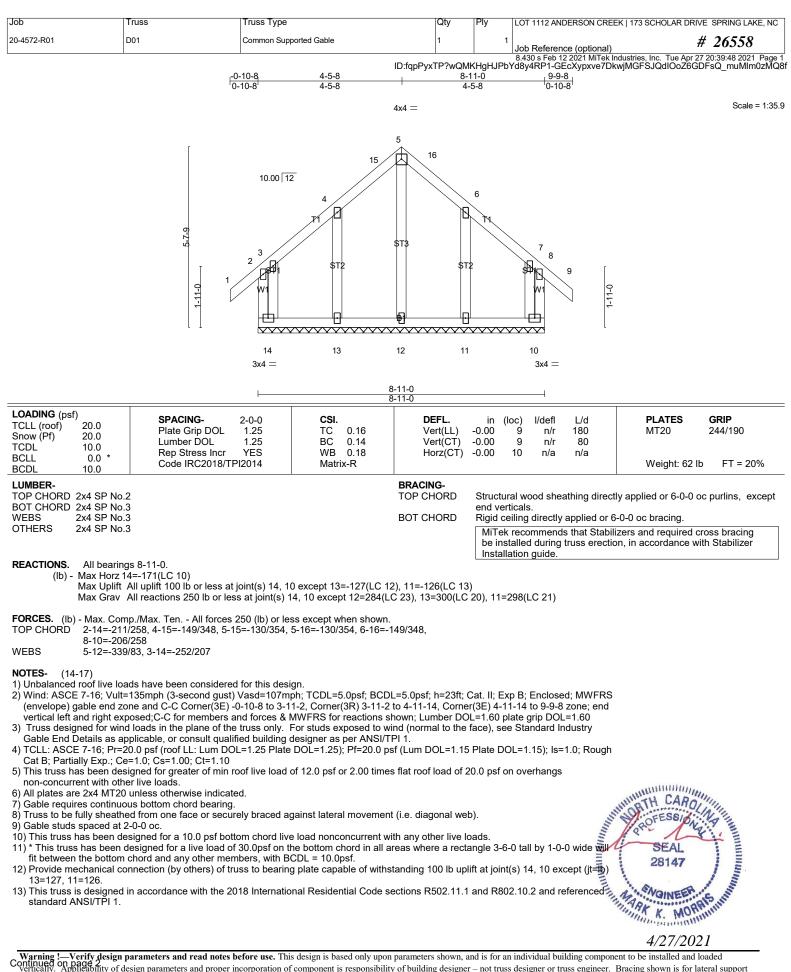
Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 26558 JOB: 20-4572-R01 JOB NAME: LOT 1112 ANDERSON CREEK Wind Code: 37 Wind Speed: Vult= 135mph Exposure Category: B Mean Roof Height (feet): 23


50 Truss Design(s)

Trusses:

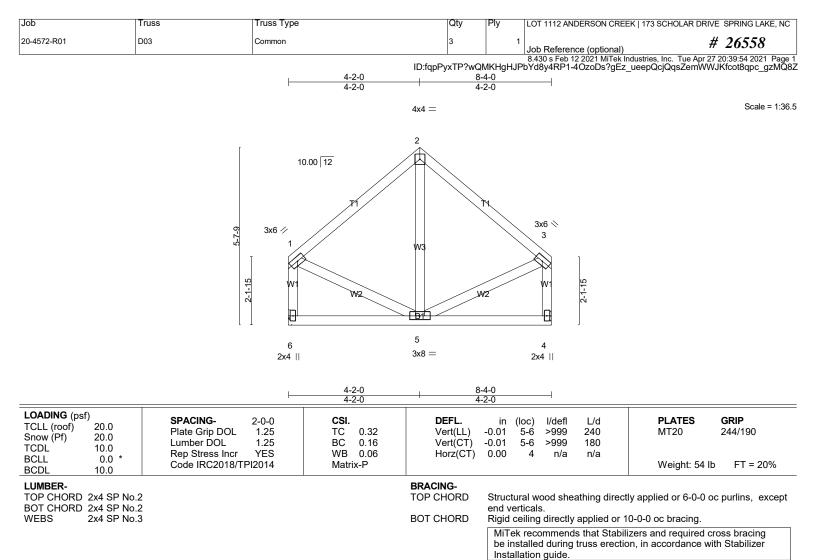
D01, D02, D03, D04, J01, J02, J03, J04, J05, J06, J07, J08, M01, M02, PB01, PB02, PB03, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, VT01, VT02, VT03, VT04, VT05, VT06, VT07, VT08, VT09, VT10, VT11, VT12, VT13, VT14

Warning !--- Verify design parameters and read notes before use.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	D01	Common Supported Gable	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:39:53 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-cBPQ?W?2Tfs11UEE20vbKL5eI7zOw7fjvA43REzMQ8a

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

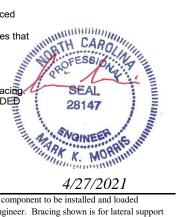
LOAD CASE(S) Standard

	Trus		Truss Type		Qty	Ply		EK 173 SCHOLAR DRIVE SPRING LAKE, NO
0-4572-R01	D02		Common		2		1 Job Reference (optional)	
			0.40.0	4.5.0			PbYd8y4RP1-cBPQ?W?2Ti	Industries, Inc. Tue Apr 27 20:39:53 2021 Pag fs11UEE20vbKL5bY7zkw9UjvA43REzMC
			-0-10-8 0-10-8	<u>4-5-8</u> 4-5-8		-11-0 -5-8	9-9-8 0-10-8	
					4x4 =			Scale = 1:3
		1			3			
				9	10			
			10.00 12					
				71		74		
		5-7-9	3x6 1/				3x6 ℕ	
			2		W3	,	4	
		Ī				/	5	
		1-11-0	W1	W2	X V	AV2	-11-0 -11-0	
		\ \	0					
		JI						
			8 2x4		7 3x8 =		6 2x4	
			284				274 11	
			L	4-5-8		11-0	I	
OADING (ps	£)		· · · · · · · · · · · · · · · · · · ·	4-5-8	4.	-5-8		
CLL (roof)	20.0	SPACING- Plate Grip DOL	2-0-0 1.25	CSI. TC 0.34	DEFL. Vert(LL)	in -0.01	(loc) I/defl L/d 7-8 >999 240	PLATES GRIP MT20 244/190
Snow (Pf) FCDL	20.0 10.0	Lumber DOL	1.25	BC 0.18	Vert(CT)	-0.02	7-8 >999 180	
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2018/	YES TPI2014	WB 0.06 Matrix-P	Horz(CT)	-0.00	6 n/a n/a	Weight: 59 lb FT = 20%
UMBER-			I		BRACING-			
	2x4 SP No.2 2x4 SP No.2				TOP CHORD		ural wood sheathing direc erticals.	tly applied or 6-0-0 oc purlins, excep
WEBS	2x4 SP No.3				BOT CHORD	Rigid o	ceiling directly applied or	8
								lizers and required cross bracing on, in accordance with Stabilizer
REACTIONS.	(lb/size) 8=40)6/0-3-8 (min. 0-1-8). 6=406/0-3-8(r	nin. 0-1-8)		Insta	llation guide.	
	Max Horz 8=-1	71(LC 10) 6(LC 12), 6=-66(LC	13)					
			,					
		Max. Ten All force , 4-10=-273/131, 2-8			n.			
NOTES- (9-	-12)							
		have been consider			DI =5 0psf: h=23ft:	Cat II: E	xp B; Enclosed; MWFRS	
(envelope)	gable end zone	and C-C Exterior(2E	E) -0-10-8 to 3-11	-2, Exterior(2R) 3-1	1-2 to 4-11-14, Exte	erior(2E)	4-11-14 to 9-9-8 zone;	
) TCLL: ASC	CE 7-16; Pr=20.0	psf (roof LL: Lum D	OL=1.25 Plate D				l.60 plate grip DOL=1.60)OL=1.15); ls=1.0; Rough	
		.0; Cs=1.00; Ct=1.10 ed for greater of min		12.0 psf or 2.00 tim	es flat roof load of 2	20.0 psf	on overhangs	
	rrent with other li	ve loads. ed for a 10.0 psf bot	tom chord live lo	ad nonconcurrent w	vith any other live lo	ads	Ū	
ິອ) * This truss	s has been desig	ned for a live load o	f 30.0psf on the b				-0 tall by 1-0-0 wide will fi	t
) Provide me	echanical connect	and any other memb ction (by others) of tr	uss to bearing pl					
3) This truss i standard A	s designed in ac NSI/TPI 1.	cordance with the 2	018 International	Residential Code s	ections R502.11.1	and R80	2.10.2 and referenced	ANNUM CONTRACT
) Graphical b	pracing represen	tation does not depi d	ct the size, type o	or the orientation of	the brace on the mo	ember. S	Symbol only indicates that	INTERTH CAROLINI
0) Bearing s	ymbols are only	graphical representa	ations of a possib	le bearing conditior	n. Bearing symbols	are not o	2.10.2 and referenced Symbol only indicates that considered in the tice for Handling, cluding diagonal bracing.	POPESO NA PIL
structural 1) Web brac	design of the tru ing shown is for	iss to support the loa lateral support of ind	ads indicated. dividual web men	bers only. Refer to	BCSI - Guide to Go	ood Prac	tice for Handling,	SEAL
	Restraining & B I-B3 SUMMARY	racing of Metal Plate SHEET- PERMAN	e Connected Woo	od Trusses for addit G/BRACING OF CH	tional bracing guide ORDS & WEB MEN	lines, ind MBERS	cluding diagonal bracing.	28147
[′] Installing, 12) SEE BCS	BRACING REC		OP CHORD, BO	TOM CHORD, AN	D WEB PLANES. I			No. al
Installing, 12) SEE BCS MINIMUM				ARGUILECTORE	INGINEER FOR AL	אטרוסל		A VOINEE C
['] Installing, 12) SEE BCS MINIMUM MINIMUM CONSIDE	I GUIDELINES, <i>I</i> ERATIONS.							ARL CONTROLLING
the membe 10) Bearing s structural 11) Web brac Installing, 12) SEE BCS MINIMUM MINIMUM CONSIDE COAD CASE(Warning !	I GUIDELINES, <i>i</i> ERATIONS. S) Standard						3	THAT K. MORRAM

REACTIONS. (lb/size) 6=322/Mechanical, 4=322/Mechanical Max Horz 6=-83(LC 8) Max Uplift6=-50(LC 13), 4=-50(LC 12)

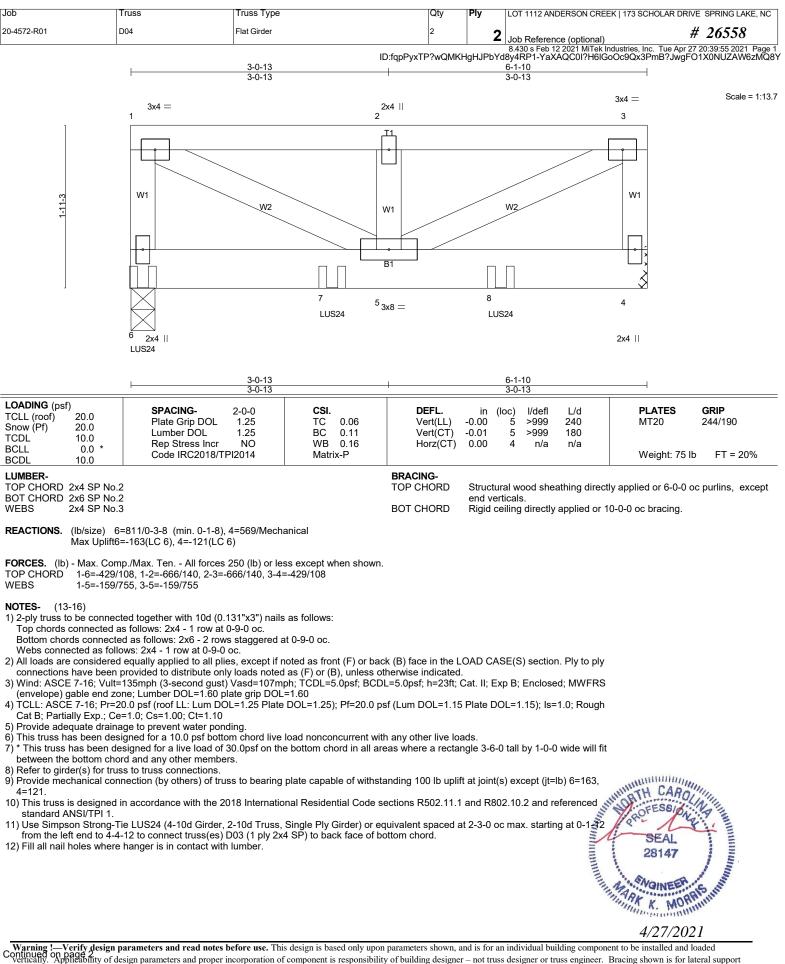
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-6=-291/135, 3-4=-291/135


NOTES-(9-12)

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=107mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BČŠI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR ŘECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS

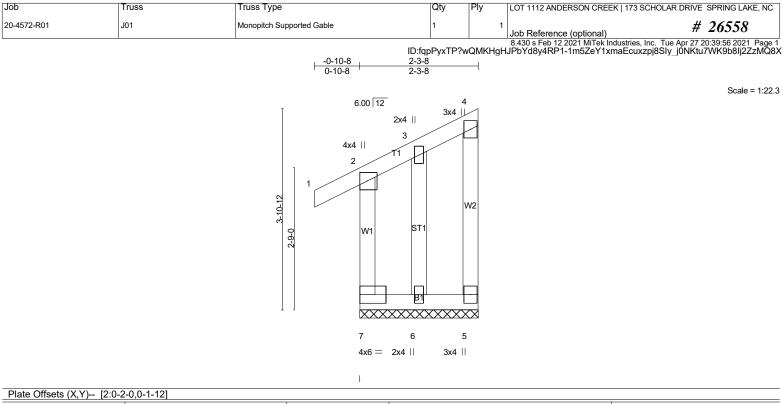
4/27/2021

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 S	CHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	D04	Flat Girder	2	2	Job Reference (optional)	# 26558
					8 430 c Ech 12 2021 MiTok Industries	Inc. Tuo Apr 27 20:30:55 2021 Dogo 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-YaXAQC0I?H6IGoOc9Qx3PmB?JwgF01X0NUZAW6zMQ8Y

- 13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- 16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard

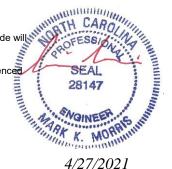
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 4-6=-20 Concentrated Loads (lb)

Vert: 6=-309(B) 7=-302(B) 8=-302(B)

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.25 Lumber DOL 1.25 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.75 BC 0.60 WB 0.06 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 1 -0.00 2 -0.00 5	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	end vertical Rigid ceiling MiTek reco	s. directly	applied or 6 s that Stabil	tly applied or 2-3-8 o 3-0-0 oc bracing. izers and required cr on, in accordance wi	oss bracing

Installation guide.


REACTIONS. (lb/size) 7=126/2-3-8 (min. 0-1-8), 5=34/2-3-8 (min. 0-1-8), 6=61/2-3-8 (min. 0-1-8) Max Horz 7=84(LC 11) Max Uplift7=-20(LC 12), 5=-43(LC 11), 6=-74(LC 11) Max Grav 7=178(LC 21), 5=45(LC 21), 6=86(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (13-16)

- 1) Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=107mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

- 101 truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will Fibetweet the bottom chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing plate conching of trust to be a structure in designed.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING	LAKE, NC
20-4572-R01	J01	Monopitch Supported Gable	1	1	Job Reference (optional) # 2655	58
					8,430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:39:56 2	021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-1m5ZeY1xmaEcuxzpj8Sly_j0NKtu7WK9b8lj2ZzMQ8X

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

)-4572-R01	J02	Monopitch	6	1	Job Reference (optional)	# 26558
		0.10.9	I			
				wQMKHg⊦	8.430 s Feb 12 2021 MiTek	, Industries, Inc. Tue Apr 27 20:39:56 2021 Page xmaEcuxzpj8SIy_jADK0g7V29b8Ij2ZzMQ8
		0-10-8	<u>2-3-8</u> 2-3-8	—		
		6.00 12	3 2x4	4		Scale = 1:22
		3x4 == 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TTI W	13		
		2x4	B1 6 3x6 =	_ , _ 5		
			2-3-8			
CADING (psf) "CLL (roof) 20.0 Snow (Pf) 20.0 "CDL 10.0 3CLL 0.0 3CDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 CSI. 1.25 TC 0.12 1.25 BC 0.04 YES WB 0.08 Pl2014 Matrix-P		-0.00 `	oc) I/defl L/d 7 >999 240 6-7 >999 180 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 21 lb FT = 20%
	lo.2)-3-8 (min. 0-1-8)	BRACING- TOP CHORD BOT CHORD	end ver Rigid ce MiTek be inst	ticals. ailing directly applied or recommends that Stab	otly applied or 2-3-8 oc purlins, except 10-0-0 oc bracing. ilizers and required cross bracing ion, in accordance with Stabilizer
Max Upl	ift6=-86(LC 11), 7=-4(LC 10) v 6=107(LC 21), 7=211(LC 2					
ORCES. (lb) - Max. C VEBS 2-6=-10		250 (lb) or less except when shown.				
(envelope) gable end shown; Lumber DOL TCLL: ASCE 7-16; P Cat B; Partially Exp.; Dubalanced snow loa	I zone and C-C Exterior(2E): =1.60 plate grip DOL=1.60 (=20.0 psf (roof LL: Lum DO Ce=1.0; Cs=1.00; Ct=1.10 ads have been considered fo designed for greater of min ro	Vasd=107mph; TCDL=5.0psf; BCDL zone; end vertical left exposed;C-C fo L=1.25 Plate DOL=1.25); Pf=20.0 ps or this design. oof live load of 12.0 psf or 2.00 times	or members and f f (Lum DOL=1.15	orces & N Plate DC	WFRS for reactions DL=1.15); Is=1.0; Rough	
 This truss has been (This truss has been (between the bottom (designed for a 10.0 psf botto designed for a live load of 3 shord and any other member	m chord live load nonconcurrent with 30.0psf on the bottom chord in all are rs.	as where a rectar	ngle 3-6-0	5	
) This truss is designe standard ANSI/TPI 1 0) Graphical bracing r that the member mi 1) Bearing symbols ar 	an accordance with the 201 accordance with the 201 presentation does not depic ist be braced. e only graphical representati	ss to bearing plate capable of withsta 18 International Residential Code sec 25 the size, type or the orientation of th ons of a possible bearing condition. E 5 indicated. 26 indicated. 27 indicated Wood Trusses for addition 28 T RESTRAING/BRACING OF CHOP 29 CHORD, BOTTOM CHORD, AND 20 CHORD, BOTTOM CHORD, AND 20 CHORD, SOTTOM CHORD, AND	tions R502.11.1 and be brace on the magnetic symbols and be available of the magnetic symbols and be available of the symbols	nember. S are not co	Symbol only indicates	OROFESSION SEAL
suructural design of 2) Web bracing shown Installing, Restrainii 3) SEE BCSI-B3 SUM MINIMUM BRACIN MINIMUM GUIDELI CONSIDERATIONS	ine truss to support the load is for lateral support of indiv ng & Bracing of Metal Plate (MARY SHEET- PERMANEN G REQUIREMENTS OF TOP NES, ALWAYS CONSULT T S.	18 International Residential Code sec at the size, type or the orientation of the ons of a possible bearing condition. E is indicated. vidual web members only. Refer to BC Connected Wood Trusses for addition TRESTRAING/BRACING OF CHOR PCHORD, BOTTOM CHORD, AND CHORD, BOTTOM CHORD, AND THE PROJECT ARCHITECT OR EN- perfore use. This design is based only upon proportion of component is responsibility acting to ensure stability during construction	CSI - Guide to Go nal bracing guidel RDS & WEB MEM WEB PLANES. II GINEER FOR AD	od Practio ines, inclu /IBERS FO N ADDITI DITIONA	ce for Handling, uding diagonal bracing. OR RECOMMENDED ON TO THESE L BRACING	28147
.OAD CASE(S) Stands	ırd					4/27/2021

