

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0421-2748 1504 Gregory Circle

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15710383 thru E15710418

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

May 10,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1504 Gregory Circle	-
						E15710383
J0421-2748	A1-GE	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Faye	teville, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Mon May 10 10:27:06 2021	Page 2
		ID:DFoF	RKbNIZjVH	l?nbtIrBKZ	azEemi-VGp36oqrr?m8AemvZZrABXuY5PInfsWMGQJYou	JzHwwp

NOTES-

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 52, 57, 53, 45, 39, 50, 56, 55, 54, 51, 49, 41, 40, 38 except (jt=lb) 2=139, 36=386, 58=102, 46=2257, 42=1801, 37=666.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 13) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:99.0

4	11-8 11-7-8 18-7-8	25-1-4	4	2-1-0	50-11-0	54-11-0		
Plate Offsets (X,Y)	[2:0-2-11,Edge], [17:0-5-0,0-7-4], [26:0-2	<u>6-5-12</u> 2-8,0-3-0], [27:0-3-8,0-3-0)]	-11-12	8-10-0	4-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.40 BC 0.78 WB 0.79 Matrix-S	DEFL. ir Vert(LL) -0.37 Vert(CT) -0.63 Horz(CT) 0.09 Wind(LL) 0.10	n (loc) l/defl L/d 17-19 >953 360 17-19 >561 240 15 n/a n/a 17 >999 240	PLATES MT20 Weight: 541 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x10 S 2-22: 2 WEBS 2x4 SF 8-19,1 REACTIONS. (siz Max H	P No.1 P 2400F 2.0E *Except* 2x6 SP No.1, 20-22: 2x10 SP No.1 P No.2 *Except* 1-17,14-15,11-25,25-27: 2x6 SP No.1 e) 2=0-3-8, 19=0-3-8, 15=0-3-8 lorz 2=199(LC 12)		BRACING- TOP CHORDStructural wood sheathing directly applied or 3-6-5 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-10.BOT CHORDRigid ceiling directly applied or 9-10-14 oc bracing.WEBS1 Row at midpt 2 Rows at 1/3 ptsJOINTS1 Brace at Jt(s): 26, 27					
$\begin{array}{llllllllllllllllllllllllllllllllllll$								
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; \ MWFRS (envelope) 29-0-11 to 38-9-8, E reactions shown; Lu 3) Provide adequate d 4) This truss has been will fit between the b 6) Ceiling dead load (1 7) Bottom chord live lo 8) This truss is designer referenced standard 9) Graphical purlin rep 10) Attic room checked 	e loads have been considered for this des /ult=130mph (3-second gust) Vasd=103m and C-C Exterior(2E) -0-8-11 to 4-11-8, Exterior(2R) 38-9-8 to 44-3-6, Interior(1) 4 umber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord live en designed for a live load of 30.0psf on th bottom chord and any other members, wit 10.0 psf) on member(s). 26-27, 11-26; Wa add (40.0 psf) and additional bottom chorc ed in accordance with the 2018 Internatio d ANSI/TPI 1. resentation does not depict the size or the d for L/360 deflection.	sign. nph; TCDL=6.0psf; BCDL Interior(1) 4-11-8 to 23-6 4-3-6 to 54-8-4 zone;C-C e load nonconcurrent with ne bottom chord in all are th BCDL = 10.0psf. all dead load (5.0psf) on d dead load (10.0 psf) app nal Residential Code sec e orientation of the purlin	=6.0psf; h=15ft; Cat. II; 12, Exterior(2R) 23-6-12 for members and force: a any other live loads. as where a rectangle 3- member(s).19-27, 11-17 blied only to room. 17-19 titons R502.11.1 and R8 along the top and/or bor	Exp C; Enclosed; 2 to 29-0-11, Interior(1) s & MWFRS for 6-0 tall by 2-0-0 wide 0 02.10.2 and ttom chord.	SEA 166 MARINE A ST	EEP. Contraction of the second		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-7-8	11-7-8	16-7-8	22-11-8	23 ₁ 1-4	40-1-0	48	3-11-0	52-11-0	1
	6-7-8	5-0-0	5-0-0	6-4-0	0-1 ["] -12	16-11-12	8	-10-0	4-0-0	1
Plate Offs	sets (X,Y) [7:0-5-8,0-2-0], [16:0-	5-0,0-7-8], [18:0-	5-8,0-2-5], [20	0:0-4-12,0-2-	8], [23:0-5-0,0-3-0], [24:0-4-0,0-3-0]				
				-						

LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 YES I2014	CSI. TC 0.86 BC 0.73 WB 0.82 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.60 -1.05 0.35 0.14	(loc) 16-18 16-18 14 16-18	l/defl >599 >339 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 508 lb	GRIP 244/190 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP 2x6 SP 17-18,1 2x4 SP	No.1 2400F 2.0E *Except* 4-17: 2x10 SP 2400F 2.0 No.2 *Except*	Е		BRACING- TOP CHOR BOT CHOR	D	Structur except Rigid ce 7-3-12	ral wood s end vertic eiling dire oc bracing	sheathing di cals, and 2-0 ctly applied g: 16-18.	rectly applied or 3-3-4 o 0-0 oc purlins (10-0-0 ma or 10-0-0 oc bracing, E	oc purlins, ax.): 6-9. Except:
REACTIONS.	7-18,10 (size Max Ho Max Gr	-16,13-14,10-22,5-24,22-) 1=0-3-8, 18=0-3-8, 14 prz 1=195(LC 12) rav 1=1139(LC 2), 18=26	24: 2x6 SP No.1 I=0-3-8 05(LC 28), 14=1952((LC 29)	JOINTS		1 Row a 2 Rows 1 Brace	at midpt at 1/3 pts at Jt(s): :	s 2 23, 24	18-24, 9-23, 3-19, 5-24 23-24, 10-23	

