
<image/>	FIRST FLOOR PLATE HEIGHT BATH ROOM PLATE HEIGHT 91 1/2"		
CLIMATE ZONE ZONE 3A ZONE 4A ZONE 5A FENESTRATION U-FACTOR 0.35 0.35 0.35 SKYLIGHT U-FACTOR 0.55 0.55 0.55 GLAZED FENESTRATION SHGC 0.30 0.30 0.30 CEILING R-VALUE 38 or 30ci 38 or 30ci 38 or 30ci WALL R-VALUE 15 15 19 FLOOR R-VALUE 0 10 10 * BASEMENT WALL R-VALUE 5/13 10/15 10/15 ** SLAB R-VALUE 0 10 10 * CRAWL SPACE WALL R-VALUE 5/13 10/15 10/19 ** 10/13" MEANS R-10 SHEATHING INSULATION OR R-13 CAVITY INSULATION * 10/19 ** 10/13" MEANS R-10 SHEATHING INSULATION OR R-13 CAVITY INSULATION OF FOUNDATION WALL DESIGNED FOR WIND SPEED OF 120 MPH, 3 SECOND GUST (03 FASTEST MILE) EXPOSURE "B" COMPONENT & CLADDING DESIGNED FOR THE FOLLOWING LOADS MEAN ROOF UP TO 30' 30'-1" TO 35' 35'-1" TO 40' 40'-1" TO 45' ZONE 1 14.2 -15.0 14.9 -15.8 15.5 -16.4 15.9 -20.2 <th>Section N1102. envelop infiltrati allow fo where p stripped materia 1. Block open to 2. Capp</th> <th>SHAKE SHAKE A 102.4 A 10 Building thermal envelope. The building thermal be shall be durably sealed with an air barrier system to limit on. The sealing methods between dissimilar materials shall or differential expansion and contraction. For all homes, present, the following shall be caulked, gasketed, weather d or otherwise sealed with an air barrier material or solid I consistent with Appendix E-2.4 of this code: sing and sealing floor/ceiling systems and under knee walls ourconditioned or exterior space. ing and sealing shafts or chases, including flue shafts. ing and sealing soffit or dropped ceiling areas.</th> <th>FRONT ELE</th>	Section N1102. envelop infiltrati allow fo where p stripped materia 1. Block open to 2. Capp	SHAKE SHAKE A 102.4 A 10 Building thermal envelope. The building thermal be shall be durably sealed with an air barrier system to limit on. The sealing methods between dissimilar materials shall or differential expansion and contraction. For all homes, present, the following shall be caulked, gasketed, weather d or otherwise sealed with an air barrier material or solid I consistent with Appendix E-2.4 of this code: sing and sealing floor/ceiling systems and under knee walls ourconditioned or exterior space. ing and sealing shafts or chases, including flue shafts. ing and sealing soffit or dropped ceiling areas.	FRONT ELE
ZONE 5 18.2 -24.0 19.1 -25.2 19.8 -26.2 20.4 -26.9 BOOGE VEENTILATION SETION ROOE Setimination Roof 1 Ventilation required. Enclosed attics and enclosed rafter space formed where ceilings are applied directly to the underside of roof rafters shall have cross ventilation for each separate space by ventilating openings protected against the entrance of rain or snow. Ventilation openings shall have a least dimension of 1/16 inch (1.6 mm) minimum and 1/4 inch (6.4 mm) maximum. Ventilation openings having a least dimension of 1/16 inch (1.6 mm) minimum and 1/4 inch (6.4 mm) maximum. Openings in roof framing members shall conform to the screening, hardware cloth, or similar material with openings having a least dimension of 1/16 inch (1.6 mm) minimum and 1/4 inch (6.4 mm) maximum. Openings in roof framing members shall conform to the screening, hardware and the total area ventilating area shall not be less than 1/150 of the area of the space ventilated except that reduction of the total area to 1/300 is permitted provided that at least 50 percent and not more than 80 percent of the required ventilating area shall not be less than 1/150 of the area of the space ventilated except that reduction of the required ventilators located in the upper portion of the space to be ventilated at least 3 feet (914 mm) above the eave or cornice vents. As an alternative, the net free cross-ventilation area may be reduced to 1/300 when a Class I or II avor retarder is installed on the warm-in-winter side of the ceiling. Lendosed attic/rafter spaces requiring less than 1 square foot (0.0929 m2) of ventilation may be vented with continuous soffit ventilation	SUB FLOOR		12 9 Image: Constraint of the second of the

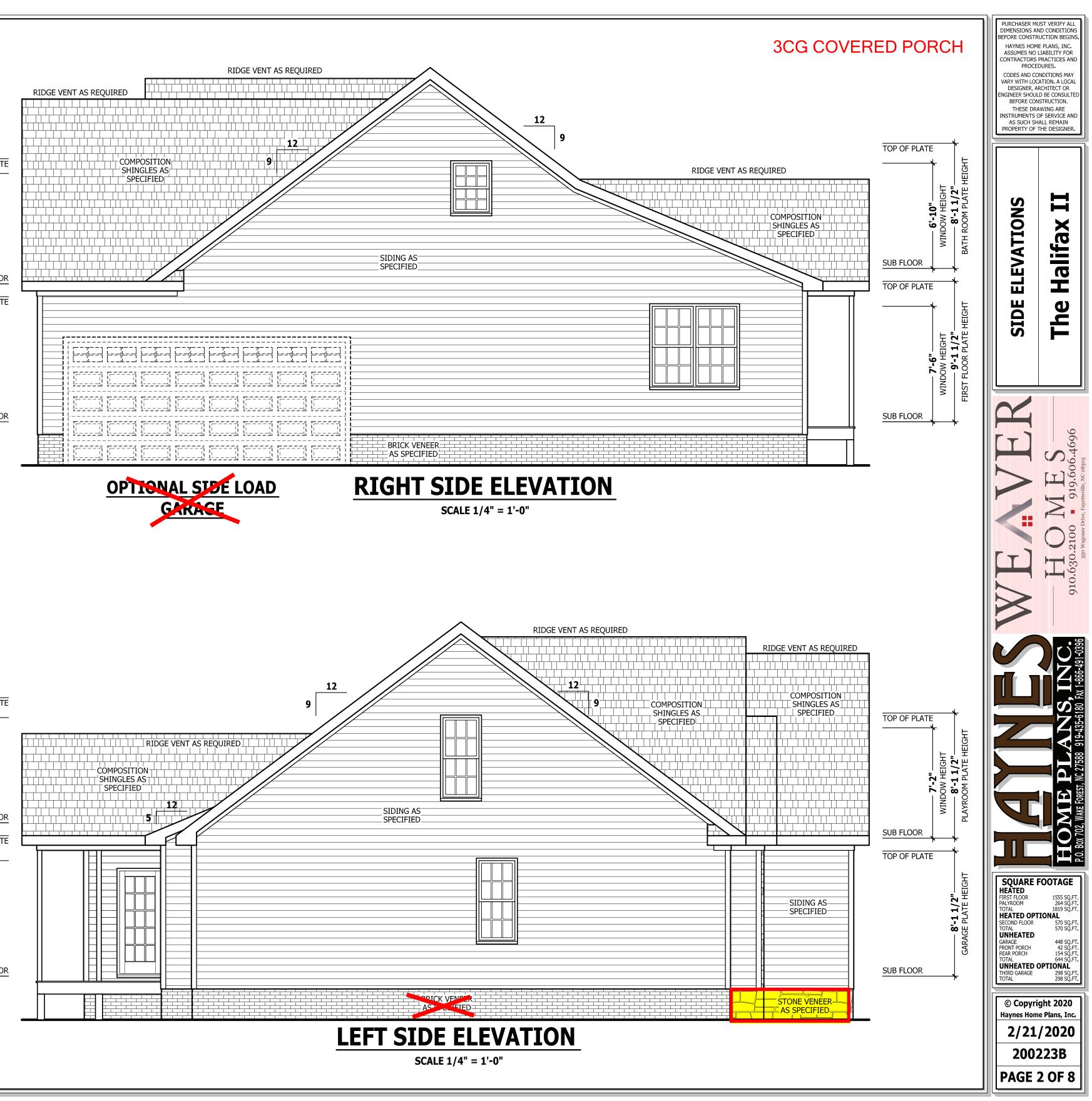
GUARD RAIL NOTES

SECTION R312

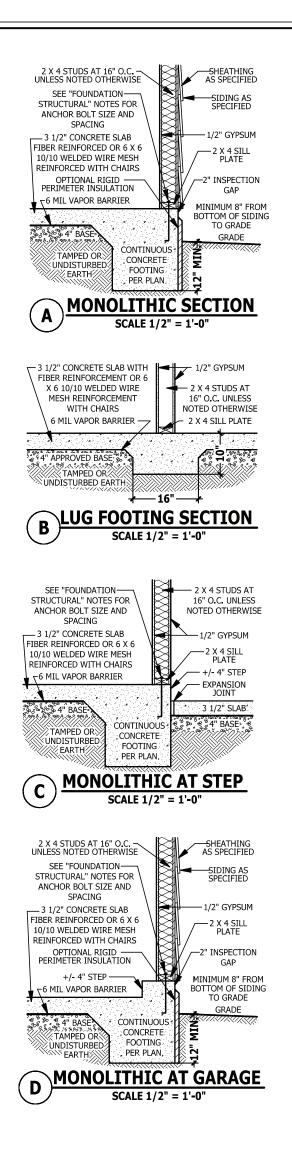
R312.1 Where required. *Guards* shall be located along open-sided walking surfaces, including stairs, ramps and landings, that are located more than 30 inches (762 mm) measured vertically to the floor or grade below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Insect screening shall not be considered as a guard.

R312.2 Height. Required guards at open-sided walking surfaces, including stairs, porches, balconies or landings, shall be not less than 36 inches (914 mm) high measured vertically above the adjacent walking surface, adjacent fixed seating or the line connecting the leading edges of the treads. Exceptions:

1. *Guards* on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the treads.


2. Where the top of the *guard* also serves as a handrail on the open sides of stairs, the top of the *guard* shall not be not less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads.

R312.3 Opening limitations. Required *guards* shall not have openings from the walking surface to the required *guard* height which allow passage of a sphere 4 inches (102 mm)in diameter Exceptions:


1. The triangular openings at the open side of a stair, formed by the riser, tread and bottom rail of a *guard*, shall not allow passage of a sphere 6 inches (153 mm) in diameter.

2. Guards on the open sides of stairs shall not have openings which allow passage of a sphere 4 3/8 inches (111 mm) in diameter.

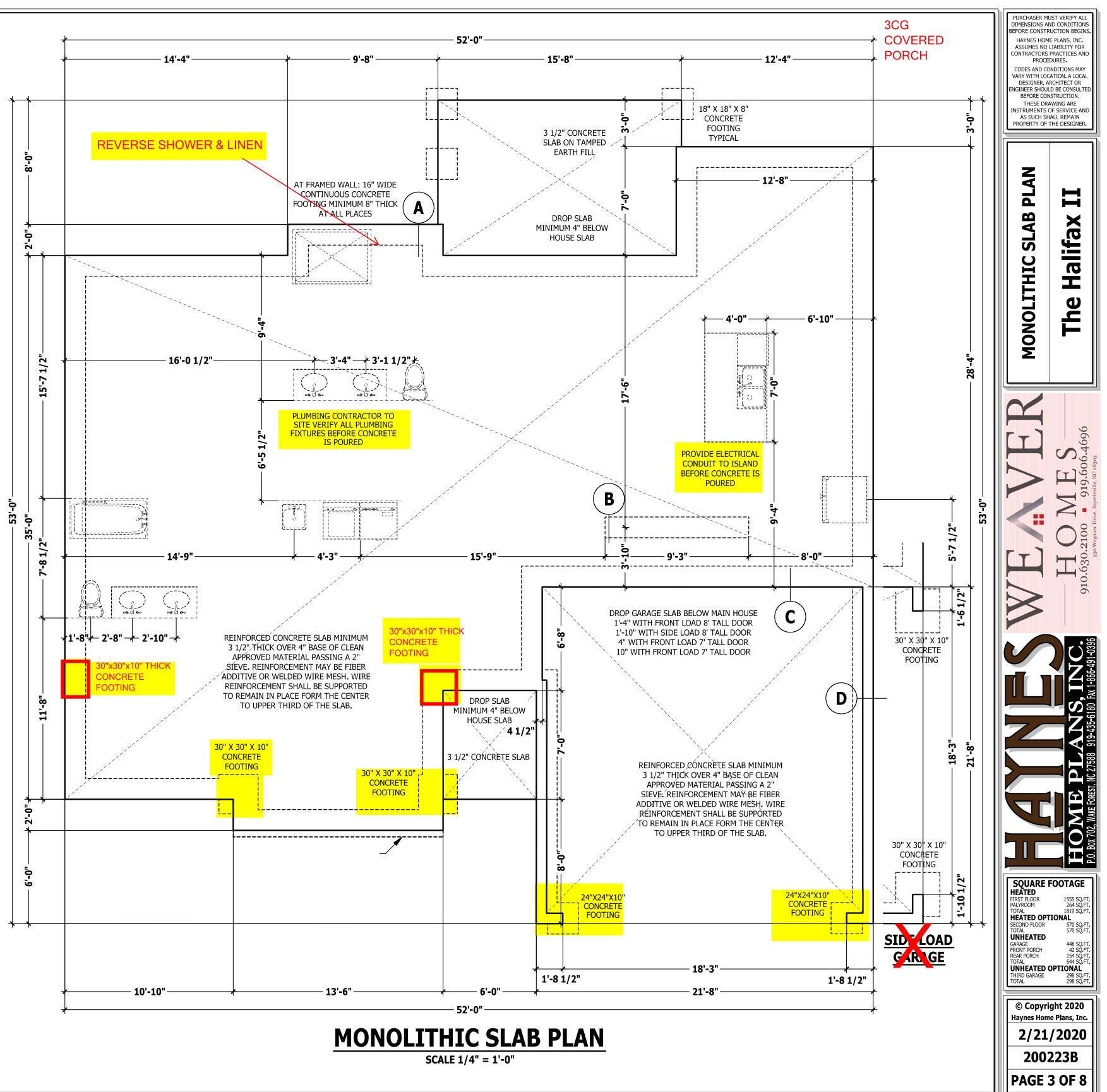
Development Company, Inc\200223B Halifax II\200223B Halifax II.ae Z:\Builder\Weaver

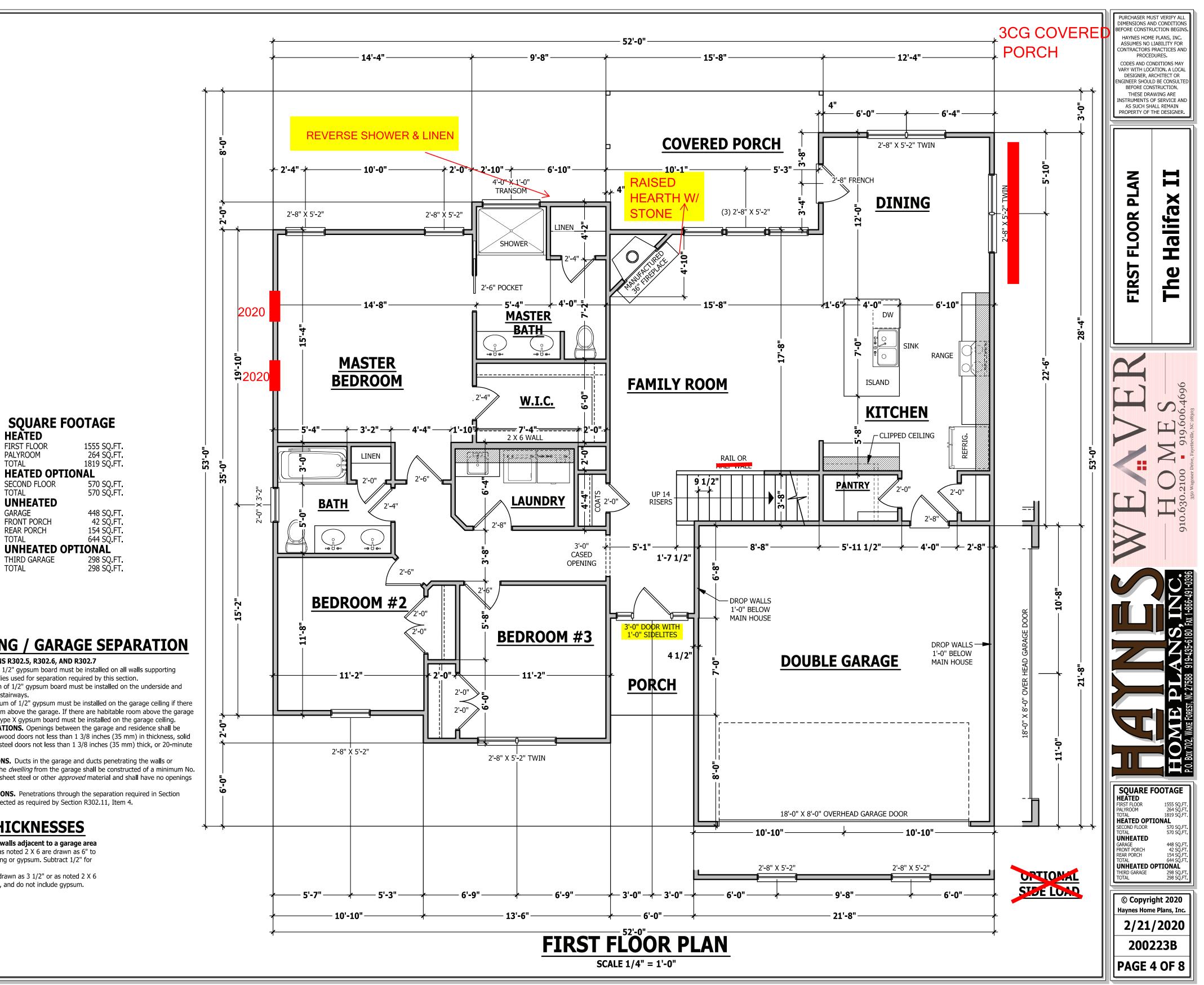
FOUNDATION STRUCTURAL

115 to 130 mph wind zone (1 1/2 to 2 1/2 story)

CONTINUOUS FOOTING: 16" wide and 8" thick minimum. 20" wide minimum at brick veneer. Must extended 2" to either side of supported wall. GIRDERS: (3) 2 X 10 girder unless noted otherwise.

PIERS: 16" X 16" piers with 8" solid masonry cap on 30" X 30" X 10" concrete footing with maximum pier height of 64" with hollow masonry and 160" with solid masonry.


POINT LOADS: designates significant point load and should have solid blocking to pier, girder or foundation wall. **115 and 120 MPH ANCHORS BOLTS:** 1/2" diameter anchor bolts embedded


minimum 7", maximum 6'-0" on center, within 12" of plate ends, and minimum two anchor bolts per plate.

130 MPH ANCHORS BOLTS: 1/2" diameter anchor bolts embedded minimum 15", maximum 4'-0" on center, within 12" of plate ends, and minimum two anchor bolts per plate.

CONCRETE: Concrete shall have a minimum 28 day strength of 3000 psi and a maximum 5" slump. Air entrained per table 402.2. All concrete shall be in accordance with ACI standards. All samples for pumping shall be taken from the exit end of the pump.

SOILS: Allowable soil bearing pressure assumed to be 2000 PSF. The contractor must contact a geotechnical engineer and a structural engineer if unsatisfactory subsurface conditions are encountered. The surface area adjacent to the foundation wall shall be provided with adequate drainage, and shall be graded so as to drain surface water away from foundation walls.

