

RE: J0321-1600 Ben Stout/Lot 29 Forest Ridge/Harnett

Site Information:

Customer: Project Name: J0321-1600 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11	Seal# E14497656 E14497657 E14497658 E14497659 E14497660 E14497661 E14497663 E14497663 E14497664 E14497665 E14497665	Truss Name A01 A01GE A02 A03 A03GE B01 B01GE B02 C01 C01GR C01SG	Date 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021
12 13	E14497667 E14497668	D01GE J02	3/12/2021 3/12/2021
14 15 16 17 18 19	E14497669 E14497670 E14497671 E14497672 E14497673 E14497674	M01 M01GE M02GE M03 M04 PB01	3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021 3/12/2021

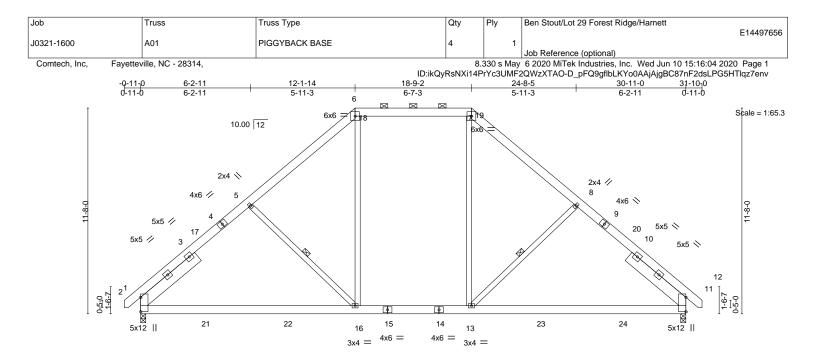
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

March 12, 2021

Trenco 818 Soundside Rd Edenton, NC 27932

	12-1-14 12-1-14		-9-2 7-3	<u> </u>	I
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.19	DEFL. in Vert(LL) -0.29 Vert(CT) -0.44		PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014		Horz(CT) 0.03 Wind(LL) 0.19	11 n/a n/a 2-16 >999 240	Weight: 251 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WFBS

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2

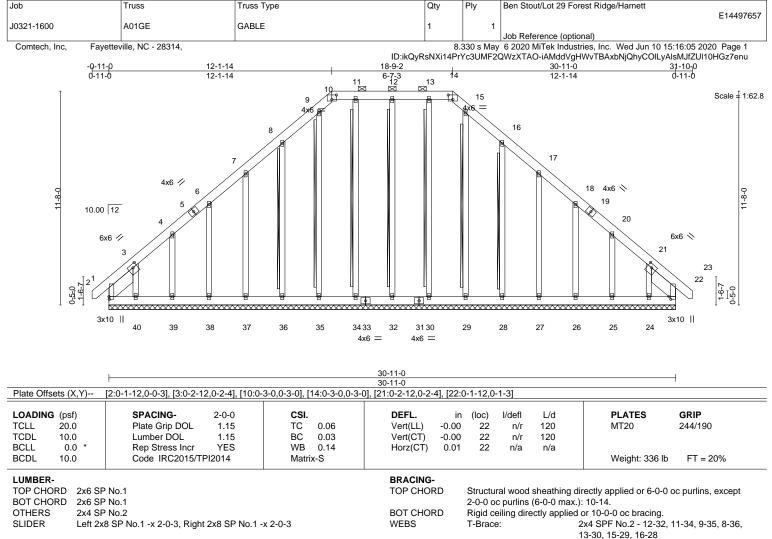
 SLIDER
 Left 2x8 SP No.1 - x 4-3-7, Right 2x8 SP No.1 - x 4-3-7

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 6-7. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 5-16, 8-13

REACTIONS. (size) 2=0-3-8, 11=0-3-8 Max Horz 2=-267(LC 8) Max Uplift 2=-52(LC 12), 11=-52(LC 13) Max Grav 2=1486(LC 19), 11=1486(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-5=-1649/413, 5-6=-1429/436, 6-7=-1033/408, 7-8=-1429/436, 8-11=-1649/413
- BOT CHORD 2-16=-183/1268, 13-16=-14/1079, 11-13=-162/1122
- WEBS 5-16=-347/270, 6-16=-69/560, 7-13=-69/560, 8-13=-347/270


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-11 to 3-7-2, Interior(1) 3-7-2 to 12-1-14, Exterior(2) 12-1-14 to 18-4-9, Interior(1) 18-4-9 to 18-9-2, Exterior(2) 18-9-2 to 24-10-5, Interior(1) 24-10-5 to 31-8-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

- REACTIONS. All bearings 30-11-0.
 - (lb) Max Horz 2=-333(LC 8)
 - Max Uplift All uplift 100 lb or less at joint(s) 32, 34, 35, 30 except 22=-116(LC 11), 36=-120(LC 12), 37=-115(LC 12), 38=-107(LC 12), 39=-123(LC 12), 40=-299(LC 12), 28=-121(LC 13), 27=-116(LC 13), 26=-108(LC 13), 25=-121(LC 13), 2=-234(LC 10), 24=-266(LC 13)
 - Max Grav All reactions 250 lb or less at joint(s) 32, 34, 35, 36, 37, 38, 39, 30, 29, 28, 27, 26, 25, 24 except 22=314(LC 13), 40=255(LC 10), 2=394(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-511/355, 3-4=-271/232, 8-9=-255/273, 9-10=-234/254, 14-15=-234/254, 15-16=-255/270, 21-22=-417/262, 10-11=-233/261, 11-12=-233/261, 12-13=-233/261, 13-14=-233/261
- BOT CHORD 2-40=-188/273, 39-40=-188/273, 38-39=-188/273, 37-38=-188/273, 36-37=-188/273, 35-36=-188/273, 34-35=-188/273, 32-34=-188/273, 30-32=-188/273, 29-30=-188/273, 28-29=-188/273, 26-27=-188/273, 26-27=-188/273, 25-26=-188/273, 24-25=-188/273, 22-24=-188/273 WEBS 3-40=-247/297, 21-24=-245/266

