

RE: J0221-0896 Lot 5 Spartan Ridge Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer:Project Name: J0221-0896Lot/Block:ModeAddress:SuboCity:State

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E15028341	A1	2/23/2021	21	E15028361	V3	2/23/2021
2	E15028342	A1A	2/23/2021	22	E15028362	V4	2/23/2021
3	E15028343	A1GE	2/23/2021	23	E15028363	V5	2/23/2021
4	E15028344	A2	2/23/2021				
5	E15028345	A2A	2/23/2021				
6	E15028346	A2GE	2/23/2021				
7	E15028347	B1	2/23/2021				
8	E15028348	B1GE	2/23/2021				
9	E15028349	B2	2/23/2021				
10	E15028350	C1GE	2/23/2021				
11	E15028351	D1	2/23/2021				
12	E15028352	D1-GR	2/23/2021				
13	E15028353	D1SG	2/23/2021				
14	E15028354	H1	2/23/2021				
15	E15028355	H1GE	2/23/2021				
16	E15028356	M1	2/23/2021				
17	E15028357	M1GE	2/23/2021				
18	E15028358	M2	2/23/2021				
19	E15028359	V1	2/23/2021				
20	E15028360	V2	2/23/2021				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-1 to 37-12, Interior(1) 3-7-12 to 14-7-10, Exterior(2) 14-7-10 to 19-0-7, Interior(1) 19-0-7 to 30-0-5 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932

- Max Uplift All uplift 100 lb or less at joint(s) 2, 28, 29, 30, 31, 32, 25, 23, 22, 21, 18 except 33=-120(LC 12), 24=-101(LC 13), 20=-118(LC 13)
- Max Grav All reactions 250 lb or less at joint(s) 2, 27, 28, 29, 30, 31, 32, 33, 25, 24, 23, 22, 21, 20, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-300/229, 9-10=-233/262, 10-11=-233/262

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 28, 29, 30, 31, 32, 25, 23, 22, 21, 18 except (jt=lb) 33=120, 24=101, 20=118.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

818 Soundside Road Edenton, NC 27932

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-303/231, 8-9=-233/262, 9-10=-233/262

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 27, 28, 29, 30, 31, 24, 22, 21, 20, 17 except (jt=lb) 32=127, 23=101, 19=118.

10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

ENGINEERING BY EREENCO AMITek Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 5 Spartan Ridge
					E15028347
J0221-0896	B1	ATTIC	4	1	
					Job Reference (optional)
Comtech, Inc, Fayett	eville, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Oct 28 09:05:45 2020 Page 1
		ID:Y	aRO?Cx	alt9aUrIH	N7aHdzaoOe-42T6H7y?i1V9coi4F1SK?Y1dx_lli5y_EwatEvyOwy4

ID:Y_aRO?Cxglt9gUrlHW7gHdzqoOe-42T6H7v?i1V9coj4F1SK?Y1dx_Ili5v_Ewgt -0₇11<u>r0 6-2-12 9-2-4 11-11-8 14-8-12 17-8-4 23-11-0 24-10-0</u> 0¹11¹0 6-2-12 2-11-8 2-9-4 2-9-4 2-11-8 6-2-12 0-11-0

Scale = 1:86.9

2x6 ||

		6-2-12	11-11-8	17-8-4	23-11-0	
	T	6-2-12	5-8-12	5-8-12	6-2-12	
Plate Offsets (X,Y)	[2:0-0-0,0-0-8], [10:Edge,0-0-8]	, [12:0-4-0,0-2-4],	[14:0-4-0,0-2-4]			

