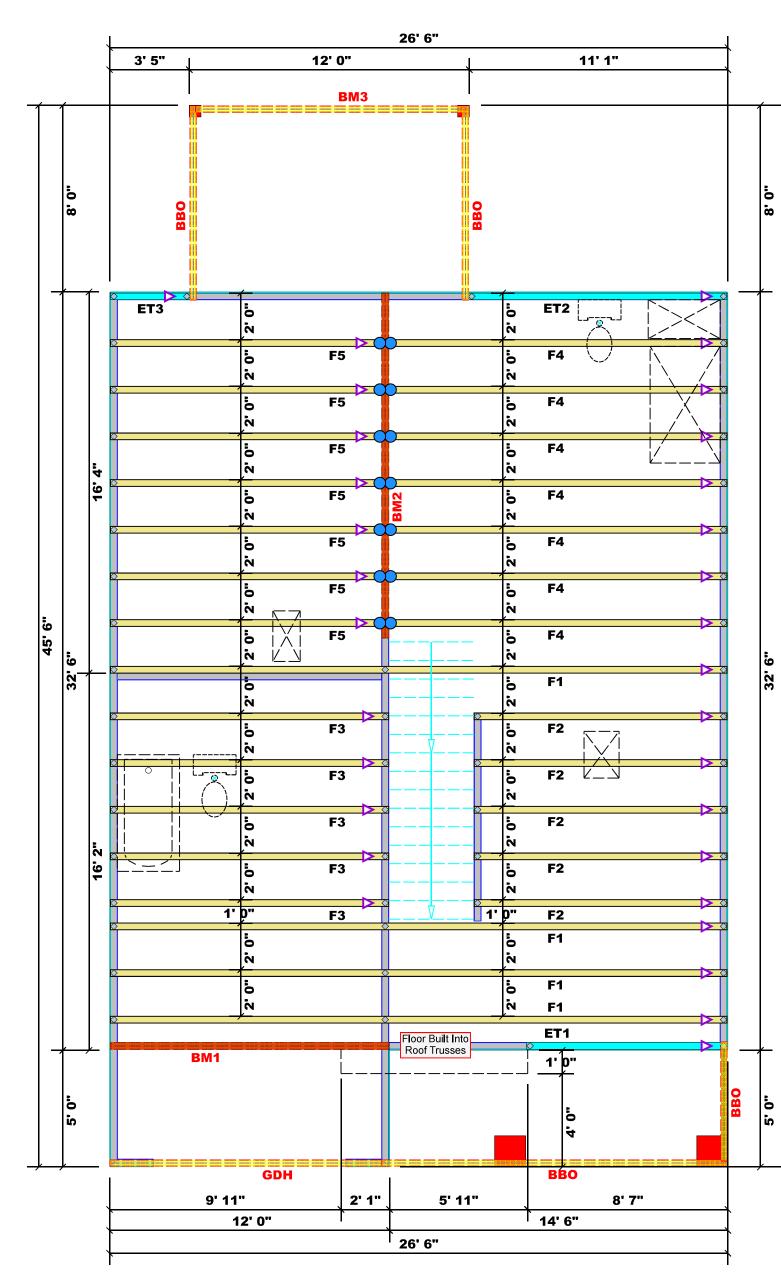
3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.




Structural wood sheathing directly applied or 2-10-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

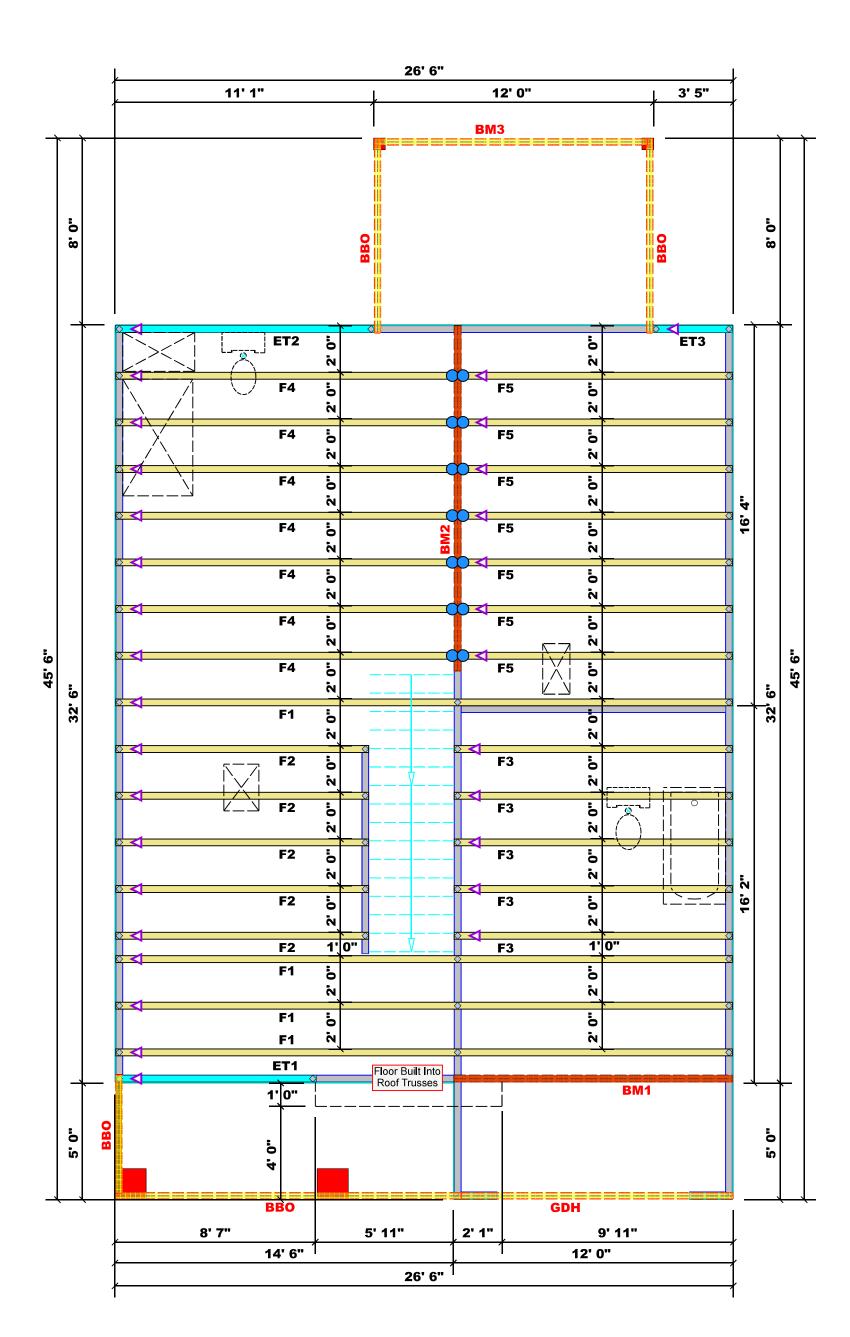
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Ŀ	co	m	те	c	1				
ROOF & FLOOR TRUSSES & BEAMS Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444									
Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.									
Signatu	re		les A les A						
	(BASE	ART F(d on tabl	DR JA (Es 8502.5(CK STU 03(6))					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
CITY / CO . Sanford / Harnett	4912 Barbecue Church Road	Floor	05/13/21	DRAWN BY David Landry	SALES REP. Lenny Norris				
CITY / CO .	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.				
Weaver Development Co. Inc.	Lot 5 Barbecue Church Road	Hickory "A"			J0521-2895				
Weav			SEAL DATE	QUOTE #					