DWELLING / GARAGE SEPARATION

REFER TO SECTIONS R302.5, R302.6, AND R302.7

HEATED

PALYROOM

TOTAL

TOTAL

GARAGE FRONT PORCH **REAR PORCH** TOTAL

TOTAL

FIRST FLOOR

SECOND FLOOR

UNHEATED

THIRD GARAGE

WALLS. A minimum 1/2" gypsum board must be installed on all walls supporting floor/ceiling assemblies used for separation required by this section. **STAIRS.** A minimum of 1/2" gypsum board must be installed on the underside and

exposed sides of all stairways. **CEILINGS.** A minimum of 1/2" gypsum must be installed on the garage ceiling if there

are no habitable room above the garage. If there are habitable room above the garage a minimum of 5/8" type X gypsum board must be installed on the garage ceiling. **OPENING PENETRATIONS.** Openings between the garage and residence shall be

equipped with solid wood doors not less than 1 3/8 inches (35 mm) in thickness, solid or honeycomb core steel doors not less than 1 3/8 inches (35 mm) thick, or 20-minute fire-rated doors. **DUCT PENETRATIONS.** Ducts in the garage and ducts penetrating the walls or

ceilings separating the *dwelling* from the garage shall be constructed of a minimum No. 26 gage (0.48 mm) sheet steel or other *approved* material and shall have no openings into the garage.

OTHER PENETRATIONS. Penetrations through the separation required in Section R302.6 shall be protected as required by Section R302.11, Item 4.

WALL THICKNESSES

Exterior walls and walls adjacent to a garage area are drawn as 4" or as noted 2 X 6 are drawn as 6" to include 1/2" sheathing or gypsum. Subtract 1/2" for stud face.

Interior walls are drawn as 3 1/2" or as noted 2 X 6 are drawn as 5 1/2", and do not include gypsum.

STRUCTURAL NOTES

All construction shall conform to the latest requirements of the 2018 North Carolina Residential Building Code, plus all local codes and regulations. This document in no way shall be construed to supersede the code.

JOB SITE PRACTICES AND SAFETY: Haynes Home Plans, Inc. assumes no liability for contractors practices and procedures or safety program. Haynes Home Plans, Inc. takes no responsibility for the contractor's failure to carry out the construction work in accordance with the contract documents. All members shall be framed, anchored, and braced in accordance with good construction practice and the building code.

DESIGN LOADS	LIVE LOAD	DEAD LOAD	DEFLECTION
USE	(PSF)	(PSF)	(LL)
Attics without storage	10		L/240
Attics with limited storage	20	10	L/360
Attics with fixed stairs	40	10	L/360
Balconies and decks	40	10	L/360
Fire escapes	40	10	L/360
Guardrails and handrails	200		
Guardrail in-fill components	50		
Passenger vehicle garages	50	10	L/360
Rooms other than sleeping	40	10	L/360
Sleeping rooms	30	10	L/360
Stairs	40		L/360
Snow	20		

FRAMING LUMBER: All non treated framing lumber shall be SPF #2 (Fb = 875 PSI) or SYP #2 (Fb = 750 PSI) and all treated lumber shall be SYP #2 (Fb = 750 PSI) unless noted other wise.

ÈNGINEERED WOOD BEAMS:

Laminated veneer lumber (LVL) = Fb=2600 PSI, Fv=285 PSI, E=1.9x10⁶ PSI Parallel strand lumber (PSL) = Fb=2900 PSI, Fv=290 PSI, E=2.0x10⁶ PSI Laminated strand lumber (LSL) Fb=2250 PSI, Fv=400 PSI, E=1.55x106 PSI Install all connections per manufacturers instructions.

TRUSS AND I-JOIST MEMBERS: All roof truss and I-joist layouts shall be prepared in accordance with this document. Trusses and I-joists shall be installed according to the manufacture's specifications. Any change in truss or I-joist layout shall be coordinated with Haynes Homes Plans, Inc. LINTELS: Brick lintels shall be 3 1/2" x 3 1/2" x 1/4" steel angle for up to 6'-0" span. 6" x 4" x 5/16" steel angle with 6" leg vertical for spans up to 9'-0" unless noted otherwise. 3 1/2" x 3 1/2" x 1/4" steel angle with 1/2" bolts at 2'-0" on center for spans up to 18'-0" unless noted otherwise. FLOOR SHEATHING: OSB or CDX floor sheathing minimum 1/2" thick for 16" on center joist spacing, minimum 5/8" thick for 19.2" on center joist spacing, and minimum 3/4" thick for 24" on center joist spacing. ROOF SHEATHING: OSB or CDX roof sheathing minimum 3/8" thick. **CONCRETE AND SOILS:** See foundation notes.

BRACE WALL PANEL NOTES

EXTERIOR WALLS: All exterior walls to be sheathed with CS-WSP or CS-SFB in accordance with section R602.10.3 unless noted otherwise.

GYPSUM: All interior sides of exterior walls and both sides interior walls to have 1/2" gypsum installed. When not using method GB gypsum to be fastened per table R702.3.5. Method GB to be fastened per table R602.10.1. **REQUIRED LENGTH OF BRACING:** Required brace wall length

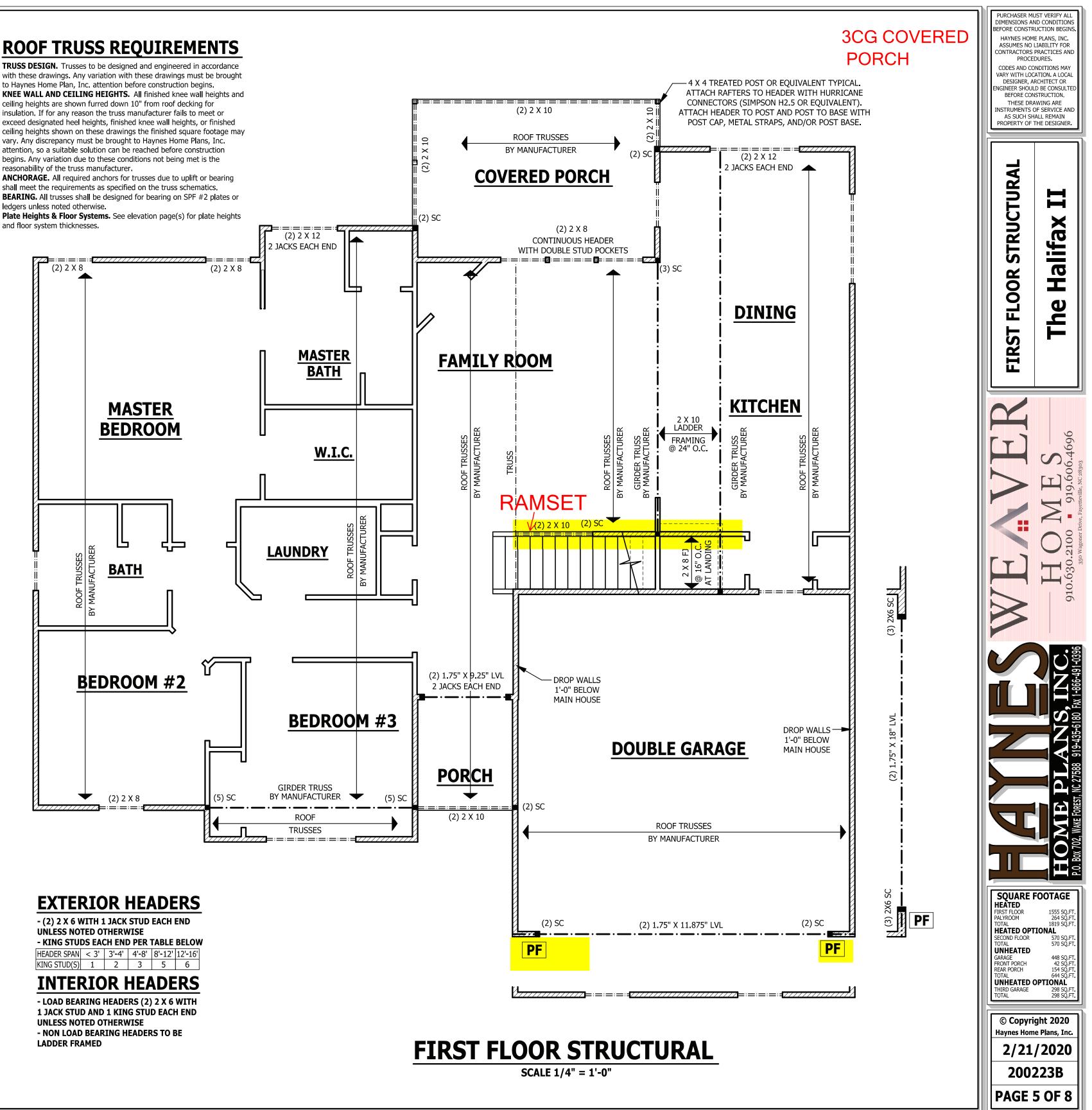
for each side of the circumscribed rectangle are interpolated per table R602.10.3. Methods CS-WSP and CS-SFB contribute their actual length. Method GB contributes 0.5 it's actual length. Method PF contributes 1.5 times its actual length. **HD:** 800 lbs hold down hold down device fastened to the edge

of the brace wall panel closets to the corner. Methods Per Table R602.10.1

CS-WSP: Shall be minimum 3/8" OSB or CDX nailed at 6" on center at edges and 12" on center at intermediate supports with 6d common nails or $8d(2 1/2" \log x 0.113" diameter)$. **CS-SFB:** Shall be minimum 1/2" structural fiber board nailed at 3" on center at edges and 3" on center at intermediate supports with 1 1/2" long x 0.12" diameter galvanized roofing nails.

GB: Interior walls show as GB are to have minimum 1/2" gypsum board on both sides of the wall fastened at 7" on center at edges and 7" on center at intermediate supports with minimum 5d cooler nails or #6 screws. **PF**: Portal fame per figure R602.10.1

- 6-16D SINKER NAILS FROM KING STUD TO HEADER-PONY WALL HEIGHT TO VARY Ś FRAMED HEADER PER PLAN E HEAD - STAP HEADER TO JACK -STUD ON INSIDE 1000 LBS OR Ы 4000 LBS WITH PONY WALL. Ы 16D 3" O. то тор **12'-0"** -Ъ® HEADER WITH 8D COMMON 0 **0** γŊ NAIL IN 3" GRID AND TO HEIGHT ROW FRAMING AT 3" ON CENTER TWO - OPTIONAL SPLICE WITHIN -MUMIXAM 24" OF MIDDLE OF WALL HEIGHT - JACK STUDS PER PLAN --SHEATHING DIRECTION -- ANCHORAGE PER FOUNDATION PORTAL FRAME AT OPENING PF HOD PF PER FIGURE AND SECTION R602.10.1) SCALE 1/4" = 1'-0"


ROOF TRUSS REQUIREMENTS

TRUSS DESIGN. Trusses to be designed and engineered in accordance with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins. KNEE WALL AND CEILING HEIGHTS. All finished knee wall heights and ceiling heights are shown furred down 10" from roof decking for insulation. If for any reason the truss manufacturer fails to meet or exceed designated heel heights, finished knee wall heights, or finished ceiling heights shown on these drawings the finished square footage may vary. Any discrepancy must be brought to Haynes Home Plans, Inc.

attention, so a suitable solution can be reached before construction begins. Any variation due to these conditions not being met is the reasonability of the truss manufacturer. **ANCHORAGE.** All required anchors for trusses due to uplift or bearing

shall meet the requirements as specified on the truss schematics. **BEARING.** All trusses shall be designed for bearing on SPF #2 plates or ledgers unless noted otherwise.

and floor system thicknesses.

STRUCTURAL NOTES

All construction shall conform to the latest requirements of the 2018 North Carolina Residential Building Code, plus all local codes and regulations. This document in no way shall be construed to supersede the code. JOB SITE PRACTICES AND SAFETY: Haynes Home Plans, Inc. assumes no liability for contractors practices and procedures or safety program. Haynes Home Plans, Inc. takes no responsibility for the contractor's failure to carry out the construction work in accordance with the contract documents. All members shall be framed, anchored, and braced in accordance with good struction practice and the building code

DESIGN LOADS	LIVE LOAD	DEAD LOAD	DEFLECTION							
USE	(PSF)	(PSF)	(LL)							
Attics without storage	10		L/240							
Attics with limited storage	20	10	L/360							
Attics with fixed stairs	40	10	L/360							
Balconies and decks	40	10	L/360							
Fire escapes	40	10	L/360							
Guardrails and handrails	200									
Guardrail in-fill components	50									
Passenger vehicle garages	50	10	L/360							
Rooms other than sleeping	40	10	L/360							
Sleeping rooms	30	10	L/360							
Stairs	40		L/360							
Snow	20									

FRAMING LUMBER: All non treated framing lumber shall be SPF #2 (Fb = 875 PSI) or SYP #2 (Fb = 750 PSI) and all treated lumber shall be SYP #2 (Fb = 750 PSI) unless noted other wise.

ENGINEERED WOOD BEAMS :

Laminated veneer lumber (LVL) = Fb=2600 PSI, Fv=285 PSI, E=1.9x10⁶ PSI Parallel strand lumber (PSL) = Fb=2900 PSI, Fv=290 PSI, E=2.0x106 PSI Laminated strand lumber (LSL) Fb=2250 PSI, Fv=400 PSI, E=1.55x106 PSI Install all connections per manufacturers instructions.

TRUSS AND I-JOIST MEMBERS: All roof truss and I-joist layouts shall be prepared in accordance with this document. Trusses and I-joists shall be installed according to the manufacture's specifications. Any change in truss or I-joist layout shall be coordinated with Haynes Homes Plans, Inc. LINTELS: Brick lintels shall be 3 1/2" x 3 1/2" x 1/4" steel angle for up to 6'-0" span, 6" x 4" x 5/16" steel angle with 6" leg vertical for spans up to 9'-0" unless noted otherwise. 3 1/2" x 3 1/2" x 1/4" steel angle with 1/2" bolts at 2'-0" on center for spans up to 18'-0" unless noted otherwise. FLOOR SHEATHING: OSB or CDX floor sheathing minimum 1/2" thick for 16" on center joist spacing, minimum 5/8" thick for 19.2" on center joist spacing, and minimum 3/4" thick for 24" on center joist spacing. **ROOF SHEATHING:** OSB or CDX roof sheathing minimum 3/8" thick. **CONCRETE AND SOILS:** See foundation notes.

ROOF TRUSS REQUIREMENTS

TRUSS DESIGN. Trusses to be designed and engineered in accordance with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins. KNEE WALL AND CEILING HEIGHTS. All finished knee wall heights and ceiling heights are shown furred down 10" from roof decking for insulation. If for any reason the truss manufacturer fails to meet or exceed designated heel heights, finished knee wall heights, or finished ceiling heights shown on these drawings the finished square footage may vary. Any discrepancy must be brought to Haynes Home Plans, Inc. attention, so a suitable solution can be reached before construction begins. Any variation due to these conditions not being met is the reasonability of the truss manufacturer.

ANCHORAGE. All required anchors for trusses due to uplift or bearing shall meet the requirements as specified on the truss schematics. **BEARING.** All trusses shall be designed for bearing on SPF #2 plates or ledgers unless noted otherwise.

Plate Heights & Floor Systems. See elevation page(s) for plate heights and floor system thicknesses.

ATTIC ACCESS

SECTION R807

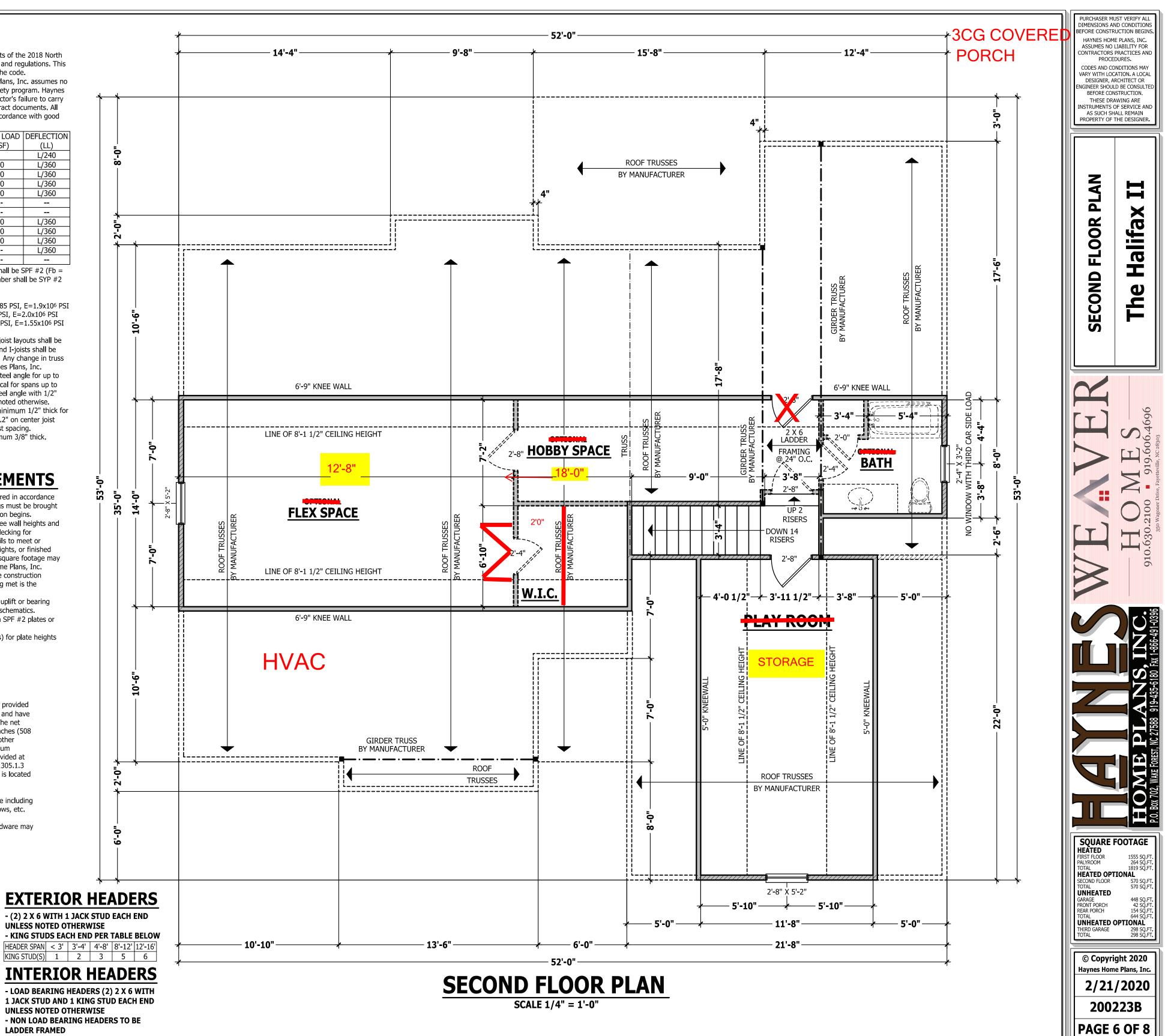
R807.1 Attic access. An attic access opening shall be provided to attic areas that exceed 400 square feet (37.16 m2) and have a vertical height of 60 inches (1524 mm) or greater. The net clear opening shall not be less than 20 inches by 30 inches (508 mm by 762 mm) and shall be located in a hallway or other readily accessible location. A 30-inch (762 mm) minimum unobstructed headroom in the attic space shall be provided at some point above the access opening. See Section M1305.1.3 for access requirements where mechanical equipment is located in attics.