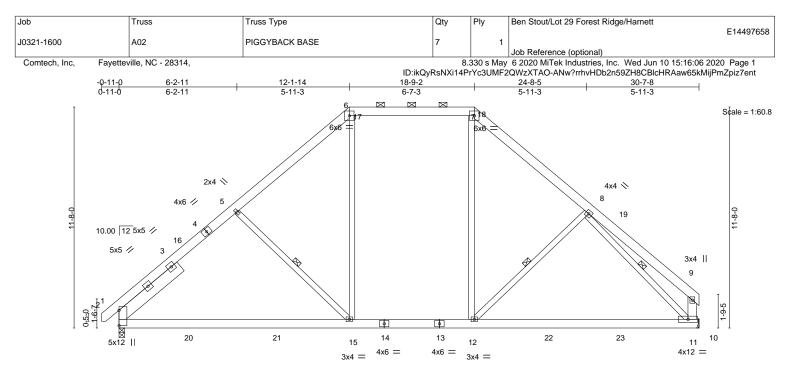
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ben Stout/Lot 29 Forest Ridge/Harnett	
J0321-1600	A01GE	GABLE	1	1	E14497657	
					Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314, 8.330 s May 6 2020 MiTek Industries, Inc. Wed Jun 10 15:16:05 2020 Page					6 2020 MiTek Industries, Inc. Wed Jun 10 15:16:05 2020 Page 2	
		ID:ikQvRsNXi14PrYc3UMF2QWzXTAO-iAMddVaHWvTBAxbNiQhvCOILvAlsMJfZUI10HGz7enu				

NOTES-


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32, 34, 35, 30 except (jt=lb) 22=116, 36=120, 37=115, 38=107, 39=123, 40=299, 28=121, 27=116, 26=108, 25=121, 2=234, 24=266.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Harring: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>12-1-14</u> 12-1-14		<u>18-9-2</u> 6-7-3	<u> </u>	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.35 BC 0.67 WB 0.31	DEFL. in Vert(LL) -0.33 Vert(CT) -0.50 Horz(CT) 0.03	(loc) l/defl L/d 2-15 >999 360	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.19		Weight: 248 lb FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheat	thing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x6 SP No.1		except end verticals, a	and 2-0-0 oc purlins (6-0-0 max.): 6-7.
WEBS	2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly a	applied or 10-0-0 oc bracing.
	9-11: 2x6 SP No.1	WEBS	1 Row at midpt	5-15, 8-12, 8-11
SLIDER	Left 2x8 SP No.1 -x 4-3-7			

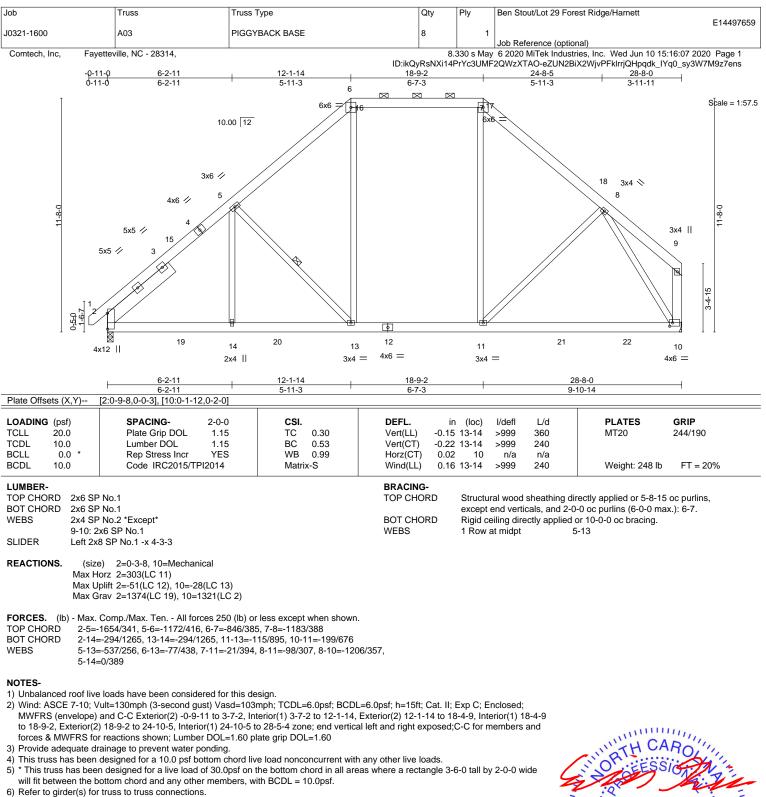
REACTIONS. (size) 2=0-3-8, 11=Mechanical Max Horz 2=283(LC 9) Max Uplift 2=-52(LC 12), 11=-33(LC 13) Max Grav 2=1453(LC 19), 11=1390(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-1593/405, 5-6=-1372/428, 6-7=-981/402, 7-8=-1362/431, 8-9=-640/106, 9-11=-510/107

- BOT CHORD 2-15=-247/1236, 12-15=-53/1030, 11-12=-206/1023
- WEBS 5-15=-361/271, 6-15=-64/553, 7-12=-68/493, 8-12=-289/251, 8-11=-1049/339

