

RE: J0221-0894 Lot 7 Spartan Ridge Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer:Project Name: J0221-0894Lot/Block:ModAddress:SubCity:Stat

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 25 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Seal# E15438031 E15438032 E15438033 E15438034 E15438035 E15438036 E15438037 E15438038 E15438039 E15438040 E15438041 E15438042 E15438043 E15438044 E15438045 E15438047 E15438048	Truss Name A1 A1GE A2 A3 A3A A3GE B1 B1-GR B1GE C1 C1-GR C1GE D1 D1GE G1 G1GE G2 G2GE	Date 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021 2/23/2021	No. 21 22 23 24 25	Seal# E15438051 E15438052 E15438053 E15438054 E15438055	Truss Name V1 V2 V3 V4 V5	Date 2/23/2021 2/23/2021 2/23/2021 2/23/2021
		-					
19 20	E15438049 E15438050	M1 M1GE	2/23/2021 2/23/2021				
-		-					

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

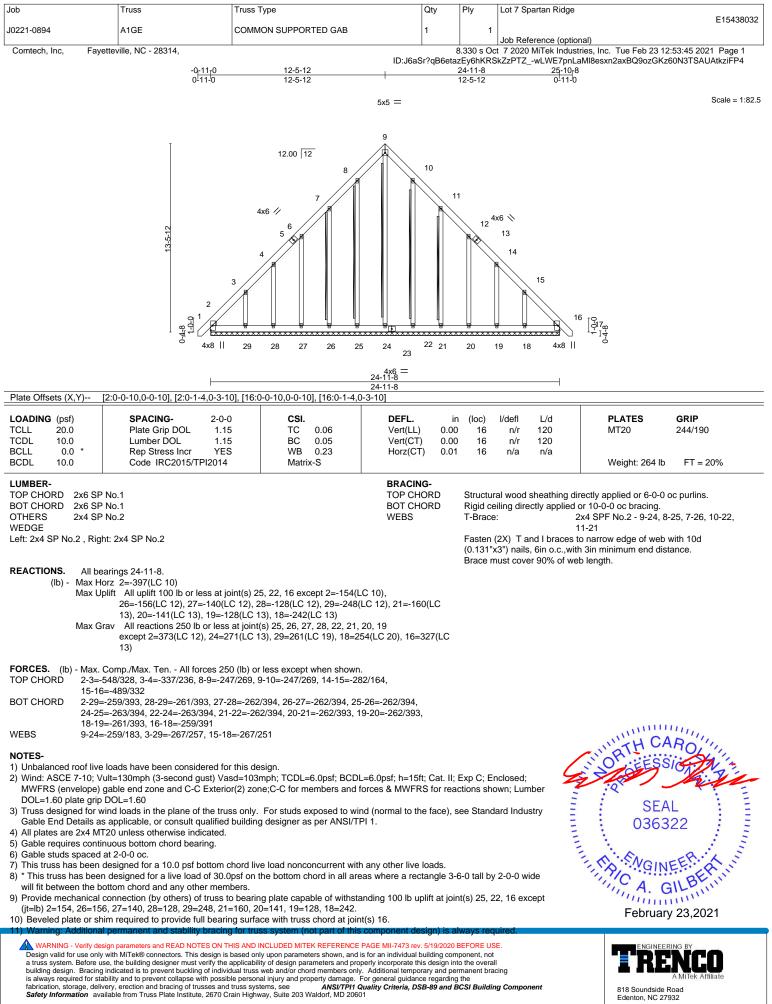
based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

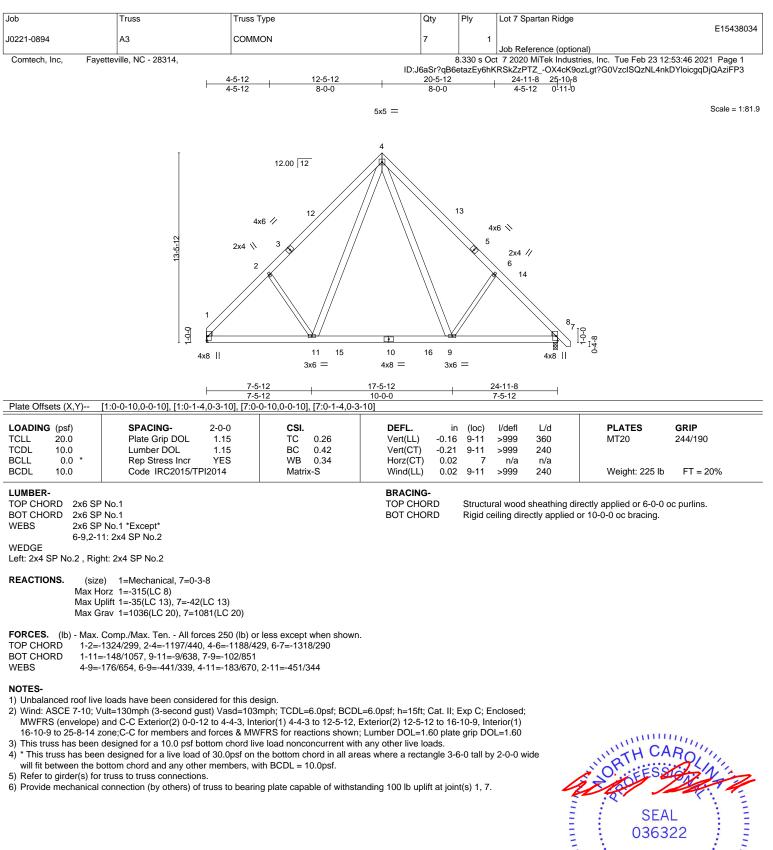
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

