

RE: 21030102-A 11 Remington-Roof-HPG 1509B Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: J&R GroupProject Name: 21030102-A
Model:Lot/Block: 11Model:Address: 11 RemingtonSubdivision:City: RaleighState: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	145285421	E03	3/23/2021	21	l45285441	V02	3/23/2021
2	145285422	E02	3/23/2021	22	145285442	V03	3/23/2021
3	145285423	E01G	3/23/2021	23	145285443	V04	3/23/2021
4	145285424	D03	3/23/2021	24	145285444	V05	3/23/2021
5	145285425	D02	3/23/2021	25	145285445	V06	3/23/2021
6	145285426	D01G	3/23/2021	26	145285446	V07	3/23/2021
7	145285427	F03	3/23/2021	27	145285447	A03	3/23/2021
8	145285428	F02	3/23/2021	28	145285448	A02	3/23/2021
9	145285429	F01G	3/23/2021	29	145285449	A01	3/23/2021
10	145285430	B03G	3/23/2021	30	145285450	J01	3/23/2021
11	145285431	B02	3/23/2021	31	l45285451	V08	3/23/2021
12	145285432	B01G	3/23/2021	32	145285452	V09	3/23/2021
13	145285433	A04G	3/23/2021	33	145285453	V10	3/23/2021
14	145285434	A04	3/23/2021	34	145285454	V11	3/23/2021
15	145285435	A05	3/23/2021	35	145285455	PB01G	3/23/2021
16	145285436	A06	3/23/2021	36	145285456	PB01	3/23/2021
17	145285437	A07	3/23/2021	37	145285457	CJ01	3/23/2021
18	145285438	C02	3/23/2021	38	145285458	J02	3/23/2021
19	145285439	C01G	3/23/2021				
20	145285440	V01G	3/23/2021				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Johnson, Andrew

Job	Truss	Truss Type	Qty	Oty Ply 11 Remington-Roof-HPG 1509		
21030102-A	E03	Common Girder	1	2	Job Reference (optional)	145285421

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:04 ID:TYEhC3xuWZBv6grsSefcJbzZPiL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-6-0	11-0-0
5-6-0	5-6-0

Plate Offsets (X, Y): [1:0-4-0,0-1-9], [3:0-4-0,0-1-9]

Scale = 1:41.2

Loading (p TCLL (roof) 20 Snow (Pf) 20 TCDL 10 BCLL 0 BCDI 10	sf) Spacing Date Grip DOL Lumber DOL Code Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-MSH	.24 \ .06 \ .07 H	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 5-7 5-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190	
SCDL 10 LUMBER FOP CHORD 2x4 SP No.2 FOP CHORD 2x8 SP 2400F WEBS 2x4 SP No.3 BRACING FOP CHORD FOP CHORD Structural woon 6-0-0 oc purlins 30T CHORD REACTIONS (size) 1=0- Max Horiz 1=-9 Max Horiz 1=-9 Max Uplift 1=-2 Max Grav 1=55 FORCES (lb) - Maximum Tension FOP CHORD TOP CHORD 1-12=-690/294, 3OT CHORD 1-12=-780/244, 50T CHORD 1-10=-180/544 50T CHORD 1-10=-180/544 50T CHORD 1-10=-180/544 50T CHORD 1-2=699/294, 3OT CHORD 1-10=-180/544 50T CHORD 1-12=-580/244/ NOTES 1) 2-ply truss to be connected a (0.131"x3") nails as follows: Top chords connected as follows: Top chords connected as follows: 2 10 cas are considered eq except if noted as front (F) CASE(S) section. Ply to ply provided to distribute only I unless otherwise	2.0E 2.0E	 4) Wind: ASC Vasd=103; Cat. II; Exp zone; canti and right e DOL=1.60 5) TCLL: ASC Plate DOL= c DOL=1.15; Cs=1.00; C 6) Unbalance design. 7) This truss I load of 12. overhangs 8) This truss I chord live I 9) * This truss on the bott 3-06-00 tal chord and 10) One RT7A. 9) * This truss to be This conne lateral forc 11) This truss i Internation R802.10.2 12) "NAILED" i (0.148"x3.2 DAD LOAD CASE(5 1) Dead + S Increases Uniform L 	E 7-16; Vult=130mph (3 mph; TCDL=6.0psf; BCD B; Enclosed; MWFRS (lever left and right expo: xposed; Lumber DOL=1 2E 7-16; Pr=20.0 psf (Lun ; Is=1.0; Rough Cat B; f t: Is=1.0; Rough Cat B; f t: Is=1.0; Rough Cat B; f t: Is=1.0 d snow loads have beer mas been designed for g 0 psf or 1.00 times flat r non-concurrent with oth has been designed for a oad nonconcurrent with oth has been designed for a oad nonconcurrent with oth has been designed for a oad nonconcurrent with the abs been designed for a oad nonconcurrent with any other members. USP connectors recom aring walls due to UPLIF ction is for uplift only an es. s designed in accordance and referenced standar ndicates 3-10d (0.148°x 25°) toe-nails per NDS g 50 Standard now (balanced): Lumber c1.15 oads (lb/ft) -2=-60, 2-4=-60, 1-3=-20 ated Loads (lb)		nd gust))psf; h=25ft; ope) exterior and vertical le ate grip Lum DOL=1. =1.15 Plate :xp.; Ce=0.9; idered for this of min roof li id of 20.0 psf bottom ther live load: load of 20.0p rectangle then the bottor ed to connect (s) 1 and 3. s not conside a the 2018 R502.11.1 an 3.12d as. asse=1.15, Pl	eft .15 s ive f on ss. osf m t er id		Vert: 5=- 13=-28 (-28 (B)	Weight: 122 16 , 10=-28 (B), 11= , 10=-28 (B), 10=-28 (B), 10= , 10=-28 (B), 10=-2	POLICIES (B), 12=-28 (B), 12=-28 (C), 12=-	B),

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 21,2021

Job	Truss	Truss Type	Qty	Ply	Ply 11 Remington-Roof-HPG 1509B			
21030102-A	E02	Common	1	1	Job Reference (optional)	145285422		

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:03 ID:AfFBb2RAAy0khND_YXQ?9yzZPj_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-6-0	11-0-0	
5-6-0	5-6-0	

Plate Offsets (X, Y): [2:0-2-9,0-1-8], [4:0-2-9,0-1-8]

Scale = 1:38.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.51 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.08 0.01	(loc) 6-9 6-9 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-9 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=107 (LC Max Uplift 2=-66 (LC Max Grav 2=618 (LC (lb) - Maximum Corr Tension 1-2=0/44, 2-13=-611 3-14=-476/112, 3-15 15-16=-595/92, 4-16 2-6=-2/396, 4-6=0/3 3-6=0/258	eathing directly applie y applied or 10-0-0 oc 4=0-3-8 C 13) C 14), 4=-66 (LC 15) C 21), 4=618 (LC 22) hpression/Maximum 1/78, 13-14=-595/92, 5=-476/112, 5=-611/78, 4-5=0/44 96	4) 5) d or 6) 7) 8) 9) LC	Unbalanced design. This truss ha load of 12.0 () overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar One RT7A U truss to bear This connect lateral forces This truss is International R802.10.2 an	snow loads have b as been designed for participation of the second second on-concurrent with is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will yo other members. USP connectors real ing walls due to UF tion is for uplift only s. designed in accord Residential Code is nd referenced stan Standard	opeen cor or great at roof li other li other li or a 10.1 with any for a liv s where ll fit betw commen PLIFT at / and do dance w sections dard AN	nsidered for th er of min roof oad of 20.0 p: ve loads. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ded to conne t jt(s) 2 and 4 bes not consid ith the 2018 s R502.11.1 a JSI/TPI 1.	his i live sf on ds. Dpsf om ct der					
NOTES 1) Unbalance this design 2) Wind: ASC	ed roof live loads have n. 25 7 16: Wult 120mph	been considered for								\wedge		WITH CA	ROLIN

Wind: ASCE 7-16: Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 2-6-0, Exterior(2R) 2-6-0 to 8-6-0, Interior (1) 8-6-0 to 9-4-0, Exterior(2E) 9-4-0 to 12-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss Truss Type Qt		Qty	Ply	11 Remington-Roof-HPG 1509B		
21030102-A	E01G	Common	1	1	Job Reference (optional)	145285423	

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:03 ID:AfFBb2RAAy0khND_YXQ?9yzZPj_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.9	cale = 1:34.9										I	
Plate Offsets (late Offsets (X, Y): [2:0-2-9,0-1-8], [8:0-2-9,0-1-8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	19	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 55 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		2) Wind: ASC Vasd=103n	E 7-16; Vult=130m nph; TCDL=6.0psf	nph (3-seo ; BCDL=6	cond gust) 6.0psf; h=25ft	;	13) This Inte	s truss is rnationa	s desig Il Resig	ned in accordand dential Code sec	ce with the 2018 tions R502.11.1 and
BOT CHORD 2x4 SP No.2 Cat. II; Exp B; OTHERS 2x4 SP No.3 zone and C-C				B; Enclosed; MW C-C Corner(3E) -1-	3; Enclosed; MWFRS (envelope) exterior C Corner(3E) -1-4-0 to 1-6-0, Exterior(2N)				R802.10.2 and referenced standard ANSI/TPL1.			

BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc

bracing.							
(size)	2=11-0-0, 8=11-0-0, 10=11-0-0, 11=11-0-0, 12=11-0-0, 13=11-0-0, 14=11-0-0, 15=11-0-0, 19=11-0-0						
Max Horiz	2=107 (LC 13), 15=107 (LC 13)						
Max Uplift	2=-18 (LC 15), 8=-27 (LC 15),						
	10=-32 (LC 15), 11=-66 (LC 15),						
	13=-67 (LC 14), 14=-33 (LC 14),						
	15=-18 (LC 15), 19=-27 (LC 15)						
Max Grav	2=178 (LC 21), 8=178 (LC 22),						
	10=107 (LC 22), 11=271 (LC 22), 12=122 (LC 27) 12=271 (LC 21)						
	12=133 (LC 21), 13=271 (LC 21), 14=167 (LC 21), 15=178 (LC 21)						
	19=178 (LC 22)						
(lb) - Maximum Compression/Maximum							
Tension	-						
1-2=0/44,	2-22=-85/59, 3-22=-64/65,						
3-4=-77/5	6, 4-5=-85/135, 5-6=-85/135,						
6-7=-72/4	9, 7-23=-34/35, 8-23=-48/25,						
8-9=0/44							
2-14=-53/138, 13-14=-32/126,							
12-13=-32	2/126, 11-12=-32/126,						
TU-TT=-34	2/120,0-10=-32/120						
	bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/44, 3-4=-77/5 8-9=0/44 2-14=-53/ 12-13=-3; 10-11=-3; 5-20-25						

WEBS 5-12=-95/0, 4-13=-227/132, 3-14=-150/84, 6-11=-227/132, 7-10=-150/84 NOTES

1) Unbalanced roof live loads have been considered for this design.

- 1-4-0 to 1-6-0. Exterior(2N) Corner(3E 1-6-0 to 2-6-0, Corner(3R) 2-6-0 to 8-6-0, Exterior(2N) 8-6-0 to 9-4-0, Corner(3E) 9-4-0 to 12-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, 13, 14, 11, and 10. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply		
21030102-A	D03	Common Girder	1	2	Job Reference (optional)	145285424

Scale = 1:40.4

unless otherwise indicated.

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:03 ID:?MgJ_jwGIF32VWGgux8NmNzZPiM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-1-10	7-10-6	12-0-0
4-1-10	3-8-12	4-1-10

Plate Offsets (X, Y): [1:0-4-0,0-1-9], [5:0-4-0,0-1-9], [6:0-5-0,0-5-8], [7:0-5-0,0-5-8]

_														
Loa	ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
тс	LL (roof)	20.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	-0.05	6-7	>999	240	MT20	244/190
Sno	ow (Pf)	20.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	-0.09	6-7	>999	180		
тс	DL	10.0	Rep Stress Incr	NO		WB	0.71	Horz(CT)	0.01	5	n/a	n/a		
вс	LL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BC	DL	10.0			-								Weight: 152 lb	FT = 20%
	MREP			3)	Unhalanced	alanced roof live loads have been considered for LOAD CASE(S) Standard								
TO		2x4 SP No 2		0)	this design		00011			1) D	ad + Sn	ow (ha	alanced): Lumber	Increase=1.15 Plate
BO		2x8 SP 2400F 2 0F		4)	Wind: ASCE	7-16: Vult=130mph) (3-sec	cond aust)		In In	crease='	1.15		
WF	BS	2x4 SP No 3		.,	Vasd=103mp	h: TCDL=6.0psf: B	CDL=6	.0psf: h=25ft:		U	hiform Lo	ads (I	b/ft)	
					Cat. II: Exp B: Enclosed: MWFRS (envelope) exterior)	
		Structural wood she	athing directly applie	ad or	zone; cantile	ver left and right ex	posed	; end vertical	left	C	oncentra	ted Lo	ads (lb)	
10		5-1-1 oc purlins	atiling directly applie		and right exp	osed; Lumber DOL	.=1.60	olate grip		-	Vert: 1=	-997 (F), 7=-1225 (F), 1	4=-1225 (F).
RΟ		Rigid ceiling directly	applied or 10-0-0 or	•	DOL=1.60						15=-122	5 (F),	16=-1225 (F), 17	′=-1225 (F)
00		bracing already depined of 100 0000 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15												
RF	ACTIONS	(size) 1-0-3-8 F	5-0-3-8		Plate DOL=1	.15); Pf=20.0 psf (L	.um DC	L=1.15 Plate						
	Achience	Max Horiz 1-92 (LC	11)		DOL=1.15); I	s=1.0; Rough Cat E	3; Fully	Exp.; Ce=0.9	9;					
		Max 1 Inlift 1=-273 (I	C 12) 5=-191 (I C 1	3)	Cs=1.00; Ct=1.10									
		Max Grav 1=5082 (L	(C 21), 5=4357 (IC)	22) 6)	Unbalanced	snow loads have be	een cor	isidered for th	าเร					
FO	PCES	(lb) - Maximum Com	pression/Maximum) ->	design.									
FU	NGE3	Tension	ipression/maximum	()	I his truss ha	s been designed to	ra 10.0	J psr bottom	do					
то	P CHORD	1-12=-5864/255 2-1	12=-5833/266	0)	* This truce h	a nonconcurrent w	for a liv	other live loa	us. Joct					
.0		2-3=-5811/297 3-4=	=-5862/299	0)	on the botton	as been designed i	whore	e loau oi 20.0	psi					
		4-13=-5889/269. 5-1	13=-5914/257		3-06-00 tall h	v 2-00-00 wide will	fit hetv	a rectangle	h					
во	T CHORD	1-14=-236/4908, 7-1	14=-236/4908.		chord and an	v other members).							
		7-15=-116/3382, 6-1	15=-116/3382,	9)	One RT7A U	SP connectors reco	ommen	ded to conne	ct					
		6-16=-184/4897, 16-	-17=-184/4897,	-,	truss to bear	ng walls due to UP	LIFT at	it(s) 1 and 5.						111.
		5-17=-184/4897			This connect	ion is for uplift only	and do	es not consid	ler				White CA	Dalle
WE	BS	3-6=-178/3533, 4-6=	=-204/122,		lateral forces						_		"ath on	TO 111
		3-7=-174/3436, 2-7=	=-194/128	10) This truss is	designed in accorda	ance w	ith the 2018			· /-	Δ	OTTERS	id Mile
NO	TES				International	Residential Code s	ections	R502.11.1 a	nd			FV	in	man
1)	2-ply truss	to be connected toge	ther with 10d		R802.10.2 ar	nd referenced stand	lard AN	ISI/TPI 1.			U U		:0	N. 2
	(0.131"x3") nails as follows:		11) Use USP MS	H29 (With 10d nail	s into C	Girder & 4-100	b				100	
	Top chords	s connected as follows	s: 2x4 - 1 row at 0-9-	r at 0-9-0 nails into Truss) or equivalent spaced at 4-0-0 oc max.								L : =		
	OC.				starting at 2-	3-4 from the left end	d to 10-	3-4 to conne	ct		-		158/	14 : =
	Bottom che	ords connected as foll	ows: 2x8 - 2 rows	10	truss(es) to fi	ont face of bottom	cnora.	المحربا الطفانيين فماصف	h		=		400-	TT
	staggered	at 0-7-0 oc.		12) Fill all nail no	ies where hanger is	s in cor		ber.		-	3	•	1 - S - S
~	vveb conne	ected as follows: 2x4 -	- 1 row at 0-9-0 oc.	13	provided cuff	iciont to support co	evice(S	tod lood(c) 1	020			:7	·	Aiti
2)	All loads a	re considered equally	applied to all plies,		Ib down and	0.11110 Support CO	and 1F	10au(s) 1 10au(s) 1	nd			11	GIN	EFICON
	except if n	loted as front (F) or ba	ICK (B) face in the LO	JAD	58 lb up at 4	-3-4 and 1508 lb d	own ar	nd 58 lb up at				11	Ar	UN2.1
	CASE(S) S	section. Ply to ply conr a distributa aply laada	nections have been		8-3-4 on bott	om chord. The des	ian/sel	ection of such	ı			11.0	W2,SWJ	00,00
	unless oth	erwise indicated.	noted as (F) of (D),		connection d	evice(s) is the resp	onsibili	ty of others.					in min	unu.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 21,2021

Job	Truss	Truss Type	Qty Ply	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	D02	Common	2	1	Job Reference (optional)	145285425

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Fri Mar 19 15:52:02 ID:iThpOiQYPfut4Deo_qvmckzZPj?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 4-11-2 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 4=0-3-8 Max Horiz 2=-115 (LC 12) Max Uplift 2=-69 (LC 14), 4=-69 (LC 15) Max Grav 2=651 (LC 21), 4=651 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/44, 2-13=-659/82, 13-14=-535/96, 3-14=-520/116, 3-15=-520/116, 15-16=-535/96. 4-16=-659/82. 4-5=0/44 BOT CHORD 2-6=-8/432, 4-6=0/432 WEBS 3-6=0/283

NOTES

Scale = 1:39.9

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 3-0-0, Exterior(2R) 3-0-0 to 9-0-0, Interior (1) 9-0-0 to 10-4-0, Exterior(2E) 10-4-0 to 13-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One RT7A USP connectors recommended to connect 8) truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss Truss Type	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	D01G	Common Supported Gable	1	1	Job Reference (optional)	145285426

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:02 ID:iThpOiQYPfut4Deo_qvmckzZPj?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.3													
Plate Offsets (X, Y): [2:0-2-9,0-1-8], [8:0-2-9,0-1-8]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	19	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 61 lb	FT = 20%	