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.62 BC 0.72 WB 0.14 Matrix-S	DEFL. ir Vert(LL) -0.25 Vert(CT) -0.43 Horz(CT) 0.01 Wind(LL) 0.10	n (loc) I/defl L/d 12-14 >999 360 12-14 >659 240 10 n/a n/a 12-14 >999 240	PLATES GRIP MT20 244/190 Weight: 263 lb FT = 20%
LUMBER- TOP CHORD 2x6 Sf 1-3,9- BOT CHORD 2x10 S 12-14: WEBS 2x6 Sf 6-15: 2 WEDGE Left: 2x6 SP No.2 , Rig	P 2400F 2.0E *Except* 11: 2x6 SP No.1 SP No.1 *Except* 2x8 SP No.1 P No.1 *Except* 2x4 SP No.2 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD JOINTS	Structural wood sheathing dirr Rigid ceiling directly applied o 1 Brace at Jt(s): 15	ectly applied or 4-8-2 oc purlins. r 10-0-0 oc bracing.
REACTIONS. (siz Max H Max C	e) 2=0-3-8, 10=0-3-8 Horz 2=-305(LC 10) Grav 2=1650(LC 20), 10=1650(LC 21)				
FORCES. (lb) - Max. TOP CHORD 2-4= BOT CHORD 2-14 WEBS 8-12	Comp./Max. Ten All forces 250 (lb) or -2117/0, 4-5=-1140/151, 5-6=-55/251, 6- =0/1252, 12-14=0/1252, 10-12=0/1252 =0/1028, 4-14=0/1028, 5-15=-1512/225,	less except when shown. 7=-55/251, 7-8=-1140/151, 7-15=-1512/225	8-10=-2117/0		

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-6 to 3-7-7, Interior(1) 3-7-7 to 11-11-8, Exterior(2) 11-11-8 to 16-4-5, Interior(1) 16-4-5 to 24-8-6 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Ceiling dead load (10.0 psf) on member(s). 4-5, 7-8, 5-15, 7-15; Wall dead load (5.0psf) on member(s).8-12, 4-14

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

8) Attic room checked for L/360 deflection.