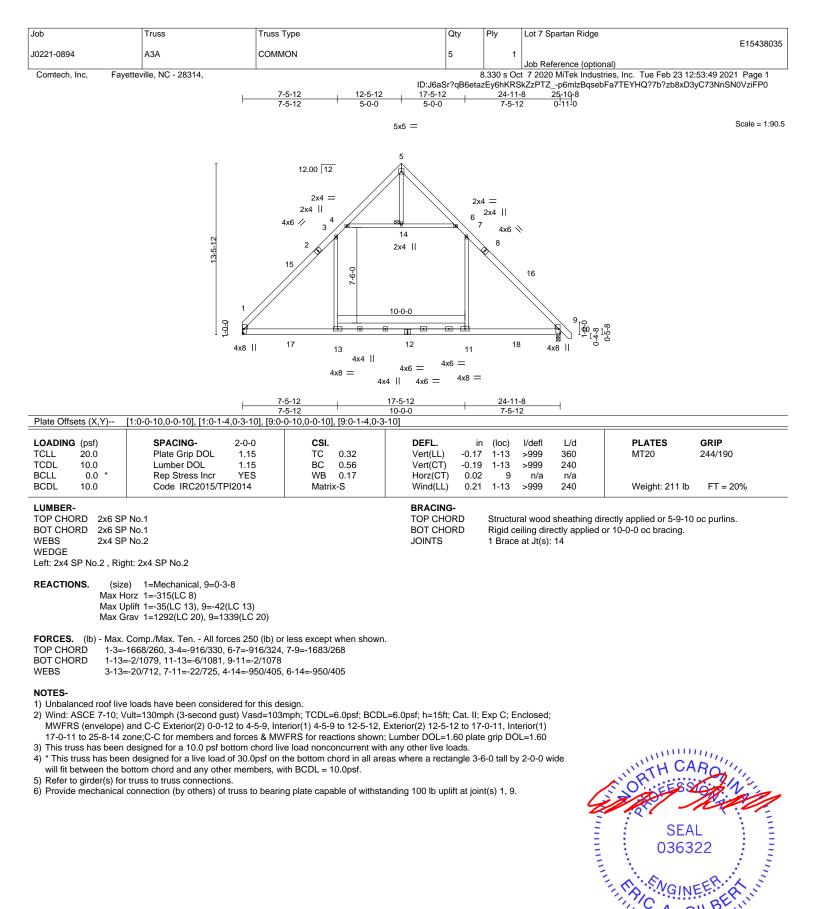
Job	Truss	Truss Type	Qty	Ply	Lot 7 Spartan Ridge		
J0221-0894	A1	COMMON	4	1			E15438031
Comtech, Inc, F	ayetteville, NC - 28314,			8.330 s O	Job Reference (option ct 7 2020 MiTek Industr		:53:44 2021 Page 1
	-0 _c 11 _t 0	4-5-12 12-5-12	ID:J6aSr?qB6e 20-5-1		SkZzPTZS9zsvUmjp2 24-11-8 25-10		5HuQJDWkcLlziFP5
	0-11-0	4-5-12 8-0-0	8-0-0		4-5-12 0-11-0		
			5x5 =				Scale = 1:81.9
	T		5				
		12.00 12					
		/					
		14	´ // _\\ _\\	15			
		4x6 1/		$\langle \rangle$	4x6 📎		
	13-5-12	2x4 \\ 4			6 2x4 //		
	(3		×	7		
		13		/	16		
	2		//		9,		
		<u> </u>		¥		0-1-1 -0-0 8-4-8	
	/ ⊠ / ⊠ 	12 17 3x6 =		10 3x6 =	⊠ ⊴ 4x8		
				3X0 —			
	F	7-5-12 7-5-12	<u>17-5-12</u> 10-0-0	+	24-11-8 7-5-12		
Plate Offsets (X,Y)	[2:0-0-10,0-0-10], [2:0-1-4,0-3	<u>-10], [8:0-0-10,0-0-10], [8:0-1-4,0-</u>	-3-10]				
LOADING (psf) ICLL 20.0		D-0 CSI. 15 TC 0.26		in (loc) 6 10-12	l/defl L/d >999 360	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL 1	.15 BC 0.42	Vert(CT) -0.2	1 10-12	>999 240		21.0.100
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Y Code IRC2015/TPI20		Horz(CT) 0.0 Wind(LL) 0.0	2 8 2 10-12	n/a n/a >999 240	Weight: 227 lb	FT = 20%
LUMBER-			BRACING-				
	SP No.1 SP No.1		TOP CHORD BOT CHORD		ral wood sheathing dire eiling directly applied o		oc purlins.
	SP No.1 *Except* ,3-12: 2x4 SP No.2						
NEDGE							
_eft: 2x4 SP No.2 , F							
	size) 2=0-3-8, 8=0-3-8 (Horz 2=-318(LC 10)						
Max	c Uplift 2=-41(LC 12), 8=-41(LC c Grav 2=1077(LC 19), 8=1077(I						
TOP CHORD 2-3	3=-1313/289, 3-5=-1182/427, 5-7		vn.				
	12=-150/1038, 10-12=-9/634, 8-1 10=-176/654, 7-10=-441/339, 5-1						
NOTES-							
1) Unbalanced roof I	ive loads have been considered	for this design. /asd=103mph; TCDL=6.0psf; BCI		· Evn C· E	nalosod		
MWFRS (envelop	e) and C-C Exterior(2) -0-9-6 to	3-7-7, Interior(1) 3-7-7 to 12-5-12,	, Exterior(2) 12-5-12 to 16	6-10-9, Inte	erior(1)		
		ces & MWFRS for reactions show n chord live load nonconcurrent w		te grip DC	DL=1.60	, mining	11111
	een designed for a live load of 3 e bottom chord and any other me	0.0psf on the bottom chord in all a embers, with BCDL = 10.0psf.	areas where a rectangle 3	-6-0 tall by	/ 2-0-0 wide	IN RTH CA	ROLIN
		s to bearing plate capable of withs	standing 41 lb uplift at joir	nt 2 and 41	Ib uplift at	FESS	Mind
,o o.						·2 [°]	K. I
					E		
					E	0363	22 : 5
							A 1. E
						NGIN	EELAN
						111, A. G	ILBE
							um.
						February	/ 23,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Edenton, NC 27932

Job	Truss	s Туре	Qty	Ply	Lot 7 Spartan Ridge		
J0221-0894		IMON	6	- 1	Lot / Opanan Muge		E15438033
	etteville, NC - 28314,				Job Reference (option	nal) ries, Inc. Tue Feb 23 12	2.53:46 2021 Page 1
Comtech, Inc, Faye		40.04	ID:J6aSr?qB6e		SkZzPTZOX4cK9o	zLgt?G0VzcISQzNL4vk	
	4-2-		20-2-4 8-0-0		<u>24-8-0</u> 25-7-0 4-5-12 0-11-0		
			5x5 =				Scale = 1:81.9
	2x4 E 4x4 // 2 1	12.00 12 4x6 ^{-//} 14 3 ¹³	5	15 4x 6	2x4 // 7 16		
	q				98	10	
	1-3-8	<u>\</u>				1-0-1 8-1-4-0 0-0-1-1-1-1-1-0-0-1-1-1-0-0-1-1-1-0-0-1-1-1-0-0-1-1-0-0-1-0	
	3x10	12 17 3x6 =	11 18 10 4x8 = 3x6) 6 =	4x8	0	
		7-2-4	17-2-4	2	24-8-0		
Plate Offsets (X,Y)	[1:Edge,0-0-0], [8:0-0-10,0-0-10], [8:0	7-2-4	10-0-0		7-5-12		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.32	Vert(LL) -0.16	10-12 >	>999 360	MT20	244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.42 WB 0.32	Horz(CT) 0.02	8	>999 240 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		10-12 >	>999 240	Weight: 230 lb	FT = 20%
3-12,7- WEDGE Right: 2x4 SP No.2			BRACING- TOP CHORD BOT CHORD		I wood sheathing dir ling directly applied o	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins.
Max H Max U	e) 1=Mechanical, 8=0-3-8 orz 1=-315(LC 10) plift 1=-36(LC 13), 8=-41(LC 13) rav 1=1031(LC 20), 8=1071(LC 20)						
TOP CHORD 1-3=- BOT CHORD 1-12=	Comp./Max. Ten All forces 250 (lb) 1284/302, 3-5=-1154/432, 5-7=-1175 =-156/1007, 10-12=-10/630, 8-10=-10 =-415/336, 5-12=-175/621, 5-10=-176	/427, 7-8=-1306/288 1/842					
 Wind: ASCE 7-10; V MWFRS (envelope) 25-5-6 zone;C-C for This truss has been will fit between the b Refer to girder(s) for 	e loads have been considered for this /ult=130mph (3-second gust) Vasd=10 and C-C Exterior(2) 0-0-0 to 4-4-13, I members and forces & MWFRS for r designed for a 10.0 psf bottom chord in designed for a live load of 30.0psf of ottom chord and any other members, truss to truss connections. connection (by others) of truss to bea	D3mph; TCDL=6.0psf; BCDL nterior(1) 4-4-13 to 12-2-4, I sactions shown; Lumber DC live load nonconcurrent with n the bottom chord in all are with BCDL = 10.0psf.	Exterior(2) 12-2-4 to 16-7)L=1.60 plate grip DOL=1 n any other live loads. pas where a rectangle 3-6	7-1, Interior 1.60 6-0 tall by 2	r(1) 16-7-1 to 2-0-0 wide	SEA 0363	EER A III
							y 23,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


February 23,2021

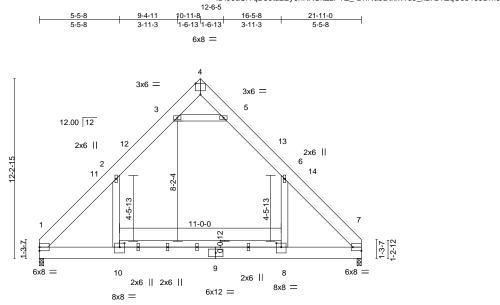
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