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-4701/277, 2-3=-4234/35, 3-5=-1677/3, 5-6=-123/3605, 6-7=-116/4385, 7-8=0/1429,

- 8-9=0/1429, 9-10=-344/290, 10-12=-2593/0, 12-13=-1649/42, 13-14=-1788/46

 BOT CHORD
 1-21=-284/4291, 20-21=-285/4306, 19-20=0/3953, 18-19=0/1519, 16-18=0/2211, 15-16=-10/1470

 WEBS
 18-24=-2759/295, 7-24=-1547/273, 3-20=0/2719, 5-19=-5/934, 5-18=0/1126,
- 10-16=0/1004, 12-16=0/969, 12-15=-1247/0, 13-15=-20/1769, 23-24=-6546/174, 10-23=-2207/0, 8-23=-365/218, 7-23=-303/3361, 9-23=-1304/29, 3-19=-2889/148, 2-20=-608/336, 5-24=-5169/115, 6-24=-1857/115

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 5-5-4, Interior(1) 5-5-4 to 21-6-2, Exterior(2R) 21-6-2 to 28-11-15, Interior(1) 28-11-15 to 36-9-8, Exterior(2R) 36-9-8 to 44-3-5, Interior(1) 44-3-5 to 52-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Ceiling dead load (10.0 psf) on member(s). 23-24, 10-23; Wall dead load (5.0psf) on member(s).18-24, 10-16
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 16-18
 9) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.12) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-7-8	11-7-8	1	16-7-8	1	22-11-8	1-4 _ר 23		40-	1-0			1	48-11-0	52-11-0	
	6-7-8	5-0-0	1	5-0-0	1	6-4-0	0-1 ["] -12		16-1	1-12			1	8-10-0	4-0-0	
Plate Offsets (X,Y)	[1:0-2-6,0-1-10], [6	:0-3-0,	0-3-12], [16:0-5-0),0 -7-8] , [′	18:0-5-0,0-	-4-2], [2	0:0-2-8,0-3-1	2], [24:(0-4-0,0-3	3-4]				
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip D Lumber DO Rep Stress Code IRC2	OL L Incr 018/TP	2-0-0 1.15 1.15 YES Pl2014		CSI. TC BC WB Matri:	0.68 0.70 0.77 x-S		DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.55 -0.91 0.29 0.10	(loc) 16-18 16-18 15 20-21	l/defl >568 >340 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 508	GRIP 244/190 3 lb FT = 20	1%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SP 2x6 SP 17-18,7 2x4 SP 7-18,10	No.1 2400F 2.0E *Exce 14-17: 2x10 SP 24(No.2 *Except*)-16,13-14,10-22,5	pt*)0F 2.0 -24,22-)E •24: 2x6 \$	SP No.1				BRACING- TOP CHOF BOT CHOF WEBS	RD RD	Structu except Rigid c 1 Row 2 Rows	ral wood end verti eiling dire at midpt s at 1/3 p	sheathing d cals, and 2- ectly applied ts	directly applied or 3- 0-0 oc purlins (6-0-0 1 or 6-0-0 oc bracing 18-24, 10-16, 10-23 23-24	5-12 oc purlins, max.): 6-9. , 3-19, 5-24	
REACTIONS.	(size Max H	e) 1=0-3-8, 18=0 orz 1=195(LC 12)	-3-8, 1	5=0-3-8					JOINTS		1 Brac	e at Jt(s):	23, 24			

Max Grav 1=1014(LC 2), 18=2554(LC 28), 15=2123(LC 29)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD
 1-2=-4082/252, 2-3=-3532/10, 3-5=-1317/0, 5-6=-105/2669, 6-7=-110/3235, 7-8=-182/829, 8-9=-182/829, 9-10=-546/261, 10-12=-1866/0

 BOT CHORD
 1-21=-261/3733, 20-21=-262/3745, 19-20=0/3294, 18-19=0/1143, 16-18=0/1565

 WEBS
 18-24=-2283/291, 7-24=-1365/267, 3-20=0/2324, 5-19=-6/819, 5-18=0/667, 10-16=-168/610, 12-16=0/1865, 12-15=-2186/0, 23-24=-4764/135, 10-23=-1479/0,
 - 8-23=-374/218, 7-23=-300/2824, 9-23=-868/39, 3-19=-2511/152, 2-20=-647/340,
 - 5-24=-3744/73, 6-24=-1395/112

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 5-5-4, Interior(1) 5-5-4 to 21-6-2, Exterior(2R) 21-6-2 to 28-11-15, Interior(1) 28-11-15 to 36-9-8, Exterior(2R) 36-9-8 to 44-3-5, Interior(1) 44-3-5 to 52-8-4 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (10.0 psf) on member(s). 23-24, 10-23; Wall dead load (5.0psf) on member(s). 18-24, 10-16
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 16-18
 8) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- considering at joint(s) in considers parametric grain value using ANS/TPT if angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Attic room checked for L/360 deflection.

SEAL 16673

May 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1504 Gregory Circle	
						E15710388
J0421-2748	A6	PIGGYBACK BASE	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,		. 8	.330 s Oct	7 2020 MiTek Industries, Inc. Mon May 10 10:27:28 2021	Page 2