Dimension Notes All exterior wall to wall dimensions are to face of sheathing unless noted otherwise
 All interior wall dimensions are to face of frame wall unless noted otherwise
 All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes Plumbing drop locations shown are NOT exact.
 Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses.
 Adjust spacing as needed not to exceed 24"oc.


	Conne	Nail Info	ormation			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	HUS410	USP	14	NA	16d/3-1/2"	16d/3-1/2"

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM2	15' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM3	12' 0"	2x10 SPF No.2	2	2
GDH	12' 0"	2x12 SPF No.2	2	2

Truss Placement Plan Scale: 1/4"=1'

▲ = Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

т			TE	CH	1					
ROOF & FLOOR TRUSSES & BEAMS Reilly Road Industrial Park Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444										
Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.										
Signatu	re		es A							
LOAD CHART FOR JACK STUDS (BASED ON TABLES REDUC() & (6))										
NOLLOVEN (OL 40) 1700 3400	NBER OF C R01 SUDLS (LODAR 1 2 3 4 5 6 7 8 9		/STRUER NO.1 SOLLS OF BATTLY ATA (6)) 1 1 2) 3) 4) 5	10 5 (0) b 8 E4 END OF NO 10 20 20 10 200 3 13600 4 17000 5						
CITY / CO . Sanford / Harnett	4912 Barbecue Church Road	Floor	05/13/21	DRAWN BY David Landry	SALES REP. Lenny Norris					
CITY / CO.	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REP.					
Weaver Development Co. Inc.	JOB NAME Lot 5 Barbecue Church Road	Hickory "A"			J0521-2895					
BUILDER	JOB NAME	PLAN	SEAL DATE	QUOTE #	JOB #					

Dimension Notes All exterior wall to wall dimensions are to face of sheathing unless noted otherwise
 All interior wall dimensions are to face of frame wall unless noted otherwise
 All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

All Walls Shown Are Considered Load Bearing

Plumbing Drop Notes

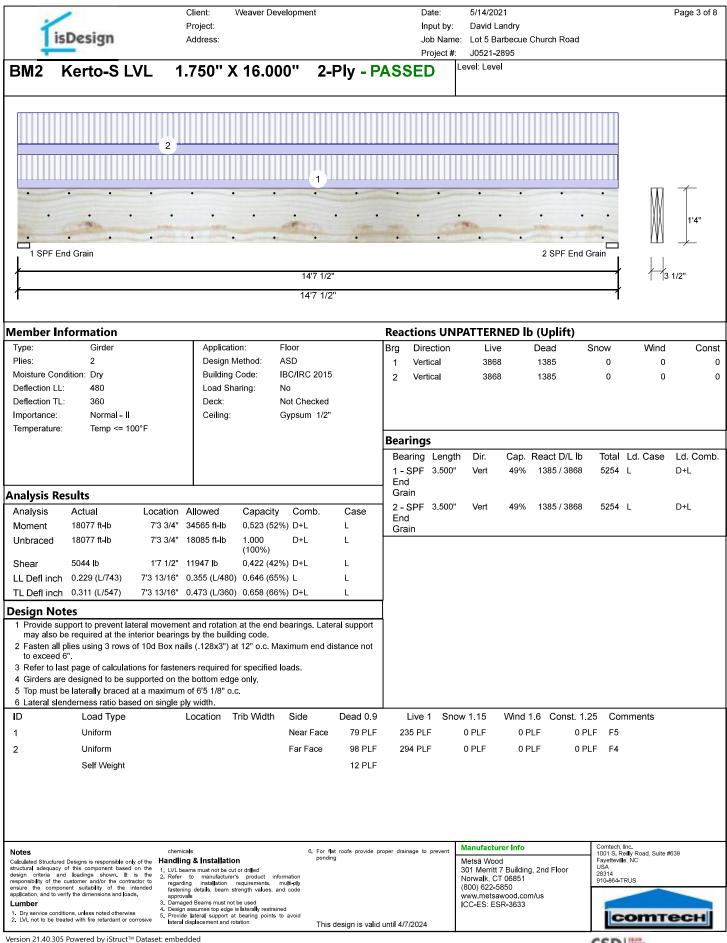
1. Plumbing drop locations shown are NOT exact.

Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses.
 Adjust spacing as needed not to exceed 24"oc.

	Conne	ctor Info	rmat	ion	Nail Information			
Sym	Product	Manuf	Qty	Supported Member	Header	Truss		
\bigcirc	HUS410	USP	14	NA	16d/3-1/2"	16d/3-1/2"		

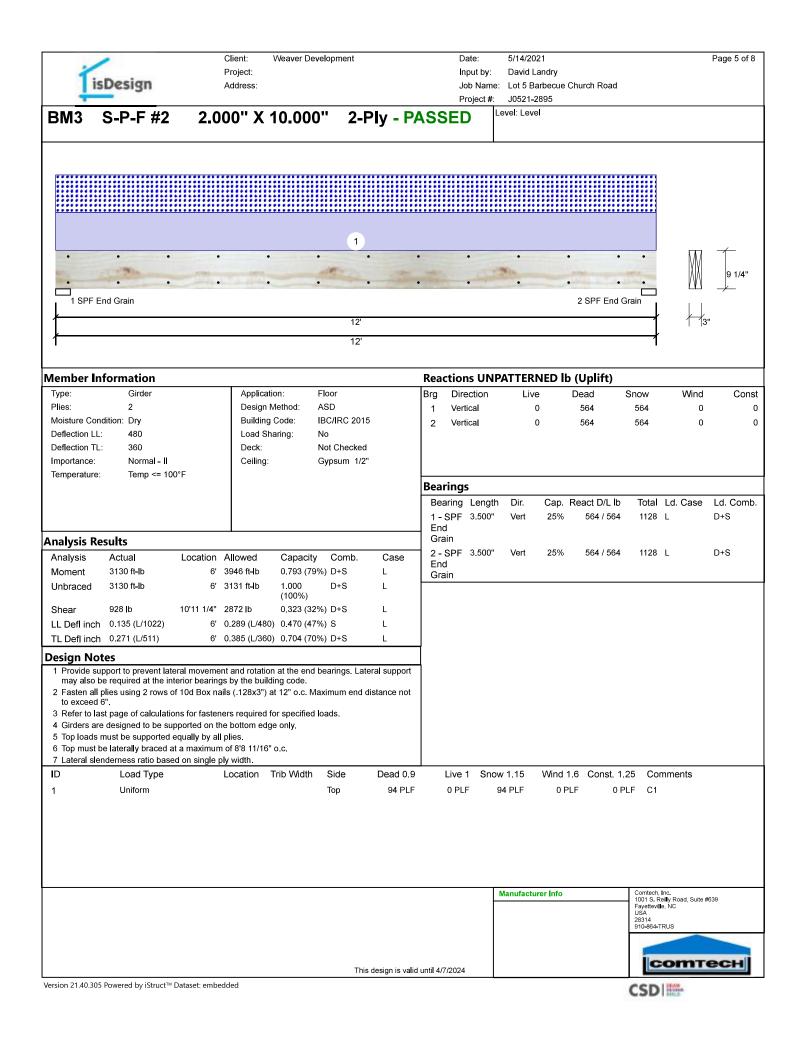
	Products											
PlotID	Length	Product	Plies	Net Qty								
BM1	12' 0"	1-3/4"x 16" LVL Kerto-S	2	2								
BM2	15' 0''	1-3/4"x 16" LVL Kerto-S	2	2								
BM3	12' 0"	2x10 SPF No.2	2	2								
GDH	12' 0"	2x12 SPF No.2	2	2								

Truss Placement Plan Scale: 1/4"=1'