Exceptions:

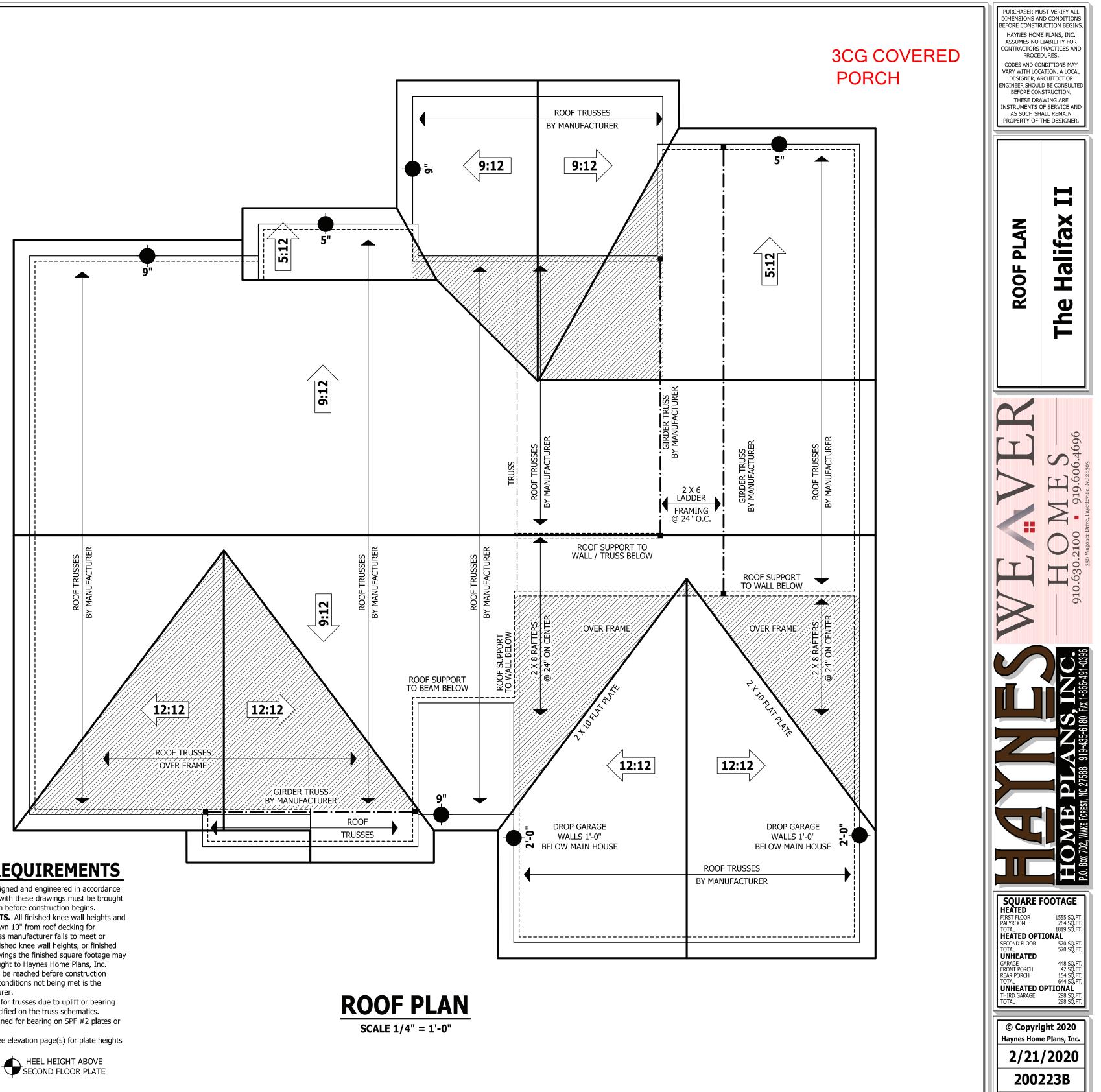
1. Concealed areas not located over the main structure including porches, areas behind knee walls, dormers, bay windows, etc. are not required to have access.

2. Pull down stair treads, stringers, handrails, and hardware may protrude into the net clear opening.

WALL THICKNESSES


Exterior walls and walls adjacent to a garage area are drawn as 4" or as noted 2 X 6 are drawn as 6" to include 1/2" sheathing or gypsum. Subtract 1/2" for stud face.

Interior walls are drawn as 3 1/2" or as noted 2 X 6 - (2) 2 X 6 WITH 1 JACK STUD EACH END are drawn as 5 1/2", and do not include gypsum.


UNLESS NOTED OTHERWISE - KING STUDS EACH END PER TABLE BELOW HEADER SPAN < 3' 3'-4' 4'-8' 8'-12' 12'-16' KING STUD(S) 1 2 3 5 6

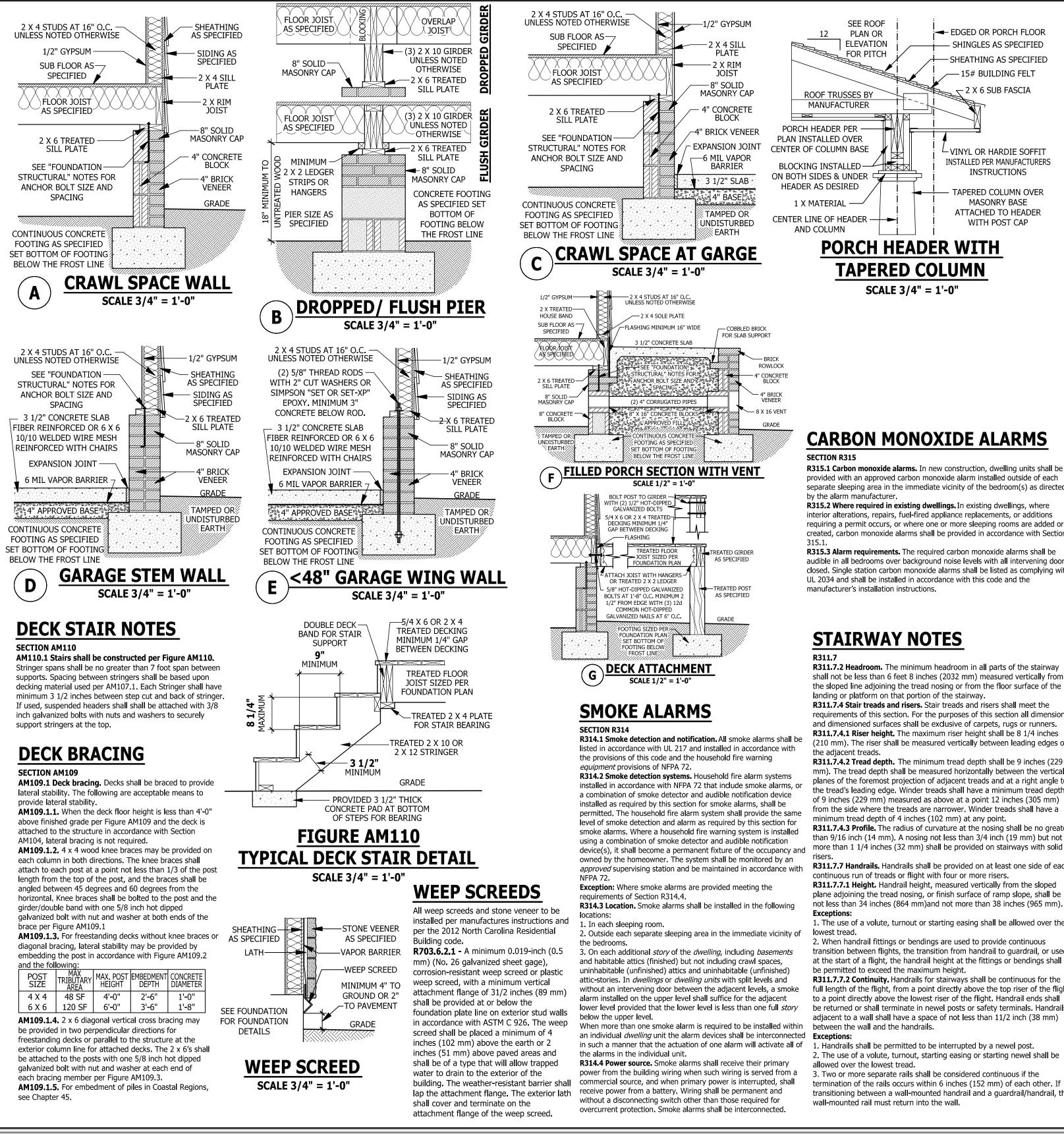
INTERIOR HEADERS

- LOAD BEARING HEADERS (2) 2 X 6 WITH 1 JACK STUD AND 1 KING STUD EACH END UNLESS NOTED OTHERWISE - NON LOAD BEARING HEADERS TO BE LADDER FRAMED

Ħ Company, Inc\200223B Halifax II\200223B Halifax Development ilder/W Z:\Bı

PAGE 7 OF 8

ROOF TRUSS REQUIREMENTS


TRUSS DESIGN. Trusses to be designed and engineered in accordance with these drawings. Any variation with these drawings must be brought to Haynes Home Plan, Inc. attention before construction begins. KNEE WALL AND CEILING HEIGHTS. All finished knee wall heights and ceiling heights are shown furred down 10" from roof decking for insulation. If for any reason the truss manufacturer fails to meet or exceed designated heel heights, finished knee wall heights, or finished ceiling heights shown on these drawings the finished square footage may vary. Any discrepancy must be brought to Haynes Home Plans, Inc. attention, so a suitable solution can be reached before construction begins. Any variation due to these conditions not being met is the reasonability of the truss manufacturer.

ANCHORAGE. All required anchors for trusses due to uplift or bearing shall meet the requirements as specified on the truss schematics. **BEARING.** All trusses shall be designed for bearing on SPF #2 plates or ledgers unless noted otherwise.

Plate Heights & Floor Systems. See elevation page(s) for plate heights and floor system thicknesses.

HEEL HEIGHT ABOVE FIRST FLOOR PLATE

provided with an approved carbon monoxide alarm installed outside of each separate sleeping area in the immediate vicinity of the bedroom(s) as directed

requiring a permit occurs, or where one or more sleeping rooms are added or created, carbon monoxide alarms shall be provided in accordance with Section

audible in all bedrooms over background noise levels with all intervening doors closed. Single station carbon monoxide alarms shall be listed as complying with

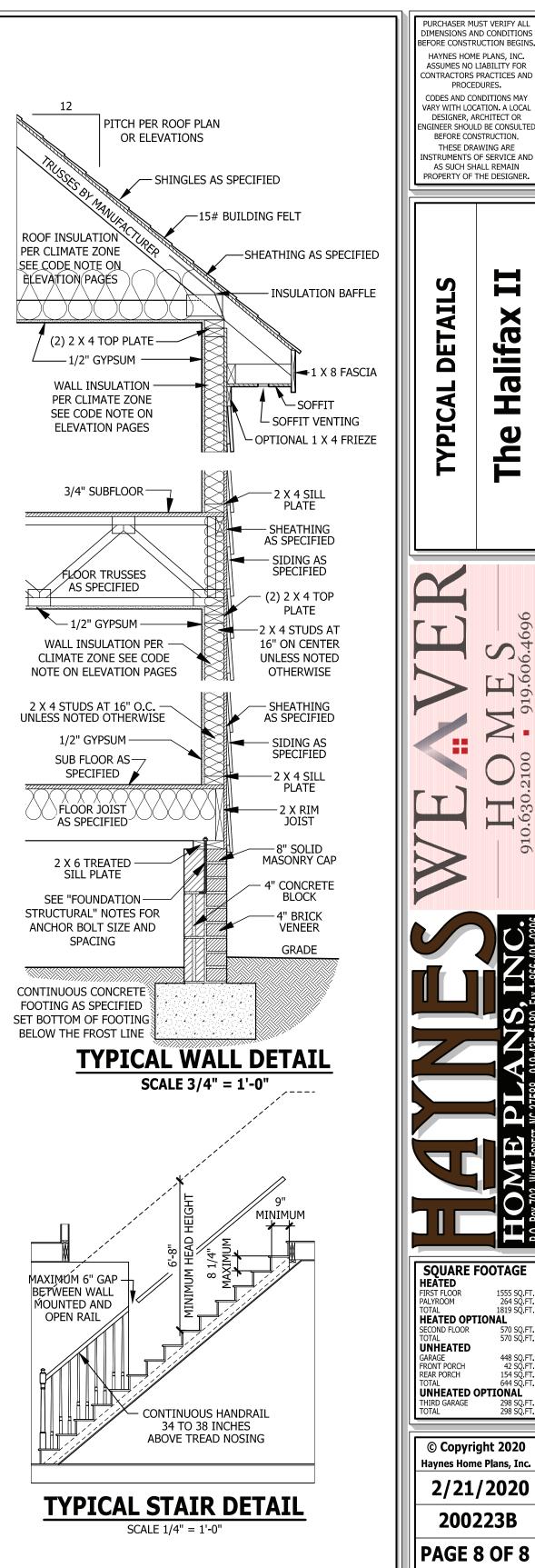
R311.7.2 Headroom. The minimum headroom in all parts of the stairway shall not be less than 6 feet 8 inches (2032 mm) measured vertically from the sloped line adjoining the tread nosing or from the floor surface of the

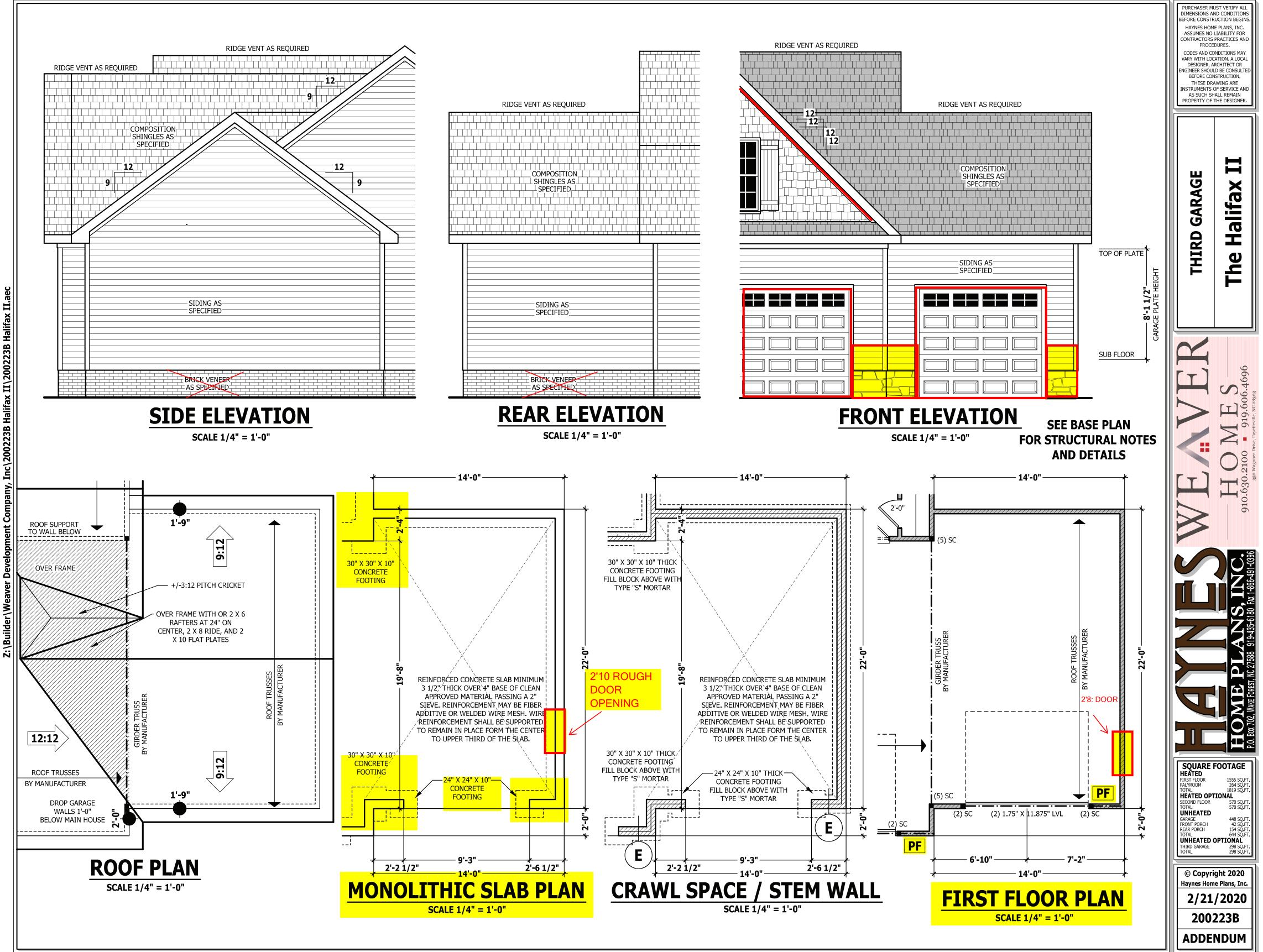
requirements of this section. For the purposes of this section all dimensions and dimensioned surfaces shall be exclusive of carpets, rugs or runners. R311.7.4.1 Riser height. The maximum riser height shall be 8 1/4 inches (210 mm). The riser shall be measured vertically between leading edges of

R311.7.4.2 Tread depth. The minimum tread depth shall be 9 inches (229 mm). The tread depth shall be measured horizontally between the vertical planes of the foremost projection of adjacent treads and at a right angle to the tread's leading edge. Winder treads shall have a minimum tread depth of 9 inches (229 mm) measured as above at a point 12 inches (305 mm) from the side where the treads are narrower. Winder treads shall have a

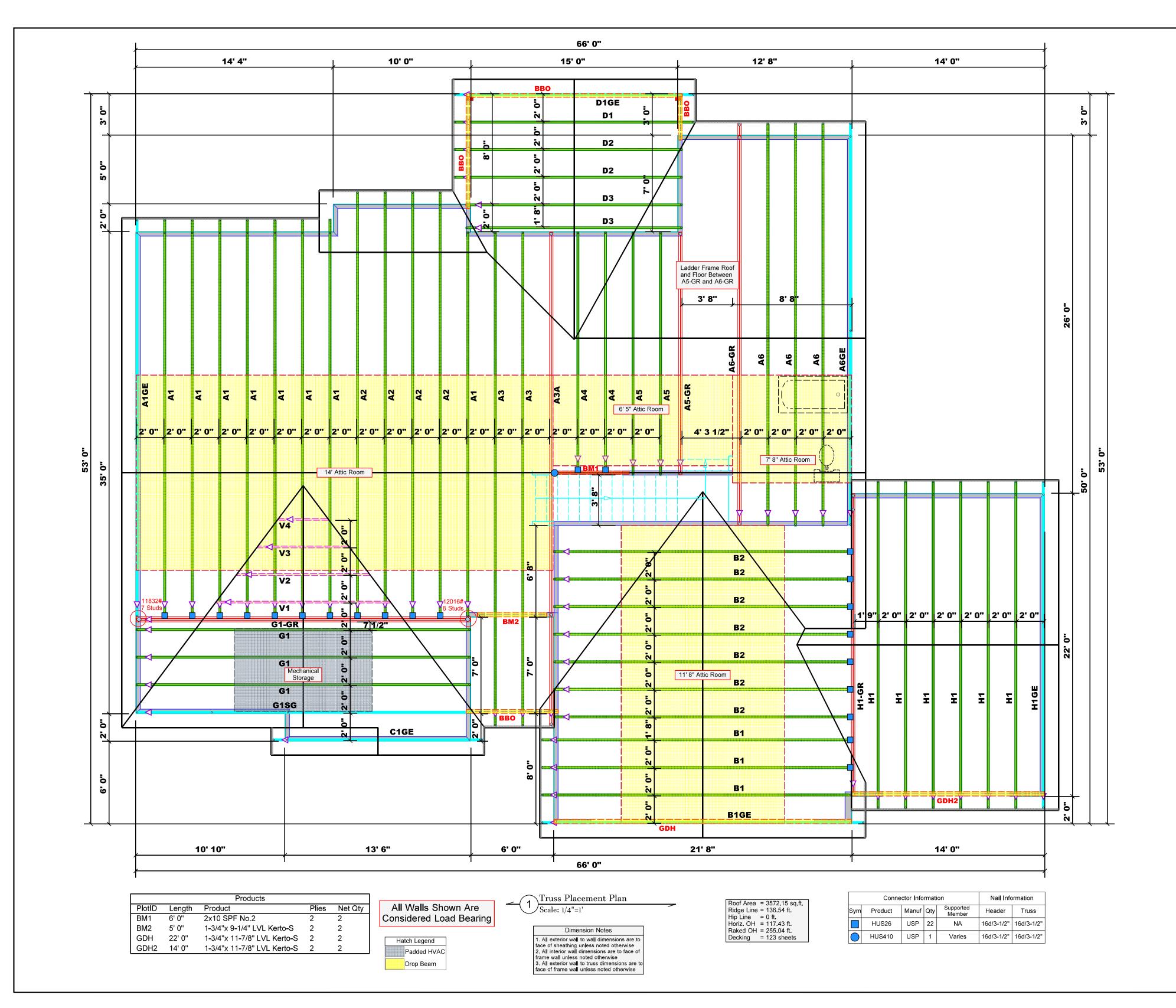
R311.7.4.3 Profile. The radius of curvature at the nosing shall be no greater than 9/16 inch (14 mm). A nosing not less than 3/4 inch (19 mm) but not

