Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 26540 JOB: 21-1987-R01 JOB NAME: LOT 1154 CARRIAGE CIRCLE Wind Code: 37 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23

27 Truss Design(s)

Trusses:

J01, J02, PB01, PB02, PB03, R01, R02, R02A, R03, R03A, R03B, R04, R05, R06, R07, R07A, R07B, R08, R09, R10, R11, VT01, VT02, VT03, VT04, VT05, VT06

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for*

LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 20.0 20.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.12 BC 0.08 WB 0.05 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc 0.00 1 -0.00 1 0.00 5	l/defl n/r n/r n/a	L/d 180 80 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 0%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural end vertica Rigid ceilir MiTek re be install Installatio	wood she als. ng directly commend ed during on quide.	eathing direc applied or Is that Stabi truss erecti	tly applied or 4-10-8 of 10-0-0 oc bracing. lizers and required cr on, in accordance wit	oc purlins, except oss bracing ih Stabilizer

REACTIONS. (lb/size) 7=151/4-10-8 (min. 0-1-8), 5=76/4-10-8 (min. 0-1-8), 6=200/4-10-8 (min. 0-1-8) Max Horz 7=63(LC 14) Max Uplift7=-2(LC 10), 5=-13(LC 14), 6=-60(LC 14)

Max Grav 7=219(LC 21), 5=106(LC 21), 6=274(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(13-14)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will the CAROUS
 11) Provide mechanical connection (by others) of true tails POFESSI 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 7, 13 lb uplift at joint 5 and
- 60 lb uplift at joint 6. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- standard ANSI/TPI 1.
- 13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates Annunderstand that the member must be braced.
- 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Warning !--Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

SEAL

28147

VOINES

K. MORP in minin

4/21/2021

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(12-13)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 2 and 37 lb uplift at joint 6. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- standard ANSI/TPI 1. 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building desianer.
- 12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

AND THE REAL PROPERTY OF THE P

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRUCE HC	LLOW CIRCLE SPRING LA	<e, th="" <=""></e,>
21-1987-R01	R01	GABLE	1	1	Job Reference (optional)	# 26540	
					8 430 s Feb 12 2021 MiTek Industries Inc. Wed Ar	or 21 21:09:22 2021 Page 2	

ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-ut2bUSjZomoynNRugmij6JJ4k1Zwv3y9o4wj4SzOOGx

17) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
18) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRU	CE HOLLOW CIRCLE SPRING LAKE
21-1987-R01	R02A	Hip	1	1	Job Reference (optional)	# 26540
					8 430 s Eeb 12 2021 MiTek Industries Inc. \	Ned Apr 21 21:09:26 2021 Page 2

ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-meH5Kqm3s?IOG_kfvcmfH9TdAemZrovljiuwDDzOOGt

Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRUCE HOLLOW CIRCL	E SPRING LAKE,
21-1987-R01	R03A	Common	1	1	Job Reference (optional) # 2654	40

8.430 s Feb 12 2021 MITek Industries, Inc. Wed Apr 21 21:09:30 2021 Page 2 ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-fPXcABpavDoplb2Q8SrbR?eFDF51ndEKdKs8M_zOOGp

LOAD CASE(S) Standard

4/21/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRUCE HOLLOW CIRCLE SPRING LA	KE,
21-1987-R01	R03B	HIP	1	1	Job Reference (optional) # 26540	
					8 430 s Feb 12 2021 MiTek Industries Inc. Wed Apr 21 21:09:32 2021 Page 2	

8.430 s Feb 12 2021 MiTek Industries, Inc. Wed Apr 21 21:09:32 2021 Page 2 ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-bofNatrqRr2X_vBpGtt3WQjbe3pIFWMd5eLFRtzOOGn

Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRUCE H	OLLOW CIRCLE SPRING LAKI
21-1987-R01	R04	COMMON	5	1	Job Reference (optional)	# 26540

8.430 s Feb 12 2021 MITek Industries, Inc. Wed Apr 21 21:09:33 2021 Page 2 ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-3_DIoDsSC8AOc3m?paPI3dGmUS6j_znKI5ozJzOOGm

LOAD CASE(S) Standard

4/21/2021

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRUCE HOLLOW CIRCLE SPRING LA	<e,< th=""></e,<>
21-1987-R01	R05	GABLE	1	1	Job Reference (optional) # 26540	
					8 430 s Eeb 12 2021 MiTek Industries, Inc. Wed Apr 21 21:00:37 2021, Page 2	

ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-yISGebvzGNhq5g4m2QTEDTQex4hSwrgMEv3?64z00Gi

17) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 18) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

			y	LOT 1154 CARRIAGE CIRCLE 150 SP	RUCE HOLLOW CIRCLE SPRING LAKE,
21-1987-R01 R06	Common Girder	1	2	Job Reference (optional)	# 26540

ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-MK8OGcxrZI3Py8pLkY1xr626uHW074DpxtHgjPzOOGf

12) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 6-10=-20

Concentrated Loads (lb) Vert: 7=-1389(B) 9=-1498(B) 11=-1498(B) 12=-1498(B) 13=-1498(B) 14=-1389(B) 15=-1866(B)

4/21/2021

	L	7-7-8		15-	3-0		<u> </u>
		7-7-8		7-7	7-8		1
Plate Offsets (X,Y) [2	:0-3-8,0-1-0], [4:0-3-8,0-1-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.72 BC 0.50 WB 0.16 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.06 7-8 -0.13 7-8 0.01 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/190 Weight: 96 lb FT = 0%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N W1: 2x4 SP BRACING- TOP CHORD Structural wood sheati except end verticals. BOT CHORD Rigid ceiling directly a MiTek recommends t bracing be installed of with Stabilizer Install: REACTIONS. (lb/size) 8 = 6 = Max Horz	o.2 o.2 o.3 *Except* SP No.2 hing directly applied or 5-9-2 oc purlins, pplied or 10-0-0 oc bracing. hat Stabilizers and required cross during truss erection, in accordance ation guide. 660/0-5-8 660/0-3-8	6) * This truss has be the bottom chord in a 1-0-0 wide will fit bet members. 7) Provide mechanic bearing plate capable 40 lb uplift at joint 6. 8) This truss is desig International Resider R802.10.2 and refere 9) Graphical web bra size, type or the or only indicates that 10) Bearing symbols possible bearing considered in the the loads indicate	een designed for a l all areas where a re ween the bottom cr al connection (by o e of withstanding 44 gned in accordance ntial Code sections nced standard ANS ucing representation rientation of the bra t the member must are only graphical condition. Bearing e structural design o ed.	ive load of 3 ctangle 3-6-(nord and any thers) of trus 0 lb uplift at j with the 201 R502.11.1 ar I/TP1 1. does not de ce on the we be braced. representatii symbols arbs to f the truss t	0.0psf o 0 tall by other ss to joint 8 a 8 epict the b. Symi ons of a o suppo	nd bol	
8 =	-202(LC 10)	LOAD CASE(S)					
Max Uplift 8 = 6 =	-40(LC 13) -40(LC 12)	Standard					
FORCES. (Ib) Max. Comp./Max. Ten. shown. TOP CHORD 2-3=-572/105, 3-4=-572/ 4-6=-593/71 BOT CHORD 7-8=-261/419, 6-7=-179/ WEBS 3-7=0/311, 2-7=-142/303	- All forces 250 (lb) or less except when /105, 2-8=-593/71, /270 3, 4-7=-146/304						OFESSION A
NOTES- (9-10) 1) Unbalanced roof live design. 2) Wind: ASCE 7-16; V. Vasd=95mph; TCDL=5 Enclosed; MWFRS (en Exterior(2) zone; end v members and forces &	e loads have been considered for this ult=120mph (3-second gust) .0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp velope) gable end zone and C-C rertical left and right exposed;C-C for . MWFRS for reactions shown; Lumber	В;					28147
DOL=1.60 plate grip DO 3) TCLL: ASCE 7-16: P	DL=1.60 r=20.0 psf (roof LL: Lum DOL=1.15 Plate	•					4/21/2021
DOL=1.15); Pf=20.0 ps Rodgni Cat B; Partially 4) This Itrus Inds: blein	f <u> Lum DOL=1.15 Plate DOL=1.15</u>); Is=1. ትርጉ በመደረጉ የሚያስት የ ለ የሚያስት የሚስት የሚያስት የሚስት የሚስት	se. This design is based on d on of component is respo	nly upon parameters s onsibility of building	hown, and is designer – no	for an in t truss de	dividual buil esigner or tru	ding component to be installed and loaded uss engineer. Bracing shown is for lateral support
of 12.0.psf or 2.00 time	s flat roof load of 20 0 pst on overhangs	huanna atability duning aan	stantation is the assault			. <u>A</u> dditional	normanent hussing of the extendit statestime is the

of 12. A use for 2.00, times that no of Agadi of 20.0 use for y by a charge subject to a subject D'Onofrio Drive, Madison, WI 53719.