February 23,2021

Job	Truss	Truss Type	Qty	Ply	Lot 7 Spartan Ridge	E15438036
0221-0894	A3GE	COMMON SUPPORTED GAB	1	1	Job Reference (optional	
Comtech, Inc, Fay	yetteville, NC - 28314,				ct 7 2020 MiTek Industrie	s, Inc. Tue Feb 23 12:53:51 2021 Page 1
	⊢	<u>12-5-12</u> 12-5-12	2	4-11-8 2-5-12	25-10-8 0-11-0	/IMnOxPr1bgQ2?ll0WQ5YLq5xU5OziFP_
		21-0-12		2-0-12	0-11-0	Scale = 1:82.
			5x5 =			Scale = 1.02.
			8			
	Ţ	12.00 12				
		7 /	9			
		6	10			
		4x6 1/ 🖉		41	6 📏	
	3-5-12	4 5		11	12	
	13-5	3			13	
		2			14	
	1				15	
	1-0-0					16 ₀₀
	4x8	28 27 26 25 24	23 21 20 22	19 1	8 17 4x8	6
			4x6 = 24-11-8			
			24-11-8			
Plate Offsets (X,Y)		<u>-10], [15:0-0-10,0-0-10], [15:0-1-4,</u>				
LOADING (psf) TCLL 20.0	Plate Grip DOL 1.	0-0 CSI. 15 TC 0.06	DEFL. in Vert(LL) 0.00	. ,	l/defl L/d n/r 120	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 *		15 BC 0.05 ES WB 0.23	Vert(CT) 0.00 Horz(CT) 0.01		n/r 120 n/a n/a	
3CDL 10.0	Code IRC2015/TPI201					Weight: 262 lb FT = 20%
LUMBER-			BRACING-	0	and a second relation of the second second	
TOP CHORD 2x6 SI BOT CHORD 2x6 SI	P No.1		TOP CHORD BOT CHORD	Rigid co	eiling directly applied or	
OTHERS 2x4 SI WEDGE	P No.2		WEBS	T-Brace	e: 2x4 10-:	SPF No.2 - 8-23, 7-24, 6-25, 9-21, 20
Left: 2x4 SP No.2 , Rig	ght: 2x4 SP No.2					narrow edge of web with 10d in minimum end distance.
REACTIONS. All b	earings 24-11-8.				must cover 90% of web l	
(lb) - Max H	lorz 1=-394(LC 8)	isint/s) 24 24 45 sysent 4 402/	C 10)			
Max C	25=-156(LC 12), 26=-140	joint(s) 24, 21, 15 except 1=-182(l (LC 12), 27=-127(LC 12), 28=-255				
Max 0		-128(LC 13), 17=-242(LC 13) ss at joint(s) 24, 25, 26, 27, 21, 20,	19, 18			
	except 1=400(LC 12), 23= 13)	=271(LC 13), 28=273(LC 19), 17=2	254(LC 20), 15=327(LC			
FORCES (Ib) - Max	,	250 (lb) or less except when showr				
TOP CHORD 1-2=		247/269, 8-9=-247/269, 13-14=-28				
BOT CHORD 1-28	=-259/393, 27-28=-261/393, 26	6-27=-261/393, 25-26=-262/394, 24				
	4=-262/394, 21-23=-262/394, 2 8=-261/392, 15-17=-259/391	20-21=-262/394, 19-20=-262/393, 1	18-19=-261/393,			Southers
WEBS 8-23	=-260/183, 2-28=-271/267, 14-	17=-267/251				WAH CARO
NOTES- 1) Unbalanced roof liv	e loads have been considered	for this design				OR EESERAL N. 1.
2) Wind: ASCE 7-10; \	Vult=130mph (3-second gust) V	/asd=103mph; TCDL=6.0psf; BCD rior(2) zone;C-C for members and			august Lumahan	the states
DOL=1.60 plate grip	p DOL=1.60					SEAL
Gable End Details a	as applicable, or consult qualifie	russ only. For studs exposed to wi ed building designer as per ANSI/T		see Stand	Jard Industry y 2-0-0 wide	036322
/ /	IT20 unless otherwise indicated tinuous bottom chord bearing.	ł.				1 3
6) Gable studs spaced	d at 2-0-0 oc.	n chord live load nonconcurrent wit	h any other live loads			A ANDINEER A
8) * This truss has bee	en designed for a live load of 30	0.0psf on the bottom chord in all are		6-0 tall by	y 2-0-0 wide	CAUBE
9) Provide mechanical		to bearing plate capable of withst	anding 100 lb uplift at joi	nt(s) 24, 2		A. GIL
10) Beveled plate or s	him required to provide full bea	0=160, 19=141, 18=128, 17=242. ring surface with truss chord at joir				February 23,2021
,		ng for truss system (not part of this		•	•	
Design valid for use on	ly with MiTek® connectors. This design	THIS AND INCLUDED MITEK REFERENCE is based only upon parameters shown, and he applicability of design parameters and pro-	is for an individual building con	nponent, not	t	
building design. Bracin is always required for s	ig indicated is to prevent buckling of ind tability and to prevent collapse with pos	ividual truss web and/or chord members onl sible personal injury and property damage.	 Additional temporary and pe For general guidance regarding 	rmanent bra g the	acing	A MiTek Affiliate
fabrication, storage, del	livery, erection and bracing of trusses a	nd truss systems, see ANSI/TPI1 (Crain Highway, Suite 203 Waldorf, MD 206	Quality Criteria, DSB-89 and I		ng Component	818 Soundside Road

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Fayetteville, NC - 28314, Comtech, Inc.

8.330 s Oct 7 2020 MiTek Industries, Inc. Tue Feb 23 12:53:52 2021 Page 1 ID:J6aSr?qB6etazEy6hKRSkZzPTZ_-DhRubDtkxWd9_xz7zYZqCeb1s9Dm9ZIV3lg1cqziFOz

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:78.4

		5-5-8	10-11-8 2x	6 16-5-8	21-11-0	1
	Γ	5-5-8	5-6-0	5-6-0	5-5-8	
ate Offsets (X,Y)	[4:0-4-0,Edge], [7:Edge,0-3-0],	[8:0-4-0,0-3-4], [10:	:0-4-0,0-3-4]			

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.54	Vert(LL) -0.16	8-10 >999	360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.62	Vert(CT) -0.27	8-10 >972	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.14	Horz(CT) 0.01	7 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05	8-10 >999	240	Weight: 268 lb FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD

Pla

2x10 SP No 1 2x10 SP No.1 *Except* BOT CHORD 8-10: 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=271(LC 9) Max Grav 1=1412(LC 21), 7=1412(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1902/0, 2-3=-1051/153, 3-4=-31/586, 4-5=-31/587, 5-6=-1051/153, 6-7=-1901/0

- BOT CHORD
- 1-10=0/1090, 8-10=0/1096, 7-8=0/1089
- WFBS 6-8=0/1002, 2-10=0/1002, 3-5=-1781/246

NOTES-

1) Unbalanced roof live loads have been considered for this design.

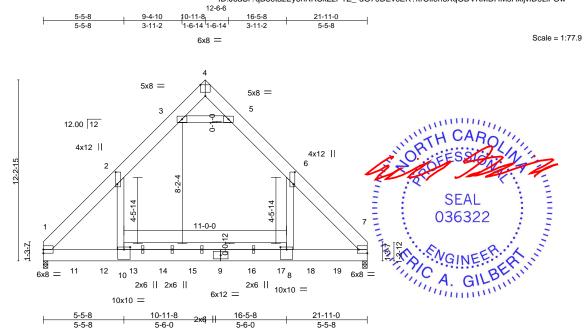
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 10-11-8, Exterior(2) 10-11-8 to 15-4-5, Interior(1) 15-4-5 to 21-9-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).6-8, 2-10

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 8-10


7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-9-12,0-1-4], [4:0-4-0,	Eugej, [6.0-9-	12,0-1-4], [7:Edge,0-3-0],	[8:0-5-0,0-2-0], [1	0:0-5-0,	0-2-0]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 NO 212014	CSI. TC 0.72 BC 0.76 WB 0.38 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.39 0.02 0.01	(loc) 8-10 8-10 7 10	l/defl >901 >662 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 803 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x10 S	SP 2400F 2.0E SP No.1 *Except* 2x6 SP No.1 P No.1			BRACING TOP CHOF BOT CHOF	RD				ectly applied or 6-0-0 c or 10-0-0 oc bracing.	oc purlins.
Max H	te) 1=0-3-12, 7=0-3-12 Horz 1=-271(LC 4) Grav 1=9588(LC 14), 7=95	574(LC 14)								
OP CHORD 1-2= BOT CHORD 1-10	. Comp./Max. Ten All for -10119/0, 2-3=-4220/35, 3 =0/5666, 8-10=0/5730, 7-8 0/8209, 2-10=0/8178, 3-5=	-4=0/4209, 4-5 3=0/5666								
Top chords connect Bottom chords conn Webs connected as 2) All loads are consid ply connections hav 3) Unbalanced roof live 4) Wind: ASCE 7-10; \ MWFRS (envelope) 5) Concentrated loads MWFRS Wind (Pos Left; #7 Dead + 0.6 MWFRS Wind (Pos (Pos. Internal) 4th P 2nd Parallel; #20 De Live (bal.) + 0.75 At 0.75(0.6 MWFRS W Int) 2nd Parallel).	nnected together with 10d ted as follows: 2x10 - 2 rov nected as follows: 2x10 - 5 follows: 2x6 - 2 rows stag ered equally applied to all re been provided to distribu e loads have been conside /ult=130mph (3-second gu); Lumber DOL=1.60 plate from layout are not preser . Internal) Left; #5 Dead + MWFRS Wind (Neg. Intern . Internal) 2nd Parallel; #10 arallel; #12 Dead + 0.6 MW ead + 0.75 Roof Live (bal.) tic Floor + 0.75(0.6 MWFR <i>Vind</i> (Neg. Int) 1st Parallel)	vs staggered a rows staggered gered at 0-9-0 plies, except if ute only loads ared for this de ust) Vasd=1030 grip DOL=1.6(nt in Load Cas 0.6 MWFRS V nal) Right; #8 I 0 Dead + 0.6 M WFRS Wind (N + 0.75 Attic F & Wind (Neg. ; #23 Dead + 0(at 0-9-0 oc. ad at 0-4-0 oc. oc. f noted as front (F) or bac noted as (F) or (B), unles usign. mph; TCDL=6.0psf; BCD o e(s): #3 Dead + Uninhab Vind (Pos. Internal) Right Dead + 0.6 MWFRS Wind WWFRS Wind (Pos. Inter Neg. Internal) 1st Parallel loor + 0.75(0.6 MWFRS Int) Right); #22 Dead + 0. 0.75 Roof Live (bal.) + 0.	s otherwise indica L=6.0psf; h=15ft; (itable Attic Withou ; #6 Dead + 0.6 M d (Pos. Internal) 1 hal) 3rd Parallel; # ; #13 Dead + 0.6 I Wind (Neg. Int) Le 0.75 Roof Live (bal 75 Attic Floor + 0.7	ted. Cat. II; E t Storag WFRS \ st Parall 11 Dead WWFRS ft); #21 .) + 0.75 75(0.6 M	Exp C; E ge; #4 D Wind (N lel; #9 D d + 0.6 I S Wind (Dead + 5 Attic F	Enclosed; lead + 0.6 leg. Intern Dead + 0.1 MWFRS Neg. Inter 0.75 Roo Floor +	5 nal) 6 Wind mal) of	February	23,2021
ontinued on page 2	esign parameters and READ NOTE					FFORF II	ISE		ENGINEER	ING BY
Design valid for use onl a truss system. Before u building design. Bracin	ly with MiTek® connectors. This d use, the building designer must ve g indicated is to prevent buckling tability and to prevent collapse wit	lesign is based on erify the applicabili of individual truss	ly upon parameters shown, and ity of design parameters and pro web and/or chord members onl	is for an individual buil perly incorporate this of	ding comp lesign into	onent, no the overa nanent bra	ot all		TRE	NCO