R311.7.7 Handrails. Handrails shall be provided on at least one side of each

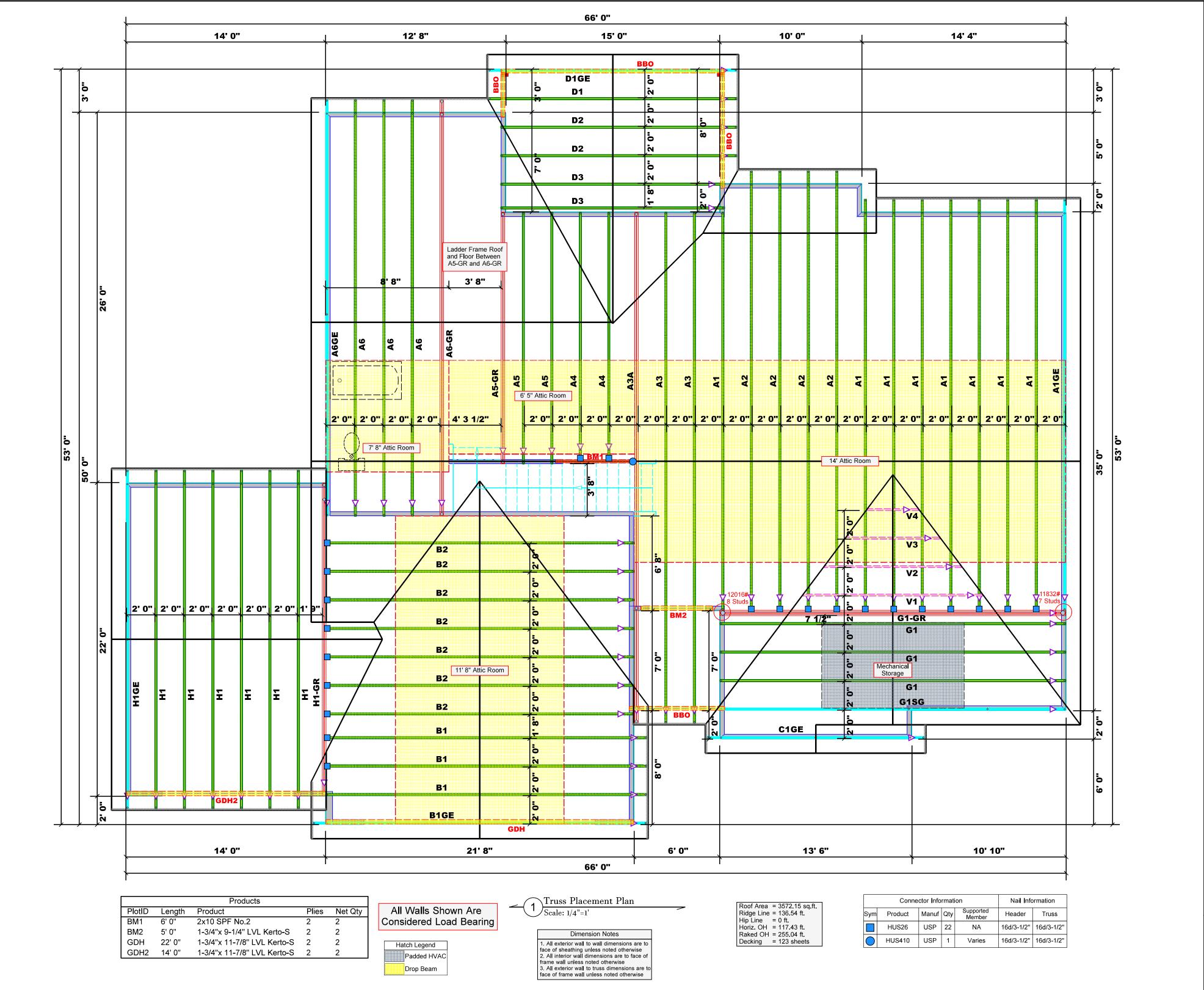

plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm)and not more than 38 inches (965 mm).


1. The use of a volute, turnout or starting easing shall be allowed over the

transition between flights, the transition from handrail to guardrail, or used at the start of a flight, the handrail height at the fittings or bendings shall


R311.7.7.2 Continuity. Handrails for stairways shall be continuous for the full length of the flight, from a point directly above the top riser of the flight to a point directly above the lowest riser of the flight. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails adjacent to a wall shall have a space of not less than 11/2 inch (38 mm)

termination of the rails occurs within 6 inches (152 mm) of each other. If transitioning between a wall-mounted handrail and a guardrail/handrail, the


Company, Inc\200223B Halifax II\200223B Halifax II.ae Ó iilder/W

deeme require attache Code r founda require but noi profess suppoi those registe design exceed	Fax: g reaction d to com ments. T d Tables equireme tion size d to supt greater sional sh t system specified red desig the supp 1 5000#. Signature	(910) rs less th ply with t he contra- (derived ints) to d and num port reaction than 1500 all be retar for any r in the att port reaction Davi ART F(S on TABL S ot STUDS	2 3 3 4 5 5	Adrage Exercises and the second secon	de the tive num 30000# ssign ds ined to that <i>IDS</i> 300 1 300 1 300 2 300 4 300 5
COUNTY Har	ADDRESS Lot	MODEL R00	DATE REV. 05/	DRAWN BY David Landry	SALESMAN Lenny Norris
Weaver Development Co. Inc.	Lot 5 C.P. Stewart Rd.	Halifax II	Seal Date		J0521-2900
	JOB NAME	PLAN	SEAL DATE		10B #

designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the

russ delivery package or online @ sbcindustry.c

соттесн ROOF & FLOOR **TRUSSES & BEAMS Reilly Road Industrial Park** Fayetteville, N.C. 28309 Phone: (910) 864-8787 Fax: (910) 864-4444 earing reactions less than or equal to 3000# are semed to comply with the prescriptive Code quirements. The contractor shall refer to the tached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the current output for any strating that expende upport system for any reaction that exceeds ose specified in the attached Tables. A sign the support system for all reactions that ceed 15000#. Signature David Landry LOAD CHART FOR JACK STUDS (BASED ON TABLES R502 5(1) & (6)) NUMBER OF JACK STUDS REQUIRED @ EA END OF HEADER/SIRDER FND RFACTION (UP TO) REQ'D STUDS FOR (3) PLY PLADLR FNN RFACTTO (UP TO) RCQ'D STUDS I (4) N V UFAIN -006 #7 ΕE A REQ.15.5 (2) PLV END E 1700 1 2550 1 3400 1 3400 2 6800 2 5100 2 5100 3 7650 3 10200 3 6800 4 10200 4 13600 4 8500 5 12750 5 17000 5 10200 6 15300 6 11900 7 13600 8 15300 9 Rd. Stewart 4BR Jdry Roof / 3GRF, Lenny Norris 05/12/21 5 C.P. David Lan nett Lot Har DATE REV. DRAWN BY SALESMAN ADDRESS COUNTY MODEL Inc. Ŝ Rd. Development Stewart J0521-2900 Halifax II Seal Date C.P. Weaver വ Lot JOB NAME SEAL DATE # BUILDER QUOTE # PLAN JOB

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

russ delivery package or online @ sbcindustry.c

Tis	Design	Pr	ient: oject: Idress:	Weaver De	evelopment				ut b y :	5/12/202 David La Lot 5 C.F	ndry	t Road			Page 1 of
÷	S-P-F #2	2.00	0" X ⁻	10.00	0" 2-	Ply - F	ASS		oject #:	J0521-29 evel: Level					
						-									
			1												
• • • • • • • • • • • • • • • • • • •	- 78m		西	•	at .	•	• 2 SPF								9 1
			5'6"				2 01 1	\rightarrow						\leftarrow	3"
1			5'6''					┥							
/lember In	formation						Rea	ction	s UNP	ATTERN	IED lb	(Uplift)			
Type: Plies: Moisture Con Deflection LL: Deflection TL:	480		Applicat Design I Building Load Sh Deck:	Method: Code:	Floor ASD IBC/IRC 20 ⁴ No Not Checke		Brg 1 2	Direc Vertic Vertic	al	Live 0 0		Dead 919 919	Snow 919 919	Wind 0 0	Cor
Importance: Temperature:	Normal - II Temp <= 100°F														
							Be	rings aring SPF	Length 3.500"	Dir. Vert	Cap. F 41%	React D/L lb 919 / 919	Total L 1837 L	.d. Case	Ld. Com D+S
nalysis Re	sults							SPF		Vert	41%	919 / 919	1837 L		D+S
Analysis Moment Unbraced Shear LL Defl inch TL Defl inch	Actual Lu 2122 ft-lb 2122 ft-lb 1127 lb 0.018 (L/3452) 0.035 (L/1726) 0.035 (L/1726)	2'9" 36 1' 3/4" 28 2'9" 0.4	46 ft-Ib 54 ft-Ib 72 Ib 126 (L/480	0.581 (5	4%) D+S 3%) D+S 9%) D+S 4%) S	Case L L L L L									
Design Not 1 Provide su	t es pport to prevent lateral	movement a	and rotatio	n at the end	l bearings. La	iteral support	_								
 Fasten all p to exceed 0 Refer to las Girders are Top loads r Top must b Bottom mu 	e required at the interior office using 2 rows of 10 5". It page of calculations to designed to be suppor- nust be supported equi- te laterally braced at en- st be laterally braced a inderness ratio based office.	Dd Box nails for fasteners irted on the b ally by all pli- nd bearings. it end bearing	(.128x3") a required f pottom edg es. gs.	at 12" o.c. N		distance not									
ID 1	Load Type Uniform	Lo	ocation	Trib Width	Side Top	Dead 0.1 334 PLI		Live 1 0 PLF	Snow 33	v 1.15 4 PLF	Wind 1 0 PL	.6 Const. 1 .F 0 F	.25 Com PLF A4	ments	
									n	Manufacture	er Info		Comtech, Inc 1001 S. Rei	y Road, Suite #	639
													Fayetteville, USA 28314 910-864-TRI		

	1	Client:	Weaver Developm	nent		Date:	5/12/2021	Page 2 of 8
4		Project:				Input by:	David Landry	
	isDesign	Address:					Lot 5 C.P. Stewart Road	
-						Project #:	J0521-2900	
BM1	S-P-F #2	2.000" X	10.000"	2-Ply	- PASSE	D L	evel: Level	
				-				
•	•	•	•	•	•] _		
						12		IVIVI I
						<1 1/2"		∧ ∧ 9 1/4"
•	•	•	•	•	• -			
	SPF				2 SPF			,
		FIOI			2 01 1	<i>,</i>		
		5'6"						1 13"
1		5'6"				1		
Multi-Ph	y Analysis							
		vs of 10d Box nails	(128v3") at 12'	oc Mavir	num and dis	tance no	t to exceed 6"	
Capacity	plies using 2 rov	0.0 %		0.0 เพียงกา				
Load		0.0 PLF						
Yield Limit p	er Foot	157.4 PLF						
Yield Limit p Yield Mode	er Fastener	78.7 lb. IV						
Edge Distan	ice	1 1/2"						
Min. End Dis	stance	3"						
Load Combin Duration Fac		1.00						
Duration rat		1.00						
							Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
						Г		Fayetteville, NC USA
								28314 910-864-TRUS
								le entre et l
				This design	is valid until 4/7/20	024		соттесн

Ť	isDesign	P	lient: V roject: ddress:	Veaver De	velopment			Date: Input by:	5/12/20 David L e: Lot 5 C	andry	art Road			Page 3 of 8
- +	ISDESIGI	A	aaress:					Job Nam Project #			art Road			
BM2	Kerto-S L	VI 1	750"	X 9 2	50"	2-Plv	PA 9		Level: Leve					
51112		• - •				- y								
•••••														
		1												
						-							MV	
	ST. STATE		-		-1341-	1							IVIV	9 1/
			11000	-									<u>v</u>	
1 SP	PF End Grain			2	2 SPF End (Grain								
1		4'8											1	 3 1/2"
1		4'8	3"			1								
Type:	Information Girder		Applicatio	n.	Floor		Brg	ctions UN Direction	Liv		Dead	Snow	Wind	Const
Plies:	2		Design M		ASD		1	Vertical		0	1526	1510	0	0
	ondition: Dry		Building (IBC/IRC 20	015	2	Vertical		0	1526	1510	0	C
Deflection L Deflection T			Load Sha Deck:	ring:	No Not Check	ed								
mportance	: Normal - II													
Temperatur	e: Temp <= 100°	Ϋ́F					Bea	rings						
								aring Lengt	h Dir.	Cap.	React D/L lb	Total	Ld. Case	Ld. Comb.
							1 -	SPF 3.500'		28%	1526 / 1510	3036		D+S
nalysis F	Results						End Gra							
Analysis		Location A	llowed	Capacity	y Comb.	Case	2 - End	SPF 3.500'	' Vert	28%	1526 / 1510	3036	L	D+S
Moment	2881 ft-lb		4423 ft-lb	0.200 (20		L	Gra							
Unbraced Shear	2881 ft -l b 1659 lb		2555 ft-lb 943 lb	0.229 (23		L								
LL Defl inc		2'4 1/16" 0.				L								
TL Defl inc	ch 0.030 (L/1676)	2'4 1/16" 0.	.140 (L/360)	0.215 (21	1%) D+S	L								
esign N														
	support to prevent laters be required at the inte				l bearings. L	ateral support.								
2 Fasten a to excee	II plies using 2 rows of d 6".	10d Box nails	i (.128x3") at	12" o.c. N	1aximum en	d distance not								
	last page of calculation				loads.									
	are designed to be supp s must be supported ec			oniy.										
	t be laterally braced at e nust be laterally braced	-												
8 Lateral s	lenderness ratio based	on single ply	width.											
ID	Load Type	Lo	ocation T	rib Width	Side	Dead 0.9 647 PL			ow 1.15 647 PLF		1.6 Const. 1 PLF 0 F	.25 Coi PLF A3	mments	
1	Uniform Self Weight				Тор	647 PLI 7 PLI		U PLF	047 PLF	UF		PLF A3		
	con troigin													
lotes		chemicals				or flat roofs provide onding	proper drai	nage to prevent	Manufactu				eilly Road, Suite #	639
tructural adequad lesign criteria	rred Designs is responsible only of cy of this component based on and loadings shown. It is	the 1. LVL beam the 2 Refer to	& Installation is must not be cut manufacturer's	or dri∎ed						7 Buildin	g, 2nd F l oor	Fayettevil USA 28314		
esponsibility of th	pe customer and/or the contracto ponent suitability of the inten verify the dimensions and loads.	or to regarding inded fastening	installation r details, beam str	equirements,	multi piy				Norwalk, C (800) 622 - www.metsa	5850	mlus	910-864-T	RUS	
		approvais							w/w/w/mets:	awood.co	m/us	1000		and the second sec
application, and to Lumber	nditions, unless noted otherwise	 Damaged Design as 	, Beams must not b ssumes top edge is ateral support at	aterally restrai	ined				ICC-ES: E	SR-3633			от	

Ť	isDesign	Client: Project: Address:	Weaver Development		Date: Input I Job N	5/12/2021 by: David Landry ame: Lot 5 C.P. Stewart Road	Page 4 of 8
BM2	Kerto-S LV	1 750"	V 0 250"	2 DIv	Projec	ot #: J0521-2900	
	Kerlo-5 LV	L 1.750	X 9.250"	2-Piy -	PASSEL	,	
•	•	•	•	•	1/2"		M 1
•	•	•	•	•	<u> </u>		9 1/2
1 SF	PF End Grain		2 SPF End	Grain	Ā		
		4'8" 4'8"					3 1/2"
		40					
Multi-Ply	-	of 10d Downsile (- 10000 - + 10F -		n and distance		
Capacity		0.0 %	128x3") at 12" o.	c Maximur	n end distance	e not to exceed 6".	
Load Yield Limit pe	r Foot).0 PLF 163.7 PLF					
Yield Limit pe Yield Mode	I	31.9 lb. V					
Edge Distanc Min. End Dist		1/2" 3"					
Load Combin							
Duration Fact	tor 1	1.00					
Notes	ured Designs is responsible only of th	chemicals e Handling & Installation		For flat roofs provide ponding	proper drainage to preve	nt Manufacturer Info Metsä Wood	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequa design criteria responsibility of t	acy of this component based on the and loadings shown. It is the the customer and/or the contractor t	I LVL beams must not be cut B 2. Refer to manufacturer's regarding installation	or dri∎ed s product information			301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	
ensure the com	nponent suitability of the intende overify the dimensions and loads.	fastening details, beam st approvals 3. Damaged Beams must not	ength values, and code			(800) 622-5850 www.metsawood.com/us	
1. Dry service co	onditions, unless noted otherwise treated with fire retardant or corrosiv	 Design assumes top edge is Provide lateral support at 	aterally restrained bearing points to avoid	This design is va	lid until 4/7/2024	ICC-ES: ESR-3633	соттесн
Version 21.40.3	805 Powered by iStruct™ Dat	aset: embedded					CSD

is	Design	Client: Project: Address:	Weaver Dev	relopment		Job	t by: Dav Name: Lot = ect #: J052	21-2900	irt Road			Page 5 of
GDH I	Kerto-S LVL	. 1.750"	X 11.87	75" 3-	Ply - P	ASSED	Level: L	_evel				
		3		1	······		· · · · · · · · · · · · · · · · · · ·					 11 7/6
1 SPF End	d Grain								2 SPF Er	nd Grain		
]				18'10"							1 15	5 1/4"
1				18'10"						I		
1ember In	formation					Reactions	UNPATT	ERNED Ib) (Uplift)			
Type: Plies: Moisture Cond Deflection LL: Deflection TL: Importance:	480	Buildin	Method: g Code: haring:	Floor ASD IBC/IRC 2015 Yes Not Checked		Brg Direc 1 Vertica 2 Vertica	al	Live 0 0	Dead 2720 2720	Snow 188 188	Wind 0 0	Cor
Temperature:	Temp <= 100°F					Bearings Bearing L 1 - SPF 3 End	-		React D/L I 2720 / 18		Ld. Case L	Ld. Com D+S
nalysis Re						Grain 2 - SPF 3	.500" Ver	t 18%	2720 / 18	8 2908	I	D+S
Analysis Moment Unbraced Shear LL Defl inch TL Defl inch	12191 ft-lb 13035 ft-lb 2364 lb 1 ¹ 0.037 (L/6029) 9 ¹	vacation Allowed 9'5" 27954 ft-lb 9'5" 13043 ft-lb 7'6 5/8" 11970 lb 5 1/16" 0.459 (L/48 5 1/16" 0.612 (L/36	, ,	%) D D+S %) D) S	Case Uniform L Uniform L	End Grain						
 may also b Fasten all p to exceed 6 Refer to las Girders are Top loads n Top must b Bottom must 	pport to prevent lateral i e required at the interio blies using 2 rows of 10	r bearings by the bui d Box nails (.128x3") or fasteners required ted on the bottom ec lly by all plies. naximum of 10'11 13 end bearings.	ding code. at 12" o.c. Ma for specified l ge only.	aximum end di								
ID 1	Load Type Uniform	Location	Trib Width	Side	Dead 0.9 60 PLF	Live 1 0 PLF	Snow 1.15 0 PLF		I.6 Const.		mments	
1 2	Tie-In	0-0-0 to 18-10-0	1-0-0	Тор Тор	20 PSF	0 PSF	20 PSF	0 P	SF 0)PLF Wa)PSF Roo	of	
3	Uniform Self Weight			Тор	195 PLF 14 PLF	0 PLF	0 PLF	0 P	LF C	PLF B10	ΞE	
structural adequacy of design criteria and esponsibility of the compon application, and to ver Lumber 1. Dry service conditi	Designs is responsible only of the of this component based on the leadings shown. It is the customer and/or the contractor to ent suitability of the intended ify the dimensions and loads. ions, unless noted otherwise ted with fire retardant or corrosive	 LVL beams must not be Refer to manufactur regarding installation fastening details, beam approvals Damaged Beams must r Design assumes top edg Provide lateral europot 	cut or drilled er's product info requirements, r strength values, ar ot be used e is laterally restrain at bearing points t	pondin ormation multi-ply nd code ed to avoid	g	roper drainage to pr until 4/7/2024	Metsä V 301 Me Norwal (800) 6 www.m	acturer Info Wood prritt 7 Building k, CT 06851 22-5850 etsawood.com a: ESR-3633		Fayettevil USA 28314 910-864-	Rei∎y Road, Suite ≴ ∎e, NC	