9-11=-54/365, 8-11=-54/365 WEBS

2-9=-51/300, 5-8=-53/288

NOTES- (10-11) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat B: Partially Exp.; Ce=1.0; Cs=1.0; Ct=1.10 4) This Basis has been designed for grander of this for this design is based only upon parameters shown, and is for an individual building component to be installed and loaded ofer 1200 lpsf dup 2000 tillings of a log to a durate 20.0 mps from overhangs tion of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of the second se 16/adm6nconcond With Will ramy Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

1-0-0-1-wide will fit between the bottom chord and any other

15-3-0 15-3-0

Plate Offsets (X,Y) [5:	0-4-8,0-2-0], [9:0-4-8,0-2-0]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.16 BC 0.07 WB 0.07 Matrix-R	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) -0.00 13 n/r 180 MT20 244/190 Vert(CT) -0.01 13 n/r 80 MT20 244/190 Horz(CT) -0.00 14 n/a n/a M20 244/190
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No	0.2	9) Truss to be fully s	sheathed from one face or securely braced

11) This truss has been designed for a 10.0 psf bottom chord

live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 30.0psf on

the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other

13) Provide mechanical connection (by others) of truss to

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 14, 18, 19, 17 except (jt=lb) 21=136, 15=133.

15) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web.

Symbol only indicates that the member must be braced.

considered in the structural design of the truss to support

16) Bearing symbols are only graphical representations of a

possible bearing condition. Bearing symbols are not

against lateral movement (i.e. diagonal web).

10) Gable studs spaced at 2-0-0 oc.

members, with BCDL = 10.0psf.

the loads indicated.

LOAD CASE(S) Standard

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOTCHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. All bearings 15-3-0. (Ib) - Max Horz 22=-138(LC 10)

Max Uplift

All uplift 100 lb or less at joint(s) 22, 14, 18, 19, 17 except 21=-136(LC 12), 15=-133(LC

13)

- Max Grav
- All reactions 250 lb or less at joint(s) 22, 14, 18, 19, 20, 21, 17, 16, 15

FORCES. (lb)

Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (15-16)

1) Unbalanced roof live loads have been considered for this desian.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ff; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only.

For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSUTPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

SEAL 28147

4/21/2021

Rough Car B: Partially Exp.: Ce=1.0; Cs=1.0; Ct=1.10 5) This Basis has been designed for grander of this for this for this design is based only upon parameters shown, and is for an individual building component to be installed and loaded ofer 1200 lpsf dup 2000 tillings of a log to a durate 20.0 mps from overhangs tion of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support non-congutrent with other line loads tional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the 6) Provide adequate drainage to prevent water ponding. Transfer adequate drainage to prevent water ponding. Transfer are 2x4 MT20 unless otherwise miliated. 8/ Bable required y continuous bottom in orther final provide the Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRL	ICE HOLLOW CIRCLE SPRING LAKE
21-1987-R01	R09	Attic	9	1	Job Reference (optional)	# 26540
					JOD Reference (optional)	Wed Arr 21 21:00:17 2021 Dans 6

ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-fh32k?0EvSxPHDrheWfadarA86wgGGzrYTUXTVzOOGY

NOTES- (13-14)

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Attic room checked for L/360 deflection.

13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

4/21/2021

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer of truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRUCE H	OLLOW CIRCLE SPRING LAKE,
21-1987-R01	R10	GABLE	1	1	Job Reference (optional)	# 26540
	·	ID:N	sMZ7fuyNI	Jd5IEFbR	8.430 s Feb 12 2021 MiTek Industries, Inc. Wed / 85JwyPq?q-b3Ao9h2VR3B7XW?4Ixh2i?wa	Apr 21 21:09:49 2021 Page 2 svmXkGi7?nzeXNzOOGW

NOTES- (16-17)

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 38, 21 except (jt=lb) 41=227, 18=222, 39=119, 40=262, 20=119, 19=260.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Attic room checked for L/360 deflection.

16) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 17) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