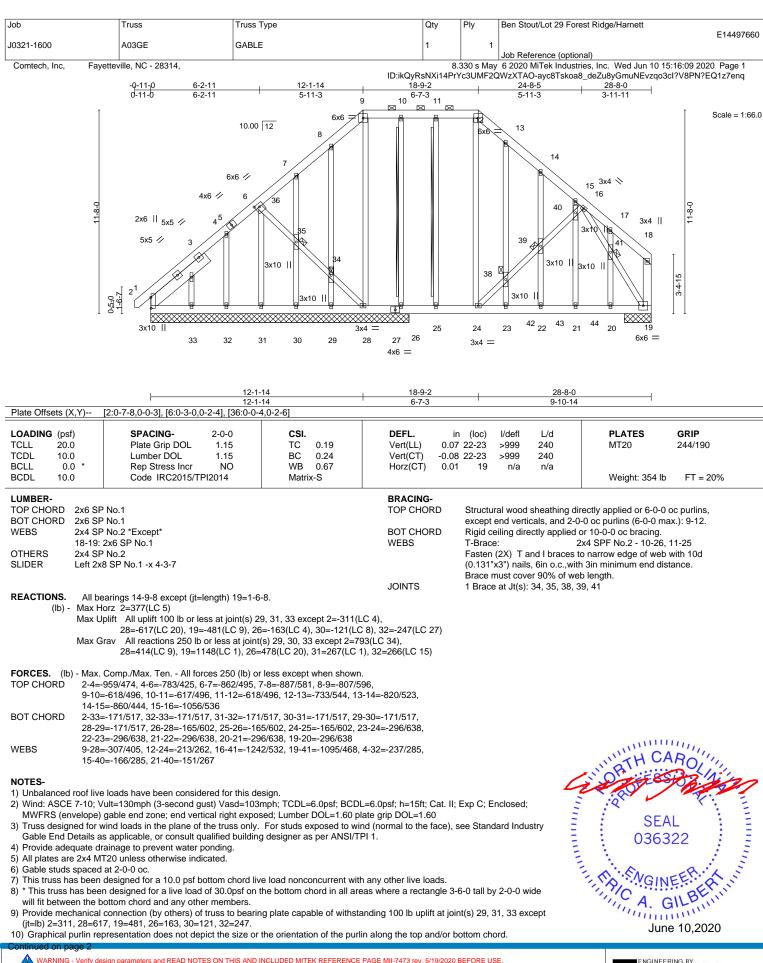
NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-11 to 3-7-2, Interior(1) 3-7-2 to 12-1-14, Exterior(2) 12-1-14 to 18-4-9, Interior(1) 18-4-9 to 18-9-2, Exterior(2) 18-9-2 to 24-10-5, Interior(1) 24-10-5 to 30-3-4 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WITTER WALL 036322 G1 mm June 10,2020

SEAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Ben Stout/Lot 29 Forest Ridge/Harnett	
J0321-1600	A03GE	GABLE	1	1	E1449766	30
					Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314,			8.3	330 s May	6 2020 MiTek Industries, Inc. Wed Jun 10 15:16:09 2020 Page 2	
-		ID:ikQyRsNXi14PrYc3UMF2QWzXTAO-ayc8Tskoa8_deZu8yGmuNEvzqo3cl?V8PN?EQ1z7eng				

NOTES-

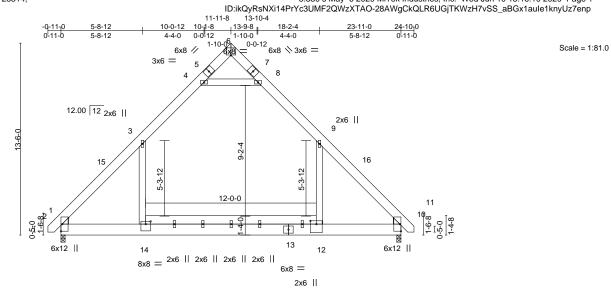
11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 45 lb down and 55 lb up at 16-6-12, 45 lb down and 55 lb up at 18-6-12, 45 lb down and 55 lb up at 20-2-12, 45 lb down and 55 lb up at 21-8-4, and 45 lb down and 55 lb up at 23-4-4, and 45 lb down and 55 lb up at 25-4-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

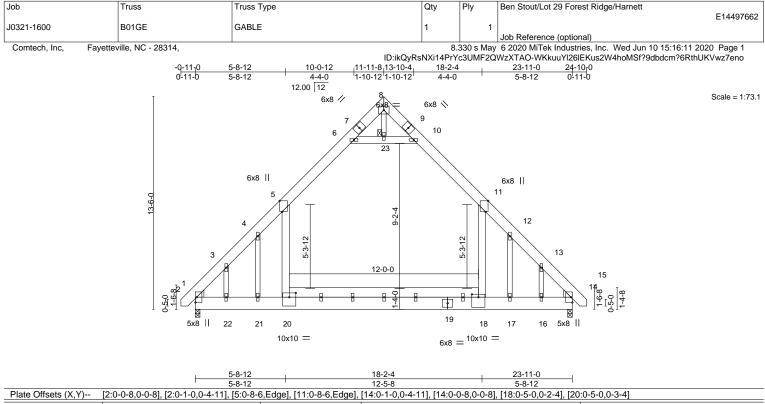
Uniform Loads (plf)


Vert: 1-9=-60, 9-12=-60, 12-18=-60, 2-19=-20 Concentrated Loads (lb)

Vert: 24=-45(B) 25=-45(B) 23=-45(B) 42=-45(B) 43=-45(B) 44=-45(B)

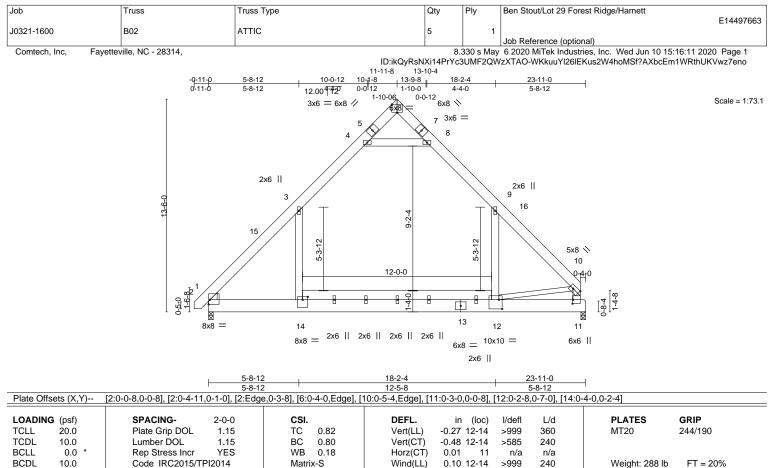
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10x10 =