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
	Structura	wood sheathing directly applied or
	6-0-0 00 1	ourline
	Rigid ceil	ing directly applied or 10-0-0 oc
BOT CHOILD	bracing	ing directly applied of 10-0-0 00
	(sing)	0 40 0 0 0 40 0 0 40 40 0 0
REACTIONS	(size)	2=12-0-0, 8=12-0-0, 10=12-0-0,
		11=12-0-0, 12=12-0-0, 13=12-0-0,
	Mars 11 and -	14=12-0-0, 15=12-0-0, 19=12-0-0
	Max Horiz	2=-115 (LC 12), 15=-115 (LC 12)
	Max Uplift	2=-18 (LC 15), 8=-25 (LC 15),
		10=-46 (LC 15), $11=-64$ (LC 15),
		13=-65 (LC 14), $14=-46$ (LC 14),
	May Cray	15=-18 (LC 15), $19=-25$ (LC 15)
	wax Grav	2=189 (LC 21), $8=189$ (LC 22), 10-200 (LC 22), 11-266 (LC 22)
		10=200 (LC 22), 11=200 (LC 22),
		12=130 (LC 27), 13=200 (LC 21), 14=200 (LC 21), 15=180 (LC 21)
		14=200 (LC 21), 15=169 (LC 21), 10=180 (LC 21), 10=180 (LC 22)
FORCES	(lb) - Max	imum Compression/Maximum
TOROLO	Tension	
TOP CHORD	1-2=0/44	2-22=-89/62 3-22=-66/72
	3-4=-80/6	2. 4-5=-85/140. 5-6=-85/140.
	6-7=-73/5	8. 7-23=-32/33. 8-23=-55/21.
	8-9=0/44	-, , ,
BOT CHORD	2-14=-53/	/134, 13-14=-34/129,
	12-13=-34	4/129, 11-12=-34/129,
	10-11=-34	4/129, 8-10=-34/129
WEBS	5-12=-98/	0, 4-13=-224/124, 3-14=-168/95,
	6-11=-224	4/124, 7-10=-168/95
NOTES		
1) Unbalanc	ed roof live l	oads have been considered for

this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -1-4-0 to 1-8-0, Exterior(2N) 1-8-0 to 3-0-0, Corner(3R) 3-0-0 to 9-0-0, Exterior(2N) 9-0-0 to 10-4-0, Corner(3E) 10-4-0 to 13-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 8, 13, 14, 11, and 10. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	F03	Common Girder	1	2	Job Reference (optional)	145285427

Scale = 1:56.1

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:05 ID:t7vqq5zmpUZUz8aR7mCJxDzZPiI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

		1												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.36	Vert(LL)	-0.06	9-10	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.15	Vert(CT)	-0.09	9-10	>999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.57	Horz(CT)	0.02	6	n/a				
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 269 lb	FT = 20%	
LUMBER			2)	All loads are	considered equally	HD26	6 (With 18-16d nails into Girder &							
TOP CHORD	2x4 SP No.2			except if note	ed as front (F) or ba	ack (B)	face in the LC	DAD	12-	10d x 1-	1/2 na	ils into Truss) or	equivalent spaced at	t
BOT CHORD	2x8 SP 2400F 2.0E			CASE(S) section. Ply to ply connections have been 2-0-0 oc max, starting at 4-1-4 from the provided to distribute only loads noted as (E) or (P)								1 the left end to 8-1-4	4	
WEBS	2x4 SP No.3			provided to c	istribute only loads	snoted	as (F) or (B),		to c		russ(e	s) to back face of	i bottom chord.	
BRACING			3)	Unless other	vise indicated.	o boon i	considered fo	vr	13) USE nail	e into Tr	1970 (186) U	vvilln 4-100 nalls	1110 Girder & 4-100	hd
TOP CHORD	Structural wood she	athing directly applie	d or ³⁾	this design		e been		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	to c	onnect t	russ(e	s) to back face of	f bottom chord	u
	5-11-13 oc purlins.		4)	Wind: ASCE	7-16: Vult=130mp	h (3-sec	cond aust)		14) Use	USP M	SH29	(With 10d nails in	nto Girder & 4-10d	
BOT CHORD	bracing.	applied or 10-0-0 oc	; ')	Vasd=103mp	h; TCDL=6.0psf; E	BCDL=6	6.0psf; h=25ft	;	nail	s into Tr	uss) o	r equivalent spac	ed at 2-0-0 oc max.	
REACTIONS	(size) 2=0-3-8.6	6=0-3-8		Cat. II; Exp E	; Enclosed; MWFF	RS (env	elope) exterio	or I. ()	sta	ting at 1	2-1-4	from the left end	to 18-1-4 to connect	1
	Max Horiz 2=170 (L0	C 50)		zone; cantile	ver left and right ex	kposea	; end vertical	lett		is(es) to	Dack I	ace of bottom ch	Ora.	-
	Max Uplift 2=-418 (L	.C 12), 6=-492 (LC 13	3)		used, Lumber DOI	L=1.00	plate grip					nere nanger is ir		1.
	Max Grav 2=2729 (I	LC 19), 6=2627 (LC 2	, 6=2627 (LC 20) 5) TCLL-ASCE 7-16: Pr=20.0 psf (roof LL: Lum DQL=1.15 1) Declarged: Lumber Increase=1.15 P								to			
FORCES	(lb) - Maximum Corr	pression/Maximum	0)	Plate DOL=1	.15): Pf=20.0 psf (Lum DC	DL=1.15 Plate)	1) Dead + Snow (balanced): Lumber Increase=1.1					
	Tension		DQL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Ibitors Load (lb/ft)											
TOP CHORD	1-2=0/49, 2-3=-4264	4/638, 3-4=-2877/500),	Cs=1.00; Ct=	:1.10				0.	Vert: 1-4	4=-60.	4-6=-60. 2-6=-20)	
	4-5=-2880/498, 5-6=	-4001/674	6)	Unbalanced	snow loads have b	een cor	nsidered for th	his	Co	oncentra	ted Lo	ads (lb)		
BOT CHORD	2-15=-556/3501, 10	-15=-556/3501,		design. Vert: 8=-395 (B), 9=-372 (B), 15=-718 (B),								5=-718 (B), 16=-515	i	
	10-16=-556/3501, 10	b-17 = -55b/3501,	7)	 This truss has been designed for greater of min roof live (B), 17=-508 (B), 18=-395 (B), 19=-395 								19=-395 (B), 20=-28	33	
	8-18=-486/3297 7-8	3=-486/3297		overbangs n	DSI OF 1.00 times ha	at 1001 li	ve loads	SION		(B)		SOUTH	11.	
	7-19=-486/3297, 19	-20=-486/3297.	8)	This trues ha	s been designed fo	or a 10 i	nef hottom					11111 00	in the	
	6-20=-486/3297	,	0)	chord live loa	d nonconcurrent w	vith anv	other live loa	ids.		_		N'TH UP	HOM	
WEBS	4-9=-450/2740, 5-9=	-1244/352,	9)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf		(i	N	01.200	A. A.	
	5-7=-184/1048, 3-9=	-1496/315,	,	on the bottor	n chord in all areas	where	a rectangle	•		- ()	AR	riatt	Kinna	1
	3-10=-147/1281			3-06-00 tall b	y 2-00-00 wide wil	l fit betv	veen the botte	om				:0	K	
NOTES				chord and ar	y other members.						(i	0.54	. ° 1 ≤	
 2-ply truss 	s to be connected toge	ther with 10d	10) One RI7A U	SP connectors rec		ded to conne	ect		=		SEA	L : E	-
(0.131"x3	") nails as follows:		•	This connect	ion is for unlift only	and do	JI(S) = 0 and Z	tor		=		4584	14 : :	
Top chore	as connected as follows	s: 2x4 - 1 row at 0-9-	0	lateral forces		anu uu				-	ų – j		'' <i>i z</i>	í.
Bottom ch	ords connected as foll	ows: 2x8 - 2 rows	11) This truss is	designed in accord	lance w	ith the 2018						1	
staggered	d at 0-9-0 oc.	0110. 2.00 2.10110		International	Residential Code	sections	R502.11.1 a	and			2.7	1. SNOW	-ER: 53	
Web conr	nected as follows: 2x4 -	R802.10.2 and referenced standard ANSI/TPI 1.							11	O GIN	E.F. GUN			
											1	IN EW I	OHM	
												1111	un u	
												March	21 2021	
												ivialCl	121,2021	
🔥 WARI	NING - Verify design paramete	ers and READ NOTES ON	THIS AND IN	CLUDED MITEK RI	FERENCE PAGE MII-7	473 rev. 5	/19/2020 BEFOR	E USE.				ENGINEER	ING BY	

ARKING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 rev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty Ply	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	F02	Common	6	1	Job Reference (optional)	145285428

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S. Mar. 4 2021 MiTek Industries. Inc. Fri Mar. 19 15:52:05 ID:62Nx0jTQiaGSxhMNfySTENzZPiy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WEBS NOTES

FORCES

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

BRACING

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 7-0-0, Exterior(2R) 7-0-0 to 13-0-0, Interior (1) 13-0-0 to 18-4-0, Exterior(2E) 18-4-0 to 21-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	F01G	Common	1	1	Job Reference (optional)	145285429

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:04 ID:espZoOSoxG8bJXoA6ExEh9zZPiz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.7

