

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21040035-A 1100 Carolina Way-Roof-BB-2250

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I45815316 thru I45815364

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

Johnson, Andrew

April 26,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A01	Piggyback Base Girder	1	1	Job Reference (optional)	l45815316

Scale = 1:83

Loading

TCLL (roof)		20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.01	22-23	3 >999	240	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.02	22-23	3 >999	180			
TCDL		10.0	Rep Stress Incr	NO	WB	0.42	Horz(CT)	0.01	20	0 n/a	n/a			
BCLL		0.0*	Code	IRC2015/TPI2014	Matrix-MSH		. ,							
BCDL		10.0										Weight: 356 lb	FT = 20%	
				TOP CHORD	1-52=-111/80. 52	2-53=-76/8	86. 2-53=-32/	115.	1) U	Inbalanced	d roof li	ive loads have b	een consider	ed for
TOP CHORD	2x4 SP N	02			2-54=-124/159.3	3-54=-11/2	213. 3-55=0/1	72.	, th	nis desian.				
BOT CHORD	2x4 SP N	0.2			55-56=0/172.56	-57=0/172	. 4-57=0/172		2) W	Vind: ASCI	E 7-10	: Vult=130mph (3-second aus	st)
WEBS	2x4 SP N	o.3 *Excen	t*		4-5=0/172, 5-6=0	0/172, 6-7	=0/172, 7-8=0	0/172,	ν ν	/asd=103m	nph: TO	CDL=6.0psf: BCI	DL=6.0psf; h	
	34-3.33-3	.4-33.31-8.	7-32:2x4 SP No.2		8-9=0/211, 9-10=	=-5/184, 1	0-11=-56/130),	С	at. II; Exp	B; End	closed; MWFRS	(envelope) e	xterior
OTHERS	2x4 SP N	ο 3			11-12=-11/142, 1	12-13=-40	/105,		Z	one; cantil	ever le	oft and right expo	sed; end ver	rtical left
		0.0			13-14=-95/70, 14	4-15=-25/6	9, 15-58=-34	1/63,	а	nd right ex	posed	; Lumber DOL=1	1.60 plate grip	C
	Structura		athing directly applied	d or	16-58=-112/57, <i>1</i>	16-17=-10	1/79,		D	OL=1.60				
	6-0-0 oc r	nurling ev	cent end verticals an	u oi ud	17-59=-540/148,	18-59=-5	40/148,		3) 1	Truss desig	gned fo	or wind loads in t	he plane of the	he truss
	2-0-0 00 1	ourling $(6-0)$	-0 may). 3-8 17-18	iu -	18-19=-578/140,	19-20=-6	04/121,		0	nly. For st	tuds ex	xposed to wind (r	normal to the	face),
	Pigid ceil	ing directly	applied or 6-0-0 oc		20-21=0/36, 1-36	6=-185/11	6		S	ee Standa	rd Indu	ustry Gable End	Details as ap	plicable,
	bracing	ing uncoury		BOT CHORD	35-36=-180/319,	34-35=-1	22/267,		0	r consult q	ualifie	d building desigr	ier as per AN	SI/TPI 1.
WEBS	1 Row at	midnt	2.34 3.34 3.33 8.3	1	34-60=-101/292,	33-60=-1	01/292,		4) T	CLL: ASC	E 7-10); Pr=20.0 psf (ro	of live load: L	umber
	i non ai	mapt	9-45	,	32-33=-115/282,	31-32=-1	15/282,		D	OL=1.15	Plate D	OL=1.15); Pf=2	0.0 psf (flat ro	oof snow:
JOINTS	1 Brace a	at Jt(s): 37.			30-31=-55/227, 2	29-30=-55	/227,		Ľ	umber DO	L=1.15	5 Plate DOL=1.1	5); Category	II; Exp B;
	38, 44, 46	6			28-29=-55/227, 2	27-28=-29	/146,		-	ully Exp.;	Ct=1.1	0		
REACTIONS	(size)	20=0-3-8	24=27-9-0 25=27-9	-0	26-27=-110/76, 2	25-26=-11	U/76,	-/00	5) U	Inbalanced	d snow	loads have beer	n considered	for this
	(0.20)	26=27-9-0	27=27-9-0 $28=27-9$	9-0	24-20=-00/00, 24	+-01=-05/0	08, 23-01=-00	0/08,	۵ ۲	lesign.				
		31=27-9-0), 32=27-9-0, 33=27-	9-0. WERS	22-23=-10/330, 2	21-22=-70	11 2 24- 17	74/5	0) 1	nis truss n	as bee	an designed for g	Jreater of min	
		34=27-9-0), 35=27-9-0, 36=27-	9-0	2 - 33 = - 27 9/70, 2-	2 27- 265	41, 3-34=-17	4/3,	IC			1.00 times hat h	ooi load oi 20	J.0 psi on
	Max Horiz	36=-361 (LC 10)		<i>1</i> -37-338/101	2-31=-303 2-31=-200	/16		7 0	vernangs i		draine and tol tol	ler live loads.	va aliva av
	Max Uplift	20=-135 (LC 9), 25=-125 (LC 9	9).	31-45=-210/151	44-451	60/138		/) P	rovide ade	equate	drainage to prev	/envwater po	naing.
		26=-69 (L	C 13), 27=-6 (LC 13)	,	11-44=-149/125	11-28=-2	17/57					IN THUR	ARO!"	
		28=-116 (LC 65), 31=-111 (LC	65),	28-43=-115/147.	42-43=-1	15/149.			\wedge	1	A Fai	1	11
		32=-18 (L	C 9), 33=-106 (LC 9)	,	14-42=-83/128,	14-27=-22	2/11,				TA	V. SEE	Dirk	rine
		34=-75 (L	C 12), 35=-53 (LC 64	4),	27-41=-11/145, 4	40-41=-10	/149,						7.	
		36=-107 (LC 62)		17-40=-10/139, ²	17-25=-50	1/149,					.4		-
	Max Grav	20=535 (L	_C 47), 24=183 (LC 4	6),	17-39=-160/674,	23-39=-1	56/661,				17 - F	SF4	Ω (1	=
		25=420 (L	_C 39), 26=396 (LC 3	9),	18-23=-71/54, 1-	35=-163/1	36,			-		ULP		=
		27=260 (L	_C 39), 28=368 (LC 3	9),	32-38=-155/30, 7	7-38=-126	/18, 37-47=0/	/0,				458	44	
		31=439 (L	LC 39), 32=241 (LC 5	ю),	38-47=0/0, 37-48	3=-19/5, 4	6-48=-1/3,			-	S 2	•		- E
		33=536 (L	LC 38), 34=414 (LC 5	01 <i>)</i> ,	7-46=-7/10, 19-2	2=-78/42,	24-39=-10/3	1,			-	30 au		1.5
		35=336 (L	LC 51), 36=213 (LC 5	3)	16-40=-177/102,	26-40=-2	09/91,	-			1.7	1. SNOW	EFR. O	2.2
FORCES	(lb) - Max	imum Com	pression/Maximum		15-41=-27/16, 13	3-42=-42/2	27, 12-43=-4/	5,			1	ON GIN	F.F. G	5
	Tension				10-44=-15/14, 9-	45=-58/16	o, 6-46=-51/2	5,			1	TEM	OHN	N
					40-47=-39/17, 5-	48=-24/8						TIN J	Unin	
				NOTES								11111	ALL	

April 26,2021

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A01	Piggyback Base Girder	1	1	Job Reference (optional)	145815316

8) All plates are 2x4 MT20 unless otherwise indicated.

- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 12) N/A

12) N/A

- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 205 lb down and 41 lb up at 35-2-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-3=-60, 3-8=-60, 8-17=-60, 17-18=-60, 18-21=-60, 36-49=-20

Concentrated Loads (lb)

Vert: 18=-47 (B), 24=-23 (B), 26=-131 (B), 59=-43 (B), 61=-205 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:27 ID:INrpEw9gxzjNdX?LUorAzuzNyJp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A02	Piggyback Base	1	1	Job Reference (optional)	145815317

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:32 ID:llyoqh9?t_PmmTuwaEZJRPzNyab-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-1-3,0-0-5], [3:0-5-4,0-2-8], [5:0-4-4,0-2-0], [7:0-4-4,0-2-0], [9:0-5-4,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MSH	0.94 0.94 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.54 0.07	(lo 22-2 22-2	c) l/defl 23 >999 23 >831 15 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 338 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep 5-26,7-19,6-26,6-19: Structural wood sheat except 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 21 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=214 (LC Max Uplift 2=-56 (LC Max Grav 2=1699 (L) 15=2727 (L)	t* 1-3:2x4 SP No.1 t* 25-21:2x4 SP No.3 t* :2x4 SP No.2 athing directly applied -12 max.): 5-7, 9-11. applied or 2-2-0 oc -25 3-28, 4-26, 6-21 12=0-3-8, 15=0-5-8 C 13) C 21), 12=-222 (LC 58 C 21), 12=-210 (LC 5 (LC 43) pression/Maximum	BOT 4,) 3), NOT	CHORD 2 4 1 1 1 2 2 2 3 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5	2-29=-81/3834, 28-2 7-28=0/2204, 26-2 9-50=0/1473, 50-5 10-24=0/1473, 20-5 9-53=0/1473, 20-5 9-53=0/1473, 18-1 6-17=-344/91, 15 4-15=-1176/83, 12 5-54=-34/0, 54-55= 12-23=-34/0, 54-55= 12-23=-34/0, 24-55= 12-23=-34/0, 24-55= 12-23=-34/0, 20-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-26=-100/384, 6-25 5-	29=-78/ 7=0/22 1=0/14 2=0/14 2=0/14 9=0/14 16=-117 -14=-89 34/0, 34/0, 1930/12 19=-110 0/1750, 5=0/117 25=-69/ 21=-617 2=-138/	3837, 04, 26-49=0/' 73, 24-51=0/' 73, 52-53=0/' 15, 17-18=0/' 76,83, 19/62, 23-55=-34/0, 56-57=-34/0, 25, 4-28=-77/' 0/393, 9-16=-1980/' 73, 7-19=0/92 432, 7/108, 0, 10-15=-21 534	1473, 1473, 1473, 1473, 1415, 810, 115, 28, 75/0,	5) 6) 7) 8) 9) 10) 11)	This truss oad of 12. overhangs 200.0lb AC 21-3-11 fra apart. Provide ad This truss chord live l ⁴ This truss chord live l ⁴ This truss on the bott 3-06-00 tal chord and One RT7A rruss to be This conne ateral forc This truss internation 2002 10.2	has bee 0 psf or non-co c unit loo om left e equate has bee oad nou s has be oom cho I by 2-0 any oth MiTek aring we cotion is es. is desig al Resig	en designed for g 1.00 times flat ro ncurrent with oth ad placed on the end, supported at drainage to prev- en designed for a nconcurrent with sen designed for rd in all areas wh 0-00 wide will fit er members, with connectors recor alls due to UPLIF for uplif only an- ned in accordance dential Code sect	eater of min roof live of load of 20.0 psf on er live loads. bottom chord, two points, 5-0-0 ent water ponding. 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. nmended to connect T at jt(s) 2 and 12. d does not consider ewith the 2015 ions R502.11.1 and t ADIS/CPL1	
TOP CHORD	Tension 1-2=0/41, 2-36=-407 3-37=-4041/70, 3-38 38-39=-2757/69, 4-3 4-40=-2370/84, 40-4 5-41=-2221/121, 5-4 6-42=-1568/156, 6-4 7-43=-1316/153, 7-4 44-45=-1858/91, 8-4 8-46=-1669/61, 46-4 9-47=-1987/35, 9-10 11-48=0/1005, 12-48	'9/49, 36-37=-4056/5 =-2872/59, 19=-2692/82, 11=-2223/103, 12=-1568/156, 13=-1316/153, 14=-1851/110, 15=-2021/70, 17=-1810/39, 0=-24/241, 10-11=0/83 8=0/959, 12-13=0/39	7) (5, 2) (2 2 3 3 2 3 3 7 5 3, [4] 4) (4) (5, 2) (1 5, 2) (2 5, 2) (2) (2) (2) (2) (2) (2) (2) (Vind: ASCE /asd=103mp	7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR C Exterior (2) -1-4-C 6, Exterior (2) 13 7-2, Exterior (2) 13 7-2, Exterior (2) 13 7-2, Exterior (2) 13 7-2, Exterior (2) 14- cand right exposed ;C-C for members shown; Lumber DC 7-10; Pr=20.0 psf (ate DOL=1.15); Pf= =1.15 Plate DOL=1 t=1.10 show loads have be	(3-sec CDL=6 S (envolution) to 3-0- to 2- 7-2 to 2- 7-2	ond gust) .0psf; h=25ft; elope) exterio -6, Interior (1) 9-3-0, Interior 44-11-8 zone ertical left an ces & MWFR 0 plate grip e load: Lumb sf (flat roof sr ategory II; Ex sidered for th	r (1) ; d S er now: p B; nis				SEA 4584	ROL HA L H4 DHNS HNS HNS HNS HNS HNS HNS HNS HNS HNS	

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250		
21040035-A	A02	Piggyback Base	1	1	Job Reference (optional)	145815317	
Carter Components (Sanford), Sanford, NC - 27332,			Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:32				

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:32 ID:llyoqh9?t_PmmTuwaEZJRPzNyab-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A03	Piggyback Base	5	1	Job Reference (optional)	145815318

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:33 ID:BubmWr4ghxPoIRT6hu0l8rzNyeZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.94	Vert(LL)	-0.24	19-20	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-0.53	19-20	>840	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.09	13	n/a	n/a			
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 334 I	o FT = 20%	6
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep 5-23,7-16,6-23,6-16 Structural wood she except 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 23	ot* 1-3:2x4 SP No.1 ot* 22-18:2x4 SP No.3 ot* :2x4 SP No.2 eathing directly applied S-9 max.): 5-7. y applied or 10-0-0 oc 3-25	BC I, WE	T CHORD	2-26=-73/3797, 2 24-25=0/2222, 2 47-48=0/1490, 4 17-21=0/1490, 1 16-51=0/1490, 1 16-53=0/1428, 1 11-13=-928/96, 2 20-55=-33/0, 19- 56-57=-33/0, 18- 3-26=0/170, 3-25 4-23=-1037/315, 8-14=-1255/0, 9- 0-13=-527/158	25-26=-70, 3-24=0/22 8-49=0/14 7-50=0/14 6-52=0/14 4-53=0/14 22-54=-33, 20=-33/0, 57=-33/0 5=-1929/11 8-16=-13; 14=0/102((3801, 22, 23-47=0/ 90, 21-49=0/ 90, 50-51=0/ 28, 15-52=0/ 28, 13-14=0/ (0, 54-55=-33 19-56=-33(0, 22, 4-25=-77/ 9/311, 5, 9-13=-275; 186 7-16=0/0	1490, 1490, 1490, 1428, 701, %0, %09, %09, 3/76,	5) Thi loa ove 6) 200 21- apa 7) Prc 8) Thi chc 9) * Ti on 3-0	s truss h d of 12.C rhangs i).0lb AC 3-11 froi art. wide ade s truss h ord live lo his truss the botto 6-00 tall	as bee) psf or non-cc unit lo m left e as bee bad no has be bom chc by 2-0	en designed for r 1.00 times flat oncurrent with o ad placed on th end, supported drainage to pre en designed for nconcurrent wit een designed fo ord in all areas v 00-00 wide will f	greater of mi roof load of 2 her live load e bottom chc at two points, went water p a 10.0 psf bc h any other li r a live load where a recta it between th	n roof live 20.0 psf on s. yrd, , 5-0-0 onding. ottom vive loads. of 20.0psf ingle e bottom
WEBS REACTIONS	6-0-0 oc bracing: 11 6-0-0 oc bracing: 18 1 Row at midpt (size) 2=0-5-8, Max Horiz 2=195 (LC Max Uplift 2=-54 (LC Max Grav 2=1697 (L 13=2494	I-13. I-22 I-25, 4-23, 8-14, 6-1. I1=0-3-8, 13=0-5-8 C 14) C 14), 11=-288 (LC 55 LC 21), 11=200 (LC 4 (LC 3)	8 NC) 1) 9), 2)	DTES Unbalanced this design. Wind: ASCI Vasd=103m	10-13=-522/156, 22-23=-99/387, 6 6-18=-575/131, ⁻ 20-21=-135/0, 17 I roof live loads h E 7-10; Vult=130r	5-23=0/1 6-22=-69/4 16-18=-62: 7-19=-139, ave been (ave been (nph (3-sec f BCDI =6	186, 7-16=0/\$ 35, 2/100, '0 considered fo cond gust)	966, or	chc 10) On trus Thi late 11) Thi Inte R8	ord and a e RT7A ss to bea s connect and force s truss is ernationa 02.10.2 a	any oth MiTek aring w ction is es. s desig al Resig and ref	er members, w connectors rec alls due to UPL s for uplift only a uned in accorda dential Code se ferenced standa	th BCDL = 1 ommended to IFT at jt(s) 2 nd does not nce with the 2 ctions R502. ard ANSI/TPI	0.0psf. 5 connect and 11. consider 2015 11.1 and 1.
FORCES	(lb) - Maximum Com Tension 1-2=0/41, 2-33=-404 3-34=-4002/58, 3-35 35-36=-2754/59, 4-3 4-37=-2384/74, 37-3 5-38=-2235/111, 5-3 6-39=-1577/149, 6-4 7-40=-1330/143, 7-4 41-42=-1887/91, 8-4 8-43=-843/82, 43-44 44-45=-910/67, 9-45 9-10=-83/1148, 10-4 11-46=-39/978, 11-1	hpression/Maximum 46/36, 33-34=-4016/4: 5=-2850/49, 36=-2701/73, 38=-2237/93, 39=-1577/149, 40=-1330/143, 41=-1883/110, 42=-2019/75, 4=-857/77, 5=-1006/59, 46=-26/1004, 12=0/41	2, 3) 4)	Cat. II; Exp zone and C 3-0-6 to 13- 29-3-0 to 40 cantilever le right expose for reactions DOL=1.60 TCLL: ASC DOL=1.15 fL Umber DO Fully Exp.; (Unbalanced design.	B: Enclosed; MW -C Exterior (2) -1- 4-6, Exterior (2) 1 -7-2, Exterior (2) 1 ft and right expose d;C-C for member s shown; Lumber E 7-10; Pr=20.0 p Plate DOL=1.15); L=1.15 Plate DOL L=1.15 Plate DOL Ct=1.10	, DSL-2, FRS (env. 4-0 to 3-0 3-4-6 to 2 40-7-2 to sed ; end v ers and foi DOL=1.6(psf (roof liv Pf=20.0 p L=1.15); C e been cor	elope) exteric -6, Interior (1 9-3-0, Interio 44-11-8 zone vertical left an cces & MWFF 0 plate grip e load: Lumb sf (flat roof sr ategory II; Ex sidered for th	, r (1) ; id SS eer now: cp B; his			A A A A A A A A A A A A A A A A A A A	SE SE SE SE SE SE SE SE SE SE SE SE SE S	APOLY AL 44 VEEER.SS	Anna Anna

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. See **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A03	Piggyback Base	5	1	Job Reference (optional)	145815318
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.5 S 0 Apr 2	0 2021 Print: 8.	500 S Apr 20) 2021 MiTek Industries, Inc. Sat Apr 24 10:49:33	Page: 2

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:33 ID: BubmWr4ghxPoIRT6hu0l8rzNyeZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A04	Piggyback Base	1	1	Job Reference (optional)	145815319

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:34 ID:uyVzEGNnnCSoDbN5oAMDL?zNyXk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

April 26,2021

Page: 1

Job	Truss	Truss Type		Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A04	Piggyback Base		1	1	Job Reference (optional)	145815319
Carter Components (Sanford), Sa	anford, NC - 27332,	F	Run: 8.5 S 0 Apr 20 20	021 Print: 8.5	500 S Apr 20	2021 MiTek Industries, Inc. Sat Apr 24 10:49:34	Page: 2

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:34 ID:uyVzEGNnnCSoDbN5oAMDL?zNyXk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A04A	Piggyback Base	1	1	Job Reference (optional)	145815320

BCDL

LUMBER

WEBS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

WEBS

FORCES

TOP CHORD

TOP CHORD

BOT CHORD

2.0E

No.2

except

bracing, Except:

1 Row at midpt

Max Horiz

Max Uplift

Max Grav

Tension

2-2-0 oc bracing: 14-16

6-0-0 oc bracing: 11-13.

20 = 0.5 - 8

3-29=-494/217, 3-4=-295/250,

4-30=-974/187, 30-31=-868/193

5-31=-827/207, 5-32=-1097/268,

32-33=-952/285, 6-33=-946/305,

6-34=-798/293, 34-35=-798/293,

7-35=-798/293, 7-36=-1050/309,

8-38=-918/180, 38-39=-925/176,

9-10=-106/415, 10-41=-42/298, 11-41=-123/264, 11-12=0/41

39-40=-984/165, 9-40=-1081/158,

36-37=-1082/291, 8-37=-1186/274,

2=195 (LC 14)

(lb) - Maximum Compression/Maximum

1-2=0/41, 2-28=-600/194, 28-29=-515/202,

2x4 SP No.2

10.0

2x4 SP No.2 *Except* 6-7:2x4 SP 2400F

2x4 SP No.3 *Except* 17-6,16-6,16-7:2x4 SP

Structural wood sheathing directly applied,

Rigid ceiling directly applied or 10-0-0 oc

5-17

2=0-3-8, 11=0-3-8, 13=0-5-8,

2=-172 (LC 10), 11=-100 (LC 11),

2=673 (LC 45), 11=390 (LC 49),

13=-203 (LC 15), 20=-145 (LC 14)

13=1606 (LC 22), 20=1525 (LC 41)

6-17, 6-16, 8-16, 8-14,

2-0-0 oc purlins (6-0-0 max.): 6-7.

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:36 ID:fa5iBFHStZ10LHBiF7j2R0zNyWY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

44-11-8 7-0-10 8-2-12 17-8-11 29-10-11 34-10-11 43-7-8 12-4-11 24-10-11 39-1-6 1-2-2 5-4-1 5-0-0 7-0-10 4-1-15 7-1-15 5-0-0 4-2-11 4-6-2 1-4-0 6x8 =6x8= 34 6 35 7 × 12 10 33 36 ³⁷8 38 32 11-9-0 8-4-0 5 31 30 ³⁹40 12-0-0 5x8 🛥 5x6= 4 9 0-6-12 12 41 3-5-0 3 2x4 🍫 Ţ 10 28²⁹ 2-10-4 41 10-4 11 Ś 12 -9 1-9-1 21 20 19 1842 17 43 16 44 15 45 14 13 3x6 =3x8= 4x6= 2x4 II 8-2-12 12-4-11 7-2-6 17-6-15 25-0-7 34-8-15 43-7-8 37-4-4 7-2-6 1-0-6 4-1-15 5-2-5 7-5-7 9-8-8 2 - 7 - 56-3-4 Scale = 1:81 Plate Offsets (X, Y): [3:0-6-0,0-2-8], [6:0-6-4,0-2-0], [7:0-6-4,0-2-0] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.97 Vert(LL) -0.24 14-16 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.91 Vert(CT) -0.43 14-16 >806 180 TCDL WB 10.0 Rep Stress Incr YES 0.63 Horz(CT) 0.04 13 n/a n/a BCLL 0.0 IRC2015/TPI2014 Matrix-MSH Code

2-21=-176/469, 20-21=-124/485,

19-20=-79/169, 18-19=-67/795,

9-14=0/485, 9-13=-1785/215,

10-13=-535/152, 3-20=-828/156,

4-20=-1325/106, 4-19=-32/929,

5-19=-486/78, 5-17=-95/259

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior

3-0-6 to 13-4-6, Exterior (2) 13-4-6 to 29-3-0, Interior (1)

zone and C-C Exterior (2) -1-4-0 to 3-0-6. Interior (1)

29-3-0 to 40-7-2, Exterior (2) 40-7-2 to 44-11-8 zone;

cantilever left and right exposed ; end vertical left and

right exposed;C-C for members and forces & MWFRS

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

Provide adequate drainage to prevent water ponding.