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

4572-R01 J0			Qty	Ply		EEK 173 SCHOLAR DRIVE SPRING LAKE, NC
	03	Monopitch	4	1	Job Reference (optional)	# 26558
			ID:fgpPyxTP?wQN	/ /KHgHJPb	8.430 s Feb 12 2021 MiTek Yd8y4RP1-Vyexru2ZXuM	/ Industries, Inc. Tue Apr 27 20:39:57 2021 Page 1 ITV5Y?HrzXUBGKEkK?sxnJqo2Ga?zMQ8\
			<u>-10-8 1-3-8</u> -10-8 1-3-8			
						Scale = 1:22.6
		J 9.0	0 12 2x4 4			
			3x6 ≠ 3			
			2 11			
		q 1				
		3-11-10	W3			
		3-0-0	W1 W2			
		Ţ				
			$ \begin{array}{c} 6 \\ 7 \\ 6x6 = 5 \end{array} $			
			2x4			
			1-3-8 1-3-8			
DADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in (l	oc) l/defl L/d	PLATES GRIP
CLL (roof) 20.0 now (Pf) 20.0	Plate Grip DOL Lumber DOL	1.25 TC 0.10 1.25 BC 0.10	6 Vert(LL)	-0.00 -0.00	7 >999 240 7 >999 180	MT20 244/190
CDL 10.0 CLL 0.0 *	Rep Stress Incr Code IRC2018/TP	YES WB 0.1		-0.00	5 n/a n/a	Weight: 19 lb FT = 20%
CDL 10.0			PRACING			Weight: 19 lb FT = 20%
JMBER- OP CHORD 2x4 SP No.2			BRACING- TOP CHORD			ctly applied or 1-3-8 oc purlins, except
OT CHORD 2x4 SP No.2 'EBS 2x4 SP No.3			BOT CHORD	end ver Rigid ce	icals. iling directly applied or	10-0-0 oc bracing.
						ilizers and required cross bracing ion, in accordance with Stabilizer
EACTIONS. (lb/size) 7=	-134/0-3-8 (min. 0-1-8),	5=19/Mechanical		Installa	ation guide.	
Max Horz 7=						
	=171(LC 18), 5=152(LC 1	,				
		250 (lb) or less except when s	shown.			
OP CHORD 2-7=-377/1 'EBS 2-6=-182/5						
OTES- (9-12)				_		
(envelope) gable end zor	ne and C-C Exterior(2E)	Vasd=107mph; TCDL=5.0ps zone; end vertical left expose				
shown; Lumber DOL=1.6 TCLL: ASCE 7-16; Pr=20		_=1.25 Plate DOL=1.25); Pf=	20.0 psf (Lum DOL=1.15	Plate DC	0L=1.15); ls=1.0; Rough	1
Cat B; Partially Exp.; Ce= This truss has been desig		oof live load of 12.0 psf or 2.0	00 times flat roof load of 2	20.0 psf oi	n overhangs	
non-concurrent with other This truss has been design		n chord live load nonconcurr	ent with any other live loa	ads.	Ū	
	signed for a live load of 3	0.0psf on the bottom chord ir			tall by 1-0-0 wide will f	it
			withstanding 100 lb unlif	t at iaint/a) 7 over (it-lb) E-143	AND STREET STREET, STR
This truss is designed in	accordance with the 201	s to bearing plate capable of 8 International Residential Co the size, type or the orientation ons of a possible bearing con s indicated.	ode sections R502.11.1 a	and R802	.10.2 and referenced	WINNETH CAROLINI
Graphical bracing repres	entation does not depict	the size, type or the orientation	on of the brace on the me	ember. Sy	mbol only indicates that	t POFESO/DAR PITT
the member must be brac)) Bearing symbols are on	ced. Ily graphical representatio	ons of a possible bearing con	dition. Bearing symbols a	are not co	nsidered in the	SEAL
structural design of the Web bracing shown is f	truss to support the loads or lateral support of indiv	s indicated. idual web members only. Rei	fer to BCSI - Guide to Go	od Practi	ce for Handling,	28147
Installing, Restraining &	Bracing of Metal Plate C	Connected Wood Trusses for	additional bracing guide	lines, inclu /IBERS E	uding diagonal bracing.	ALENOW CALL
MINIMUM BRACING RE	EQUIREMENTS OF TOP	CHORD, BOTTOM CHORD	OR ENGINEER FOR AD		ON TO THESE	TAK K MORR MININ
CONSIDERATIONS.	, ALWATS CONSOLT I		ON ENGINEER FOR AL		L DIVACING	A/27/2021 None of the overall structure is the None of the overall structure is the None of the overall structure is the None of the overall structure is the Notice of the overall structure is the Note of the overall structure is
						4/27/2021

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type		Qty	Ply	LOT 11	112 AND	ERSON CREE	EK 173 SCHOLA	AR DRIVE	SPRING LAKE, NC
20-4572-R01	J04	Monopitch Supported Gable		1			oforonce	e (optional)		#	26558
		- <u>0-10-8</u> 0-10-8	ID:fqpPyx] 7-0-0 7-0-0	P?wQMh	└ KHgHJP ───┤	8.430 s bYd8y4F	s Feb 12 RP1-z9C	2021 MiTek li J3E2BICU	ndustries, Inc. Tu (7F7BrZVm1Pp	e Apr 27 2 DUe8h5b	20:39:58 2021 Page LBS3Snq7RzMQ8
				2x4	П						Scale = 1:49
		T	2x4		6						
			9.00 12 2x4 4 3 5T2 5T1 W_2	5 ST3 8 2x4	W3						
LOADING (psf)	004.000										
TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0) Lumber DO Ben Stress	L 1.25 BC	0.10 Ve	t(LL) t(CT)	in 0.00 0.00 -0.00	(loc) l/ 1 2 7	/defl n/r n/r n/a	L/d 180 80 n/a	PLATE MT20		GRIP 244/190
BCLL 0.0 BCDL 10.0	Code IBC2	018/TPI2014 Matri		2(01)	-0.00	1	11/a	n/a	Weigh	t: 67 lb	FT = 20%
			BRACIN TOP CH BOT CH	ORD	end ve Rigid c	rticals.	irectly a	opplied or 1	ly applied or 6 0-0-0 oc brac		purlins, except ccept:
					be in		luring tr		izers and requ on, in accorda		
	pearings 7-0-0. Horz 11=183(LC 12)	ess at joint(s) 7, 9, 8 except 11				v					
Max	Grav All reactions 250 lb	or less at joint(s) 7, 8 except 1				(====)					

- (envelope) gable end zone and C-C Corner(3E) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Summer TH CARO
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit 9)* This truss has been dealed and any other members, with book and between the bottom chord and any other members, with book and any other members, any other members, and any other members, and any oth

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual oundary component to be instance and reader of page 2 vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support vertically. of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

MANNAHIH WALL

SEAL 28147

NOINEE K. MORR

4/27/2021

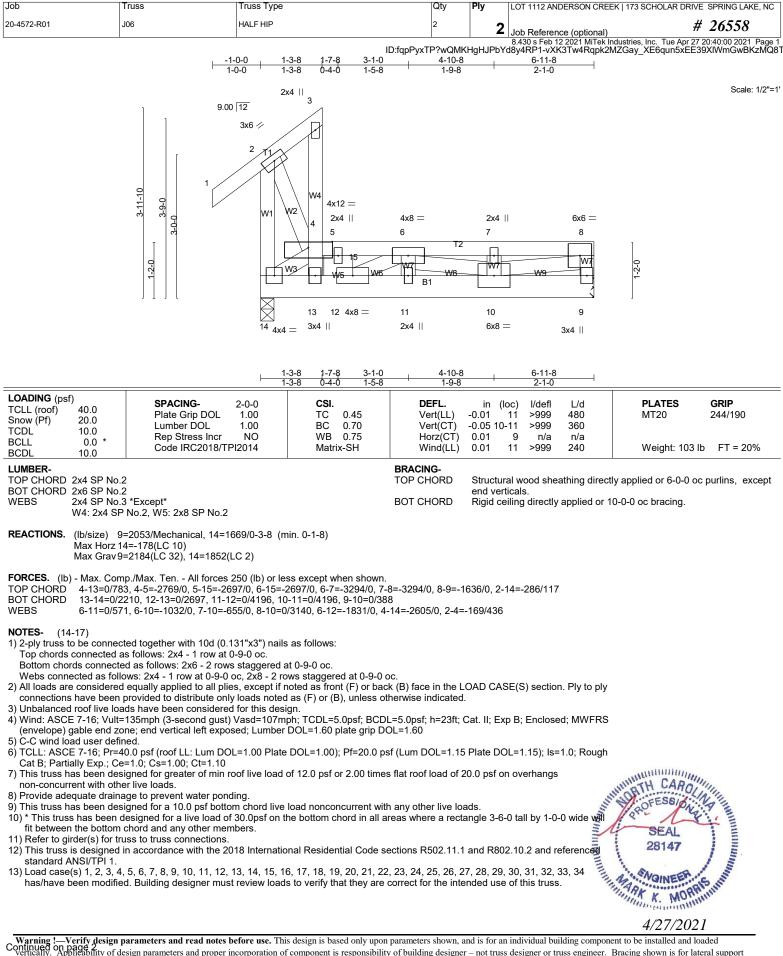
MORRE MININ

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DF	RIVE SPRING LAKE, NC
20-4572-R01	J04	Monopitch Supported Gable	1	1	Job Reference (optional)	# 26558
					8,430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr	27 20:39:58 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-z9CJ3E2BICUK7F7BrZVm1PpUe8h5bLBS3Snq7RzMQ8V

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS


15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

	Truss J05	Truss Type Monopitch		Qty 7	Ply 1			EK 173 SCHOLAR DRIVE SPRING # 265	
I		-(C	D-10-8	ID:fqpPyxTP?wQM 6-11-8 6-11-8	IKHgHJPb∖ ────┤	Job Referenc 8.430 s Feb 12 /d8y4RP1-RL	2021 MiTek In	ndustries, Inc. Tue Apr 27 20:39:59 BIPhOOG0?ZcLVxXwFKr1cH6.	2021 Page 1 XNfuzMQ8U
		10	9.00 12 9.00 12 9.00 2 9.00 12 9.00 12 9.00 12	2x4	65 3x6=			S	Scale: 1/4"=1'
			L	6-11-8 6-11-8	I				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.25 1.25 YES 2014	CSI. TC 0.86 BC 0.56 WB 0.19 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)		nc) l/defl -7 >718 -7 >359 6 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/19 Weight: 50 lb FT =	0 = 20%
Max Horz 7	2)-3-8 (min. 0-1-i	8)	BRACING- TOP CHORD BOT CHORD	end verti Rigid cei MiTek be insta	cals. ling directly a recommends	applied or 9 that Stabil	ly applied or 2-2-0 oc purlins -3-8 oc bracing. izers and required cross brac n, in accordance with Stabili	cing
	=336(ĽC 20),́ 7=327(LC 2 up./Max. Ten All forces 2) 181		xcept when shown.						
 shown; Lumber DOL=1. 2) TCLL: ASCE 7-16; Pr=2 Cat B; Partially Exp.; Ce 3) This truss has been des non-concurrent with othe 4) This truss has been des 5) * This truss has been des 5) * This truss has been des 5) * This truss has been des 6) Refer to girder(s) for trus 7) Provide mechanical con 8) This truss is designed in standard ANSI/TPI 1. 9) Graphical bracing repres the member must be bra 10) Bearing symbols are oo structural design of the 11) Web bracing shown is Installing, Restraining & 12) SEE BCSI-B3 SUMMA MINIMUM BRACING F 	ne and C-C Exterior(2E) z 60 plate grip DOL=1.60 0.0 psf (roof LL: Lum DOL igned for greater of min rc er live loads. igned for a 10.0 psf bottor signed for a 10.0 psf bottor signed for a live load of 3 rd and any other members so to truss connections. nection (by others) of trus accordance with the 201 sentation does not depict truss to support the loads for lateral support of indiv & Bracing of Metal Plate C RY SHEET- PERMANEN EQUIREMENTS OF TOP S, ALWAYS CONSULT T	one; end vertica =1.25 Plate DO of live load of 12 in chord live load 0.0psf on the bo s. s to bearing plat B International R he size, type or ins of a possible indicated. dual web memb onnected Wood T RESTRAING/ CHORD, BOTT HE PROJECT A	al left exposed;C-C for L=1.25); Pf=20.0 ps 2.0 psf or 2.00 times 4 nonconcurrent with ttom chord in all are the capable of withsta tesidential Code sec the orientation of the bearing condition. E ers only. Refer to BC Trusses for addition BRACING OF CHOP OM CHORD, AND N ARCHITECT OR ENG	or members and the f (Lum DOL=1.15) flat roof load of 2 any other live load as where a rectain and the form of the form of the second second second by the second second second by the second second by the second second by the s	Forces & M Plate DO 20.0 psf on ads. ngle 3-6-0 t at joint(s) and R802. ember. Syn are not con od Practic ines, inclu /BERS FO N ADDITIC DITIONAL	WFRS for re L=1.15); Is=1 overhangs tall by 1-0-0 except (jt=It 10.2 and refe mbol only ind nsidered in th e for Handlir ding diagona DR RECOMN DN TO THES BRACING	actions 1.0; Rough wide will fit b) 6=224. erenced licates that he al bracing IENDED	4/27/2021	

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01 J	J06	HALF HIP	2	2	Job Reference (optional) # 26558

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-vXK3Tw4Rqpk2MZGay_XE6qun5xEE39XIWmGwBKzMQ8T

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 4-5=-60, 5-8=-355, 12-14=-20, 9-12=-270(F=-250) Concentrated Loads (lb) Vert: 5=-293 2) Dead + Roof Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-100, 2-3=-100, 4-5=-100, 5-8=-395, 12-14=-20, 9-12=-270(F=-250) Concentrated Loads (lb) Vert: 5=-293 3) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-2=-80, 2-3=-80, 4-5=-80, 5-8=-375, 12-14=-20, 9-12=-270(F=-250) Concentrated Loads (lb) Vert: 5=-293 4) Dead + 0.75 Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-50, 2-3=-50, 4-5=-50, 5-8=-345, 12-14=-20, 9-12=-270(F=-250) Concentrated Loads (lb) Vert: 5=-293 5) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-2-20, 2-3-20, 4-5-20, 5-8-315, 12-14-40, 9-12-290(F-250) Concentrated Loads (lb) Vert: 5=-293 6) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=60, 2-3=41, 4-5=34, 5-15=-261, 8-15=-254, 12-14=-10, 9-12=-260(F=-250) Horz: 1-2=-70, 2-3=-51, 3-4=-49, 4-5=-44, 2-14=-38 Concentrated Loads (lb) Vert: 5=-293 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-43, 4-5=-43, 5-8=-338, 12-14=-20, 9-12=-270(F=-250) Horz: 1-2=-18, 2-3=23, 3-4=29, 4-5=23, 2-14=35 Concentrated Loads (lb) Vert: 5=-293 8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=0, 2-3=-13, 4-5=12, 5-8=-283, 12-14=-10, 9-12=-260(F=-250) Horz: 1-2=-10, 2-3=3, 3-4=10, 4-5=-22, 2-14=16 Concentrated Loads (lb) Vert: 5=-293 9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=12, 4-5=29, 5-8=-266, 12-14=-10, 9-12=-260(F=-250) Horz: 1-2=-16, 2-3=-22, 3-4=-26, 4-5=-39, 2-14=-20 Concentrated Loads (lb) Vert: 5=-293 10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-28, 2-3=-34, 4-5=-9, 5-8=-304, 12-14=-20, 9-12=-270(F=-250) Horz: 1-2=8, 2-3=14, 3-4=32, 4-5=-11, 2-14=27 Concentrated Loads (lb) Vert: 5=-293 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-4, 2-3=-9, 4-5=8, 5-8=-287, 12-14=-20, 9-12=-270(F=-250) Horz: 1-2=-16, 2-3=-11, 3-4=-4, 4-5=-28, 2-14=-9 Concentrated Loads (lb) Vert: 5=-293 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=23, 2-3=29, 4-5=12, 5-8=-283, 12-14=-10, 9-12=-260(F=-250) Horz: 1-2=-33, 2-3=-39, 3-4=-44, 4-5=-22, 2-14=13 Concentrated Loads (lb) Vert: 5=-293

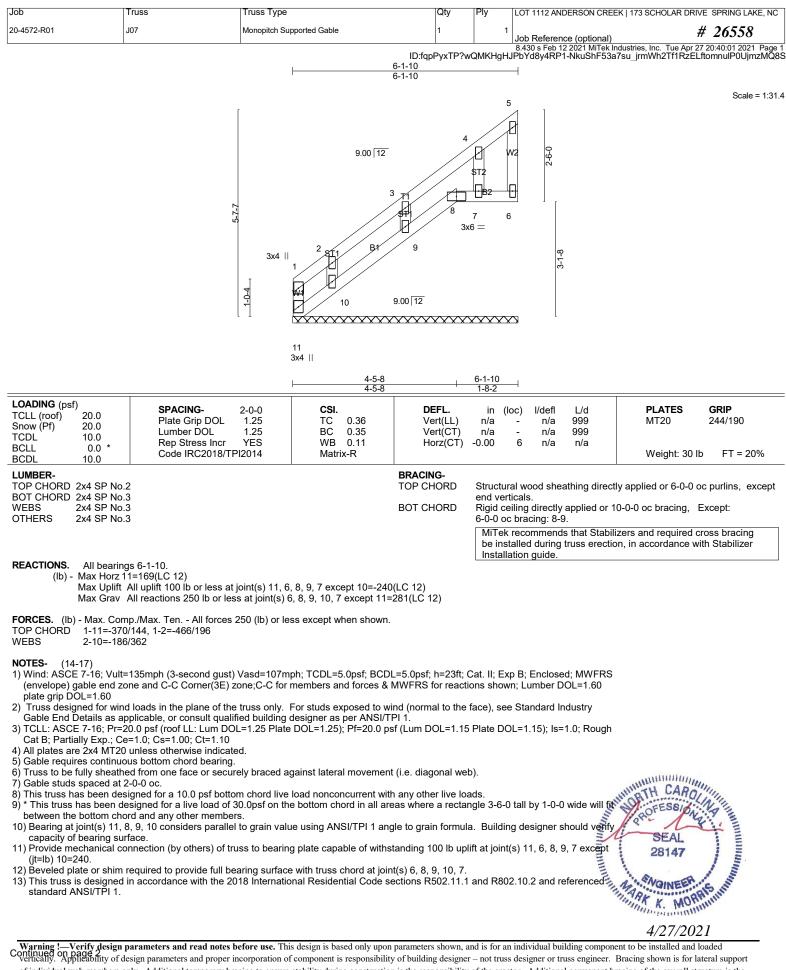
SEAL 28147 Algoresson 28147 Algoresson 28147 Algoresson 28147 Algoresson 4/27/2021

13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DR	IVE SPRING LAKE, NC
20-4572-R01	J06	HALF HIP	2	2	Job Reference (optional)	# 26558

8.430 s Feb 12 2021 MITek Industries, Inc. Tue Apr 27 20:40:01 2021 Page 3 ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-NkuShF53a7su_jrmWh2Tf1RyrLaTocnuIP0UjmzMQ8S