	1	5-8-12		18-2-4		23-11-0			
Plate Offsets (X,Y)	[2:0-0-8,0-0-8], [2:0-1-0,0-4-	5-8-12	<u></u>	12-5-8	12.0-5-0 0-2-1	5-8-12	4-0 0-2-41		
	[2.0-0-0,0-0-0], [2.0-1-0,0-4-	11], [0.0-4-0,Eug	ej, [10.0-1-0,0-4	11], [10.0-0-0,0-0-0],	[12.0-3-0,0-2-1	12], [14.0-	4-0,0-2-4]		
LOADING (psf) TCLL 20.0		2-0-0 1.15	CSI. TC 0.83	DEFL. Vert(LL)	in (loc) -0.28 12-14	l/defl >997	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0		1.15	BC 0.81	Vert(CT)	-0.50 12-14	>569	240	WIT20	244/130
BCLL 0.0 *		YES	WB 0.14	Horz(CT)	0.01 10	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	014	Matrix-S	Wind(LL)	0.10 12-14	>999	240	Weight: 284 lb	FT = 20%
LUMBER- BRACING- TOP CHORD 2x8 SP No.1 BOT CHORD 2x10 SP No.1 *Except* 12-14: 2x8 SP No.1 WEBS 2x6 SP No.1 WEDGE Left: Left: 2x6 SP No.1 Right: 2x6 SP No.1									
Max H Max G	e) 2=0-3-8, 10=0-3-8 lorz 2=-304(LC 8) srav 2=1577(LC 21), 10=157 Comp./Max. Ten All forces	· · ·	excent when sh	משר					
TOP CHORD 2-3= BOT CHORD 2-14	2068/0, 3-4=-1097/173, 4-6= =0/1142, 12-14=0/1142, 10-1 -1822/277, 3-14=0/1036, 9-1	=-37/586, 6-8=-37 2=0/1142							
 Wind: ASCE 7-10; WMWFRS (envelope) to 24-7-6 zone;C-C This truss has been will fit between the bits of the bits	e loads have been considere /ult=130mph (3-second gust) and C-C Exterior(2) -0-8-6 tt for members and forces & M designed for a 10.0 psf botto n designed for a live load of bottom chord and any other n 0.0 psf) on member(s). 3-4, i ad (40.0 psf) and additional t) Vasd=103mph; o 3-8-7, Interior(1 WFRS for reactic om chord live load 30.0psf on the bo nembers. 8-9, 4-8; Wall de) 3-8-7 to 11-11 ons shown; Luml d nonconcurrent ottom chord in al ad load (5.0psf)	8, Exterior(2) 11-11-8 per DOL=1.60 plate gi with any other live loa areas where a rectar on member(s).3-14, 9	to 18-2-4, Inte ip DOL=1.60 ds. gle 3-6-0 tall b -12	rior(1) 18-		TH CA	ROLIN

7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.88 BC 0.72 WB 0.27 Matrix-S	Vert(LL) -0.23 Vert(CT) -0.40 Horz(CT) 0.07	n (loc) l/defl 3 18-20 >999 0 18-20 >708 1 14 n/a 2 18-20 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 305 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x8 SP No.1 BOT CHORD 2x10 SP No.1 *Except* 18-20: 2x8 SP No.1 BOT CHORD WEBS 2x6 SP No.1 OTHERS 2x4 SP No.2 WEDGE Left: 2x6 SP No.1, Right: 2x6 SP No.1 REACTIONS. (size) 2=0-3-8, 14=0-3-8 Max Horz Max Grav 2=1570(LC 21), 14=1570(LC 20)								
TOP CHORD 2-3=- 10-11 BOT CHORD 2-22= 14-16 WEBS 6-23=	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1979/0, 3-4=-1697/0, 4-5=-2209/39, 5-6=-1103/205, 6-8=-76/450, 8-10=-76/450, 10-11=-1103/205, 11-12=-2208/38, 12-13=-1696/0, 13-14=-1979/0 BOT CHORD 2-22=0/1177, 21-22=0/1181, 20-21=0/1169, 18-20=0/1169, 16-17=0/1181, 14-16=0/1173							
 2) Wind: ASCE 7-10; V MWFRS (envelope) DOL=1.60 plate grip 3) Truss designed for v Gable End Details a 								

- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Ceiling dead load (10.0 psf) on member(s). 5-6, 10-11, 6-23, 10-23; Wall dead load (5.0psf) on member(s).5-20, 11-18
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 18-20
 Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LUMBER-BRACING-TOP CHORD 2x8 SP No.1 TOP CHORD Structural wood sheathing directly applied or 4-1-9 oc purlins, BOT CHORD 2x10 SP No.1 *Except* except end verticals. BOT CHORD 12-14: 2x8 SP No.1 Rigid ceiling directly applied or 8-8-5 oc bracing WEBS 2x6 SP No.1 *Except* 10-12: 2x4 SP No.2 WEDGE

Left: 2x6 SP No.1 **REACTIONS.** (size) 2=0-3-8, 11=0-3-8 Max Horz 2=321(LC 11)

Max Grav 2=1552(LC 21), 11=1546(LC 20)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2003/0, 3-4=-1066/174, 4-6=-36/558, 6-8=-36/547, 8-9=-1074/173, 9-10=-1820/0,