All plates are 3x5 MT20 unless otherwise indicated.

overhangs non-concurrent with other live loads.

DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow:

Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;

for reactions shown; Lumber DOL=1.60 plate grip

Wind: ASCE 7-10; Vult=130mph (3-second gust)

11-13=-229/110

18-42=-67/795, 17-42=-67/795, 17-43=0/800,

16-43=0/800, 16-44=0/941, 15-44=0/941,

15-45=0/941. 14-45=0/941. 13-14=0/773.

3-21=0/327. 6-17=-82/259. 6-16=-85/263.

7-16=-47/425, 8-16=-337/239, 8-14=-350/75,

Weight: 279 lb FT = 20%

Page: 1

8) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 11, and 20. This connection is for uplift only and does not consider lateral forces.
- 11) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

WEBS

NOTES

this design.

DOL=1.60

design.

Fully Exp.; Ct=1.10

1)

2)

3)

4)

5)

6)

7)

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A05	Piggyback Base	5	1	Job Reference (optional)	l45815321

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:37 ID:H_DGpAWtY5DvQYF30m0CuqzNyTg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.99 0.91 0.60	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.43 0.06	(loc) 16-17 16-17 14	l/defl >999 >813 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 306 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep Structural wood she except 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. Except: t 7-19 1 Row at midpt	t* 22-5:2x4 SP No.3 t* 19-6,17-8:2x4 SP N athing directly applied 2-7 max.): 6-8. applied or 6-0-0 oc 6-19, 8-17, 9-17, 9-10	B(No.2 J, W	DT CHORD 2 2 1 1 EBS 3 6 8 9 1 2	2-24=-185/301, 23- :2-23=-23/18, 21-2; :0-21=-136/743, 20 8-19=-177/0, 7-19 7-44=0/909, 44-45 5-16=0/731, 14-15 :-24=0/365, 5-20=-4 :-19=-114/291, 17- :-19=-119/747, 8-11 :-17=-340/239, 9-10 0-14=-1704/216, 1 :-21=-97/1108, 3-2; :-22-296/52, 24:	24=-17; 2=0/44, -43=0/8 =-452/1 =0/909 =0/731 44/359, 19=0/10 7=-276/ 6=-346/ 1-14=- 3=-832/ 3=-832/	5/319, 5-21=-735/1 318, 19-43=0 39, 17-18=-5 , 16-45=0/90 , 12-14=-226 6-20=-31/20)24, 122, 78, 10-16=0/ 536/153, 159, 74, 47	44, /818, .8/7, 9, /113 9, /464,	7) Th cha 8) * T on 3-C cha 9) On tru 23. con 10) On tru	is truss h ord live lc his truss the botto 6-00 tall ord and a e RT7A l ss to bea . This cor nsider lat e RT16A ss to bea enaction	as bee bad nor has be om cho by 2-0 ny oth ViTek ring wa nectio eral for MiTek ring wa	n designed for a nconcurrent with - en designed for - rd in all areas wh 0-00 wide will fit I er members, with connectors recon alls due to UPLIF n is for uplift only rces.	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom 1 BCDL = 10.0psf. nmended to connect T at jt(s) 2, 12, and and does not mmended to connect T at jt(s) 14. This a partorexpective lettrop
FORCES TOP CHORD	(size) 2=0-3-8, 1 23=0-5-8 Max Horiz 2=195 (LC Max Uplift 2=-202 (L 14=-211 (Max Grav 2=609 (LC (b) - Maximum Com Tension 1-2=0/41, 2-31=-422 3-32=-317/363, 3-4= 5-33=-1215/210, 33 34-35=-984/240, 6-3 6-36=-833/286, 7-36 7-8=-827/286, 8-37= 37-38=-978/290, 9-3 9-39=-855/177, 39-4 40-41=-921/162, 10- 10-11=-108/421, 11- 12-42=-105/260, 12-	12=0-3-8, 14=0-5-8, 12=0-3-8, 14=0-5-8, 12=0-3-8, 14=0-5-8, 12=0-3-8, 14=0-5-8, 12=0-3-8, 14=0-5-8, 12=0-5, 12=3-8, 12=0-5, 12=3-8, 12=3-8, 12=0-2, 12=0-8, 14=0-2, 14=0-8, 14=0-2, 14=0-8, 14=0-2, 14=0-8, 14=0-2, 14=0-1, 15=0, 14=0-1, 15=0,	N4 1)), 241) 1, 48, 3) 4) 5) 6)	otes Unbalanced I this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-C 3-0-6 to 13-4 29-3-0 to 40- cantilever left right exposed for reactions DOL=1.60 TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adeo	-23=-1269/52, 21-2 roof live loads have 7-10; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR 2 Exterior (2) -1-4-C -6, Exterior (2) 132 -7-2, Exterior (2) 40 and right exposed ;C-C for members shown; Lumber DC 7-10; Pr=20.0 psf i ate DOL=1.15); Pf= =1.15 Plate DOL=1 show loads have be s been designed for so been designed for so been designed for so for 1.00 times fla on-concurrent with or uate drainage to pro-	23=-32' been (a (3-sec CDL=6 S (envit to 3-0 I-6 to 2 7-2 to ; end v and for DL=1.6((roof liv =20.0 p .15); C seen corr r greatu t roof la other liv revent v	7/147 considered for .0psf; h=25ft elope) exterio -6, Interior (1 9-3-0, Interior (1 9-3-0, Interior ertical left ar ces & MWFF 0 plate grip e load: Lumb sf (flat roof si ategory II; E) isidered for the er of min roof bad of 20.0 p re loads. water ponding	or ; or) r (1) ;; id S er now: cp B; his flive sf on g.	cor for 11) Th Int R8 12) Gra bor LOAD	nnection ces. is truss is ernationa 02.10.2 a aphical p the orien ttom chor CASE(S)	is for u a desig I Resic and ref urlin re tation o d.) Star	plift only and doe ned in accordance lential Code sect erenced standard presentation doe of the purlin along ndard H CA SEA 4584	es not consider lateral ee with the 2015 ions R502.11.1 and d ANSI/TPI 1. s not depict the size the top and/or

- Provide adequate drainage to prevent water ponding. 6)

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A06	Piggyback Base	1	1	Job Reference (optional)	145815322

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:38 ID:W3uoXJfrPz3Zi?R8XWiEiezNySC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.78 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.16 0.06	(loc) 25-28 25-28 14	l/defl >999 >600 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 313 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep Right: 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (4-6 Rigid ceiling directly bracing. Except: t 7-20 1 Row at midpt (size) 2=0-3-8, 24=0-5-8	ot* 11-13:2x4 SP No.1 ot* 23-5:2x4 SP No.3 ot* 20-6,18-8:2x4 SP N athing directly applied S-10 max.): 6-8, 10-11 applied or 6-0-0 oc 6-21, 8-18, 9-18 12=0-3-8, 14=0-5-8,	BOT No.2 I, WEE	F CHORD 2 2 2 1 1 1 1 1 8 8 8 8 9 1 1 1 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2-25=-204/296, 24 23-24=-22/17, 22-2 21-22=-133/771, 2 19-20=-5/17, 7-20= 18-46=-14/1120, 1 16-17=-93/1055, 1 14-15=-98/919, 12 3-25=0/362, 5-21= 3-20=-129/336, 18 3-18=-304/132, 9-1 3-17=-26/183, 10-1 10-15=-900/102, 1 11-14=-1691/202, 3 -24=-825/161, 4-2 22-24=-341/154	-25=-194 23=0/48 1-45=0/8 1-45=0/8 1-45=0/9 14=-200 45/345, -20=0/90 8=-532/ 7=-113/ 1-15=-44 4-22=-92	4/313, 5-22=-734/14 342, 20-45=0/; 9, 18-19=-19/ 4/1120, 3/1055, 0/281 6-21=-40/195 6-21=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 6-2=-40/195 7-40/195	14, 842, 19, 9, /697,	6) Pro 7) This cho 8) * Th 3-00 cho 9) One trus 12. con 10) One trus con 10) One trus con 11) This	vide ade struss h rd live ld is truss he botto 6-00 tall rd and a RT7A s to bea This cor sider lat RT16A s to bea nection es.	equate as bee bad nor has be om cho by 2-0 by 2-0 iny oth ViTek ring wa nectio eral for MiTek ring wa is for u	drainage to prev n designed for a cooncurrent with een designed for rd in all areas wh 0-00 wide will fit er members, with connectors recor alls due to UPLIF n is for uplift only ces. c connectors reca alls due to UPLIF plift only and door ned in accordance	ent water ponding. 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom n BCDL = 10.0psf. mmended to connect T at jt(s) 2, 24, and y and does not commended to connect T at jt(s) 14. This es not consider lateral ce with the 2015
FORCES TOP CHORD	Max Uplifi 2=-135 (cl Max Uplifi 2=-202 (L 14=-106 Max Grav 2=607 (Ll 14=1706 (lb) - Maximum Con Tension 1-2=0/41, 2-32=-411 3-33=-312/377, 3-4= 4-34=-858/158, 5-34 5-35=-1281/248, 35 6-36=-1010/282, 6-3 37-38=-907/306, 7-3 7-39=-905/306, 8-33 8-40=-1066/341, 40 9-41=-1251/305, 9-4 42-43=-1303/265, 1 10-11=-1055/210, 1 12-44=-406/239, 12	C 69), 12=-183 (LC 7 (LC 15), 24=-167 (LC C 48), 12=574 (LC 53 (LC 43), 24=1737 (LC apression/Maximum 7/322, 32-33=-332/33- =-107/472, 4=-762/161, -36=-1050/259, 37=-907/306, 38=-907/306, 39=-905/306, -9=-905/306, -12=94/267, 0-43=-1585/246, 1-44=-296/290, -13=0/38	0), 1) 14) 2) ; 43) 4, 3) 4) 5)	Unbalanced i this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-(3-0-6 to 13-4 29-3-0 to 40- cantilever left right exposed for reactions DOL=1.60 TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; Ci Unbalanced s design. This truss ha load of 12.0 p overhangs no	roof live loads hav 7-10; Vult=130mp b; TCDL=6.0psf; J 3; Enclosed; MWFI C Exterior (2) -1-4- -6, Exterior (2) 13- 7-2, Exterior (2) 44 t and right expose d;C-C for members shown; Lumber D 7-10; Pr=20.0 psf ate DOL=1.15); PI =1.15 Plate DOL= t=1.10 snow loads have t s been designed f psf or 1.00 times fl pn-concurrent with	e been of h (3-sec 3CDL=6 RS (envo 0 to 3-0 4-6 to 2 0-7-2 to 3 and for OL=1.60 (roof liv =20.0 p 1.15); C been cor or greate at roof k other liv	considered for ond gust) .0psf; h=25ft; elope) exterior .6, Interior (1) 9-3-0, Interior 44-11-8 zone; ertical left and ces & MWFR) plate grip e load: Lumbe sf (flat roof sn ategory II; Ex] usidered for th er of min roof 1 pad of 20.0 ps re loads.	(1) d S or o B; is live f on	Inte R80 12) Gra or tl bott	rnationa 12.10.2 a phical p ne orien om chor	Il Resid	Jential Code sec erenced standar presentation doe of the purlin along the purlin along SEA 4584	tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or

April 26,2021

Page: 1

Continued on page 2 WARNING - Verify

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A06	Piggyback Base	1	1	Job Reference (optional)	145815322

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 86 lb down and 38 lb up at 30-7-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-60, 3-6=-60, 6-8=-60, 8-10=-60, 10-11=-60, 11-13=-60, 23-26=-20, 20-22=-20,

19-29=-20 Concentrated Loads (lb)

Vert: 42=-7

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:38 ID:W3uoXJfrPz3Zi?R8XWiEiezNySC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A07	Piggyback Base	1	1	Job Reference (optional)	l45815323

Carter Componen	ts (Sanford), Sanford, No	C - 27332,	·			Run: 8.5 S (ID:TGbrfQI4	0 Apr 20 2021 Pr 4wGk2Y8?K889g	int: 8.500 S A LqzNyRN-Rf(pr 20 2021 MiTe C?PsB70Hq3NS	k Industries, Inc. gPqnL8w3uITXb(Sat Apr 24 10:49 GKWrCDoi7J4zJ0	:39 C?f	Page: 1
	-1-4-0 	7-0-10 7-0-10	8-2-12 1-2-2	<u>12-4-11</u> 4-1-15	17 5	-8-11 -4-1	24-10-11 7-1-15		30-5-8 5-6-14	36-0-6 5-6-14	37-9-0 1-8-10	<u>43-7-8</u> 5-10-8	44-11-8
2-10-4 2-5-9 2-5-9 1 8-10-12 2-5-9 8-10-12		4 ¹² 31	5x8 = 4 3 23 ≥ 23 ≥ 2x4 ⊪	32 ³³	10 ¹² 34 5 21 204 3x6	6 3 85 4 19	46 37 5 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	38 7 38 7 18 3x8=	39 40 6 46 17 3x6	8 41 42 6	5x6= 5x8= 9 10 15 12413 2x4 II 2x4	43	11 12
Scale = 1:82.2	Ļ	7-2-6 7-2-6	8-2-12 1-0-6	<u>12-4-11</u> 4-1-15	<u>17-</u> 5-	-6-15 -2-5	<u>25-0-7</u> 7-5-7		<u>30-5-8</u> 5-5-2	<u>35-10-10</u> 5-5-2	37-10-1 37-4-4 1-5-10 0-6-8	2 <u>43-7-8</u> 5-8-12	
Plate Offsets (X	, Y): [3:0-6-0,0-2-8],	[6:0-6-4,0-2	-0], [7:0-6-4	4,0-2-0], [9:0-2-12,0-	2-8]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip Lumber DC Rep Stress Code	2 DOL 1 DL 1 s Incr Y If	2-0-0 1.15 1.15 (ES RC2015/1	FPI2014	CSI TC BC WB Matrix-MSH	0.97 0.61 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc 0.06 23-2 -0.20 18-1 0.03 1) I/defl L/d 5 >999 244 9 >999 180 4 n/a n/a	d PLATES MT20 a Weight: 28	GRIP 244/19 3 lb FT = 20	0 0%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS (N FORCES TOP CHORD FOR CHORD	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood she except 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 13 1 Row at midpt size) 2=0-3-8, 1 22=0-5-8 Max Horiz 2=202 (LC Max Uplift 2=-171 (L 14=-152 (Max Grav 2=674 (LC 14=1843) (lb) - Maximum Com Tension 1-2=0/41, 2-30=-603 3-31=-497/214, 3-4= 4-32=-990/192, 32-3 5-33=-830/212, 5-34 34-35=-963/291, 6-3 6-36=-801/307, 36-3 37-38=-801/307, 36-3 37-38=-801/307, 36-3 37-38=-801/307, 36-3 37-38=-1250/281, 8-4 41-42=-1337/214, 9- 9-10=0/363, 10-43=- 11-12=0/38	t* 6-7:2x4 Sf t* 19-6,18-6, athing directl -0 max.): 6-7 applied or 1: -14,11-13. 6-18, 8-18, § 11=0-3-8, 14: C 13) C 10), 11=-1 LC 15), 22=- C 48), 11=44 C 13) C 10), 11=-1 LC 15), 22=- c 48), 11=44 C 43), 22= pression/Ma 3/191, 30-31= =-300/247, 3=-879/198, I=-1124/273, 15=-957/310, 17=-801/307, 40=-1052/3(1=-1213/232, 42=-1521/2(-90/322, 11-4)	P 2400F ,18-7:2x4 Si ly applied, 7, 9-10. 0-0-0 oc 5-19 =0-5-8, 42 (LC 11), -149 (LC 14 6 (LC 53), -1548 (LC 4 its48 (LC 4 its48 (LC 4 its48 (LC 4), -1548 (LC 4), -519/199, -00, 4, -00,	BOT P WEE NOT 1) (1) (1) (2) (3) (3) (4) (5) (9, (6) (7) (0) (1) (CHORD SS ES Jnbalancer his design. Wind: ASC Vasd=103m Cat. II; Exp zone and C 3-0-6 to 13: 29-3-0 to 44 cight exposi- for reaction DOL=1.60 COL: ASC DOL=1.15 Lumber DC Fully Exp.; Jnbalancer design. This truss h oad of 12.0 previde ade All plates a	2-23=-176/472 21-22=-95/172 20-44=-70/792 18-45=0/804, 16-17=-1/106 14-15=-11/067 14-15=-11/067 14-15=-11/535 11-13=-223/86 3-23=0/322, 3-23=0/32, 3-23=0/322, 3-23=0/322, 3-23=0/322, 3-23=0/322, 3-23=0/322, 3-23=0/322, 3-23=0/322, 3-23=0/322, 3-23=0/322, 3-23=0/32, 3-	2, 22-23=-123/ 2, 20-21=-70/73 3, 19-44=-70/77 18-46=-1/1061 1, 15-16=-7/54 9, 13-14=-234/ 5 -19=-73/286, 6 8-18=-437/24 9-15=0/169, 10 6, 4-22=-1319/ 5-21=-504/78 54, 10-14=-606 8 have been co 80mph (3-seco psf; BCDL=6.0 (WFRS (envelu- 1-4-0 to 3-0-6 2) 13-4-6 to 29- (2) 40-7-2 to 44 cosed ; end ver nbers and force ther DOL=1.60 p 0 psf (roof live 5); Pf=20.0 psf 0OL=1.15); Cat ave been cons need for greater the for greater the for greater the for greater the for greater 13-4-6 to 20- 15, Pf=20.0 psf 00L=1.15); Cat 15, Pf=20.0 psf 15, Pf=20.	488, 93, 93, 19-45=0, , 17-46=-1/ 2, 77, -18=-99/25 0, 8-16=-99 -13=0/346, 114, , 5-19=-91/2 //33 nsidered fo nd gust) psf; h=25ft; ope) exterior , Interior (1] 3-0, Interior (1] s-8, MWFR blate grip load: Lumb (flat roof sr eegory II; Ex idered for th of min roof d of 20.0 ps loads. ther ponding	8) T (/804, 9) * 1061, 0 100 C 8, 11) C 8, 11) C 262, 11 7 12) T 13) C r 13) C r (1) LOAI ; d s er iow: p B; iis live sf on p.	his truss has b hord live load r This truss has n the bottom cl -06-00 tall by 2 hord and any o ne RT7A MiTe uss to bearing 1. This connec onsider lateral ne RT16A MiT uss to bearing onnection is for orces. his truss is des iternational Re 802.10.2 and r iraphical purlin r the orientation ottom chord.	een designed f honconcurrent i been designed ord in all area -00-00 wide wi ther members, ik connectors r walls due to U r uplift only and igned in accor- sidential Code referenced star representation n of the purlin a tandard	or a 10.0 psf with any othe i for a live loa s where a reco s where a reco mendec PLIFT at jt(s) only and doe recommende PLIFT at jt(s) i does not cou dance with th sections RSO dard ANSI/T o does not dep along the top	bottom r live loads. d of 20.0psf tangle the bottom 10.0psf. I to connect 2, 22, and is not ad to connect 14. This his der lateral e 2015 2.11.1 and Pl 1. botc the size and/or

- Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 4) Unbalanced snow loads have been considered for this
 - design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
 - Provide adequate drainage to prevent water ponding. 6)
 - 7) All plates are 3x5 MT20 unless otherwise indicated.

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A08	Piggyback Base Girder	1	1	Job Reference (optional)	145815324

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries. Inc. Sat Apr 24 10:49:41 ID:UtmO3JX3vbbaoqow6Z_bUKzNyPn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [6:0-6-4,0-2-0], [10:0-6-4,0-2-0], [19:0-2-12,0-2-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.36 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.02	(loc) 37-39 37-39 30	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 390 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 37-6,36-6,7-36,36-11 2x4 SP No.3 Structural wood she 4-6-4 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 44, 46 (size) 2=8-5-8, 28=2-5-8, 40=0-3-8, 52=8-5-8 Max Horiz 2=229 (LC Max Uplift 2=-127 (L 28=-121 (41=-202 (52=-127 (L 28=-127 (L) 28=-127 (L) 28=-	t* 0,35-10:2x4 SP No.2 athing directly applie cept -0 max.): 6-10, 19-2(applied or 6-0-0 oc 5-37, 6-36, 7-36, 36- 8-43, 11-45 22=0-3-8, 27=0-3-8, 29=2-5-8, 30=0-3-8, 41=8-5-8, 42=8-5-8, C 11), 52=229 (LC 11 C 66), 22=-141 (LC 5 LC 13), 29=-136 (LC LC 68), 42=-60 (LC 6 LC 66), 24=530 (LC 51	TOP CHORD d or). -44, BOT CHORD)) -13), -36),).	$\begin{array}{c} 1-2=0/41, 2-58=-13\\ 3-4=-120/263, 4-59\\ 59-60=-975/124, 5-\\ 5-61=-1133/189, 6-\\ 6-62=-758/204, 62-\\ 7-63=-758/204, 7-8\\ 8-64=-758/204, 7-8\\ 8-64=-758/204, 10-\\ 11-65=-982/228, 12\\ 12-13=-1097/200, 1\\ 14-15=-1203/174, 1\\ 16-17=-1010/130, 1\\ 18-66=-1120/100, 1\\ 19-67=-484/164, 20\\ 20-21=-520/157, 21\\ 22-23=0/39\\ 2-42=-124/137, 41-\\ 40-41=-253/155, 33-34\\ 31-32=0/786, 30-31\\ 29-30=-428/120, 26\\ 27-28=-301/107, 26\\ 24-25=-80/477, 29\\ 24-25=-80/477, 29\\ 24-25=-80/477, 29\\ 24-25=-80/477, 26\\ 24-25=-80/472, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/477, 26\\ 24-25=-80/472, 26\\ 24-25, 26$	3/151, 3 =-1109/ 60=-90/ 61=-94 63=-75/ 4=-758/ 11=-93 2-65=-11 13-14=- 15-16=- 17-66=- 17-66=- 17-66=- 17-66=- 18-19=- 17-66=- 17-66=- 19-67=-41 1-22=-5/ 42=-95/ 3-40=-22 68=-60/ 69=-11/ 70=0/76 4=0/786 5=27=-3 5-27=-3 5-27=-3 5-27=-3	3-58=-116/13 (114, 9/138, 7/207, 8/204, 1/204, 1/204, 0/3/219, 1097/185, 1226/122, 1015/104, 1226/122, 1015/104, 1227, 1015/104, 1227, 1015/104, 1227, 1015/104, 1015/104, 1015/104, 1015/104, 1015/104, 1015/104, 1015/104, 1015/104, 1015/104, 1017,	30, 767, 36,	NOTES 1) Unt this	b balanced i design.	3-42= 4-41= 6-36= 36-43 31-44 33-45 113-46 34-47 19-50 19-51 11-45 19-51 11-45 19-51 11-45 20-25 51 11-45 26-51 1 3 - 6-51		136/72, -72/1099, 75/185, 6-37= 318/111, =-135/248, =-152/436, =-337/214, -32/239, -451/13, =-50/1327, =-1311/137, =-1311/137, =-177/795, 60/24, 9-44=- 9/23, 14-47=- 60/48, 17-49= =-706/157, 9/43 ene considere	92/295, -23/18, -10/3, 21/28, ed for
FORCES	2047 (L) 27=177 (L) 29=568 (L) 40=128 (L) 42=372 (L) 42=372 (L)	LC 50), 22=350 (LC 4 LC 41), 30=234 (LC 4 LC 7), 41=1406 (LC 4 LC 46), 52=347 (LC 4	// 41), 11), 11), 16)	24-20=-00/411, 22-	24=-00/	÷, /			C. The second se		SEA 4584	L 14	Marine I.
	Tension	ipression/iviaximum								1			Ē