Job	Truss	Truss Type	Qty	Ply	Lot 7 Spartan Ridge	
					E154380	38
J0221-0894	B1-GR	ATTIC	1	2		
				J	Job Reference (optional)	
Comtech, Inc, Fayettev	rille, NC - 28314,		8	3.330 s Oc	t 7 2020 MiTek Industries, Inc. Tue Feb 23 12:53:55 2021 Page 2	
		ID:J6a	Sr?qB6eta	azEy6hKR	SkZzPTZ -dG70DEvcER?krOiieh6XqGDVKMDHMsHxljviD9ziFOw	

NOTES-

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).6-8, 2-10

9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 8-10

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1726 lb down at 1-11-12, 1726 lb down at 3-11-12, 3826 lb down at 5-2-12, 376 lb down and 34 lb up at 5-11-12, 376 lb down and 34 lb up at 7-11-12, 376 lb down and 34 lb up at 13-11-12, 376 lb down and 34 lb up at 13-11-12, 376 lb down and 34 lb up at 15-11-12, 3826 lb down at 16-8-4, and 1726 lb down at 17-11-12, and 1726 lb down at 19-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

11) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

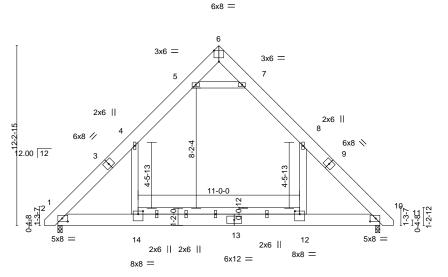
Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-80, 3-4=-60, 4-5=-60, 5-6=-80, 6-7=-60, 1-10=-20, 8-10=-40, 7-8=-20, 3-5=-20

Drag: 6-8=-10, 2-10=-10 Concentrated Loads (lb)

Vert: 9=-62(B) 8=-1029(B) 10=-1029(B) 11=-430(B) 12=-430(B) 13=-62(B) 14=-62(B) 15=-62(B) 16=-62(B) 17=-62(B) 18=-430(B) 19=-430(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


-0<u>-11-0</u> 0-11-0

5-5-8

5-5-8

Scale = 1:78.4

	SPACING	200	190	DEEL	in	(loc)	l/dofl	L /d	
Plate Offsets (X,Y)	[2:0-4-9,0-2-8], [6:0-4-0	,Edge], [10:0-4-9	9,0-2-8], [12:0-4-0,0-2-8],	[14:0-4-0,0-2-8	3]				
		5-	5-8 5-6-0	5	-6-0	1	5-5-8		
		1 5-	5-8 10-11-8	2x6 10	6-5-8	1 2	21-11-0	1	

LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.56 BC 0.61 WB 0.14 Matrix-S	Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	5 12-14 > 25 12-14 > 01 10	I/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 277 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x10 S BOT CHORD 2x10 S 12-14: 2x6 SP	P No.1 *Except* 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD		al wood sheathing dir ling directly applied o	ectly applied or 6-0-0 or 10-0-0 or 10-0-0 oc bracing.	oc purlins.
	e) 2=0-3-8, 10=0-3-8 orz 2=-345(LC 10) rav 2=1436(LC 20), 10=1436(LC 21)						
TOP CHORD 2-4=- BOT CHORD 2-14=	Comp./Max. Ten All forces 250 (lb) or 1935/0, 4-5=-1055/184, 5-6=-59/575, 6- 0/1113, 12-14=0/1119, 10-12=0/1112 0/1020, 4-14=0/1020, 5-7=-1738/340						
2) Wind: ASCE 7-10; V MWFRS (envelope)	loads have been considered for this de ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Exterior(2) zor	mph; TCDL=6.0psf; BCD					
Gable End Details as 4) Gable studs spaced	vind loads in the plane of the truss only. s applicable, or consult qualified building	g designer as per ANSI/T	PI 1.	see Standa		HINNING AND	11111
	n designed for a live load of 30.0psf on t ottom chord and any other members.	he bottom chord in all are	eas where a rectangle 3	8-6-0 tall by 2	2-0-0 wide	RTH CA	ROLIN

- will fit between the bottom chord and any other members. 7) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-7; Wall dead load (5.0psf) on member(s).8-12, 4-14
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

9) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 7 Spartan Ridge	
J0221-0894	C1	COMMON	2	1	Lot r opanar nogo	E15438040
	vetteville, NC - 28314,				Job Reference (optiona	al) es, Inc. Tue Feb 23 12:53:57 2021 Page 1
		5-4-12 11-4-12				I2GR4ir5I58?vhIz4A?WpmhEC1Ool1ziFOu
	- <u>q-11₇0</u> 0-11-0	5-4-12 6-0-0	6-0-0		5-4-12 0-11-0	
			5x5 =			Scale = 1:75.4
	I	12.00 12	5			
			$\overline{\mathcal{M}}$			
		4x6 // 14 2x4 \\		15 4,	×6 ∕\	
	5				2x4 // 7	
	12.4.12			X		
		13			16	
	2			//	8	
		¥/				- 1-0-
	^ف 4x8	17 18 12 19 3x6 =	11 20 10 4x6 = 3x6	21 =	22 4x8	ò
		7-4-12 15	5-4-12		22-9-8	
Plate Offsets (X,Y)	[2:0-0-10.0-0-10], [2:0-1-4.0-3-1		8-0-0		7-4-12	
LOADING (psf)	SPACING- 2-0-0		DEFL. ir	n (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	5 TC 0.19	Vert(LL) -0.05	5 10-12 7 10-12	>999 360 >999 240	MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014		Horz(CT) 0.01		n/a n/a	Weight: 210 lb FT = 20%
LUMBER-		Matrix-5	BRACING-	2-12	2333 240	
TOP CHORD 2x6 SF			TOP CHORD			ectly applied or 6-0-0 oc purlins.
	P No.1 *Except*		BOT CHORD	Rigia ce	eiling directly applied or	10-0-0 oc bracing.
WEDGE	-12: 2x4 SP No.2					
Left: 2x4 SP No.2 , Rig	iht: 2x4 SP No.2					
	e) 2=0-3-8, 8=0-3-8 Horz 2=-292(LC 10)					
Max U	Jplift 2=-39(LC 12), 8=-39(LC 13) Grav 2=1066(LC 19), 8=1066(LC					
		0 (lb) or less except when shown.				
TOP CHORD 2-3=-	-1207/249, 3-5=-1102/431, 5-7=- =-101/922, 10-12=-6/606, 8-10=-	1103/431, 7-8=-1207/249				
	=-217/669, 7-10=-418/319, 5-12=					
NOTES-	- I	a da ta a da a ta a				
2) Wind: ASCE 7-10; V		sd=103mph; TCDL=6.0psf; BCDL=6.0				
to 23-6-14 zone;C-C	C for members and forces & MWI	7-7, Interior(1) 3-7-7 to 11-4-12, Exterio FRS for reactions shown; Lumber DOL	.=1.60 plate grip D		rior(1) 15-9-9	MILLING.
4) * This truss has bee	en designed for a live load of 30.0	chord live load nonconcurrent with any opsf on the bottom chord in all areas w		6-0 tall by	y 2-0-0 wide	H CARO
	bottom chord and any other mem	bers, with BCDL = 10.0psf. o bearing plate capable of withstanding	g 100 lb uplift at joi	nt(s) 2, 8.		A THINK A
					A A A A A A A A A A A A A A A A A A A	my swell
						SEAL
					THE DESIGNATION OF THE DESIGNATI	036322
					E.	No State
						February 23,2021
						February 23,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 7 Spartan Ridge	
J0221-0894	C1-GR	Common Girder	1			E15438041
	etteville, NC - 28314,			2	Job Reference (optional)	Inc. Tue Feb 23 12:54:06 2021 Page 1
Connect, inc, i ay		5-4-12 11-4-12 5-4-12 6-0-0				f51pnUp6nbAW?o3CQjhZHx3n60ziFOI Scale = 1:77.9
	۲۰۰۶۲ ۲۰۰۶۲ ۲۰۰۶۲ ۲۰۰۶۲ ۲۰۰۶	$\begin{array}{c} 12.00 \overline{12} \\ 4x6 7 \\ 4x8 7 \\ 2 \\ 3 \\ 2 \\ 4x8 7 \\ 3 \\ 2 \\ 12 \\ 13 \\ 11 \\ 14 \\ 15 \\ 16 \\ 4x12 \\ 11 \\ 54 \\ 12 \\ 11 \\ 4x12 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\$	$10 13 18 \\ 6x8 = 10x10 = 17.4-12$	4xte 5 4 6 6 8 19 4x12	7 7 20 21 $4x8 =$	
Plate Offsets (X,Y)	⊢ [1:0-8-0,0-0-12], [7:0-8-0,0-0-1]	5-4-12 6-0-0	6-0-0		5-4-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr N Code IRC2015/TPI2014	0 CSI. 5 TC 0.25 5 BC 0.36 O WB 0.85	Vert(LL) -0.10 Vert(CT) -0.17 Horz(CT) 0.03 Wind(LL) 0.05	7	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 408 lb FT = 20%
WEBS 2x4 SP WEDGE Left: 2x4 SP No.3 , Rigi	2400F 2.0E No.2 ht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD		iling directly applied or 10	
Max Hu Max U Max G FORCES. (Ib) - Max. TOP CHORD 1-2=- BOT CHORD 1-11= WEBS 4-10= NOTES- 1) 2-ply truss to be con Top chords connected	7537/375, 2-4=-5200/373, 4-6= 290/5032, 10-11=-290/5041, 4 386/6904, 6-10=-2524/292, 6 nected together with 10d (0.13 ed as follows: 2x6 - 2 rows stag	2) 60 (lb) or less except when shown. 5199/373, 6-78138/378 1-10=-185/5446, 7-8=-185/5435 8=-83/3808, 2-10=-2036/287, 2-11=-76 "x3") nails as follows: gered at 0-9-0 oc.	3/2972		A COMPANY AND A COMPANY	SEAL 036322
 Webs connected as 2) All loads are conside ply connections have 3) Unbalanced roof live 4) Wind: ASCE 7-10; V MWFRS (envelope); 5) This truss has been 6) * This truss has been in (a) * This truss has been in (b) * This truss has been in (c) * This trus	e been provided to distribute or loads have been considered for ult=130mph (3-second gust) V/ Lumber DOL=1.60 plate grip E designed for a 10.0 psf bottom n designed for a live load of 30.0 ottom chord and any other mer connection (by others) of truss onnection device(s) shall be pri and 55 lb up at 2-10-4, 987 lb I-4, 1243 lb down and 55 lb up vn and 55 lb up at 16-10-4, 12-	except if noted as front (F) or back (B) y loads noted as (F) or (B), unless oth r this design. Isd=103mph; TCDL=6.0psf; BCDL=6.0 OL=1.60 chord live load nonconcurrent with any Opsf on the bottom chord in all areas w	erwise indicated. opsf; h=15ft; Cat. II; other live loads. here a rectangle 3-1 g 100 lb uplift at joir d load(s) 990 lb dow bwn and 55 lb up at at 12-10-4, 1243 lt d 987 lb down and	Exp C; Er 6-0 tall by nt(s) exce wn and 52 6-10-4, 9 o down an 55 lb up a	iclosed; 2-0-0 wide ot (jt=lb) lb up at 87 lb down d 55 lb up at t 20-4-4, and	
LOAD CASE(S) Stand	dard					February 23,2021
Continued on page 2						

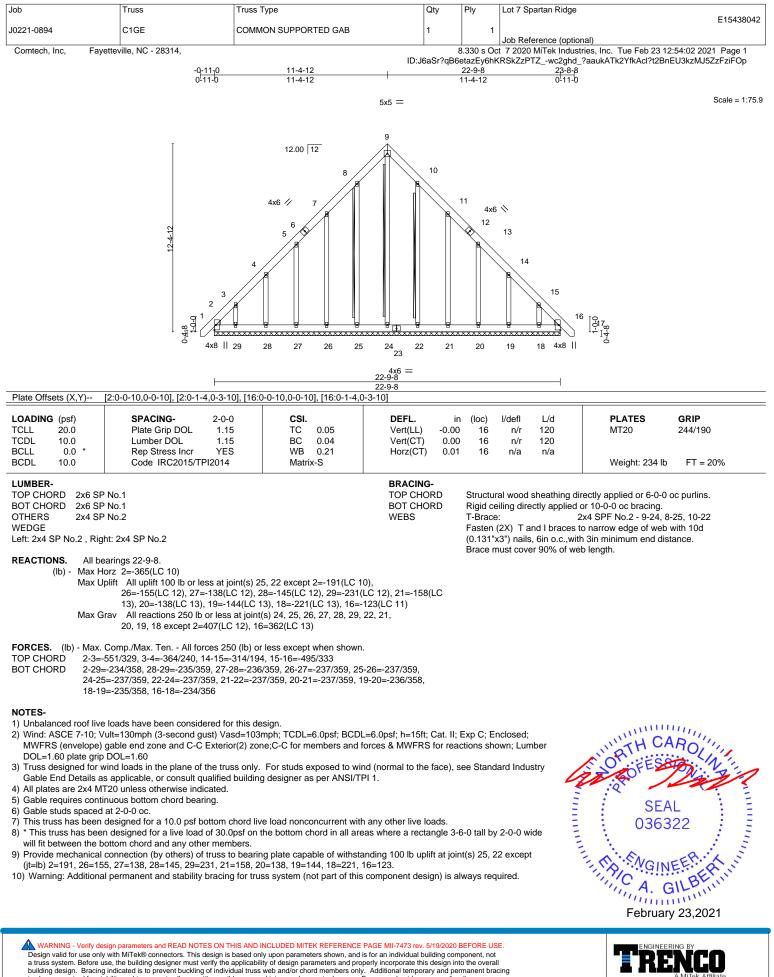
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

J	ob	Truss	Truss Type	Qty	Ply	Lot 7 Spartan Ridge
						E15438041
J	0221-0894	C1-GR	Common Girder	1	່າ	
					2	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		6	3.330 s Oc	t 7 2020 MiTek Industries, Inc. Tue Feb 23 12:54:06 2021 Page 2