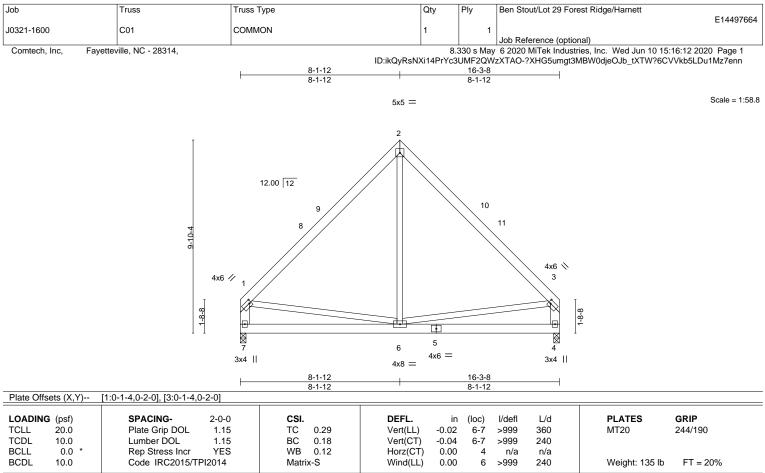
- BOT CHORD
 2-14=0/1102, 12-14=0/1102, 11-12=-88/332

 WEBS
 4-8=-1736/278, 3-14=0/997, 9-12=0/826, 10-12=0/868

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 11-11-8, Exterior(2) 11-11-8 to 18-2-4, Interior(1) 18-2-4 to 23-4-4 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-8; Wall dead load (5.0psf) on member(s).3-14, 9-12

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14
7) Attic room checked for L/360 deflection.

SEAL 036322 June 10,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD	2x6 SP No.1 2x6 SP No.1 2x4 SP No.2 *Except* 1-7,3-4: 2x6 SP No.1	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. (size) 4=0-3-8, 7=0-3-8 Max Horz 7=238(LC 9) Max Uplift 4=-27(LC 12), 7=-27(LC 13) Max Grav 4=633(LC 1), 7=633(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-597/185, 2-3=-597/185, 1-7=-562/196, 3-4=-562/196
- BOT CHORD 6-7=-280/369, 4-6=-152/262

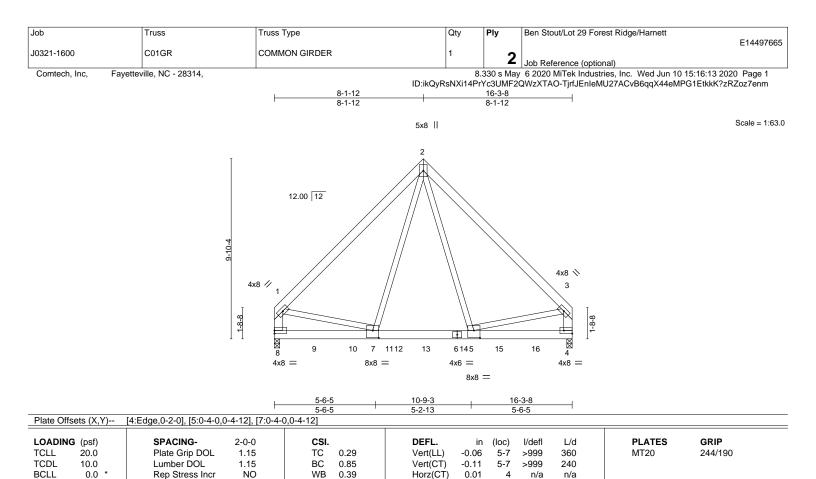
WEBS 2-6=0/315, 1-6=-106/254, 3-6=-112/260

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 8-1-12, Exterior(2) 8-1-12 to 12-6-9, Interior(1) 12-6-9 to 16-0-12 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.03

5-7

>999

except end verticals.

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Weight: 283 lb

FT = 20%

Max Horz 8=-238(LC 6)	
Max Uplift 8=-168(LC 9), 4=-170(LC 8)	

Max Grav 8=5101(LC 2), 4=5160(LC 2)

8=0-3-8, 4=0-3-8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

- TOP CHORD 1-2=-4739/232, 2-3=-4718/232, 1-8=-4153/167, 3-4=-4130/167
- BOT CHORD 7-8=-310/750, 5-7=-105/2364, 4-5=-135/623
- WEBS 2-5=-98/3162, 2-7=-99/3216, 1-7=-169/2767, 3-5=-172/2735

NOTES-

BCDL

WFBS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

10.0

2x6 SP No 1

2x6 SP No.1

(size)

2x4 SP No.2 *Except*

1-8,3-4: 2x6 SP No.1

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
- Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Matrix-S

- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=168. 4=170.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1298 lb down and 48 lb up at 2-2-12, 1298 lb down and 48 lb up at 4-2-12, 1287 lb down and 48 lb up at 6-2-12, 1253 lb down and 48 lb up at 8-2-12, 1291 lb down and 48 lb up at 10-2-12, and 1298 lb down and 48 lb up at 12-2-12, and 1298 lb down and 48 lb up at 14-2-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

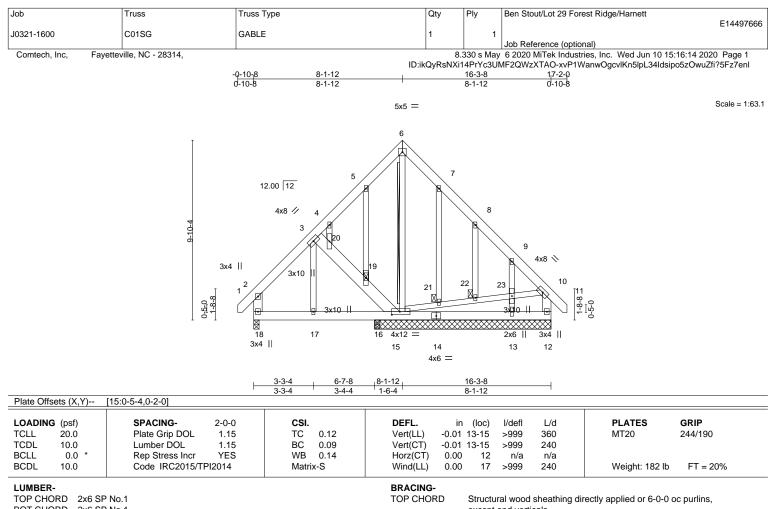
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 4-8=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