ID:DFoRKbNlZjVH?nbtlrBKZazEemi-sV80kK5efmX1p1S7rBEL4ApMOHMhprxcJseiZczHwwT

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-6=-60, 6-9=-60, 9-10=-60, 10-11=-81, 1-17=-20, 15-17=-20, 10-14=-20 Concentrated Loads (lb) Vert: 10=-1571(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	1504 Gregory Circle	e	F15710389
J0421-2748	A7	PIGGYBACK BASE		1	2	Job Poference (optiv		
Comtech, Inc, Fayette	⊥ ville, NC - 28314,			8	.330 s Oct	7 2020 MiTek Indus	tries, Inc. Mon May 10 1	0:27:33 2021 Page 1
-0- 01	11-0 2-3-8 8-8-0 11-0 2-3-8 6-4-8	<u>14-6-0</u> <u>16-9-8</u> <u>18-8-8</u> 5-10-0 <u>2-3-8</u> <u>1-11-0</u>	+ 21-6-2 + 2-9-10	29-1-13 7-7-11	IDUIDRZ	36-9-8 7-7-11	40-0-8 41-7-0 3-3-0 1-6-8	Jool I / WITFYZHWWO
								Scalo - 1:00 8
			8x8 =		2×	(4	8x8 =	Scale = 1.90.6
Ţ		6.00 12	8	~ ~		9	10	T
		3x6 7					11	2 -
		6x8 = 5	x8 = 10		2			
10	4x4	= 5	2x4		4x	15 14 $^{(8)} = 4^{(8)} = -$	2x4	0
11-5-1	4	THE I				4x0 —		
								8-4-0
	2							
4 4 1		20 <mark>6 18</mark> 6						
	4x6 = 22 2	21 <u>~ ⊠</u> 2x4 18 17						
	3x4	5x8 =						
		3x4 3x4						
		3x4						
	2-3-8 8-8-0	16-9-8 14-6-0 16-7-12 18-8-8	21-6-2	29-1-13		36-9-8	40-0-8 41-7-0	
Plate Offsets (X V) [5:0	2-3-8 6-4-8	5-10-0 2-1-12 "1-11-0 0-1-12 10:0-5-4 0-4-01 [11:0-8-12 0-0-0]	' 2-9-10 '	/-/-11		7-7-11	' 3-3-0 '1-6-8'	
	SDACING		DEEL	in	(10.0)			
TCLL 20.0	Plate Grip DOL 1.15	TC 0.59	Vert(LL)	-0.08	(100)	>999 360	MT20	244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NC	BC 0.34 WB 0.21	Vert(CT) Horz(CT	-0.16) 0.08	13-15 17	>999 240 n/a n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.07	3-21	>999 240	Weight: 595 lb	FT = 20%
LUMBER- TOP CHORD 2x10 SP N	lo.1 *Except*		BRACIN TOP CH	G- ORD	Structur	al wood sheathing d	directly applied or 6-0-0	oc purlins, except
8-10,1-5: 2	2x6 SP No.1				2-0-0 oc	c purlins (6-0-0 max.	.): 8-10.	Eveent
WEBS 2x4 SP No	0.1 0.2		BUICH	URD	6-0-0 oc	c bracing: 17-19,6-19	9.	Except:
REACTIONS. (size)	12=0-3-8, 2=0-3-8, 17=0-3-8	3					mun	uun.
Max Horz Max Uplift	2=311(LC 8) 12=-177(LC 4), 17=-210(LC	8)					WHATH C	ARDI
Max Grav	12=2415(LC 1), 2=626(LC 2	1), 17=1851(LC 1)					S. AZ	STAL.
FORCES. (lb) - Max. Cor TOP CHORD 2-3=-396	mp./Max. Ten All forces 250 3/0_3-4=-785/0_6-7=-395/48	0 (lb) or less except when shown 7-8=-2018/144 8-9=-3309/308	9-10=-3309/308	3			= ;e	
10-11=-2 2 21- 10	2787/220, 11-12=-806/71	0- 194/642 17 10- 1921/227 6	: 10_ 1/9//192	,			SE/	AL 🚦
7-16=-11	7/1737, 15-16=-112/1750, 13	3-15=-175/2772, 11-13=-180/275	52 170				z 166	73
10-15=-3	85, 4-19=-775/218, 8-16=0/3 840/785, 10-13=0/367	00, 8-15=-186/1632, 9-15=-459/	178,				E Poi	19
NOTES-							NGIN	EEF
 2-ply truss to be connect Top chords connected a 	ted together with 10d (0.131 as follows: 2x6 - 2 rows stage	'x3") nails as follows: ered at 0-9-0 oc. 2x10 - 2 rows s	taggered at 0-9	-0 oc.			11, A. ST	RZY
Bottom chords connected	ed as follows: $2x6 - 2$ rows sta	aggered at 0-9-0 oc.	55				2000	nun.
 All loads are considered 	equally applied to all plies, e	except if noted as front (F) or bac	k (B) face in the	LOAD C	ASE(S) s	section. Ply to		
3) Unbalanced roof live loa	ads have been considered for	this design.	s otherwise ind	caled.				
 Wind: ASCE 7-16; Vult= MWFRS (envelope); Lui 	130mph (3-second gust) Vas mber DOL=1.60 plate grip DO	sd=103mph; TCDL=6.0psf; BCD DL=1.60	L=6.0pst; h=15t	t; Cat. II;	Exp C; Er	nclosed;		
5) Provide adequate draina6) This truss has been des	age to prevent water ponding signed for a 10.0 psf bottom c	hord live load nonconcurrent witl	n anv other live	loads.				
 7) * This truss has been de will fit between the botto 	esigned for a live load of 30.0	psf on the bottom chord in all are	eas where a rec	tangle 3-6	6-0 tall by	2-0-0 wide		
8) Bearing at joint(s) 12 co	nsiders parallel to grain value	e using ANSI/TPI 1 angle to grain	n formula. Build	ing desig	ner shoul	d verify		
9) Provide mechanical con	nection (by others) of truss to	bearing plate capable of withst	anding 100 lb u	olift at joir	it(s) exce	pt (jt=lb)		
12=177, 17=210. 10) This truss is designed	in accordance with the 2018	International Residential Code s	ections R502.1	.1 and R	802.10.2	and		
referenced standard A 11) See Standard Industry	NSI/TPI 1. Piggyback Truss Connectior	Detail for Connection to base tr	uss as applicat	le. or cor	sult quali	fied building	N.4-	
designer.	sentation does not depict the	size or the orientation of the pur	in along the top	and/or b	ottom cho	ord.		iy 10,2021
WARNING - Verify design	parameters and READ NOTES ON TH	IIS AND INCLUDED MITEK REFERENCE	PAGE MII-7473 rev	5/19/2020 I	BEFORE US	E.	ENGINEE	RING BY
Design valid for use only with a truss system. Before use, the building design Bracing indi	n MITER® connectors. This design is I he building designer must verify the a icated is to prevent buckling of individ	based only upon parameters shown, and applicability of design parameters and pro- lual truss web and/or chord members only	is for an individual to perly incorporate the Additional temporate	uilding com s design int ary and per	ponent, not o the overal manent bra	ll cina		:NCO
is always required for stability fabrication, storage, delivery,	y and to prevent collapse with possib erection and bracing of trusses and	le personal injury and property damage. truss systems, see ANSI/TPI1 (For general guidance Quality Criteria, DS	e regarding B-89 and B	the CSI Buildir	g Component	818 Soundside	A MiTek Affiliate Road
sarery information available	ie nom muss Plate institute, 2670 Cr	am migriway, outte ∠03 waldoff, MD 2060	11				Edenton NC 2	7932