Page: 1

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	A08	Piggyback Base Girder	1	1	Job Reference (optional)	145815324

Run: 8.5.S.0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:41

ID:UtmO3JX3vbbaoqow6Z_bUKzNyPn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- and the load for concurrent with any other live loads.
 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

12) _{N/A}

- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 205 lb down and 41 lb up at 39-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-4=-60, 4-6=-60, 6-10=-60, 10-19=-60, 19-20=-60, 20-23=-60, 52-55=-20
 - Concentrated Loads (lb)

Vert: 20=-47 (F), 18=-102 (F), 29=-29 (F), 27=-23 (F), 67=-43 (F), 71=-205 (F)

nce with the 2015

ndard ANSI/TPI 1. n does not depict the size along the top and/or

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	B01	Piggyback Base	2	1	Job Reference (optional)	145815325

TCDL

BCLL

BCDL

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:43 ID:10THX5a46XtbZoCPWZWDqzzNyN8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	B02	Piggyback Base	6	1	Job Reference (ontional)	145815326

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:44 ID:c?CtCdwCqx4F5V41LDYZeazNyO_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	145815327

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:44 ID:29QUYvMLfoHnZQZBfZjmnuzNyOi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

20-21=-143/95, 21-22=-232/173, 22-23=0/51 Max Horiz 2=-288 (LC 12), 41=-288 (LC 12) BOT CHORD 2-40=-164/245 39-40=-115/245 Max Uplift 2=-96 (LC 10), 22=-28 (LC 11), 38-39=-115/245, 37-38=-115/245, 24=-122 (LC 15), 25=-72 (LC 15), 36-37=-115/245, 35-36=-115/245, 26=-86 (LC 15), 27=-80 (LC 15), 34-35=-115/245, 33-34=-115/245 28=-103 (LC 15), 31=-25 (LC 11), 32-33=-115/245, 31-32=-115/245, 32=-40 (LC 10), 33=-24 (LC 11), 30-31=-115/245, 29-30=-115/245, 34=-8 (LC 11), 36=-99 (LC 14), 28-29=-115/245, 27-28=-115/245, 37=-80 (LC 14), 38=-87 (LC 14), 26-27=-115/245, 25-26=-115/245, 39=-69 (LC 14), 40=-132 (LC 14), 24-25=-115/245, 22-24=-115/245 41=-96 (LC 10), 44=-28 (LC 11)

TREN

818 Soundside Road Edenton, NC 27932

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	145815327

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-4-0 to 2-2-8, Exterior (2) 2-2-8 to 9-4-7, Corner (3) 9-4-7 to 15-10-3, Exterior (2) 15-10-3 to 16-6-13, Corner (3) 16-6-13 to 23-0-9, Exterior (2) 23-0-9 to 30-6-2, Corner (3) 30-6-2 to 33-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) _{N/A}
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 41.
- 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:44 ID::29QUYvMLfoHnZQZBfZjmnuzNyOi-Rfc?PsB70Hq3NSgPqnL&w3uITxbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	C01	Common Supported Gable	1	1	Job Reference (optional)	145815328

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:45 ID:jm6DaOoYDZWi5q7jf8pq9HzNyIz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

<u> </u>		
Scale	= 1:64.3	

Plate Offsets (X, Y): [2:0-3-8,Edge], [16:0-3-8,Edge]

				-											
Loading TCLL (roof)	(p 20	osf) 0.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.13	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/19	90
Snow (Pf)	20	0.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999			
TCDL	10	0.0	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.01	16	n/a	n/a			
BCLL	(0.0*	Code	IRC20	15/TPI2014	Matrix-MSH									
BCDL	1	0.0											Weight: 170	lb FT = 2	20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP N Right: 2x4 SP	lo.3 No.3	athing directly applied	tor E	TOP CHORD 30T CHORD	1-2=0/51, 2-3=-28 4-5=-150/139, 5-6: 7-37=-126/164, 8- 8-9=-189/219, 9-11 10-38=-113/146, 1 11-12=-40/69, 12- 14-15=-154/99, 15 2-29=-149/230, 28	1/199, 3 =-128/10 37=-113 0=-189/2 1-38=-1 13=-72/5 -16=-22 -29=-10	-4=-204/170, 17, 6-7=-103/1 (170, 119, 26/138, 55, 13-14=-90/ 8/168, 16-17= 3/230,	221, /64, :0/51 (4) TC DC Lui Ful 5) Un des 6) Thi Ioa	LL: ASC DL=1.15 I mber DO ly Exp.; (balanced sign. s truss h d of 12.0	E 7-10 Plate E L=1.1 Ct=1.1 I snow as bee psf or	y; Pr=20.0 psf DOL=1.15); Pf⊧ 5 Plate DOL=1 0 · loads have b en designed fo · 1.00 times fla	(roof live loa =20.0 psf (fla .15); Categ een conside or greater of at roof load (ad: Lumber at roof snow: jory II; Exp B; ered for this min roof live of 20.0 psf on
	6-0-0 oc purlin	IS.	and an oblig applied			27-28=-103/230, 2	6-27=-1	03/230,		ove	erhangs	non-co	ncurrent with	other live loa	ads.
BOT CHORD	Rigid ceiling di bracing.	irectly	applied or 10-0-0 oc			25-26=-103/230, 2 23-24=-103/230, 2	4-25=-1 2-23=-1	03/230, 03/230, 02/220	5	7) All 3) Ga	plates ai ble requi	e 2x4 res co	MT20 unless	otherwise in	ndicated. earing.
WEBS	1 Row at midp	ot s	9-24, 8-25, 10-22			21-22=-103/230, 2	0-21=-1	03/230,	(9) Ga	ble studs	space	ed at 2-0-0 oc.	- 40.0 4	
REACTIONS	(size) 2=2 19= 26= 29= Max Horiz 2=-2 Max Uplift 2=-5 18=	3-1-0, 23-1-0 23-1-0 23-1-0 23-1-0 265 (L0 90 (LC -104 (I	16=23-1-0, 18=23-1 , 20=23-1-0, 21=23- , 24=23-1-0, 25=23- , 27=23-1-0, 28=23- , 30=23-1-0, 34=23- C 12), 30=-265 (LC 1 10), 16=-33 (LC 11) C, 15), 19=-80 (LC 1)	-0, 1-0, 1-0, 1-0, 1-0 (2) ,	WEBS	16-18=-103/230 9-24=-215/122, 8- 7-26=-147/111, 5- 4-28=-143/108, 3- 10-22=-191/100, 1 13-20=-142/106, 1 15-18=-148/103	25=-191, 27=-142, 29=-148, 1-21=-1 4-19=-1	/103, /106, /108, 47/112, 43/108,		cha 11) * T on 3-0 cha 12) _{N/A}	brd live lo his truss the botto 6-00 tall brd and a	has be has be om cho by 2-0 iny oth	nconcurrent w een designed ord in all areas 00-00 wide will er members.	ith any othe for a live loa where a rec fit between	ad of 20.0psf ctangle the bottom
	20=	-83 (L0	C 15), 21=-88 (LC 15	5), I	NOTES									1100	
	22= 26= 28= 30= 18= 20= 22= 25= 27= 29=	76 (LC 86 (LC 78 (LC 78 (LC 90 (LC 	C 15), 25=-79 (LC 14) C 14), 27=-84 (LC 14) C 14), 29=-114 (LC 14) C 10), 34=-33 (LC 11 2 5), 16=190 (LC 27) C 25), 19=182 (LC 2 C 29), 21=176 (LC 2 C 29), 21=176 (LC 2 C 22), 24=231 (LC 14) C 21), 26=174 (LC 2 C 24), 28=180 (LC 2 C 28), 30=230 (LC 2 C 28), 30=230 (LC 2 C 28), 30=230 (LC 2 C 28), 30=230 (LC 2)	(7, 7, 7, 1), (4), (4), (4), (5), (5), (5), (4), (4), (4), (4), (4), (4), (4), (4	 Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp zone and C- 1-6-8 to 8-6 14-6-8 to 21 cantilever le right expose for reactions 	Foof live loads have 57-10; Vult=130mg ph; TCDL=6.0psf; B; Enclosed; MWF -C Corner (3) -1-4- -8, Corner (3) 8-6-8 -5-0, Corner (3) 21 ft and right expose ad;C-C for member s shown; Lumber D	re been oh (3-sec BCDL=6 RS (env 0 to 1-6- 3 to 14-6 -5-0 to 2 d ; end v s and fo OL=1.60	considered for cond gust) 5.0psf; h=25ft; elope) exterio 8, Exterior (2) -8, Exterior (2) -8, Exterior (2 -4-5-0 zone; vertical left and rces & MWFR 0 plate grip	r ?) d			di	ORTH C ORTH C SE 45	AROZ EAL 844	A CONTRACT OF A
FORCES	34= (lb) - Maximurr Tension	:190 (L n Com	C 27) pression/Maximum	<i>,</i>	DOL=1.60 3) Truss desig only. For st see Standar or consult q	ned for wind loads uds exposed to wir d Industry Gable E ualified building de	in the p nd (norm ind Deta signer as	lane of the tru al to the face) ils as applicat s per ANSI/TF	iss), ble, PI 1.			ter Vinter	NOREW	NEER. JOHN	021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	C01	Common Supported Gable	1	1	Job Reference (optional)	145815328
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.5 S 0 Apr 20 2	021 Print: 8.	500 S Apr 20	2021 MiTek Industries, Inc. Sat Apr 24 10:49:45	Page: 2

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:45 ID:jm6DaOoYDZWi5q7jf8pq9HzNyIz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 30.

14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	C02	Common	6	1	Job Reference (optional)	l45815329

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:45 ID:jI94i0DtD?ouA2jFeHQpXSzNyIR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[2:0-3-8,Edge], [8:0-3-8,Edge]
-----------------------	--------------------------------

Scale = 1:68.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.55 0.60 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.26 0.03	(loc) 10-12 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 4-7-10 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=-265 (L Max Uplift 2=-114 (L Max Grav 2=1003 (I	t* 10-7,12-3:2x4 SP I athing directly applied applied or 10-0-0 oc 3=0-5-8 C 12) C 14), 8=-114 (LC 15 .C 1), 8=1003 (LC 1)	2) No.3 d or 3) ;) 4)	Wind: ASCE Vasd=103m Cat. II; Exp E zone and C- 1-8-0 to 8-6- 14-6-8 to 21- cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp; C Unbalanced design.	7-10; Vult=130mpl bh; TCDL=6.0psf; E b; Enclosed; MWFF C Exterior (2) -1-4-4 8, Exterior (2) 21 t and right exposed d;C-C for members shown; Lumber DC 7-10; Pr=20.0 psf late DOL=1.15); Pf =1.15 Plate DOL=1 t=1.10 snow loads have b	h (3-sec 3CDL=6 2S (env 0 to 1-8 3 to 14-6 -5-0 to 1; end v and foi DL=1.60 (roof liv =20.0 p 1.15); C een cor	cond gust) .0psf; h=25ft elope) exteric -0, Interior (1 5-8, Interior (24-5-0 zone; certical left ar ces & MWFF) plate grip e load: Lumb sf (flat roof sr ategory II; E) hasidered for th	; or) 1) RS per now: kp B; his					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=0/51, 2-19=-114 3-20=-1055/243, 4-2 4-5=-984/266, 5-6=- 7-21=-1056/243, 7-2 8-22=-1144/121, 8-6 2-12=-145/967, 12-2 11-24=0/636, 10-24 5-10=-182/586, 7-10 5-12=-182/586, 3-12 ed roof live loads have n.	pression/Maximum 4/121, 3-19=-981/15 10=-988/246, 984/266, 6-21=-988/2 12=-981/158, 1=0/51 13=0/636, 11-23=0/63 0/636, 8-10=-19/838 1=-364/273, 1=-364/273 been considered for	5) 8, 6) 246, 7) 36, 8) 9) L(This truss ha load of 12.0 () overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces This truss is International R802.10.2 ar CAD CASE(S)	is been designed for participation of the second second participation of the second second participation of the second second participation of the second second participation of the second participation of the second participation of the second se	or greate at roof k other liv or a 10.0 vith any for a liv is where if the between comme PLIFT at and do lance w sections dard AN	er of min roof pad of 20.0 p (e loads.) psf bottom other live loa e load of 20.1 a rectangle ween the bott DL = 10.0psi unded to conr jt(s) 2 and 8 es not consid ith the 2015 i R502.11.1 a ISI/TPI 1.	f live sf on dds. Opsf om f. nect der		Contraction of the second seco	to	SEA 4584	ROLING INTERNET
												NOREW J	OHNSOTIT

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	C03	Roof Special	1	1	Job Reference (optional)	145815330

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:46 ID:RVIHNFYpsIC3wCHRjSP878zNyI0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 26,2021

818 Soundside Road Edenton, NC 27932

Scalo - 1.81 5	

Plate Offsets (X, Y): [2:0-3-8,Edge], [11:0-3-8,Edge], [15:0-2-12,0-2-8], [17:0-4-8,0-2-8]

		-												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.06	15-16	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	-0.13	15-16	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.51	Horz(CT)	0.07	11	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 171 lb	FT = 20%	
LUMBER			2)	Wind: ASCE	7-10; Vult=130mpl	h (3-sec	ond gust)							
TOP CHORD	2x4 SP No.2			Vasd=103mp	oh; TCDL=6.0psf; E	BCDL=6	.0psf; h=25ft	t;						
BOT CHORD	2x4 SP No.2 *Excep	t* 18-5,9-14:2x4 SP	No.3	Cat. II; Exp E	; Enclosed; MWFF	RS (env	elope) exteri	or						
WEBS	2x4 SP No.3			zone and C-0	Exterior (2) -1-4-0	0 to 1-8	-0, Interior (1)						
WEDGE	Left: 2x4 SP No.3			1-8-0 to 8-6-8	3, Exterior (2) 8-6-8	5 to 14-0	5-8, Interior (1)						
	Right: 2x4 SP No.3			cantilever lef	t and right exposed	-5-0 10	ertical left ar	hd						
	o			right exposed	d:C-C for members	and for	ces & MWFF	RS						
TOP CHORD	Structural wood sheat 3-9-15 oc purlins.	athing directly applie	d or	for reactions	shown; Lumber DC	DL=1.60) plate grip							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	; 3)	DOL=1.60	7-10 [.] Pr=20.0 psf	(roof liv	e load: Lumb	her						
1 Row at midn	bracing. Except:		0)	DOL=1.15 PI	ate DOL=1.15); Pf	=20.0 p	sf (flat roof s	now:						
	(size) 2-0-5-8 1	11-0-5-8		Lumber DOL	=1.15 Plate DOL=	1.15); C	ategory II; E	xp B;						
REACTIONS	(3/26) 2=0-3-0, 1 Max Horiz 2=-265 (1)	C 12)		Fully Exp.; C	t=1.10									
	Max Uplift 2=-114 (L	C 14) 11=-114 (I C ⁻	4) 15)	Unbalanced	snow loads have b	een cor	isidered for t	nis						
	Max Grav 2=1003 (L	_C 1), 11=1003 (LC 1	1) 5)	This trues ha	s heen designed fo	or areat	er of min root	flive						
FORCES	(lb) - Maximum Com	pression/Maximum	, 0)	load of 12.0	osf or 1.00 times fla	at roof le	ad of 20.0 p	sfon						
	Tension			overhangs no	on-concurrent with	other liv	/e loads.							
TOP CHORD	1-2=0/51, 2-26=-116	62/115, 3-26=-983/14 827/172	45, 6)	This truss ha	s been designed fo	or a 10.0) psf bottom	do						
	5-27=-827/190 5-6=	886/286	7)	* This truss h	a nonconcurrent w	for a liv	e load of 20	105. Ansf				301110	11.	
	6-28=-777/209, 7-28	3=-850/177,	''	on the botton	n chord in all areas	where	a rectangle	000				"" CA	DUL	
	7-8=-1886/275, 8-9=	-2029/255,		3-06-00 tall b	y 2-00-00 wide will	l fit betv	veen the bott	om		•		ITH UA	ROIL	14
	9-29=-1896/121, 10-	-29=-1914/117,		chord and an	y other members.					Γ	5	ONESS	A.	1,
	10-11=-1024/83, 11-	-12=0/51	8)	One RT7A M	liTek connectors re	comme	ended to con	nect				wat	mit	in
BOT CHORD	2-19=-143/895, 18-1	9=0/36, 17-18=0/99,		truss to bear	ng walls due to UF	LIFT at	jt(s) 2 and 1	1.				:0	- X.	1
	5-17=-275/189, 16-1	7=0/914, 15-16=0/9	13,	This connect	ion is for uplift only	and do	es not consi	der					e - 11 au	
	14-15=0/74, 9-15=-2	257/200, 13-14=-17/1	119,	lateral forces	designed in second		the the 2015					SEA	L :	=
WEBS	3-10/10/100	-138/87/	9)	Inis truss is	Posidential Code of	ance w		and				4584	4	Ξ
**200	3-17=-326/183 6-17	/=-304/921.		R802 10 2 ar	nd referenced stan	dard AN	ISI/TPI 1	UIU			8		1 d	-
	7-17=-523/188. 7-15	5=-191/942, 7-16=0/2	242, 17		Standard									2
	10-13=-694/24, 10-1	5=-39/797, 13-15=-2	2/785	AD CASE(S)	Stanuaru						- 7	1. ENO	ER. A	23
NOTES											1	O. GIN	: , cu	N
1) Unbalance	d roof live loads have	been considered for									1	REIN I	HN	
this design	l.											The J	in the second se	
-												20000	111.	

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	C04	Roof Special	4	1	Job Reference (optional)	l45815331

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:46 ID:YG6dgVvdoW_oWpaCUIxALTzNyHY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in (lo	oc) l/defl	L/d	PLATES	GRIP	
Plate Offsets (X, Y):	2:0-3-8,Edge],	[11:0-3-8,Edge], [1	5:0-6-4,0-4-0], [17:0-4	-8,0-3-4]							
Scale = 1:79.4							1-2-1	3			
			4-10-2	4-9-6	6-5-8	4-6-8	1-2-11	1			
			4-10-2	9-7-8	16-1-0	20-7-8	21 10 0	_			

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.66 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.18 0.09	(loc) 16-17 16-17 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Except* 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shear 3-8-3 oc purlins. Rigid ceiling directly a bracing, Except: 6-0-0 oc bracing: 18-7 1 Row at midpt 7 (size) 2=0-5-8, 11 Max Horiz 2=-265 (LC Max Uplift 2=-114 (LC	* 18-5,9-14:2x4 SP N thing directly applied applied or 10-0-0 oc 19. 7-17 1=0-5-8 2 12) 2 (4), 11=-114 (LC 1	1) No.3 2) d or 3) 5) 4)	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C 1-8-0 to 8-6-8 14-6-8 to 21- cantilever left right exposec for reactions DOL=1.60 TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C	roof live loads have 7-10; Vult=130mpt h; TCDL=6.0psf; B ;; Enclosed; MWFR C Exterior (2) -1-4-C 3, Exterior (2) -8-6-8 5-0, Exterior (2) 2-1 t and right exposed t;C-C for members shown; Lumber DC 7-10; Pr=20.0 psf ate DOL=1.15); Pf= =1.15 Plate DOL=1 t=1.10 shown back back back	 been (3-sec GCDL=6 S (env) to 1-8 to 14-(-5-0 to 1) ; end \(1, 2, 0, 0) (roof liv) =20.0 p 1.15); C 	considered for cond gust) .0psf; h=25ft elope) exterii -0, Interior (1 24-5-0 zone; vertical left ar cces & MWFf 0 plate grip e load: Lumt sf (flat roof s ategory II; E:	or ; or) 1) nd RS over now: xp B; bis						
FORCES	Max Grav 2=1003 (LC (lb) - Maximum Comp	C 1), 11=1003 (LC 1) pression/Maximum) 5)	design. This truss ha	s been designed fo	or great	er of min roo	flive						
TOP CHORD	Tension 1-2=0/51, 2-26=-1171 3-4=-1033/145, 4-27= 5-27=-900/177, 5-6=- 6-28=-700/207, 7-28= 7-8=-1102/145, 8-9=- 9-29=-2352/140, 10-2 10-11=-1028/85, 11-1	I/116, 3-26=-1018/14 941/161, 1026/290, 779/175, 1264/126, 29=-2368/133, 12=0/51	40, 6) 7)	load of 12.0 p overhangs no This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and and	osf or 1.00 times fla on-concurrent with s been designed fo d nonconcurrent w as been designed in n chord in all areas y 2-00-00 wide will y other members	at roof le other liv or a 10.0 rith any for a liv where fit betv	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott	sf on ads. Opsf om		0	and a state	ORTH CA	ROLIN	مية
BOT CHORD	2-19=-141/912, 18-19 5-17=-267/178, 16-17 15-16=-86/1958, 14-1 13-14=-10/123, 11-13	9=-9/18, 17-18=0/88, 7=0/912, 15=-1/84, 9-15=0/823 3=-16/699	, 8) 3,	One RT7A M truss to beari This connect lateral forces	iTek connectors re ng walls due to UP ion is for uplift only	comme LIFT at and do	nded to con jt(s) 2 and 1 es not consid	nect 1. der				SEA 4584	4	ALCONT OF
WEBS	3-17=-228/149, 6-17= 7-17=-545/184, 7-16= 10-13=-839/30, 10-15 13-15=-10/884, 3-19=	=-269/968, =0/394, 9-16=-1086/ [,] 5=-50/1136, =-111/75.	9) 173,	This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stand	ance w sections dard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	and			N. P.	- SNGINE	ER.O	nin .
NOTES	17-19=-135/915		LC	DAD CASE(S)	Siandard						11	REW JO	HNSII	

April 26,2021

TERSINEERING BY CREENCO A MITek Attillate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	C05	Common	1	1	Job Reference (optional)	145815332

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:47 ID:vVRxI1ARcHIg9BGRmNKKE6zNyHC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [1:0-3-8,Edge], [6:0-3-8,Edge]

Scale = 1:68.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.60 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.25 0.03	(loc) 8-10 8-10 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 130 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 4-8-11 oc purlins. Bigid ceiling directly	t* 8-5,10-2:2x4 SP N athing directly applie	2) lo.3 ed or	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 3-0-0 to 8-7-1 14-7-0 to 21- cantilever lef right exposed for reactions DOL=1.60	7-10; Vult=130mpl b; TCDL=6.0psf; E 8; Enclosed; MWFF C Exterior (2) 0-0-0 0, Exterior (2) 8-7- 5-8, Exterior (2) 21 t and right exposed t;C-C for members shown; Lumber DC	h (3-sec 3CDL=6 8S (env) to 3-0- to 14- -5-8 to 1; end v and for DL=1.60	ond gust) .0psf; h=25ft elope) exterio 0, Interior (1) 7-0, Interior (1) 24-5-8 zone; rertical left ar cces & MWFF 0 plate grip	; pr 1) nd RS						
REACTIONS	(size) 1=0-5-8, 6 Max Horiz 1=-257 (L Max Uplift 1=-86 (LC Max Grav 1=923 (LC	5=0-5-8 C 12) : 14), 6=-115 (LC 15) C 1), 6=1007 (LC 1)) 3)) 4)	 3) TCLL: ASCE 7-10; P1=20.0 psi (root live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psi (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 4) Unbalanced snow loads have been considered for this design 										
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	This truss ha	s been designed fo	or great	er of min roof	f live sf on						
TOP CHORD	1-17=-1158/146, 2-1 2-18=-1072/259, 3-1 3-19=-989/270, 4-19 4-5=-1060/226, 5-20 6-20=-1150/126, 6-7	7=-991/170, 8=-992/282, =-1045/249, =-986/163, '=0/51	6) 7)	 overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 										
BOT CHORD	1-10=-162/982, 10-2 9-22=0/640, 8-22=0/	1=0/640, 9-21=0/64 640, 6-8=-20/842	0,	3-06-00 tall b chord and an	y 2-00-00 wide will v other members.	I fit betv with BC	veen the botto $DL = 10.0$ ps	om f.		\wedge	J. S.	RTHUA	OLIN	
WEBS	3-8=-182/584, 5-8=- 2-10=-366/276	364/273, 3-10=-189/	605, 8)	One RT7A M truss to bear	liTek connectors re	comme LIFT at	nded to conr it(s) 1 and 6	nect		- 0	E.	riately	hing	حبر
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	9)	This connect lateral forces This truss is International R802.10.2 ar	ion is for uplift only designed in accord Residential Code s nd referenced stan	and do lance w sections dard AN	es not consid ith the 2015 R502.11.1 a ISI/TPI 1.	der and		111111		SEA 4584	4	