4/27/2021


12.1	
LOAD CASE(S)	
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=12, 4-5=29, 5-8=-266, 12-14=-10, 9-12=-260(F=-250)	
Horz: 1-2=-16, 2-3=-22, 3-4=-28, 4-5=-39, 2-14=-19	
Concentrated Loads (lb) Vert: 5=-293	
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increas	se=1.60
Uniform Loads (plf)	
Vert: 1-2=23, 2-3=29, 4-5=12, 5-8=-283, 12-14=-10, 9-12=-260(F=-250)	
Horz: 1-2=-33, 2-3=-39, 3-4=-44, 4-5=-22, 2-14=13	
Concentrated Loads (lb) Vert: 5=-293	
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increas	e=1 60
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=12, 4-5=29, 5-8=-266, 12-14=-10, 9-12=-260(F=-250)	
Horz: 1-2=-16, 2-3=-22, 3-4=-28, 4-5=-39, 2-14=-19	
Concentrated Loads (lb)	
Vert: 5=-293 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increas	e=1 60
Uniform Loads (plf)	
Vert: 1-2=13, 2-3=8, 4-5=-9, 5-8=-304, 12-14=-20, 9-12=-270(F=-250)	
Horz: 1-2=-33, 2-3=-28, 3-4=-22, 4-5=-11, 2-14=24	
Concentrated Loads (lb)	
Vert: 5=-293 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increa	co-1 60
Uniform Loads (plf)	30-1.00
Vert: 1-2=-4, 2-3=-9, 4-5=8, 5-8=-287, 12-14=-20, 9-12=-270(F=-250)	
Horz: 1-2=-16, 2-3=-11, 3-4=-5, 4-5=-28, 2-14=-8	
Concentrated Loads (lb) Vert: 5=-293	
18) Dead + Snow on Overhangs: Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-2̈=-1́00, 2-3=-20, 4-5=-20, 5-8=-315, 12-14=-20, 9-12=-270(F=-250)	
Concentrated Loads (lb)	
Vert: 5=-293 19) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90	
Uniform Loads (plf)	
Vert: 1-2=-20, 2-3=-20, 4-5=-20, 5-8=-315, 12-14=-20, 9-12=-270(F=-250)	
Concentrated Loads (lb)	
Vert: 5=-293	
20) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, I Uniform Loads (plf)	Plate increase=1.60
Vert: 1-2=-56, 2-3=-60, 4-5=-42, 5-8=-337, 12-14=-20, 9-12=-270(F=-250)	
Horz: 1-2=6, 2-3=10, 3-4=24, 4-5=-8, 2-14=20	
Concentrated Loads (lb)	
Vert: 5=-293 21) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60.	Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-38, 2-3=-42, 4-5=-29, 5-8=-324, 12-14=-20, 9-12=-270(F=-250)	
Horz: 1-2=-12, 2-3=-8, 3-4=-3, 4-5=-21, 2-14=-7	
Concentrated Loads (lb) Vert: 5=-293	
22) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase	=1.60 Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-25, 2-3=-29, 4-5=-42, 5-8=-337, 12-14=-20, 9-12=-270(F=-250)	
Horz: 1-2=-25, 2-3=-21, 3-4=-16, 4-5=-8, 2-14=18	
Concentrated Loads (lb) Vert: 5=-293	
23) Dead + 0.75 Snow (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase	e=1.60, Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-38, 2-3=-42, 4-5=-29, 5-8=-324, 12-14=-20, 9-12=-270(F=-250)	
Horz: 1-2=-12, 2-3=-8, 3-4=-4, 4-5=-21, 2-14=-6 Concentrated Loads (lb)	
Vert: 5=-293	
24) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.0	60, Plate Increase=1.60
Uniform Loads (plf)	WHILE CAROUN
Vert: 1-2=-86, 2-3=-90, 4-5=-72, 5-8=-367, 12-14=-20, 9-12=-270(F=-250) Horz: 1-2=6, 2-3=10, 3-4=24, 4-5=-8, 2-14=20	IN OR THE ALLAND
Concentrated Loads (lb)	S QOFESSON NO THE
Vert: 5=-293	E Level
25) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1	I.60, Plate Increase=1.60
Uniform Loads (plf)	28147
Vert: 1-2=-68, 2-3=-72, 4-5=-59, 5-8=-354, 12-14=-20, 9-12=-270(F=-250) Horz: 1-2=-12, 2-3=-8, 3-4=-3, 4-5=-21, 2-14=-7	
Concentrated Loads (lb)	E State A
	2. AL VOINED C
Vert: 5=-293	ARE CONED OF
vert: 5=-293 26) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Incre	60, Plate Increase=1.60

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRI	VE SPRING LAKE, NC
20-4572-R01	J06	HALF HIP	2	2	Job Reference (optional)	# 26558

8.430 s Feb 12 2021 MITek Industries, Inc. Tue Apr 27 20:40:01 2021 Page 4 ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-NkuShF53a7su_jrmWh2Tf1RyrLaTocnulP0UjmzMQ8S

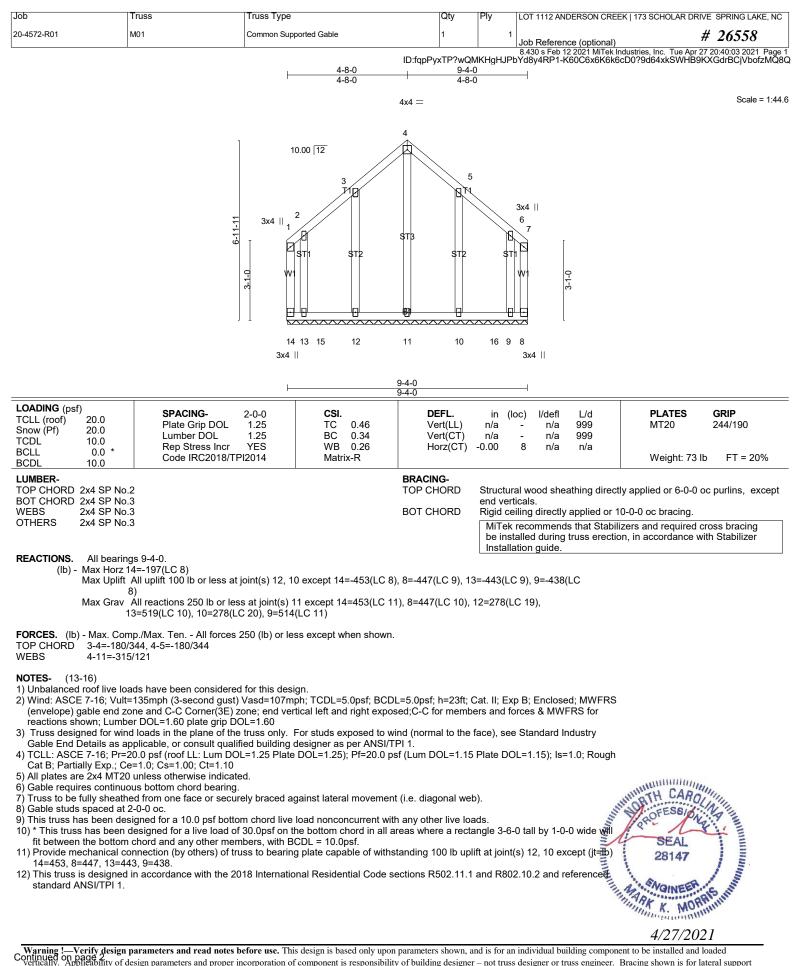
Uniform	n Loads (plf) Vert: 1-2=-55, 2-3=-59, 4-5=-72, 5-8=-367, 12-14=-20, 9-12=-270(F=-250)
	Horz: 1-2=-25, 2-3=-21, 3-4=-16, 4-5=-8, 2-14=18
Concer	ntrated Loads (lb)
Concer	Vert: 5=-293
27) Dead +	0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.
ormorn	Vert: 1-2=-68, 2-3=-72, 4-5=-59, 5-8=-354, 12-14=-20, 9-12=-270(F=-250)
	Horz: 1-2=-12, 2-3=-8, 3-4=-4, 4-5=-21, 2-14=-6
Concer	ntrated Loads (lb)
	Vert: 5=-293
28) Dead +	Minimum Snow: Lumber Increase=1.15, Plate Increase=1.15
Uniform	n Loads (plf)
	Vert: 1-2=-20, 2-3=-20, 4-5=-60, 5-8=-355, 12-14=-20, 9-12=-270(F=-250)
Concer	ntrated Loads (Ib)
00) B	Ver: 5=-293
	0.6 C-C Wind Min. Down: Lumber Increase=1.60, Plate Increase=1.60
Uniforn	n Loads (plf)
	Vert: 1-2=6, 2-3=-26, 4-5=-26, 5-8=-321, 12-14=-10, 9-12=-260(F=-250)
Concor	Horz: 1-2=-16, 2-3=16, 3-4=16, 4-5=16, 2-14=16
Concer	ntrated Loads (lb) Vert: 5=-293
30) Dead +	0.6 C-C Wind Min. Upward: Lumber Increase=1.60, Plate Increase=1.60
	n Loads (plf)
Official	Vert: 1-2=6, 2-3=6, 4-5=6, 5-8=-289, 12-14=-10, 9-12=-260(F=-250)
	Horz: 1-2=-16, 2-3=-16, 3-4=-16, 4-5=-16, 2-14=-16
Concer	ntrated Loads (lb)
	Vert: 5=-293
31) 1st Dea	ad + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform	n Loads (plf)
	Vert: 1-2=-100, 2-3=-100, 4-5=-20, 5-8=-315, 12-14=-20, 9-12=-270(F=-250)
Concer	ntrated Loads (lb)
	Vert: 5=-293
	ad + Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniforn	n Loads (plf) North 4 25, 20, 2 25, 20, 4 55, 400, 5 85, 205, 40, 445, 20, 0, 425, 270(55, 250)
Canaa	Vert: 1-2=-20, 2-3=-20, 4-5=-100, 5-8=-395, 12-14=-20, 9-12=-270(F=-250)
Concer	ntrated Loads (lb) Vert: 5=-293
33) 3rd De	ad + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
,	n Loads (plf)
ormorn	Vert: 1-2=-80, 2-3=-80, 4-5=-20, 5-8=-315, 12-14=-20, 9-12=-270(F=-250)
Concer	trated Loads (b)
	Vert: 5=-293
34) 4th Dea	ad + 0.75 Roof Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniforn	n Loads (plf)
	Vert: 1-2=-20, 2-3=-20, 4-5=-80, 5-8=-375, 12-14=-20, 9-12=-270(F=-250)
Concer	ntrated Loads (lb)
	Vert: 5=-293

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	J07	Monopitch Supported Gable	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:02 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-rwSqub5hLQ_lcsQy4PZiBFz8_I_6XD12_3I1GCzMQ8R

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate


Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

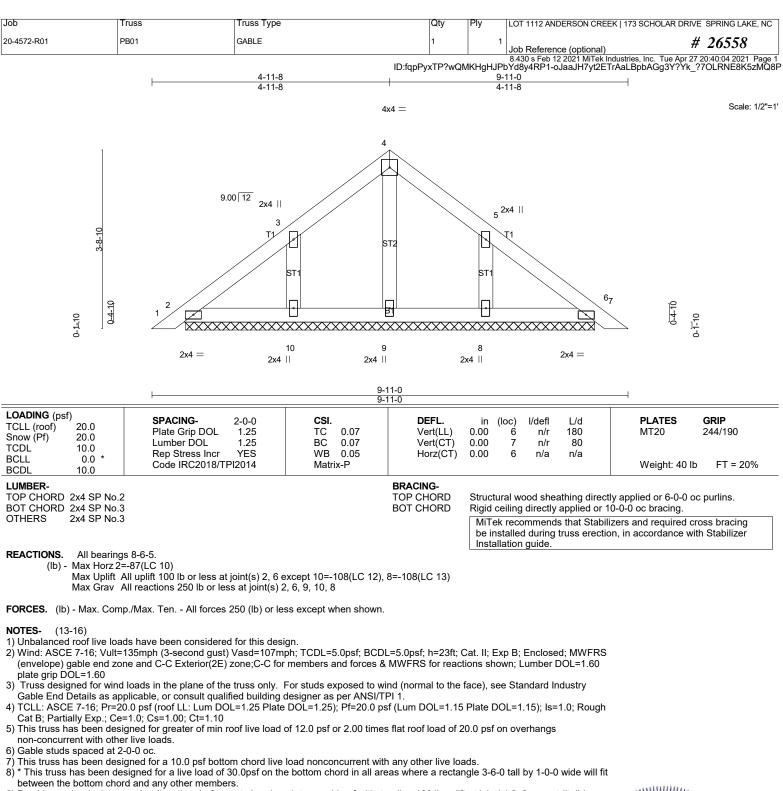
ob	Truss	Truss Type	Qty	Ply LOT 1112 A	NDERSON CREE	EK 173 SCHOLAR DRIVE SPRING LAKE, NC
0-4572-R01	80L	Jack-Partial	7	1	ence (optional)	# 26558
	I			8.430 s Feb vQMKHgHJPbYd8y4F	12 2021 MiTek II	ndustries, Inc. Tue Apr 27 20:40:02 2021 Page 1 _Q_IcsQy4PZiBFz1tl0zXDS2_3I1GCzMQ8R
			4-5-8 5-1-13 6 2-1-0 0-8-5 0-			
				3		Scale = 1:33.0
		9.00 [12	2x4 2 W3 B2	55-15	1	
	2 7 7	W2	⁵ 5x5 =	5-1-15		
				, D		
)[12		ې ۲-۲-	
		6				
		2x4				
		4-5-8	6-1-			
L OADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Bon Stross Incr	4-5-8 2-0-0 CSI. 1.25 TC 0.81 1.25 BC 0.23 VES WB 0.08		in (loc) l/defl 0.21 5 >333 -0.23 5 >311	L/d 240 180	PLATESGRIPMT20244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2018/TF	YES WB 0.08 PI2014 Matrix-P	Horz(CT)	0.17 4 n/a	n/a	Weight: 33 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No	.2 .3		BRACING- TOP CHORD BOT CHORD	end verticals. Rigid ceiling direct MiTek recommer	y applied or 1 ds that Stabil g truss erection	ly applied or 6-0-0 oc purlins, except 0-0-0 oc bracing. izers and required cross bracing on, in accordance with Stabilizer
Max Horz Max Uplift	6=237/0-3-8 (min. 0-1-8), 6=172(LC 12) 3=-153(LC 12) 6=237(LC 1), 3=246(LC 19	3=221/Mechanical, 4=16/Mechanica 9), 4=32(LC 5)	I			
FORCES. (lb) - Max. Col BOT CHORD 5-6=-310 WEBS 1-5=-110	/157	250 (lb) or less except when shown.				
		Vasd=107mph; TCDL=5.0psf; BCDL zone;C-C for members and forces &				
Cat B; Partially Exp.; C 3) This truss has been de 4) * This truss has been c	e=1.0; Cs=1.00; Ct=1.10 signed for a 10.0 psf botto	L=1.25 Plate DOL=1.25); Pf=20.0 ps m chord live load nonconcurrent with 30.0psf on the bottom chord in all are	any other live loa	ds.		
5) Refer to girder(s) for tr	uss to truss connections.	lue using ANSI/TPL1 angle to grain f	formula. Building	designer should ver	ify capacity of	
 Provide mechanical co This truss is designed standard ANSI/TPI 1. Graphical bracing repr 	nnection (by others) of trus in accordance with the 201 esentation does not depict	ss to bearing plate capable of withsta 8 International Residential Code sec the size, type or the orientation of the	inding 100 lb uplift ctions R502.11.1 a e brace on the me	at joint(s) except (ji nd R802.10.2 and r mber. Symbol only	=lb) 3=153. eferenced ndicates that	TH CAROL
the member must be b 10) Bearing symbols are of structural design of th 11) Web bracing shown is Installing, Restraining 12) SEE BCSI-B3 SUMG MINIM BRACING	raced. only graphical representati e truss to support the load s for lateral support of indiv & Bracing of Metal Plate (ARY SHEET- PERMANEN REQUIREMENTS OF TO ES ALWAYS CONSULT.	the using ANSI/TET Failgle to grain ss to bearing plate capable of withsta 8 International Residential Code sec the size, type or the orientation of the ons of a possible bearing condition. If s indicated. vidual web members only. Refer to Br Connected Wood Trusses for addition TRESTRAING/BRACING OF CHOT P CHORD, BOTTOM CHORD, AND CHORD, BOTTOM CHORD, AND THE PROJECT ARCHITECT OR EN Defore use. This design is based only upon incorporation of component is responsibility acing to ensure stability during construction	Bearing symbols a CSI - Guide to Goo nal bracing guideli RDS & WEB MEM WEB PLANES. IN GINEER FOR ADI	re not considered ir od Practice for Hand nes, including diago BERS FOR RECO A ADDITION TO TH DITIONAL BRACING	a the Iling, onal bracing, MMENDED ESE G	SEAL 28147
MINIMUM GUIDELIN	LS, ALWATS CONSULT					
MINIMUM GUIDELIN CONSIDERATIONS.	LO, ALWATO CONSULT					4/27/2021

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NO
20-4572-R01	M01	Common Supported Gable	1	1	Job Reference (optional) # 26558
					8,430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:03 2021 Page

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-K60C6x6K6k6cD0?9d64xkSWHB9KXGdrBCjVbofzMQ8Q