Job	Truss	Truss Type	Qty	Ply	1504 Gregory Circle	
						E15710389
J0421-2748	A7	PIGGYBACK BASE	1	2		
					Job Reference (optional)	
Comtech, Inc, Faye	teville, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Mon May 10 10:27:3	3 2021 Page 2
		ID:DFo	RKbNIZiVH	?nbtlrBKZ	azEemi-CTxHn18nUIAJvoK5ekgWnEWBiI16U86LT7	7MTFazHwwO

NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1565 lb down and 133 lb up at 40-0-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-8=-60, 8-10=-60, 10-11=-60, 11-12=-81, 2-22=-20, 3-20=-20, 17-18=-20, 7-11=-20

Concentrated Loads (lb)

Vert: 11=-1565(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1504 Gregory Circle	F45740000
J0421-2748	A8	PIGGYBACK BASE	2	1		E15710390
Comtech, Inc, Fayett	eville, NC - 28314,		8	.330 s Oct	Job Reference (optional) t 7 2020 MiTek Industries, Inc. Mon I	May 10 10:27:38 2021 Page 1
-0-1	1-0 2-3-8 8-8-0	14-6-0 16-9-8 18-8-8 2	ID:DFoRKbNIZjVH' 21-6-2 29-1-13	?nbtIrBKZ	azEemi-ZQkAqkCwJroc?ZD2RHQhU	HD1SJiT9Oe4dP3Ew1zHwwJ
0±1	1-0 2-3-8 ' 6-4-8 '	5-10-0 ' 2-3-8 '1-11-0' 2	-9-10 ' 7-7-11		7-7-11 ' 3-3-0 '	1-6-8 '
			8x8 =	2x4	4 8x8 =	Scale = 1:89.7
		6.00 12	8	_25 9	26 10	
Ī		3x6 7				11
		24 6				
		6x8 = 5x12 =	16	1:	5 14 13 5x12	
ې بې	4x4 🖘	5	2x4	4x8	$3 = 4x8 = 2x4 \parallel$	ပုံ
Ę	4					11-8-11-11-8
	23					à ở
1	2 3 9					
2 4 4 4 4 4 4 4 4 	2					
0	4x6 = 22 2x4	18 17				
	3x4	3x4				
		3x4				
		3x6				
	2-3-8 8-8-0	16-9-8 <u>14-6-0 16-7-12 18-8-8 2</u> 5-10-0 2-1-12 1-11-0 2	21-6-2 <u>29-1-13</u> 2-9-10 7-7-11		<u>36-9-8</u> 7-7-11 <u>40-0-8</u> 3-3-0	41-7-0 1-6-8
Plate Offsets (X,Y) [3	:0-4-12,0-2-1], [5:0-4-0,Edge],	<u>0-1-12</u> [7:0-7-12,0-0-0], [8:0-5-4,0-4-0], [1	0:0-5-4,0-4-0], [11:0-7	-0.0-0-0]		
	SPACING- 2-0-0		DEEL ir		l/defl l/d PIAT	ES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.65	Vert(LL) -0.12	3-21	>999 360 MT20	244/190
BCLL 10.0 *	Rep Stress Incr YES	BC 0.45 WB 0.32	Vert(CT) -0.25 Horz(CT) 0.17	3-21 17	>783 240 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.14	3-21	>999 240 Weigh	nt: 298 lb FT = 20%
LUMBER- TOP CHORD 2x10 SP	No 1 *Excent*		BRACING-	Structur	ral wood sheathing directly applied	or 6-0-0 oc purlins, except
8-10,1-5:	2x6 SP No.1			2-0-0 00	c purlins (4-4-4 max.): 8-10.	
WEBS 2x4 SP N	lo.1 lo.2		BOI CHORD	6-0-0 oc	c bracing: 17-19,6-19.	bracing, Except:
WEDGE Left: 2x4 SP No.3			WEBS	1 Row a	at midpt 4-19	
REACTIONS. (size)	12=0-3-8 2=0-3-8 17=0-3-8	3				
Max Hor	z 2=311(LC 12)	2)				
Max Opi	v 12=943(LC 1), 2=633(LC 25	i), 17=1751(LC 1)				
FORCES. (Ib) - Max. Co	omp./Max. Ten All forces 25	0 (lb) or less except when shown.				
TOP CHORD 2-3=-39 9-10=-2	96/0, 3-4=-807/24, 6-7=-362/10 2808/594 10-11=-2054/435 1	00, 7-8=-1814/336, 8-9=-2808/594, 1-12=-312/82				
BOT CHORD 3-21=-2	213/706, 20-21=-213/707, 19-2	0=-195/666, 17-19=-1721/480, 6-1	19=-1374/414,			
WEBS 4-21=0	/384, 4-19=-795/246, 8-16=0/2	93, 8-15=-296/1298, 9-15=-469/22	24,			
10-15=	-190/1023, 10-13=0/313					
NOTES- 1) Unbalanced roof live lo	oads have been considered for	this desian.				
2) Wind: ASCE 7-16; Vul	t=130mph (3-second gust) Vas	sd=103mph; TCDL=6.0psf; BCDL=	6.0psf; h=15ft; Cat. II;	Exp C; E	nclosed;	N CAP
27-8-13 to 36-9-8, Ext	erior(2E) 36-9-8 to 41-5-4 zone	e;C-C for members and forces & M	WFRS for reactions sh	own; Lun	nber	······································
3) Provide adequate drai	OL=1.60 nage to prevent water ponding					CONTRACT OF THE OWNER
 4) This truss has been de 5) * This truss has been de 	esigned for a 10.0 psf bottom of a live load of 30 0	hord live load nonconcurrent with a psf on the bottom chord in all area	any other live loads. s where a rectangle 3-	6-0 tall by	/ 2-0-0 wide	
will fit between the bot	tom chord and any other mem	bers.	ormula Building dosis		ld vorify	SEAL
capacity of bearing su	face.		ormula. Duilding desig		3	100/3
 Provide mechanical co 17=201. 	onnection (by others) of truss to	bearing plate capable of withstan	ding 100 lb uplift at joir	it(s) 12 ex	xcept (jt=lb)	a:2:
 This truss is designed referenced standard A 	in accordance with the 2018 Ir NSI/TPI 1.	nternational Residential Code secti	ons R502.11.1 and R8	02.10.2 a	ind in the	VGINEE 10
9) See Standard Industry	Piggyback Truss Connection	Detail for Connection to base truss	as applicable, or cons	ult qualifi	ed building	9. STRL
10) Graphical purlin repre	esentation does not depict the	size or the orientation of the purlin	along the top and/or b	ottom cho	ord.	May 10.2021
						· , -,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and proy damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	-0-1170)	17-0-0		13-1-				-11-0	0		m2-0-0
	0-11-0		16-9-8		1-11-	0'			21-4-0)		1-6-8
Plate Offse	ts (X,Y)	[7:0-1-15,0-0-0], [8:0-3-4,	Edge], [8:0-0-0),0-2-12], [14	:0-4-0,0-3-8]	, [22:0-4-0,0-3-8]						
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	0.00	1	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	-0.01	12	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	912014	Matrix	(-S						Weight: 306 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x10 SP No.1 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except
	14-22,1-8: 2x6 SP No.1		2-0-0 oc purlins (6-0-0 max.): 14-22.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
OTHERS	2x4 SP No.2		6-0-0 oc bracing: 11-35.