See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Design	Р	ilient: V roject: ddress:	Veaver Deve	elopment		lnı Jo			ecue Church R	oad		Page 1 of
Kerto-S L\	/L 1.	750'' X	16.00	0'' 2-	Ply - P		<u> </u>		5			
	2											
- 750				at in the	-		40	2 SPF			\mathbb{W}	1'4"
			11'11"						7		/ 3	1/2"
			11'11"						\neg			
		Applicatio				1					106	0
2 dition: Dry : 480 : 360 Normal – II		Design M Building (ethod: A Code: II rring: N N	ASD BC/IRC 2015 Io Iot Checked		1 Verti	cal	Live 0 0	2869 2869	2079 2079	0	Cor
Temp <= 100)°F					Bearings	:					
						Bearing 1 - SPF	Length 3.500"		95% 2869/2	2079 4948	L	Ld. Com D+S
esults						2 - SPF	3.500"	Vert 9	95% 2869/2	2079 4948	L	D+S
Actual 13679 ft-lb 13679 ft-lb 3615 lb 0.069 (L/2000)	5'11 1/2" 3 5'11 1/2" 1 1'7 1/2" 1 5'11 1/2" 0	9750 ft-lb 3699 ft-lb 3739 lb .287 (L/480)	0.999 (100%) 0.263 (26% 0.240 (24%	D+S 5) D+S 5) S	Case L L L							
	5'11 1/2" 0	.383 (L/360)	0.428 (43%	5) D+S	L	1						
tes pport to prevent late be required at the int	erior bearings	by the buildir	ng code. 12" o.c. Ma	ximum end di								
plies using 3 rows o 6". st page of calculatio e designed to be sup must be supported e be laterally braced at nderness ratio base	oported on the equally by all p t a maximum o	bottom edge lies. f 8'8 3/8" o.c	only.									
6". st page of calculatio e designed to be sup must be supported e	oported on the equally by all p t a maximum o d on single ply	bottom edge lies f 8'8 3/8" o.c width	only.	Side	Dead 0.9	Live 1	I Snow	/ 1.15 W	lind 1.6 Con	nst. 1.25 Cc	mments	
	Iformation Girder 2 dition: Dry 480 Sofo Normal - II Temp <= 100	2 iformation Girder 2 dition: Dry : 480 : 360 Normal - II Temp <= 100°F esults Actual Location A 13679 ft-lb 5'11 1/2" 3 13679 ft-lb 5'11 1/2" 1 3615 lb 1'7 1/2" 1 0.069 (L/2000) 5'11 1/2" 0	Image: constraint of the second state of th	2 1 11/11/2 11/12 11/12 11/12 11/12 11/12 11/1	2 1 1 1	Image: constraint of the system Image: constraint of the system 2 1 2 1 1''11" 11''11" 1''11" 11''11" formation Application: Floor 2 Building Code: IBC/IRC 2015 1: 360 Application: No Normal - II Temp <= 100°F	Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Image: Stress Stress 2 1 1 2 1 1 1 2 1 1 1 11'11" 11'11" 11'11" formation Reaction Brg Dire Girder Application: Floor 2 Design Method: ASD Building Code: IBC/IRC 2015 Brg Dire 2 Deck: Not Checked Ceiling: Gypsum 1/2" Bearings 1 - SPF 2 - SPF 2 - SPF esults Actual Location Allowed Capacity Comb. Case 13679 ft-lb 5'11 1/2" 39750 ft-lb 0.344 (34%) D+S L Distribution (100%) S L 3615 lb 17 1/2" 13739 lb 0.263 (26%) D+S L L 0.69 (L/2000) 5'11 1/2" 0.287 (L/480) 0.42 (34%) D+S L L 0.164 (L/840) 5'11 1/2" 0.383 (L/360) <td>Application: Flor 11'11" formation Reactions UNP Girder 1 2 1 11'11" formation Application:: Flor Birg Direction 1 1'1'1" formation Application:: Flor Design Method: ASD Building Code: Building Code: IBC/IRC 2015 Load Sharing: No Deck: Not Checked Ceiling: Gypsum 1/2" esults Actual Actual Location 13679 ft-lb 5'11 1/2" 515 lb 1'7 1/2" 0.669 (L/2000) 5'11 1/2" 0.899 ft-lb 0.283 (26%) D+S 0.184 (L/840) 5'11 1/2" 0.383 (L/360) 0.420 (24%) S 1.041 (L/840) 5'11 1/2"</td> <td>Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1 </td> <td>Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1 </td> <td>Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1 2 1</td> <td>Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1 <t< td=""></t<></td>	Application: Flor 11'11" formation Reactions UNP Girder 1 2 1 11'11" formation Application:: Flor Birg Direction 1 1'1'1" formation Application:: Flor Design Method: ASD Building Code: Building Code: IBC/IRC 2015 Load Sharing: No Deck: Not Checked Ceiling: Gypsum 1/2" esults Actual Actual Location 13679 ft-lb 5'11 1/2" 515 lb 1'7 1/2" 0.669 (L/2000) 5'11 1/2" 0.899 ft-lb 0.283 (26%) D+S 0.184 (L/840) 5'11 1/2" 0.383 (L/360) 0.420 (24%) S 1.041 (L/840) 5'11 1/2"	Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1	Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1	Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1 2 1	Kerto-S LVL 1.750" X 16.000" 2-Ply - PASSED Level: Level 2 1 <t< td=""></t<>


	1		Client:	Weaver Developm	ient		Date:	5/14/2021	Page 2 of 8
2			Project:	·			Input by:	David Landry	C C
	isDesign		Address:				Job Name	: Lot 5 Barbecue Church Road	
							Project #:	J0521-2895	
BM1	Kerto-S	LVL	1.750"	X 16.000"	2-Plv	- PASSE	ED	_evel: Level	
				/	_ · · · ,				
							l		
•	• •	•	•	• •	•	• •	•	• •	Π \uparrow
									MM I
・	•	•	• •	•	• •	•	•	•	∬ ∬ 1'4"
•	• •	•	•	• •	•	• •	•	· · Ý	
	F							2 SPF A	
1				11'11"				1	3 1/2"
1				11'11"				f	
Maria: Di	. Analysia								
-	y Analysis								
	l plies using 3			(.128x3") at 12"	o.c Maxim	ium end dis	tance no	ot to exceed 6".	
Capacity		0.0 %							
Load Yield Limit p	er Foot	0.0 F 245	PLF 6 PLF						
Yield Limit p		81.9							
Yield Mode		IV							
Edge Distan		1 1/2	2"						
Min. End Dis Load Combi		3"							
Duration Fac		1.00							
Notes			chemicals		6 For flat roofe ar	ovide proper drainage	to prevent	Manufacturer Info	Comtech, Inc.
Calculated Struc	ctured Designs is responsible		landling & Installa		ponding		provoliti	Metsä Wood	I001 S. Rei∎y Road, Suite #639 Fayetteville, NC USA
design criteria	uacy of this component ba and loadings shown the customer and/or the c	It is the 2	LVL beams must not be Refer to manufactu	urer's product information				301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	28314 910-864-TRUS
ensure the co	the customer and/or the component suitability of the to verify the dimensions and	ne intended	regarding installation fastening details, bean approvals	n requirements, multi-ply n strength values, and code				(800) 622-5850 www.metsawood.com/us	
Lumber		. 3	 Damaged Beams must Design assumes top ed 	ge is aterally restrained				ICC-ES: ESR-3633	
 Dry service of 2. LVL not to b 	conditions, unless noted othe be treated with fire retardant	erwise g	5. Provide lateral suppor lateral displacement an	t at bearing points to avoid	This design is	s valid until 4/7/20	24		соттесн
Version 21.40	305 Powered by iStru								