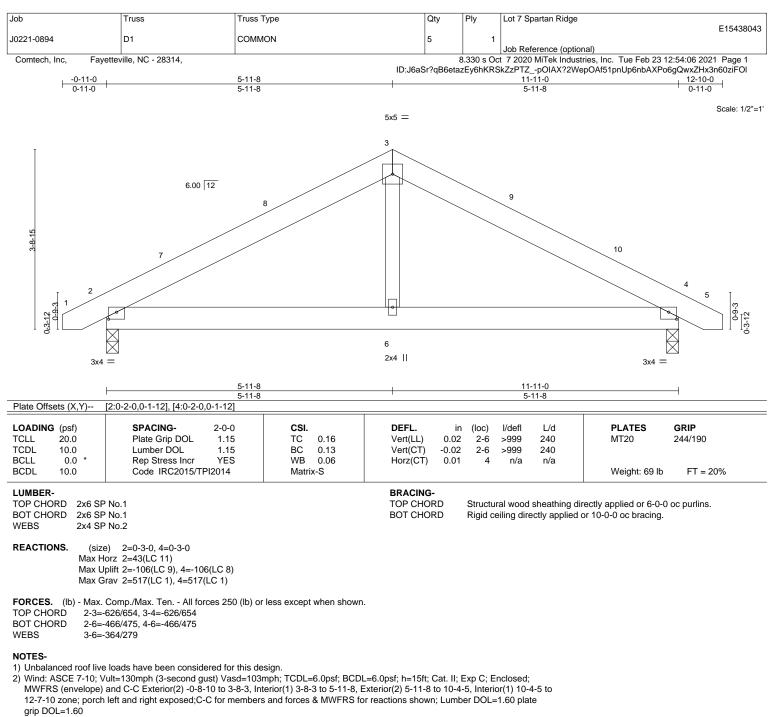
ID:J6aSr?qB6etazEy6hKRSkZzPTZ_-pOIAX?2WepOAf51pnUp6nbAW?o3CQjhZHx3n60ziFOI

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

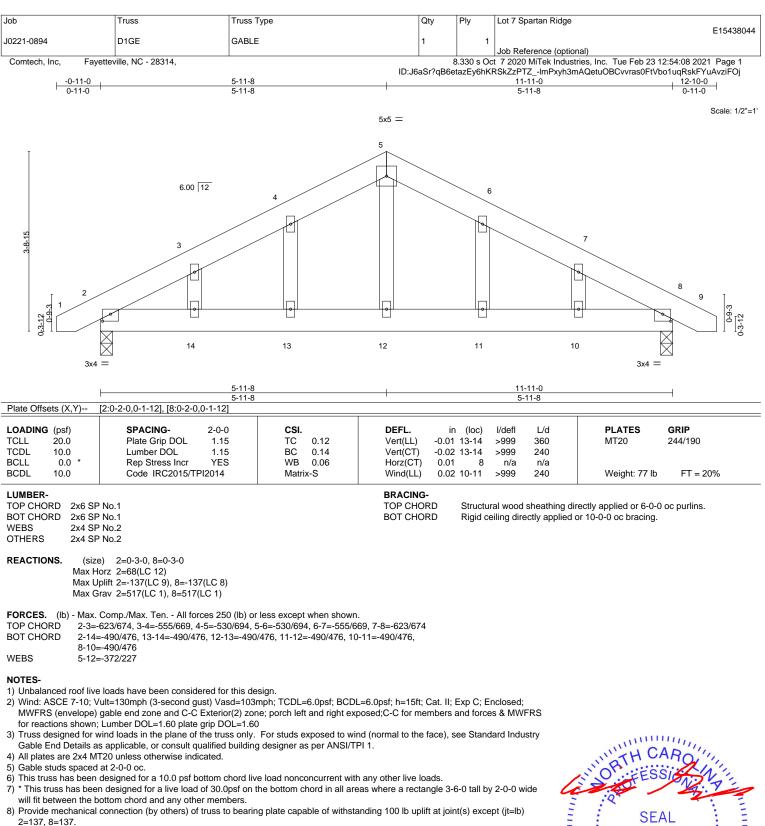

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 1-7=-20

Concentrated Loads (lb)


Vert: 9=-969(B) 7=-976(B) 12=-972(B) 13=-969(B) 14=-969(B) 15=-969(B) 16=-969(B) 17=-969(B) 18=-969(B) 19=-969(B) 20=-969(B) 21=-969(B) 20=-969(B) 20=-969

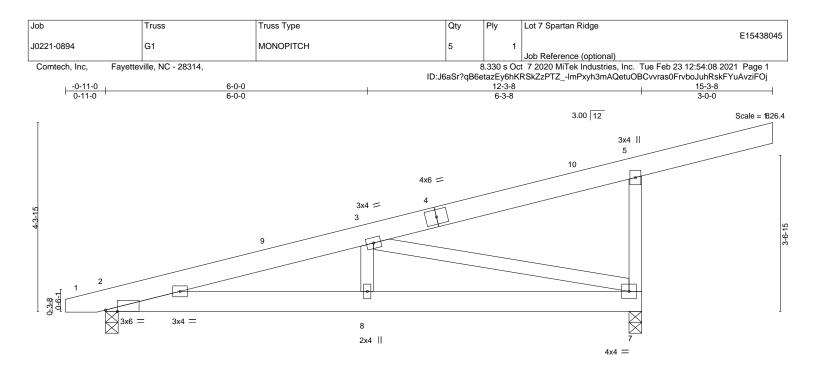
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=106, 4=106.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road Edenton, NC 27932

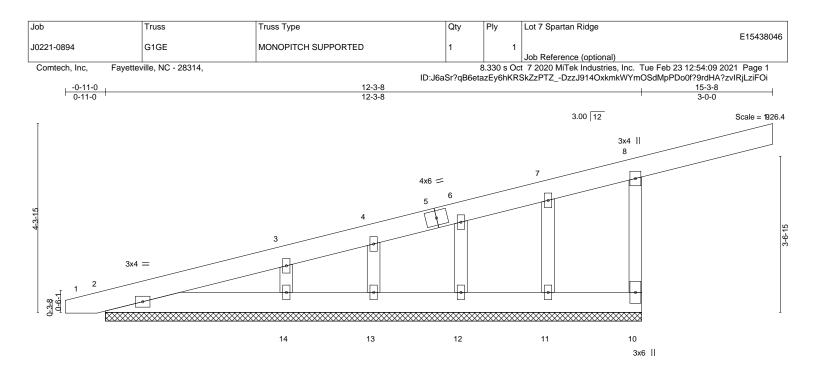
H	6-0-0			12-3-8			
Plate Offsets (X,Y)	6-0-0 [2:0-3-4,Edge]			6-3-8			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.22 BC 0.19 WB 0.64 Matrix-S	DEFL. in Vert(LL) -0.02 Vert(CT) -0.05 Horz(CT) 0.01 Wind(LL) 0.02	8 >999 8 >999 7 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x6 SI WEBS 2x4 SI	P No.1	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.) oc purlins,	
Max L	e) 7=0-3-8, 2=0-3-8 Horz 2=125(LC 8) Jplift 7=-119(LC 12), 2=-53(LC 8) Brav 7=692(LC 1), 2=499(LC 1)						
TOP CHORD 2-3= BOT CHORD 2-8=	Comp./Max. Ten All forces 250 (lb) o -990/24, 5-7=-402/374 -140/916, 7-8=-140/916 0/267, 3-7=-939/153	r less except when shown.					

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-11 to 3-10-2, Interior(1) 3-10-2 to 15-3-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=119.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in ((loc) l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.22	Vert(LL) 0.02	9 n/r	120	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00	9 n/r	120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) -0.00	10 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 80 lb FT = 20%

LOWIDER	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

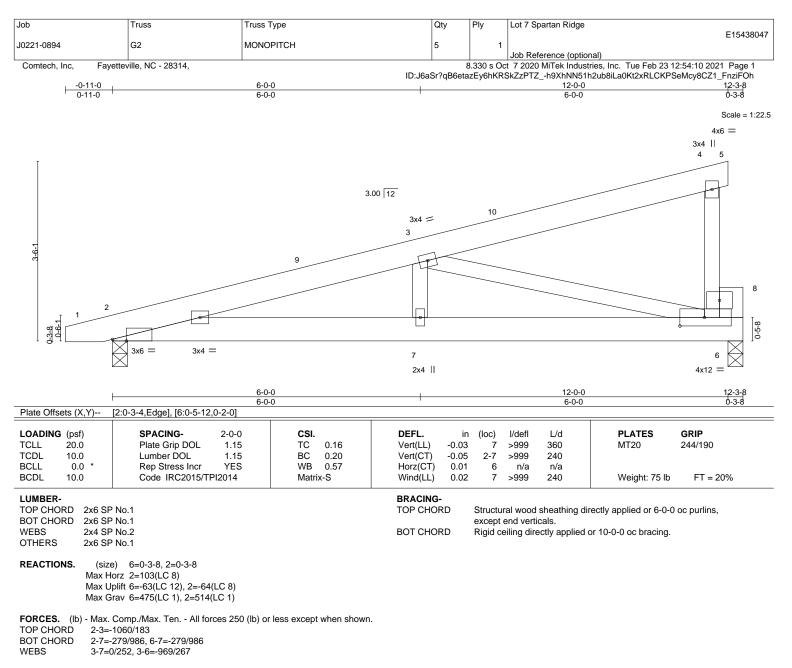
REACTIONS. All bearings 12-3-8.