LOAD CASE(S) Standard

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	C06	Common	2	1	Job Reference (optional)	145815333

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:47 ID:5u7XAcW?0uHiWVPpPFruM0zNyGm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [1:0-3-8,Edge], [5:0-3-8,Edge]

Scale = 1:68.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.60 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.25 0.02	(loc) 6-8 6-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3	t* 6-4,8-2:2x4 SP No	2) 0.3	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-C 3-0-0 to 8-7-0 14-7-0 to 20- cantilever left	7-10; Vult=130mpł ph; TCDL=6.0psf; E s; Enclosed; MWFR C Exterior (2) 0-0-0 0, Exterior (2) 8-7-0 1-8, Exterior (2) 20	n (3-sec SCDL=6 SS (env to 3-0- to 14-1 -1-8 to	cond gust) .0psf; h=25ft elope) exterio 0, Interior (1) 7-0, Interior (23-1-8 zone;	; or 1)					
BRACING TOP CHORD	Structural wood she	athing directly applie	d or	right exposed for reactions	d;C-C for members shown; Lumber DC	and for DL=1.60	ces & MWFF) plate grip	RS					
BOT CHORD REACTIONS	Rigid ceiling directly bracing. (size) 1=0-5-8, 5 Max Horiz 1=239 (LC Max Uplift 1=-86 (LC Max Cray, 1=925 (J	applied or 10-0-0 oc 5=0-5-8 C 11) : 14), 5=-86 (LC 15) C 1), 5=-925 (LC 1)	3)	DOL=1.60 TCLL: ASCE DOL=1.15 Pl Lumber DOL Fully Exp.; C Unbalanced	7-10; Pr=20.0 psf ate DOL=1.15); Pf: =1.15 Plate DOL=1 t=1.10 snow loads have b	(roof liv =20.0 p I.15); C een cor	e load: Lumb sf (flat roof si ategory II; E) isidered for th	ber now: xp B; his					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	This truss ha	s been designed fo	or a 10.0 vith any) psf bottom	ads					
TOP CHORD	1-15=-1161/150, 2-1 2-16=-1074/265, 3-1 3-17=-987/285, 4-17 4-18=-991/174, 5-18	5=-994/174, 6=-991/286, ′=-1069/264, s=-1158/150	6)	* This truss h on the botton 3-06-00 tall b chord and an	as been designed n chord in all areas y 2-00-00 wide will y other members.	for a liv where fit betv with BC	e load of 20.0 a rectangle veen the botto DL = 10.0psi	Opsf om f.					10.
BOT CHORD	1-8=-176/970, 8-19= 7-20=0/628, 6-20=0/	0/628, 7-19=0/628, 628, 5-6=-40/833	7)	One RT7A M truss to bear	liTek connectors reing walls due to UP	comme LIFT at	nded to conr it(s) 1 and 5	nect		~		TH CA	Rojin
WEBS	3-6=-188/595, 4-6=-3 2-8=-366/276	363/276, 3-8=-189/6	04,	This connect lateral forces	ion is for uplift only	and do	es not consid	der			K	NOFES	Diskis
NOTES 1) Unbalance	ed roof live loads have	been considered for	8)	This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stand	ance w ections dard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	and				SFA	The second

this design.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D01	Attic Supported Gable	1	1	Ich Reference (ontional)	145815334

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:48

Page: 1

Scale = 1:91.3

Plate Offsets (X, Y): [7:0-3-0,	,0-2-12]	, [8:0-3-0,0-2-12], [19:0-4-0	,0-2-4]			··· ·								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MSH	0.29 0.18 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc 17) l/defl - n/a - n/a 7 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 302	GRIP 244/19 lb FT = 2	90 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wo 6-0-0 oc purli 2-0-0 oc purli	*Except ood shea ins, exc ins (6-0-	* 41-9:2x4 SP No.: athing directly appli ept end verticals, a 0 max.): 7-8.	2 ed or and	TOP CHORD	1-2=-105/122, 2-3 4-47=-489/154, 4 5-48=-568/180, 5- 7-49=-488/132, 48 8-50=-488/132, 48 9-10=-651/203, 11 11-51=-789/176, 1 12-13=-551/55, 11 14-15=-642/50, 12 1-40=-94/100	=-182/11 48=-636/2 6=-636/2 9-50=-48 9=-591/1 0-51=-67 11-12=-5 3-14=-65 5-16=0/5	11, 3-47=-547/ /168, 225, 6-7=-558/ 8/132, 150, 7/180, 07/77, 6/40, 7, 15-17=-692	/144, /155, /30,	2) W V C 7 (2 ca riy fc	/ind: ASCI asd=103n at. II; Exp one and C -6-1 to 10- 2) 21-11-8 antilever le ght expose r reaction OI = 1.60	E 7-10 nph; T(B; Enc -C Cor -7-15, (to 29-4 eft and ed;C-C s show	; Vult=130mph CDL=6.0psf; B4 closed; MWFR rner (3) 4-4-15 Corner (3) 10-7 4-3, Corner (3) right exposed f or members a m; Lumber DO	(3-second CDL=6.0ps 5 (envelop to 7-6-1, E -15 to 21 29-4-3 to ; end vertic and forces L=1.60 pla	gust) sf; h=25ft; e) interior ixterior (2) 11-8, Exterior 32-4-3 zone cal left and & MWFRS tte grip	or »;
BOT CHORD WEBS JOINTS	Rigid ceiling of bracing, Exc 6-0-0 oc brac 1 Row at mid 1 Brace at Jt(32, 22, 30, 24 45, 46	directly : cept: cing: 18- lpt ; (s): 42, 4, 43,	applied or 10-0-0 o 19,17-18. 34-41	0C	BOT CHORD	39-40=-284/314, 38-39=-284/314, 3) 39-40=-284/314, 38-39=-284/314, 3) 37-38=-284/314, 36-37=-284/314, 3) 35-36=-284/314, 33-35=-64/426, 3) 31-33=-20/358, 29-31=-22/225, consult qualified building designe 26-29=-25/205, 25-26=-22/224, consult qualified building designe 23-25=-22/224, 20-23=-14/350, 20-52=0/609, consult qualified building designe 23-25=-22/224, 20-23=-14/350, 20-52=0/609, consult qualified building designe							the plane (normal to d Details a gner as pe roof live lo 20.0 psf (f 45): Cate	of the truss of the face), s applicable r ANSI/TPI ad: Lumber lat roof snov	, , 1. w:	
REACTIONS	(size) 17: 20: 29: 35: 38: 38: 38: 38: 40: Max Uplift 17: 19: 36: 38: 40: Max Grav 17:	=26-9-0 =26-9-0 =26-9-0 =26-9-0 =-340 (L =-35 (LC =-215 (L =-94 (LC =-135 (L =-29 (LC =-135 (L =-29 (LC =694 (L	, 18=26-9-0, 19=26 , 23=26-9-0, 26=26 , 31=26-9-0, 33=26 , 36=26-9-0, 37=26 , 39=26-9-0, 40=26 C 10) C 11), 18=-101 (LC C 15), 35=-299 (LC C 14), 37=-36 (LC C 10), 39=-50 (LC C 10), 39=-50 (LC C 10), 39=-51 (LC	5-9-0, 5-9-0, 5-9-0, 5-9-0, 5-9-0 : 15), C 42), 14), : 10), 26),	WEBS	13-34-0/138, 30-3 22-24=-23/257, 24 22-24=-14/212, 27 3-38=-491/136, 3- 45-46=-214/605, 3 45-46=-214/605, 3 45-46=-214/605, 3 45-46=-255/0, 34- 6-41=-195/106, 1 11-21=-579/164, - 43-44=-35/470, 11 41-42=-220/136, 5 8-42=-26/62, 33-3 32-33=-123/4, 20- 32-33=-123/4, 20- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32- 32-32	19=24/3 32=-13/2 4-27=-23 1-22=-8/1 46=-216 35-45=-2 41=-297 3-21=-43 19-43=-3 5-44=-36 3-42=-13 4=-162/1 22=-123	7, 17-10-24%, 10, 28-30=-23 /257, 152 /611, 14/606, /97, 8/121, 6/482, /481, 6/123, 7-42=0 8, 20-21=-37(0, 31-32=-16(/125, //257, /125, 0/0, 6/0,	5) Unbalanced snow loads have been considered for design.						>
FORCES	19: 23: 29: 33: 36: 38: 40: (lb) - Maximu Tension	=467 (L =244 (L =263 (L =261 (L =225 (L =517 (L =63 (LC m Comp	C 48), 20=359 (LC C 21), 26=263 (LC C 21), 31=243 (LC C 21), 35=304 (LC C 21), 35=304 (LC C 46), 37=303 (LC C 38), 39=322 (LC 25) pression/Maximum	NOTES 1) Unbalance this design	32-33=-123/4, 20-22=-123/0, 31-32=-166/0, 22-23=-157/0, 30-31=-24/40, 23-24=-23/40, 29-30=-78/0, 24-26=-75/0, 28-29=-85/0, 26-27=-86/0, 12-19=-106/71, 13-43=-5/51, 14-44=-205/108, 18-44=-207/142, 5-45=-180/120, 36-45=-181/120, 4-46=-277/69, 37-46=-268/69, 2-39=-325/86 ed roof live loads have been considered for						458 458 VOREW	NEER.	Autor			

this design.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. See **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D01	Attic Supported Gable	1	1	Job Reference (optional)	l45815334
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.5 S 0 Apr 20 2	021 Print: 8.	500 S Apr 20) 2021 MiTek Industries, Inc. Sat Apr 24 10:49:48	Page: 2

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 9-11, 41-42, 9-42; Wall dead load (5.0psf) on member(s).34-41, 11-21
- 15) _{N/A}

16) N/A

- 17) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 19) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:48 ID:WHOxV3AtIT52?oXCabpZZPzNyFw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D02	Attic	3	1	Job Reference (optional)	l45815335

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:50 ID:BZvAG6ahRc9pMNFRkttE7MzNyCp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-3-0

Plate Offsets (X, Y): [4:0-3-0,0-2-12], [5:0-3-0,0-2-12], [6:0-3-2,0-2-4], [9:0-3-8,0-1-4], [11:Edge,0-1-8], [30:Edge,0-3-8]

Scale = 1:82.7

Loading	(pst	Spacing		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.) Plate Grip	DOL	1.15		TC	0.59	Vert(LL)	-0.21	15-17	>999	240	MT20	244/190	
Snow (Pf)	20.	Lumber DC	DL	1.15		BC	0.97	Vert(CT)	-0.40	15-17	>664	180	MT20HS	187/143	
TCDL	10.	Rep Stress	Incr	YES		WB	0.96	Horz(CT)	0.06	11	n/a	n/a			
BCLL	0.)* Code		IRC201	5/TPI2014	Matrix-MSH		Attic	-0.13	14-27	>999	360			
BCDL	10.)											Weight: 276 II	o FT = 20%)
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.2 *E> 2400F 2.0E 2x4 SP No.1 *E> 2x4 SP No.3 *E> 11-9:2x4 SP No.3 2x4 SP No.3	cept* 5-7,7-10:2 cept* 27-14:2x4 cept* 3-6:2x6 SF 2	x6 SP SP No.2 ? No.2,	BC	DT CHORD	29-30=0/745, 28-2 26-28=0/1229, 24 19-22=0/3627, 18 13-16=0/2906, 12 25-27=-604/0, 23- 21-23=-2565/0, 2(17-20=-2565/0, 1! 14-15=-1026/0	29=-185/ -26=0/25 -19=0/35 -13=0/14 -25=-201 0-21=-25 5-17=-22	1046, 64, 22-24=0/ 94, 16-18=0/ 52, 11-12=-3 0/0, 65/0, 00/0,	/3509, /3594, 31/208,	 Thi load over the second second	s truss h d of 12.0 rhangs r vide ade plates ar plates ar s truss h rd live lo	as bee psf or non-co equate re MT2 re 3x5 as bee	In designed for 1.00 times flat ncurrent with or drainage to pre 0 plates unless MT20 unless of on designed for acconcurrent with	greater of mir roof load of 2 ther live loads vent water po otherwise indic a 10.0 psf bo b any other liv	n roof live 0.0 psf on 5. onding. dicated. ated. wtom
BRACING TOP CHORD	Structural wood 5-2-9 oc purlins, 2-0-0 oc purlins	sheathing directl except end vert 6-0-0 max.): 4-5	y applied icals, and	or W	WEBS 2-29=-654/1115, 2-28=-83/754, 10) * This tru 27-28=-308/318, 3-27=-118/830, on the bc 12-14=-332/69, 8-14=0/673, 3-31=-1519/214, 3-06-00 t 6-31=-1702/132, 9-12=0/1210 c bccrd on								een designed fo rd in all areas v 0-00 wide will f	r a live load c where a rectain it between the	of 20.0psf ngle e bottom
BOT CHORD	 Rigid ceiling directly applied or 10-0-0 oc bracing. Construction Construction									mber(s). 6-8,	3-31,				
WEBS	1 Row at midpt	2-30				25-26=-1169/0, 13	3-15=-10	14/0, 24-25=0	0/661,	6-3	1; Wall	dead lo	oad (5.0psf) on	member(s).3-	-27, 8-14
JOINTS	1 Brace at Jt(s): 15, 23, 17, 31	25,			:	1/0, 34/0,	12) Bot cho	tom cho rd dead	rd live load (5	load (40.0 psf) 5.0 psf) applied	and additiona only to room.	l bottom . 25-27,			
FORCES	(size) 11=0- Max Horiz 30=-3 Max Uplift 29=-1 Max Grav 11=20 30=26 (lb) - Maximum (Tension	 11=0-5-8, 29=0-5-8, 30=0-3-8 Horiz 30=-355 (LC 10) Uplift 29=-1084 (LC 48), 30=-371 (LC 15) Grav 11=2056 (LC 48), 29=646 (LC 10), 30=2642 (LC 48) Maximum Compression/Maximum rsion NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 4-4-15 to 7-4-15, Interior (1)									vide me ring plat t 29.	chanic e capa	al connection (I ble of withstan	ARO	russ to uplift at
TOP CHORD	1-2=-144/89, 2-3 32-33=-1916/17 34-35=-1883/18 3-4=-465/139, 4 36-37=-343/122 5-38=-343/122, 6-7=-1296/163, 8-39=-1565/124 40-41=-1881/0, 9-11=-1968/24,	2=-1952/174, 7, 33-34=-1904/1 2, 3-35=-1736/20 36=-343/122, 37-38=-343/122, -6=-451/160, 7-39=-1493/139, 8-40=-1854/0, 9-41=-2048/0, 9- -30=-160/59	81, 19, 10=0/57,	3) 4)	7-4-15 to 9-5 23-2-6 to 29- cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design.	5-0, Exterior (2) 9 -4-3, Exterior (2) 2 ft and right expose d;C-C for member shown; Lumber [-7-10; Pr=20.0 ps late DOL=1.15); F =1.15 Plate DOL: t=1.10 snow loads have	5-0 to 23 5-0 to 23 29-4-3 to 23 ed; end v rs and for DOL=1.6(2f (roof liv 2f=20.0 p =1.15); C been cor	 -2-6, Interior -2-6, Inter -2-6, Interior -2-6, Interior	(1) (1) RS per now: xp B; his		Contraction of the second seco	N. N	SE 458 SE 458 SNGIN Ap	AL 44 JOHNS JOHNS	Annun Ann

818 Soundside Road

Edenton, NC 27932

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D02	Attic	3	1	Job Reference (optional)	145815335

- 14) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 30. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:50 ID:BZvAG6ahRc9pMNFRkttE7MzNyCp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D03	Attic Girder	1	4	Job Reference (optional)	145815336

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:51 ID:ZE_K?yhTDOCzsG74U8WGjGzNyA4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-9-12 25-0-12 19-9-7 22-2-11 9-4-11 31-1-0 <u>29-9</u>-0 7-4-4 17-8-5 3-8-4 2-0-7 2-1-3 1-0-5 3-8-4 3-8-0 8-3-9 2-10-1 4-8-4 1-4-0 8x10= 8x10= 1-4-15 PLY-TO-PLY CONNECTION REQUIRES THAT AN APPROVED 4 ¢∄ 50051 5 兪 FACE MOUNT HANGER (SPECIFIED BY OTHERS) IS REQUIRED FOR LOADS REPORTED IN NOTES. FACE MOUNT HANGER SHALL BE 4x6💊 4x6💊 × × 12-0-0 4x6 6 15 2-6-0 3x5、 Ø ATTACHED WITH A MINIMUM OF 0.148"x 3" NAILS PER HANGER MANUFACTURER SPECIFICATIONS. 44 3 � 10¹² ß 7 0-9-6 Δ Ð &8 -9-42 40 43 41 45 *⁹ 3x5 -3x 48⁹² ∉ 10 5x8、 12-0-0 52 8-2-0 4x5 8-11-1 8-11-1 12 4x5、 13 4-2-, 46 25 329 38 33 ⊠ 37 36 34 32 30 2726 24 21 20 19 18 17 3x5= 3x5= 3x5= 3x5= 5x8= 4x5= 3x5= 3x5= 5x8= 3x6 II THDH26-2 4x8 II 3x5= 3x5 II 3x5= 3x5= 3x10 🛛 3x5= 10-0-0 8-9-0 3x5= 16-11-0 12-11-4 15-10-305= 20-9-12 7-6-0 4-2-12 7-4-4 -11 4-2-12 3-1-8 0-1-12 1-3-0 020

Scale = 1:92.1

Plate Offsets (X, Y)· [4:0-8-4 0-4-0] [5:0-8-4 0-4-0] [18:0-4-0 0-1-8] [22:0-2-8 0

	(,, ,). [4.0	-0-4,0-4-0],	[5.0-0-4,0-4-0], [10.0	5-4-0,0-1-0], [22.0-2-0,	0-2-0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	6-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.56 0.59 0.91	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.08 -0.14 0.02 -0.06	(loc) 28-29 28-29 18 22-35	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 1402	GRIP 244/190 2 lb FT = 20	%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x6 SP N 2x6 SP N 2x4 SP N 2x4 SP N 2-0-0 oc verticals (Switcher Rigid ceil bracing. 1 Brace a 39, 14, 1, 42, 33, 2: 44, 46, 47	0.2 0.2 *Excep 0.3 *Excep 0.3 purlins (6-0 d from sheet ing directly at Jt(s): 5, 40, 41, 4, 3, 31, 25, 7	t* 35-22:2x4 SP No.: t* 39-7:2x4 SP No.2 -0 max.), except en eted: Spacing > 2-0-0 applied or 6-0-0 oc	BOT CHORD 2 d)). WEBS	37-38=-862/970, 3 34-36=0/2552, 32- 27-30=0/7926, 26- 21-24=0/4756, 20- 19-20=-1102/1679 17-18=-131/46, 16 33-35=-1105/0, 31 29-31=-5703/0, 28 25-28=-5703/0, 23 22-23=-485/1089 2-37=-3785/188, 2 35-36=-927/248, 3 3-39=-115/1179, 2 8-22=-295/1346, 3 40-42=-1783/0, 40 41-43=-1783/0, 40	6-37=0/ 34=0/58 27=0/75 21=-123 ,18-19= -17=-13 -33=-47 -29=-57 -25=-36 -36=0/2 5-39=-3 0-22=0/ 9-42=-1 -43=-18 -45=-18	1840, 1840, 26, 30-32=0/ 03, 24-26=0/ 6/1617, -669/514, 1/46, 55/0, 03/0, 51/0, 380, 58/1223, 731, 783/0, 57/0, 57/0, 57/0,	7872, 7503,	2) 4-p (0.' Top sta Boti sta We Atta cer Atta cer 3) All exc CA pro	ly truss t 131"x3") o chords ggered a ttom chor ggered a b connet ach TC w hter of the loads are cept if noi SE(S) se vided to	o be con nails a connee (t 0-9-0 rds cor (t 0-4-0 cted as (/ 1/2") e memi e consi ted as ection. distribu	nnected toget s follows: cted as follows oc, 2x4 - 1 rov nnected as follows oc, 2x4 - 1 rov ; follows: 2x4 - diam. bolts (AS ber w/washers diam. bolts (AS ber w/washers diam. bolts (AS ber w/washers dered equally front (F) or bac Ply to ply conr ute only loads	her with 10d : 2x6 - 2 row w at 0-9-0 oc yws: 2x6 - 3 w at 0-9-0 oc 1 row at 0-9 STM A-307) at 4-0-0 oc. STM A-307) at 4-0-0 oc. applied to al k (B) face ir rections have noted as (F)	/s >: rows : :0 oc. in the in the I plies, 1 the LOAD e been or (B),
FORCES TOP CHORD	(size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-48=-28i 2-49=-25i 3-4=-260 50-51=-2: 5-6=-243i 7-8=-303i 10-52=-3i 11-12=0/i	16=3-5-8, 37=0-5-8, 38=-1057 16=-3230 28), 37=-7 8) 16=-174 (18=14061 44), 38=44 44), 38=44 457/182, 2-3 7/394, 4-50 279/336, 5- 6/478, 6-7= 7/131, 8-9= 669/0, 11-5 3620, 12-13 170, 14-16=	17=3-5-8, 18=3-5-8, 38=0-3-8 (LC 10) (LC 28), 17=-1805 (762 (LC 57), 38=-166 LC 13), 17=-377 (LC (LC 28), 37=2687 (1 047 (LC 28) pression/Maximum 49=-2606/171, i=-3765/0, i=-2279/336, 51=-2279/34, 51=-2	NOTES 1) N/A 9/0, 854, /209	7-45=-1870/0, 18-4 14-47=-3638/40, 1 4-40=-61/233, 40-4 5-41=-177/158, 4-4 21-22=0/3464, 33- 21-23=-3542/0, 32 23-24=0/1965, 31- 24-25=-2041/0, 30 25-27=0/1019, 29- 11-19=0/3173, 19- 22-46=0/3363, 11- 43-44=0/73, 6-45= 12-18=-1829/0, 13	47=-360: -37=-27: 44=-3/25 42=0/21 34=-313 -33=0/1! 32=-110 -31=-70, 30=-312 22=-736 46=0/37 -89/316, -47=0/92	9/40, 5/280, 4, 5-44=-1/2 1, 34-35=0/19 4/0, 516, 6/0, 324, 9, 27-28=-6 /1045, 02, 11-18=-9 10-46=-491, 22, 17-47=0/8	79, 927, 11/0, 9512/0, 70, 862	4) Uni	balanced s design.	I roof li	ve loads have	AROX SOUNT AL 344 VIEER.C	ered for

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D03	Attic Girder	1	4	Job Reference (optional)	145815336