Plate Offsets (X, Y): [2:0-2-9,0-1-8], [12:0-2-9,0-1-8], [16:0-2-8,0-1-4]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip Lumber D Rep Stres * Code	o DOL OL is Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.12 0.05 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 28	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 118 lb	GRIP 244/190 FT = 20%	, 5
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 6-0-0 oc purlins. Rigid ceiling direct bracing.	heathing direc	tly applied 10-0-0 oc	or W	DT CHORD 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2	2-23=-58/150, 22-23 2-22=-58/150, 20-3 9-20=-58/150, 18-7 7-18=-58/150, 16-7 5-16=-58/150, 14-7 2-14=-58/150 7-19=-138/19, 6-20 1-22=-132/91, 3-23 1-17=-181/89, 10-15 1-18-17	3=-58/1 21=-58/ 19=-58/ 17=-58/ 15=-58/ =-220/8 =-117/7 5=-132/	50, 150, 150, 150, 150, 150, 4, 5-21=-181 3, 8-18=-220 91, 11-14=-1	/89, /84, 17/73	9) Gab 10) This chor 11) * Th 3-06 chor 12) One truss	le studs truss h d live lo is truss ne botto -00 tall d and a RT7A l s to bea	space as bee ad nor has be m cho by 2-0 ny oth JSP co ring wa	ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas w 0-00 wide will fit er members. connectors recom alls due to UPLI	10.0 psf bo any other lin a live load o here a rectar between the mended to o FT at jt(s) 2,	ttom ve loads. of 20.0psf ngle e bottom connect 20, 21, for uplift
REACTIONS	(size) 2=20-0 15=20- 19=20- 22=20- Max Horiz 2=-177 Max Uplift 2=-30 15=-60 18=-57 21=-59 23=-49 Max Grav 2=189 14=152 17=22 ² 19=17(21=22 ² 23=152 28=181	-0, 12=20-0.0, 0-0, 17=20-0-0, 0-0, 20=20-0-1, 0-0, 23=20-0-1, 0-0, 23=20-0-1, 0-0, 24=-1, (LC 12), 24=-1, (LC 15), 17=-1, (LC 14), 22=-, (LC 14), 22=-, (LC 14), 24=-, (LC 21), 12=1, 0, (LC 22), 18=-, 0, (LC 21), 20=-, 0, (LC 21), 22=-, 0, (LC 22), 24=-, 0, (LC 22),	14=20-0-(0, 18=20-0- 0, 21=20-0- 0, 24=20-0- 177 (LC 12 8 (LC 15), 59 (LC 15), 59 (LC 14) 60 (LC 14) 30 (LC 14) 30 (LC 22), 173 (LC 22 260 (LC 22) 260 (LC 21) 173 (LC 24) 189 (LC 21)	D, NG -0, 1) -0, 2) 2) 4, 2) 4, 3 5, 3) 1, 4) 1, 4)	DTES Unbalanced I this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-C 1-8-0 to 7-0-C 13-0-0 to 18- cantilever left right exposec for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE	roof live loads have 7-16; Vult=130mph bh; TCDL=6.0psf; B ; Enclosed; MWFR C Corner(3E) -1-4-C 0, Corner(3E) 7-0-0 4-0, Corner(3E) 18 t and right exposed t;C-C for members shown; Lumber DC ed for wind loads ir ds exposed to winc 1 Industry Gable En alified building desi 7-16; Pr=20.0 psf	e been of CDL=6 CDL=6 S (enve) to 13-1 -4-0 to ; end v and for DL=1.60 n the pla d (norm id Deta gner as (roof LL	considered fo cond gust) .0psf; h=25ft; elope) exterior .0, Exterior(2 21-4-0 zone; rertical left an ccs & MWFR 0 plate grip ane of the true al to the face ils as applical s per ANSI/TF .: Lum DOL=	r pr N) 2N) d SS ss), ble, p1 1.	22, 2 only 13) This Inter R80 LOAD C	23, 18, ² and do truss is nationa 2.10.2 a ASE(S)	I Resid I Resid I Resid I Resid Star	and 14. This co consider lateral ned in accordan dential Code sec erenced standar ndard	nnection is forces. ce with the 2 tions R502. d ANSI/TPI	or upiint 2018 11.1 and 1.
FORCES TOP CHORD	(lb) - Maximum C Tension 1-2=0/44, 2-31=- 3-4=-115/104, 4- 5-6=-91/122, 6-7= 8-9=-75/121, 9-3 10-11=-67/41, 11 12-13=0/44	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced a design. This truss ha load of 12.0 p overhangs no All plates are Gable require	.15); Pf=20.0 psf (L s=1.0; Rough Cat F 1.10 snow loads have be osf or 1.00 times fla on-concurrent with 2x4 MT20 unless of es continuous botto	 c), r1=20.0 psf (Lum DOL=1.15 Plate c); Rough Cat B; Fully Exp.; Ce=0.9; v) v loads have been considered for this ven designed for greater of min roof live or 1.00 times flat roof load of 20.0 psf on oncurrent with other live loads. V MT20 unless otherwise indicated. ontinuous bottom chord bearing. 							IL 44 EEP.S.	William Arts			

March 21,2021

ENGINEERING BY AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B		
21030102-A	B03G	Piggyback Base Structural Gable	1	1	Job Reference (optional)	145285430	

Run: 8 43 S Mar, 4 2021 Print: 8 430 S Mar, 4 2021 MiTek Industries, Inc. Fri Mar, 19 15:51:59 ID:Pgq02xIU2yI2pNC_3_u5CQzZPia-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

JOH minim March 21,2021

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	B03G	Piggyback Base Structural Gable	1	1	Job Reference (optional)	145285430
Catter Components (Senford) Senford NC 27222 Puin: 9.42 S. Mar. 4.2021 Drint: 9.42 S. Mar. 4.2021 Drint: 9.42 S.			120 S Mor 4	2021 MiTok Industrios, Inc. Eri Mar 10 15:51:50	Page: 2	

8) All plates are 2x4 MT20 unless otherwise indicated.

- 9) The Fabrication Tolerance at joint 8 = 8%
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 13) Refer to girder(s) for truss to truss connections.
- 14) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 28.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 1.
- 16) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 21 and 28. This connection is for uplift only and does not consider lateral forces.
- 17) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20, 19, 18, and 17. This connection is for uplift only and does not consider lateral forces.
- 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:59 ID:Pgq02xIU2yI2pNC_3_u5CQzZPia-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B		
21030102-A	B02	Piggyback Base	10	1	Job Reference (ontional)	145285431	

TCDL

BCLL

BCDL

WEBS

WEBS

34-35=-158/176, 17-35=-158/176,

16-17=-158/176, 15-16=-289/193,

14-15=-417/248, 13-14=-111/282,

12-13=-379/37, 11-12=-228/8

Run: 8 43 S Mar, 4 2021 Print: 8 430 S Mar, 4 2021 MiTek Industries, Inc. Fri Mar, 19 15:51:59 ID:6n_ktHvjLUJ46ukzaBaKXjzZQpO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

JOY

mm March 21,2021

818 Soundside Road Edenton, NC 27932

Page: 1

3-06-00 tall by 2-00-00 wide will fit between the bottom

chord and any other members, with BCDL = 10.0psf.

One RT7A USP connectors recommended to connect

truss to bearing walls due to UPLIFT at jt(s) 2 and 11.

This connection is for uplift only and does not consider

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

lateral forces.

9)

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	B01G	Piggyback Base Structural Gable	1	1	Job Reference (optional)	145285432

Run: 8 43 S Mar, 4 2021 Print: 8 430 S Mar, 4 2021 MiTek Industries, Inc. Fri Mar, 19 15:51:57 ID:eOsQx0s7xjQmOIOi5NYC3KzZPiR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

mm March 21,2021

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	B01G	Piggyback Base Structural Gable	1	1	Job Reference (optional)	145285432
Carter Components (Sanford), Sa	anford, NC - 27332,	Run: 8.43 S Mar 4 2	021 Print: 8.4	430 S Mar 4	2021 MiTek Industries, Inc. Fri Mar 19 15:51:57	Page: 2

ID:eOsQx0s7xjQmOIOi5NYC3KzZPiR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are MT20 plates unless otherwise indicated.
- All plates are 2x4 MT20 unless otherwise indicated. 9)
- 10) The Fabrication Tolerance at joint 9 = 12%
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 13) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 21, 20, 19, and 18. This connection is for uplift only and does not consider lateral forces.
- 15) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 26, 22, and 29. This connection is for uplift only and does not consider lateral forces.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	A04G	Common	1	1	Job Reference (optional)	145285433

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:55 ID:6JvNaXq5ioP1TIAe90GSQyzZPih-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-2-9,0-1-8], [12:0-2-9,0-1-8], [14:0-4-12,Edge]

Scale = 1:67.1

1)

this design.

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
ICLL (roof)	20.0	Plate Grip DOL	1.15	IC	0.66	Vert(LL)	0.10	13-25	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.22	14-15	>861	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.72	Horz(CT)	0.01	14	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 193 lb	FT = 20%	
	2v4 SP No 2		2) Wind: ASC Vasd=103n	E 7-16; Vult=130m nph: TCDI =6 0psf	nph (3-sec [•] BCDI =6	ond gust)	•	13) One trus	e RT7A I s to bea	USP co	onnectors recomr	nended to con T at it(s) 2 Thi	nect

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 5-10-4 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 7-14 JOINTS 1 Brace at Jt(s): 16, 17, 18, 19 REACTIONS (size) 2=0-3-8, 12= Mechanical, 14=0-3-8 Max Horiz 2=237 (LC 13) Max Uplift 2=-82 (LC 14), 12=-58 (LC 15), 14=-102 (LC 14) Max Grav 2=689 (LC 21), 12=395 (LC 38), 14=1370 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/44, 2-3=-761/64, 3-26=-95/93, 4-26=-14/127, 4-27=-10/144, 5-27=-4/155, 5-6=-1/177, 6-7=0/203, 7-8=0/283, 8-9=0/273, 9-28=0/235, 10-28=0/219, 10-29=0/214, 11-29=0/144, 11-12=-374/84 BOT CHORD 2-15=-96/553, 14-15=-96/553, 13-14=0/229, 12-13=0/229 WEBS 7-14=-625/58, 14-19=-546/209, 11-19=-531/199, 11-13=0/256, 3-18=-656/201, 17-18=-665/202 16-17=-742/234 14-16=-634/190 3-15=0/364, 7-16=-91/223, 6-17=-157/66, 4-18=-18/5, 8-14=-282/104, 10-19=-38/15 NOTES

Unbalanced roof live loads have been considered for

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
-) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
- 11) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 12.

- 3) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 14) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 11-3-0, Exterior(2R) 11-3-0 to 17-3-0, Interior (1) 17-3-0 to 25-6-0, Exterior(2E) 25-6-0 to 28-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	A04	Common	3	1	Job Reference (optional)	145285434

Run: 8 43 S Mar, 4 2021 Print: 8 430 S Mar, 4 2021 MiTek Industries, Inc. Fri Mar, 19 15:51:54

Page: 1

WEBS NOTES

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

BRACING

1) Unbalanced roof live loads have been considered for this design.