Job	Truss	Truss Type	Qty	Ply	Lot 5 Spartan Ridge	
J0221-0896	B1GE	GABLE	1	1		E15028348
Comtech, Inc, Fayet	teville, NC - 28314,			3.330 s Oc	Job Reference (optional) t 7 2020 MiTek Industries, In	nc. Wed Oct 28 09:05:46 2020 Page 1
	-0-11 ¹ 0	ID:Y_a 6-2-129-2-411-11-814-8-12	RO?Cxglt9(2 17-8-4	gUrlHW7g	HdzqoOe-YE1VVTweTLd0E> 23-11-0 24-10 _r 0	xIGpIzZXIZiBN6PRX37TaPQmLyOwv3
	0-11-0	6-2-12 2-11-8 2-9-4 2-9-4	2-11-8		6-2-12 0-11-0	
		5x8 =				Scale = 1:80.6
	13-20	$ \begin{array}{c} $	2x4 = 9 Tr	= 3x10 10	0 2x4 4x6 11 12	
			2-8-7			8-
	5x8 =	22 21 20	10	18	17 16 5x8 =	
	1	6-2-12 11-11-8 6x12 =	- 7-8-4		23-11-0	
Plate Offsets (X,Y) [1	8:0-5-0,0-3-12], [20:0-5-0,0-3-1	6-2-12 5-8-12 5-12 5-8-	5-8-12		6-2-12	
LOADING (psf)	SPACING- 2-0-0	CSI. DEFL.	ir	(loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.97 Vert(L)	_) -0.22	18-20	>999 360	MT20 244/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.21 Horz(C	T) 0.01	14	n/a n/a	
BCDL 10.0		Matrix-S Wind(I	L) 0.13	20	>999 240	Weight: 279 ib FT = 20%
LUMBER- TOP CHORD 2x6 SP N BOT CHORD 2x10 SP 18-20: 2y WEBS 2x6 SP N 8-23: 2x4 OTHERS 2x4 SP N WEDGE	lo.1 No.1 *Except* 48 SP No.1 lo.1 *Except* 4 SP No.2 lo.2	BRAC TOP C BOT C JOINT	NG- HORD HORD S	Structur Rigid ce 1 Brace	al wood sheathing directly illing directly applied or 10- at Jt(s): 23	applied. 0-0 oc bracing.
Left: 2x4 SP No.3 , Right	: 2x4 SP No.3					
REACTIONS. (size) Max Hor Max Gra	2=0-3-8, 14=0-3-8 z 2=-382(LC 10) w 2=1530(LC 20), 14=1530(LC	: 21)				
FORCES. (lb) - Max. C TOP CHORD 2-3=-11 10-12= BOT CHORD 2-22=0 14-16= WEBS 10-18= 3-22=0	omp./Max. Ten All forces 250 993/0, 3-4=-1620/0, 4-6=-2062/ -2061/75, 12-13=-1620/0, 13-1 /1204, 21-22=0/1206, 20-21=0/ 0/1203 -21/1193, 6-20=-22/1193, 7-23 /396, 12-17=-740/164, 13-16=) (lb) or less except when shown. 75, 6-7=-1090/194, 9-10=-1090/194, 4=-1992/0 '1203, 18-20=0/1203, 17-18=0/1203, 16-17=0, =-1313/294, 9-23=-1313/294, 4-21=-740/164, //396	1205,			
 NOTES- Unbalanced roof live live Wind: ASCE 7-10; Vul MWFRS (envelope) gi DOL=1.60 plate grip D Truss designed for wir Gable End Details as: All plates are 2x6 MTZ Gable Studs spaced at This truss has been did * This truss has been did Still between the bot Ceiling dead load (10). Bottom chord live load See Standard Indust designer.	bads have been considered for t=130mph (3-second gust) Vas able end zone and C-C Exterior IOL=1.60 nd loads in the plane of the trus applicable, or consult qualified 20 unless otherwise indicated. t 2-0-0 oc. segined for a 10.0 psf bottom cl designed for a live load of 30.0 tom chord and any other memt 0 psf) on member(s). 6-7, 9-10 I (40.0 psf) and additional botto ry Piggyback Truss Connection or L/360 deflection.	this design. d=103mph; TCDL=6.0psf; BCDL=6.0psf; h=1 (2) zone;C-C for members and forces & MWF s only. For studs exposed to wind (normal to building designer as per ANSI/TPI 1. hord live load nonconcurrent with any other liv osf on the bottom chord in all areas where a re- pers. 7-23, 9-23; Wall dead load (5.0psf) on memil m chord dead load (10.0 psf) applied only to r Detail for Connection to base truss as applica	5ft; Cat. II; RS for rea the face), s ectangle 3- coer(s).10-1. coom. 18-20 bole, or cor	Exp C; E ctions sho see Stand 6-0 tall by 8, 6-20) sult quali	nclosed; own; Lumber ard Industry 2-0-0 wide fied building	SEAL 036322 A. GILPHININ October 28,2020
WARNING - Verify desig	In parameters and READ NOTES ON TH	IS AND INCLUDED MITEK REFERENCE PAGE MII-7473 n	ev. 5/19/2020	BEFORE US	E.	ENGINEERING BY