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

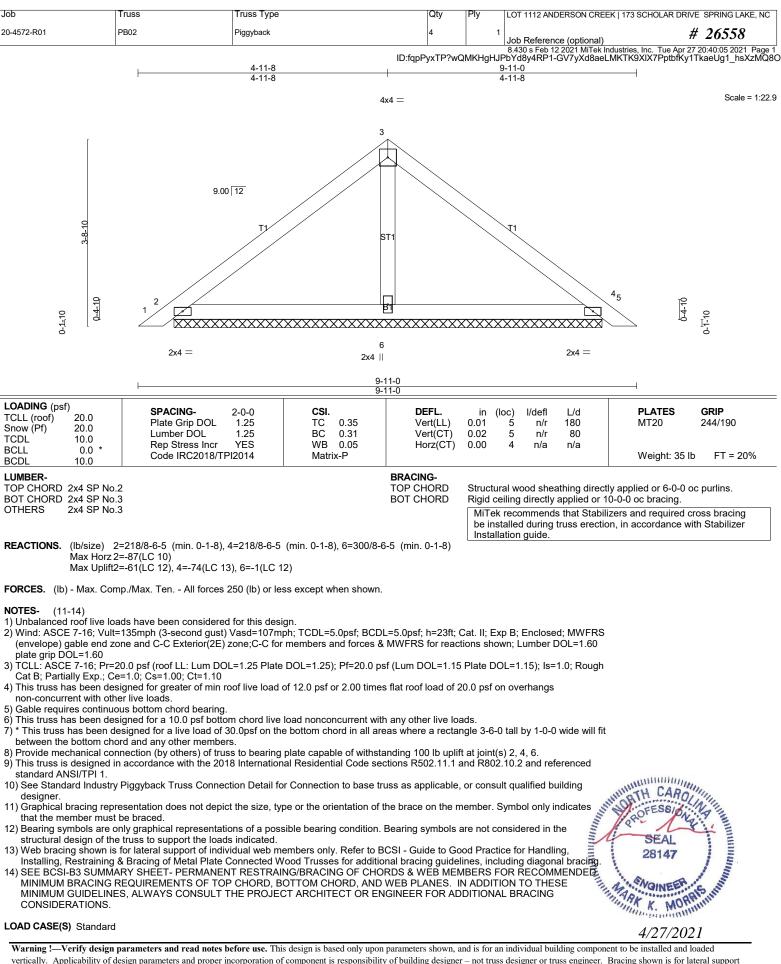
LOAD CASE(S) Standard

Job	Trus	3	Truss Type		Qty	Ply	LOT 1112 ANDERS	SON CREEK 17	3 SCHOLAR DR	IVE SPRING LAKE, NC
20-4572-R01	M02		Common		1		1			# 26558
					ID:fapPvxTP?w0	 QMKHaH,	Job Reference (o 8.430 s Feb 12 202 JPbYd8v4RP1-oJaa	1 MiTek Industri JH7vt2ETrAa	es, Inc. Tue Apr LBpbAGa3V?\	27 20:40:04 2021 Page 1 /jI?7HLRNE8K5zMQ8F
				<u>4-8-0</u> 4-8-0	9-	-4-0 -8-0				j
					4x4 =					Scale = 1:42.1
		r			2 1					
			10.00 12							
				M		M				
		.	3x6 1/	./			3x6 ∕\ 3			
		6-11-11			W3	,				
			w1	W2		2	ය. 1-0 ₩			
			1							
		l								
					5 3x8 =					
			2x4	4-8-0		-4-0	2x4			
				4-8-0		-4-0 -8-0				
LOADING (psf) TCLL (roof) 20		SPACING- Plate Grip DOL		CSI. C 0.26	DEFL. Vert(LL)	in (-0.01	(loc) l/defl L/ 4-5 >999 24		PLATES MT20	GRIP 244/190
Snow (Pf) 20 TCDL 10		Lumber DOL Rep Stress Incr	1.25 E	3C 0.18 VB 0.06	Vert(CT)		4-5 >999 18 4 n/a n/	30	11120	244/100
BCLL 0 BCDL 10	.0 * .0	Code IRC2018/TPI		/atrix-SH	11012(01)	-0.00	4 11/a 11/	a	Weight: 65	lb FT = 20%
LUMBER- TOP CHORD 2x4	SD No 2				BRACING- TOP CHORD	Structu	ural wood choothin	a directly on	plied or 6 0 0	oo purling overant
BOT CHORD 2x4					BOT CHORD	end ve	rticals.			oc purlins, except
WEBS 234	SF N0.5				BOT CHORD	MiTel	eiling directly app k recommends tha	at Stabilizers	and required	
							stalled during truss lation guide.	s erection, in	accordance v	with Stabilizer
ÌMax	k Hórz 6=-19		,	-1-8)						
Max	k Uplift6=-47	(LC 12), 4=-47(LC 13)								
		lax. Ten All forces 2 2-3=-266/156, 1-6=-3								
NOTES- (8-11)			,							
1) Unbalanced roo		nave been considered mph (3-second gust) \)I =5 0psf [.] BCDI	=5 0psf ⁻ h=23ft ⁻ (Cat II: E:	xp B: Enclosed: M	IWERS		
(envelope) gable	e end zone a	and C-C Exterior(2E) z DL=1.60 plate grip DO	one; end vertical le							
3) TCLL: ASCE 7-	6; Pr=20.0	psf (roof LL: Lum DOL); Cs=1.00; Ct=1.10		.25); Pf=20.0 ps	f (Lum DOL=1.15	Plate D	OL=1.15); ls=1.0;	Rough		
4) This truss has b	een designe	d for a 10.0 psf botton and for a live load of 30					0 tall by 1-0-0 wid	e will fit		
between the bot	tom chord a	nd any other members tion (by others) of truss				0		o w iii iic		
	igned in acc	cordance with the 2018						nced		
		ation does not depict t	he size, type or the	orientation of the	e brace on the me	ember. S	ymbol only indicat	tes that	munninn	4.
9) Bearing symbols	are only gr	aphical representation	s of a possible bea	ring condition. B	earing symbols ar	re not co	nsidered in the str	ructural	TH CARC	LANG
10) Web bracing sl	nown is for la	ateral support of indivi	dual web members	only. Refer to B	CSI - Guide to Go	od Pract	tice for Handling,	Thun	ROFESSION	R. P. IIII
11) SEE BCSI-B3	SUMMARY	ation does not depict t aphical representation t the loads indicated. ateral support of indivi acing of Metal Plate C SHEET- PERMANEN UREMENTS OF TOP	rtestraing/BR	ACING OF CHOI	RDS & WEB MEN	Ines, Inc IBERS F	FOR RECOMMEN	IDED	SEAL	
MINIMUM GUI	DELINES, A	UIREMENTS OF TOP	CHOILD, DOTTON				ION TO THESE AL BRACING	111111	28147	
CONSIDERAT								IIIIII A	ANDINEER	S MA
LOAD CASE(S) St	andard							"man	PA K. MOR	21
									All the state of t	
									1/27/20	21

- 10) Non Standard bearing condition. Review required.
 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable designer.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, N
20-4572-R01	PB01	GABLE	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:05 2021 Page

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-GV7yXd8aeLMKTK9XIX7Pptbjly4DkaeUg1_hsXzMQ80


13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

4/27/2021

LUMBER-

OP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3

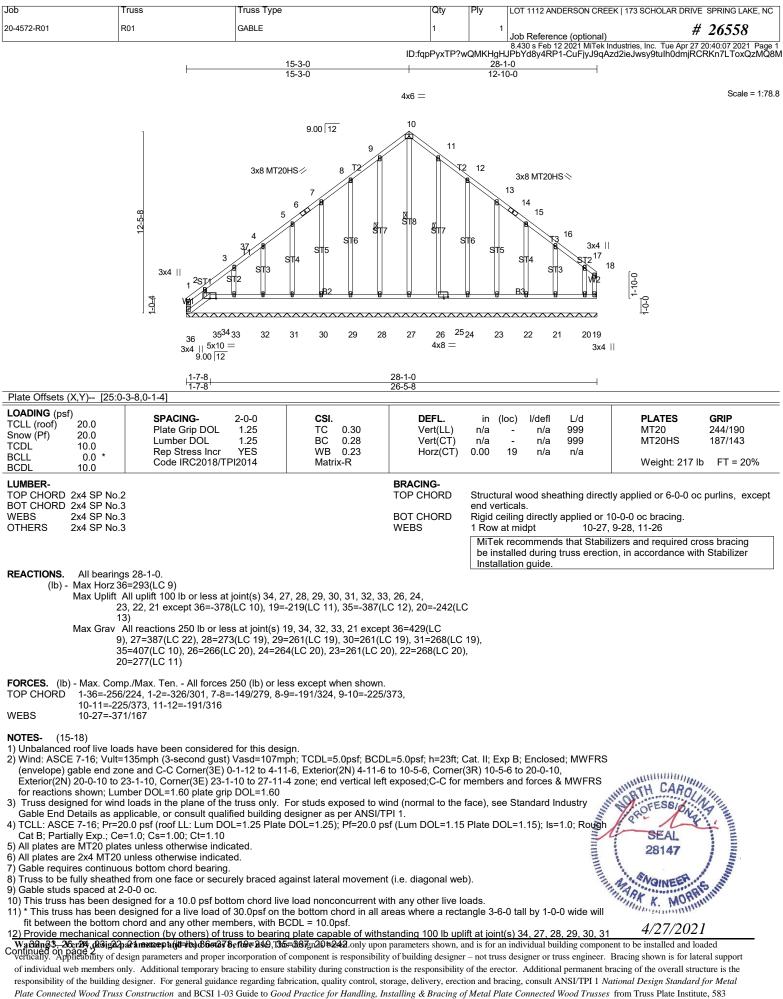
BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 4=131/3-5-11 (min. 0-1-8), 2=162/3-5-11 (min. 0-1-8) Max Horz 2=108(LC 12) Max Uplift4=-68(LC 12), 2=-5(LC 12) Max Grav 4=142(LC 20), 2=162(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

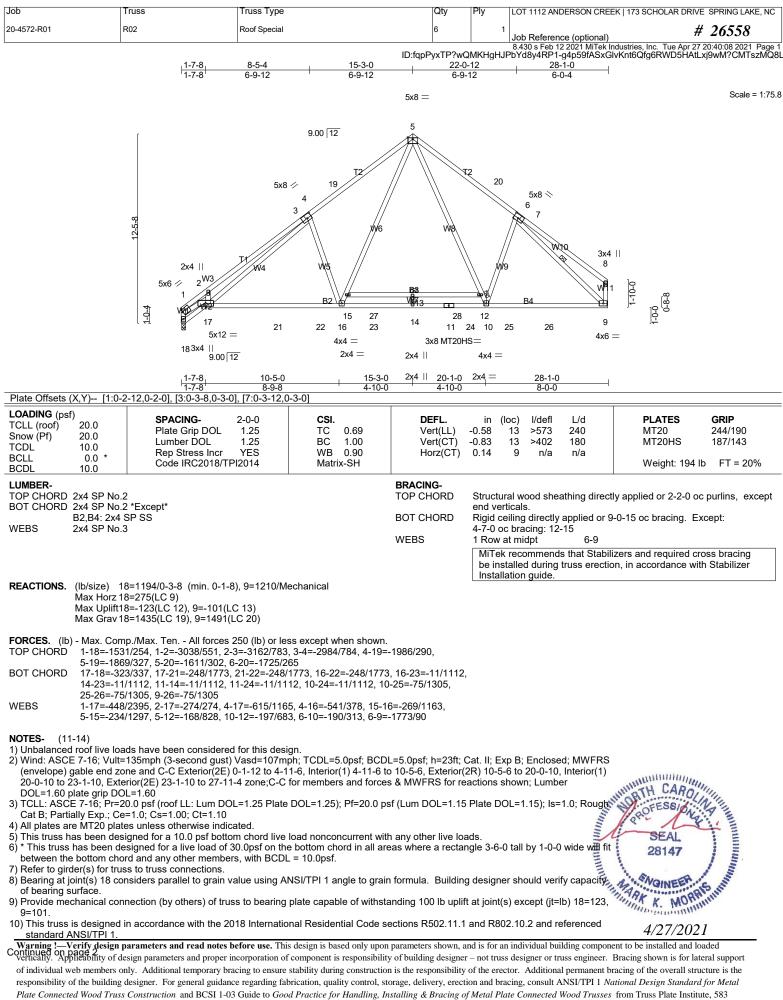

NOTES-(10-13)

- 1) Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=107mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- uesigner.
 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered to structural design of the truss to support the loads indicated.
 12) Web bracing shown is for lateral to the loads indicated.

- Bearing symbols are only graphication, structural design of the truss to support the loads indicated.
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMULIM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE CONSIDERATIONS.

LOAD CASE(S) Standard

D'Onofrio Drive Madison WI 53719


[Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
	20-4572-R01	R01	GABLE	1	1	Job Reference (optional) # 26558
			ID:fqp	PyxTP?w	QMKHgH.	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:07 2021 Page 2 JPbYd8y4RP1-CuFjyJ9qAzd2ieJwsy9tuIh0dmjRCRKn7LToxQzMQ8M

NOTES- (15-18)

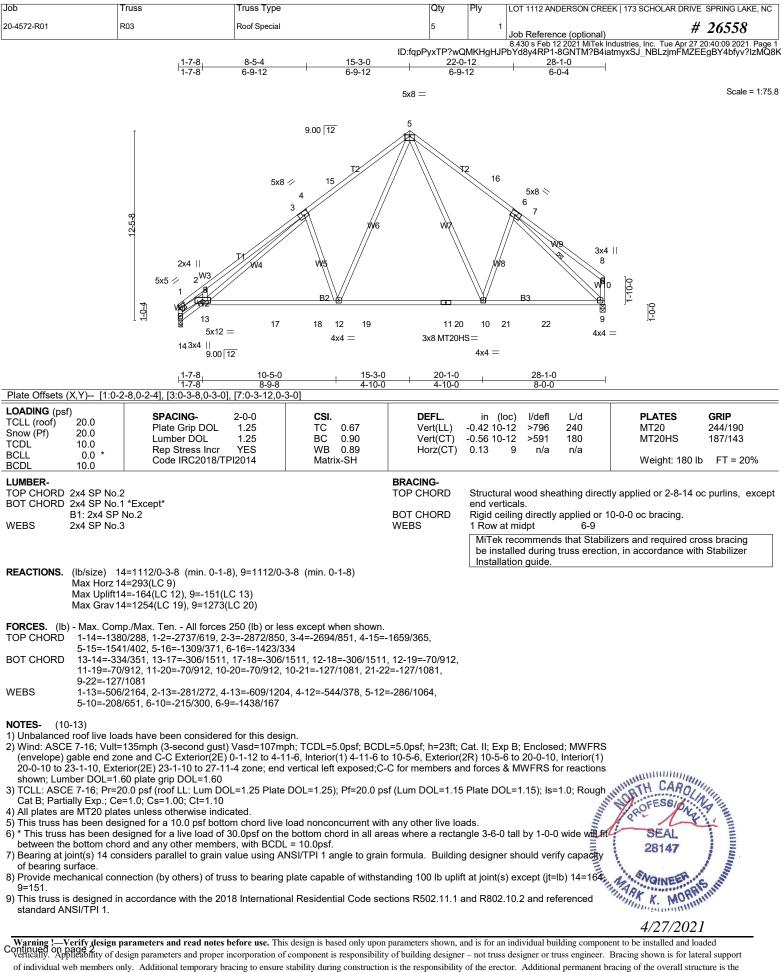
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 19, 34, 27, 28, 29, 30, 31, 32, 33, 35, 26, 24, 23, 22, 21, 20.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- 17) Web bracing shown is for fateral support of individual web members only. Never to bool Guide to Good Fractice for Franking, instaining, restaining of bracing ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NO
20-4572-R01	R02	Roof Special	6	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:09 2021 Page

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-8GNTM?B4iatmyxSJ_NBLzjmF1ZDagAP4bfyv?lzMQ8K


Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

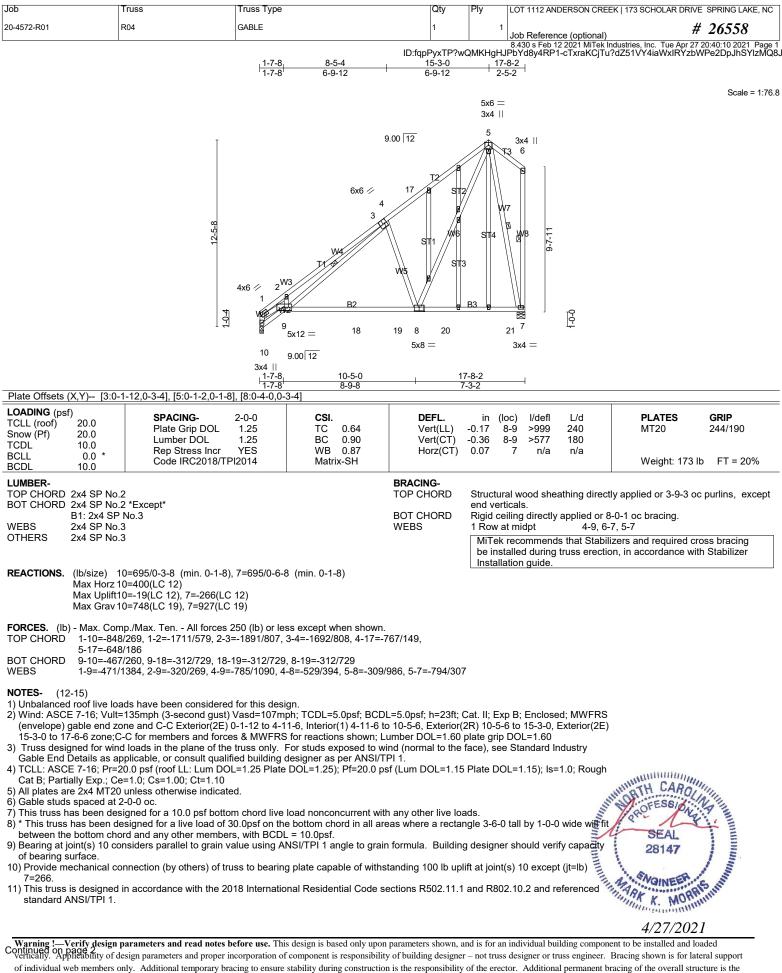
14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Continued On page 5/14 applies/fitty of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NO
20-4572-R01	R03	Roof Special	5	1	Job Reference (optional) # 26558
					8,430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:09 2021 Page

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-8GNTM?B4iatmyxSJ_NBLzjmFMZEEgBY4bfyv?lzMQ8K


Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

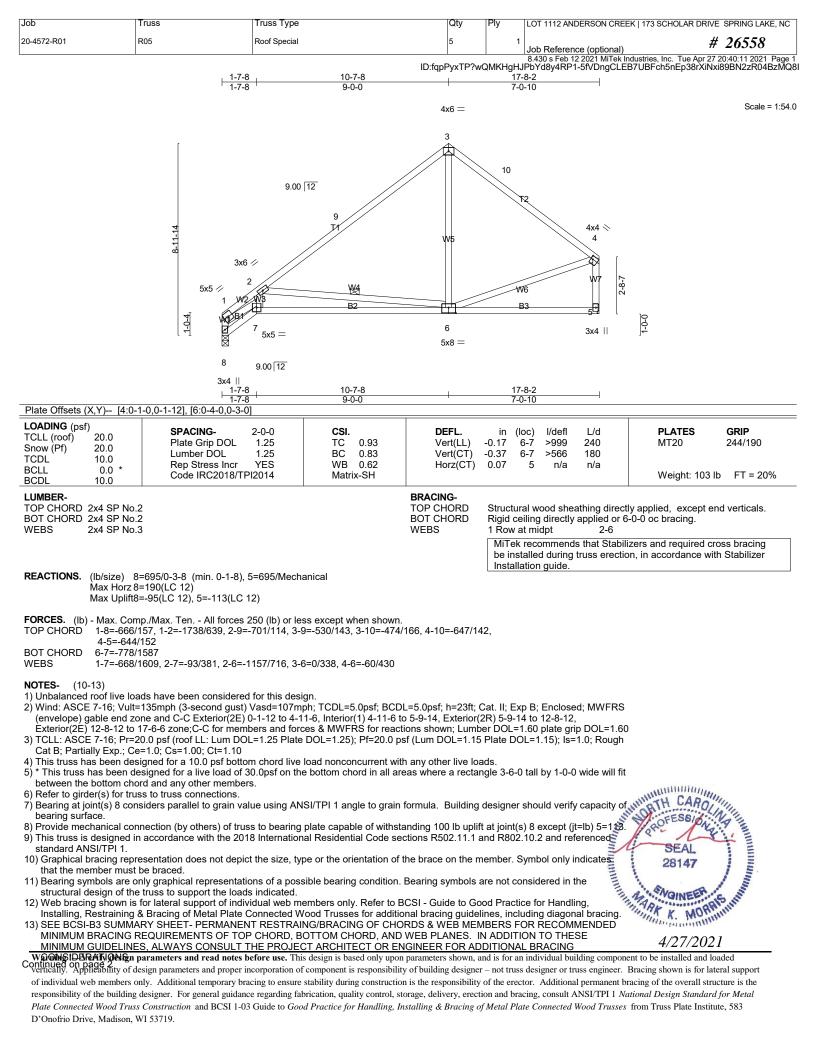
13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is tor lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NO
20-4572-R01	R04	GABLE	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:10 2021 Page

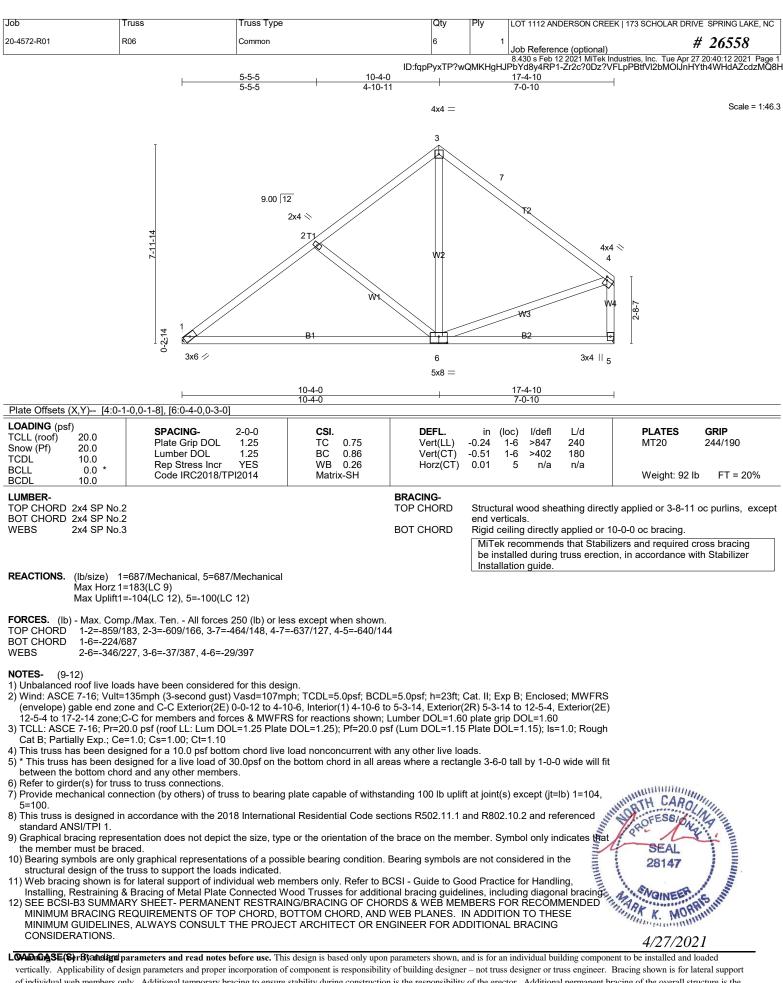
ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-cTxraKCjTu?dZ51VY4iaWxIRYzbWPe2DpJhSYIzMQ8J