Version 21.40.305 Powered by iStruct™ Dataset: embedded

	1		Client:	Weaver Developm	nent	Da	ate:	5/14/2021	Page 4 of 8
1			Project:				out by:	David Landry	
1	isDesign		Address:					Lot 5 Barbecue Church Road	
			4 3504	<u> </u>			oject #:	J0521-2895 evel: Level	
BM2	Kerto-S	LVL	1.750"	X 16.000"	2-Ply	- PASSEL	ן ו		
•	• •	•	•	• •	• •	٠	•	• • •	
.	•		•	• •	•	• •	•	• • •	• 7/1 7/1''
									. I V M I *
	End Grain	•	•	• •	• •	•	•	2 SPF End	
								2 SFF Ellu	
					14'7 1/2"				1 3 1/2"
/					14'7 1/2"				
Multi-Ply	y Analysis								
-	-	rows of 10	d Box nails	(.128x3") at 12'	oc Maxim	um end distar	nce no	t to exceed 6"	
Capacity	pilot doing o	79.8 %							
Load		196.0 F							
Yield Limit pe Yield Limit pe		245.6 F 81.9 lb.							
Yield Mode		IV							
Edge Distand		1 1/2" 3"							
Min. End Dis Load Combir		3 D+L							
Duration Fac		1.00							
			amianla		G. For firt	uida arabar destas es t		Manufacturer Info	Comtech, Inc.
Notes Calculated Struct	tured Designs is responsib	le only of the Han	^{lemicals} dling & Installa		 For flat roofs pro ponding 	ovide proper drainage to	prevent	Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
design criteria	acy of this component b and loadings shown the customer and/or the	It is the 2 R	/L beams must not be efer to manufact	urer's product information				301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314 910-864-TRUS
ensure the co	mponent suitability of the toverify the dimensions and	he intended fa	garding installation stening details, bear oprovals	n requirements, multi-ply n strength values, and code				(800) 622-5850 www.metsawood.com/us	
Lumber	conditions, unless noted oth	3 Da 4 Di	amaged Beams must esign assumes top er	ige is laterally restrained				ICC-ES: ESR-3633	
2. LVL not to be	e treated with fire retardant		ovide lateral suppor teral displacement ar	t at bearing points to avoid d rotation	This design is	valid until 4/7/2024			соттесн
							· · · ·		SALEN CONTRACTOR

Version 21.40.305 Powered by iStruct™ Dataset: embedded

-	/	Client Projec		Development			Date: Input by:	5/14/2021 David Landry	Page 6 of 8
1	isDesign	Addre					Job Name	Lot 5 Barbecue Church Road	
BM3	S-P-F #2	2 000"	X 10 0	00" 2-F	Dhy C		Project #:	J0521-2895 evel: Level	
DIVIS	3-F-F #4	. 2.000	× 10.0	00 2 -r	-ту - г	ASSE			
									Ξ. ,
	•	• •	•	• •	•	•	•	• • •	
	•	• •	•	• •	•	•	•	• • •	• • • • • • • • • • • • • • • • • • •
	F End Grain							2 SPF End G	Grain
				12'					
1				12'					
	y Analysis	ows of 10d Box n	aile (129v2)	') at 12" o.c. I	Maximu	m and dis	tanco no	t to overad 6"	
Capacity	i plies using 2 re	0.0 %	alis (. 12085		Maximu	in enu uis	lance no	t to exceed b .	
Load Yield Limit p	er Foot	0.0 PLF 157.4 PLF							
Yield Limit p Yield Mode		78.7 lb. IV							
Edge Distan		1 1/2"							
Min. End Dis Load Combi		3"							
Duration Fac		1.00							
							Γ	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
							Γ		USA
									28314 910-864-TRUS
				This	design is va	alid until 4/7/20	24		соттесн

is	Design	Client: Project: Address:	Weaver Dev	velopment				andry arbecue Chu	rch Road			Page 7 c
GDH	S-P-F #2	2.000" >	(12.00()" 2-P	Ply - P/	ASSED	Level: Leve	el				
		2				3 1			-			
•		• •	•	1		•		••				+
	170			atop.	itin	-	- The	• •			Ŵ	11
1 SPF E	End Grain						2 SPF E	nd Grain	ļ			
]				'10"]		1_13	
I			8'	10"					1			
ember In	formation					Reactions	UNPATTER	NED lb (U	Jplift)			
уре:	Girder			Floor		Brg Direct	ion Liv	e De	ad S	now	Wind	C
lies: loisture Con	2 dition: Drv	-		ASD IBC/IRC 2015		1 Vertica 2 Vertica			'51 '51	88 88	0 0	
eflection LL:			5	No		2 Venica	u	0 1	51	00	U	
eflection TL		Deck:		Not Checked								
nportance: emperature:	Normal - II Temp <= 100°F	_ Ceilin	g:	Gypsum 1/2"								
emperature.	Temp <= 100 F	-				Bearings						
						Bearing L 1 - SPF 3	-	Cap. Rea 19%	act D/L lb 751 / 88	Total Lo 839 L	d. Case	Ld. Co D+S
	•					End	Job Ven	1970	751700	039 L		D+3
nalysis Re Analysis		_ocation Allowed	Capacity	Comb.	Case	Grain 2 - SPF 3	.500" Vert	19%	751 / 88	839 L		D+S
/loment	1490 ft-lb	4'5" 4153 ft-lb	0.359 (36)		Uniform	End Grain						
Inbraced	1490 ft-lb	4'5" 3539 ft-Ib	0.421 (42	%) D	Uniform	Cium						
Shear	542 lb	1'2 3/4" 2734 lb	0.198 (20	,	Uniform							
L Defl inch	0.004 (L/22622)	4'5 1/16" 0.209 (L/4	80) 0.021 (2%	5) S	L							
L Defl inch	0.042 (L/2381)	4'5 1/16" 0.279 (L/3	60) 0.151 (15 [.]	%) D+S	L							
esign No	tes											
may also b	pport to prevent latera e required at the inter plies using 2 rows of 1 5".	ior bearings by the bu	uilding code.	0	••							
4 Girders are 5 Top loads i	st page of calculations e designed to be supp must be supported equipe laterally braced at e	orted on the bottom e ually by all plies.		loads.								
7 Lateral slei D	nderness ratio based o Load Type	on single ply width. Location	Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1 6	Const. 1.2	5 Comn	nente	
•	Uniform	Location		Side Тор	60 PLF	0 PLF	0 PLF	0 PLF	0 PLI		GIILO	
	Uniform			Тор	90 PLF	0 PLF	0 PLF	0 PLF	0 PL			
	Tie-In	0-0-0 to 8-10-0	1-0-0	Тор	20 PSF	0 PSF	20 PSF	0 PSF	0 PS		oad	
							Manufactu	rer Info		Comtech, Inc. 1001 S. Reillv	Road, Suite #6	339
										Fayetteville, N USA 28314 910-864-TRU	IC	
										lee	mte	есн