REACTIONS. All bearings 41-7-0.

(lb) - Max Horz 2=454(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 35, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42 except 12=-108(LC 12), 23=-103(LC 13), 43=-123(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 24, 35, 12, 2, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43 except 23=260(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-481/174, 3-4=-396/135, 4-5=-345/117, 5-6=-293/97

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-9-2 to 3-7-11, Exterior(2N) 3-7-11 to 21-6-2 , Corner(3R) 21-6-2 to 25-10-15, Exterior(2N) 25-10-15 to 36-9-8, Corner(3E) 36-9-8 to 41-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 35, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42 except (jt=lb) 12=108, 23=103, 43=123.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

May 10,2021

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1504 Gregory Circle	E16710202
J0421-2748	A11	PIGGYBACK BASE	2	1		E10710393
Comtech, Inc, Fayette	/ ville, NC - 28314,		8	.330 s Oct	T 7 2020 MiTek Industries, Inc.	Mon May 10 10:26:56 2021 Page 1
-0 <u>-1</u>	1-0 2-3-8 8-8-0	14-6-0 16-9-8 18-8-8 2	ID:DFoRKbNIZj\ 21-6-2 29-1	/H?nbtIrBK	<pre>KZazEemi-oLCH0NiZCxVZz6?_; 36-9-8 36-9-9-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-9-8 36-9-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-8 36-9-9-8 36</pre>	zTgqnQUrzNNbJNCuytu0RTzHwwz
0-11	-0 2-3-8 ' 6-4-8	' 5-10-0 ' 2-3-8 '1-11-0' :	2-9-10 ' 7-7-1	1	' /-/-11 '	3-0-0 '
			8x8 =	2	2x4 5x8	Scale = 1:88.4
_		6.00 12	8	⊠25	9 26 10	11
		3x6 7		_		12 m
		24 6				
		6x8 = 5x8 =	= ₁₆		15 ₁₄ 13	4x6
5-5	4x4	= 5	2x4	4	4x8 = 4x8 = 2x4	2 2
1	4					1-8
	23					č
	2 3					
1 4 1 4 1 4 1 4		200 180				
	k=22 2	x4 18 17				
	3x4	5x8 =				
		3x4 3x4				
		3x6				
	2-3-8 8-8-0	16-9-8 14-6-0 16-7-12 118-8-8	21-6-2 <u>2</u> 9-1- ⁻	13	36-9-8	39-9-8
	2-3-8 6-4-8	5-10-0 2-1-12 1-11-0 0-1-12	2-9-10 7-7-1	1	7-7-11	3-0-0
Plate Offsets (X,Y) [3:0	I-4-12,0-2-1], [5:0-4-0,Edge],	[7:0-7-8,0-0-0], [8:0-5-4,0-4-0], [10:0	0-5-4,0-2-12]			
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.66	DEFL. ir Vert(LL) -0.13	n (loc) 3-21	I/defl L/d F >999 360 M	PLATES GRIP VIT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.46	Vert(CT) -0.25	3-21	>778 240	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S	Wind(LL) 0.15	5 3-21	>999 240 V	Neight: 286 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x6 SP No 5-8: 2x10 S	.1 *Except* SP No.1		TOP CHORD	Structur 2-0-0 oc	ral wood sheathing directly ap c purlins (4-7-4 max.): 8-10.	plied or 6-0-0 oc purlins, except
BOT CHORD 2x6 SP No	.1		BOT CHORD	Rigid ce	eiling directly applied or 10-0-0	0 oc bracing, Except:
WEDGE	.2		WEBS	1 Row a	at midpt 4-19	
Left: 2x4 SP No.3 SLIDER Right 2x4 \$	SP No.2 -x 1-8-0					
REACTIONS. (size)	12=Mechanical, 2=0-3-8, 17	=0-3-8				
Max Horz Max Holift	2=321(LC 12)	2)				
Max Opint Max Grav	12=875(LC 1), 2=638(LC 25	i), 17=1679(LC 1)				
FORCES. (Ib) - Max. Cor	np./Max. Ten All forces 250) (Ib) or less except when shown.				
TOP CHORD 2-3=-402 10-12=-1	/0, 3-4=-822/4, 6-7=-338/75, 484/317	7-8=-1672/311, 8-9=-2464/521, 9-1	0=-2464/521,			
BOT CHORD 3-21=-21	7/720, 20-21=-217/721, 19-2	0=-200/682, 17-19=-1649/475, 6-19	9=-1295/408,			
WEBS 4-21=0/3	2/1434, 15-16=-207/1447, 13 84, 4-19=-808/250, 8-16=0/2	89, 8-15=-209/1229, 12-13=-214/1218 89, 8-15=-247/1072, 9-15=-488/230),			
10-15=-2	56/1312, 10-13=0/259					
NOTES-	ids have been considered for	this design				munn
2) Wind: ASCE 7-16; Vult=	130mph (3-second gust) Vas	sd=103mph; TCDL=6.0psf; BCDL=6	.0psf; h=15ft; Cat. II;	Exp C; Er	nclosed;	TH CARO
27-8-13 to 36-9-8, Exter	ior(2E) 36-9-8 to 39-9-8 zone	e;C-C for members and forces & MV	VFRS for reactions sh	27-8-13, 1 nown; Lum	nber	N. W. W.
DOL=1.60 plate grip DC 3) Provide adequate draina	0L=1.60 age to prevent water ponding				100	S SIM
4) This truss has been des	igned for a 10.0 psf bottom o	hord live load nonconcurrent with ar	ny other live loads.			SEAL
will fit between the botto	m chord and any other mem	bers.	where a rectangle 5-	0-0 tali by	72-0-0 wide	16673
6) Refer to girder(s) for true7) Provide mechanical con	ss to truss connections. nection (by others) of truss to	bearing plate capable of withstand	ing 100 lb uplift at joi	nt(s) 12 ex	xcept (jt=lb)	X
17=210. 8) This truss is designed in	accordance with the 2018 Ir	nternational Residential Code section	ns R502 11 1 and R8	02 10 2 a	and I P	NOWEER
referenced standard AN	SI/TPI 1.					NA OTOTILIS
designer.	riggyback Truss Connection	Detail for Connection to dase truss a	as applicable, or cons	suit qualifi	ea ballaing	11 SINCE
10) Graphical purlin repres	entation does not depict the	size or the orientation of the purlin a	long the top and/or b	ottom cho	ord.	May 10,2021
A						
Design valid for use only with	parameters and READ NOTES ON TH MiTek® connectors. This design is be building designer must verify the	his AND INCLUDED MITEK REFERENCE PAGe based only upon parameters shown, and is fo	r an individual building con	BEFORE US		
building design. Bracing indi	cated is to prevent buckling of individ	lual truss web and/or chord members only. A	dditional temporary and pe	rmanent bra		a i lilii liiU