WARNING - Vertify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

RE

lah	Truco		Oty	Dhy	Lot 5 Sporton Bidgo		
300	11035		Qty	riy	Lot 5 Spanar Ruge		E15028349
J0221-0896	B2	ATTIC	6	1	Job Reference (option	al)	
Comtech, Inc, Faye	tteville, NC - 28314,		8	.330 s Oc	t 7 2020 MiTek Industri	es, Inc. Wed Oct 28 09	:05:47 2020 Page 1
	L	6-2-12 9-2-4 11-1	1-8 14-8-12 17-8-4	23-1	1-0 24-10-0	GENTISTINSU04262LNF	TA ?NHIE9_I0yOwv2
	I	6-2-12 2-11-8 2-9	-4 ' 2-9-4 ' 2-11-8 '	6-2-	12 0 <u>'</u> 11 <u>'</u> 0		
			5x8 =				Scale = 1:86.9
		12.00 12 2x4 = $4 y =$ $2x4 15$ $4x12 y 3$	5 2x4 = 6 14 $2x6 \parallel$	2x4 7			
	13-2-6	5 8 8 2 4 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8	11-0-0	4	x8 N 17		
	9 7 7 8 8 5 8	= ¹⁸ 13		19		2 	
		2x6 2x6	2x6 8x8 = 8	=			
		8x8 =	2x6				
	⊢	6-2-12 11-11-8 6-2-12 5-8-12	17-8-4	23-1	1-0		
Plate Offsets (X,Y) [1:0-0-0,0-0-12], [9:Edge,0-0-8],	[11:0-4-0,0-2-4], [13:0-4-0,0-2-8]]	0-2-	12		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDI 10.0	Plate Grip DOL 1.15	5 TC 0.63 BC 0.73	Vert(LL) -0.26	11-13 11-13	>999 360 >649 240	MT20	244/190
BCLL 0.0 *	Rep Stress Incr YES	WB 0.14	Horz(CT) 0.01	9	n/a n/a		FT 000/
BCDL 10.0	Code IRC2015/1P12014	Matrix-S	VVINd(LL) 0.10	11-13	>999 240	Weight: 261 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP : 1-2,8-10 BOT CHORD 2x10 SP 11-13: 2	2400F 2.0E *Except* : 2x6 SP No.1 No.1 *Except* x8 SP No.1		BRACING- TOP CHORD BOT CHORD JOINTS	Structur Rigid ce 1 Brace	al wood sheathing dire iling directly applied o at Jt(s): 14	ectly applied or 4-4-9 or 10-0-0 oc bracing.	oc purlins.
WEBS 2x6 SP 1 5-14: 2x WEDGE	No.1 *Except* 4 SP No.2						
Left: 2x6 SP No.2 , Righ	t: 2x6 SP No.2						
REACTIONS. (size) Max Ho Max Gra	1=0-3-8, 9=0-3-8 rz 1=-303(LC 8) av 1=1609(LC 21), 9=1650(LC	21)					
FORCES. (lb) - Max. C TOP CHORD 1-3=-2 BOT CHORD 1-13=-0 WEBS 7-11=0	comp./Max. Ten All forces 25 093/0, 3-4=-1143/156, 4-5=-53)/1253, 11-13=0/1253, 9-11=0/)/1035, 3-13=0/993, 4-14=-152	0 (lb) or less except when shown /253, 5-6=-48/259, 6-7=-1137/14 !253 2/238, 6-14=-1522/238	n. 19, 7-9=-2121/0				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vu MWFRS (envelope) a to 24-8-6 zone;C-C fc 3) This truss has been d 4) * This truss has been will fit between the bo 5) Ceiling dead load (10 6) Bottom chord live load 7) Attic room checked for	oads have been considered for It=130mph (3-second gust) Var nd C-C Exterior(2) 0-1-12 to 4- r members and forces & MWFf esigned for a 10.0 psf bottom c designed for a live load of 30.0 thom chord and any other mem 0 psf) on member(s). 3-4, 6-7, d (40.0 psf) and additional botto r L/360 deflection.	this design. sd=103mph; TCDL=6.0psf; BCDI 6-9, Interior(1) 4-6-9 to 11-11-8, RS for reactions shown; Lumber hord live load nonconcurrent with psf on the bottom chord in all are bers, with BCDL = 10.0psf. 4-14, 6-14; Wall dead load (5.0p m chord dead load (10.0 psf) ap	L=6.0psf; h=15ft; Cat. II; Exterior(2) 11-11-8 to 16- DOL=1.60 plate grip DOI h any other live loads. eas where a rectangle 3-6 psf) on member(s).7-11, 3 plied only to room. 11-13	Exp C; Er -4-5, Inter _=1.60 6-0 tall by 3-13	nclosed; ior(1) 16-4-5 2-0-0 wide	ORTH CA	ROUT
					THE REAL	0363	EER C
						CA. C	ILBERT
						Octobe	r 28,2020

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8 except (jt=lb) 13=133, 14=170, 11=130, 10=167.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 5 Spartan Ridge	
					E150283	352
J0221-0896	D1-GR	Common Girder	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Oct 28 09:05:49 2020 Page 2	
		ID:Y_aRC	Cxglt9gL	JrIHW7gHo	zqoOe-zpid7VyWmG?b5P0rUtWG9OBQEb4jerMZ9Ye4NgyOwv0	

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb)

Vert: 9=-1142(B) 10=-1142(B) 11=-1142(B) 13=-1142(B) 15=-1142(B) 16=-1142(B) 17=-1142(B)