(lb) -Max Horz 2=182(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 13, 12, 11 except 10=-219(LC 9), 14=-107(LC 12) Max Grav All reactions 250 lb or less at joint(s) 2, 13, 12, 11 except 10=413(LC 1), 14=333(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 8-10=-400/482

TOP CHORD


NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13, 12, 11 except (jt=lb) 10=219, 14=107.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

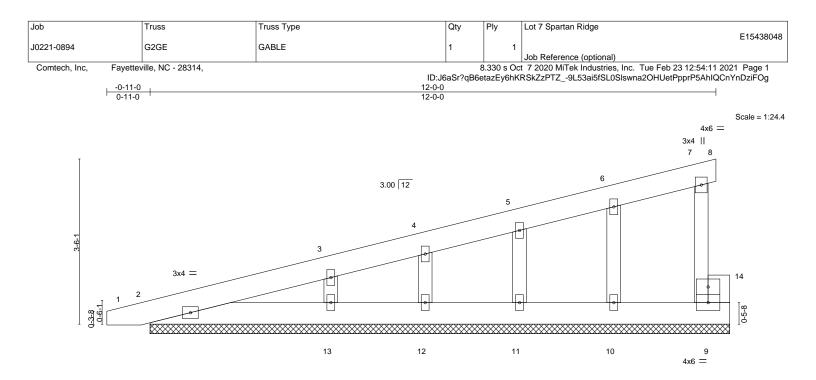
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-11 to 3-10-2, Interior(1) 3-10-2 to 12-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

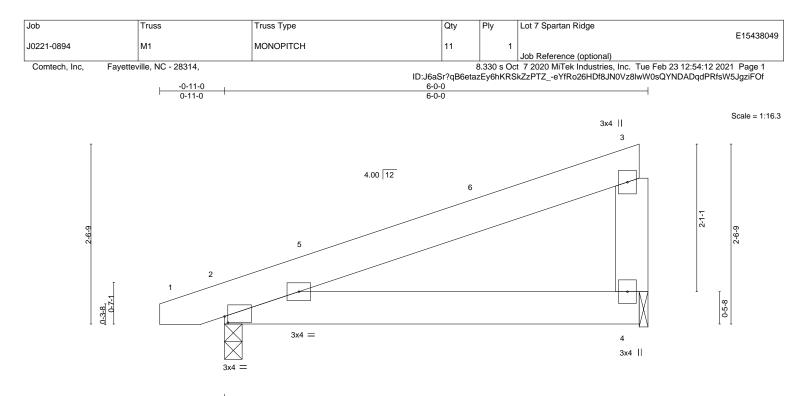
OADING (SPACING-	2-0-0	CSI.	0.05	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	_	n/r	120	MT20	244/190
	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	7	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	9	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-S						Weight: 73 lb	FT = 20%
LUMBER-						BRACING-					·	
TOP CHOR	D 2x6 SP	No.1				TOP CHOR	D	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins,
BOT CHOR	D 2x6 SP	No.1						except	end verti	cals.		
WEBS	2x4 SP	No.2				BOT CHOR	D	Rigid c	eilina dire	ectly applied	or 10-0-0 oc bracing.	
OTHERS	2x4 SP	No.2 *Except*						J · ·	J		. .	
0		6 SP No.1										

REACTIONS. All bearings 12-3-8.

(lb) - Max Horz 2=148(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 9, 10, 11, 12, 13

Max Grav All reactions 250 lb or less at joint(s) 2, 9, 10, 11, 12 except 13=305(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9, 10, 11, 12, 13.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

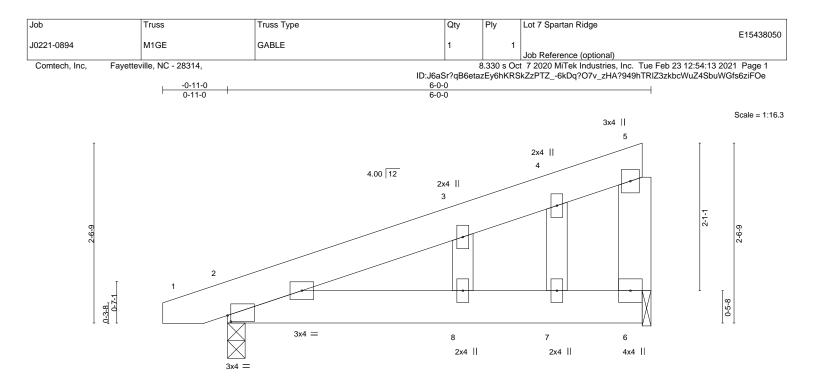
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL 1	0.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.03	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 1	0.0	Code IRC2015/TF	PI2014	Matrix	к-Р	Wind(LL)	0.03	2-4	>999	240	Weight: 34 lb	FT = 20%

 TOP CHORD
 2x6 SP No.1
 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 2x6 SP No.1
 BOT CHORD
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=71(LC 8) Max Uplift 2=-104(LC 8), 4=-97(LC 8) Max Grav 2=274(LC 1), 4=223(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

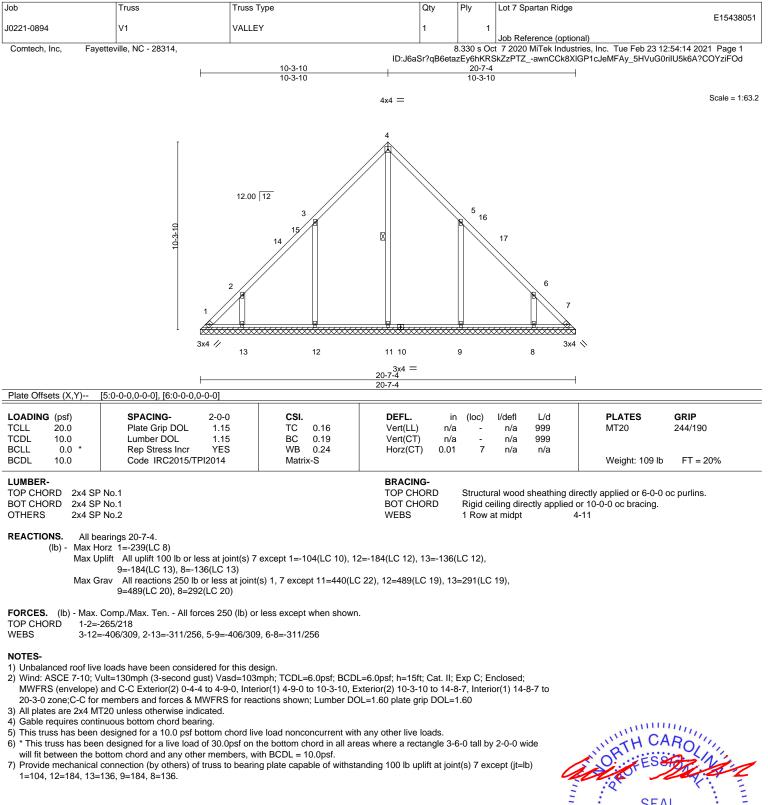
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 5-9-4 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=104.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

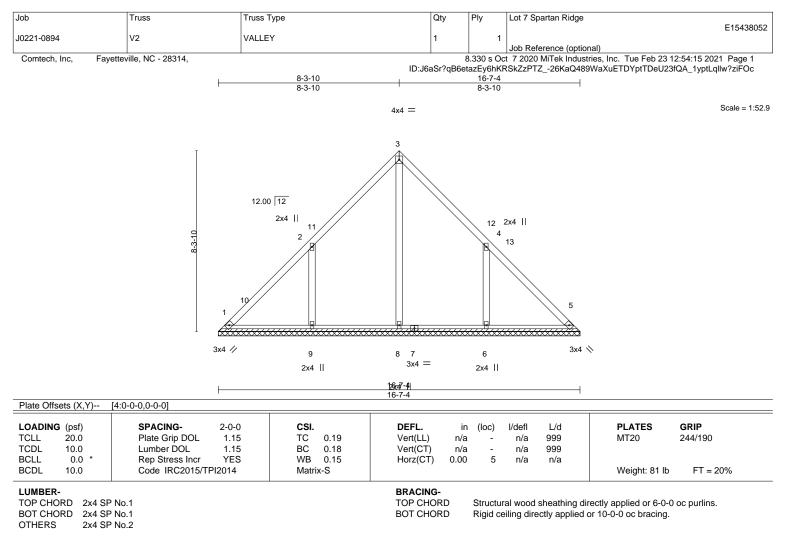
.OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL) 0.02	2 2-8 >999 240	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.10	Vert(CT) -0.02	2 8 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.01	Horz(CT) -0.00	0 6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 37 lb FT = 20%
UMBER-	L		BRACING-		
OP CHORD 2x6 SP	' No.1		TOP CHORD	Structural wood sheathing di	rectly applied or 6-0-0 oc purlins,
BOT CHORD 2x6 SP	No.1			except end verticals.	,
WEBS 2x6 SP	No.1		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.
OTHERS 2x4 SP				· ··g·= · ·····g -·· · ··· / -···	

Max Horz 2=101(LC 8) Max Uplift 2=-151(LC 8), 6=-142(LC 8) Max Grav 2=274(LC 1), 6=223(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 1-4-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=151, 6=142.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 16-7-4.

