Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section Sheet: Property ID: Lot #:

File #: Code:

SFD2104.00G5

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

HIGHLAND CREWE Applicant: 1/3 Homes CANOLINAS

Date Evaluated: 05 1/0/2021

Design Flow (.1949): 3600015

Property Recorded: Owner: LOT 33 Address: OHAMA CT Proposed Facility: 320 52 Property Size: Location of Site: Property Recorded: Public Individual Water Supply: ☐ Spring Other Evaluation Method: Auger Boring
Type of Wastewater: Sewage Pit Industrial Process ☐ Cut ☐ Mixed

P R O F I L E	.1940 Landscape Position/ Slope %	Horizon Depth (In.)	SOIL MORPHOLOGY .1941		OTHER PROFILE FACTORS				
			.1941 Structure/ Texture	.1941 Consistence Mineralogy	.1942 Soil Wetness/ Color	.1943 Soil Depth (IN.)	.1956 Sapro Class	.1944 Restr Horiz	Profile Class & LTAR
1,2	1 570	0-18	CZ 25	un ~san					PS.
		18-48	er 24	EN 3558		48			6.35
_									

Description	Initial System	Repair System	Other Factors (.1946): Site Classification (.1948):	Prov	
Available Space (.1945)			Evaluated By:		
System Type(s)	25% 185	25% 200	Others Present:	AN	
Site LTAR	0.35	035	3 4 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		

(1948): provisionant sortable
lated By:

ANDRO COMAIN, NEHS

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	TEXTURES	.1955 LTAR	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE	I	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE	NS-NON-STICKY
L-LINEAR SLOPE		LS LOTHER STEED		FR-FRIABLE	SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE	II	SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM	S-STICKY VS-VERY STICKY
H-HEAD SLOPE		L-LOAM		EFI-EXTREMELY FIRM	NP-NON-PLASTIC
CC-CONCLAVE SLOPE	Ш	SI-SILT	0.6 - 0.3		SP-SLIGHTLY STICKY
CV-CONVEX SLOPE		SIL-SILT LOAM			P-PLASTIC
T-TERRACE		CL-CLAY LOAM			VP-VERY PLASTIC
FP-FLOOD PLAN		SCL-SANDY CLAY LOAM			

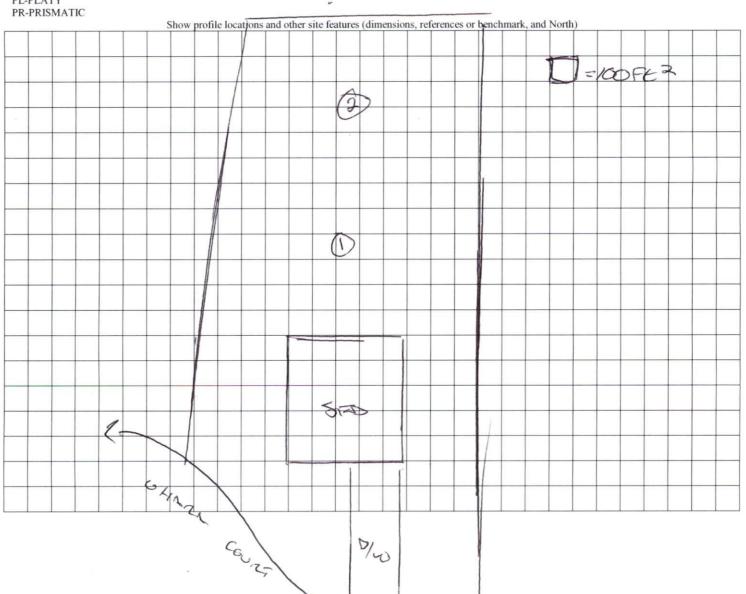
STRUCTURE SG-SINGLE GRAIN M- MASSIVE

CR-CRUMB GR-GRANULAR

SBK-SUBANGULAR BLOCKY ABK-ANGULAR BLOCKY

PL-PLATY

PR-PRISMATIC


MINERALOGY SLIGHTLY EXPANSIVE

SIC-SILTY CLAY 0.4 - 0.1

EXPANSIVE

C-CLAY SC-SANDY CLAY

IV