-	Job	Truss	Truss Type	Qty	Ply	Ben Stout/Lot 29 Forest Ridge/Harnett		
	J0321-1600	C01GR	COMMON GIRDER	1	-	E14497665		
ľ	10021-1000	ooron	COMMON CIRCLER		2	Job Reference (optional)		
	Comtech, Inc, Fayettev	ille, NC - 28314,		8.	330 s May	6 2020 MiTek Industries, Inc. Wed Jun 10 15:16:13 2020 Page 2		
			ID:ikQyR	ID:ikQyRsNXi14PrYc3UMF2QWzXTAO-TjrfJEnIeMU27ACvB6qqX44eMPG1EtkkK?zRZoz7enm				

LOAD CASE(S) Standard Concentrated Loads (Ib)

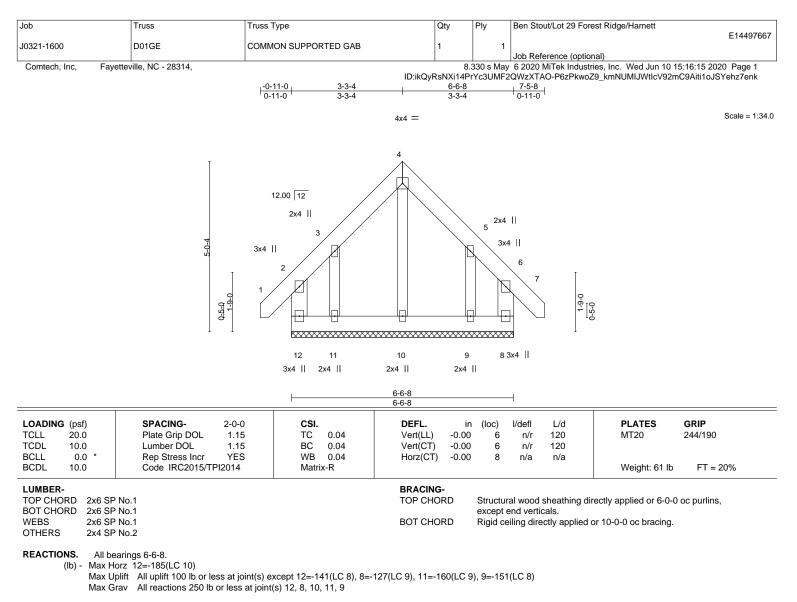
Vert: 6=-1117(B) 9=-1117(B) 10=-1117(B) 11=-1117(B) 13=-1117(B) 15=-1117(B) 16=-1117(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x6 SP No.1		except end verticals.
WEBS	2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
	2-18,10-12: 2x6 SP No.1, 3-15: 2x8 SP No.1	WEBS	T-Brace: 2x4 SPF No.2 - 6-15
OTHERS	2x4 SP No.2		Fasten (2X) T and I braces to narrow edge of web with 10d
			(0.131"x3") nails, 6in o.c., with 3in minimum end distance.
			Brace must cover 90% of web length.
		JOINTS	1 Brace at Jt(s): 19, 21, 22

REACTIONS. All bearings 9-8-0 except (jt=length) 18=0-3-8, 16=0-3-8, 16=0-3-8. Max Horz 18=-328(LC 10) (lb) -Max Uplift All uplift 100 lb or less at joint(s) 18, 16 except 12=-166(LC 11),

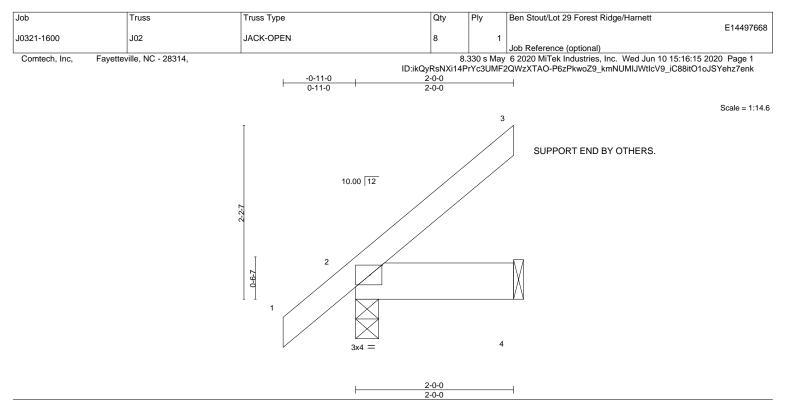
- 15=-109(LC 12), 13=-373(LC 13) Max Grav All reactions 250 lb or less at joint(s) 12, 16, 16 except 15=584(LC 1), 18=312(LC 1), 13=523(LC 20)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 9-10=-280/243, 2-18=-256/152
- BOT CHORD 17-18=-225/293, 16-17=-225/292, 15-16=-225/292
- WEBS
- 6-15=-302/0, 3-20=-269/225, 19-20=-288/224, 15-19=-350/288, 9-23=-434/363, 13-23=-522/443


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 16 except (jt=lb) 12=166, 15=109, 13=373.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 12, 127 lb uplift at joint 8, 160 lb uplift at joint 11 and 151 lb uplift at joint 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.30	Vert(LL) -0.00 2 >999 360	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.10	Vert(CT) -0.00 2-4 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 11 lb FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1