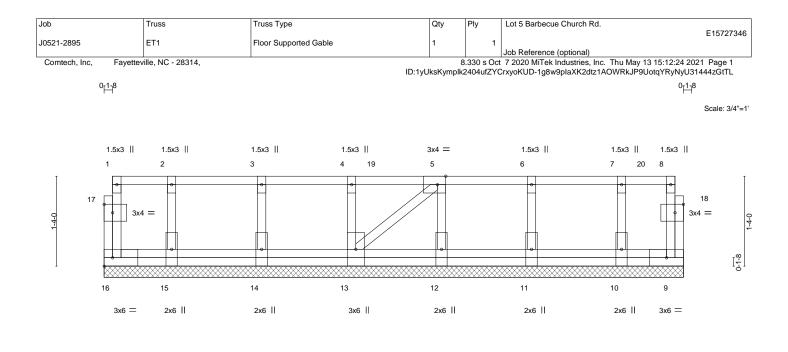
2	/	Client: Project:	Weaver Development	Date Input		Page 8 of 8
L 1	isDesign	Address:		Job N Proje	Name: Lot 5 Barbecue Ch ect #: J0521-2895	urch Road
GDH	S-P-F #2	2.000" X	12.000" 2-Ply		Level: Level	
				-		
•	•	• •	• •	•	• • •	
	•	• •	• •	•	• • •	
	F End Grain				2 SPF End Grain	
			8'10"			→ → 3 "
			8'10"			I
Multi-Ply	Analysis					
	p l ies using 2 row		.128x3") at 12" o.c Ma	ximum end distanc	e not to exceed 6".	
Capacity Load		0.0 % 0.0 PLF				
Yield Limit pe Yield Limit pe		157.4 PLF 78.7 lb				
Yield Mode		IV				
Edge Distand Min. End Dist		1 1/2" 3"				
Load Combin	ation					
Duration Fact	tor	1.00				
					Manufacturer Info	Comtech, Inc. 1001 S. Re∎y Road, Suite #639 Fayetteville, NC
						USA
						28314 910-964-TRUS
			This des	ign is valid until 4/7/2024		соттесн

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0521-2895 Lot 5 Barbecue Church Rd.

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15727346 thru E15727353


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

May 13,2021

Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Plate Offsets (X,Y) [5:0-1-8,Edge], [17:0-1-8,0-1-8], [18:0-1	-8 0-1-81	8-7-0 8-7-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.00 WB 0.05 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	- n/a 999 - n/a 999	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SP	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	<i>y</i> 11	oc purlins,

REACTIONS. All bearings 8-7-0.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

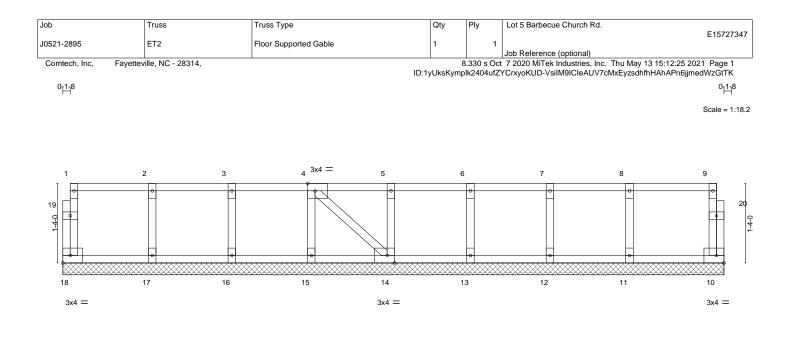
3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard


1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 3=-71 6=-71 19=-71 20=-77

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>11-1-0</u> 11-1-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [14:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.07 BC 0.01 WB 0.04 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999 a - n/a 999	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	 No.1 (flat) No.1 (flat) No.3(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o		•

REACTIONS.

DNS. All bearings 11-1-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

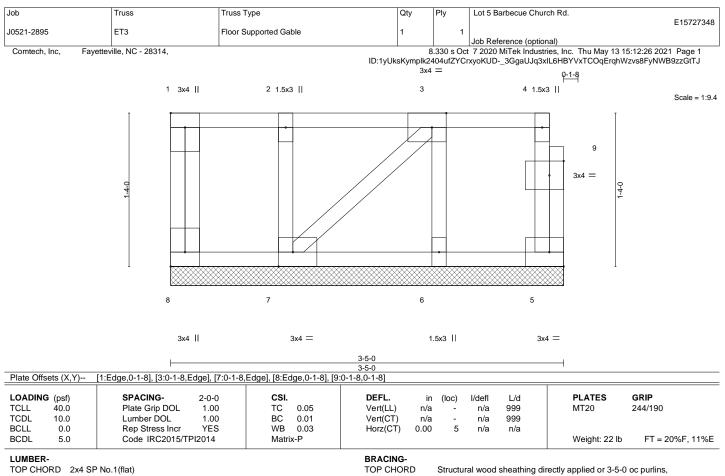
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

May 13,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

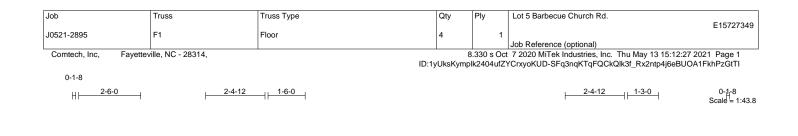
2) Gable requires continuous bottom chord bearing.