12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

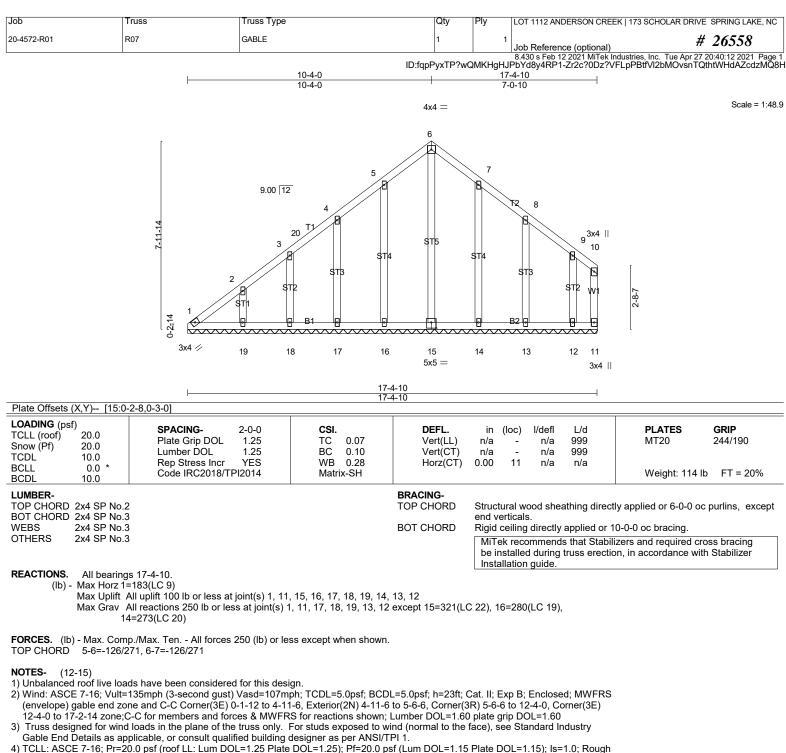
14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCH	OLAR DRIVE SPRING LAKE, NC
20-4572-R01	R05	Roof Special	5	1	Job Reference (optional)	# 26558
		·			0.420 a Fals 42.2024 MiTals Industrian Inc.	T A 07.00.40.44.0004 D


8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:11 2021 Page 2 ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-5fVDngCLEB7UBFch5nEp38rXiNxi89BN2zR04BzMQ8I

LOAD CASE(S) Standard

verticatly. Applicationly of design parameters and proper incorporation of component is responsibility of building designer – not truss designer of truss engineer. Bracing shown is to nateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

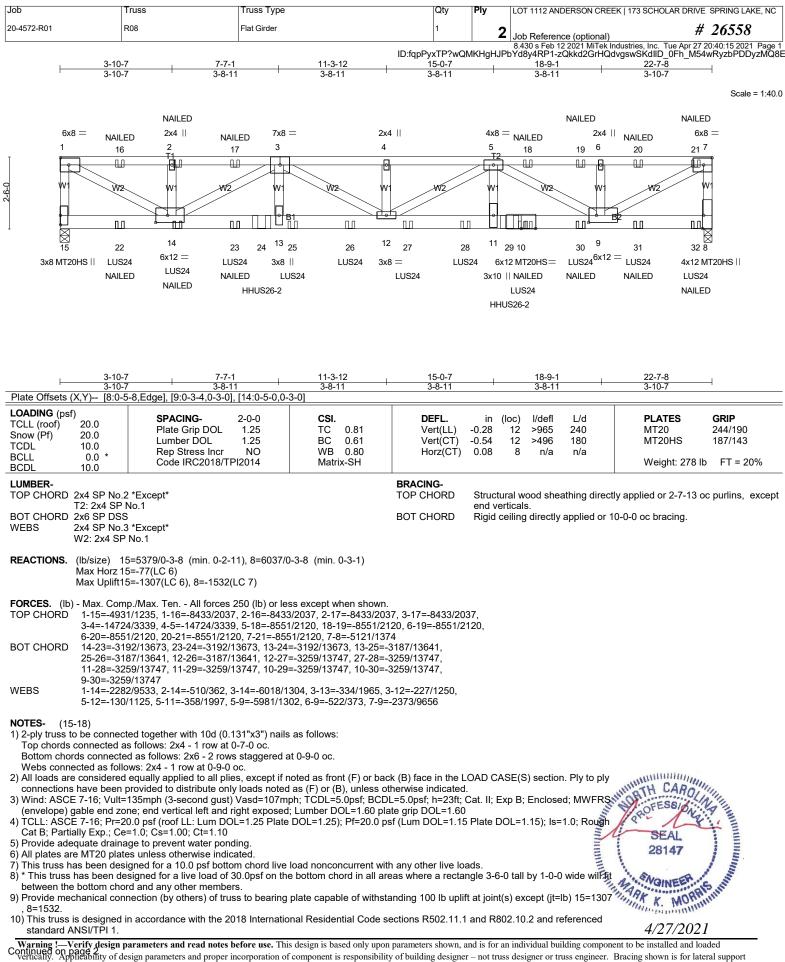
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit the test between the bottom chord and any other members, with BCDL = 10.0psf. I) Provide mechanical connection (by others) of truss to bearing plate concluse of the test to the test. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 15, 16, 17, 16 19 14 13 12
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

27/202 * SEAL RIMINITURE STREET 28147 NOINEE K. MORR 4/27/2021

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is tot an increased continued on page 2. Continued on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support vertically. of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NO
20-4572-R01	R07	GABLE	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:13 2021 Page

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-11c_CMEbmpNBQZm4DCGH8Zw4cBpfc87gVHw684zMQ8G

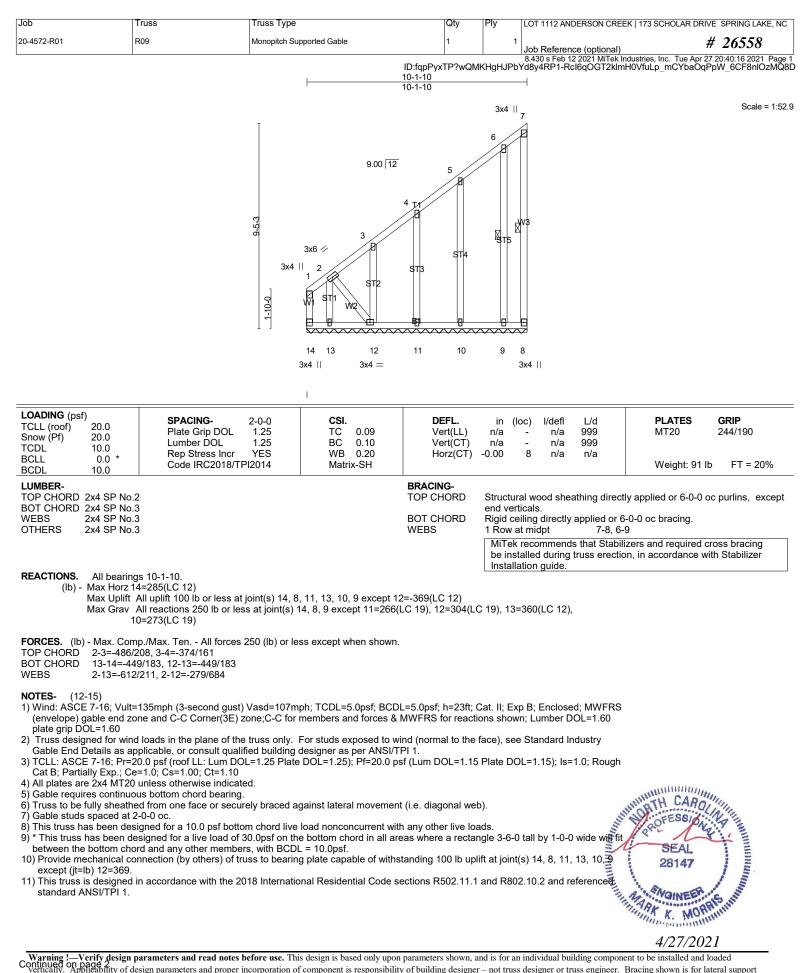

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAF	R DRIVE SPRING LAKE, NC
20-4572-R01	R08	Flat Girder	1	2	Job Reference (optional)	# 26558
		ID:fc	pPyxTP?wQM	KHgHJPb	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Yd8y4RP1-Rcl6qOGT2kImH0VfuLp mCY0	


NOTES- (15-18)

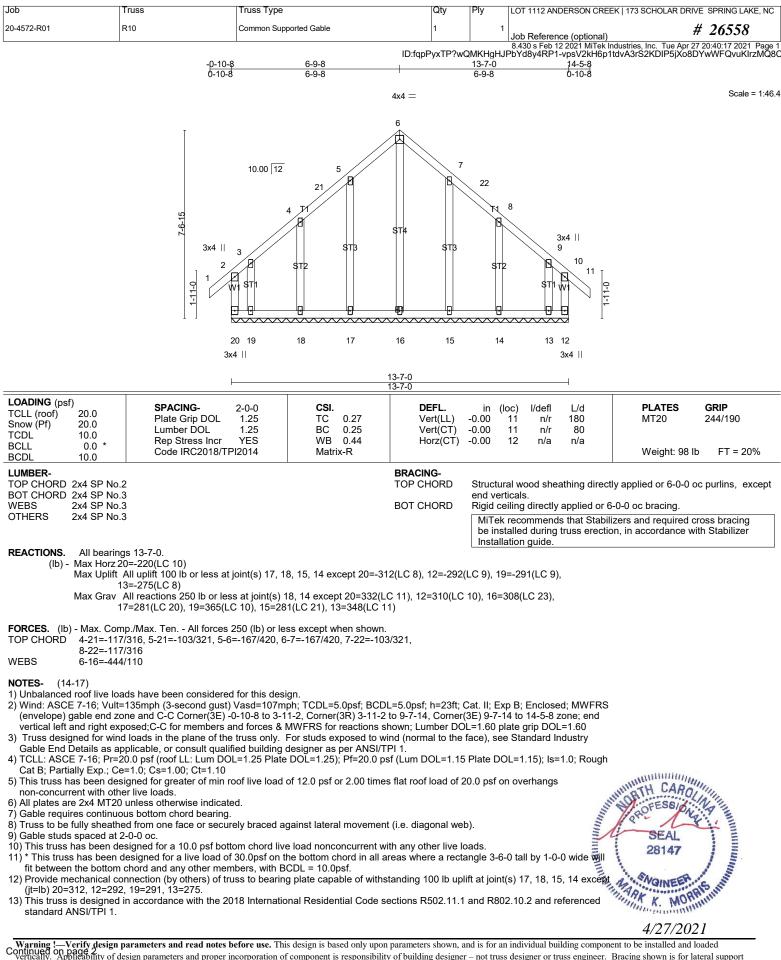
- 11) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 22-0-12 to connect truss(es) R06 (1 ply 2x4 SP), R05 (1 ply 2x4 SP) to fort face of bottom chord. 12) Use Simpson Strong-Tie HHUS26-2 (14-10d Girder, 4-10d Truss) or equivalent spaced at 8-7-4 oc max. starting at 6-11-14 from the left end to 15-7-2 to connect truss(es)
- D04 (2 ply 2x6 SP) to back face of bottom chord.
- 13) Fill all nail holes where hanger is in contact with lumber.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 16) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 17) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 18) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-7=-60, 8-15=-20 Concentrated Loads (lb)
 - Vert: 10=-675(F) 14=-667(F) 2=-161(B) 16=-161(B) 17=-161(B) 18=-161(B) 19=-161(B) 20=-161(B) 21=-178(B) 22=-667(F) 23=-667(F) 24=-549(B) 25=-667(F) 26=-667(F) 27=-667(F) 28=-675(F) 29=-549(B) 30=-675(F) 31=-675(F) 32=-683(F=-681, B=-2)

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NO
20-4572-R01	R09	Monopitch Supported Gable	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:16 2021 Page

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-Rcl6qOGT2klmH0VfuLp_mCYbaOqPpW_6CF8nlOzMQ8D


Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

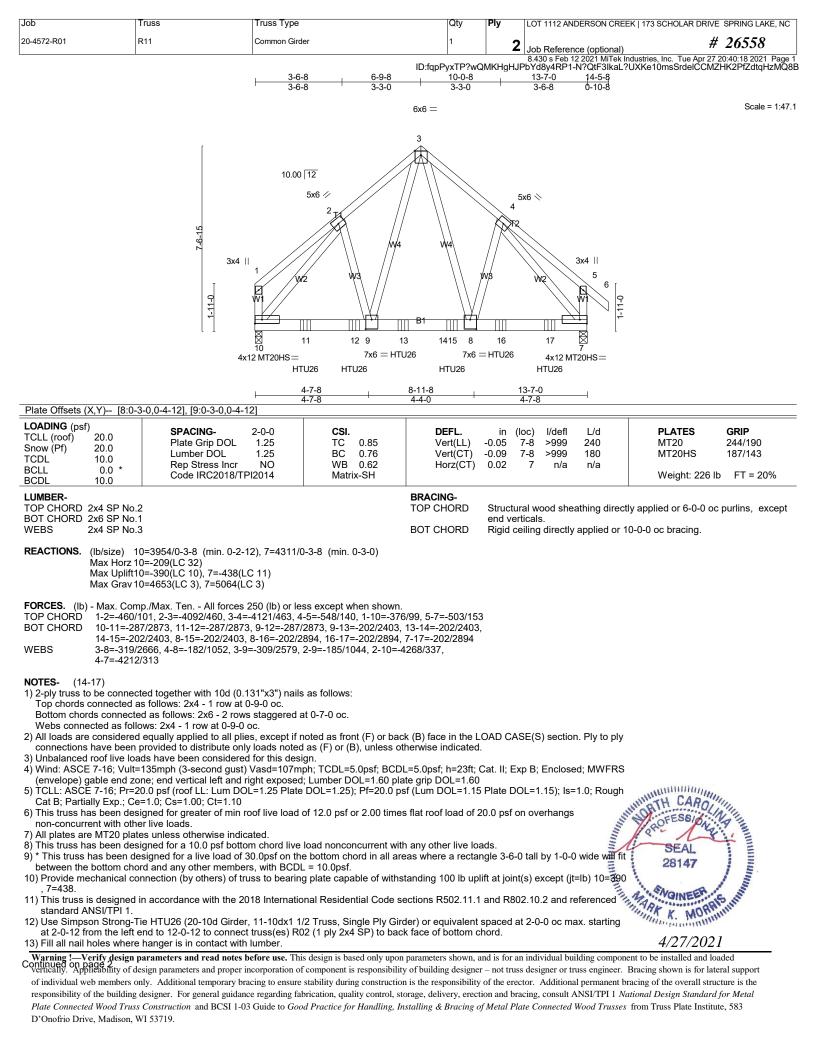
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLA	AR DRIVE SPRING LAKE, NC
20-4572-R01	R10	Common Supported Gable	1	1	Job Reference (optional)	# 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tu	e Apr 27 20:40:17 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-vpsV2kH6p1tdvA3rS2KDIP5jXo8DYwWFQvuKIrzMQ8C


14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

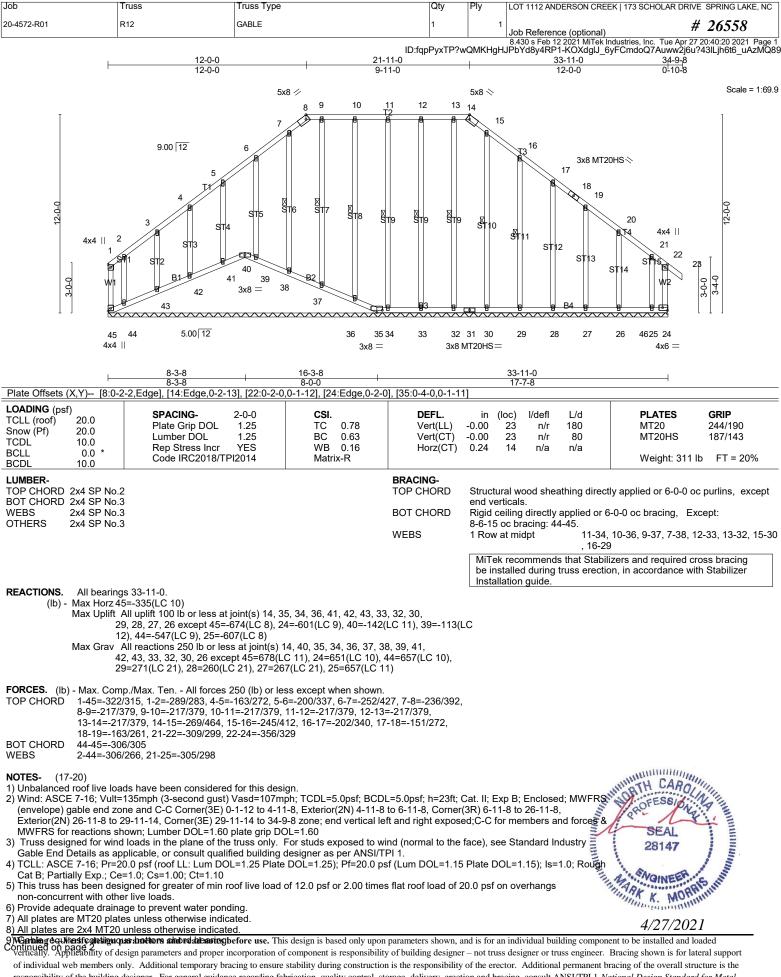
LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SC	HOLAR DRIVE SPRING LAKE, NC
20-4572-R01	R11	Common Girder	1	2	Job Reference (optional)	# 26558
		·			8 430 s Feb 12 2021 MiTek Industries In	C Tue Apr 27 20·/0·10 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-sB_FTPJMLf7L8UDEZTNhNqAwybio0nIYuDNRMjzMQ8A

- 14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-6=-60, 7-10=-20

Concentrated Loads (lb)

Vert: 11=-1190(B) 12=-1190(B) 13=-1190(B) 15=-1190(B) 16=-1190(B) 17=-1190(B)

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	R12	GABLE	1	1	Job Reference (optional) # 26558
	·	ID:fqpP	/xTP?wQN	/ KHgHJP	8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:21 2021 Page 2 9Yd8y4RP1-oa5?u5KctGN3OnNchuP9SFGHePPIUozrLXsYRczMQ88

NOTES- (17-20)

- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- (jt=lb) 45=674, 24=601, 40=142, 39=113, 44=547, 25=607.
- 15) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 40, 36, 37, 38, 39, 41, 42, 43, 44.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 18) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 19) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate
- Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 20) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