818 Soundside Road Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1504 Gregory Circle		F15710204
J0421-2748	A12	PIGGYBACK BASE	1	1	Job Reference (ention	-1)	E13710394
Comtech, Inc, Fayette	/ /ille, NC - 28314,			8.330 s Oct	7 2020 MiTek Industrie	s, Inc. Mon May 10 10:26:59 20)21 Page 1
-Q-11-0	8-8-0	16-9-8 18-8-8	ID:DF0RKbNIZJ	VH?nbtIrBK2 29-1-13 7 7 11	CazEemi-CwuQePkSUsu	18qZkYfbDXP36SbbR_WknKfr/g	g2ozHwww
0-11-0	0-0-0	0-1-0	2-3-10	7-7-11	7-7-11	3-0-0	0
			8x8 =		2x4	5x8 =	Scale = 1:79.0
_		6.00 12	7	⊠ ⊠ ²	1 ⁸ 22 ⊠ ⊠ ⊠ ⊠	4x4 ≪ 9 10	
		3x6				11	m
		5					
	6>	.8 = 20 5x12	2 = 15		¹⁴ 13	12 4x6	5
ى م	4x4 📁	4	2x4		4x8 = 4x8 =	2x4	2
11 -5-	3	T					8 11-5-
							8-11-
	19						
2							
4-8-0 4-8-4	g						
° 4x6 =	18	17 16					
	2x4	6x6 =					
		18-8-8					
	8-8-0 8-8-0	<u>16-7-12</u> <u>16-9-8</u> 7-11-12 0-1	21-6-2	29-1-13 7-7-11	36-9-8 7-7-11	39-9-8	
Plate Offsets (X,Y) [4:0	-4-0,Edge], [6:0-7-12,0-0-0],	<u>1-11-0</u> [7:0-5-4,0-4-0], [9:0-5-8,0-2-12]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP	
TCLL 20.0 TCDI 10.0	Plate Grip DOL 1.15	TC 0.31 BC 0.28	Vert(LL) -0. Vert(CT) -0	10 14 21 14-15	>999 360 >999 240	MT20 244/19	10
BCLL 0.0 *	Rep Stress Incr YES	WB 0.33 Matrix-S	Horz(CT) 0.	04 11	n/a n/a	Weight: 280 lb FT -	20%
					2303 240		
TOP CHORD 2x6 SP No	.1 *Except*		TOP CHORD	Structur	al wood sheathing dire	ectly applied or 6-0-0 oc purling	s, except
4-7: 2x10 S BOT CHORD 2x6 SP No	SP No.1 .1		BOT CHORD	2-0-0 oc Rigid ce	purlins (4-6-10 max.): iling directly applied or	7-9. 10-0-0 oc bracing, Except:	
WEBS 2x4 SP No SLIDER Right 2x4 SP	.2 SP No 2 -x 1-8-0		WEBS	6-0-0 oc	bracing: 5-16.	16	
	11 Machanical 16 0 2 8 2	0.3.8	11200		а тара — О		
Max Horz	2=321(LC 12)	=0-3-8					
Max Uplift Max Grav	11=-61(LC 8), 16=-201(LC 1 11=886(LC 1), 16=1652(LC	2) 1), 2=654(LC 25)					
FORCES (lb) - Max Cor	nn /Max Ten - All forces 25() (lb) or less except when shown					
TOP CHORD 2-3=-774	/0, 5-6=-334/74, 6-7=-1755/3	46, 7-8=-2520/544, 8-9=-2520/54	14,				
BOT CHORD 2-18=-17	04/325 8/586, 16-18=-178/586, 5-16	=-1253/387, 6-15=-254/1534, 14	-15=-249/1547,				
12-14=-2 WEBS 3-18=0/3	16/1246, 11-12=-221/1235 95, 7-15=0/294, 7-14=-228/1	051, 8-14=-487/230, 9-14=-273/1	352, 9-12=0/259,				
3-16=-68	4/210						
NOTES-	do have been considered for	this design					
 2) Wind: ASCE 7-16; Vult= 	130mph (3-second gust) Vas	d=103mph; TCDL=6.0psf; BCDL	=6.0psf; h=15ft; Cat.	II; Exp C; Er	nclosed;		
MWFRS (envelope) and 27-8-13 to 36-9-8, Exter	C-C Exterior(2E) -0-9-2 to 3 ior(2E) 36-9-8 to 39-9-8 zone	-7-11, Interior(1) 3-7-11 to 21-6-2 ;;C-C for members and forces & I	, Exterior(2R) 21-6-2 MWFRS for reactions	to 27-8-13, I shown; Lum	nterior(1) ber	"TH CARO	11,