	1		Client:	Weaver Developr	nent	Date:	5/12/2021	Page 6 of 8
Í	isDesign		Project: Address:			Input I	by: David Landry ame: Lot 5 C.P. Stewart Road	
+	Ispesign		Address.			Projec		
GDH	Kerto-S	LVL	1.750"	X 11.875"	3-Plv -	PASSED	Level: Level	
					· · ·)			
								-
•	• • •	• •	• •	• •	• •	• • •	• • • •	
.								
1 SPF	End Grain						2 SPF End	
/					18'10"			5 1/4"
/					18'10"			
'					1010			
Multi-Ply	/ Analysis							
		rows of 1	Od Boy nails	(128v3") at 12	" o.c. Nail fro	m hoth sides. M	laximum end distance not to	avcood
6".	plies using 21	10005 01 1		(.120X3) at 12	O.C. Nai IIC	in both sides. Iv		exceed
Capacity		0.0 %						
Load Yield Limit pe	er Foot	0.0 P 163.7	'LF 7 PLF					
Yield Limit pe		81.9						
Yield Mode Edge Distand	ce	IV 1 1/2	"					
Min. End Dis	tance	3"						
Load Combir Duration Fac		1.00						
Notes			chemicals		6. For flat roofs pro-	vide proper drainage to preve	Manufacturer Info	Comtech, Inc.
Notes Calculated Struct structural adequa	tured Designs is responsible acy of this component ba		andling & Installa		ponding	propor Grannage to preve	Metsä Wood 301 Merritt 7 Building, 2nd Floor	■ 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA
design criteria responsibility of	and loadings shown. the customer and/or the c	It is the 2 contractor to	Refer to manufact regarding installatio	urer's product information n requirements, multi-ply			301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and t	mponent suitab∎ity of th to verify the dimensions and	l loads. 3.	approvals Damaged Beams must	m strength values, and code t not be used			www.metsawood.com/us ICC-ES: ESR-3633	
1. Dry service c	onditions, unless noted othe e treated with fire retardant	erwise 5	Design assumes top er	dge is laterally restrained rt at bearing points to avoid			100-E0. E01-0000	соттесн
	305 Poworod by iStru				i nis design is	valid until 4/7/2024		

Version 21.40.305 Powered by iStruct[™] Dataset: embedded

Tis	Design	Client: Project: Address:	Weaver Development		Date: Input by Job Nar	ne: Lot 5 C.P. Si	-			Page 7 of 8
GDH2	Kerto-S LV	L 1.750"	X 11.875"	2-Ply -	Project	#: J0521-2900 Level: Level				
		2								
	***	•	• •	j.	•	- 300	•••			11 7
1 SPF E	nd Grain					2 SP	F End Grain			
			9'10"				,	,		3 1/2"
1			9'10"							
/lember In	formation				Reactions UI) lb (Uplift)			
Туре:	Girder	Applicat	on: Floor		Brg Direction		Dead	Snow	Wind	Con
Plies: Moisture Cond Deflection LL: Deflection TL: Importance:	480	Design I Building Load Sh Deck:	Code: IBC/IRC 20		1 Vertical 2 Vertical	0 0	1653 1653	1313 1313	0 0	
Temperature:	Temp <= 100°F									
					Bearings Bearing Leng 1 - SPF 3.500 End	-	ap. React D/L I 3% 1653 / 131			Ld. Com D+S
Analysis Re	sults	•			Grain					
Analysis Moment Unbraced Shear LL Defl inch TL Defl inch	6627 ft-lb 6627 ft-lb 2202 lb 1	cation Allowed 4'11" 22897 ft-lb 4'11" 9857 ft-lb '3 3/8" 10197 lb 4'11" 0.234 (L/480 4'11" 0.312 (L/360	Capacity Comb. 0.289 (29%) D+S 0.672 (67%) D+S 0.216 (22%) D+S 0.237 (24%) S 0.402 (40%) D+S	Case L L L L	2 - SPF 3.500 End Grain	" Vert 28	3% 1653 / 131	3 2966	L	D+S
Design Not		×	, , , ,		1					
may also b 2 Fasten all p to exceed 6 3 Refer to las 4 Girders are 5 Top loads r	st page of calculations fo designed to be support nust be supported equal	bearings by the build I Box nails (.128x3") a or fasteners required f ed on the bottom edg Ily by all plies.	ing code. at 12" o.c. Maximum en or specified loads.							
	e laterally braced at end st be laterally braced at	-								
	nderness ratio based on			Deedoo	line 4 0		ad 1.6 . 0 (1.05 0	mmente	
ID 1	Load Type Uniform	Location	Trib Width Side Top	Dead 0.9 60 PLF	Live 1 Sr 0 PLF	1.15 Wi 0 PLF	nd 1.6 Const. 0 PLF 0		mments Il Above	
2	Uniform		Тор	267 PLF 9 PLF	0 PLF	267 PLF		PLF G1		
structural adequacy of design criteria and responsibility of the d ensure the compon application, and to ver Lumber 1. Dry service conditi	Self Weight	1. LVL beams must not be cu 2. Refer to manufacture	n pro t or drilled 's product information requirements, multi-ply trength values, and code :be used is laterally restrained		roper drainage to prevent	Manufacturer Ir Metsä Wood 301 Merritt 7 Bui Norwalk, CT 06 (800) 622-5850 www.metsawooc ICC-ES: ESR-36	lding, 2nd Floor 51 I.com/us	Fayettevil USA 28314 910-864-	tei∎y Road, Suite # le, NC	

isDesign	Client: Weaver Developm Project: Address:	Input t Job Na	ame: Lot 5 C.P. Stewart Road	Page 8 of 8
GDH2 Kerto-S LVL	1.750'' X 11.875'	Projec " 2-Ply - PASSED		
• • •	• •	• • •	• • •	
• • •	• •	• • •	2 SPF End Grain	
	9'10) ⁿ		3 1/2"
ſ	9'10	טיי סיי	1	
Multi-Ply Analysis Fasten all plies using 2 rows of 10d Capacity 0.0 % Load 0.0 PLF Yield Limit per Foot 163.7 PLI Yield Limit per Fastener 81.9 lb. Yield Mode IV Edge Distance 3" Load Combination Duration Factor 1.00		o.c Maximum end distance	not to exceed 6".	
design criteria and leadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 5. Provi	ing & Installation seams must not be out or drilled r to manufacturer's product information dring installation requirements, multi-ply ming details, beam strength values, and code vals aged Beams must not be used gn assumes top adge is laterally restrained de jateral support at bearing points to avoid al displacement and rotation	 For flat roofs provide proper drainage to prever ponding This design is valid until 4/7/2024 	nt Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Contech, Inc. 1001 S. Relly Road, Suite #639 Fayetteville, NC USA 28314 910-964-TRUS

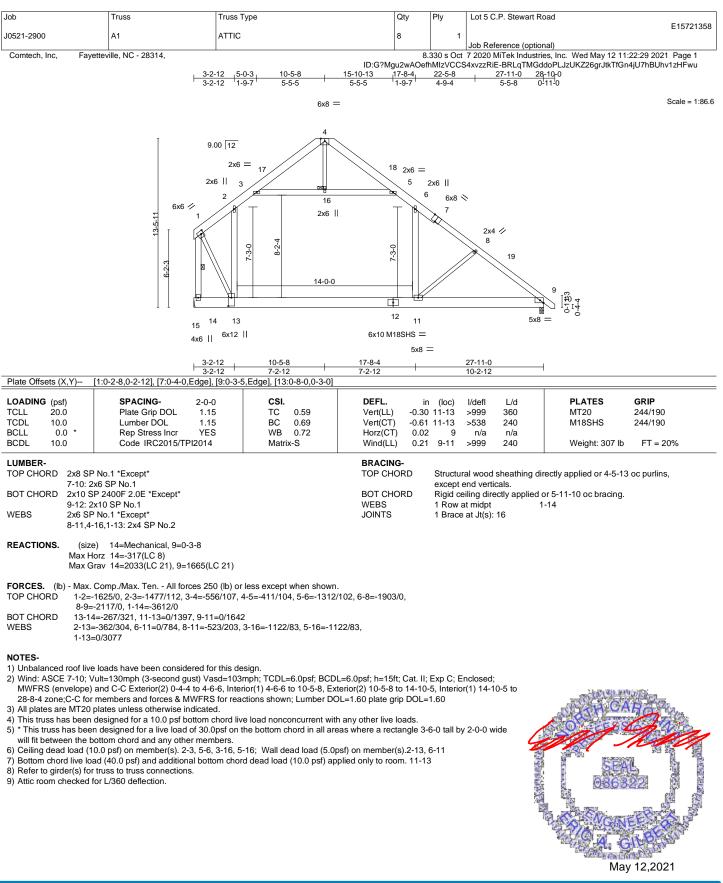
Version 21.40.305 Powered by iStruct[™] Dataset: embedded

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0521-2900 Lot 5 C.P. Stewart Road

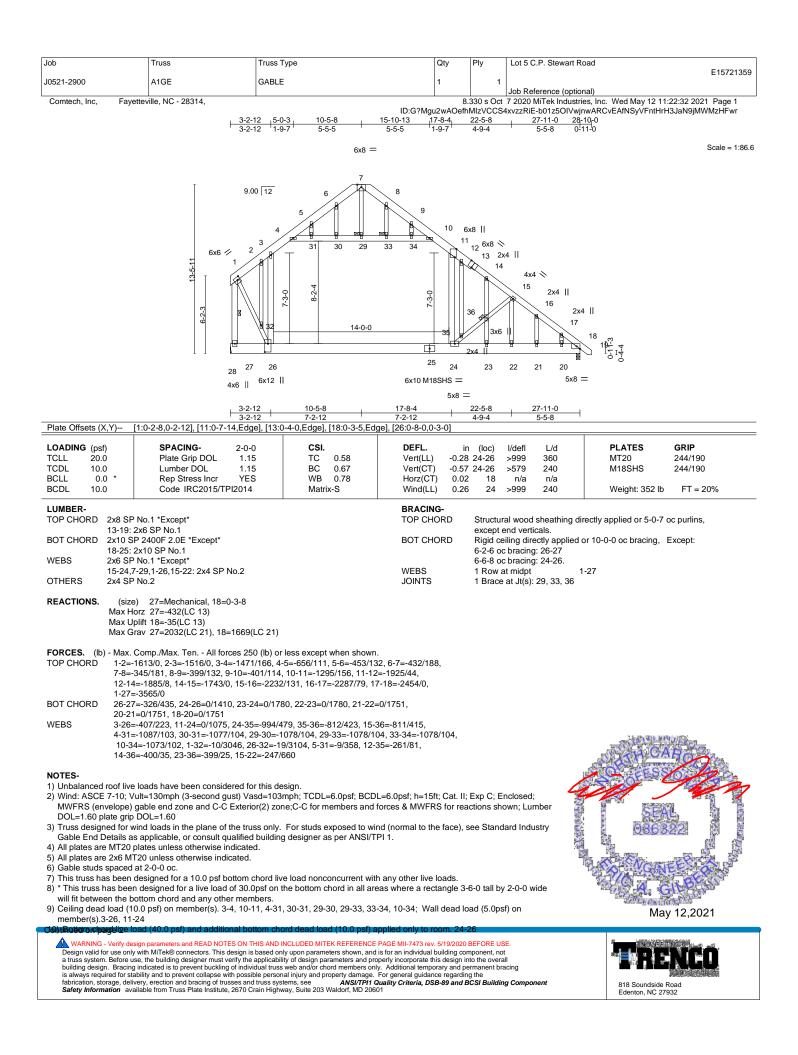
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15721358 thru E15721386


My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

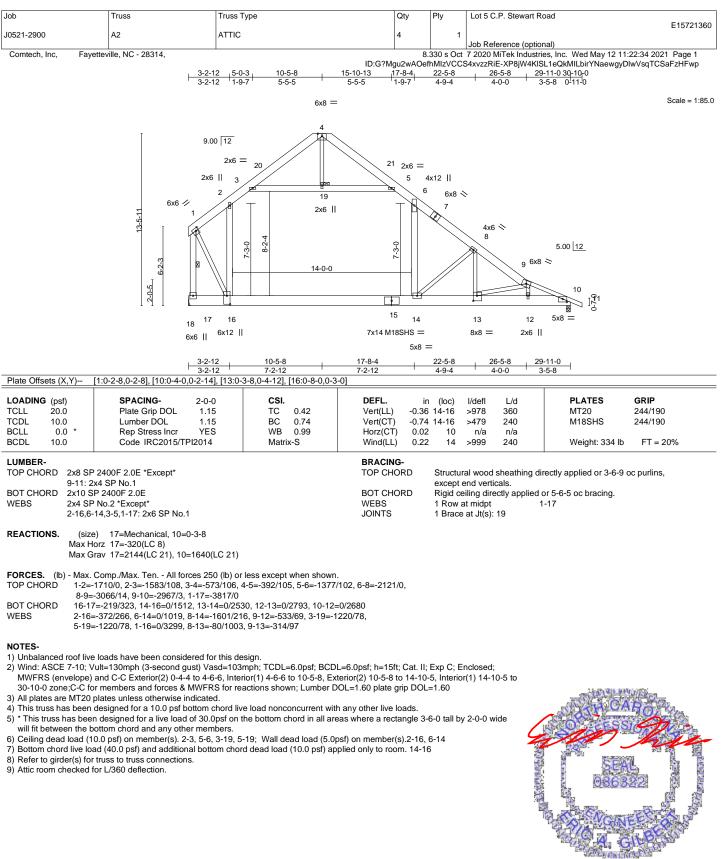
May 12,2021


Gilbert, Eric **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the appliciability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

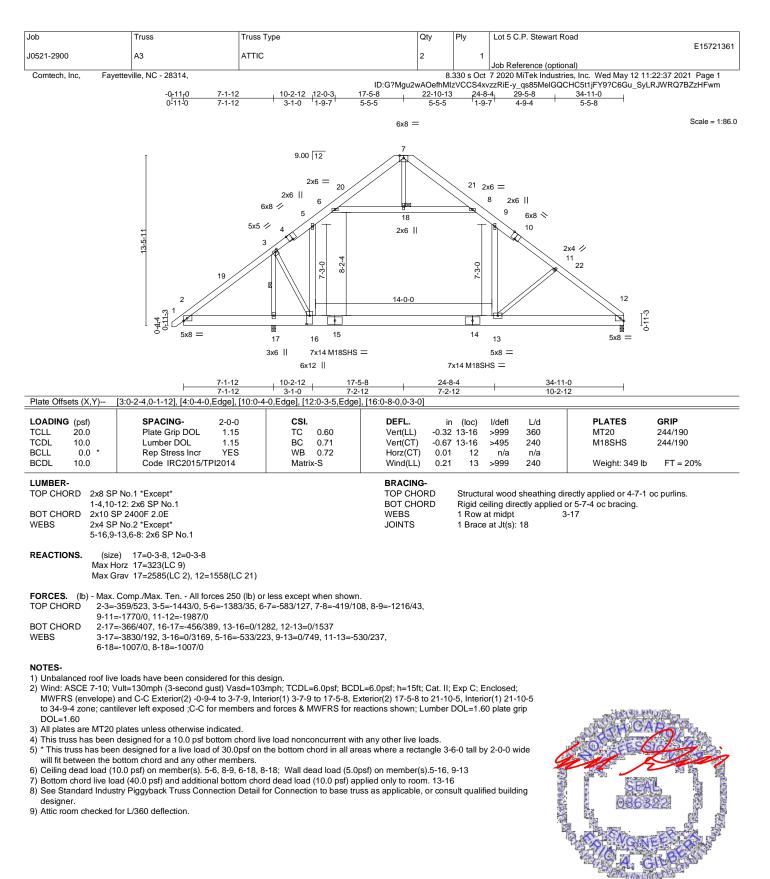
Job	Truss	Truss Type	Qty	Ply	Lot 5 C.P. Stewart Road		
10504 0000	1405			l .	E1572135		
J0521-2900	A1GE	GABLE	1	1	Job Reference (optional)		
					Job Reference (optional)		
Comtech, Inc,	Fayetteville, NC - 28314,	<i>i</i> lle, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Wed May 12 11:22:32 2021 Page 2					
			ID:G?Mgu2wAOefhMIzVCCS4xvzzRiE-b01z5OIVwjnwARCvEAfNSyVFntHrH3JaN9jMWMzHFwr				


NOTES-

Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18.

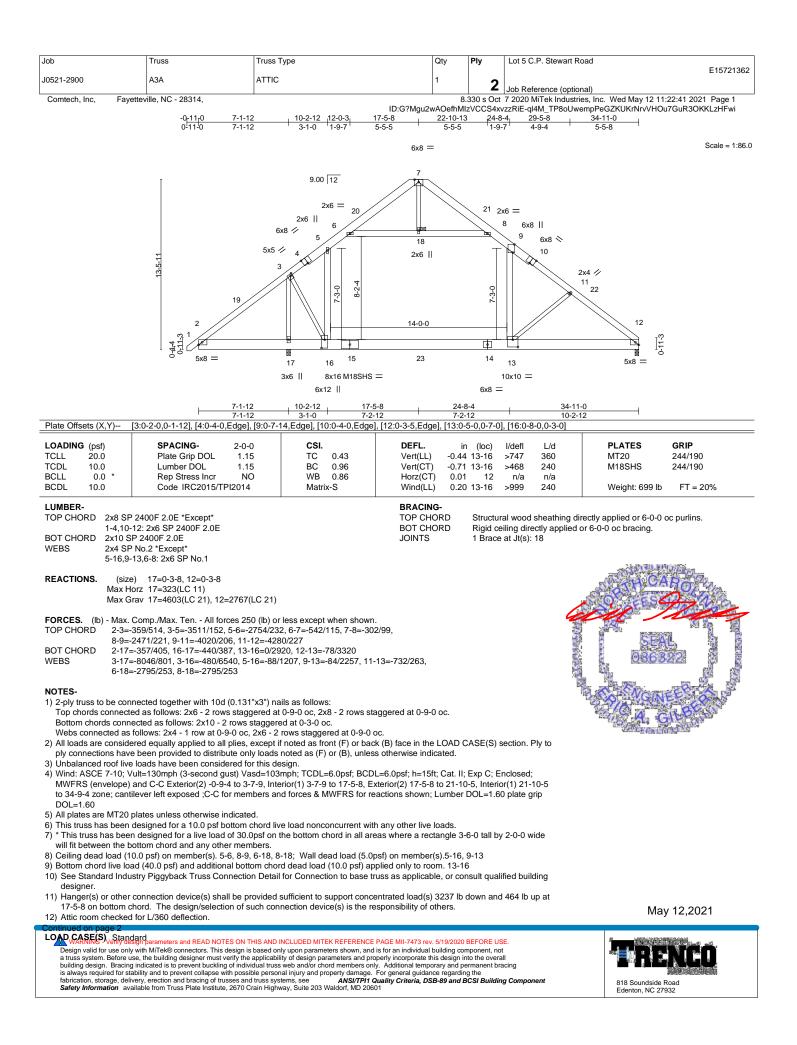
13) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, terction and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