- 5) Wind: ASCE 7-10: Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 6) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 8) design.
- 9) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 10) Provide adequate drainage to prevent water ponding.
- 11) All plates are 2x4 MT20 unless otherwise indicated.
- 12) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 13) Gable studs spaced at 2-0-0 oc
- 14) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 15) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 16) Ceiling dead load (5.0 psf) on member(s). 7-8, 39-42, 40-42, 40-43, 41-43, 41-45, 7-45; Wall dead load (5.0psf) on member(s).35-39, 8-22
- 17) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 33-35, 31-33, 29-31, 28-29, 25-28, 23-25, 22-23
- 18) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 762 lb uplift at joint 37, 3230 lb uplift at joint 16 and 1805 lb uplift at ioint 17.
- 19) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 38. This connection is for uplift only and does not consider lateral forces.
- 20) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 21) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 22) Use MiTek THDH26-2 (With 22-16d nails into Girder & 8-16d nails into Truss) or equivalent at 28-1-12 from the left end to connect truss(es) to front face of bottom chord.
- 23) Fill all nail holes where hanger is in contact with lumber. 24) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-4=-180, 4-5=-180, 5-7=-180, 7-8=-210, 8-14=-180, 14-15=-180, 16-38=-60, 22-35=-90, 39-42=-30, 40-42=-30, 40-43=-30, 41-43=-30, 41-45=-30, 7-45=-30 Drag: 35-39=-30, 8-22=-30

- Concentrated Loads (lb)
- Vert: 19=-1475 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.5.S.0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:51 ID:ZE_K?yhTDOCzsG74U8WGjGzNyA4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D04	Attic Girder	1	4	Job Reference (optional)	145815337

Carter Compone	ents (Sanford), Sanford, No	C - 27332,		Run: 8.5 S 0 Apr 20 2021	Print: 8.500 S Apr 20 20	21 MiTek Industries, In	c. Sat Apr 24 10:49:53	Page: 1
			1-8-4	ID:q1tHGb1k32BLSCIHyR	18-2-11	0Hq3NSgPqnL8w3u11	(DGKWICD0I/J4ZJC?f	
		0-	5-4 3-3-95-4-11	13-8-5 16	<u>-2-0</u> <u>-20-9-12</u>	25-9-0 27-1	-0 H	
		0-	5-4 1-7-5 2-1-3 1-3-0	8-3-9 2-5	0-1-12 0-1-12	4-11-4 1-4-	Ó	
			10 ¹² 5x6=	5x6=	1-10-15 PLY-1	TO-PLY CONNECTIO	N REQUIRES THAT AN API	PROVED
		ot T o	5x8 ¢ 4 3		FACE LOAD	MOUNT HANGER (S S REPORTED IN NO	SPECIFIED BY OTHERS) IS TES. FACE MOUNT HANG	REQUIRED FOR ER SHALL BE
		2-0-2	5x8 ¢	2-0-0	3×10 _s ATTA	CHED WITH A MININ JFACTURER SPECIF	IUM OF 0.148"x 3" NAILS PE FICATIONS.	ER HANGER
			2	33	4x6.			
			₽ JI		3x	8*		
		0-0	er ///	0	\$ 37	9		
		44		8-2-		A A		
		8-5 8-5 7-6-1				4x5		
						10	$^{-}$	
		$\perp \perp \perp 32$	³¹ 29 27 31 29 27	25 22 20 191	6 15 14	13 2x4	. ←⊥	
		(MT0)	6x8= 3x6= 4x5=	3x6= 2x4 II 5x6=	5x8= 8x10=	2		
		101121	3_{-1}^{-10}	.0= 14-0-0 16-4 = 11-2-0 13-8-0 1	16-3-12 6-2-0			
				0 10-1-12 12-5-0 14-1	1-0 19-10-8 22-	-6-1 25-9-0		
Scale = 1:86.6			1-8-4 1-3-0 1-3-0 0-1-12 1-3-0 1-	-0-4 ¹⁻⁰⁻⁴ 0-4-0	1-3-0 3-6-12 2- ⁻ 0-1-12	7-9 3-2-15		
Plate Offsets ((X, Y): [2:0-3-8,0-1-12]], [4:0-3-0,0-2-12], [5:0	0-3-0,0- <u>2-1</u> 2], [14:0-5-0,	,0-4-8], [17:0-2-0,0-2-8], [3	1 ⁰ .0-3-8,Edge], [34:0-	3-8,0-3-0]		
Loading	(psf)	Spacing	6-0-0	csi	DEFL in	(loc) l/defl l	u/d PLATES GR	IP
TCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.73 BC 0.98	Vert(LL) -0.22 Vert(CT) -0.42	17-18 >999 2 17-18 >731 1	40 MT20 244 80 MT20HS 187	4/190 7/143
TCDL	10.0	Rep Stress Incr	NO	WB 0.89	Horz(CT) 0.03	12 n/a i	1/a	
BCLL BCDL	0.0* 10.0	Code	IRC2015/1PI2014	Matrix-MSH	Attic -0.11	17-30 >999 3	Weight: 1230 lb FT	= 20%
LUMBER		•	BOT CHORD	31-32=-13213/0, 29-31=-1	4209/0,	3) All loads are c	onsidered equally applied	to all plies,
TOP CHORD	2x6 SP No.2 2x6 SP No.2 *Excep	t* 30-17·2v4 SP No 1		27-29=-5163/897, 25-27=0 22-25=0/8111, 20-22=0/10)/5010, 1521.	except if notec CASE(S) secti	I as front (F) or back (B) fa	ace in the LOAD have been
WEBS	2x4 SP No.3 *Excep	ot* 2-31:2x4 SP 2400F		19-20=0/13535, 16-19=0/1	3535,	provided to dis	stribute only loads noted a	s (F) or (B),
	2.0E, 3-6,32-1,29-30,16-17	7,29-28,16-18,27-28,2	20-1 ·	13-14=0/5418, 12-13=-47/	2092, 113,	4) Unbalanced ro	of live loads have been or	onsidered for
BRACING	8,27-26,20-21,2-34,3	30-32:2x4 SP No.2		28-30=0/12848, 26-28=-29 24-26=-5425/0, 23-24=-54	0/5181, 25/0,	this design. 5) Wind: ASCE 7	'-10; Vult=130mph (3-seco	and gust)
TOP CHORD	2-0-0 oc purlins (6-0	-0 max.), except end	1	21-23=-5425/0, 18-21=-99 17-18=-10744/0	05/0,	Vasd=103mph	; TCDL=6.0psf; BCDL=6.0	0psf; h=25ft;
	verticals (Switched from shee	eted: Spacing > 2-0-0)	WEBS	30-31=0/2742, 2-30=0/126	64,	zone; cantileve	er left and right exposed ;	end vertical left
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	(15-17=-599/167, 7-17=0/2 6-33=-2254/140, 10-13=0/	277, 3-33=-3211/0, 5200,	DOL=1.60	sed; Lumber DOL=1.60 pl	late grip
	6-0-0 oc bracing: 31	-32,29-31,27-29.	-	4-33=0/1061, 5-33=-446/1 16-17=-747/1935. 28-29=-	70, 29-30=0/5250, 6148/0.	 TCLL: ASCE 7 DOI =1 15 Pla 	'-10; Pr=20.0 psf (roof live te DOI =1 15); Pf=20.0 ps	load: Lumber f (flat roof snow:
JOINTS	1 Brace at Jt(s): 1, 4, 5, 10, 33, 28, 18,			16-18=-1628/1370, 27-28=	=0/4547, 5020/0	Lumber DOL=	1.15 Plate DOL=1.15); Ca	ategory II; Exp B;
PEACTIONS	26, 21 (size) 12-0-5-8	32-0-5-8	-	20-21=-98/3111, 25-26=0/	5950/0, 5860,	7) Unbalanced si	now loads have been con:	sidered for this
REACTIONS	Max Horiz 32=-1186	(LC 10)		21-22=-4246/0, 24-25=-17 22-23=-2/990, 30-34=0/39	70/0, 45, 2-34=-14053/0,	design. 8) This truss has	been designed for greate	r of min roof live
FORCES	Max Grav 12=6942 ((lb) - Maximum Com	(LC 28), 32=6483 (LC pression/Maximum	3)	30-32=0/12971, 9-14=0/56 14-17=-6920/367, 9-17=-4	;89, 868/0,	load of 12.0 ps overhangs nor	or 1.00 times flat roof loan to the state of	ad of 20.0 psf on e loads.
TOP CHORD	Tension 1-2=-753/228 2-3=-	3615/0 3-4=-2485/74	1 NOTES	9-13=-2260/0		<u>j</u>	"TH CAR	Sill.
	4-35=-2372/402, 35-	-36=-2372/402,	1) _{N/A}			\sim	NOP EESSIA	-IN'IL
	6-7=-3163/52, 7-8=-4	4533/0, 8-37=-4659/0	, 2) 4-ply truss to	be connected together w	th 10d	(A	MANY	ANA T
	9-37=-4926/0, 9-10= 10-12=-6846/0, 32-3	=-6352/0, 10-11=0/170 34=-14248/0,), (0.131"x3") r	nails as follows:	2 10140	E	SEAL	
	1-34=-815/251		staggered at	0-9-0 oc, 2x4 - 1 row at 0	-9-0 oc.	E	1581A	E E
			Bottom chore staggered at	ds connected as follows: 2 0-4-0 oc, 2x4 - 1 row at 0	x6 - 3 rows -9-0 oc.		+30++	1 E -
			Web connec Attach TC w	ted as follows: 2x4 - 1 row / 1/2" diam_bolts (ASTM A	at 0-9-0 oc.	1	TA EN S	2123
			center of the	member w/washers at 4-()-0 oc.	0	OPAGINEE	NSIII
			center of the	member w/washers at 4-0)-0 oc.		WEW JOH	in the second se
							April 26	,2021
Continued on	nade 2							
CONTINUED ON								

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D04	Attic Girder	1	4	Job Reference (optional)	145815337

- 9) Provide adequate drainage to prevent water ponding.
- 10) All plates are MT20 plates unless otherwise indicated.
- 11) All plates are 3x5 MT20 unless otherwise indicated.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Ceiling dead load (5.0 psf) on member(s). 2-3, 6-7, 3-33,
 6-33, 30-34; Wall dead load (5.0psf) on member
 (s).2-30, 7-17
- 15) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 28-30, 26-28, 24-26, 23-24, 21-23, 18-21, 17-18
- 16) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Use MiTek THDH26-2 (With 22-16d nails into Girder & 8-16d nails into Truss) or equivalent at 28-1-12 from the left end to connect truss(es) to back face of bottom chord
- 18) Fill all nail holes where hanger is in contact with lumber.
- 19) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-180, 2-3=-210, 3-4=-180, 4-5=-180, 5-6=-180, 6-7=-210, 7-10=-180, 10-11=-180,
 - 12-32=-60, 17-30=-90, 3-33=-30, 6-33=-30, 30-34=-30
 - Drag: 2-30=-30, 7-17=-30
 - Concentrated Loads (lb)
 - Vert: 14=-1537 (B)

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:53 ID:qTtHGbTk32BLSciHyReC1mzNy6U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D05	Attic	2	1	Job Reference (optional)	145815338

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:54 ID:Ozgls34yVjPGa_GRequNQjzO_DG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 26,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:93.3		0-1-12	1-3-0 1-0-4	1-0-4 1-	.3-0	
Plate Offsets (X, Y):	[2:0-3-8,0-2-4], [4:0-3-4,0-2-12],	[5:0-3-12,0-2-12], [16:0-2-4,0-2-8],	[28:0-3-0,0-3-0]	, [32):0 1 -31 <u>8</u> ,0-2	2-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.99 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.25 -0.49 0.04 -0.13	(loc) 16-17 16-17 11 16-28	l/defl >999 >618 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 281 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep 3-6,30-1,27-28,15-10 7,25-24,18-19,28-30	ut* 30-14:2x4 SP No. 1* 2-29:2x4 SP No.1, 6,27-26,15-17,25-26, 1,2-32:2x4 SP No.2	BO 1 18-1	DT CHORD 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19-30=-3508/140, 2 5-27=-1038/501, 2 10-23=0/2442, 18-2 4-15=-176/2725, 1 2-13=-162/2689, 1 6-28=0/3132, 24-2	27-29=-3 23-25=0 20=0/29 3-14=-1 1-12=-1 26=-228	3681/123, /1539, 03, 15-18=0/3 176/2725, 19/30, /1015,	3169,	 4) Untides 5) Pro 6) All (7) This cho 	oalanceo ign. vide ade olates ar s truss h rd live lo	d snow equate re 3x5 as bee pad no	loads have bee drainage to prev MT20 unless oth an designed for a nconcurrent with	n considered for rent water pon- nerwise indicate a 10.0 psf botto any other live	or this ding. ed. om loads.
BRACING TOP CHORD	Structural wood she 5-4-6 oc purlins, exe 2-0-0 oc purlins (5-6	athing directly applie cept end verticals, ar 5-0 max.): 4-5.	d or 1d WE	1 1 EBS 2	2-24=-1618/0, 21- 9-21=-1618/0, 17- 6-17=-2201/252 28-29=0/324, 2-28=	22=-16 19=-23 0/3406	18/0, 56/0, , 13-16=0/12(0,	8) * Th on t 3-0 cho	nis truss the botto 6-00 tall rd and a	has be om cho by 2-0 iny oth	een designed for rd in all areas wi 00-00 wide will fit er members.	a live load of 2 here a rectang between the b	20.0psf le pottom
WEBS WEBS JOINTS	Rigid ceiling directly bracing. Except: 3-9-0 oc bracing: 19 3-10-0 oc bracing: 1 10-0-0 oc bracing: 2 1 Row at midpt 2 Rows at 1/3 pts 1 Brace at Jt(s): 31, 26, 17, 24, 19 (size) 11=0-5-8	applied or 2-2-0 oc -24 7-19, 16-17 6-28, 24-26 2-32 1-30			-16=0/622, 3-31=- -31=0/318, 5-31=- +12=-110/158, 12- 0-12=0/1238, 27-2 6-27=-1743/0, 15- 5-26=0/1243, 17-1 4-25=-1407/0, 18- 3-24=0/1571, 19-2 2-23=-744/0, 20-2 8-32=-42/1041, 26 2-22=07/0	943/0, 6 116/81, 16=-160 28=0/17 17=-646 8=-211 19=-159 20=-103 1=-52/4 5-30=0/3	6-31=-643/14 9-16=-502/2 09/341, 11, 15-16=-79 6/129, /198, 9/471, 3/125, 41, 3543,	8, 52, 9/667,	 9) Cei 6-3 (s).: 10) Bot cho 24-: 11) This Inte R80 	ling dea 1, 28-32 2-28, 7- ⁻ tom cho rd dead 26, 22-2 s truss is rnationa 02.10.2 a	d load ; Wall 16 rd live load (4, 21-2 s desig I Resid and ref	(5.0 psf) on mer dead load (5.0p load (40.0 psf) a 5.0 psf) applied o 22, 19-21, 17-19 ned in accordan dential Code sec erenced standar	nber(s). 2-3, 6- sf) on member nd additional k only to room. 2 , 16-17 ce with the 20' tions R502.11 d ANSI/TPI 1.	7, 3-31, pottom 6-28, 15 .1 and
	Max Horiz 30=-378 (Max Grav 11=1518)	LC 10) (LC 43), 30=2026 (L0	NO C 43) 1)	DTES Unbalanced	roof live loads have	e been d	considered fo	r			6	WITH CA	RO	
ORCES	(II) - Maximum Com Tension 1-2=-207/121, 2-3=- 4-33=-800/168, 33-3 5-34=-800/168, 5-6= 7-35=-1229/24, 8-35 9-36=-1420/0, 9-37= 10-11=-1481/0, 30-3 1-32=-217/149	pression/Maximum 1079/134, 3-4=-841/: 34=-800/168, 930/211, 6-7=-941/ 5=-1287/9, 8-36=-130 1456/0, 10-37=-159 32=-3979/0,	2) 234, 147, 147, 14/0, 14/0, 3)	this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-0 26-2-6 to 30- cantilever left right exposed for reactions DOL=1.60 TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C	7-10; Vult=130mpl h; TCDL=6.0psf; E ; Enclosed; MWFF C Exterior (2) 8-4-1 10-7, Exterior (2) 3 and right exposed ;C-C for members shown; Lumber DC 7-10; Pr=20.0 psf ate DOL=1.15); Pf: =1.15 Plate DOL=' =1.10	n (3-sec CDL=6 S (enve 5 to 26- 0-10-7 ; end v and for DL=1.60 (roof liv =20.0 p 1.15); C	cond gust) .0psf; h=25ft; lelope) exteric .2-6, Interior (to 33-10-7 zo rertical left an ces & MWFR) plate grip e load: Lumb sf (flat roof sr ategory II; Ex	; or (1) one; dd SS er now: cp B;		Continue	Later Billing	SEA 458 NOREW J	L 1L 44 EEER. 50 0HNS	And Annun and Annu Annu Annu Annu Annu Annu Annu An

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	D05	Attic	2	1	Job Reference (optional)	145815338

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:54 ID:Ozgls34yVjPGa_GRequNQjzO_DG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	E01	Common Supported Gable	1	1	Job Reference (optional)	145815339

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:55 ID:OAsSIEFCwkxfHOUAoKWM5nzNyMG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:31.1

Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No. Structural wood si 6-0-0 oc purlins. Rigid ceiling direc	3 heathing directly applie tly applied or 10-0-0 o	2) _{ed or} 3) c	Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C exposed ; en members and Lumber DOL: Truss desigr only. For stu see Standard or consult qu	7-10; Vult=130mpł h; TCDL=6.0psf; E ; Enclosed; MWFR Corner (3) zone; d vertical left and ri f forces & MWFRS =1.60 plate grip DC led for wind loads i ds exposed to wind l ndustry Gable Er alified building des	n (3-sec SCDL=6 SS (envice cantilev ght exp for rea DL=1.60 n the pl d (norm nd Deta igner as	iond gust) .0psf; h=25ft; leope) exteriol rer left and rig loosed;C-C for ctions shown) ane of the tru al to the face ils as applicat s per ANSI/TF	pr ght ; uss), ble, PI 1.	LOAD	CASE(S)	Sta	ndard		
REACTIONS	(size) 2=6-11 9=6-11 15=6-1 Max Horiz 2=85 (L Max Uplift 2=-17 (8=-102 11=-17 Max Grav 2=108 8=177 10=181 15=107	-8, 6=6-11-8, 8=6-11-8 -8, 10=6-11-8, 11=6-1 -8 -C 13), 11=85 (LC 13) LC 10), 6=-1 (LC 11), (LC 15), 10=-106 (LC (LC 10), 15=-1 (LC 11) (LC 25), 6=107 (LC 1), (LC 29), 9=117 (LC 27 (LC 24), 11=108 (LC -4 (LC 1)	3, 4) 1-8, 5) 14), 6) , 7) 25), 8)	TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C Unbalanced s design. This truss ha load of 12.0 p overhangs no Gable require Gable studs s	7-10; Pr=20.0 psf ate DOL=1.15); Pf =1.15 Plate DOL=1 =1.10 snow loads have b s been designed fc osf or 1.00 times fla on-concurrent with s continuous botto spaced at 2-0-0 oc	(roof liv =20.0 p I.15); C een cor or greate at roof k other liv om chor	e load: Lumb sf (flat roof sr ategory II; Ex isidered for th er of min roof pad of 20.0 ps ve loads. d bearing.	er now: (p B; nis live sf on				mmm	990 <i>.</i>	
FORCES TOP CHORD	(lb) - Maximum Co Tension 1-2=0/26, 2-3=-62 4-18=-58/71, 4-19 5-6=-47/34, 6-7=0	/57, 3-18=-75/66, =-58/71, 5-19=-75/66, //26	9) 10]	1 his truss has chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an	s been designed to d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members	or a 10.0 rith any for a liv where fit betw	o psr bottom other live load e load of 20.0 a rectangle veen the botto	ds.)psf om		0		OR TH CA	dirty	ette
BOT CHORD WEBS NOTES	2-10=-46/74, 9-10 6-8=-28/74 4-9=-74/0, 3-10=-	=-28/74, 8-9=-28/74, 162/119, 5-8=-162/119	11) Э) N/A	,					in the		SEA 4584	L 4	with the
1) Unbalanc this desig	ed roof live loads ha n.	ve been considered fo	r 12) 13)) Beveled plate surface with t) This truss is o International R802.10.2 ar	e or shim required t russ chord at joint(designed in accord Residential Code s d referenced stand	to provi (s) 6. ance w sections dard AN	de full bearing ith the 2015 . R502.11.1 a ISI/TPI 1.	g nd			A A A A A A A A A A A A A A A A A A A	Apri	ER.50 0HN50	A.U.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	E02	Common	4	1	Job Reference (optional)	145815340

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:56 ID:a0UB1BARKuAVZT10R3QxsWzNyMM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:34.3

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.14 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood shear 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 2=0-5-8, 4 Max Horiz 2=-85 (LC Max Uplift 2=-39 (LC Max Grav 2=318 (LC FORCES (Ib) - Maximum Comp Tension TOP CHORD 1-2=0/26, 2-13=-277/ 3-14=-216/81, 4-14=- BOT CHORD 2-6=-54/177, 4-6=0/1 WEBS 3-6=-15/154 NOTES 1) Unbalanced roof live loads have	athing directly applied applied or 10-0-0 oc 120-5-8 12) 14), 4=-39 (LC 15) 21), 4=318 (LC 1) pression/Maximum /73, 3-13=-216/81, -277/73, 4-5=0/26 177 been considered for	 4) Unbalanced design. 5) This truss ha load of 12.0 overhangs n 6) This truss ha chord live load of 12.0 overhangs n 6) This truss ha chord live load of 12.0 overhangs n 6) This truss ha chord and an an	snow loads have b as been designed for psf or 1.00 times fl on-concurrent with as been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members. IfTek connectors re- ting walls due to UF tion is for uplift only as designed in accord Residential Code ind referenced stan Standard	been cor or greate at roof lo other lin or a 10.0 vith any for a liv s where I fit betw ecomme PLIFT at and do Jance w sections dard AN	nsidered for the er of min roof bad of 20.0 ps re loads. 0 psf bottom other live loa e load of 20.0 a rectangle ween the botto anded to conn jt(s) 2 and 4. es not consid ith the 2015 i R502.11.1 a ISI/TPI 1.	his live sf on ds. Dpsf Dom ect ler nd)	WITH CA	ROLAN

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Page: 1

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	E03	Common Supported Gable	2	1	Job Reference (optional)	145815341

-0-8-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:56 ID:aH0cb?O5K6K565qHx7Dx26zNyM5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	4-0-0	
Scale = 1:28.3		
Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]		