DOL=1.60 plate grip DO	L=1.60					NOR	there a
 4) This truss has been des 5) * This truss has been des 	igned for a 10.0 psf bottom c	hord live load nonconcurrent with	any other live loads.	0.0.0.4-11.6.4			19 1
will fit between the botto	m chord and any other mem	pst on the bottom chord in all are pers.	as where a rectangle	3-6-0 tall by	2-0-0 wide	SEAL	N 8
6) Refer to girder(s) for trus7) Provide mechanical con	ss to truss connections. nection (by others) of truss to	bearing plate capable of withsta	nding 100 lb uplift at i	oint(s) 11 e>	cept (jt=lb)	16673	1 1
16=201. 8) This truss is designed in	accordance with the 2018 Ir	ternational Residential Code sec	tions R502 11 1 and I	R802 10 2 a	nd	SP:	X
referenced standard AN	SI/TPI 1.	Dotail for Connection to been the				PL: SNOWFER.	
designer.					-u bullaling	MA GINERAL	1 III
10) Graphical purlin repres	entation does not depict the	size or the orientation of the purli	n along the top and/or	r bottom cho	rd.	MA STRL	
						May 10,20)21

ENGINEERING BY REPRESENCE A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toules with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

20-3-0 20-3-0

Plate Offsets (X,Y)	[7:0-3-0,Edge], [17:0-4-0,0-4-8]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.06 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 12 12 14	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 2-23,12 OTHERS 2x4 SP	P No.1 P No.1 P No.2 *Except* 2-14: 2x6 SP No.1 P No 2		BRACING- TOP CHORI BOT CHORI JOINTS	D D	Structu except Rigid co 1 Brace	ral wood end verti eiling dire at Jt(s):	sheathing dir cals. ectly applied o 24, 25, 26, 2	ectly applied or 6-0-0 o or 10-0-0 oc bracing. 7, 30, 31	oc purlins,	
REACTIONS. All be (Ib) - Max H Max U Max G	earings 20-3-0. lorz 23=-334(LC 10) plift All uplift 100 lb or less at joint(s) 2 17=-110(LC 13), 16=-113(LC 13), 1 irav All reactions 250 lb or less at joint 22=265(LC 19), 15=255(LC 20)	3, 14 except 20=-120(LC 12 5=-278(LC 13) (s) 20, 21, 17, 16, 19, 18 ex	2), 21=-108(LC 1: xcept 23=356(LC	2), 22= 21), 14	-283(LC	: 12), C 22),		TH CA	ROUNT	
FORCES. (lb) - Max. TOP CHORD 2-23= BOT CHORD 22-23= 17-15 17-15 WEBS 2-22= NOTES- 17-16	Comp./Max. Ten All forces 250 (lb) or =-324/55, 2-3=-302/127, 11-12=-299/109 3=-301/310, 21-22=-147/332, 20-21=-14 3=-150/336, 16-17=-145/329, 15-16=-14 =-148/328, 12-15=-145/326	less except when shown. 9, 12-14=-322/43 7/332, 19-20=-150/336, 18- 5/329	-19=-150/336,				1111ANS	A ST	LAS HERE	annin ann
 Unbalanced roof live Wind: ASCE 7-16; V 	e loads have been considered for this de /ult=130mph (3-second gust) Vasd=103	sign. mph; TCDL=6.0psf; BCDL=	=6.0psf; h=15ft; C	at. II; E	xp C; E	nclosed;		in the second	min	