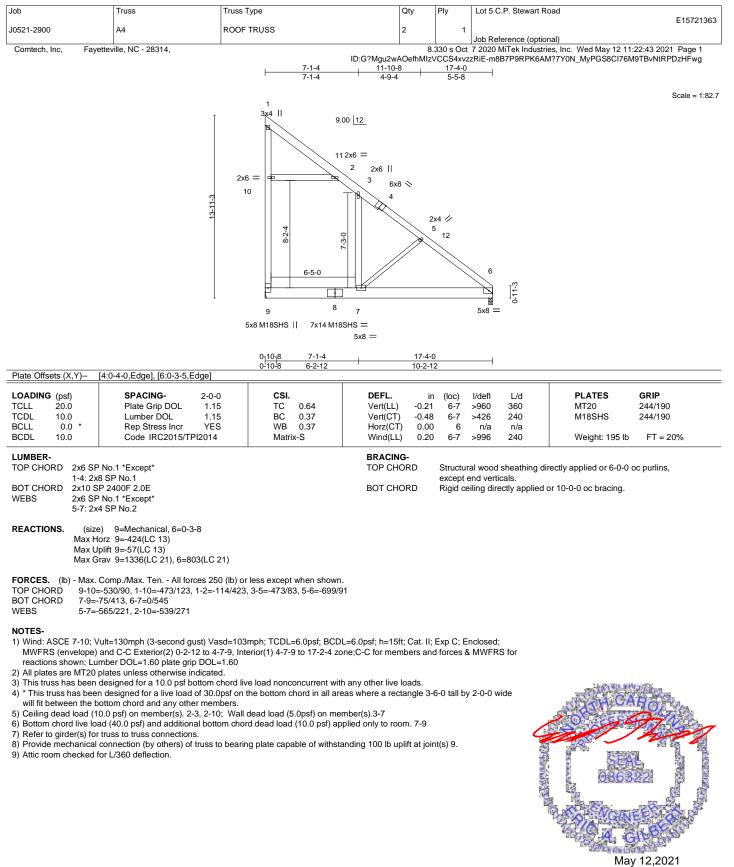
ŀ	Job	Truss	Truss Type	Qty	Ply	Lot 5 C.P. Stewart Road
	10504 0000		47710			E15721362
ŀ	J0521-2900	A3A	ATTIC	1	2	Job Reference (optional)
L	Comtech, Inc, Favetteville, NC - 28314, 8.330 s Oct 7 2020 MTE ki hdustries, Inc. Wed May 12 11:22:41 202					

ID:G?Mgu2wAOefhMIz/CCS4xvzzRiE-ql4M_TP8oUwempPeGZKUKrNrvVHOu7GuR3OKKLzHFwi

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

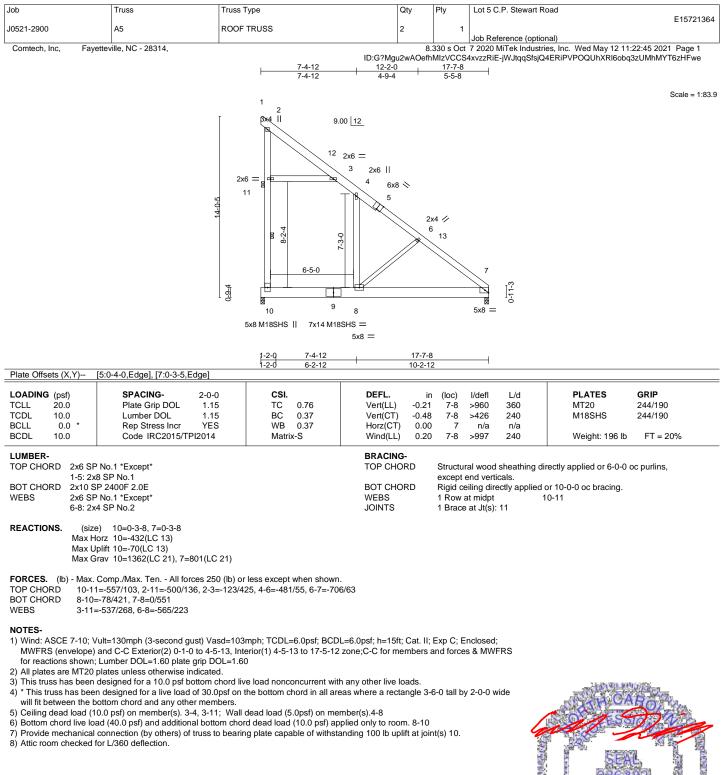
Vert: 1-5=-60, 5-6=-80, 6-7=-60, 7-8=-60, 8-9=-80, 9-12=-60, 2-16=-20, 13-16=-40, 12-13=-20, 6-8=-20


Drag: 5-16=-10, 9-13=-10

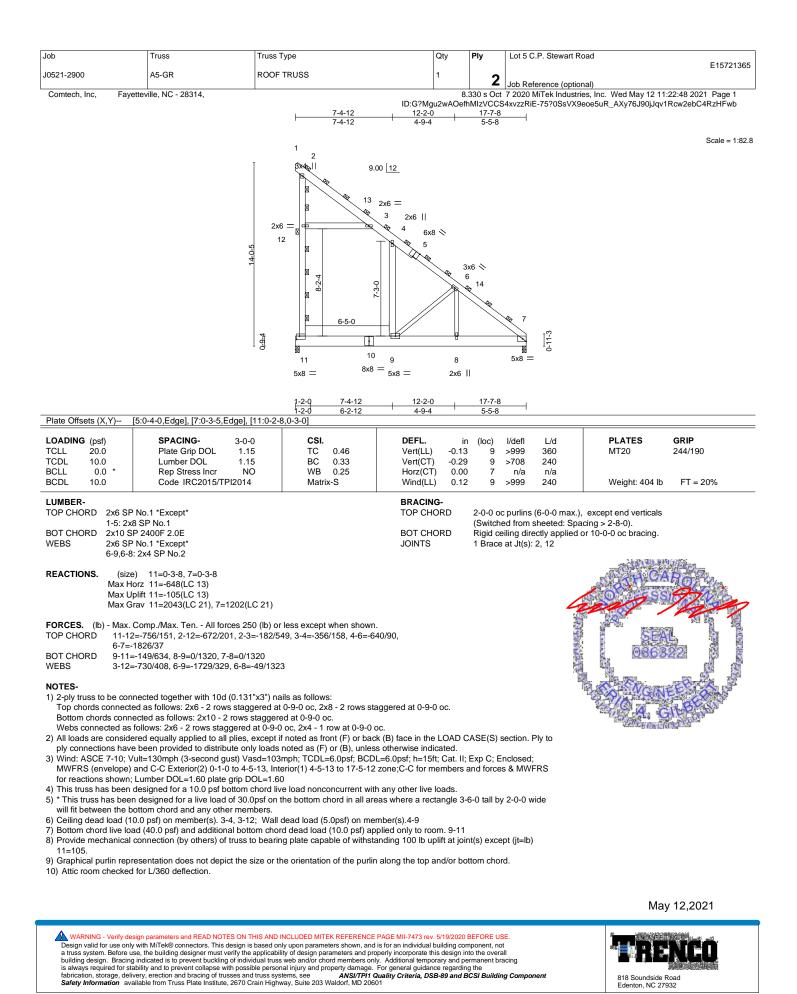
Concentrated Loads (lb)

Vert: 23=-1837(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, terction and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

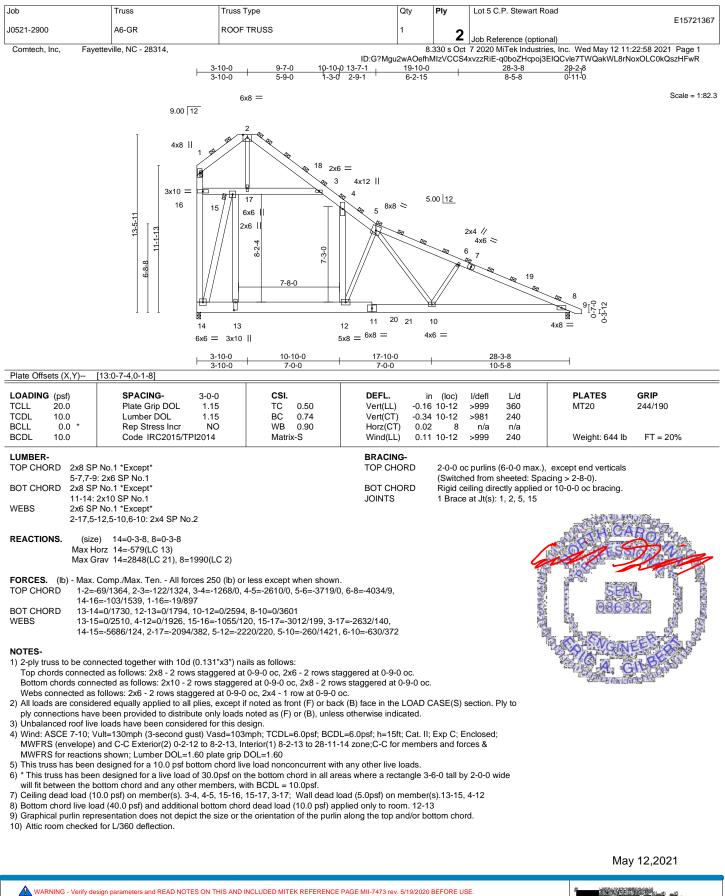


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the appliciability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 12,2021

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid of use only with MTek® connectors. This sket intoCLOBED with REFERENCE FAGE MIF 4/3 FeV, 519/2020 BEFORE 052. Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Braching indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



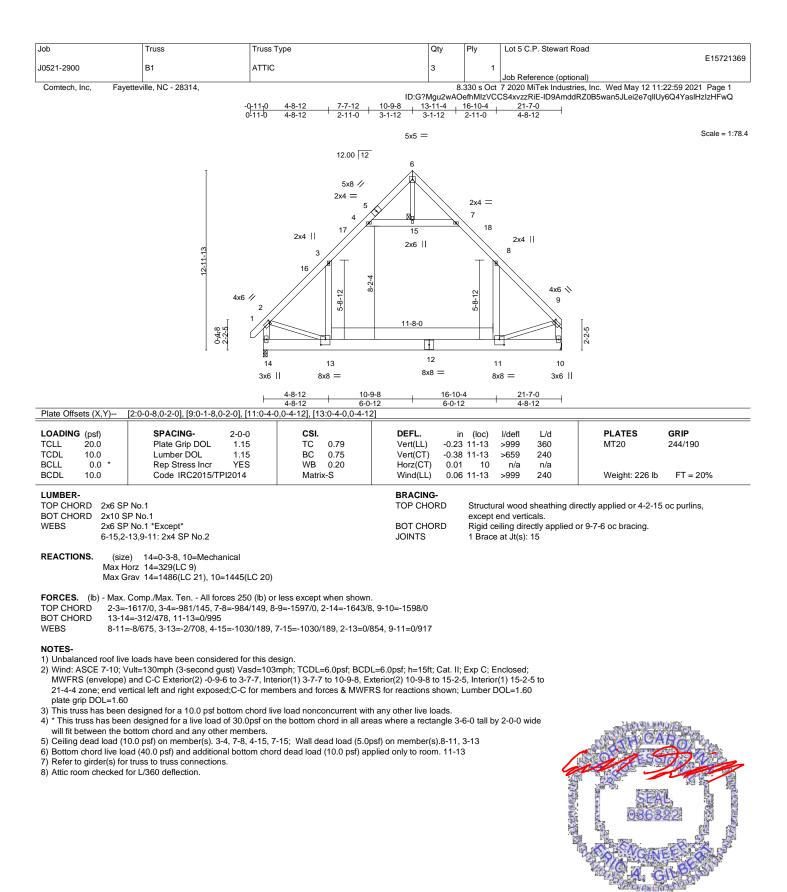
Job	Truss	russ Type	Qty	Ply	Lot 5 C.P. Stewar	Road	
J0521-2900		ROOF TRUSS	3	1			E15721366
				220 0 0 ct	Job Reference (op		11:22:52 2021 Bags 1
Comtech, Inc, Fag						stries, Inc. Wed May 12 DtJ4aVklPN03G9KfQx2_ 29-2 ₁ 8 0 ¹ 11-0	
		6x10 M18SHS =					Scale = 1:87.0
	9.00 12	2					
		18 3) 18 3) 17 6x8 II 2x6 I 7.8-0 13 13 3x10 II	$\begin{array}{c} 3 & 6x8 \\ 4 & 5.0 \\ 5x8 = \\ 12 & 11 & 20 & 21 & 11 \\ 5x8 = \\ 8x8 = & 4x6 \\ \end{array}$	6	4 // 4x6 = 7 19	8 910 24 12 10 10 4x8 =	
	3	10-0 10-10-0 10-0 7-0-0	17-10-0 7-0-0		28-3-8 10-5-8		
Plate Offsets (X,Y)	[4:0-7-14,Edge], [13:0-7-12,0-1-8]						
LOADING (psf) TCLL 20.0	SPACING-2-0-0Plate Grip DOL1.15	CSI. TC 0.67		i (loc) 10-12	l/defl L/d >999 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.90 WB 0.94 Matrix-S	Horz(CT) 0.03	10-12 8 10-12	>736 240 n/a n/a >999 240	M18SHS Weight: 322	244/190 b FT = 20%
BOT CHORD 2x8 S 11-14 WEBS 2x6 S 2-17,5 REACTIONS (siz Max I	9: 2x6 SP No.1 P No.1 *Except* : 2x10 SP No.1 P No.1 *Except* -12,5-10,6-10: 2x4 SP No.2 re) 14=0-3-8, 8=0-3-8 torz 14=-386(LC 13)		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	except e Rigid ce 1 Row a	end verticals. iling directly applie	directly applied or 4-5- ed or 5-11-2 oc bracing 3-15, 14-15	
Max	Grav 14=1899(LC 21), 8=1327(LC	2)					
TOP CHORD 1-2= 14-1 BOT CHORD 13-1 WEBS 13-1	. Comp./Max. Ten All forces 250 -46/909, 2-3=-81/883, 3-4=-845/0, 6=-69/1026, 1-16=-13/598 4=0/1154, 12-13=0/1196, 10-12=0 5=0/1674, 4-12=0/1284, 15-16=-7 5=-3791/83, 2-17=-1396/254, 5-12	4-5=-1740/0, 5-6=-2479/0, 6-8 /1729, 8-10=0/2401)3/80, 15-17=-2008/133, 3-17=	3=-2689/6, =-1755/94,				
 2) Wind: ASCE 7-10; MWFRS (envelope MWFRS for reactio 3) All plates are MT2C 4) This truss has beer 5) * This truss has beer will fit between the 6) Ceiling dead load (e loads have been considered for t Vult=130mph (3-second gust) Vas,) and C-C Exterior(2) 0-2-12 to 8-2 ns shown; Lumber DOL=1.60 plate plates unless otherwise indicated. I designed for a 10.0 psf bottom ch en designed for a live load of 30.0p bottom chord and any other memb 10.0 psf) on member(s). 3-4, 4-5, 1 bad (40.0 psf) and additional bottor for L/360 deflection.	I=103mph; TCDL=6.0psf; BCD 13, Interior(1) 8-2-13 to 28-11 grip DOL=1.60 ord live load nonconcurrent wit sf on the bottom chord in all ar ers, with BCDL = 10.0psf. 5-16, 15-17, 3-17; Wall dead I	-14 zone;C-C for membe th any other live loads. eas where a rectangle 3- load (5.0psf) on member(rs and for 6-0 tall by s).13-15,	ces &		ay 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, se Ans/I/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

[
Job	Truss	Truss Type	Qty	Ply .	Lot 5 C.P. Stewart Road		E15721368		
J0521-2900	A6GE	GABLE	1	1	Job Reference (optional)				
Comtech, Inc, Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Wed May 12 11:22:55 2021 Page 1 ID:G?Mgu2wAOefhMIzVCCS4xvzzRiE-QRwfwFawVohfRzTK4VamuoyCO85hAVbyfEn4qXzHFwU									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
	6x10 M18SHS = Scale = 1:87.0								
	9.00 12								
		26 26 30 30 30 30 30 35 36 56 1 7-8-0 37 26 310-0 10-10-0	$\begin{array}{c} 7 & 10x10 \\ 8 & 2x4 \\ 8 & 38 \\ 9 \\ \hline \\ 3x10 \\ 1 \\ 25 \\ 24 \\ 25 \\ 24 \\ 23 \\ 22 \\ 25 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ $	10	44 // 4x6 = 12 2x4 14 2x4 14 2x4 15 20 19 18 4x8 = 28-3-8	16 -1년 0.31-15 0.31-15			
Plate Offsets (X,Y)		3-10-0 7-0-0	7-0-0		10-5-8				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.83 WB 0.68 Matrix-S	DEFL. ir Vert(LL) -0.17 Vert(CT) -0.37 Horz(CT) 0.03	25 23-25	l/defi L/d >999 360 >898 240 n/a n/a >999 240	PLATES MT20 M18SHS Weight: 372 lb	GRIP 244/190 244/190 FT = 20%		
BOT CHORD 2x8 SP No.1 *Except* BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing, Except: 24-27: 2x10 SP No.1 8-9-11 oc bracing: 26-27 8-9-11 oc bracing: 26-27 WEBS 2x6 SP No.1 *Except* 6-11-2 oc bracing: 25-26. 2-30,8-25,8-21,11-21: 2x4 SP No.2 WEBS 1 Row at midpt 27-28, 8-25 OTHERS 2x4 SP No.2 JOINTS 1 Brace at Jt(s): 28, 35, 39						лоорі.			
Max Uplift 27=-62(LC 13), 16=-134(LC 13) Max Grav 27=1798(LC 21), 16=-1288(LC 1) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-128/768, 2-3=-152/797, 3-4=-176/666, 4-5=-229/603, 5-6=-810/21, 6-7=-1473/0, 7-8=-1553/0, 8-9=-2182/301, 9-10=-2203/254, 10-11=-2244/236, 11-13=-2332/264, 13-14=-2405/262, 14-15=-2401/211, 15-16=-2447/172, 27-29=-204/868, 1-29=-80/527 BOT CHORD 26-27=-0/1083, 25-26=0/1123, 23-25=0/1668, 22-23=0/1668, 21-22=0/1668, 20-21=-104/2197, 19-20=-104/2197, 18-19=-104/2197 WEBS 26-28=-65/1610, 6-25=-26/999, 28-29=-589/141, 28-30=-1741/298, 30-35=-1523/241, 35-36=-1524/241, 5-36=-1525/239, 27-28=-3429/396, 2-30=-1299/326, 25-37=-1571/470, 8-37=-1560/498, 8-38=-491/1192, 38-39=-311/673, 21-39=-325/714, 11-21=-413/251, 23-38=-204/583									
 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vull=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DCL=1.60 plate grip DOL=1.60. Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable end Details as applicable, or consult qualified building designer as per ANSI/TP1 1. All plates are 2x6 MT20 unless otherwise indicated. Gable stud spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Ceiling dead load (10.0 psf) on member(s). 5-6, 28-29, 28-30, 30-35, 35-36; Vall dead load (5.0psf) on member(s).26-28, 6-25 Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 25-26 WARNNG- Verly design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/18/2020 BEFORE USE. Design valid for use only with MTeke9 connectors. This design is based only upon parameters shown, and is for an individual building component, not at uses system. Before use. the building design parameters shown, and is for an individual building component, not at uses system. Before use. the building design parameters shown, and is for an individual building component, not at uses system. Before use. the building design parameters shown, and is for an individual building component, not at uses system. Before use. the building design parameters shown, and is for an individual building component, not at uses system. Before use. the building design parameters shown, and is for an individual building component, not at uses syste									
building design. Bracing is always required for sta fabrication, storage, deli	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see ANS/TP1 Quality Criteria, DSB-89 and BCSI Building Component 818 Soundside Road Edenton, NC 27932								

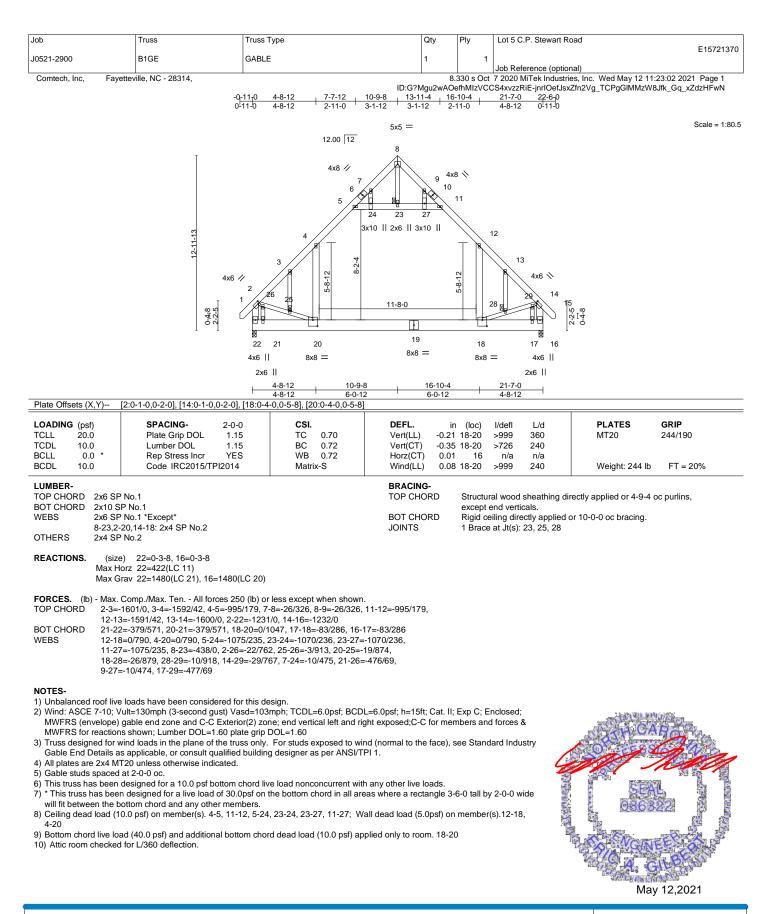
[lob	Truss	Truss Type	Qty	Ply	Lot 5 C.P. Stewart Road		
	10521-2900	A6GE	GABLE	1	1	E15721368		
						Job Reference (optional)		
Comtech, Inc, Fayetteville, NC - 28314,				8.330 s Oct 7 2020 MiTek Industries, Inc. Wed May 12 11:22:55 2021 Page 2				
		ID:G?Mgu2wAOefhMIzVCCS4xvzzRiE-QRwfwFawVohfRzTK4VamuoyCO85hAVbyfEn4qXzHI						


NOTES-

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 27 except (jt=lb) 16=134.