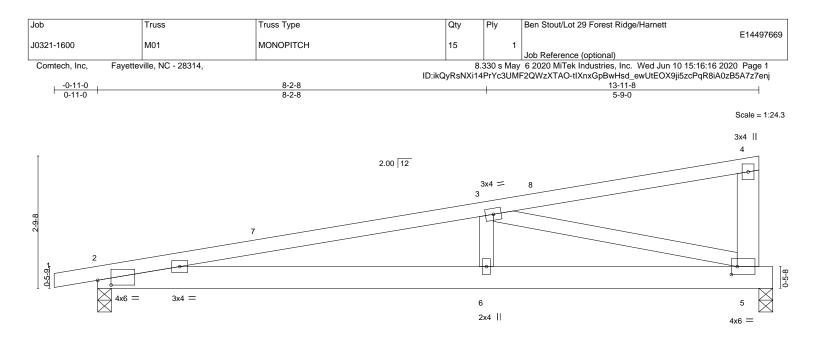
REACTIONS. (size) 2=0-3-8, 4=Mechanical

Max Horz 2=93(LC 9) Max Uplift 2=-18(LC 9), 4=-35(LC 9) Max Grav 2=149(LC 1), 4=66(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 2 and 35 lb uplift at joint 4.



Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		3-2-8 3-2-8						13-11-8 5-9-0		14-3-0 0-3-8
Plate Offsets (X,Y)	[2:0-3-6,0-1-4], [5:0-1-8,0-2-0]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.52 BC 0.39 WB 0.76 Matrix-S	()	in -0.07 -0.15 0.02 0.15	(loc) 2-6 2-6 5 2-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 70 lb	GRIP 244/190 FT = 20%	
			BRACING- TOP CHOR BOT CHOR		except	end vert	icals.	rectly applied or 4-2-9 or 6-1-3 oc bracing.	oc purlins,	
Max H Max U	e) 5=0-3-8, 2=0-3-8 lorz 2=81(LC 8) lplift 5=-215(LC 8), 2=-243(LC 8) Grav 5=541(LC 1), 2=610(LC 1)									
TOP CHORD 2-3= BOT CHORD 2-6=	Comp./Max. Ten All forces 250 (lb) or -1485/1380 -1426/1420, 5-6=-1426/1420 -383/311, 3-5=-1420/1417	less except when shown.								

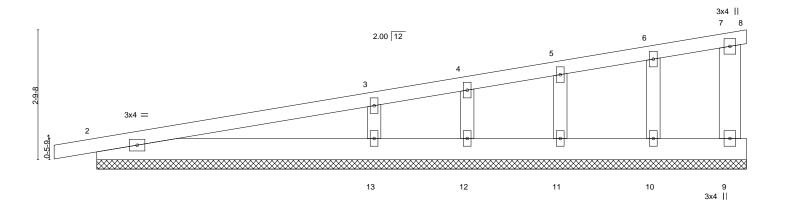
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 13-8-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 215 lb uplift at joint 5 and 243 lb uplift at joint 2.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ben Stout/Lot 29 Forest Ridge/Harnett
					E1449767
J0321-1600	M01GE	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc, Fayer	teville, NC - 28314,		8.	330 s May	/ 6 2020 MiTek Industries, Inc. Wed Jun 10 15:16:16 2020 Page 1
			ID:ikQyRsNXi14P	rYc3UMF	2QWzXTAO-tlXnxGpBwHsd_ewUtEOX9ji91cUMRJzA0zB5A7z7enj
0-11-0			13-11-8		· · ·
0-11-0			13-11-8		1

Scale = 1:24.8

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.10 WB 0.04	Vert(LL) -0.0 Vert(CT) 0.0	1 1 n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.04 Matrix-S	Horz(CT) -0.0	0 8 n/a	n/a	Weight: 67 lb	FT = 20%
LUMBER-			BRACING-	_			
TOP CHORD 2x4 SP BOT CHORD 2x6 SP			TOP CHORD	Structural wood except end ver	0	irectly applied or 6-0-0	oc purlins,
WEBS 2x6 SP	' No.1		BOT CHORD	Rigid ceiling di	rectly applied	or 10-0-0 oc bracing.	

 WEBS
 2x6 SP No.1
 BOT CHORD
 Rigid

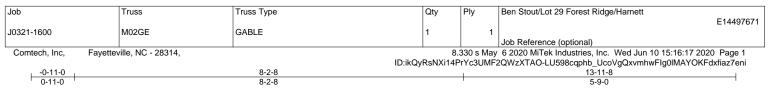
 OTHERS
 2x4 SP No.2
 BOT CHORD
 Rigid

REACTIONS. All bearings 13-11-8.

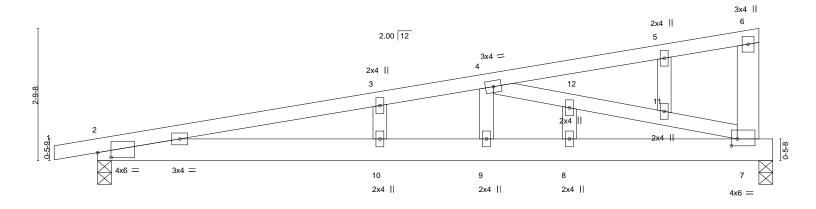
(lb) - Max Horz 2=117(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 8, 9, 2, 10, 11, 12 except 13=-154(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 9, 10, 11, 12 except 2=253(LC 1), 13=513(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-13=-330/242


NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 9, 2, 10, 11, 12 except (jt=lb) 13=154.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:24.3