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-9-9 to 3-7-4, Exterior(2N) 3-7-4 to 10-1-8, Corner(3R) 10-1-8 to 14-6-5, Exterior(2N) 14-6-5 to 21-0-9 zone; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 14 except (jt=lb) 20=120, 21=108, 22=283, 17=110, 16=113, 15=278.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 10,2021

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-9 to 3-7-4, Interior(1) 3-7-4 to 10-1-8, Exterior(2R) 10-1-8 to 14-6-5, Interior(1) 14-6-5 to 19-4-12 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8.
 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTel 818 Soundside Road Edenton, NC 27932

BCDL	10.0	Code IRC2018/TPI2014	Matrix-S	1012(01) 0.0		Weight: 128 lb FT = 20%
LUMBEI TOP CH BOT CH WEBS OTHERS	R- ORD 2x6 SF ORD 2x6 SF 2x4 SF S 2x4 SF	2 No.1 2 No.1 2 No.2 2 No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing di except end verticals. Rigid ceiling directly applied o 1 Row at midpt 1	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing. 0-12

REACTIONS. All bearings 15-4-0.

(lb) - Max Horz 2=375(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 11, 12, 19, 18, 17, 16, 15, 14, 13 Max Grav All reactions 250 lb or less at joint(s) 11, 12, 2, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-412/164, 3-4=-343/135, 4-5=-287/114

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 15-4-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 12, 19, 18, 17, 16, 15, 14, 13.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

May 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia A MiTek Affilia 818 Soundside Road Edenton, NC 27932

TCLL TCDL BCLL BCDL	20.0 10.0 0.0 * 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	1.15 1.15 YES Pl2014	TC BC WB Matri:	0.20 0.20 0.22 x-S	H	Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.02 -0.05 0.01 0.01	2-10 2-10 9 2-10	>999 >999 n/a >999	360 240 n/a 240	MT20 Weight: 124 lb	244/190 FT = 20%
LUMBER- TOP CHO BOT CHO WEBS	RD 2x6 SP RD 2x6 SP 2x4 SP	2 No.1 2 No.1 2 No.2				E	BRACING- OP CHOR	D	Structu except Rigid c	ral wood end vertic eiling dire	sheathing dir cals. ctly applied o	rectly applied or 6-0-0 c or 10-0-0 oc bracing.	oc purlins,
SLIDER	Left 2x	8 SP No.1 -x 4-7-14				V	VEBS		1 Row	at midpt	6	-9, 4-9	
REACTIO	NS. (size	e) 9=Mechanical, 2=0-3	-8										

Max Horz 2=265(LC 12) Max Uplift 9=.143(LC 12) Max Grav 9=612(LC 1), 2=649(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-719/40

BOT CHORD 2-10=-310/535, 9-10=-310/535

WEBS 4-10=0/349, 4-9=-653/379

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-2 to 3-7-11, Interior(1) 3-7-11 to 15-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=143.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

May 10,2021

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=133, 4=133.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=129, 2=133.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss systems. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road

Edenton, NC 27932

BRACING-TOP CHORD

BOT CHORD

11	IM	RF	R-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 4=0-3-8

Max Horz 2=-97(LC 10)

Max Uplift 2=-28(LC 12), 4=-28(LC 13) Max Grav 2=369(LC 1), 4=369(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-308/122, 3-4=-308/122

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 3-11-8, Exterior(2R) 3-11-8 to 8-4-5, Interior(1) 8-4-5 to 8-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A MiTek Affiliat

Plate Offsets (X Y)-- [6:0-0-0 0-0-0] [7:0-0-0 0-0-0]

1 1010 0110010 (71,17				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.04 WB 0.03	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 8 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		Weight: 60 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.1		BRACING- TOP CHORD Structural wood sheathing di BOT CHORD Binid ceiling directly applied	irectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-3-6. (lb) -Max Horz 1=74(LC 12)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 2, 8, 13, 14, 11, 10

Max Grav All reactions 250 lb or less at joint(s) 1, 9, 2, 8, 12, 13, 14, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 4-8-11, Interior(1) 4-8-11 to 7-7-11, Exterior(2R) 7-7-11 to 12-0-8, Interior(1) 12-0-8 to 14-11-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 2, 8, 13, 14, 11, 10.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-3-15 to 4-8-11, Interior(1) 4-8-11 to 7-7-11, Exterior(2R) 7-7-11 to 12-0-8, Interior(1) 12-0-8 to 14-11-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) This tasks has been designed for a too psi bottom inder the load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES-

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 8-1-2, Exterior(2R) 8-1-2 to 12-5-15, Interior(1) 12-5-15 to 15-9-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=147, 6=142.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=128. 6=128.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=126, 6=126.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz 1=-58(LC 8) Max Uplift 1=-20(LC 13), 3=-25(LC 13)

Max Grav 1=134(LC 1), 3=134(LC 1), 4=195(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz 1=34(LC 9) Max Uplift 1=-12(LC 13), 3=-15(LC 13)

Max Grav 1=78(LC 1), 3=78(LC 1), 4=114(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[1:0-2-2,0-1-12], [1:0-2-7,Edge], [2:0-1-7	7,0-1-12], [3:0-2-2,0-1-12]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.01 BC 0.01 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a Weight: 5 lb FT = 20%	
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD

REACTIONS. (size) 1=1-9-7, 3=1-9-7 Max Horz 1=10(LC 9) Max Uplift 1=-2(LC 12), 3=-2(LC 13) Max Grav 1=39(LC 1), 3=39(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 1-9-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road

Edenton, NC 27932

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