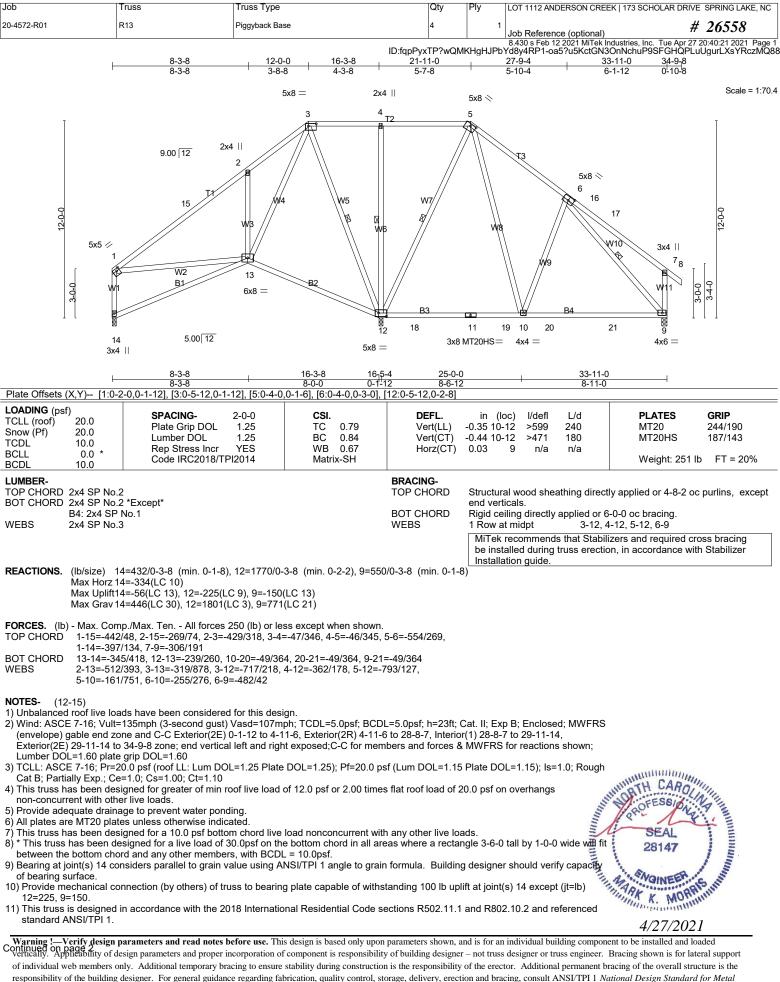


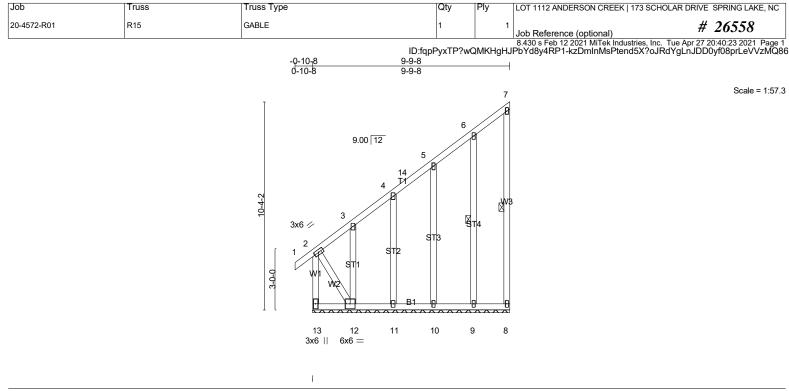
Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	R13	Piggyback Base	4	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:22 2021 Page

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-GmfO5RLEeZWw?xyoFbwO?ToSAph7D68_aBb5z2zMQ87

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate


Connected Wood Trustees for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1 Job Reference (optional) # 26558 8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:22 2021 Page 1 Yd8y4RP1-Gmf05RLEeZWw?xyoFbw0?ToRvpmXD3y_aBb5z2zMQ87 0
8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:22 2021 Page 1 Yd8y4RP1-GmfO5RLEeZWw?xyoFbwO?ToRvpmXD3y_aBb5z2zMQ87 -0
-0
•
Scale = 1:68.7
3x4
4
ν μ ηθ
0 , <u>,</u> ,
3x4 ≈
· · · · · · · · · · · · · · · · · · ·
(loc) I/defl L/d PLATES GRIP
6-7 >999 240 MT20 244/190 6-7 >608 180
5 n/a n/a Weight: 126 lb FT = 20%
ural wood sheathing directly applied, except end verticals. seiling directly applied or 8-8-11 oc bracing. at midpt 4-5, 3-5
k recommends that Stabilizers and required cross bracing stalled during truss erection, in accordance with Stabilizer llation guide.
xp B; Enclosed; MWFRS 2-0-0 to 16-0-4 zone;C-C
OL=1.15); ls=1.0; Rough
-0 tall by 1-0-0 wide will fit
(s) except (jt=lb) 5=247. 2.10.2 and referenced Symbol only indicates that considered in the tice for Handling
2.10.2 and referenced
symbol only indicates that
onsidered in the SEAL
tice for Handling,
ION TO THESE
AL BRACING
Symbol only indicates that considered in the tice for Handling, cluding diagonal bracing. FOR RECOMMENDED TION TO THESE AL BRACING an individual building component to be installed and loaded ss designer or truss engineer. Bracing shown is for lateral support ector. Additional permanent bracing of the overall structure is the

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.25Lumber DOL1.25Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.19 BC 0.10 WB 0.31 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 1 -0.00 2 -0.00 8	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 • FT = 20%
LUMBER-			BRACING-	0tm - t 1		41		
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3			TOP CHORD	end vertical		athing direc	tly applied or 6-0-0 o	c puriins, except
WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3			BOT CHORD	Rigid ceiling 6-0-0 oc bra			10-0-0 oc bracing, E	Except:
01HER3 284 3F N0.3			WEBS	1 Row at mi		-13. 7-8, 6	-9	
					d during		ilizers and required clion, in accordance wi	

REACTIONS. All bearings 9-9-8.

- 2-13=-1034/430, 2-3=-517/231, 3-4=-419/182, 4-14=-293/108, 5-14=-282/130 TOP CHORD
- BOT CHORD 12-13=-584/225
- 2-12=-405/1051 WEBS

NOTES-(13-16)

- 1) Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=107mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 4-10-2, Corner(3E) 4-10-2 to 9-7-12 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- PROFESS Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 9) This truss has been designed for a 10.0 per percent state.
 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a recurring of a state of the bottom chord and any other members, with BCDL = 10.0psf.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 11, 10, 9 exceptions at the bottom chord and referenced to a state of the bottom chord and referenced to a state of the bottom chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 11, 10, 9 exceptions at the bottom chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 11, 10, 9 exceptions at the bottom chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 11, 10, 9 exceptions at the bottom chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 11, 10, 9 exceptions at the bottom chord at the bottom chord
- standard ANSI/TPI 1.

2.7/202 Normanium Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is tot an increased continued on page 2. Continued on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support vertically. of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE

4/27/2021

⁽lb) - Max Horz 13=264(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 8, 11, 10, 9 except 13=-202(LC 10), 12=-490(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 8 except 13=561(LC 12), 12=365(LC 20), 11=271(LC 20), 10=263(LC 20), 9=260(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	R15	GABLE	1	1	Job Reference (optional) # 26558
					8,430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:23 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-kzDmInMsPtend5X?oJRdYgLnJDD0yf08prLeVVzMQ86

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

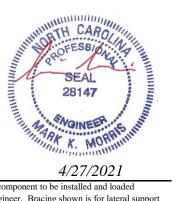
LOAD CASE(S) Standard

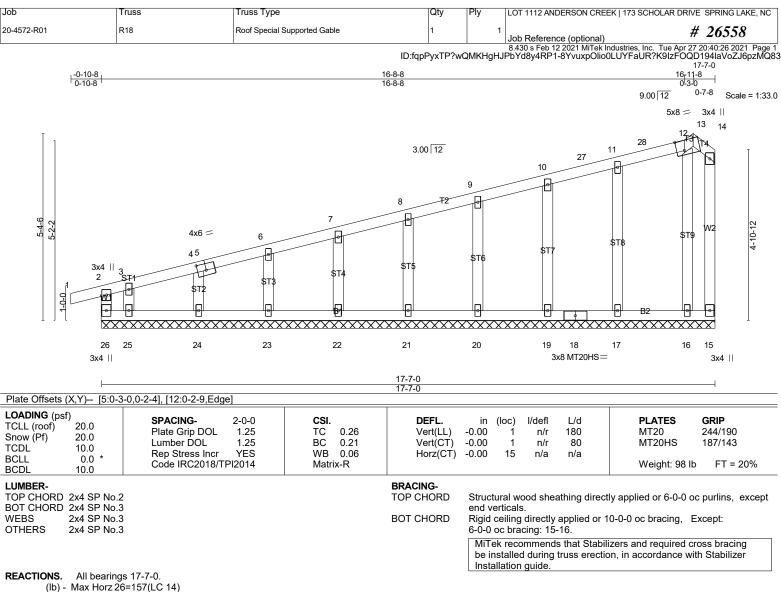
Job	Truss	Truss Type		Qty	Ply	LOT 1112 ANDERSON CREE		
20-4572-R01	R16	Monopitch		5		Job Reference (optional) 8.430 s Feb 12 2021 MiTek Ir		# 26558 27 20:40:24 2021 Page 1
			-0-10-8 4-10-12 0-10-8 4-10-12	ID:fqpPyxTP?wQN 9-9- 4-10-	8	8.430 s Feb 12 2021 MiTek ir d8y4RP1-C9n8W7NVABi	meFF6BM0ys4tunTc	Rih5JH1U4C1xzMQ85
					2x4			Scale = 1:56.1
			9.00 12 4x4	3 1/1	4 5			
		3-0-0	2x4 1 W1 W2 W2 0 8 9 3x8 =		76 5x5 =			
				9-9-8	0,10			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.25	CSI. TC 0.87	9-9-8 DEFL. Vert(LL)	in (lo -0.39 7-	-8 >286 240	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL Rep Stress Incr Code IRC2018/TF	1.25 YES PI2014	BC 0.58 WB 0.37 Matrix-SH	Vert(CT) Horz(CT)	-0.62 7 -0.00	-8 >181 180 7 n/a n/a	Weight: 75 I	b FT = 20%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No	5			BRACING- TOP CHORD BOT CHORD WEBS	end verti	ing directly applied or 1		oc purlins, except
REACTIONS. (Ib/size)	7=394/Mechanical, 8=439	/0-3-8 (min.	0-1-8)		be insta	ecommends that Stabili Iled during truss erectio ion guide.		U I
Max Uplif	8=267(LC 12) t7=-280(LC 12) 7=533(LC 20), 8=459(LC 3	3)						
TOP CHORD 2-8=-291	omp./Max. Ten All forces 1/250 5/359, 3-8=-329/134	250 (lb) or le	ess except when shown.					
 (envelope) gable end a vertical left exposed;C 2) TCLL: ASCE 7-16; Pr- Cat B; Partially Exp; C 3) This truss has been de non-concurrent with of 4) This truss has been de 5) * This truss has been de 	esigned for a 10.0 psf botto designed for a live load of 3	-0-10-8 to 3 & MWFRS L=1.25 Plate oof live load m chord live 30.0psf on th	-11-2, Interior(1) 3-11-2 to for reactions shown; Lun e DOL=1.25); Pf=20.0 ps of 12.0 psf or 2.00 times e load nonconcurrent with he bottom chord in all are	o 4-9-11, Exterior nber DOL=1.60 pl f (Lum DOL=1.15 f flat roof load of 2 n any other live loa	(2E) 4-9-1 late grip D0 5 Plate DOI 20.0 psf on ads.	l to 9-9-8 zone; end DL=1.60 .=1.15); Is=1.0; Rough overhangs		
 6) Refer to girder(s) for tr 7) Provide mechanical co 8) This truss is designed standard ANSI/TPI 1. 9) Graphical bracing reprint 	nord and any other member uss to truss connections. onnection (by others) of true in accordance with the 201 resentation does not depict praced. only graphical representati	ss to bearing 18 Internatio	y plate capable of withsta nal Residential Code sec on or the orientation of th	tions R502.11.1 a	and R802.1	except (jt=lb) 7=280. 0.2 and referenced nbol only indicates that sidered in the	SEAL	A A A A A A A A A A A A A A A A A A A
12) SEE BCSI-B3 SUMM MINIMUM BRACING	ne truss to support the load s for lateral support of indiv g & Bracing of Metal Plate (IARY SHEET- PERMANEN REQUIREMENTS OF TO IES, ALWAYS CONSULT	P CHORD, E	BOTTOM CHORD, AND	RDS & WEB MEN WEB PLANES. I	N ADDITIC	e for Handling, ding diagonal bracing R RECOMMENDED N TO THESE BRACING	ADZIDO	21 loaded
	d parameters and read notes l	oefore use. Th	is design is based only upon	parameters shown, a	and is for an	individual building component	4/2//202 ent to be installed and	loaded
of individual web members responsibility of the buildin	design parameters and proper i only. Additional temporary bra- g designer. For general guidan	acing to ensure ce regarding fa	e stability during construction abrication, quality control, sto	is the responsibility prage, delivery, erect	of the erectorion and brac	or. Additional permanent being, consult ANSI/TPI 1 Na	racing of the overall st	ructure is the rd for Metal

responsionity of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/1P11 National Design Standard for Met Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREI	EK 173 SCHOLAR DR	IVE SPRING LAKE, NC
20-4572-R01	R17	Monopitch Girder	1	2			# 26558
					 Job Reference (optional) 8.430 s Feb 12 2021 MiTek II Yd8y4RP1-C9n8W7NVABn 	Industries, Inc. Tue Apr	27 20:40:24 2021 Page 1
		<u>4-10-12</u> 4-10-12	9-9-8 4-10-1	3			
		1012					Scale = 1:60.6
				2x4 3			00010 1.00.0
				P			
		9.00 1	12				
			3x6 ⋍				
			2 T1				
		10-4-2		,yv5			
		of 3x6 1/2					
		1					
			vvs	$\langle $			
		0-0-W1 W2					
		6 7	5	11 4			
		2x4 LUS24	0,10	JS24 4x6 =	=		
		L	LUS24 LUS24				
		<u>4-10-12</u> 4-10-12	9-9-8				
Plate Offsets (X,Y)	[5:0-3-0,0-4-0]						
LOADING (psf) TCLL (roof) 20.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.25 TC 0.23	DEFL. Vert(LL)	in (l -0.02	loc) l/defl L/d 4-5 >999 240	PLATES MT20	GRIP 244/190
Snow (Pf) 20.0 TCDL 10.0	Lumber DOL	1.25 BC 0.52	Vert(CT)	-0.04	4-5 >999 180	WILZO	244/130
BCLL 0.0 BCDL 10.0	* Rep Stress Incr Code IRC2018/7	NO WB 0.36 Pl2014 Matrix-SH	Horz(CT)	0.00	4 n/a n/a	Weight: 173	3 lb FT = 20%
LUMBER-	I		BRACING-				
TOP CHORD 2x4 SF BOT CHORD 2x6 SF			TOP CHORD	Structur end ver	ral wood sheathing direct ticals.	tly applied or 6-0-0	oc purlins, except
WEBS 2x4 SF	' No.3		BOT CHORD WEBS		eiling directly applied or 1 at midpt 3-4	10-0-0 oc bracing.	
	e) 4=1653/Mechanical, 6=1 lorz 6=239(LC 10)	567/0-3-8 (min. 0-1-8)					
			_				
TOP CHORD 1-2=	-1124/0, 1-6=-1200/0	s 250 (lb) or less except when showr					
	-262/164, 7-8=-262/164, 5-8= 0/1393, 2-4=-1378/0, 1-5=0/9	-262/164, 5-9=0/840, 9-10=0/840, 1 07	0-11=0/840, 4-11=0)/840			
NOTES- (11-14)							
1) 2-ply truss to be co	onnected together with 10d (0 cted as follows: 2x4 - 1 row a						
Bottom chords con	nected as follows: 2x6 - 2 rov	ws staggered at 0-9-0 oc.					
2) All loads are consid		lies, except if noted as front (F) or ba			SE(S) section. Ply to ply		
		nly loads noted as (F) or (B), unless o t) Vasd=107mph; TCDL=5.0psf; BCI			p B; Enclosed; MWFRS		
		osed; Lumber DOL=1.60 plate grip I OL=1.25 Plate DOL=1.25); Pf=20.0 ا		5 Plate D(DL=1.15); ls=1.0; Rough		
	p.; Ce=1.0; Cs=1.00; Ct=1.10 n designed for a 10.0 psf bot	tom chord live load nonconcurrent w	ith any other live lo	ads.			
6) * This truss has be	en designed for a live load of	30.0psf on the bottom chord in all a	areas where a recta	ingle 3-6-0			
7) Refer to girder(s) fo	or truss to truss connections.	ers, with BCDL = 10.0psf. 218 International Residential Code so 2-10d Truss, Single Ply Girder) or ec R14 (1 ply 2x4 SP) to back face of bo h lumber. ict the size, type or the orientation of tions of a possible bearing condition ids indicated. Ividual web members only. Refer to connected Wood Trusses for addit SNT RESTRAING/BRACING OF CHI DP CHORD, BOTTOM CHORD, ANI	actions PEO2 11 1	and Boog	10.2 and referenced	Multimininini	tin,
standard ANSI/TPI					. TO.2 and referenced	FESSIA	LINIU
from the left end to	8-0-12 to connect truss(es)	R14 (1 ply 2x4 SP) to back face of b	ottom chord.	. 2-0-0 oc	max. starting at 2-0-12	Par La	A. A. A.
10) Fill all nail holes v 11) Graphical bracing	vhere hanger is in contact will representation does not der	h lumber. ict the size, type or the orientation o	f the brace on the r	nember. S	Symbol only indicates	SEAL	
that the member i 12) Bearing symbols	must be braced. are only graphical representation	tions of a possible bearing condition	1. Bearing symbols	are not co	onsidered in the	20147	
structural design	of the truss to support the loa	ds indicated.	BCSI - Guide to Gr	ood Practi	ice for Handling	1 ANOINEER	S
Installing, Restrai	ning & Bracing of Metal Plate		ional bracing guide	lines, incl	uding diagonal bracing.	MARK K. MOP	(Permine)
						1/27/20	21
WGONSIDERANO	Non parameters and read notes	THE PROJECT ARCHITECT OR E before use. This design is based only upo	on parameters shown, a	and is for a	n individual building compon	4/27/20 nent to be installed and	loaded
vertically. Applicabilit	y of design parameters and proper	incorporation of component is responsibil	lity of building designe	er – not trus	s designer or truss engineer.	Bracing shown is for	lateral support
		pracing to ensure stability during constructing construction, ence regarding fabrication, quality control,			-	-	
Plate Connected Wood D'Onofrio Drive, Mad		03 Guide to Good Practice for Handling,	Installing & Bracing of	of Metal Pla	ite Connected Wood Trusses	from Truss Plate Inst	itute, 583
, niau	,						

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	R17	Monopitch Girder	1	2	Job Reference (optional) # 26558


8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:25 2021 Page 2 ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-gLLWjTN7xUuUsPhNwkU5d5Q5B0ozQYnRG8qIaNzMQ84


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 4-6=-20 Concentrated Loads (lb)

Vert: 7=-615(B) / 8=-615(B) 9=-615(B) 11=-615(B)

Max Uplift All uplift 100 lb or less at joint(s) 15, 21, 22, 23, 24, 20, 19, 17, 16 except 25=-222(LC 14) Max Grav All reactions 250 lb or less at joint(s) 26, 15, 21, 22, 23, 24, 25, 20, 19, 16 except 17=259(LC 36)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(16-19)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=107mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-11-2, Exterior(2N) 3-11-2 to 16-8-8, Corner(3R) 16-8-8 to 16-11-8, Corner(3E) 16-11-8 to 17-5-4 zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough PROFESSION Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 7) All plates are MT20 plates unless otherwise indicated.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

13) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide 🐖

fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 21, 22, 23, 24. 19. 17. 16 except (it=lb) 25=222.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

27/202 'sd and fo Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is tot an increased continued on page 2. Continued on page 2. Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support vertically. of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive Madison WI 53719