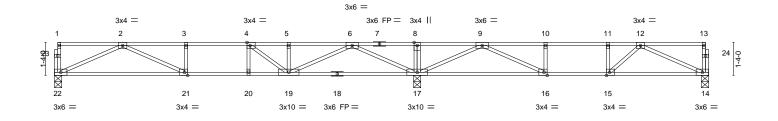
3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

I	<u>14-7-12</u> 14-7-12					<u>26-5-</u> 11-9-		
Plate Offsets (X,Y) [4:0-1-8,Edge], [15:0-1-8,Edge], [16:0-1	-8,Edge], [21:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.59 WB 0.53 Matrix-S	. ,	in (loc) -0.17 21-22 -0.25 21-22 0.03 14	l/defl >999 >697 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 129 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 22 WEBS 22 REACTIONS.	44 SP No.1(flat) 44 SP No.1(flat) 44 SP No.3(flat) (size) 22=0-3-8, 17=0-3-8, 14=0-3-8 lax Grav 22=728(LC 10), 17=1669(LC 1), 14	=562(LC 7)	BRACING- TOP CHORI BOT CHORI	except D Rigid c	end verti eiling dire	cals.	ectly applied or 6-0-0 o r 10-0-0 oc bracing, 1	•
TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) of 2-3=-1987/0, 3-4=-1987/0, 4-5=-1740/0, 5-6: 9-10=-1183/0, 10-11=-1183/0, 11-12=-1183/ 21-22=0/1314, 20-21=0/1987, 19-20=0/1987 15-16=0/1183, 14-15=0/954 8-17=-284/0, 2-22=-1440/0, 2-21=0/745, 3-2 4-19=-646/0, 9-17=-1465/0, 9-16=0/917, 10-	:-1740/0, 6-8=0/1282, 8-9 0 , 17-19=-191/818, 16-17= 1=-260/0, 6-17=-1781/0, 6	=0/1282, 366/574, 5-19=0/1122,					
NOTES-								

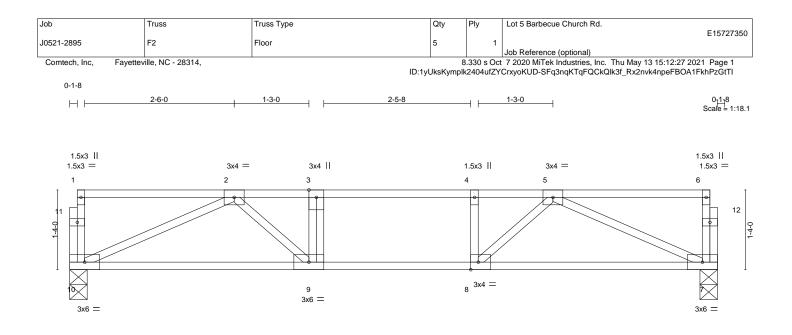
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

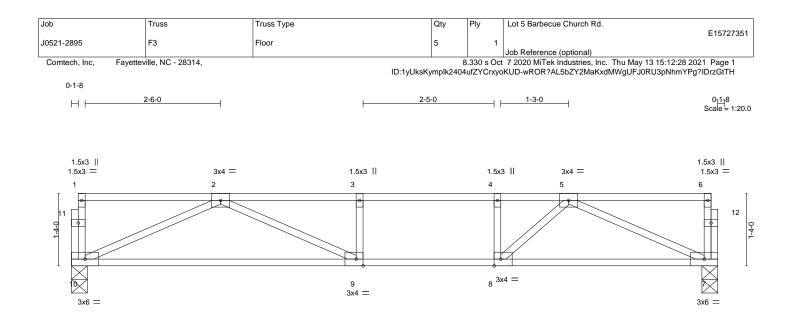
			10-10-0 10-10-0			
Plate Offsets (X,Y)	[8:0-1-8,Edge]	1				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.35 WB 0.30 Matrix-S	DEFL. i Vert(LL) -0.03 Vert(CT) -0.11 Horz(CT) 0.02	1 9-10 >999 360	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	² No.1(flat) ² No.1(flat) ² No.3(flat) e) 10=0-3-8, 7=0-3-8		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d except end verticals. Rigid ceiling directly applied	2 11) oc purlins,

Max Grav 10=576(LC 1), 7=576(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1234/0, 3-4=-1234/0, 4-5=-1234/0

BOT CHORD 9-10=0/981, 8-9=0/1234, 7-8=0/982 WEBS 2-10=-1073/0, 5-7=-1075/0, 5-8=0/485, 2-9=0/478, 3-9=-255/0, 4-8=-266/0


NOTES-

 Unbalanced floor live loads have been considered for this design.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 			<u>11-11-0</u> 11-11-0			
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.68 BC 0.56 WB 0.34 Matrix-S	DEFL. ir Vert(LL) -0.19 Vert(CT) -0.29 Horz(CT) 0.02	9-10 >740 480 9-10 >490 360	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.		