3-10=-707/220, 3-11=0/362

5-10=-574/50, 7-10=-620/236, 7-9=0/257,

8-9=0/285

bearing plate capable of withstanding 64 lb uplift at joint 8. 10) One RT7A USP connectors recommended to connect

Provide mechanical connection (by others) of truss to

Refer to girder(s) for truss to truss connections.

chord and any other members.

- truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces 11) One RT16A USP connectors recommended to connect
- truss to bearing walls due to UPLIFT at jt(s) 10. This connection is for uplift only and does not consider lateral forces

818 Soundside Road

Edenton, NC 27932

SEAL

45844

mm March 21,2021

Summer

annun nin

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8)

9)

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	A05	Roof Special	2	1	Job Reference (optional)	145285435

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:55 ID:1 WuwK MPb6GazSinBG IbvbzZPid-BfC2PsBZ0Ho3NSnPont 8w3uITXbGKWrCDoi7.4z.IC2 Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B		
21030102-A	A06	Roof Special	2	1	Job Reference (optional)	145285436	

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:56 ID:Hu0glgOf7kWIDmvDJhL3_6zZPj2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B		
21030102-A	A07	Common	1	1	Job Reference (optional)	145285437	

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

NOTES

1)

Run: 8 43 S Mar, 4 2021 Print: 8 430 S Mar, 4 2021 MiTek Industries, Inc. Fri Mar, 19 15:51:57 ID:Hu0glgOf7kWIDmvDJhL3_6zZPj2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	C02	Common	5	1	Job Reference (optional)	145285438

TCDL

BCLL

BCDL

WEBS

WEBS

NOTES

1)

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S. Mar. 4 2021 MiTek Industries. Inc. Fri Mar. 19 15:52:01 ID:L2xnTcnkaZYI2gMMBPwZHrzZPiY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

30-0-0

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	C01G	Common	1	1	Job Reference (optional)	145285439

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:00 ID:EH7RAMPveLm0S33bQ6NX3XzZPj0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

March 21,2021

818 Soundside Road Edenton, NC 27932

Page: 1

Scale = 1:62.9

Plate Offsets (X, Y): [1:0-2-9,0-1-8], [17:0-2-9,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2(018/TPI2014	CSI TC BC WB Matrix-MSH	0.12 0.05 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(la	oc) I/de - n, - n, 36 n,	fl a a a	L/d 999 999 n/a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at (size) Max Horiz Max Uplift	0.2 0.2 0.3 wood sheat ourlins. ng directly midpt 1=28-8-0, 20=28-8-0 23=28-8-0 33=28-8-0 33=28-8-0 1=-51 (LC 19=-58 (Li 23=-53 (Li 23=-53 (Li 23=-51 (Li 33=-51 (Li 33=-51 (Li	athing directly applie applied or 10-0-0 oc 9-26, 8-27, 10-24 17=28-8-0, 19=28-8 , 21=28-8-0, 22=28 , 24=28-8-0, 29=28 , 31=28-8-0, 32=28 , 36=28-8-0 C 10), 33=-238 (LC 10), 17=-1 (LC 11), C 15), 22=-57 (LC 12 C 15), 24=-51 (LC 11) C 15), 22=-57 (LC 12 C 14), 30=-60 (LC 12 C 14), 30=-60 (LC 12 C 14), 32=-80 (LC 12 C 10), 36=-1 (LC 11) 2 25), 17=197 (LC 22)	ed or 2- 3-0, 8-0, 8-0, 8-0, 8-0, 10) 5), 5), 4), 4), 4), 2),	TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE	1-2=-220/183, 2-38 3-39=-162/153, 3-4 5-40=-115/140, 6-4 7-8=-84/187, 8-9=- 10-11=-88/176, 11- 12-41=-51/118, 13 14-15=-74/47, 15-1 16-42=-147/91, 17- 1-32=-83/187, 31-2 30-31=-83/187, 27- 26-27=-83/187, 23- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-83/187, 24- 22-23=-129/81, 4-30 2-32=-148/91, 10-2 12-23=-182/86, 13- 14-21=-129/82, 15- 16-19=-131/81 roof live loads hav 7-16; Vult=130mp	e been of the second se	33, 34, 4-5=-129/ 52, 6-7=-104/ ,9-10=-135/2 4/170, 111, 13-14=-6 67, 3/79, 17-18=0, 87, 197, 197,	124, 183, 26, 32/63, /44 85, 79,	 3) 4) 5) 6) 7) 8) 9) 10) 11) 	Truss de only. Fo see Star or consu TCLL: A: Plate DC DOL=1.1 Cs=1.00 Unbalan design. This trus load of 1 overhang All plates Gable st This trus chord liv * This trus 3-06-00 chord an	sign darct tl qu SCE L=1 SCE= ced s s ha 2.0 p gs no s are quire s ha s loa s s h d an	ed for ds ex 4 Indu alifiec 7-16 .15); s=1.0 snow s bee ssf or pon-coo 2x4 I es cor s bee d nor as bee n cho y 2-0 y oth	r wind loads in ti posed to wind (istry Gable End d building design PF=20.0 psf (rc PF=20.0 psf (cur); Rough Cat B; loads have bee en designed for g 1.00 times flat r ncurrent with ott MT20 unless ott MT20 unless ott moncurrent with ott MT20 unless ott maximum bottom ad at 2-0-0 oc. In designed for ra in all areas w 0-00 wide will fil er members.	ne plane of the truss normal to the face), Details as applicable, ler as per ANSI/TPI 1. of LL: Lum DOL=1.15 Fully Exp.; Ce=0.9; n considered for this greater of min roof live oof load of 20.0 psf on her live loads. herwise indicated. chord bearing. a 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom
FORCES	(lb) - Max Tension	19=177 (L 21=169 (L 23=222 (L 26=209 (L 28=222 (L 30=172 (L 32=215 (L 36=197 (L imum Com	C 25), 20=166 (LC 2 C 25), 22=168 (LC 2 C 22), 24=258 (LC 2 C 15), 27=258 (LC 2 C 21), 29=168 (LC 2 C 21), 29=168 (LC 2 C 24), 31=155 (LC 2 C 24), 33=139 (LC 2 C 22) pression/Maximum	25), 25), 22), 21), 24), 24), 25),	Vasd=103mg Cat. II; Exp E zone and C-(3-0-0 to 11-4 (2N) 17-4-0 t zone; cantile and right exp MWFRS for grip DOL=1.6	on; TCDL=6.0psr; t 8; Enclosed; MWFi C Corner(3E) 0-0-(-0, Corner(3R) 11- o 27-0-0, Corner(3 ver left and right e: vosed;C-C for men reactions shown; L 60	BCDL=6 RS (env) to 3-0- -4-0 to 1 BE) 27-0 xposed abers an .umber I	.Upst; n=25ft; elope) exterioo 0, Exterior(2N 7-4-0, Exterio -0 to 30-0-0 end vertical I d forces & DOL=1.60 plat	r r eft			THILLING WAY	Pillin	SEA 458 SNGIN	EEP.ON

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	C01G	Common	1	1	Job Reference (optional)	145285439

- 12) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 27, 28, 29, 30, 31, 32, 24, 23, 22, 21, 20, 19, and 17. This connection is for uplift only and does not consider lateral forces.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 33.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:00 ID:EH7RAMPveLm0S33bQ6NX3XzZPj0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V01G	Valley	1	1	Job Reference (optional)	145285440

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:07 ID:LFViCYphE1ID8g7Q6WRSC1zZQpW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC207	8/TPI2014	CSI TC BC WB Matrix-MSH	0.11 0.08 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 10-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 I wood she: purlins. ing directly 1=21-0-4, 13=21-0-4 17=21-0-4 20=21-0-4 1=60 (LC 13=-78 (L 16=-56 (L 19=-60 (L 21=-61 (L 19=-60 (L 21=-61 (L 19=-61 (L 19=261 (L) 18=262 (L 20=160 (L)	athing directly applied applied or 6-0-0 oc 11=21-0-4, 12=21-0 4, 15=21-0-4, 16=21-1 4, 18=21-0-4, 19=21-1 4, 21=21-0-4, 26=21-1 C 11) C 15), 15=-56 (LC 15 C 15), 15=-56 (LC 15 C 15), 15=-56 (LC 14 C 14), 20=-57 (LC 14 C 14), 12=232 (LC 21), C 24), 15=230 (LC 2 C 21), 17=282 (LC 2 C 20), 19=224 (LC 2 C 23), 21=204 (LC 2	N 1 2 d or -4, -0-4, -0-4, -0-4 3), 5), 4), 4), 4), 4), 21), 526), 520), 6 33) -6	OTES) Unbalanced this design.) Wind: ASCE Vasd=103mg Cat. II; Exp E zone and C-(3-0-6 to 7-6-4 13-6-8 to 17- cantilever left right exposed for reactions DOL=1.60) Truss design only. For stu see Standard or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15; I Cs=1.00; Ct=) Unbalanced design.) All plates are	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E 5; Enclosed; MWFF C Corner(3E) 0-0-6 3, Corner(3E) 17 t and right exposed t;C-C for members shown; Lumber D0 ed for wind loads i ds exposed to win 1 Industry Gable En alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (10); Snough Cat 1.10 snow loads have b 2x4 MT20 unless	e been of h (3-sec 3CDL=6 3CDL=6 3CDL=7 -7-4 to d : end v s and foo DL=1.60 n the pla d (norm nd Deta signer as (roof LL Lum DC B; Fully ween cor otherwi	considered for ond gust) .0psf; h=25ft; elope) exterio 6, Exterior(2N 5-8, Exterior(2 20-7-4 zone; rertical left an; ces & MWFR 0 plate grip ane of the trus al to the face) b par ANS/ITF .: Lum DOL=1 L=1.15 Plate Exp.; Ce=0.9 asidered for th se indicated.	r l) 2N) d S S S S J I.15 I.15 J; iis	12) This Inter R80 LOAD C	truss is mationa 2.10.2 a ASE(S)	c desig I Resic and ref) Sta	ned in accordance dential Code sect ferenced standard ndard	e with the 20 ions R502.1 d ANSI/TPI 1	018 1.1 and
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Max Tension 1-2=-133, 3-27=-10 4-5=-60/1 7-8=-34/1 9-30=0/11 1-21=-85 18-19=-8 15-16=-8 12-13=-8 6-17=-24	imum Com (211, 2-27= 0/190, 3-28 88, 5-6=-6 59, 8-29=0 8, 10-30=((71, 20-21= 5/67, 17-18 5/67, 14-15 5/67, 11-12 2/6, 5-18=- (82, 2-21=	pression/Maximum =-106/155, =-76/148, 4-28=-60/ 7/213, 6-7=-67/213, 1/28, 9-29=-8/96, 1/54, 10-11=-43/127 =-85/67, 19-20=-85/67 ==85/67, 13-14=-85/6 ==85/67 222/82, 4-19=-182/8 =-138/07, 7_16=-232/	7, 1 67, 1 67, 8, 80	 Gable require Gable studs: This truss ha chord live loa This truss h on the botton 3-06-00 tall b chord and ar Provide med bearing plate 1, 58 lb uplift uplift at joint 16, 56 lb upli 	s been designed fi a been designed fi a nonconcurrent w as been designed fi n chord in all areas y 2-00-00 wide wil y 2-00-00 wide wil y other members. nanical connection capable of withsta at joint 18, 60 lb u 20, 61 lb uplift at jo ft at joint 15, 78 lb	or a 10.0 vith any for a liv for a liv s where I fit betw (by oth anding 5 plift at jo plift at jo	b) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 0 lb uplift at j point 19, 57 lb 6 lb uplift at j joint 13 and 3	ds.)psf om oint 33 lb				SEA 4584	L H4	in Summanning