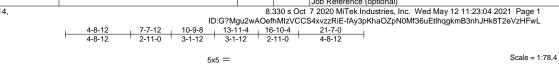
12) Attic room checked for L/360 deflection.

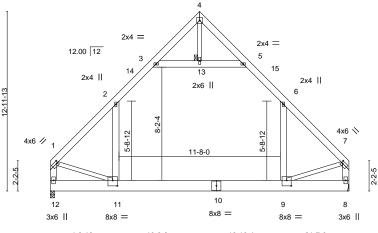
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, terction and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 12,2021

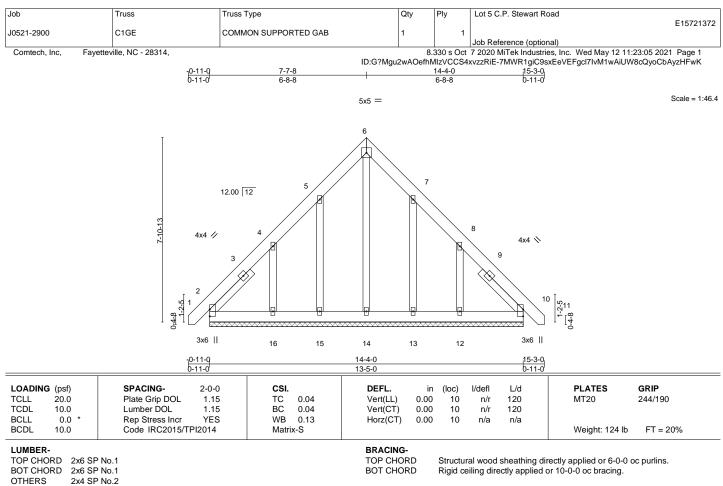
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusse systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		4-8-12		10-9-8		6-10-4		21-7-0			
		4-8-12		6-0-12	' 6	6-0-12		4-8-12	2 '		
Plate Offsets (X,Y)	[1:0-1-4,0-2-0], [7:0-1-4,0-2-0], [9:0-4-0,0-4-1	2], [11:0-4	<u>+-0,0-4-12</u>						1	
LOADING (psf) TCLL 20.0 TCDL 10.0	Plate Grip DOL 1 Lumber DOL 1	0-0 .15 .15		.78	DEFL. Vert(LL) Vert(CT)	in -0.23 -0.39	9-11	l/defl >999 >653	L/d 360 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Y Code IRC2015/TPI20	ES 14	WB 0 Matrix-S	.20	Horz(CT) Wind(LL)	0.01 0.07	8 9-11	n/a >999	n/a 240	Weight: 223 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x10 S					BRACING- TOP CHOF			ral wood end vertie	0	rectly applied or 4-2-11	oc purlins,
	9 No.1 *Except* 11,7-9: 2x4 SP No.2				BOT CHOF JOINTS	RD		eiling dire e at Jt(s):		or 9-6-8 oc bracing.	
Max H	e) 12=0-3-8, 8=Mechanical orz 12=313(LC 11) rav 12=1446(LC 21), 8=1446	6(LC 20)									
TOP CHORD 1-2=- BOT CHORD 11-12	Comp./Max. Ten All forces 1600/0, 2-3=-984/147, 5-6=-9 2=-303/406, 9-11=0/997 6/678, 2-11=-7/678, 3-13=-10	84/147, 6-7=-16	500/0, 1 -1	2=-1600/0, 7							
2) Wind: ASCE 7-10; V MWFRS (envelope) to 21-4-4 zone; end plate grip DOL=1.60		Vasd=103mph; 4-8-12, Interior ;C-C for membe	(1) 4-8-12 ers and fo	2 to 10-9-8, E rces & MWF	xterior(2) 10-9-6 RS for reactions	8 to 15- s shown	2-5, Inte	erior(1) 15	5-2-5		
	designed for a 10.0 psf bottor n designed for a live load of 3						-0 tall b	y 2-0-0 w	ide	Lingth With Mar	(with the second s


(i) This trass been besigned for a live load of 50.505 of the bottom chord in an areas where a rectangle 2000 will fit between the bottom chord and any other members.
(5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-13, 5-13; Wall dead load (5.0psf) on member(s).6-9, 2-11
(6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11
(7) Refer to girder(s) for truss to truss connections.
(8) Attic room checked for L/360 deflection.

May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SI IDER Left 2x4 SP No.2 -x 2-6-0. Right 2x4 SP No.2 -x 2-6-0

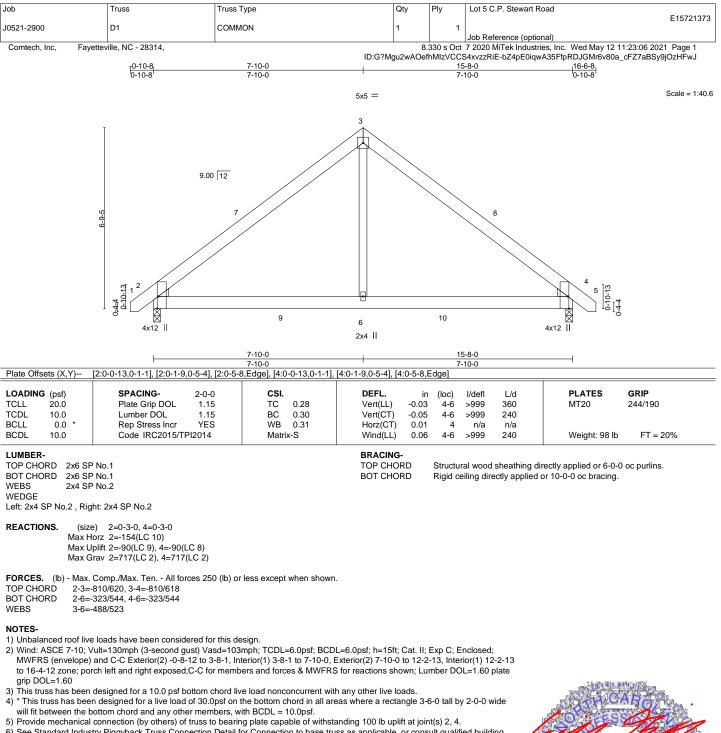
REACTIONS. All bearings 13-5-0.

(lb) - Max Horz 2=-224(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 15, 13 except 16=-256(LC 12), 12=-251(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 10, 14, 15, 13 except 16=270(LC 19), 12=265(LC 20)

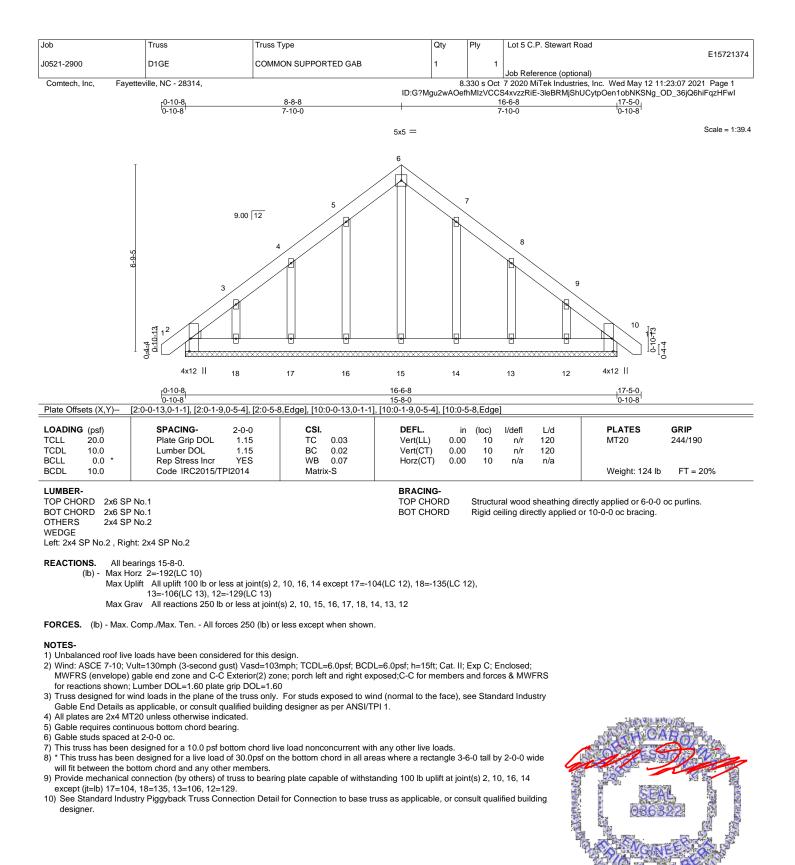
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 4-16=-280/263, 8-12=-280/260

NOTES-1) Unbalanced roof live loads have been considered for this design.


- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 15, 13 except (jt=lb) 16=256, 12=251.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

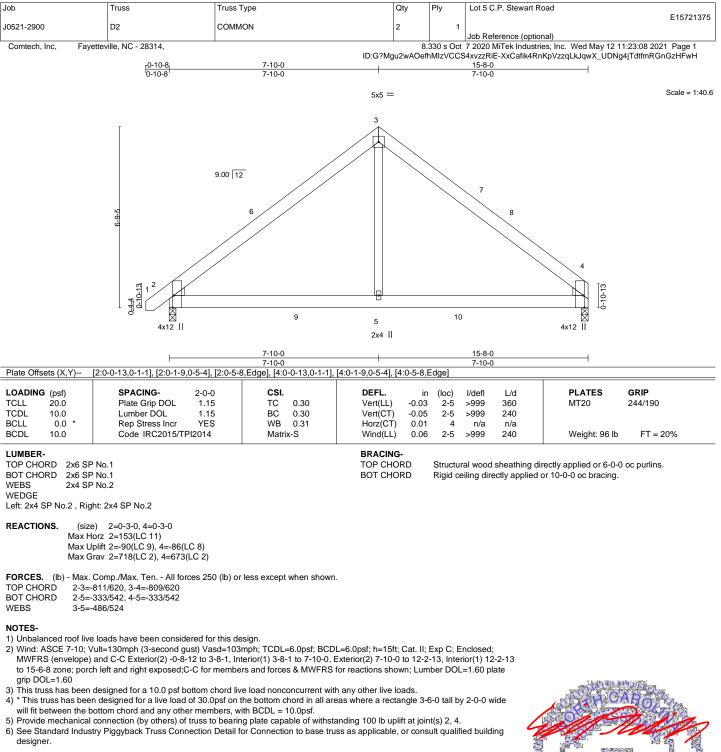
May 12,2021

🛕 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sk0 includue unterpretended by the presence includue of the sk0 includue and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

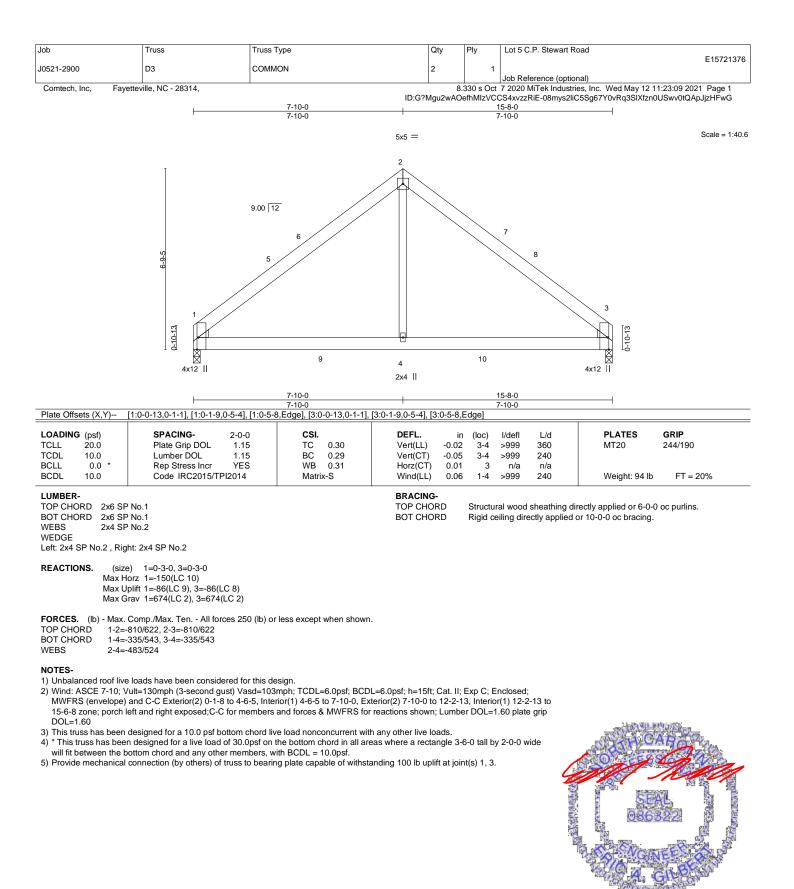
May 12,2021

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sk0 includue unterpretended by the presence includue of the sk0 includue and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



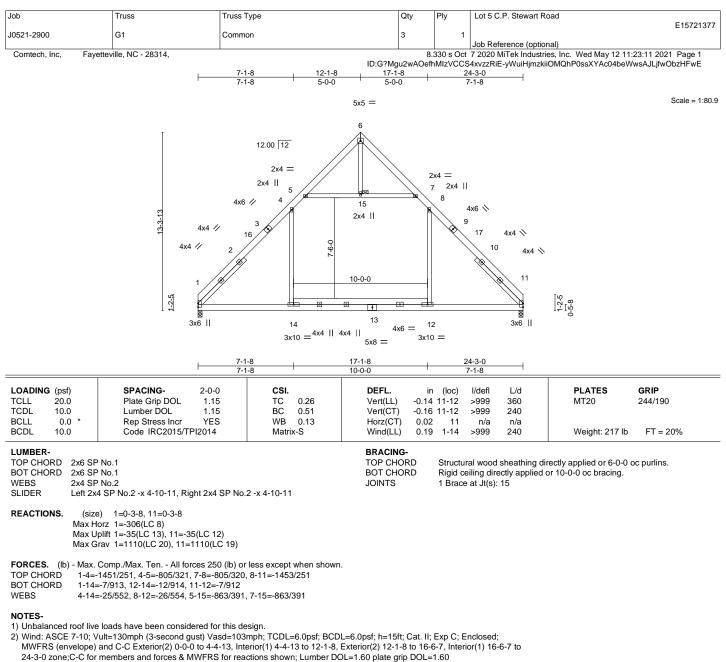
May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 12,2021

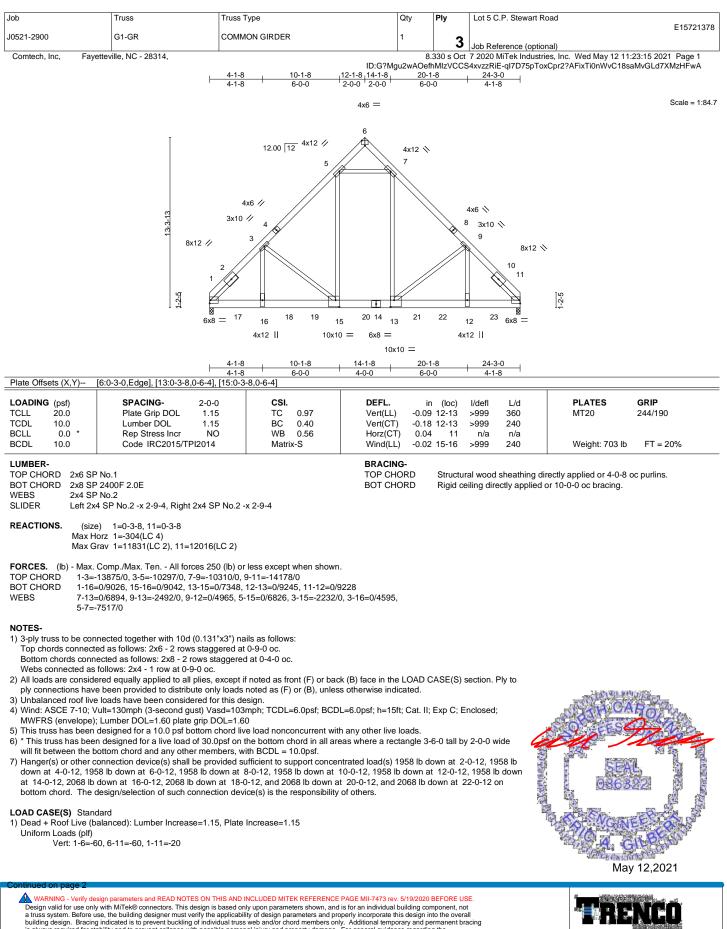
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

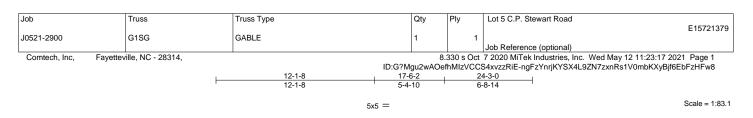
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11.