Plate Offsets (X,Y)		3-2-8 3-2-8					13-11-8 14- 5-9-0 0-	1-3-0 -3-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.44 WB 0.93 Matrix-S	DEFL. i Vert(LL) 0.1 Vert(CT) -0.1 Horz(CT) -0.0	3 2-10	l/defl >862 >919 n/a	L/d 240 240 n/a	PLATES GRIP MT20 244/190 Weight: 74 lb FT = 20%	
	No.1 No.2 *Except* 6 SP No.1		BRACING- TOP CHORD BOT CHORD	except	t end vert	icals.	irectly applied or 4-7-5 oc purlins, or 5-7-11 oc bracing.	
Max H Max U	e) 7=0-3-8, 2=0-3-8 orz 2=115(LC 8) plift 7=-314(LC 8), 2=-352(LC 8) rav 7=541(LC 1), 2=610(LC 1)							
TOP CHORD 2-3=- BOT CHORD 2-10=	Comp./Max. Ten All forces 250 (lb) or 1439/1554, 3-4=-1409/1579 =-1621/1381, 9-10=-1621/1381, 8-9=-16 472/357, 4-12=-1401/1639, 11-12=-139	21/1381, 7-8=-1621/1381						

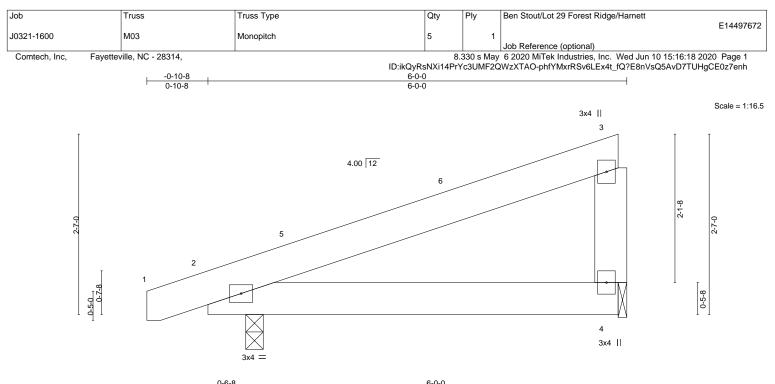
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=314, 2=352.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITek Affilia 818 Soundside Road Edenton, NC 27932

Т	0-6-8	T. I.	5-5-8			1	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.30	Vert(LL) -0.01	2-4	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.40	Vert(CT) -0.03	2-4	>999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00		n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.03	2-4	>999 240	Weight: 34 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8

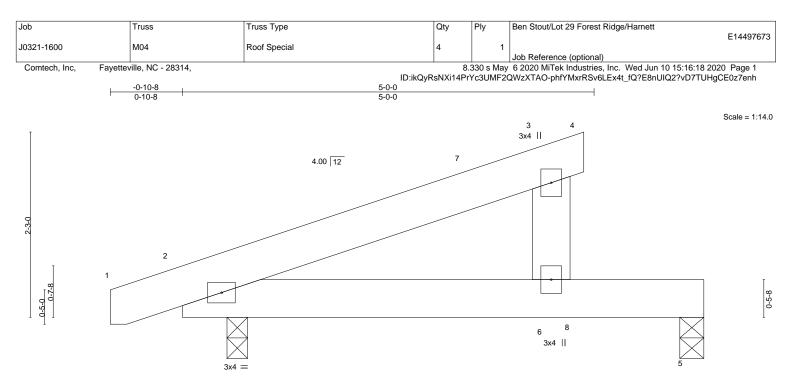
Max Horz 2=73(LC 8) Max Uplift 2=-110(LC 8), 4=-97(LC 8)

Max Grav 2=284(LC 1), 4=222(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 5-9-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=110.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	0-6-8	1	5-9-8	· · · · · · · · · · · · · · · · · · ·
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.34	Vert(LL) -0.05 2-6 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.60	Vert(CT) -0.11 2-6 >674 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.17 2-6 >427 240	Weight: 32 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WEBS

REACTIONS. (size) 5=0-3-8, 2=0-3-0

Max Horz 2=62(LC 8) Max Uplift 5=-193(LC 8), 2=-152(LC 8)

Max Grav 5=478(LC 1), 2=383(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

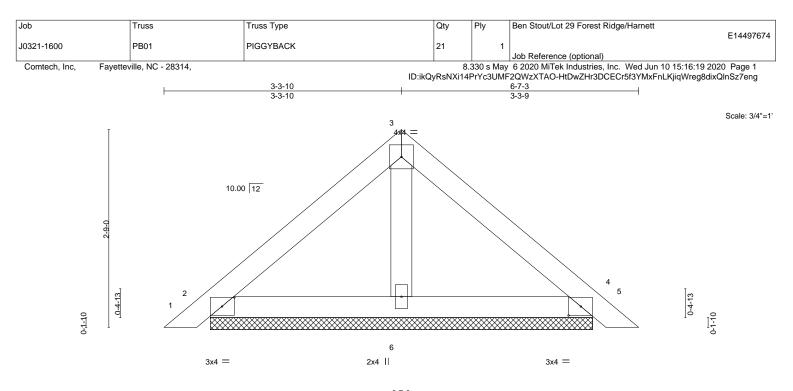
- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-5 to 3-7-8, Interior(1) 3-7-8 to 4-10-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=193, 2=152.
- 5) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) . The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-5=-20

Concentrated Loads (lb) Vert: 8=-400


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 9-2-10 oc bracing.

except end verticals.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6-7-3

LOADING (psf)	SPACING-	2-0-0 CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15 TC	0.10 Vert(LI	0.00	5	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL	1.15 BC	0.05 Vert(C	0.00	5	n/r	120		
BCLL 0.0 *	Rep Stress Incr	YES WB	0.02 Horz(C	Γ́) 0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2	2014 Matri	ix-P					Weight: 24 lb	FT = 20%
BOT CHORD 2x4	SP No.1 SP No.1 SP No.2		BRACI TOP C BOT C	IORD				ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins.

REACTIONS. (size) 2=5-3-12, 4=5-3-12, 6=5-3-12 Max Horz 2=-77(LC 10) Max Uplift 2=-51(LC 12), 4=-61(LC 13) Max Grav 2=150(LC 1), 4=150(LC 1), 6=175(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