Plate Offsets ((A, T): [2:0-	-3-8,⊏age],	[4:0-3-8,⊏0ge]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.05 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%	, 0
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Left: 2x4 Right: 2x4 Structura 4-0-0 oc Rigid ceil bracing. (size) Max Horiz	0.2 0.2 0.3 SP No.3 4 SP No.3 I wood she purlins. ing directly 2=4-0-0, 1 7=4-0-0, 1 2=55 (LC	athing directly applie applied or 10-0-0 oc 4=4-0-0, 6=4-0-0, 11=4-0-0 13), 7=55 (LC 13)	d or	 Truss desig only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs 	ned for wind loads uds exposed to wind d Industry Gable Er ialified building des 7-10; Pr=20.0 psf late DOL=1.15); Pf =1.15 Plate DOL= tt=1.10 snow loads have b as been designed for psf or 1.00 times fit on-concurrent with es continuous bott spaced at 2-0-0 or	in the p d (norm nd Deta signer a: (roof liv =20.0 p 1.15); C ween cor or great at roof lo other liv om chor	ane of the tru al to the face is as applica s per ANS//TI e load: Lumb sf (flat roof sr ategory II; E) asidered for the er of min roof bad of 20.0 po re loads. d bearing.	uss ble, pl 1. ber now: xp B; his f live sf on						
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift Max Grav (lb) - Max Tension 1-2=0/26, 2-6=-27/5 3-6=-33/2	2=-37 (LC 7=-37 (LC 2=155 (LC (LC 1), 7= 1) timum Com , 2-3=-91/62 51, 4-6=-3/5	: 14), 4=-43 (LC 15), : 14), 11=-43 (LC 15), C 1), 4=155 (LC 1), 6 :155 (LC 1), 11=155 upression/Maximum 2, 3-4=-91/62, 4-5=0, 51) (LC /26	 This truss ha chord live los on the botton 3-06-00 tall l chord and an 11) N/A 	as been designed fr ad nonconcurrent v nas been designed n chord in all areas oy 2-00-00 wide wil ny other members.	or a 10.0 vith any for a liv where I fit betv) psf bottom other live loa e load of 20.0 a rectangle veen the botto	nds. Opsf om			- Internet	NITH CA	ROL	
NOTES I) Unbalance this design 2) Wind: AS(Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D	ed roof live I n. CE 7-10; Vu Bmph; TCDL p B; Enclosi C-C Corner end vertica and forces o OL=1.60 pla	loads have =6.0psf; B(ed; MWFR: (3) zone; c I left and rig & MWFRS ate grip DO	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior antilever left and rigi ght exposed;C-C for for reactions shown; L=1.60	r l	 Beveled plat surface with This truss is International R802.10.2 a CAD CASE(S) 	e or shim required truss chord at joint designed in accorc Residential Code and referenced stan Standard	to provi (s) 4, 11 lance w sections dard AN	de full bearing R502.11.1 a ISI/TPI 1.	g and		Uninner	EN P	SEA 4584 SNGIN	L 14 EEFR.S OHNS	A manual and a manual a A manual and a manual

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	E04	Common	6	1	Job Reference (optional)	145815342

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:56 ID:pT0AMS4QDQAecFQUzNG3XqzNyMU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-0-0	4-0-0
2-0-0	2-0-0

Plate Offsets (X, Y)	: [2:0-3-8.Edge]	. [4:0-3-8.Edge]

Scale = 1:29.4

Fiale Oliseis ((A, T). [2.0-3-8,Euge], [[4.0-5-6,Euge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.05 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins. Rigid ceiling directly a bracing. (size) 2=0-5-8, 4: Max Horiz 2=55 (LC 1 Max Uplift 2=-28 (LC Max Gray, 2=20 (LC	thing directly applied applied or 10-0-0 oc =0-5-8 13) 14), 4=-28 (LC 15) 1, 4=-20 (LC 1)	4) 5) 6) 1 or 7) 8)	Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One RT7A M truss to bear This connect lateral forces	snow loads have b s been designed for on-concurrent with s been designed for ad nonconcurrent w nas been designed n chord in all areas by 2-00-00 wide will by other members. IiTek connectors re ing walls due to UF ion is for uplift only	een cor or great at roof le other li or a 10. vith any for a liv where i fit betw comme PLIFT at and do	nsidered for the er of min roof pad of 20.0 ps ve loads. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ended to conn t jt(s) 2 and 4.	nis live sf on ds.)psf pm lect ler					
	(Ib) - Maximum Comp Tension	7 3-4138/47	9)	This truss is International R802.10.2 a	designed in accord Residential Code s nd referenced stand	ance w sections dard AN	ith the 2015 8 R502.11.1 a NSI/TPI 1.	nd					
BOT CHORD WEBS	1-2=0/26, 2-3=-138/4 4-5=0/26 2-6=-24/93, 4-6=0/93 3-6=-12/81	7, 3-4=-136/47,	LC	OAD CASE(S)	Standard								111.
NOTEO	0 0- 12/01											11111 00	E III
 Unbalance this design Wind: AS0 Vasd=103 Cat. II: Ex 	ed roof live loads have t n. CE 7-10; Vult=130mph (imph; TCDL=6.0psf; BC ρ Β: Enclosed: MWFRS	(3-second gust) CDL=6.0psf; h=25ft;								Q	X	ORTH CA	HOL HATE
zone and exposed ; members Lumber D 3) TCLL: AS DOL=1.15 Lumber D Fully Exp.	C-C Exterior (2) zone; c end vertical left and rigi and forces & MWFRS fr OL=1.60 plate grip DOL CE 7-10; Pr=20.0 psf (rr 5 Plate DOL=1.15); Pf=2 OL=1.15 Plate DOL=1.1 ; Ct=1.10	antilever left and right ht exposed;C-C for or reactions shown; =1.60 oof live load: Lumber 20.0 psf (flat roof sno 15); Category II; Exp	nt w: B;							THURS	P. I.	SEA 4584	L HA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

11 JULIA April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	E05	Common	2	1	Job Reference (optional)	145815343

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:57 ID:p8H0RuXZmvo_VTgDxQXuIYzNySM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-0-0	4-0-0
2-0-0	2-0-0

Scale = 1:32.8	
Plate Offsets (X, Y):	[2:0-3-8.Edge], [4:0-3-8.Edge]

	(, .). [=	[o o o,_ugo]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.05 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-14 6-14 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=107 Cat. II; Ex zone and exposed members Lumber E	2x4 SP No.3 *Excep 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shee 4-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-1-8, 2 Max Horiz 1=-57 (LC Max Uplift 1=-18 (LC 4=-30 (LC Max Grav 1=68 (LC 4=186 (LC (lb) - Maximum Com Tension 1-2=-75/65, 2-3=-12 4-5=0/26 2-6=0/73, 4-6=0/73 3-6=-9/59 ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bf cp B; Enclosed; MWFRS C-C Exterior (2) zone; c end vertical left and rig pOL=1.60 plate grip DO	athing directly applie applied or 10-0-0 oc 2=0-5-8, 4=0-5-8 (12) (10), 2=-50 (LC 14), (15), 2=50 (LC 28), (21) (25), 2=208 (LC 28), (21) (25), 2=208 (LC 28), (21) (25), 2=208 (LC 28), (21) (25), 2=208 (LC 28), (21) (26), 2=208 (LC 28), (21) (26), 2=208 (LC 28), (21) (26), 2=208 (LC 28), (21) (26), 2=208 (LC 28), (21), 2=2	3) 4) 5) 5 7) 7) 8) 9) 10 11 LC	TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate One RT7A M truss to bear This connect lateral forcess) Beveled plat surface with) This truss is International R802.10.2 an	7-10; Pr=20.0 ps late DOL=1.15); F =1.15 Plate DOL t=1.10 snow loads have is been designed psf or 1.00 times on-concurrent wit is been designed ad nonconcurrent is been designed ad nonconcurrent is been designed in chord in all area by 2-00-00 wide w ay other members hanical connectio a ti joint(s) 1. NTek connectors ing walls due to L ion is for uplift on c. e or shim required truss chord at joir designed in accoo Residential Code nd referenced sta Standard	f (roof liv Pf=20.0 p =1.15); C been cor for great flat roof li h other lir for a 10.1 with any d for a liv as where rill fit betw n (by oth recomme JPLIFT ai ly and dc d to provi tt(s) 1. rdance w s sections ndard AN	e load: Lumb sf (flat roof si ategory II; E) isidered for the er of min roof bad of 20.0 pi ve loads. D psf bottom other live loa e load of 20.0 pi ve loads. D psf bottom other live loa e load of 20.0 pi ve load of 20.0 pi ve loads of 20.0 pi ve loads of 20.0 pi ve load of 20.0 pi ve loads of 20.0 pi ve l	er now: cp B; his i live sf on ds. Dpsf om to nect d 4. der g		Continue	A CONTRACT OF A	SEA 458	L LL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

11 JULIA April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	EJ01	Jack-Open	4	1	Job Reference (optional)	145815344

-1-4-0

1 - 4 - 0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:57 ID:jLHNOaR2n8aiqbAOeurj9ezNyPv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-10-15

1-10-15

Page: 1

2x4 =

1-10-15

Scale = 1:24.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing.	eathing directly applied	6) I or 7) 8)	* This truss h on the botton 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 3.	has been designe in chord in all area by 2-00-00 wide w by other members er(s) for truss to the hanical connection a capable of withs	d for a liv as where vill fit betw s. russ conr on (by oth tanding 1	e load of 20.0 a rectangle veen the botto rections. ers) of truss t 9 lb uplift at j	0psf om to joint					
REACTIONS	(size) 2=0-3-8, Mechanic Max Horiz 2=47 (LC Max Uplift 2=-79 (LC Max Grav 2=184 (L	3= Mechanical, 4= cal : 10) C 10), 3=-19 (LC 14) C 21), 3=37 (LC 21), 4	9) =30	One RT7A M truss to beari connection is forces.) This truss is o International	liTek connectors ing walls due to L s for uplift only an designed in acco Residential Code	recomme JPLIFT at d does no rdance with sections	nded to conr jt(s) 2. This ot consider la th the 2015 R502 11 1 a	nect Iteral					

(LC 7) FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/25, 2-8=-101/91, 3-8=-10/11 2-4=-59/22

BOT CHORD

NOTES

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	EJ02	Jack-Open	2	1	Job Reference (optional)	145815345

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:57 ID:jLHNOaR2n8aiqbAOeurj9ezNyPv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 =

3-10-15

Scale = 1:26.3													-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 3-10-15 c Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.2 I wood she oc purlins. ing directly 2=0-3-8, 3 Mechanic 2=73 (LC 2=-79 (LC 2=252 (LC	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 10) 2 10), 3=-47 (LC 14) 2 21), 3=107 (LC 21)	ed or to see the second	 * This truss I on the botton 3-06-00 tall I chord and air () Refer to gird Provide mec bearing plate 3. One RT7A M truss to bear connection is forces. This truss is International 	has been designe in chord in all area by 2-00-00 wide wind hy other members er(s) for truss to t shanical connection a capable of withs hiTek connectors ing walls due to L is for uplift only an designed in accoo Residential Code	d for a liv as where vill fit betv s. russ com on (by oth tanding 4 recomme JPLIFT ai d does no rdance we e sections	e load of 20. a rectangle veen the bott nections. ers) of truss 7 lb uplift at jt(s) 2. This ot consider la ith the 2015 i. R502.11.1 a	Opsf to joint nect ateral						
FORCES	(lb) - Max Tension	4=70 (LC timum Com	pression/Maximum	I	R802.10.2 a OAD CASE(S).	nd referenced sta Standard	Indard AN	ISI/TPI 1.							
TOP CHORD	1-2=0/25,	, 2-8=-147/	103, 3-8=-31/26												
	2-4=-53/4	+7													
1) Wind: AS Vasd=103 Cat. II; Ex zone and exposed ; members	CE 7-10; Vu Bmph; TCDL p B; Enclose C-C Exterio end vertica and forces	IIt=130mph .=6.0psf; B ed; MWFR r (2) zone; I left and rig & MWFRS	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and right exposed;C-C for for reactions shown.	r ght :							ſ	1 million	TH CA	ROLIN	

- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Summun Vinner and SEAL 45844 104 minin April 26,2021

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	EJ03	Jack-Open	2	1	Job Reference (optional)	145815346

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:57 ID:jLHNOaR2n8aiqbAOeurj9ezNyPv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-8

2x4 =

Scale = 1:26.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D FUIY Exp. 3) Unbalanca design. 4) This truss load of 12 overhangs 5) This truss	2x4 SP No.2 2x4 SP No.2 Structural wood she: 3-10-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=70 (LC Max Uplift 2=-77 (LC Max Grav 2=241 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-8=-140/2 2-4=-52/44 CE 7-10; Vult=130mph imph; TCDL=6.0psf; Br p B; Enclosed; MWFRS C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1 ; Ct=1.10 ed snow loads have be has been designed for 0 psf or 1.00 times flat s non-concurrent with co has been designed for	athing directly applie applied or 10-0-0 oc 3= Mechanical, 4= al 10) 2 10), 3=-44 (LC 14) 2 21), 3=101 (LC 21) 7) pression/Maximum 99, 3-8=-29/25 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; L=1.60 roof live load: Lumbe 20.0 psf (flat roof sn .15); Category II; Exp een considered for th r greater of min roof 1 t roof load of 20.0 ps ther live loads.	6) ed or 7) 8) 9) 10) 10) 10) 10) 10) 10) 10) 10) 10) 10	* This truss f on the bottor 3-06-00 tall f chord and ar Refer to gird Provide mec 3. One RT7A M truss to bear connection is forces. This truss is International R802.10.2 a AD CASE(S)	has been designed in chord in all area by 2-00-00 wide w by other members er(s) for truss to tr hanical connection e capable of withst AiTek connectors r ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star Standard	d for a liv is where ill fit betw russ conr n (by oth recomme PLIFT at d does no dance wi sections ndard AN	e load of 20. a rectangle veen the bott ections. ers) of truss 4 lb uplift at j nded to comr jt(s) 2. This ot consider la th the 2015 R502.11.1 a ISI/TPI 1.	Opsf om ioint nect iteral				SEA 4584	L HA EEFROOT	, Summing,
obord live	lood nonconcurrent wi	th any other live lead	de la									1.511	11	

- DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

11 JULIA

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	EJ04	Jack-Open	2	1	Job Reference (optional)	145815347

3-10-8

12 4 Г

Carter Components (Sanford), Sanford, NC - 27332,

1-9-9

0-6-1

ø

2x4 =

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:58 ID:jLHNOaR2n8aiqbAOeurj9ezNyPv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2

Page: 1

April 26,2021

818 Soundside Road Edenton, NC 27932

7 1-9-9 3 3-10-8

Scale	=	1.23.5
ocale	_	1.20.0

Loading (psf) Spacing 1-11-4 CSI DEFL in (loc) //def L/def MT20 TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.21 Vert(LL) 0.01 3-6 >999 180 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.16 Vert(CT) -0.02 3-6 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 1 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-MP WB Weig Weig	ATES GRIP 20 244/190 ight: 12 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 SBRACING SDT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=0-38, 2= Mechanical, 3= Mechanical Max Horiz 1=48 (LC 10) Max CPII 1=4148 (LC 20, 2=102 (LC 20), 3=69 (LC 7) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-7.7=45/13, 2-7=-29/25 S0T CHORD 1-7.7=15/14-00L=1.15 Plate D0L=1.15; Plate D0L=1.15; Category II; Exp B; Fully Exp; Ct=1.10 30 Uhalanced snow loads have been considered for this design. 1 This truss has been designed for a 100 p5 bottom chord and anow loads have been considered for this design. 2 This truss has been designed for a 100 p5 bottom chord and an areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and an ov other members.	SEAL 45844

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	G01	Flat Girder	1	2	Job Reference (optional)	145815348

5-3-0

5-3-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:58 ID:KVxw6tapLd4FHuxLSIs9rNzNyAD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-6-0

5-3-0

Page: 1

P

Scale = 1:54.8

Diato	Offcoto	(Y	V١٠	[5·0 5 0 0 4 12]
i iato	0113013	(<i>N</i> ,	·).	[0.0, 0, 0, 0, 0, 12]

Load TCL Snov TCD	ding L (roof) w (Pf) DL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	5/TPI2014	CSI TC BC WB Matrix-MSH	0.57 0.91 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.09 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRII 244/	P 190	
	DL		10.0	Code	11(0201)	5/11/2014	Mathx-Mort							Weight: 195	lb FT =	= 20%	
LUM TOP BOT WEE BRA TOP BOT	MBER CHORD CHORD 3S ACING CHORD CHORD ACTIONS	2x6 SP No. 2x6 SP No. 2x4 SP No. 2-0-0 oc pu end vertica Rigid ceilin bracing. (size) 4 Max Horiz 6	.2 .2 .3 urlins (6-0- Ils. g directly 4= Mecha 5=227 (LC	-0 max.): 1-3, except applied or 10-0-0 oc nical, 6= Mechanical 2 9)	3) t 4) 5)	Wind: ASCE Vasd=103mp Cat. II; Exp B zone; cantile and right exp DOL=1.60 TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C Unbalanced design	7-10; Vult=130mpł h; TCDL=6.0psf; B ; Enclosed; MWFR ver left and right ex osed; Lumber DOL 7-10; Pr=20.0 psf ate DOL=1.15; Pfr =1.15 Plate DOL=1 t=1.10 snow loads have b	n (3-sec 3CDL=6 8S (env cposed _=1.60 p (roof liv =20.0 p 1.15); C een cor	cond gust) cond gust) consf; h=25ft; elope) exterical olate grip e load: Lumb sf (flat roof sr ategory II; Ex asidered for th	; or left er now: cp B; nis	2) De Pl Ur Ca	Vert: 7= (F), 13= 17=-44 ead + Rc ate Incre biform Lo Vert: 1-3 oncentra Vert: 7= 13=-87 17=-43	-118 (l -111 (l (F), 18 oof Live ease=1 bads (l 3=-60, ted Lo -94 (F (F), 14 (F), 18	F), 8=-111 (F) F), 14=-46 (F) =-44 (F) e (balanced): .15 b/ft) d-6=-570 ads (lb)), 8=-87 (F), 15= =-43 (F)	, 10=-111 , 15=-44 (Lumber In 0=-87 (F) -43 (F), 1((F), 12=- ⁻ (F), 16=-44 ncrease=1 , 12=-87 (I 6=-43 (F),	111 4 (F), .15, F),
FOR	CES	Max Grav (lb) - Maxin Tension	4=3518 (L num Com	C 2), 6=3572 (LC 2) pression/Maximum	6) 7)	Provide adec This truss ha	uate drainage to p s been designed for	revent or a 10.0	water ponding) psf bottom	g. ds							
top Bot	CHORD	1-6=-2363/ 8-9=-1743/ 2-11=-1743 12-13=-174 6-14=-186/ 15-16=-186	82, 1-7=- 0, 9-10=- 3/0, 11-12 43/0, 3-13 189, 14-1 5/189, 5-1	1743/0, 7-8=-1743/0, 1743/0, 2-10=-1743/0 =-1743/0, =-1743/0, 3-4=-2327/ 5=-186/189, 6=-186/189, 72/75 4 49, 72/75	8)), /36 9) 10	* This truss h on the botton 3-06-00 tall b chord and an Refer to girde) This truss is o	as been designed n chord in all areas y 2-00-00 wide will y other members. er(s) for truss to tru designed in accord	for a liv where fit betv ss conr ance w	e load of 20.0 a rectangle veen the botto nections. ith the 2015	Opsf om							
WEE	BS	1-5=0/2715	5, 17-18= 5, 2-5=-69	4/576, 3-5=0/2715		R802.10.2 ar	Residential Code s	sections	s R502.11.1 a ISI/TPI 1.	ind				and the second	1	11,	
ΝΟΤ	TES			, -	11) Load case(s)	1, 2 has/have bee	n modif	ied. Building			1	1.5	ATH	UNHO	Chin.	
1) 2 2) 4 1	2-ply truss (0.131"x3" Top chords oc, 2x6 - 2 Bottom chor staggered Web conne All loads a except if n CASE(S) s provided to unless othe	to be connected) nails as foll s connected P rows stagge ords connect at 0-9-0 oc. ected as follc rre considere oted as front section. Ply to o distribute on erwise indica	cted toget ows: as follows red at 0-9 ed as follo ows: 2x4 - d equally a (F) or bac o ply conn nly loads n tted.	her with 10d :: 2x4 - 1 row at 0-9-0 I-0 oc. : 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, :k (B) face in the LOA ections have been noted as (F) or (B),	12 13 13 LC AD 1)	designer mus correct for the) Graphical pu or the orienta bottom chord) "NAILED" inc (0.148"x3.25" DAD CASE(S) Dead + Snot Increase=1. Uniform Loa Vert: 1-3: Concentrate	st review loads to v e intended use of the rlin representation tition of the purlin al ticates 3-10d (0.14 ") toe-nails per NDS Standard w (balanced): Lum 15 ads (lb/ft) =-60, 4-6=-170 ad Loads (lb)	erify tha his trus: does no long the 8"x3") o S guidli ber Inc	at they are s. bt depict the s e top and/or or 3-12d nes. rease=1.15, F	plate		Comment	A Real Providence	SE 45 NOREW	EAL 844 NEER JOH	NS NILLIN	Summun

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	H01	Monopitch	2	1	Job Reference (optional)	145815349

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:58 ID:7kg?9PktitZG0jUdDXkDqzzNzVE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-9-9	4-2-4	5-8-0 j
2-9-9	1-4-11	1-5-12

Scale = 1:48.8

Plate Offsets (X, Y): [1:0-3-8,Edge]

-														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.40	Vert(LL)	0.01	8-11	>999	240	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	-0.01	8-11	>999	180		
TCDL		10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	1	n/a	n/a		
BCLL		0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL		10.0											Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. Left: 2x4 SI Structural v 5-8-0 oc pu Rigid ceilin bracing. (size) Max Horiz	2 2 3 P No.3 wood shea rrlins, exc g directly 1=0-5-8, 8 1=180 (LC 1=-16 (LC	athing directly applied cept end verticals. applied or 6-0-0 oc 3=0-3-8 C 13) : 10), 8=-121 (LC 11)	5; 6; d or 7; L	 * This truss h on the botton 3-06-00 tall b chord and an One RT7A M truss to beari This connect lateral forces This truss is International R802.10.2 ar OAD CASE(S) 	as been designed in chord in all areas y 2-00-00 wide wil y other members. iTek connectors re ng walls due to UF ion is for uplift only designed in accord Residential Code s ind referenced stan Standard	for a liv s where Il fit betw ecomme PLIFT at / and do dance w sections dard AN	e load of 20.1 a rectangle veen the bott nded to conr jt(\$) 1 and 8 es not consid th the 2015 R502.11.1 a SI/TPI 1.	Dpsf om hect der					
	Max Grav 1	1=198 (LC	C 28), 8=355 (LC 23)											
FORCES	(lb) - Maxin Tension	num Com	pression/Maximum											
TOP CHORD	1-2=-181/8 4-5=-13/0,	7, 2-3=-14 4-7=-68/5	47/89, 3-4=-102/100, 53											
BOT CHORD	1-8=-99/83	, 7-8=-73/	/84, 6-7=0/0											
WEBS	2-8=-159/1	08, 3-8=-	131/90, 3-7=-62/55											
NOTES													mun	1111
 Wind: ASC Vasd=1033 Cat. II; Exp zone and (exposed ; members a Lumber D0 TCLL: ASC DOL=1.15 Lumber D0 Fully Exp.; Unbalance design. This truss chord live 	CE 7-10; Vult: mph; TCDL= o B; Enclosec C-C Exterior I end vertical I and forces & DL=1.60 platt CE 7-10; Pr= Plate DOL= DL=1.15 Plat Ct=1.10 ad snow loads has been des load noncond	=130mph 6.0psf; BG 3; MWFRS 2; 20 zone; ; eft and ric MWFRS e grip DO 20.0 psf (r 1.15); Pf= e DOL=1. s have be signed for current wit	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed; C-C for for reactions shown; L=1.60 roof live load: Lumbe 20.0 psf (flat roof sno 1.5); Category II; Exp en considered for thi a 10.0 psf bottom th any other live load	ht ow: ∋B; s.							L'united and a second second	And	SEA 4584	L EEFR. GONING

818 Soundside Road Edenton, NC 27932

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	HJ01	Diagonal Hip Girder	2	1	Job Reference (optional)	145815350

<u>-1-10-10</u> 1-10-10

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:59 ID:fkO7pFSIJIqQ4uKmmJtBE3zNyPt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