(lb) - Max Horz 1=-191(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-199(LC 12), 6=-199(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=417(LC 22), 9=519(LC 19), 6=519(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-429/322, 4-6=-429/322

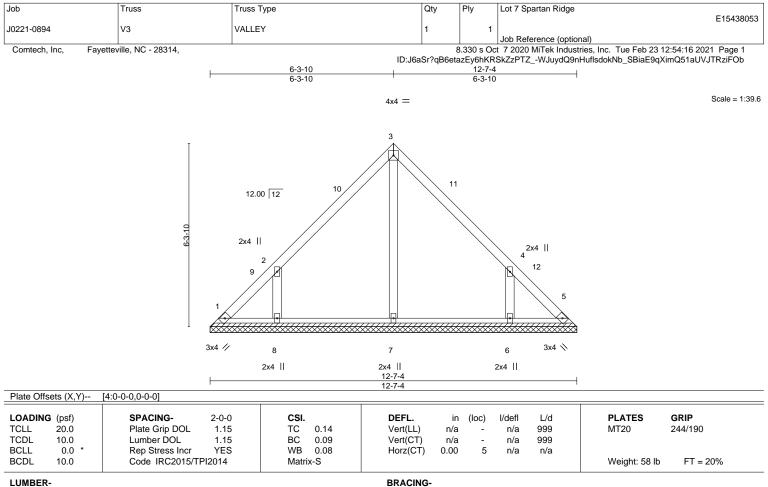
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 8-3-10, Exterior(2) 8-3-10 to 12-8-7, Interior(1) 12-8-7 to 16-3-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Or the service reaction of the service of the service reaction of the service r

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=199, 6=199.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 12-7-4.

(lb) -Max Horz 1=-143(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-161(LC 12), 6=-161(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=341(LC 19), 6=341(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-355/291, 4-6=-355/291

NOTES-

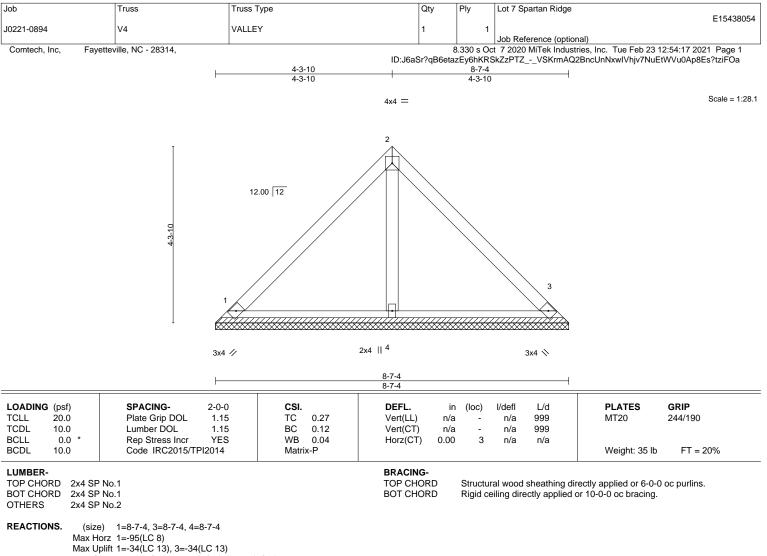
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-3-10, Exterior(2) 6-3-10 to 10-8-7, Interior(1) 10-8-7 to 12-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=161, 6=161.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

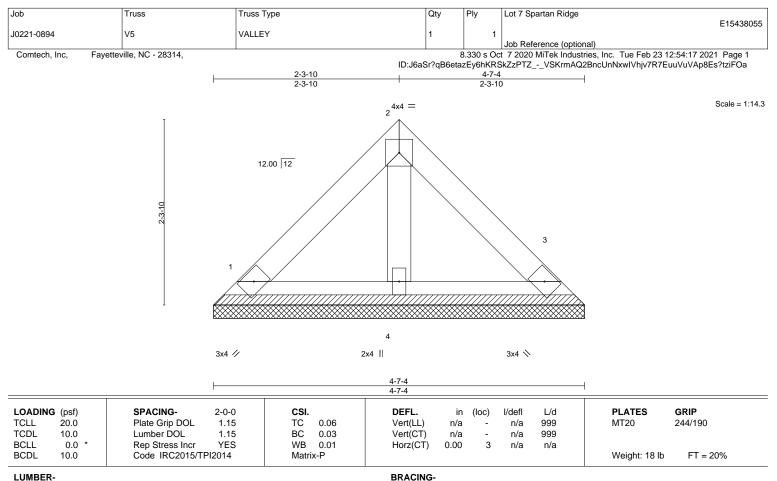
Max Grav 1=192(LC 1), 3=192(LC 1), 4=247(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=4-7-4, 3=4-7-4, 4=4-7-4

Max Horz 1=-47(LC 8)

Max Uplift 1=-17(LC 13), 3=-17(LC 13)

Max Grav 1=95(LC 1), 3=95(LC 1), 4=122(LC 1)

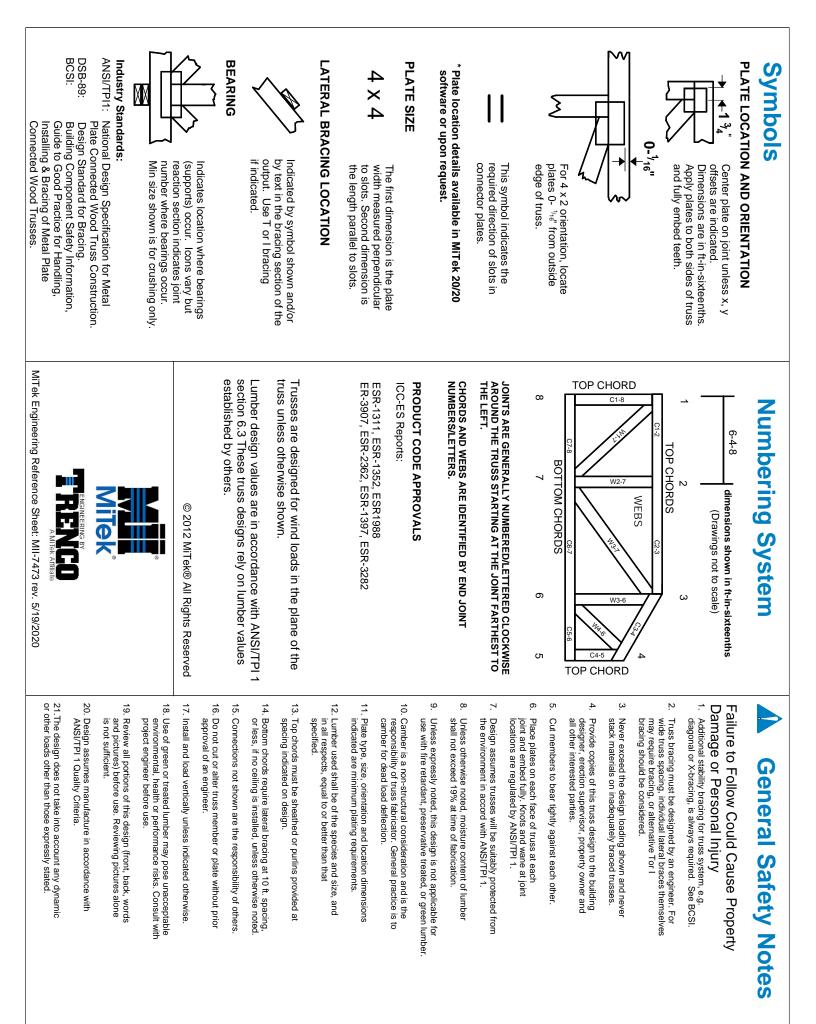
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 4-7-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