Plate Olisets (A, f)	[2:0-1-1,0-1-1], [2:0-2-2,0-4-7], [2:0-5-8,	Edgej, [8:0-1-1,0-1-1], [8:	.0-2-2,0-4-7], [8:0-5-	-8,Eugej			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.13 BC 0.09 WB 0.08 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.01 2-15 -0.01 2-15 0.00 8 0.01 2-15	l/defl L/c >999 360 >999 240 n/a n/a >999 240	PLATES 0 MT20 0 Weight: 150 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x6 SF 3-15: 2 OTHERS 2x4 SF WEDGE Left: 2x4 SP No.3 , Rig	P No.1 P No.1 P No.1 *Except* 2x4 SP No.2 P No.2 ht: 2x4 SP No.3		BRACING- TOP CHORE BOT CHORE JOINTS	D Structu D Rigid o 1 Brac	ural wood sheat eiling directly a e at Jt(s): 16	thing directly applied or 6-0-0 pplied or 10-0-0 oc bracing.) oc purlins.
REACTIONS. All be (lb) - Max H Max U Max G	earings 5-8-0 except (jt=length) 2=0-3-8, lorz 2=-267(LC 10) plift All uplift 100 lb or less at joint(s) 2 13), 10=-194(LC 13) rav All reactions 250 lb or less at joint 8=272(LC 22), 11=255(LC 20), 13=	13=0-3-8. except 12=-281(LC 12), s) 12, 10 except 2=537(L 257(LC 3)	11=-163(LC .C 1),				
FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-15= 8-10= 8-10= WEBS 3-16=	Comp./Max. Ten All forces 250 (lb) or -511/53, 7-8=-369/247 =-98/380, 13-15=-98/380, 12-13=-98/380 =-207/309 =-438/274, 16-17=-383/246, 12-17=-467	less except when shown), 11-12=-209/311, 10-11: /285	=-208/310,				
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-10; \ MWFRS (envelope) DOL=1.60 plate grig 3) Truss designed for \ Gable End Details a 4) Gable studs spaced 5) This truss has been 6) * This truss has been 6) * This truss has been 7) Provide mechanical 12=281, 11=163, 10	a loads have been considered for this de /ult=130mph (3-second gust) Vasd=1030 gable end zone and C-C Exterior(2) zor > DOL=1.60 wind loads in the plane of the truss only. s applicable, or consult qualified building at 2-0-0 oc. designed for a 10.0 psf bottom chord liv n designed for a live load of 30.0psf on t vottom chord and any other members. connection (by others) of truss to bearin =194.	sign. mph; TCDL=6.0psf; BCDI le;C-C for members and f For studs exposed to win g designer as per ANSI/TI e load nonconcurrent with he bottom chord in all are g plate capable of withsta	L=6.0psf; h=15ft; Ca forces & MWFRS fo nd (normal to the fac PI 1. h any other live load eas where a rectang anding 100 lb uplift a	at. II; Exp C; E r reactions sh ce), see Stan ls. le 3-6-0 tall b at joint(s) 2 ex	Enclosed; nown; Lumber dard Industry y 2-0-0 wide ccept (jt=lb)	SEA 0365	AL 322 VEER.H.H.I.I.

ENGINEERING BY ANITEK Affiliate B18 Soundside Road Edenton, NC 27932

L	5-11-8			11-11-0		
	5-11-8		I	5-11-8		
Plate Offsets (X,Y)	[2:0-0-8,0-0-10], [4:0-0-8,0-0-10]	I				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.29 BC 0.18 WB 0.07 Matrix-S	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.01 Wind(LL) 0.04	(loc) I/defl L/d 6 >999 360 2-6 >999 240 4 n/a n/a 2-6 >999 240	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x6 WEBS 2x4 REACTIONS. (s Max	SP No.1 SP No.1 SP No.2 size) 2=0-3-0, 4=0-3-0 Horz 2=-27(LC 13)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing on Rigid ceiling directly applied	lirectly applied or 6-0-(l or 8-9-15 oc bracing.) oc purlins.
Max Max	: Uplift 2=-205(LC 8), 4=-205(LC 9) : Grav 2=529(LC 1), 4=529(LC 1)					
FORCES.(lb) - MaTOP CHORD2-3BOT CHORD2-6WEBS3-6	x. Comp./Max. Ten All forces 250 (lb) or 3=-806/870, 3-4=-806/870 5=-734/695, 4-6=-734/695 5=-379/290	less except when shown.				
NOTES- 1) Unbalanced roof I 2) Wind: ASCE 7-10	ive loads have been considered for this de ; Vult=130mph (3-second gust) Vasd=103	sign. mph; TCDL=6.0psf; BCDL=(6.0psf; h=15ft; Cat. II; I	Exp C; Enclosed;		

MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 12-10-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=205, 4=205.