5-4-4 5-4-4 Page: 1

5-4-4

NAILED

Scale = 1:31.4

Loading (p TCLL (roof) 20 Snow (Pf) 20 TCDL 10 BCLL 0 BCDL 10	sf) Spacing D.0 Plate Grip DOL D.0 Lumber DOL D.0 Rep Stress Incr D.0* Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC 0.47 BC 0.30 WB 0.00 Matrix-MP	DEFL in Vert(LL) -0.03 Vert(CT) -0.07 Horz(CT) 0.01	(loc) 4-7 4-7 2	l/defl >999 >920 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood 5-4-4 oc purlins BOT CHORD Rigid ceiling di bracing. REACTIONS (size) 2=0- Max Horiz 2=64 Max Uplift 2=-1 (b) - Maximum Tension TOP CHORD (b) - 400 CHORD 1-2=0/26, 2-8= 3-9=-26/26, 3-4 BOT CHORD 2-10=-129/62, 3-4 BOT CHORD 2-10=-115 BOT CHORD 2-100=-115 BOT CHORD 2-100=-115 BOT CHORD 2-100=-115 BOT CHORD 2-100=-115 BOT C	d sheathing directly applied s, except end verticals. rectly applied or 10-0-0 oc -4-9, 4= Mechanical 4 (LC 11) 23 (LC 8), 4=-35 (LC 12) 50 (LC 19), 4=-208 (LC 19) 10 Compression/Maximum -175/189, 8-9=-29/0, 4=-149/53 4-10=-19/15 0mph (3-second gust) st; BCDL=6.0psf; h=25ft; WFRS (envelope) exterior ht exposed ; end vertical le DOL=1.60 plate grip 0) psf (roof live load: Lumber i); Pf=20.0 psf (flat roof sno OL=1.15); Category II; Exp twe been considered for this ed for greater of min roof live es flat roof load of 20.0 psf with other live loads. ed for a 10.0 psf bottom ent with any other live loads	 6) * This truss I i on the botton 3-06-00 tall I chord and an 7) Refer to gird 8) Provide mec bearing plate 4. 9) One RT7A N truss to bear connection is forces. 10) This truss is International R802.10.2 a 11) "NAILED" in the LOAD of the truss a LOAD CASE(S) 1) Dead + Smi Increase=1 Uniform Lo ft Vert: 1-3 Concentrat Vert: 10- w: B; 	has been designed for a li m chord in all areas where by 2-00-00 wide will fit betw ny other members. Jer(s) for truss to truss com chanical connection (by oth e capable of withstanding 3 MiTek connectors recomme ring walls due to UPLIFT a is for uplift only and does n designed in accordance w I Residential Code sections and referenced standard AM dicates 3-10d (0.148"x3") (d 5") toe-nails per NDS guidli 0 CASE(S) section, loads a are noted as front (F) or ba) Standard ow (balanced): Lumber Inc 1.15 adds (lb/ft) 3=-60, 4-5=-20 ted Loads (lb) =1 (F=1, B=1)	ve load of 20.0psf a rectangle ween the bottom nections. lers) of truss to 35 lb uplift at joint ended to connect t jt(s) 2. This of consider lateral vith the 2015 s R502.11.1 and VSI/TPI 1. or 2-12d ines. pplied to the face lock (B). crease=1.15, Plate			Liter	SEA 4584	ROLINI With A L HA OHNSUIT

April 26,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	J01	Jack-Open	5	1	Job Reference (optional)	145815351

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:59 ID:rINYuXZBaJyOfkM9u1LwJ9zNyAE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.5

LUMBER 2x4 SP No.2 6) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. BOT CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BRACING 5-9-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-5-8 Max Horiz 5=196 (LC 14) Max Grav 3=176 (LC 24), 4=-16 (LC 7), 5=326 (LC 21) FORCES (lb) - Maximum Compression/Maximum	
Tension TOP CHORD 2-5279/63 1-2-0/57 2-6161/103	
3-6=-127/133	
BOT CHORD 4-5=0/0	
 NOTES 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) All plates are MT20 plates upless otherwise indicated 	SEAL 45844

April 26,2021

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB01	Piggyback	1	1	Job Reference (optional)	145815352

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:49:59 ID: cBdb VBICqGf VT fh Ds08b4qz Ny On-RfC ?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC? ff Control of the second state of the seco

Scale = 1:30.7

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	15	n/a	n/a			
BCLL		0.0*	Code	IRC20	15/TPI2014	Matrix-MP									
BCDL		10.0											Weight: 28 lb	FT = 20%	
				2) Wind: ASCE	7-10: Vult=130m	nph (3-sec	cond aust)		LOAD	CASE(S)	Sta	ndard		
TOP CHORD	2x4 SP No 2	,			Vasd=103m	oh: TCDL=6.0psf	: BCDL=6	.0psf: h=25ft:			(-)				
BOT CHORD	2x4 SP No.2	2			Cat. II; Exp E	; Enclosed; MWI	FRS (env	elope) exterio	r						
OTHERS	2x4 SP No.3	3			zone and C-	C Exterior (2) zor	ne; cantile	ver left and ri	ght						
BRACING					exposed ; en	d vertical left and	d right exp	osed;C-C for							
TOP CHORD	Structural w	ood shea	athing directly applie	d or	members an	d forces & MWFF	RS for rea	ctions shown	;						
	6-0-0 oc pur	lins.	5 ,		Lumber DOL	=1.60 plate grip	DOL=1.60)							
BOT CHORD	Rigid ceiling	directly	applied or 10-0-0 oc	3) Truss desig	ned for wind load	ls in the p	lane of the tru	ISS						
	bracing.				only. For stu	ids exposed to w	ind (norm	al to the face)),						
REACTIONS	(size) 2=	=5-10-15	, 6=5-10-15, 8=5-10	-15,	see Standard	a Industry Gable	End Deta	IIS as applicat							
	9=	=5-10-15	, 10=5-10-15,	/		7-10. Pr-20.0 p	esigner a:	e load: Lumb	or .						
	11	1=5-10-1	5, 15=5-10-15		DOI =1 15 P	late DOI =1 15)	Pf=20.0 n	sf (flat roof sn	iow.						
	Max Horiz 2=	=-69 (LC	12), 11=-69 (LC 12))	Lumber DOL	=1.15 Plate DOL	=1.15): C	ategory II: Ex	pB:						
	Max Uplift 2=	=-24 (LC	10), 6=-7 (LC 11), 8	8=-88	Fully Exp.; C	t=1.10	- // -	J , ,							
	(L	.C 15), 1	0=-94 (LC 14), 11=-2	24 5) Unbalanced	snow loads have	been cor	sidered for th	nis						
	(L	.C 10), 1	5=-7 (LC 11)		design.										
	Max Grav 2=	=56 (LC)	29), 6=56 (LC 1), 8=	165 6) This truss ha	s been designed	for greate	er of min roof	live						
	(L	LC 25), 9: 4) 11_56	=117 (LC 1), 10=177	(LC	load of 12.0	osf or 1.00 times	flat roof lo	bad of 20.0 ps	sf on						
FORCES	(lb) - Maximi	4), 11=50 um Com	pression/Maximum	, i) 	overhangs n	on-concurrent wit	th other liv	/e loads.							
FORCES	(ID) - Maxim		pression/maximum	/) Gable requir	es continuous do	atom chor	d bearing.						1111	
TOP CHORD	1-2=0/15 2-	3=-74/59	3-18=-76/50	c c) Gable studs	spaceu al 4-0-0 l	00. I for a 10 () nef hottom					11111 00	- Martin	
	4-18=-36/55	4-19=-3	38/56 5-19=-68/51	3	chord live los	ad nonconcurrent	t with any	other live load	de				IN TH UA	RO	872
	5-6=-52/43,	6-7=0/15	5	1	0) * This truss h	as been designe	d for a liv	e load of 20 0	us. Insf		\wedge	S	A	: ···//	11.
BOT CHORD	2-10=-22/56	, 9-10=-2	22/56, 8-9=-22/56,		on the bottor	n chord in all are	as where	a rectangle	poi			1	AGEFT	PARK	in
	6-8=-22/56	,	, ,		3-06-00 tall b	y 2-00-00 wide v	vill fit betv	veen the botto	m					1.	1
WEBS	3-10=-175/1	35, 4-9=	-71/0, 5-8=-160/122		chord and ar	y other members	s.				-		X I		
NOTES				1	1) _{N/A}						-		SEA	L	=
1) Unbalance	ed roof live loa	ds have	been considered for								-	:	AFO	14	
this design	n.										=		4004	+4	
					0) This true - !-	dealaned in c		th the 2015			-	3			3
				1	I NIS TRUSS IS International	Designed in acco	nuance w	DE02 11 1 0	nd			:7	·	ais	23
					R802 10 2 a	residential CODE	e secuons	1902.11.1 a 191/TPI 1	nu			11	GIN	EE	5
				1	3) See Standar	d Industry Piggy	nualu An	s Connection				11	Ar	UNS.	5
					Detail for Co	nnection to base	truss as a	annlicable or				11.00	WI:SW J	011,11	
					consult quali	fied building desi	aner.						in min	unu.	
							5								

April 26,2021

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB02	Piggyback	8	1	Job Reference (optional)	145815353

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:00 ID:kEzMMGthmiaqctnF6NUdUkzNyO2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Scale = 1:28.5

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

	,	-,, [= ., 0 0]											
Loading TCLL (roof) Snow (Pf) TCDL BCDL BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING	(psf) 20.0 20.0 10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC207 3	5/TPI2014) Truss desig only. For stu see Standar or consult qu) TCLL: ASCE	CSI TC BC WB Matrix-MP Ined for wind load uds exposed to w d Industry Gable Jalified building d E 7-10; Pr=20.0 p	0.11 0.11 0.01 ds in the p vind (norm End Deta designer as bsf (roof liv	DEFL Vert(LL) Vert(CT) Horz(CT) ane of the tru al to the face is as applical is as applical s per ANS/TFI e load: Lumb	in n/a 0.00 uss), ble, Pl 1. er	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
TOP CHORD	Structural wood s 6-0-0 oc purlins.	sheathing directly app	lied or	Lumber DOL=1.15 Plate DOL=1.15); PI=20.0 psr (flat foor snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10									
REACTIONS	bracing. (size) 2=5-10 7=5-10 Max Horiz 2=-69 Max Uplift 2=-33 7=-33 Max Grav 2=169 (LC 1) 1))-15, 4=5-10-15, 6=5-)-15, 11=5-10-15 (LC 12), 7=-69 (LC 12 (LC 14), 4=-42 (LC 15 (LC 14), 11=-42 (LC 1) (LC 1), 4=169 (LC 1), 7=169 (LC 1), 11=16	5 10-15, 6 2) 5), 7 15) 8 , 6=184 9 59 (LC	 Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live lo 	snow loads have as been designed psf or 1.00 times ion-concurrent wi res continuous bo spaced at 4-0-0 as been designed ad nonconcurren	d for great s flat roof k ith other lin ottom chor oc. d for a 10.0 it with any	er of min roof bad of 20.0 ps ve loads. d bearing. D psf bottom other live loa	live sf on ds.					
FORCES	(lb) - Maximum C Tension 1-2=0/15, 2-14=-	ompression/Maximun 118/62, 3-14=-67/69,	n 1	10) This truss has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.									
BOT CHORD WEBS	3-15=-67/69, 4-1 2-6=-25/61, 4-6= 3-6=-67/0	-=-115/62, 4-5=0/15 -8/61	1	11) _{N/A}								HTH CA	ROLIN
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 			for 1 ft; 1 ior right or L /n;	 2) This truss is International R802.10.2 a 3) See Standar Detail for Cc consult qual OAD CASE(S) 	designed in acco Residential Cod Ind referenced st rd Industry Piggy Innection to base lified building des Standard	ordance w le sections andard AN back Trus e truss as a signer.	ith the 2015 : R502.11.1 a ISI/TPI 1. s Connection applicable, or	nd		Dannan	AN A	SEA 458 NGIN Apr	L 14 EFER. 60 0HN 0HN 11 126,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB03	Piggyback	1	1	Job Reference (optional)	145815354

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:00 ID:BXrlbvRgYSiZSllaCbMyiszNyPu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-
Scale = 1:30.6	1

2-11-13

Loading TCLL (root) (psf) 20.0 Spacing Plate Grip DOL Lumber DOL 2-0-0 1.15 CSI TC 0.11 BC DEFL Vert(LL) in (loc) // / defl L/ PLATES GRIP TCDL (root) 10.0 Rep Stress Incr YES 0.01 BC DC	Plate Offsets (X, Y): [2:0-2-1,0-1-	0], [5:0-2-1,0-1-0]												
LUMBER 3) Truss designed for wind loads in the plane of the truss TOP CHORD 2x4 SP No.2 or studs exposed to wind loads in the plane of the truss OTHERS 2x4 SP No.3 or consult qualified building designer as applicable, or consult qualified building designer as applicable, or consult qualified building designer as applicable, or consult qualified building designer as per ANS/TP1 1. BRACING Structural wood sheathing directly applied or 10-0-0 or bracing. Yes T-10; Pr=20.0 psf (flat roof snow: Lumber DOL=1.15); Category II; Exp B; Fully Exp; Ct=1.10 BOT CHORD (size) 2=5-10-8, 7=5-5-10-8, 7=5-10-8, 7=5-5-10-8, 7=5-10-8, 7	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.11 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard MGINEEF, 50111111111111111111111111111111111111	LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalance this design this design 2) Wind: ASG Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 6-0-0 oc purlins. Rigid ceiling direc bracing. (size) 2=5-10 8=5-10 Max Horiz 2=69 (L Max Uplift 2=-31 (7=-85 (12=-12 Max Grav 2=162 (LC 25) 1), 12= (lb) - Maximum Cr Tension 1-2=0/15, 2-16=-9 3-17=-65/69, 4-17 5-6=0/15 2-8=-24/56, 7-8=- 3-8=-66/0, 4-7=-1 ed roof live loads ha n. CE 7-10; Vult=130m imph; TCDL=6.0psf; p B; Enclosed; MWFF C-C Exterior (2) zon end vertical left and and forces & MWFF	heathing directly applie tly applied or 10-0-0 o -8, 5=5-10-8, 7=5-10-6 -8, 9=5-10-8, 12=5-10- C (13), 9=69 (LC 13) LC 14), 5=-12 (LC 11) LC 15), 9=-31 (LC 14) (LC 11) -(LC 1), 5=78 (LC 24), 9=16 -78 (LC 24) 	3) ed or bc 5) 3, 6) -8 6) 7=149 9) 52 (LC 1(12 52 (LC 1(12 57 12 57 13 57 L(57 L	Truss desig only. For stu see Standarr or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa 0) * This truss is chord live loa 0) * This truss is not the bottor 3-06-00 tall fl chord and ar I) N/A 2) This truss is International R802.10.2 a 3) See Standar Detail for Co consult quali	ned for wind loads uds exposed to wind d Industry Gable E ualified building de 7-10; Pr=20.0 ps late DOL=1.15); P =1.15 Plate DOL= it=1.10 snow loads have I as been designed f psf or 1.00 times f on-concurrent with es continuous bott spaced at 2-0-0 o us been designed f ad nonconcurrent t ab been designed f ad nonconcurrent t nas been designed n chord in all area by 2-00-00 wide wi hy other members. designed in accor Residential Code nd referenced star d Industry Piggyba nnection to base t fied building desig Standard	in the pind (norm ind Deta signer as if (roof liv) f=20.0 p =1.15); C been cor for greate lat roof la n other liv toom chor c. for a 10.0 with any d for a liv s where ill fit betw dance w sections ndard AN russ as a ner.	ane of the tru al to the face Is as applical is per ANSI/TI e load: Lumb of (flat roof sr ategory II; Ex isidered for the er of min roof oad of 20.0 per re loads. d bearing.) psf bottom other live load a rectangle recen the bottom th the 2015 R502.11.1 a ISI/TPI 1. s Connection applicable, or	uss), ble, er now: p B; live sf on ds. Dpsf om		Continue		SEA 4584 NOREW J	RO(11 L L 4 EER 60 0HN50 126,2021	

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB04	Piggyback	15	1	Job Reference (optional)	145815355

Scale = 1:28.4

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:00 ID:MkEVGn?v65efaW0yLdvLuazNyef-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5

-0-7-7 6-5-15 2-11-4 5-10-8 0-7-7 0-7-7 2-11-4 2-11-4 4x5 = 3 12 10 Г 14 15 2-10-3 2-11-13 2 4)-4-13 1 М ø 6 2x4 🛛 2x4 = 2x4 = 5-10-8 Plate Offsets (X, Y): [2:0-2-1.0-1-0], [4:0-2-1.0-1-0]

Plate Olisets	(X, Y): [2:0-2-1,0-1-0],	[4:0-2-1,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.11 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shead of the second seco	athing directly applied applied or 10-0-0 oc 4=5-10-8, 6=5-10-8, 11=5-10-8 13), 7=69 (LC 13) 14), 4=-42 (LC 15), 21), 4=-64 (LC 1), 6= 168 (LC 1), 11=168 (pression/Maximum 7/62, 3-14=-67/68, 114/62, 4-5=0/15	3) 4) 5) 6) 7) 8) 9) LC 10, 11	Truss desig only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loo:) * This truss la on the botton 3-06-00 tall H chord and an	ned for wind load: dids exposed to wi d Industry Gable I lalified building de 7-10; Pr=20.0 ps late DOL=1.15); F =1.15 Plate DOL t=1.10 snow loads have as been designed ps for 1.00 times on-concurrent wit es continuous boi spaced at 4-0-0 c las been designed ad nonconcurrent as been designed ad nonconcurrent as been designed py 2-00-00 wide w by other members	s in the pl ind (norm End Detai esigner as sf (roof liv Pf=20.0 p =1.15); C been cor for greate flat roof lc h other li ttom chor pc. for a 10.0 with any d for a liv as where vill fit betw s.	ane of the tru al to the face is as applical per ANSI/TF e load: Lumb sf (flat roof sr ategory II; Ex isidered for th er of min roof bad of 20.0 ps re loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	Jss), ble, PI 1. er now: cp Β; his live sf on ds. Dpsf pm					10.
 3-15=-67/68, 4-15=-114/62, 4-5=0/15 BOT CHORD 2-6=-25/60, 4-6=-8/60 WEBS 3-6=-66/0 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60) N/A) This truss is International R802.10.2 a) See Standar Detail for Co consult quali PAD CASE(S)	designed in acco Residential Code nd referenced sta d Industry Piggyb nnection to base fied building desig Standard	rdance w e sections Indard AN pack Trus: truss as a gner.	th the 2015 R502.11.1 a SI/TPI 1. s Connection pplicable, or	ind		C	A A A A A A A A A A A A A A A A A A A	SEA 4584 VOR EN SEA	EER. 00

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB05	Piggyback	1	1	Job Reference (optional)	145815356

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:01 ID: QcbIPZ6AukDx8vhaFymEo2zNyJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffice and the second sec

Page: 1

Scale = 1:30.6

Plate Offsets (X, Y):	[2:0-2-1,0-1-0], [6:0-2-1,0-1-0]
-----------------------	----------------------------------

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	15	n/a	n/a			
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 28 lb	FT = 20%	
LUMBER			2) Wind: ASCE	7-10; Vult=130mp	oh (3-se	cond gust)		LOAD	CASE(S)	Sta	ndard		
TOP CHORD	2x4 SP No.2			Vasd=103m	ph; TCDL=6.0psf;	BCDL=6	6.0psf; h=25ft;							
BOT CHORD	2x4 SP No.2			Cat. II; Exp I	B; Enclosed; MWF	RS (env	elope) exterior							
OTHERS	2x4 SP No.3			zone and C-	C Exterior (2) zone	e; cantile	ever left and rig	ght						
BRACING				exposed ; er	d vertical left and	right exp	bosed;C-C for							
TOP CHORD	Structural wood she	athing directly applie	ed or	Lumber DO	-1 60 plate arin D		n n n n n n n n n n n n n n n n n n n							
	6-0-0 oc purlins.		2) Truss desig	ned for wind loads	in the n	lane of the true	20						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	c J	only Forst	ids exposed to wir	nd (norm	al to the face)	55						
	bracing.			see Standar	d Industry Gable E	nd Deta	ils as applicab	le.						
REACTIONS	(size) 2=5-10-8,	, 6=5-10-8, 8=5-10-8	3,	or consult qu	alified building de	signer a	s per ANSI/TP	11.						
	9=5-10-8,	, 10=5-10-8, 11=5-10 o	^{0-8,} 4) TCLL: ASCE	7-10; Pr=20.0 ps	f (roof liv	e load: Lumbe	er						
	10=0-10-0	0 12) 11_60 (I C 12)		DOL=1.15 P	late DOL=1.15); P	f=20.0 p	sf (flat roof sno	ow:						
	Max Holiz 2=09 (LC	(10) = 7 (10 11)	0_ 07	Lumber DOL	=1.15 Plate DOL=	=1.15); C	Category II; Exp	ъB;						
	(I C 15)	10=-89 (I C 14) 11=-	-20 -	Fully Exp.; C	t=1.10									
	(LC 10), 1	15=-7 (LC 11)	20 5) Unbalanced	snow loads have I	been co	nsidered for thi	IS						
	Max Grav 2=63 (LC	25), 6=55 (LC 1), 8=	=165 g) This truce br	s boon designed f	or groat	or of min roof l	ivo						
	(LC 25), 9	9=114 (LC 1), 10=16	6 (LC		nef or 1 00 times f	lat roof l	and of 20.0 pet	fon						
	24), 11=6	3 (LC 25), 15=55 (L	C 1)	overhands n	on-concurrent with	other li	ve loads.	1 011						
FORCES	(lb) - Maximum Corr	pression/Maximum	7) Gable requir	es continuous bott	om cho	rd bearing.							
	Tension		8) Gable studs	spaced at 2-0-0 o	с.	0					minin	1111	
FOP CHORD	1-2=0/15, 2-3=-66/5	5, 3-18=-73/50,	9) This truss ha	as been designed f	or a 10.	0 psf bottom				6	WHILL CA	Dall	
	4-18=-37/55, 4-19=-	37/55, 5-19=-68/50,		chord live loa	ad nonconcurrent	with any	other live load	ls.		~	1	a		
	5-6=-52/44, 6-7=0/1	5	1	0) * This truss I	has been designed	for a liv	e load of 20.0	psf			÷.	O'. HES	IB: NY	
BOT CHORD	2-10=-22/56, 9-10=-	22/56, 8-9=-22/56,		on the bottor	m chord in all area	s where	a rectangle					vin b	enner	
WEDO	0-0=-22/00	0/122 5 9- 160/122	,	3-06-00 tall 1	by 2-00-00 wide wi	Il fit bety	ween the botto	m				:2	K :	-
	4-3=-09/0, 3-10=-16	00/122, 3-0=-100/122	<u>-</u> 1	1) NUA	iy other members.					Ξ.		CE A	1 E	1
NOTES	a dina af Bira da ada harra	h		') N/A						-	:	SEP	L :	=
this docior	eu loot live loads have	been considered to	ſ							2	:	4584	14 :	=
uns design										-	i 1			5
			1	2) This truss is	designed in accor	dance w	ith the 2015				-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3
				International	Residential Code	sections	s R502.11.1 an	nd			- 7	L. SNOW	EFR. ON	6
				R802.10.2 a	nd referenced star	ndard Al	NSI/TPI 1.				1	OV. AIN	F	
			1	 See Standar 	d Industry Piggyba	ack Trus	s Connection				1	TEWI	OHN	
				Detail for Co	nnection to base t	russ as	applicable, or					11111		
				consult quali	fied building desig	ner.								