REACTIONS. (size) 10=0-3-8, 7=0-3-8 Max Grav 10=635(LC 1), 7=635(LC 1)

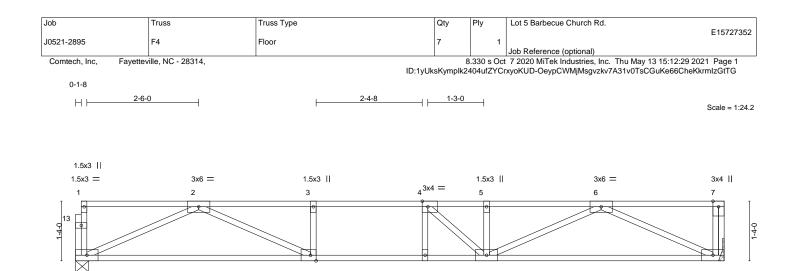
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1508/0, 3-4=-1508/0, 4-5=-1508/0

BOT CHORD 9-10=0/1112, 8-9=0/1508, 7-8=0/1121

WEBS 2-10=-1219/0, 2-9=0/558, 5-7=-1228/0, 5-8=0/655, 4-8=-353/0

NOTES-


 Unbalanced floor live loads have been considered for this design.
 Plates checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10

1.5x3 ||

9

3x6 =

l			<u>14-6-0</u> 14-6-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [11:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.61 BC 0.84 WB 0.46 Matrix-S	DEFL. ii Vert(LL) -0.20 Vert(CT) -0.20 Horz(CT) 0.00	5 9-10 >684 360	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.		

Max Grav 12=778(LC 1), 8=784(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2243/0, 3-4=-2243/0, 4-5=-2186/0, 5-6=-2186/0

11-12=0/1424, 10-11=0/2243, 9-10=0/2243, 8-9=0/1429 BOT CHORD WEBS 2-12=-1561/0, 2-11=0/958, 3-11=-303/0, 6-8=-1573/0, 6-9=0/836, 5-9=-271/41, 4-9=-428/186

NOTES-

2

3x6 =

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

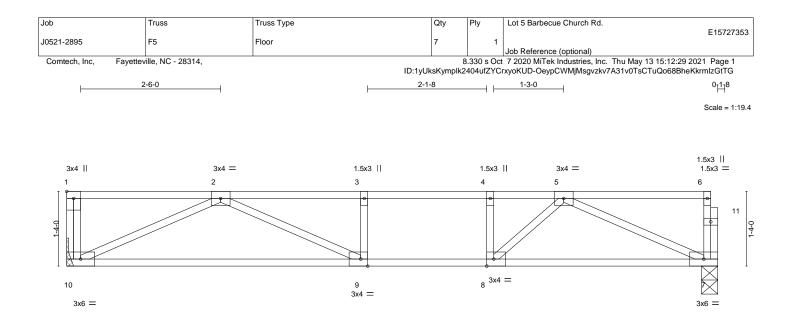
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

11

3x4 =

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



8

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1			11-7-8			
			11-7-8			1
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8	,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.60 BC 0.51 WB 0.33	DEFL. in Vert(LL) -0.16 Vert(CT) -0.25 Horz(CT) 0.02	9-10 >846 480 9-10 >540 360	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S		, nja nja	Weight: 58 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.			
WEBS 2x4 SP No.3(flat)		BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.			
REACTIONS. (size Max G	e) 10=Mechanical, 7=0-3-8 Brav 10=626(LC 1), 7=619(LC 1)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1441/0, 3-4=-1441/0, 4-5=-1441/0

BOT CHORD 9-10=0/1081, 8-9=0/1441, 7-8=0/1087

WEBS 2-10=-1190/0, 2-9=0/515, 5-7=-1190/0, 5-8=0/606, 4-8=-323/0

NOTES-

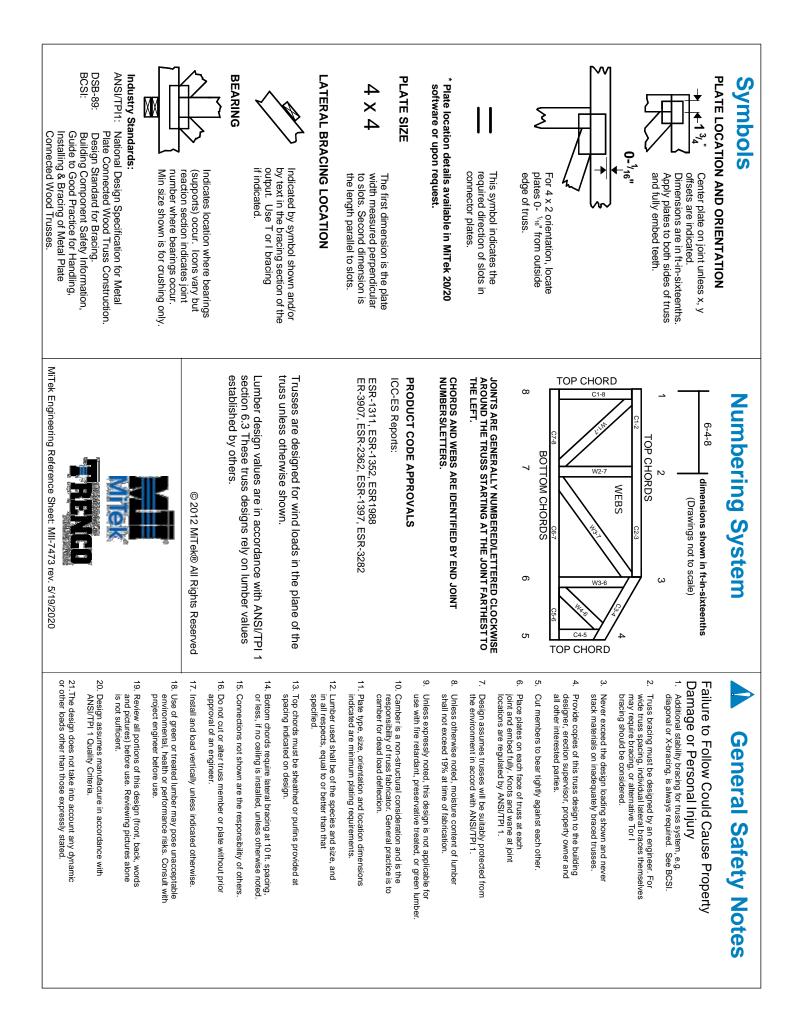
1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

May 13,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