20

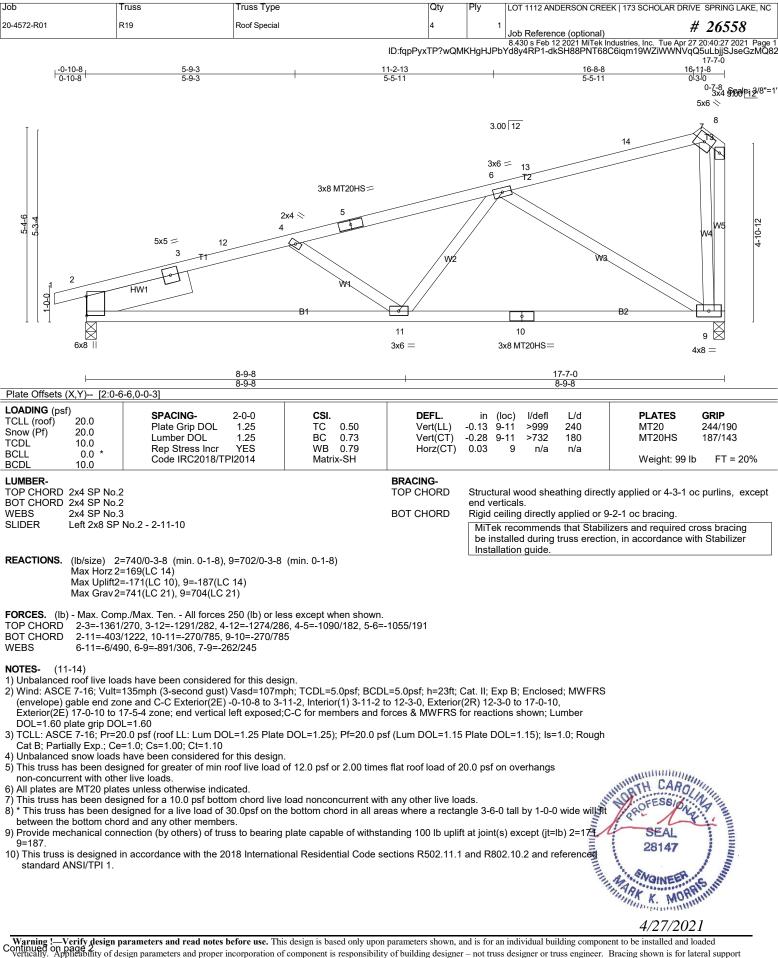
MARK

NOINEE

4/27/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	R18	Roof Special Supported Gable	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries. Inc. Tue Apr 27 20:40:26 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-8YvuxpOlio0LUYFaUR?K9IzFOQD194IaVoZJ6pzMQ83


16) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 17) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

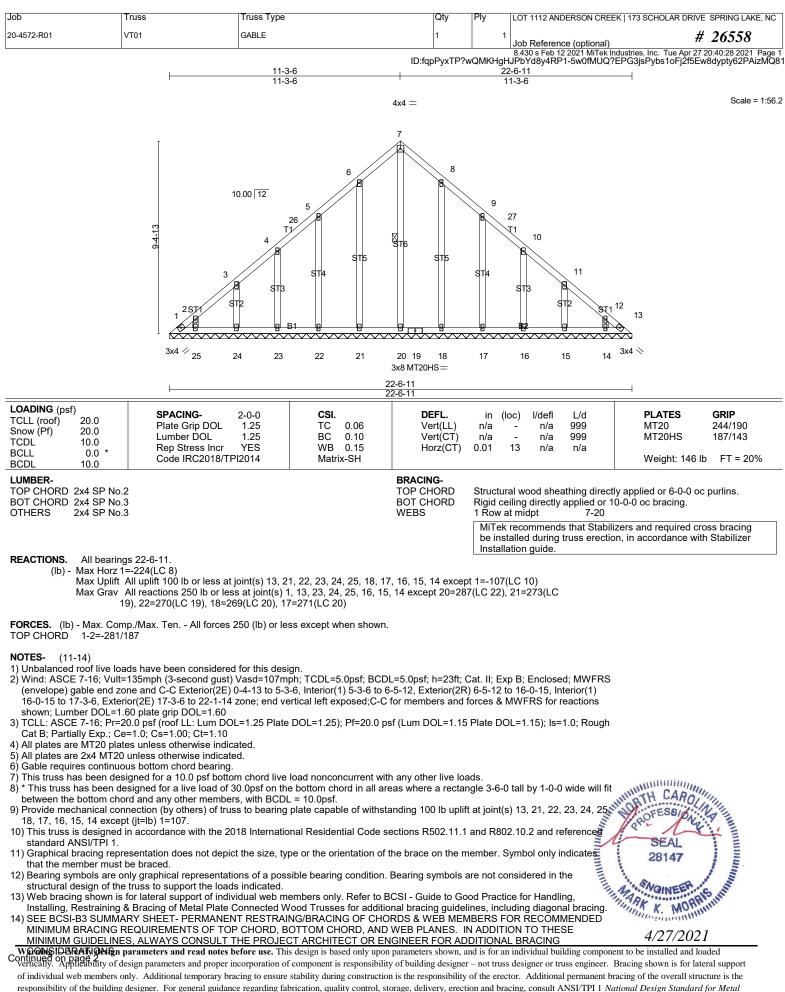
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

19) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	R19	Roof Special	4	1	Job Reference (optional) # 26558
-					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:27 2021 Page 2

ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-dkSH88PNT68C6iqm19WZiWWNVqQ5uLbjjSJseGzMQ82

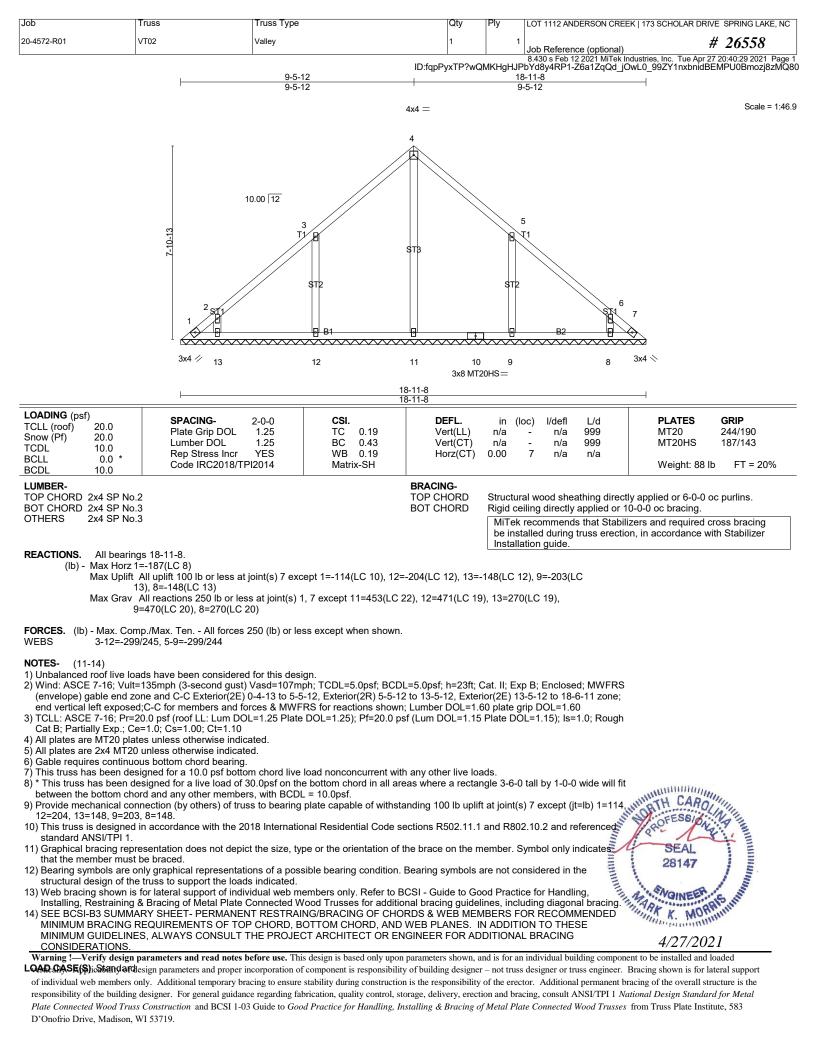

Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

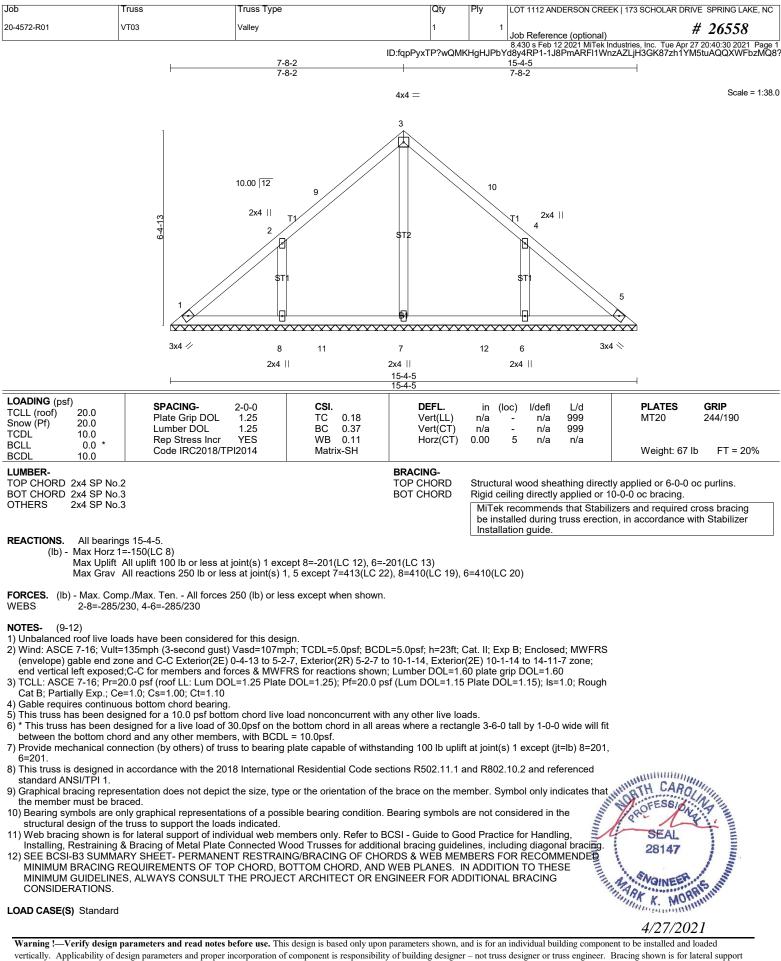
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

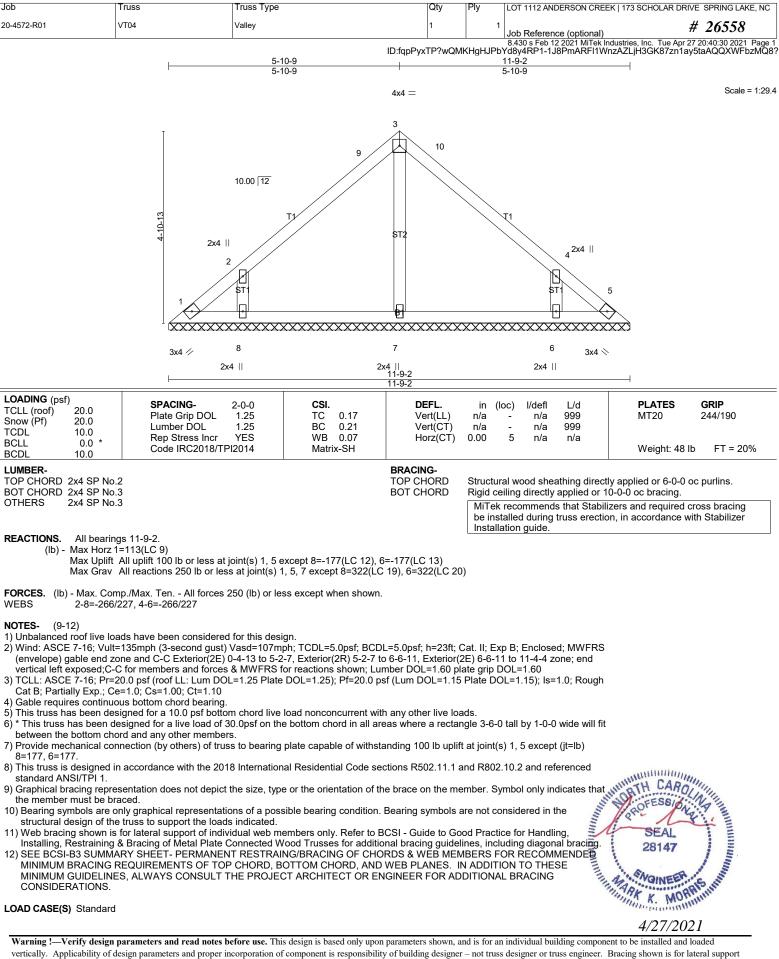
LOAD CASE(S) Standard

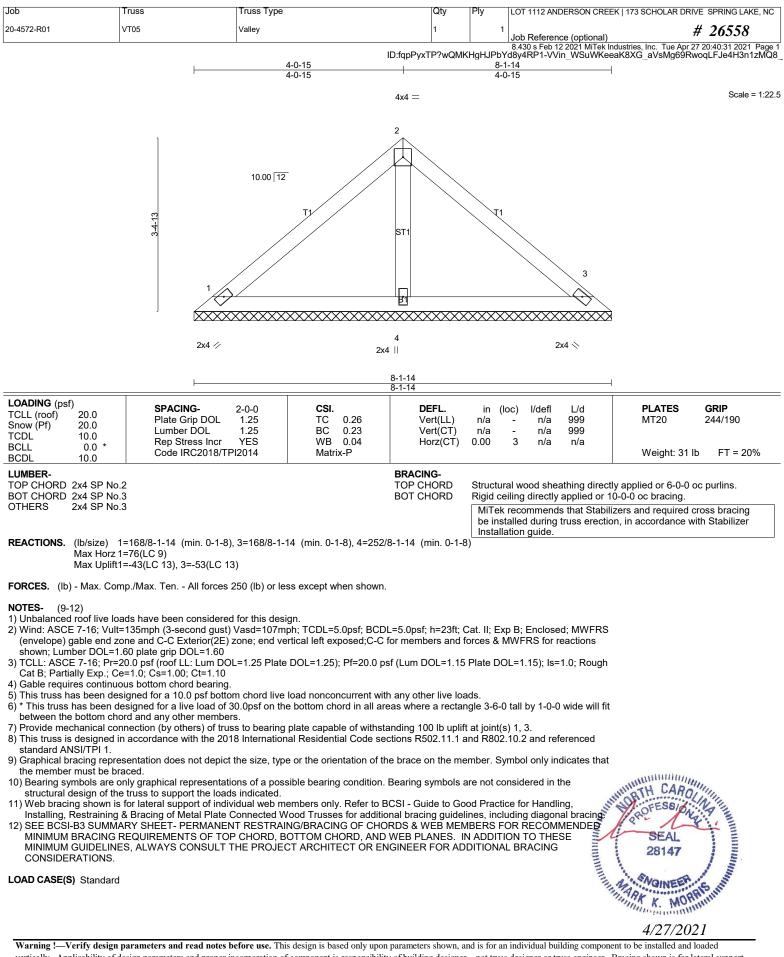
responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

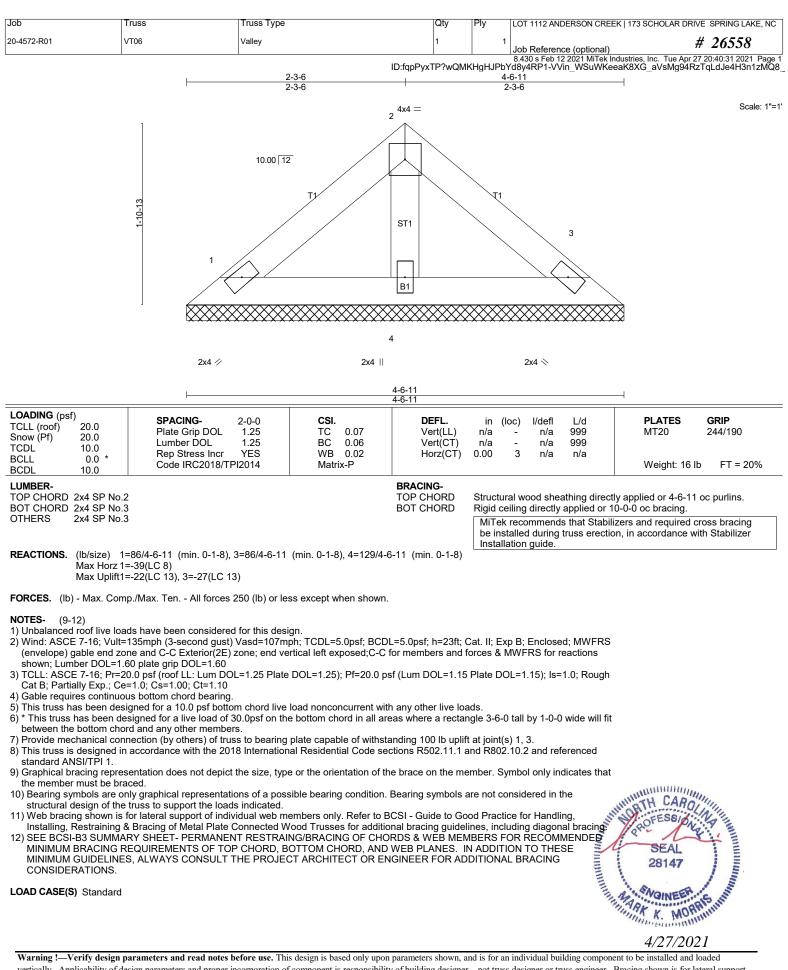

Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING L	AKE, NC
20-4572-R01	VT01	GABLE	1	1	Job Reference (optional) # 2655	8
					0 400 - Est 40 0004 MiTst la dustria das Tras Ana 07 00 40 00 00	


8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:28 2021 Page 2 ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-5w0fMUQ?EPG3jsPybs1oFj2f5Ew8dypty62PAizMQ81

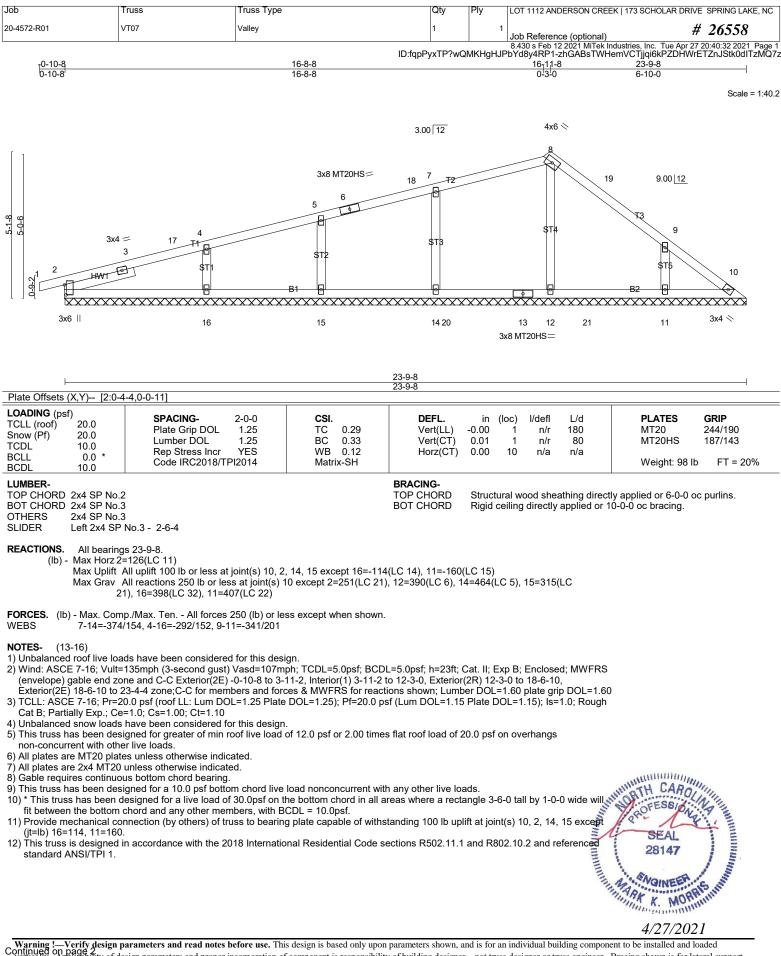
LOAD CASE(S) Standard




4/27/2021



vertically. Applicability of design parameters and read notes of the user into social in social only upon parameters and volution of component is responsibility of building designer – not truss designer of truss engineer. Bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.