March 21,2021

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-1473 rev. 5/19/2020 BEFORE USE.	
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall	
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing	
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the	
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building C	omponent
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601	•

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V02	Valley	1	1	Job Reference (optional)	145285441

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:08 ID:2RViRPUgEBW9A_WInNUxJozZPiw-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V03	Valley	1	1	Job Reference (optional)	145285442

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:08 ID:2RViRPUgEBW9A_WInNUxJozZPiw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=13-0-4, 5=13-0-4, 6=13-0-4, 7=13-0-4, 8=13-0-4
	Max Horiz	1=98 (LC 11)
	Max Uplift	1=-13 (LC 10), 6=-109 (LC 15),
		8=-113 (LC 14)
	Max Grav	1=87 (LC 24), 5=53 (LC 23), 6=443
		(LC 21), 7=290 (LC 20), 8=446 (LC 20)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-13=-11	7/81 2-13=-74/88 2-14=-164/73
	3-14=-57/	/93. 3-15=-57/91. 4-15=-165/67.
	4-16=-43/	/54. 5-16=-52/44. 5-17=-70/7.
	5-17=-77/	4
BOT CHORD	1-8=-27/8	9, 7-8=-27/51, 6-7=-27/51,
	5-6=-27/5	1, 5-18=-3/65, 5-18=-5/63
WEBS	3-7=-205/	(15, 2-8=-390/159, 4-6=-389/158
NOTES		
1) Unbalanc	ed roof live l	oads have been considered for

Scale = 1:36.2

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 3-6-8, Exterior(2R) 3-6-8 to 9-7-4, Exterior(2E) 9-7-4 to 12-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- a) I his truss has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1, 113 lb uplift at joint 8 and 109 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V04	Valley	1	1	Job Reference (optional)	145285443

Scale = 1:29.1 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WFBS

NOTES

2)

TOP CHORD

BOT CHORD

this design.

TCDL

BCLL

BCDL

5

2-8-

3-0-5

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2 2x4 SP No.3

9-0-4 oc purlins.

Max Horiz 1=-67 (LC 10)

4=-70 (LC 14)

4=684 (LC 20)

1-2=-110/338, 2-3=-86/338

1-4=-202/136, 3-4=-202/136

bracing.

Max Uplift

Max Grav

Tension

2-4=-519/204

(size)

0.0

Code

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S. Mar. 4 2021 MiTek Industries. Inc. Fri Mar. 19 15:52:08 ID:Wd24eIVJ?Ve0o85xL4?As?zZPiv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-6-2 8-7-1 4-6-2 4-0-15 4x5 =2 12 8 Г 3 4 2x4 II 3x5 🖌 3x5 💊 9-0-4 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.36 Vert(LL) n/a n/a 999 MT20 244/190 1 15 BC Lumber DOL 0.35 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.12 Horiz(TL) 0.00 4 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 32 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 1=9-0-4, 3=9-0-4, 4=9-0-4 * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 1=-32 (LC 21), 3=-32 (LC 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 1=120 (LC 20), 3=120 (LC 21), 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint (lb) - Maximum Compression/Maximum 1, 32 lb uplift at joint 3 and 70 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 1) Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) WWWWWWWWW The second second 3-0-6 to 6-0-10, Exterior(2E) 6-0-10 to 9-0-10 zone; cantilever left and right exposed ; end vertical left and SEAL

DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

for reactions shown; Lumber DOL=1.60 plate grip

right exposed;C-C for members and forces & MWFRS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

mm March 21,2021

5844

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V05	Valley	1	1	Job Reference (optional)	145285444

2-6-2 2-6-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:09 ID:Wd24eIVJ?Ve0o85xL4?As?zZPiv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 2

먼

4

5-0-4

4-7-1

2-0-15

5-0-4

0-5-3

3

Page: 1

2x4 II 2x4 💊

Scale = 1:23.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 16 lb	FT = 20%
LUMBER			5) Unbalance	snow loads have l	been cor	nsidered for th	nis					
TOP CHORD	2x4 SP No.2		design.									
BOT CHORD	2x4 SP No.2		Gable requ	res continuous bott	tom chor	rd bearing.						
OTHERS	2x4 SP No.3		Gable stude	s spaced at 4-0-0 o	с.							
BRACING			8) This truss h	as been designed l	for a 10.	0 psf bottom	-l					
TOP CHORD	TOP CHORD Structural wood sheathing directly applied or 5-0-4 oc purlins. * This trust has been designed for a live load of 20.0psf											
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	on the botto 3-06-00 tall	bm chord in all area by 2-00-00 wide wi	is where ill fit betw	a rectangle ween the botto	om					
REACTIONS	(size) 1=5-0-4, 3	3=5-0-4, 4=5-0-4	10) Provide me	chanical connection	n (by oth	ers) of truss t	0					
	Max Horiz 1=36 (LC	11)	bearing pla	te capable of withst	tanding 5	5 lb uplift at io	int					
	Max Uplift 1=-5 (LC	14), 3=-11 (LC 15), 4	1=-26 1, 11 lb upl	ft at joint 3 and 26 I	lb uplift a	at joint 4.						
	(LC 14)	20) 2-00 (1 C 21) 4	11) This truss is	s designed in accor	dance w	ith the 2018						
	(LC 20)	20), 3=00 (LC 21), 4	R802 10 2	al Residential Code	sections	s R502.11.1 a NSI/TPL 1	nd					
FORCES	(lb) - Maximum Com	pression/Maximum	LOAD CASE(S) Standard								
TOP CHORD	1-2=-86/113 2-3=-2	9/113										
BOT CHORD	1-4=-86/79 3-4=-86	/79										
WEBS	2-4=-185/94											
NOTES	2 1 100/01											
1) Unbalance	ed roof live loads have	been considered for									201111	117.
this desig	n.										11111 00	D'III
2) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)									THUR	HOIL
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;							^	5	ON SERS	in start
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope) exterior	r							FR	a notate	Lillan
zone and	C-C Exterior(2E) zone	; cantilever left and ri	ight							N°	.0	
exposed ;	end vertical left and right	ght exposed;C-C for								1 1		
members	and forces & MWFRS								SEA	L : =		
Lumber D						-	:	150	14 : =			
3) Truss des	signed for wind loads in						=	0	4004	** : :		
Only. For	sidus exposed to WING	d Details as applicab	,) 3		1 - E
or consult	and mousily Gable Ell	aner as ner ANSI/TD	//C, / 1							:7	·	Aiti
	CF 7-16 $Pr=20.0$ nof ($\frac{1}{100}$ $\frac{1}$	15							11	VA WGIN	EF
Plate DOL	L=1.15): Pf=20.0 psf (L	um DOL=1.15 Plate								11	AF	UNS IN
DOL=1.15	5); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9								1.0	1,SW J	01
Cs=1.00;	Cs=1.00; Ct=1.10											

March 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V06	Valley	1	1	Job Reference (optional)	145285445

4-1-2

4-1-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S. Mar. 4 2021 MiTek Industries. Inc. Fri Mar. 19 15:52:09 ID:Wd24eIVJ?Ve0o85xL4?As?zZPiv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

7-9-1

3-7-15

2 2-9-0 2-5-12 8 Г 3 0-0-0 4 3x5 🦼 2x4 II 3x5 💊 8-2-4 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.33 Vert(LL) n/a n/a 999 MT20 BC 20.0 Lumber DOL 1 15 0.32 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.10 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP Weight: 28 lb 10.0 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this desian. lied or Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. с 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle)), 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 21), 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint n 1, 29 lb uplift at joint 3 and 67 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard C Summer of

Loading TCLL (roof) Snow (Pf)

TCDL

BCLL

BCDL

Scale = 1:28

LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP N 2x4 SP N 2x4 SP N	0.2 0.2
BRACING	2/10/11	0.0
TOP CHORD	Structural 8-2-4 oc p	l wood sheathing directly app ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 o
REACTIONS	(size)	1=8-2-4, 3=8-2-4, 4=8-2-4
	Max Horiz	1=-60 (LC 10)
	Max Uplift	1=-29 (LC 21), 3=-29 (LC 20 4=-67 (LC 14)
	Max Grav	1=105 (LC 20), 3=105 (LC 2 4=618 (LC 21)
FORCES	(lb) - Max Tension	imum Compression/Maximun
TOP CHORD	1-2=-98/2	99, 2-3=-98/299
BOT CHORD	1-4=-206/	151, 3-4=-206/151
WEBS	2-4=-451/	(195