April 26,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPH Cuality Criteria, DSB-89 and BCSI Building Componer Safety Information available from Truss Pitel Institute. 2670 Crain Hidoway. Suite 203 Waldorf. MD 20601

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB06	Piggyback	3	1	Job Reference (optional)	145815357

3-6-1 3-6-1

12 10 ∟

14

Carter Components (Sanford), Sanford, NC - 27332

TCDL

BCLL

BCDL

WEBS

NOTES

1)

2)

3-5-8

3-3-12

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:01 ID:TW4ODuPbEWY2MrqJAu21KjzNy6Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-2 3-6-1

> 4x5 = 3

> > 15

GRIP

244/190

FT = 20%

6 2x4 II 2x4 = 2x4 = 7-0-2 Scale = 1:30.3 Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0] Loading 2-0-0 CSI DEFL l/defl L/d PLATES (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.16 Vert(LL) 999 MT20 n/a n/a Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.16 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr WB 0.02 Horz(CT) 4 YES 0.00 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP Weight: 30 lb 10.0 LUMBER 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 2x4 SP No 2 TOP CHORD see Standard Industry Gable End Details as applicable, BOT CHORD 2x4 SP No 2 or consult qualified building designer as per ANSI/TPI 1. OTHERS 2x4 SP No.3 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) BRACING DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: TOP CHORD Structural wood sheathing directly applied or Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; 6-0-0 oc purlins. Fully Exp.: Ct=1.10 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 5) Unbalanced snow loads have been considered for this bracing. design. REACTIONS (size) 2=7-0-2, 4=7-0-2, 6=7-0-2, 6) This truss has been designed for greater of min roof live 7=7-0-2, 11=7-0-2 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Max Horiz 2=81 (LC 13), 7=81 (LC 13) overhangs non-concurrent with other live loads. Max Uplift 2=-40 (LC 14), 4=-50 (LC 15), Gable requires continuous bottom chord bearing. 7) 7=-40 (LC 14), 11=-50 (LC 15) Gable studs spaced at 4-0-0 oc. 8) Max Grav 2=200 (LC 1), 4=200 (LC 1), 6=209 9) This truss has been designed for a 10.0 psf bottom (LC 1), 7=200 (LC 1), 11=200 (LC chord live load nonconcurrent with any other live loads. 1) 10) * This truss has been designed for a live load of 20.0psf FORCES (Ib) - Maximum Compression/Maximum on the bottom chord in all areas where a rectangle Tension 3-06-00 tall by 2-00-00 wide will fit between the bottom TOP CHORD 1-2=0/15, 2-14=-148/76, 3-14=-91/84, chord and any other members. 3-15=-91/84, 4-15=-146/76, 4-5=0/15 11) _{N/A} BOT CHORD 2-6=-35/76, 4-6=-10/76 3-6=-71/1 C 12) This truss is designed in accordance with the 2015 Unbalanced roof live loads have been considered for International Residential Code sections R502.11.1 and this design. You www. R802.10.2 and referenced standard ANSI/TPI 1. Wind: ASCE 7-10; Vult=130mph (3-second gust) 13) See Standard Industry Piggyback Truss Connection Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior Detail for Connection to base truss as applicable, or consult qualified building designer zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for LOAD CASE(S) Standard members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 26,2021

mm

WWWWWWWWWW

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB07	Piggyback	1	1	Job Reference (optional)	145815358

<u>3-6-1</u> 3-6-1

-0-7-7

0-7-7

2

2x4 =

1

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:01 ID:KVxw6tapLd4FHuxLSIs9rNzNyAD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-2

3-6-1

3x5 = 3 10^{12} 15 16 2x4 = 4 5 6 7

2x4 II

7-0-2

2x4 =

7-7-9

Scale = 1:30.4

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [3:0-2-8,Edge], [5:0-2-1,0-1-0]

Lumber DOL=1.60 plate grip DOL=1.60

3-3-14

0-4-13

3-5-8

Plate Olisets	(X, Y): [2:0	I-2-1,0-1-0 <u>]</u> ,	, [3:0-2-8,Edge], [5:0-	-2-1,0-1-	J									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.22 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid cei bracing. (size) Max Horiz Max Uplift Max Grav 	lo.2 lo.3 al wood she purlins. ling directly 2=7-0-2, 4 8=7-0-2, 2 2=-31 (LC 7=-67 (LC 11=-11 (L 2=250 (LC (L 2) 5) 5	athing directly applie applied or 10-0-0 oc 5=7-0-2, 7=7-0-2, 11=7-0-2 2 12), 8=-81 (LC 12) 2 14), 5=-11 (LC 11), 2 15), 8=-31 (LC 14), C 11) C 1), 5=106 (LC 1), 7 2=250 (L C 1) 11=100	2 ed or 5 7 2 2 2 2 6 0 1 0 5 8 6 1 0 5 8 6 1 1 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Truss desig only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live load 	ned for wind loads uds exposed to wi d Industry Gable E Jalified building de 7-10; Pr=20.0 ps Hate DOL=1.15); F ==1.15 Plate DOL= Ct=1.10 snow loads have as been designed psf or 1.00 times i on-concurrent wit res continuous bot spaced at 2-0-0 o as been designed ad nonconcurrent	is in the p and (norm End Deta signer a f (roof liv f=20.0 p =1.15); C been coo for great for great for great for great for a roof l c. for a 10. with any	lane of the tri ial to the face ils as applica s per ANSI/T ve load: Lumb si (flat roof s stegory II; E: nsidered for t er of min roo bad of 20.0 p ve loads. rd bearing. 0 psf bottom other live loa	uss a), ble, PI 1. cor now: xp B; his f live sf on ads.					
FORCES	(lb) - Ma: Tension	1) ximum Corr	pression/Maximum		on the bottor 3-06-00 tall I	m chord in all area by 2-00-00 wide w	ill fit bety	a rectangle veen the bott	om					
TOP CHORD) 1-2=0/15 3-16=-11 5-6=0/15	, 2-15=-163 1/68, 4-16=	3/38, 3-15=-75/46, =-160/63, 4-5=-156/2	18,	1) _{N/A}								TH CA	ROIT
BOT CHORD) 2-7=-32/	114, 5-7=-1	6/114									-	O	id N'
NOTES 1) Unbalance this design 2) Wind: AS Vasd=100 Cat. II; Ep zone and exposed members	4-7=-137 ced roof live gn. SCE 7-10; Vu 3mph; TCDI xp B; Enclos 1 C-C Exterio ; end vertica and forces	loads have ult=130mph L=6.0psf; B sed; MWFR or (2) zone; al left and rig & MWFRS	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown;	r L ght	 Inite trusts is International R802.10.2 a See Standar Detail for Co consult quali OAD CASE(S) 	Residential Code nd referenced sta d Industry Piggyb nnection to base fied building desig Standard	ack Truss and ard Al ack Trus aruss as gner.	s R502.11.1 a NSI/TPI 1. s Connectior applicable, or	and n			K/C	SEA 4584	LL H4

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB08	Piggyback	3	1	Job Reference (optional)	145815359

-0-7-7

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:02 ID:logfQIXBNOfNumxgV20HyWzNyCt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.5	1
Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]	

	(, .). [= =,	[
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing 2 Plate Grip DOL 1.7 Lumber DOL 1.7 Rep Stress Incr YE Code IR	0-0 15 15 15 15 15 15 15 15 15 17 19 10 14	CSI TC BC WB Matrix-MP	0.04 0.05 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-3-9 oc purlins. Rigid ceiling directly bracing. (size) 2=4-0-2, 4 7=4-0-2, 7 Max Horiz 2=-50 (LC Max Uplift 2=-23 (LC (LC 14), 7 15) Max Grav 2=118 (LC (LC 1), 7= 1) 	athing directly applied or r applied or 10-0-0 oc 4=4-0-2, 6=4-0-2, 11=4-0-2 2 12), 7=-50 (LC 12) 2 14), 4=-29 (LC 15), 6=-2 7=-23 (LC 14), 11=-29 (LC C 1), 4=118 (LC 1), 6=133 =118 (LC 1), 11=118 (LC	 Truss desig only. For st see Standar or consult qi TCLL: ASCI DOL=1.15 F Lumber DOI Fully Exp.; C Unbalanced design. This truss hi load of 12.0 overhangs r Gable requii Gable studs This truss hi chord live lo * This truss on the botto 	ined for wind loads in uds exposed to wind d Industry Gable En ualified building desi Z-10; Pr=20.0 psf (Plate DOL=1.15); Pf= L=1.15 Plate DOL=1 Ct=1.10 is now loads have be as been designed fo psf or 1.00 times fla ison-concurrent with or res continuous botto spaced at 4-0-0 oc. as been designed fo and nonconcurrent with has been designed f m chord in all areas	n the p I (norm d Deta gner a: (roof liv =20.0 p .15); C een cor r great t roof liv other li m chor r a 10.1 ith any for a liv where	lane of the tru al to the face ils as applica s per ANSI/TI e load: Lumb sf (flat roof sr iategory II; E) nsidered for tl er of min roof pad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.0.	uss ble, PI 1. ver now: kp B; his f live sf on dds. 0psf					
FORCES	(lb) - Maximum Com Tension	npression/Maximum	3-06-00 tall chord and a	by 2-00-00 wide will ny other members.	fit betv	veen the bott	om					
TOP CHORD BOT CHORD WEBS	 1-2=0/15, 2-3=-70/4 2-6=-13/40, 4-6=-9/4 3-6=-52/2 	3, 3-4=-67/43, 4-5=0/15 40	11) _{N/A}	-					(herry	NITH CA	ROLINI
 Unbalanc this desig Wind: AS Vasd=10 Cat. II; E: zone and exposed members Lumber [ed roof live loads have in. GE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Br xp B; Enclosed; MWFR I C-C Exterior (2) zone; ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DC	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and right ght exposed;C-C for for reactions shown; DL=1.60	 12) This truss is Internationa R802.10.2 a 13) See Standa Detail for Co consult qual LOAD CASE(S) 	designed in accorda I Residential Code s and referenced stand rd Industry Piggybac onnection to base tru lified building design Standard	ance w ections lard AN k Trus iss as a er.	ith the 2015 5 R502.11.1 a ISI/TPI 1. s Connection applicable, or	and			No.	SEA 4584	EER.OUT

2020 BEFORE USE. g component, not ign into the overall nd permanent bracing arding the and BCSI Building Component 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	PB09	Piggyback	1	1	Job Reference (optional)	145815360

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:02 ID:ZuGB4O8cnsqKIUNpSAm5T_zNyFy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

5

Page: 1

-0-7-7 2-0-1 4-0-2 4-7-9 0-7-7 2-0-1 2-0-1 0-7-7 3x5 = 12 10 ∟ 3 2-0-14 2-2-8 2 -4-13 1 2x4 =2x4 =

4-0-2

Scale = 1:25.5

Plate Offsets (X, Y): [2:0-2-1.0-1-0], [3:0-2-8.Edge], [4:0-2-1.0-1-0]

	(7, 1). [2.0 2 1,0 1 0],	[5.0-2-0,Euge], [4.0	-2-1,0-1-0										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-3-9 oc purlins. Rigid ceiling directly bracing. (size) 2=4-0-2, 4 10=4-0-2 Max Horiz 2=-50 (LC Max Uplift 2=-24 (LC 6=-24 (LC Max Grav 2=185 (LC (LC 1), 10	athing directly applie applied or 10-0-0 oc 4=4-0-2, 6=4-0-2, 2 12), 6=-50 (LC 12) 2 14), 4=-20 (LC 15), 2 14), 10=-20 (LC 15) C 1), 4=191 (LC 1), 6 =191 (LC 1)	5) 6) 6d or 7) 7) 8) 8) 9) 9) 9) 9)	This truss ha load of 12.0 overhangs n Gable requir This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar N/A	As been designed psf or 1.00 times on-concurrent wit es continuous boi is been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w hy other members designed in acco	for great flat roof k h other livit ttom chor for a 10.0 with any d for a livit as where vill fit betv s.	er of min roof bad of 20.0 p: ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ith the 2015	live sf on ds. Dpsf Dm					
FORCES	(lb) - Maximum Com Tension 1-2=0/15, 2-3=-115/4 4-5=0/15	pression/Maximum 43, 3-4=-116/41,	11	R802.10.2 a See Standar Detail for Co	nd referenced sta d Industry Piggyb nnection to base fied building desir	ndard AN ack Trus truss as a	SI/TPI 1. S Connection applicable, or	nu					
 BOT CHORD NOTES 1) Unbalance this desig 2) Wind: AS Vasd=100 Cat. II; Eb- zone and exposed ; members Lumber D 3) TCLL: AS DOL=1.11 Lumber D 4) Unbalance design. 	2-4=-12/85 eed roof live loads have in. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(qv B; Enclosed; MWFR? C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DO SCE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= DOL=1.15 Plate DOL=1. .; Ct=1.10 eed snow loads have be	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and rig flt exposed;C-C for for reactions shown; V=1.60 roof live load: Lumbe :20.0 psf (flat roof sn .15); Category II; Ex sen considered for th	r ght er ow: p B; is	DAD CASE(S)	Standard					Gennin	A CALLER AND A CAL	SEA 4584	L DHNSOLUTION

818 Soundside Road Edenton, NC 27932

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	VL01	Valley	1	1	Job Reference (optional)	l45815361

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:02 ID:7kg?9PktitZG0jUdDXkDqzzNzVE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-4-11

3x8 =

3x5 II

Scale = 1:28.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.62	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0	* Code	IRC2015/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 24 lb	FT = 20%
	2x4 SP No 2		 Gable req Gable stu 	uires continuous bo	ttom chor	d bearing.						
BOT CHORD	2x4 SP No.2		7) This truss	has been designed	for a 10.0) psf bottom						
WEBS	2x4 SP No.3		chord live	load nonconcurrent	t with any	other live loa	ids.					
BRACING			8) * This trus	s has been designe	ed for a liv	e load of 20.0	0psf					
TOP CHORD	Structural wood s 6-0-0 oc purlins,	heathing directly applie except end verticals.	ed or on the bot 3-06-00 ta	tom chord in all area all by 2-00-00 wide v	as where vill fit betv	a rectangle	om					
BOT CHORD	Rigid ceiling direo bracing.	tly applied or 10-0-0 oc	enord and 9) Provide m	echanical connection	s. on (by oth standing 6	ers) of truss t	to ioint					
REACTIONS	(size) 1=6-4-	11, 4=6-4-11	4 and 38 l	b uplift at joint 1.	stanuing c	iz ib upilit at j	Joint					
	Max Horiz 1=124	(LC 11)	10) This truss	is designed in acco	ordance w	ith the 2015						
	Max Oplift 1=-38	LC 10), 4=-62 (LC 14) (LC 20) 4-258 (LC 20)	Internation	nal Residential Code	e sections	R502.11.1 a	and					
FORCES	(lb) - Maximum C	ompression/Maximum	R802.10.2 / LOAD CASE(2 and referenced sta S) Standard	andard AN	ISI/TPI 1.						
TOP CHORD	1-7=-631/180, 1-7	/=-612/182, 1-8=-148/3	i0,									
	2-8=-125/32, 2-3=	-115/43, 3-4=-137/71										
BOT CHORD	1-4=-187/592											
NOTES												
1) Wind: ASC	CE 7-10; Vult=130m	ph (3-second gust)										
Vasd=103	mpn; ICDL=6.0psf	BCDL=6.0pst; n=25ft;	-									• • • • • •
Cal. II; EX	C C Exterior (2) 0.0	12 to 2 0 12 Interior (r 1)								, mining	1111
3-0-12 to 3	3-8-0 Exterior (2) 3-	-12 to 5-0-12, intendi (1)							. 3	WAH CA	Rollin
cantilever	left and right expos	ed : end vertical left and	d							Li	A Cas	A. 4/1/1
right expo	sed;C-C for membe	rs and forces & MWFR	S							31	U. FESS	Dia
for reactio	ns shown; Lumber	OOL=1.60 plate grip								V V	where the	verter
DOL=1.60)										· Q · /	
2) Truss des	signed for wind load	s in the plane of the tru	SS								SEA	. 1 E
only. For	studs exposed to w	nd (normal to the face)	,						-			
see Stand	lard Industry Gable	End Details as applicab	ole,								4584	14 <u>:</u> E
or consult	qualified building de	esigner as per ANSI/TP	41.						1	1		1. 2
3) TOLL: AS	CE 7-10; Pr=20.0 p	of (root live load: Lumbe	er							- 0	· •	a:23
Lumber D	OI = 1.15 Plate DOL= 1.15), 1	-1=20.0 psr (fiat 100) sri =1 15): Category II: Evi	ow. n B:							24	VSNGIN	FERION
Fully Exp	· Ct=1.101 ate DOL	-1.10, Oalegoly II, EX	р D ,							11	Opini	. NS IN
4) Unbalance	ed snow loads have	been considered for th	is							100	1, 5W .	OHIGH
design.											in min	mm
-												1 00 0004

818 Soundside Road Edenton, NC 27932

April 26,2021

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250	
21040035-A	VL02	Valley	1	1	Job Reference (optional)	145815362

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:03 ID:fY6dy3jFxZRPPZvRfqD_HmzNzVF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-2-12

Scale = 1:35.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MR	0.36 0.21 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exit Rigid ceiling directly bracing. (size) 5=9-2-12, Max Horiz 7=188 (LC Max Uplift 5=-36 (LC 7=-31 (LC Max Grav 5=135 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 6=9-2-12, 7=9-2-12 C 11) C 11), 6=-131 (LC 14) C 10) C 23), 6=494 (LC 20)	dor &	 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. Gable requir Truss to be f braced agair Gable studs This truss ha chord live load * This truss f on the bottor 3-06-00 tall l 	7-10; Pr=20.0 psf late DOL=1.15); Pf =1.15 Plate DOL=' t=1.10 snow loads have b es continuous botto ully sheathed from ist lateral movemer spaced at 4-0-0 oc s been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will	(roof liv =20.0 p 1.15); C een cor om chor one fac on a chor or a 10.0 ith any for a liv where l fit betv	e load: Lumb sf (flat roof sr ategory II; Ex asidered for th d bearing. e or securely iagonal web). D psf bottom other live load e load of 20.0 a rectangle veen the botto	er now: .p B; ds. Dpsf					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex	7=169 (LC (lb) - Maximum Com Tension 1-7=-134/64, 1-8=-1: 2-3=-113/57, 3-4=-11 6-7=-74/85, 5-6=-74/ 2-6=-375/182 CE 7-10; Vult=130mph mph; TCDL=6.0psf; BK p B; Enclosed; MWFR3	C 20) pression/Maximum 35/18, 2-8=-126/60, 05/76, 4-5=-106/51 /85 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior		 0) Provide mec bearing plate 7, 36 lb uplif 1) This truss is International R802.10.2 a COAD CASE(S) 	hanical connection a capable of withsta at joint 5 and 131 designed in accord Residential Code s and referenced stand Standard	(by oth inding 3 lb uplift ance w sections dard AN	ers) of truss t 11 lb uplift at jr at joint 6. ith the 2015 R502.11.1 a ISI/TPI 1.	o oint nd		(2,000	NITH CA	ROLINI

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 6-5-6, Exterior (2) 6-5-6 to 9-1-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply		
21040035-A	VL03	Valley	1	1	Job Reference (optional)	145815363

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:03 ID:F?QaZDFaaefRUpS7Z?9LpOzNyWb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-11

Page: 1

2-3-5 4-2-9 2-3-5 1-11-3 4x5 = 2 12 10 ┌ 1-7-5 1-11-0

0-0-4

4-6-11

Scale - 1:25 5 _

00010 - 112010													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T	[PI2014	CSI TC BC WB Matrix-MP	0.05 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-6-11 oc purlins. Rigid ceiling directly bracing. (size) 1=4-6-11 Max Horiz 1=-43 (LI Max Uplift 1=-1 (LC (LC 14) Max Grav 1=60 (LC (LC 1))	eathing directly appli y applied or 6-0-0 oc , 3=4-6-11, 4=4-6-11 C 10) 14), 3=-8 (LC 15), 4 C 31), 3=60 (LC 32),	5) (6) (7) (8) - 9) - 1 10) (=-35 - 4=265 11) -	Unbalanced design. Gable requird Gable studs : This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate bearing plate his truss is International	snow loads have es continuous bot spaced at 4-0-0 c s been designed d nonconcurrent has been designed y 2-00-00 wide w by other members hanical connectio capable of withs t joint 3 and 35 ll designed in accoo Residential Code	been cor ttom chor oc. for a 10.0 with any d for a liv as where vill fit betv S. on (by oth ttanding 1 b uplift at rdance w e sections	hsidered for the d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the botth ers) of truss i lb uplift at jo joint 4. ith the 2015 s R502.11.1 a	his Ids. Dpsf om int int					
FORCES	(lb) - Maximum Cor	npression/Maximum	LOA	R802.10.2 ar A D CASE(S)	nd referenced sta Standard	Indard AN	ISI/TPI 1.						
TOP CHORD	1-2=-53/81, 2-3=-13	3/77											
BOT CHORD	1-4=-74/55, 3-4=-74	1/55											
WEBS	2-4=-159/50												
NOTES													
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D Truss des 	ed roof live loads have n. CE 7-10; Vult=130mpl 3mph; TCDL=6.0psf; E p B; Enclosed; MWFF C-C Exterior (2) zone end vertical left and r and forces & MWFRS OL=1.60 plate grip DC signed for wind loads	been considered for n (3-second gust) ICDL=6.0psf; h=25ft IS (envelope) exterior ; cantilever left and ri ight exposed;C-C for for reactions shown DL=1.60 in the plane of the tru	or ; or ; ; ; uss								J.	OR TH CA	ROLINE L
 a) Truss design only. For see Stand or consult 4) TCLL: AS DOL=1.15 	stude exposed to wind loads stude exposed to wind lard Industry Gable Er qualified building des CE 7-10; Pr=20.0 psf 5 Plate DOL=1.15); Pf	d (normal to the face d Details as applica igner as per ANSI/TF (roof live load: Lumb =20.0 psf (flat roof sr), ble, PI 1. er now:								N. A.		EERON

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

11 JULIA April 26,2021

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	1100 Carolina Way-Roof-BB-2250				
21040035-A	VL04	Valley	1	1	Job Reference (optional)	145815364			

2-6-3

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.5 S 0 Apr 20 2021 Print: 8.500 S Apr 20 2021 MiTek Industries, Inc. Sat Apr 24 10:50:03 ID:Y7qljLngZXJ2zvyk1XOhIEzNxsb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-7

Page: 1

April 26,2021

GINEEDING

818 Soundside Road Edenton, NC 27932

2x4 🍬

2-6-3

Scale = 1:22.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-6-3 oc purlins, ex Rigid ceiling directly bracing. (size) 1=2-6-3, Max Horiz 1=66 (LC Max Uplift 1=-4 (LC Max Grav 1=95 (LC	eathing directly applied (cept end verticals. / applied or 10-0-0 oc 3=2-6-3 : 11) 14), 3=-31 (LC 14) : 1), 3=107 (LC 23)	 7) This truss has chord live lo 8) * This truss on the botto 3-06-00 tall d or 9) Provide meet bearing plate 3 and 4 lb up 10) This truss is International R802.10.2 a LOAD CASE(S) 	as been designed for ad nonconcurrent with has been designed for n chord in all areas v by 2-00-00 wide will fn hy other members. thanical connection (the e capable of withstan olift at joint 1. designed in accordan Residential Code se nd referenced standar Standard	a 10. h any or a liv where it betw by oth ding 3 nce w ections ard AN	D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to th lb uplift at jc ith the 2015 s R502.11.1 ar ISI/TPI 1.	ds. psf m o bint					
FORCES	(lb) - Maximum Cor	npression/Maximum										
TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=100 Cat. II; Ex zone and	Tension OP CHORD 1-2=-110/43, 2-3=-68/28 OT CHORD 1-3=-30/92 IOTES) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior											
 zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 4-0-0 oc. 								L DHNS DHNS DHNS DHNS DHNS DHNS DHNS DHNS				

- 5 6)
- Gable studs spaced at 4-0-0 oc.