Job	Truss	Truss Type	Qtv	Plv LOT 11	54 CARRIAGE CIRCLI	E L 150 SPRUCE HOLLOW CIRCLE SPRING LAKE.
21-1987-R01	R11	Monopitch Supported Gable	1	1		# 26540
			ID:MeM77fuvA	Job Re 8.430 s II Id5IEEbR85 Iww	eference (optional) Feb 12 2021 MiTek Ind Pa2a-3EkAM137CN	lustries, Inc. Wed Apr 21 21:09:50 2021 Page 1
		-0-10-8	<u>8-4-0</u> 8-4-0			
		0.10.0	0.10			Scale = 1:59.0
		12 	$2.00 \overline{12}$ 4 4 4 7 7 7 7 7 7 7 7 7 7	r r r		
		I				
Plate Offsets (X,Y) [2:0)-1-4,0-1-8]					
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.15 TC 0. 1.15 BC 0. YES WB 0.	DEFL.19Vert(LL)11Vert(CT)13Horz(CT)	in (loc) l/ 0.00 1 0.00 1 -0.00 7	defl L/d n/r 180 n/r 80 n/a n/a	PLATES GRIP MT20 244/190
BCDL10.0LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS2x4 SP N OTHERSOTHERS2x4 SP N 2x4 SP N	0.2 0.3 0.3 0.3 0.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood end verticals. Rigid ceiling dir 1 Row at midpt	d sheathing directl rectly applied or 10 6-7, 5-8	y applied or 6-0-0 oc purlins, except
REACTIONS. All beari (lb) - Max Horz Max Uplif Max Grav	ngs 8-4-0. 11=245(LC 12) t All uplift 100 lb or less at All reactions 250 lb or le: 20)	joint(s) 7, 9, 8 except 11=-1 ss at joint(s) 7 except 11=51	59(LC 10), 10=-406(LC 12 4(LC 12), 9=262(LC 24), 1	MiTek recom be installed d Installation gu) 0=335(LC 20), 8-	mends that Stabili: uring truss erectio iide. =295(LC	zers and required cross bracing n, in accordance with Stabilizer
FORCES. (lb) - Max. Co TOP CHORD 2-11=-50 BOT CHORD 10-11=-50 WEBS 2-10=-32	, mp./Max. Ten All forces)6/391, 2-3=-307/254 258/200 27/422	250 (lb) or less except wher	n shown.			
 NOTES- (13-14) 1) Wind: ASCE 7-16; Vui (envelope) gable end shown; Lumber DOL= 2) Truss designed for wi Gable End Details as 3) TCLL: ASCE 7-16; Pre Cat B; Partially Exp.; C 4) This truss has been do non-concurrent with of 5) All plates are 2x4 MT2 6) Gable requires continut 7) Truss to be fully sheat 8) Gable studs spaced a 9) This truss has been di 10) * This truss has been di 11) Provide mechanical 	t=120mph (3-second gust zone and C-C Exterior(2) z 1.60 plate grip DOL=1.60 nd loads in the plane of the applicable, or consult qual 20.0 psf (roof LL: Lum DC 2e=1.0; Cs=1.00; Ct=1.10 esigned for greater of min her live loads. 20 unless otherwise indicat ious bottom chord bearing hed from one face or secu t 2-0-0 oc. esigned for a live load o n chord and any other mer connection (by others) of th	Vasd=95mph; TCDL=5.0ps one; end vertical left expose a truss only. For studs expo fied building designer as pe VL=1.15 Plate DOL=1.15); P oof live load of 12.0 psf or 2 ed. m chord live load nonconcu f 30.0psf on the bottom chor nbers, with BCDL = 10.0psf. uss to bearing plate capable	sf; BCDL=5.0psf; h=23ft; C ed;C-C for members and fo sed to wind (normal to the r ANSI/TPI 1. f=20.0 psf (Lum DOL=1.15 2.00 times flat roof load of 2 novement (i.e. diagonal wel urrent with any other live loa rd in all areas where a recta	at. II; Exp B; Enc rces & MWFRS f face), see Stand Plate DOL=1.15 20.0 psf on overh b). ads. angle 3-6-0 tall b ift at joint(s) 7.9	iosed; MWFRS for reactions ard Industry 5); Is=1.0; Rough angs y 1-0-0 wide will 8 except (it=b)	SEAL 28147

fit between the bottom chord and any other members, with BCDL = 10.0psf. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 9, 8 except (jt=k) 11=159, 10=406.

in manning 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4/21/2021

K. MO

Job	Truss	Truss Type	Qty	Ply	LOT 1154 CARRIAGE CIRCLE 150 SPRUCE	HOLLOW CIRCLE SPRING LAK
21-1987-R01	R11	Monopitch Supported Gable	1	1	Job Reference (optional)	# 26540
					8 430 s Feb 12 2021 MiTek Industries Inc. Wed	Apr 21 21:09:50 2021 Page 2

ID:MsMZ7fuyNIJd5IEFbR85JwyPq?q-3FkAM137CNK_8gaGJfCHFDTtJJ7jTn4HERjC4qzOOGV

13) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

NOTES- (9-10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1 and 33 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced
- standard ANSI/TPI 1. 9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that
- b) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 22 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that

9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9-10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 12 lb uplift at joint 3. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced

standard ANSI/TPI 1. 9) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that

the member must be braced. 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the

structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