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-2-10, Exterior(2E) 5-2-10 to 8-2-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

SEAL 45844 mm March 21,2021

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V07	Valley	1	1	Job Reference (optional)	145285446

2-1-2

2-1-2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:09 ID:?pcSs5WxmomtQIg8uoXPODzZPiu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-9-1

1-7-15

Page: 1

1-1-5 1-5-0 90 3 1 4 2x4 II 2x4 🍬 2x4 💊 4-2-4 CSI DEFL L/d PLATES (psf) Spacing 2-0-0 in (loc) l/defl GRIP 244/190 FT = 20%CAR " Summer in the SEAL 45844 .10 mmm March 21,2021

4x5 =

Scale = 1:23.5

Loading

TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999	
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	4	n/a	n/a	
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MP							
BCDL	10.0	-				-						Weight: 13 lb
LUMBER			4	I) TCLL: ASC	E 7-16; Pr=20.0 p	osf (roof Ll	L: Lum DOL=	1.15				
TOP CHORD	2x4 SP No.2			Plate DOL=	1.15); Pf=20.0 ps	sf (Lum DC	DL=1.15 Plate	e				
BOT CHORD	2x4 SP No.2			DOL=1.15);	Is=1.0; Rough C	at B; Fully	v Exp.; Ce=0.	9;				
OTHERS	2x4 SP No.3			Cs=1.00; Ct	t=1.10							
BRACING			!	5) Unbalanced	snow loads hav	e been coi	nsidered for t	his				
TOP CHORD	Structural wood she	athing directly appli	ed or	design.								
	4-2-4 oc purlins.		(5) Gable requi	res continuous b	ottom choi	rd bearing.					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		 Gable studs This trues h 	spaced at 4-0-0	0C.						
	bracing.			 This truss h chord live la 	as been designe	d lor a 10.	o psi bollom	de				
REACTIONS	(size) 1=4-2-4,	3=4-2-4, 4=4-2-4		a) * This trues	has been design	n whin any	ve load of 20	ius. Onef				
	Max Horiz 1=29 (LC	11)		on the botto	m chord in all are	eas where	a rectangle	000				
	Max Uplift 1=-5 (LC	14), 4=-20 (LC 14)		3-06-00 tall	by 2-00-00 wide	will fit bety	ween the bott	om				
	Max Grav 1=76 (LC	20), 3=45 (LC 21),	4=231	chord and a	iny other membe	rs.						
	(LC 1)			0) Provide me	chanical connect	ion (by oth	ers) of truss	to				
FORCES	(lb) - Maximum Con	pression/Maximum		bearing plat	e capable of with	nstanding 5	5 lb uplift at jo	pint 1				
	Tension			and 20 lb up	olift at joint 4.							
TOP CHORD	1-2=-71/75, 2-3=-15	/74, 3-9=-48/10,		 This truss is 	designed in acc	ordance w	ith the 2018					
DOTOLODD	3-9=-53/4	117 o 10 olli		Internationa	I Residential Coo	de sections	s R502.11.1 a	and				
BOT CHORD	1-4=-54/53, 3-4=-54	/47, 3-10=-3/44,		R802.10.2 a	and referenced st	tandard Al	NSI/TPI 1.					
WERS	3-10=-4/4Z		1	OAD CASE(S)) Standard							
NOTEO	2-4=-130/04											
NOTES												

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	A03	Half Hip	1	1	Job Reference (optional)	145285447

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:54 ID:P7mAvJL93V0sk8cS4rH7qGzZPj6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.3

Plate Offsets	(X, Y): [2:0-2-9,0-1-8],	[4:0-3-12,0-2-0], [7:0)-3-0,Edge	e], [11:0-2-4,0-3	3-4]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.97 0.65 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.18 0.02	(loc) 11-12 11-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 164 lb	GRIP 244/190 • FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanci this desig	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-9-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 9 Max Horiz 2=208 (LC Max Uplift 2=-95 (LC Max Uplift 2=-95 (LC (Max Uplift 2=-95 (LC (11=209 (I Max Grav 2=804 (LC 11=209 (I Max Grav 2=804 (LC 11=100 (I Max Grav 2=804 (I Max Grav 2=	t* 1-4:2x4 SP No.2 athing directly applied cept end verticals, an -0 max.): 4-8. applied or 10-0-0 oc 4-11 9= Mechanical, 11=0- 2 13) (14), 9=-67 (LC 15), LC 11) (LC 11) (LC 40) pression/Maximum //93, 3-16=-872/116, 63/214, 17-18=-63/21 (-63/214, 5-20=-63/2 =-63/214, 6-7=-240/8 -240/89, 8-9=-462/10 (3=-96/479, 1=-73/255, 9-10=-65 2=0/564, 4-11=-794/1 =-639/82, 6-10=-43/1 been considered for	2) d or d 3-8 (4) (5) (5) (6) (7) (4, (7) (214, 8) (33, (10) (88, (11) (12) (12) (12) (12) (12) (12) (12)	Wind: ASCE Vasd=103mg Cat. II; Exp E zone and C-(1-8-0 to 3-9- 12-3-7 to 25- cantilever lef right exposer for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs m Provide aded This truss ha chord live loa * This truss for on the bottor 3-06-00 tall b chord and ar Refer to gird() Provide mec bearing plate 9.) One RT7A U truss to bear This connect lateral forces c) This truss is International R802.10.2 ar	7-16; Vult=130m oh; TCDL=6.0psf; 3; Enclosed; MWR C Exterior(2E) -1- 9; Exterior(2E) -1- 9; Exterior(2E) -3- 4-4, Exterior(2E) t and right expose d;C-C for membe shown; Lumber I 5; 7-16; Pr=20.0 psf ls=1.0; Rough Ca =1.10 snow loads have is been designed psf or 1.00 times on-concurrent wit quate drainage to is been designed ad nonconcurrent wit quate drainage to is been designed ad nonconcurrent wit quate drainage to is been designed ad nonconcurrent wit quate drainage to is been designed n chord in all area by 2-00-00 wide w y other members er(s) for truss to t hanical connectic e capable of withs ISP connectors re- ing walls due to L ion is for uplift on i. designed in acco Residential Code nd referenced sta	ph (3-see BCDL=6 FRS (env 4-0 to 1- 9-9 to 12 25-4-4 to ed; end v sed; end v for 12 25-4-4 to ed; end v for 0DL=1.60 sf (roof LL (Lum DC to B; Fully been cor for great flat roof I h other li prevent 1 for a 10.1 with any d for a liv with any d for a liv as where vill fit betv s, with BC russ conr in (by oth tanding 6 ecommen JPLIFT at ly and dc rdance w e sections ndard AN	cond gust) cond gust) cond gust) copsf; h=25ft elope) exteric 3-0, Interior (-3-7, Interior (-3-7, Interior (-28-4-4 zone vertical left an ces & MWFF D plate grip .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 sidered for th er of min roof pad of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live load e load of 20.0 p ve loads. water ponding D psf bottom other live loads. water ponding D psf bo	; or 1) (1) ; dd SS 1.15 2; his flive sf on g. dds. Opsf om f. so oont t. der and	13) Gra or t bott LOAD	aphical p he orient tom chor CASE(S)	urlin re tation (d.) Sta	apresentation dc of the purlin alor ndard	es not depict g the top and AROL AL AL AL AL	the size d/or
			12	1ateral forces This truss is International R802.10.2 ar	: designed in acco Residential Code nd referenced sta	rdance w e sections ndard AN	ith the 2018 8 R502.11.1 a ISI/TPI 1.	ind				Marc	EET. 60	

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	A02	Half Hip	1	1	Job Reference (optional)	145285448

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:53 ID:xxCnizKWIBt?6_1FW8luH2zZPj7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.2

Plate Offsets (X, Y): [2:0-2-9,0-1-8],	[3:0-3-12,0-2-0], [6:0-	4-0,0-3-0], [10:0-4-0,0-3	3-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.79 0.57 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.11 0.02	(loc) 12-15 12-15 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 157 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-11-7 oc purlins, ep 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=160 (LC Max Uplift 2=-108 (LC 10=-207 (I Max Grav 2=775 (LC 10=1563 (athing directly applied ccept end verticals, ar -0 max.): 3-7. applied or 10-0-0 oc -13) C 14), 8=-74 (LC 15), LC 11) 2 36), 8=535 (LC 35), LC 35)	1) or nd 2) 3-8 3) 4)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(1-8-0 to 10-3) (2E) 25-4-4 to exposed; en members and Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p	7-16; Vult=130mpl bh; TCDL=6.0psf; E 8; Enclosed; MWFF C Exterior(2E) -1-4. -7, Interior (1) 10-3 o 28-4-4 zone; can d vertical left and r d forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf (I s=1.0; Rough Cat I =1.10 snow loads have b s been designed fo psf or 1.00 times fla	h (3-sec 3CDL=6 3S (envi- 0 to 1- 3-7 to 25 tilever h ight exp 5 for rea DL=1.60 (roof LL Lum DC B; Fully een cor or greate at roof lo	cond gust) .0psf; $h=25ft$; elope) exterior 3-0, Exterior(2 5-4-4, Exterior ft and right lossed;C-C for ctions shown) .: Lum DOL=11 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 ps	r 2R) ; I.15 is live sf on	12) Gra or th bott LOAD C	phical pr ne orient om chor CASE(S)	urlin re ation d d. Sta	presentation doe of the purlin along ndard	s not depict the size the top and/or
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-16=0/18, 2-16=0/6 3-17=-618/111, 3-18 4-18=-392/107, 4-19 19-20=-69/368, 5-20 21-22=-69/368, 6-22 7-23=-354/82, 7-8=- 2-12=-105/513, 11-1 10_11=-88/392, 9-10	pression/Maximum 9, 2-17=-747/82, =-392/107, =-69/368, =-69/368, 5-21=-69/31 =-69/368, 6-23=-354/4 477/104 2=-107/508, 03/359, 8-949/61	5) 6) 7) 68, 82, 8) 8)	overhangs no Provide adeo This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdd	on-concurrent with Juate drainage to p s been designed for ad nonconcurrent w las been designed n chord in all areas by 2-00-00 wide will by other members. ar(s) for truss to true basic of the second second second the second second second second the second second second second the second second second second second second second second the second second second second the second second second second second second second second second second second second second second second second second second second sec	other liv revent v or a 10.0 vith any for a liv where l fit betw ss conr	ve loads. water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the botto nections.	g. ds.)psf pm		£		WTH CA	ROLING
WEBS NOTES	3-12=0/250, 4-10=-1 4-11=0/285, 3-11=-3 6-10=-878/115, 6-9=	000/138, 7-9=-66/380 000/138, 7-9=-66/380 00/48, 5-10=-316/127 -80/143	9) ; 10) 11)	 one RT7A U truss to bearing This connect lateral forces This truss is of International R802.10.2 ar 	SP connectors rec ing walls due to UF ion is for uplift only designed in accord Residential Code s and referenced stand	ommen PLIFT at and do lance w sections dard AN	4 Ib uplift at jd ded to conned jt(s) 2 and 10 es not consid ith the 2018 ; R502.11.1 a ISI/TPI 1.	o pint ct). ler nd		Conner.		SEA 4584	4 HNSOLULIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 21,2021