⊢			11-11-0					
	1	1	11-11-0					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.04	Vert(LL) -0.0	0 8	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.0	8 0	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02	Horz(CT) 0.0	8 0	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 57 lb	FT = 20%
LUMBER-		· · · ·	BRACING-					

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 11-11-0.

Max Horz 2=-46(LC 13) (lb) -

- Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10
- Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)-	[2:0-2-7,Edge]							T	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT)	-0.03	2-4	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.03	2-4	>999	240	Weight: 34 lb	FT = 20%
LUMBER-			BRACING-						
TOP CHORD 2x6	SP No.1		TOP CHORI	D	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins,

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=72(LC 8) Max Uplift 2=-105(LC 8), 4=-96(LC 8) Max Grav 2=274(LC 1), 4=223(LC 1)

2x6 SP No.1

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

WFBS

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 5-9-4 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=105.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-2-7,Edge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.10 WB 0.02 Matrix-S	DEFL. in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) 0.00 Wind(LL) 0.01	(loc) 8 8 6 8	l/defl >999 3 >999 2 n/a >999 2	L/d 360 240 n/a 240	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x6 SF OTHERS 2x4 SF	P No.1 P No.1 P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structu except Rigid c	ral wood she end verticals eiling directly	eathing dire s. y applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=102(LC 8) Max Uplift 2=-89(LC 8), 6=-79(LC 12)

Max Grav 2=274(LC 1), 6=223(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 1-4-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[2:0-2-7,Edge]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.27	Vert(LL) -0.0	3 2-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.0	5 2-4	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.0	0	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.0	6 2-4	>999	240	Weight: 40 lb	FT = 20%
LUMBER-			BRACING-					
TOP CHORD 2x6 S	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,					oc purlins,		
BOT CHORD 2x6 S		excep	t end verti	cals.				

except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=83(LC 8) Max Uplift 2=-119(LC 8), 4=-114(LC 8) Max Grav 2=314(LC 1), 4=263(LC 1)

2x6 SP No.1

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

WEBS

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 6-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=119, 4=114.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD

BOT CHORD

TOP CHORD

2x4 SP No 1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 14-6-13.

(lb) -Max Horz 1=166(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-175(LC 12), 6=-175(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=407(LC 22), 8=427(LC 19), 6=427(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-380/298, 4-6=-380/298

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 7-3-6, Exterior(2) 7-3-6 to 11-8-3, Interior(1) 11-8-3 to 14-2-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=175, 6=175.

Non Standard bearing condition. Review required.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

LUMBER-		BRACING-
TOP CHORD	2x4 SP No.1	TOP CHORD
BOT CHORD	2x4 SP No.1	BOT CHORD
OTHERS	2x4 SP No.2	

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-10-13.

(lb) -Max Horz 1=-134(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-160(LC 12), 6=-160(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=338(LC 19), 6=338(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-357/297, 4-6=-357/297

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-11-6, Exterior(2) 5-11-6 to 10-4-3, Interior(1) 10-4-3 to 11-6-9 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=160, 6=160.

Non Standard bearing condition. Review required.

Max Horz 1=102(LC 9) Max Uplift 1=-25(LC 13), 3=-25(LC 13)

Max Grav 1=193(LC 1), 3=193(LC 1), 4=296(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-10-13, 3=3-10-13, 4=3-10-13

Max Horz 1=-38(LC 8)

Max Uplift 1=-14(LC 13), 3=-14(LC 13)

Max Grav 1=78(LC 1), 3=78(LC 1), 4=100(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

Structural wood sheathing directly applied or 3-10-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