LOAD CASE(S) Standard

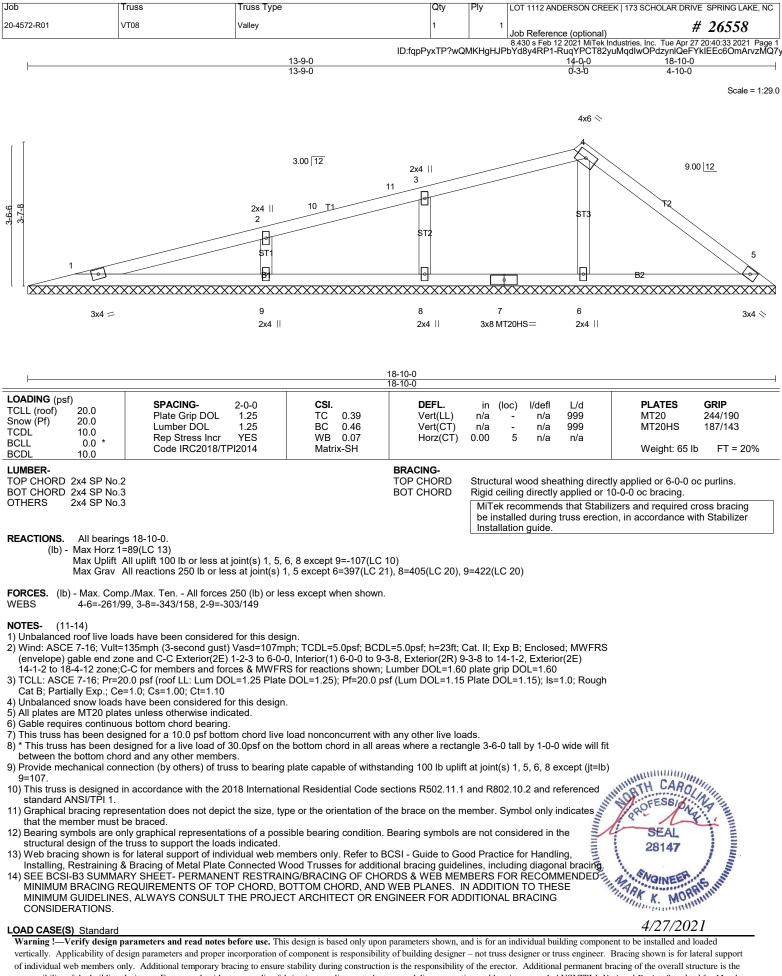
Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

K. MORR

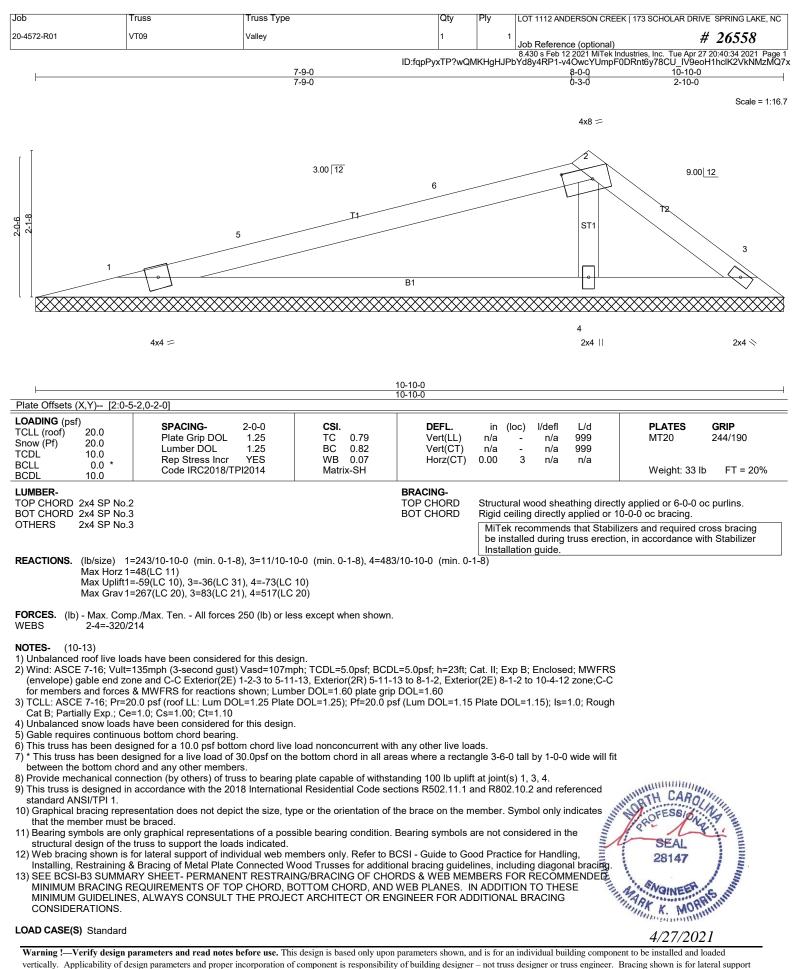
4/27/2021

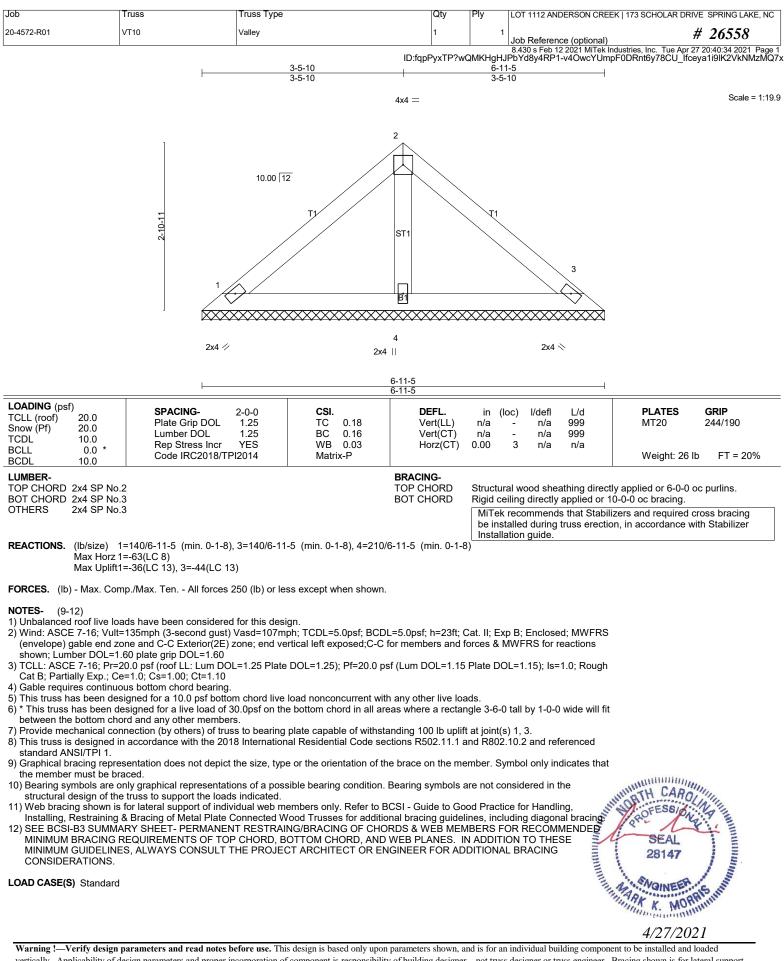
Job	Truss	Truss Type	Qty	Ply	LOT 1112 ANDERSON CREEK 173 SCHOLAR DRIVE SPRING LAKE, NC
20-4572-R01	VT07	Valley	1	1	Job Reference (optional) # 26558
					8.430 s Feb 12 2021 MiTek Industries, Inc. Tue Apr 27 20:40:33 2021 Page 2

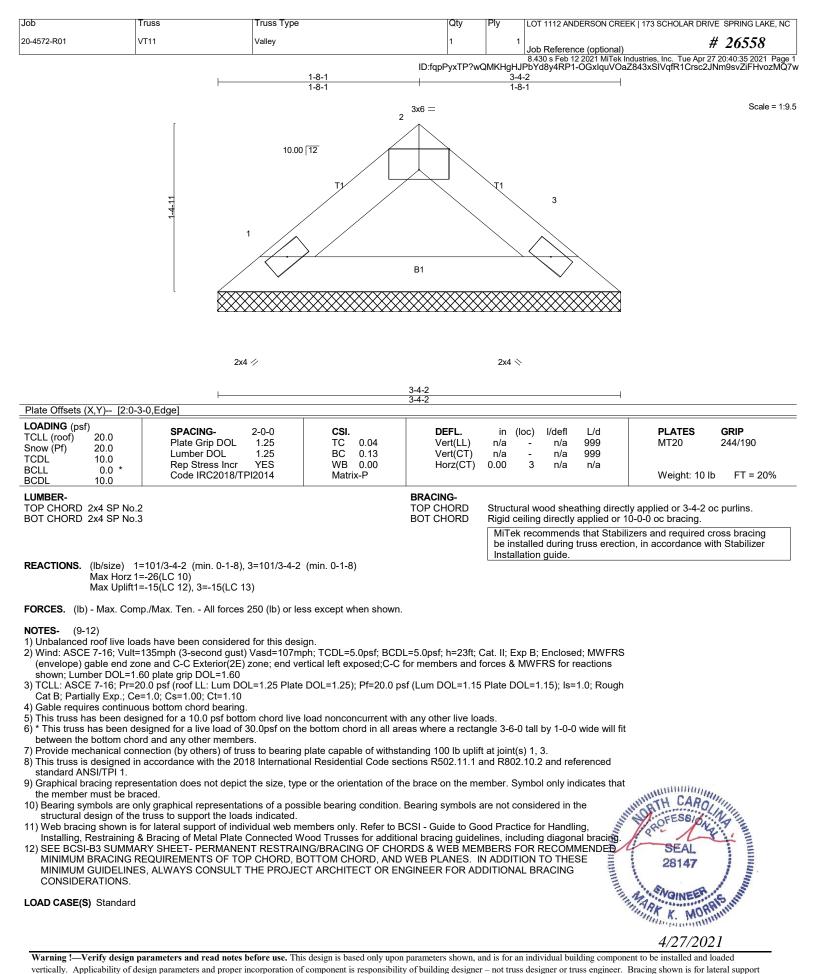
ID:fqpPyxTP?wQMKHgHJPbYd8y4RP1-RuqYPCT82yuMqdlwOPdzynlSGFailEZc6OmArvzMQ7y


13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

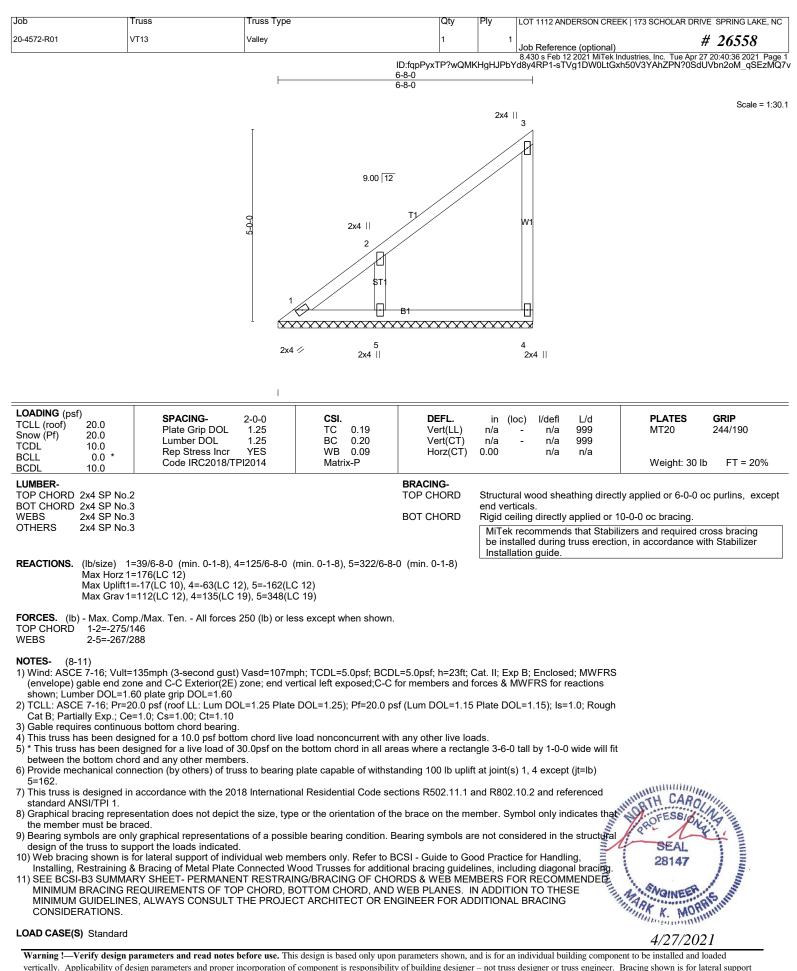
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

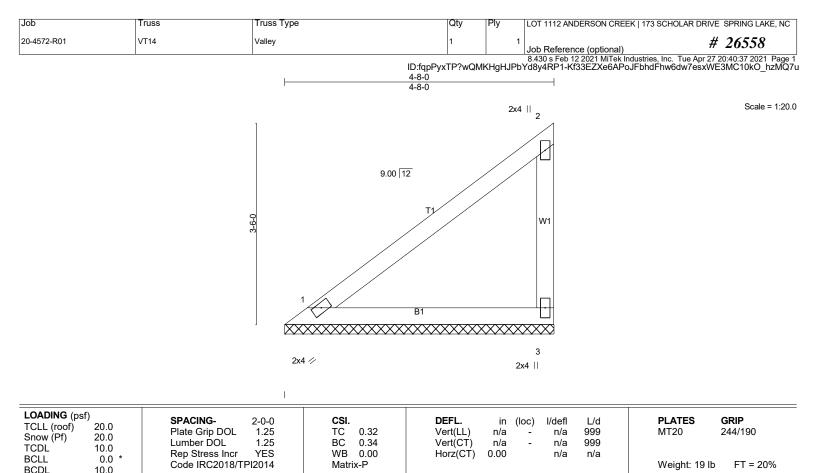

16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard



responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.




Job	Truss	Truss Type		Qty	Ply		EEK 173 SCHOLAR DRIVE SP	
20-4572-R01	VT12	Valley		1	1	LOT THE ANDERSON CR		6558
20-4072-1101	VIIZ	Valicy				Job Reference (optiona 8,430 s Feb 12 2021 MiTel	l) # 2 (Industries, Inc. Tue Apr 27 20:40	
				ID:fqpPyxTP?wQM 8-8-0	1KHgHJPb\	Yd8y4RP1-sTVg1DW0L	Gxh50V3YAhZPNzhSaKVbf2	2oM_qSEzMQ7
				8-8-0		———————————————————————————————————————		
					2x4			Scale = 1:39.2
		r			2,74	3		
					/	B		
			9.00 12	- //				
			2>	(4				
		0-9-9		2T1		W1		
		Ġ						
				ST1				
		1						
				B10	~ ~ ~ ~ ~ ~			
		2x4 1/2			~~~~			
		274 7		5 6 2x4		42x4		
		ł						
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in /lo	oc) l/defl L/d	PLATES GR	
TCLL (roof) 20. Snow (Pf) 20.	0 Plate Grip D	OL 1.25	TC 0.27	Vert(LL)	in (lo n/a	- n/a 999		4/190
TCDL 10.	0 Lumber DOI Rep Stress		BC 0.40 WB 0.09	Vert(CT) Horz(CT)	n/a 0.00	- n/a 999 n/a n/a		
BCLL 0. BCDL 10.	0 * Code IRC20	18/TPI2014	Matrix-P				Weight: 41 lb	FT = 20%
LUMBER-				BRACING-	Chryster	- I		
TOP CHORD 2x4 BOT CHORD 2x4	SP No.3			TOP CHORD	end verti	icals.	ctly applied or 6-0-0 oc pu	iiiis, except
	SP No.3 SP No.3			BOT CHORD		iling directly applied or recommends that Stat	10-0-0 oc bracing. Dilizers and required cross	bracing
					be insta	alled during truss erec	tion, in accordance with St	
	ize) 1=130/8-8-0 (min. 0-	-1-8), 4=112/8-8-0 (min. 0-1-8), 5=404/8-	8-0 (min. 0-1-8)	Installa	tion guide.		
	Horz 1=234(LC 12) Uplift4=-56(LC 12), 5=-204	4(LC 12)						
	Grav 1=147(LC 21), 4=194		19)					
	ax. Comp./Max. Ten All fo	orces 250 (lb) or less	except when shown					
	2=-286/161 5=-335/313							
NOTES- (8-11)								
1) Wind: ASCE 7-1	6; Vult=135mph (3-second end zone and C-C Exterio						S	
shown; Lumber I	DOL=1.60 plate grip DOL= ²	1.60	•					
	6; Pr=20.0 psf (roof LL: Lu xp.; Ce=1.0; Cs=1.00; Ct=		OCL=1.25); Pf=20.0 p	osf (Lum DOL=1.15	Plate DO	L=1.15); ls=1.0; Roug	n	
	ontinuous bottom chord be een designed for a 10.0 psf		ad nonconcurrent wi	th any other live lo	ads			
5) * This truss has l	been designed for a live loa	ad of 30.0psf on the	bottom chord in all a			tall by 1-0-0 wide will	fit	
6) Provide mechani	om chord and any other me cal connection (by others)	of truss to bearing p	late capable of withs				4.	
 This truss is des standard ANSI/T 	igned in accordance with th PI 1.	e 2018 International	Residential Code se	ections R502.11.1 a	and R802. [,]	10.2 and referenced	MARTIN MILLING	
8) Graphical bracin	igned in accordance with the PI 1. g representation does not of t be braced. are only graphical represe so to support the loads indi- jown is for lateral support of	lepict the size, type	or the orientation of t	he brace on the me	ember. Syr	mbol only indicates that	at when TH LAROLING	
9) Bearing symbols	are only graphical represe	ntations of a possibl	e bearing condition.	Bearing symbols a	re not cons	sidered in the structure	A POFESSIONS	Intern
design of the true 10) Web bracing sh	are only graphical represe ss to support the loads indi iown is for lateral support o aining & Bracing of Metal F SUMMARY SHEET- PERM CING REQUIREMENTS O DELINES, ALWAYS CONS ONS.	cated. f individual web mer	nbers only. Refer to I	BCSI - Guide to Go	od Practic	e for Handling,	SEAL 28147	Innul
Installing, Restr 11) SEF BCSI-B3 S	aining & Bracing of Metal F SUMMARY SHEFT- PERM	Plate Connected Wo	od Trusses for additi G/BRACING OF CHO	onal bracing guidel	lines, inclu	Iding diagonal bracing	28147	115 22
MINIMUM BRA	CING REQUIREMENTS O	F TOP CHORD, BO	TTOM CHORD, AND	WEB PLANES.	N ADDITIC	ON TO THESE	No. al	Alles .
MINIMUM GUI	JELINES, ALWAYS CONS ONS.	ULI THE PROJECT	ARCHITECT OR E	NGINEER FOR AD	UTIONAL	BRACING	APPROVINEER	and and a state of the state of
LOAD CASE(S) Sta	andard						Mining K. MOHumm	
.UAD UADE(D) SI	anualu						5.411.4111.	

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

4/27/2021

LUMBER-			
TOP CHORD	2x4	SP	No.2
BOT CHORD	2x4	SP	No.3

Jo.3 WEBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

Structural wood sheathing directly applied or 4-8-0 oc purlins, except

REACTIONS. (lb/size) 1=163/4-8-0 (min. 0-1-8), 3=163/4-8-0 (min. 0-1-8) Max Horz 1=118(LC 12) Max Uplift3=-82(LC 12) Max Grav 1=163(LC 1), 3=176(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=135mph (3-second gust) Vasd=107mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.25 Plate DOL=1.25); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
 10) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines. including discound hereit. 8) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that

- 11) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

MORAS 7/2021 rd k SEAL - ANDENHUMMUM - ANDENHUMUM - ANDEN 28147 NOINEE K. MORR 4/27/2021

LOAD CASE(S) Standard