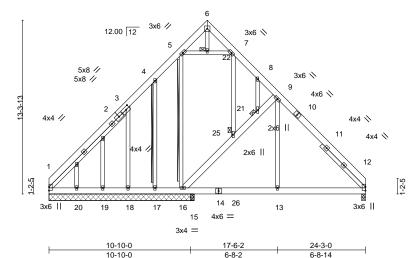
🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTek® connectors. This skip included only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual Truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road lenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 5 C.P. Stewart Road
					E15721378
J0521-2900	G1-GR	COMMON GIRDER	1	2	
				3	Job Reference (optional)
Comtech, Inc, Fayettevi	lle, NC - 28314,		8.	330 s Oct	7 2020 MiTek Industries, Inc. Wed May 12 11:23:15 2021 Page 2


ID:G?Mgu2wAOefhMIzVCCS4xvzzRiE-qI7D75pToxCpr2?AFixTi0nWvC18saMvGLd7XMzHFwA


LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 13=-1547(B) 12=-1645(B) 15=-1547(B) 16=-1547(B) 17=-1547(B) 18=-1547(B) 19=-1547(B) 20=-1547(B) 21=-1645(B) 22=-1645(B) 23=-1645(B) 23=-1645(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **AVSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Off	sets (X,Y)	[3:0-3-8,0-2-8]									
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	-0.02 13-15	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.03 12-13	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.01 12	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S	Wind(LL)	0.01 12-13	>999	240	Weight: 259 lb	FT = 20%

LUMBER- TOP CHORD	2x6 SP No.1	BRACING- TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	2x4 SP No.2 *Except*	WEBS	T-Brace: 2x4 SPF No.2 - 5-16, 4-17
	9-16: 2x6 SP No.1		Fasten (2X) T and I braces to narrow edge of web with 10d
OTHERS	2x4 SP No.2		(0.131"x3") nails, 6in o.c., with 3in minimum end distance.
SLIDER	Left 2x4 SP No.2 -x 8-5-2, Right 2x4 SP No.2 -x 4-8-11		Brace must cover 90% of web length.
		JOINTS	1 Brace at Jt(s): 21, 22, 25
REACTIONS.	All bearings 11-1-8 except (jt=length) 12=0-3-8, 15=0-3-8.		
(lb) -	Max Horz 1=-382(LC 8)		

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-3=-503/279, 3-4=-349/173, 4-5=-269/210, 8-9=-311/176, 9-12=-683/95
- BOT CHORD 1-20=-204/371, 19-20=-204/371, 19-19=-204/371, 17-18=-205/372, 16-17=-205/372, 15-16=0/417, 13-15=0/417, 12-13=0/417

Max Uplift All uplift 100 lb or less at joint(s) 1, 12, 17, 20 except 16=-205(LC 13),

12=663(LC 20), 16=287(LC 1), 18=434(LC 19), 15=352(LC 18)

All reactions 250 lb or less at joint(s) 17, 19, 20 except 1=385(LC 21),

WEBS 16-25=-528/327, 21-25=-506/310, 9-21=-552/358, 9-13=0/298, 3-18=-507/461

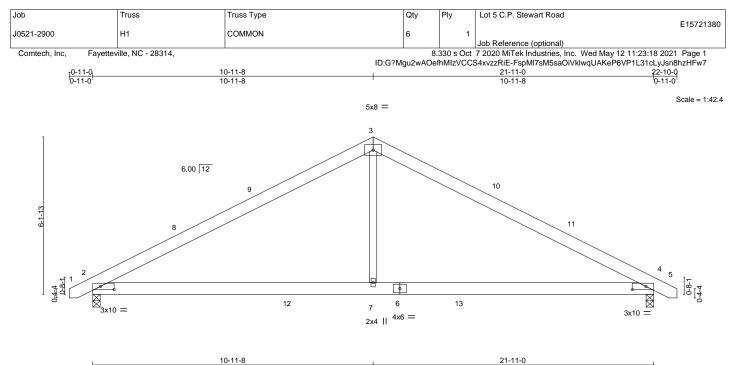
NOTES-

1) Unbalanced roof live loads have been considered for this design.

18=-446(LC 12)

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

Max Grav


- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 17, 20 except (jt=lb) 16=205, 18=446.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L		10-11-8			I				10-11-8		1
Plate Offs	sets (X,Y)	[2:0-6-7,0-1-8], [4:0-6-7,0	-1-8]			-						
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.08	4-7	>999	360	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.18	4-7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matrix	(-S	Wind(LL)	0.06	2-7	>999	240	Weight: 122 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 4=0-3-8 Max Horz 2=76(LC 11) Max Uplift 2=-64(LC 12), 4=-64(LC 13) Max Grav 2=953(LC 2), 4=953(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1379/292, 3-4=-1379/292

 BOT CHORD
 2-7=-93/1123, 4-7=-93/1123

BOT CHORD 2-7=-93/1123, 4-7=-93/1123 WEBS 3-7=0/655

NOTES-

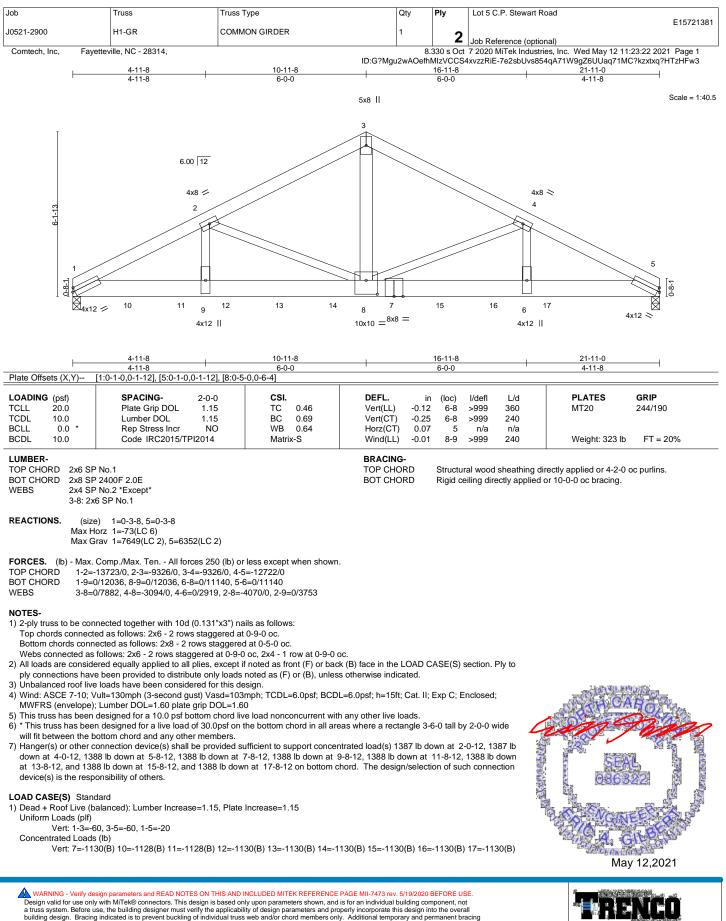
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 10-11-8, Exterior(2) 10-11-8 to 15-4-5, Interior(1) 15-4-5 to 22-8-2 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

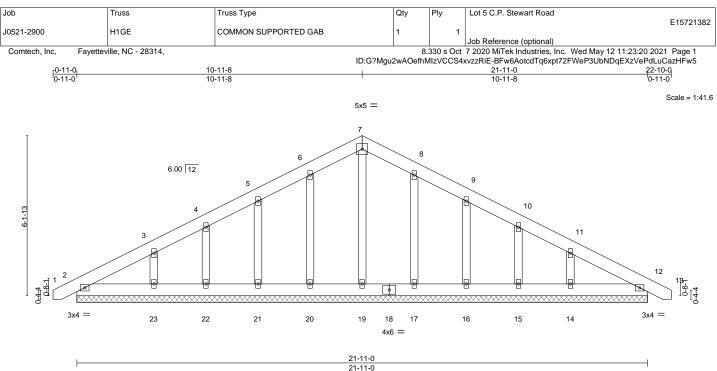
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


-

Structural wood sheathing directly applied or 5-6-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Design valid for use only with MTerk® connectors. This design is back into ALD DED will the REFERENCE FAGE MIF/473 few. 519/2020 beFVRE USE. Design valid for use only with MTerk® connectors. This design is backed only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSI/TH1 Quality Criteria, DSB-89 and BCSI Building Compon Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Edenton, NC 27932

			21-11-0		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) 0.00	12 n/r 120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	12 n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT) 0.00	12 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 154 lb FT = 20%
IUMBER-			BRACING-		

TOP CHORD

BOT CHORD

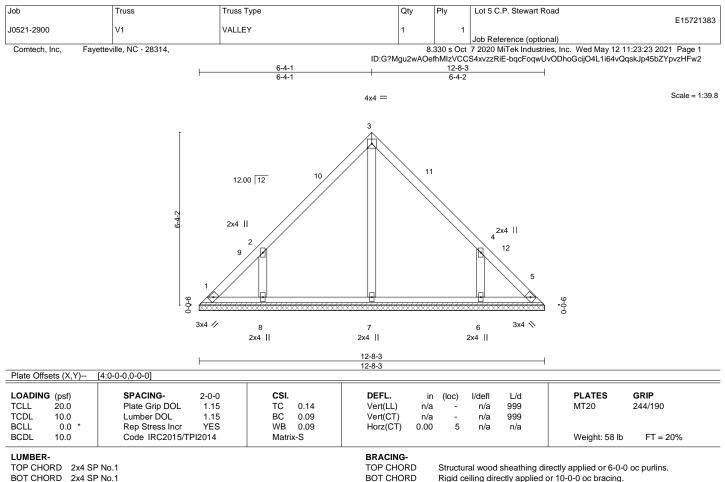
TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 21-11-0.

- Max Horz 2=119(LC 12) (lb) -
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 20, 21, 22, 17, 16, 15, 12 except 23=-109(LC 12), 14=-106(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 22, 23, 17, 16, 15, 14, 12
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 17, 16, 15, 12 except (jt=lb) 23=109, 14=106.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **AVSUPTI Quality Criteria, DSB-89 and BCSI Building Compor Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-8-3.

(lb) - Max Horz 1=144(LC 9)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-161(LC 12), 6=-161(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=342(LC 19), 6=342(LC 20)

WEBS 2-8=-356/291, 4-6=-355/291

NOTES-

BOT CHORD

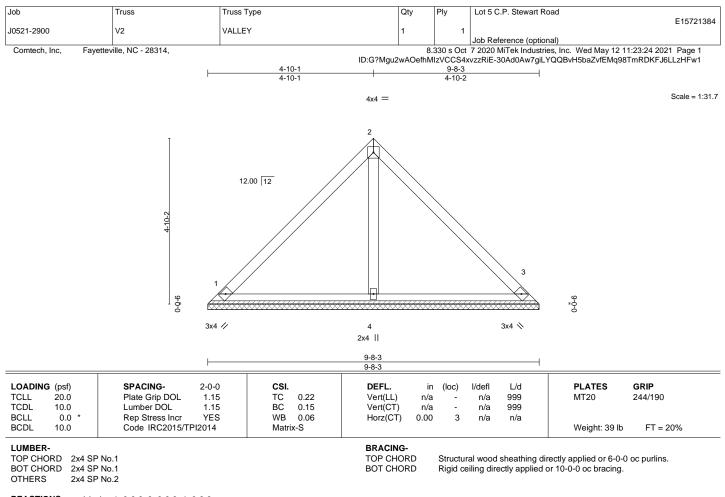
OTHERS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-4-1, Exterior(2) 6-4-1 to 10-8-14, Interior(1) 10-8-14 to 12-3-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=161.6=161.

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTE k® connectors. This sk0 includue unterpretended by the presence includue of the sk0 includue and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Compore Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

REACTIONS. (size) 1=9-8-3, 3=9-8-3, 4=9-8-3

Max Horz 1=-108(LC 8) Max Uplift 1=-27(LC 13), 3=-27(LC 13)

Max Grav 1=204(LC 1), 3=204(LC 1), 4=311(LC 1)

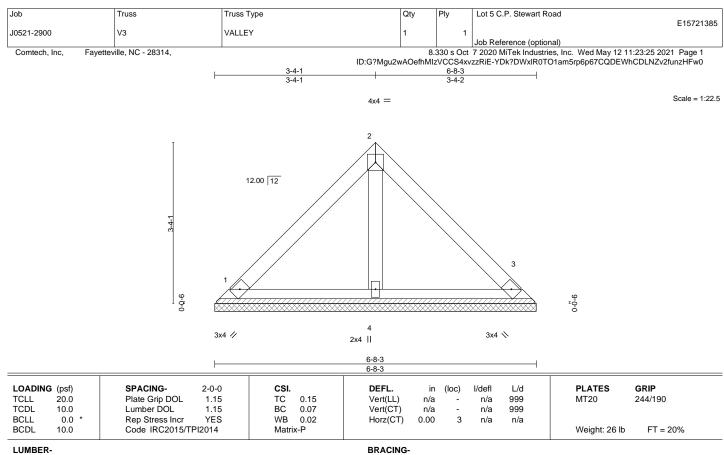
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

- 3) Gable requires continuous bottom chord bearing. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=6-8-3, 3=6-8-3, 4=6-8-3

Max Horz 1=-72(LC 8)

Max Uplift 1=-26(LC 13), 3=-26(LC 13)

Max Grav 1=146(LC 1), 3=146(LC 1), 4=187(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

arip DOL=1.60

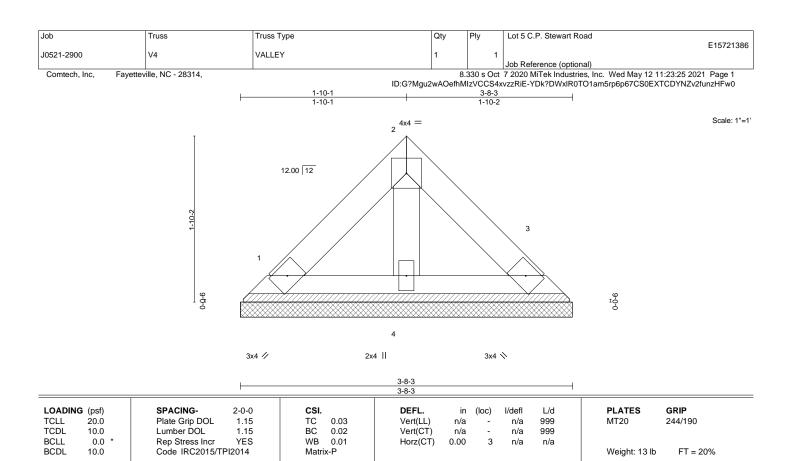
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD

LUMBER-

2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-8-3, 3=3-8-3, 4=3-8-3

Max Horz 1=-36(LC 8)

Max Uplift 1=-13(LC 13), 3=-13(LC 13)

Max Grav 1=72(LC 1), 3=73(LC 1), 4=93(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

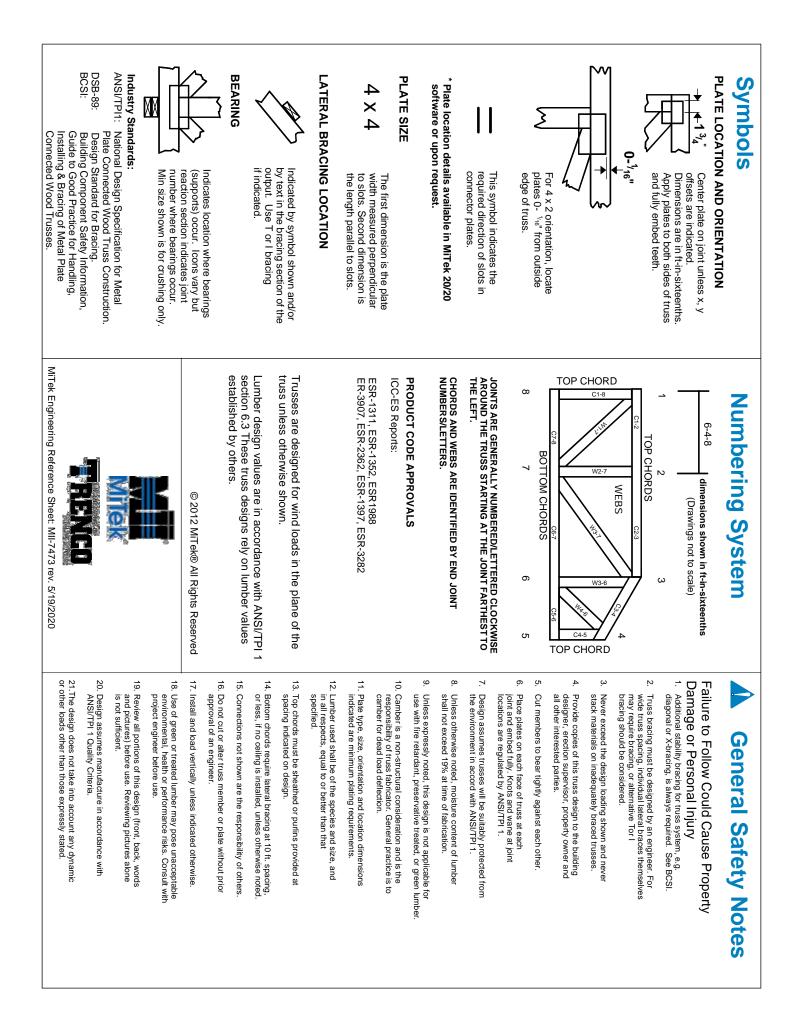
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

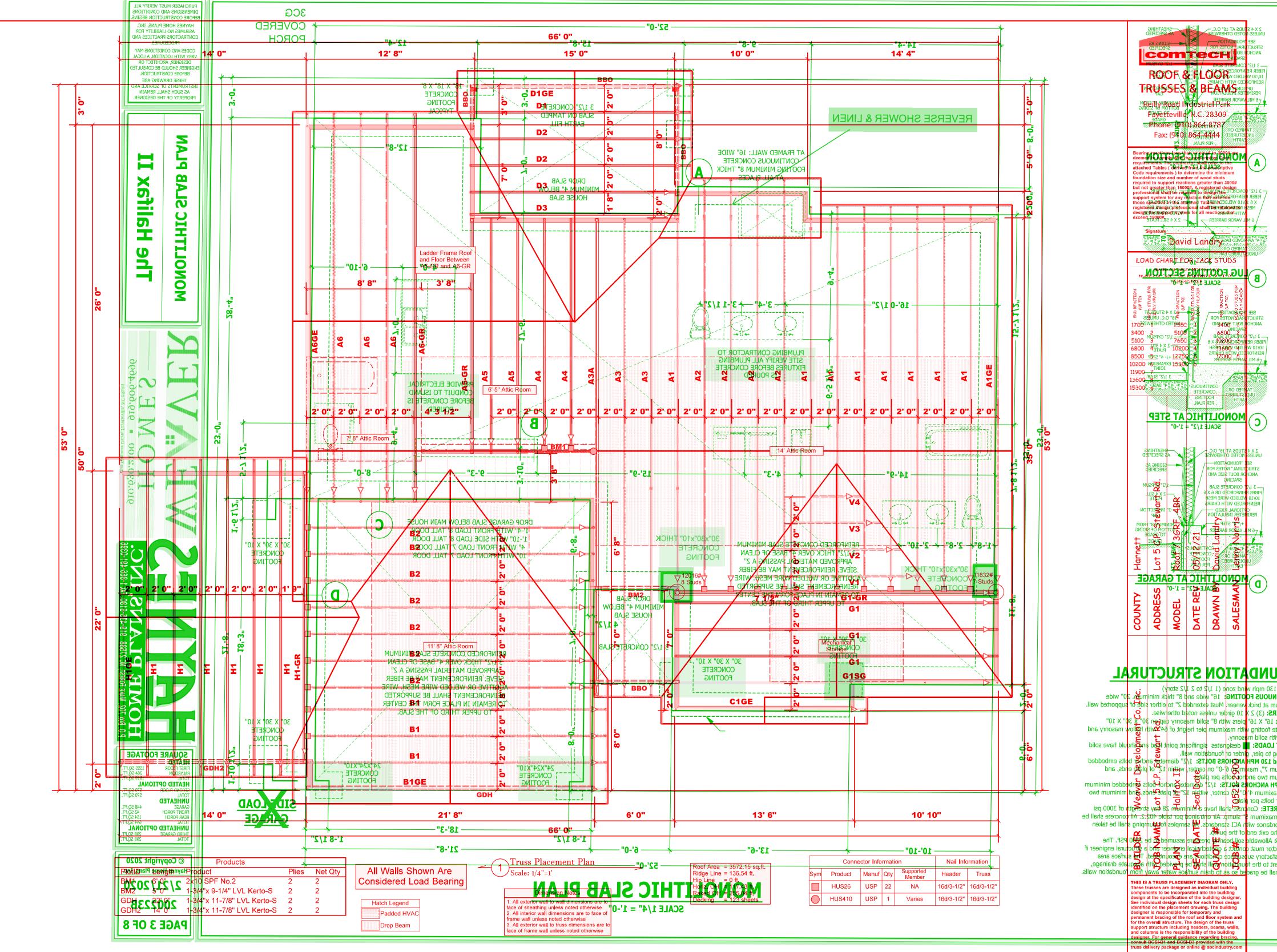
3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


Structural wood sheathing directly applied or 3-8-3 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.

May 12,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