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	A01	Half Hip Girder	1	1	Job Reference (optional)	145285449

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:50 ID:6JvNaXg5ioP1TIAe90GSQyzZPih-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

INFEDING

818 Soundside Road Edenton, NC 27932

Scale = 1:55

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [7:0-5-0,0-4-8], [13:0-5-0,0-4-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.40 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.07 0.03	(loc) 15-16 15-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 195 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural ww 4-2-0 oc pur 2-0-0 oc pur Rigid ceiling bracing. (size) 2= Max Horiz 2=	events of the second sheet the second sh	t* 1-3:2x4 SP No.2 athing directly applie cept end verticals, ar 6 max.): 3-9. applied or 10-0-0 oc 0= Mechanical, 13=(5.9)	d or l nd 2 0-3-8	WEBS 7 5 6 NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp	8-16=0/466, 3-15= 7-12=0/429, 8-12= 9-11=-130/865, 4-7 5-14=-34/740, 5-13 5-13=-521/182 roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; 1 b; Enclosed; MWF ver left and right e osed: Lumber DO	-78/220, -586/96, 15=0/19; 3=-2026, a be been of b (3-sec BCDL=6 RS (env xposed L=1.60	7-13=-1605/2 8-11=-282/1 3, 4-14=-1192 /334, considered for cond gust) 6.0psf; h=25ft; elope) exterio ; end vertical I	260, 51, /200, r eft	12) One trus This late 13) This Inte R80 14) Gra or ti bott 15) Use nail to c	e RT7A s to bea s connec ral force s truss is rnationa 22.10.2 a phical p phical p phical p phical p s into Tr onnect t	USP co ring wa ction is s. desig l Resid and ref urlin re tation c d. JC26 (uss) of russ(e	onnectors recom alls due to UPLI for uplift only ar dential Code sec erenced standar presentation do of the purlin alon With 16-16d nai r equivalent at 4- s) to front face o	mended to connect -T at jt(s) 2 and 13. Id does not consider ce with the 2018 tions R502.11.1 and 'd ANSI/TPI 1. es not depict the size g the top and/or Is into Girder & 10d -0-14 from the left end f bottom chord.
FORCES TOP CHORD BOT CHORD	Max Uplift 2= 13 Max Grav 2= 13 (lb) - Maximu Tension 1-2=0/69, 2- 19-20=-1555 4-21=-568/9 22-23=-568/9 22-23=-568/ 5-24=-204/1 6-25=-204/1 6-25=-204/1 6-25=-204/1 6-25=-204/1 9-31=-762/1 9-31=-762/1 2-16=-260/1 32-33=-261/1 15-34=-278/ 36-37=-111/2 13-38=-54/2 10-38=-	-188 (L0 3-456 (J =1272 (L 3-2800 (um Com 3-1768 5/240, 4- 0, 21-22 90, 5-23 115, 24- 1115, 7- 2, 28-29 40, 30-3 40, 9-10 399, 16- 1373, 15 1554, 34 1554, 34 1554, 34- 35, 38-3 35, 12-4 762, 11- 3, 42-43	C 12), 10=-108 (LC 8 _C 9) C 19), 10=738 (LC 3 LC 33) pression/Maximum /260, 3-19=-1553/24 20=-1558/241, =-568/90, 25=-204/1115, 6=-204/1115, 6=-204/1115, 27=-204/1115, =-269/62, 8-269 1=-762/140, =-667/134 32=-261/1373, i-33=-261/1373, i-33=-261/1373, i-33=-261/1373, i-35=-278/1554, 1=-554/235, 0=-133/762, =-24/33, 10-43=-24/3	3), (3), (0, (7), (62, (8), (62, (9), (62, (9), (62, (9), (10), (1	 and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 µ overhangs n Provide adect All plates are This truss ha chord live loa This truss ha chord and ar Refer to girdd Provide mecl bearing plate joint 10. 	7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (110) snow loads have to s been designed f psf or 1.00 times fl pon-concurrent with quate drainage to p 3x5 MT20 unless s been designed f to nonconcurrent with a been designed f an onconcurrent with a been designed f an onconcurrent with a porter members. er(s) for truss to tru- hanical connection capable of withst	f (roof LL (Lum DC B; Fully been cor for great at roof k other lin brevent s other with any i for a 10. with any i for a liv s where II fit betw uss conr h (by oth anding 1	L: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof pad of 20.0 ps ve loads. water ponding se indicated. D psf bottom other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss to 08 lb uplift at	.15 ; live f on ds. psf m	16) Fill 17) "NA (0.1 18) In tf of tf LOAD (1) De Ind	all nail h ILED" ir 48"x3.2 he LOAE he truss CASE(S case + Sr crease =	loss (e des w doles w oles w to to to the star ow (bas 1.15	here hanger is in s 3-10d (0.148"s -nails per NDS g E(S) section, loa ted as front (F) o ndard alanced): Lumbe SEA 458 VGIN Marcel	n contact with lumber. (3") or 3-12d juidlines. ds applied to the face or back (B). r Increase=1.15, Plate NOV L 44 FEFR. ON 10 10 10 10 10 10 10 10 10 10

Continued on page 2 WARNING - Verify

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	115005110
21030102-A	A01	Half Hip Girder	1	1	Job Reference (optional)	145285449

Uniform Loads (lb/ft) Vert: 1-3=-60, 3-9=-60, 2-10=-20 Concentrated Loads (lb)

- Vert: 3=-105 (F), 16=-304 (F), 19=-105 (F), 20=-105
- (F), 21=-105 (F), 22=-105 (F), 24=-105 (F), 25=-105 (F), 26=-105 (F), 27=-105 (F), 28=-105 (F), 29=-105 (F), 30=-105 (F), 31=-105 (F), 32=-40 (F), 33=-40

- (F), 34=-40 (F), 35=-40 (F), 36=-40 (F), 37=-40 (F), 38=-40 (F), 39=-40 (F), 40=-40 (F), 41=-40 (F),
- 42=-40 (F), 43=-40 (F)

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:51:50 ID: 6JvNaXg5ioP1TIAe90GSQyzZPih-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	J01	Jack-Open	13	1	Job Reference (optional)	145285450

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:06 ID:62Nx0jTQiaGSxhMNfySTENzZPiy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-8

Scale =	1:28.8
---------	--------

00010 - 1.20.0													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-0-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, Mechanic Max Horiz 2=125 (L Max Uplift 2=-25 (LC Max Grav 2=362 (L) 4-73 (LC	eathing directly applie r applied or 10-0-0 oc 3= Mechanical, 4= ral C 14) C 14), 3=-61 (LC 14) C 21), 3=-165 (LC 21) 7	 6) * This true on the bo 3-06-00 tr chord and ed or 7) Refer to g 8) Provide n bearing p 3. 9) One RT7. truss to b connectio forces. 10) This truss Internatio 	is has been designe tom chord in all area any other members irder(s) for truss to t bechanical connection ate capable of withs A USP connectors re aaring walls due to L n is for uplift only an is designed in accom nal Residential Code	d for a liv as where vill fit betv s. russ conr on (by oth tanding 6 ecommen JPLIFT at d does n rdance w e sections	re load of 20. a rectangle veen the bott nections. ers) of truss 51 lb uplift at ided to connet t jt(s) 2. This of consider la ith the 2018 s R502.11.1 a	Opsf to joint ect ateral						
FORCES	(lb) - Maximum Con Tension 1-8=0/23, 2-8=0/59,	2-3=-147/71	R802.10. LOAD CASE	2 and referenced sta S) Standard	Indard AN	NSI/TPI 1.							
BOT CHORD	2-4=-46/65												
NOTES		(2 accord suct)											
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D	GE 7-16; Vull=130fnpj 3mph; TCDL=6.0psf; B g B; Enclosed; MWFR C-C Exterior(2E) zone ; end vertical left and ri and forces & MWFRS DOL=1.60 plate grip DC	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and r ght exposed;C-C for for reactions shown; DL=1.60	r ight ;						\int	1.11	ORTH CA	ROLIN	in the second
2) TCLL: AS Plate DOI DOL=1.15 Cs=1.00;	CE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat I Ct=1.10	(roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	I.15 ;						U		SEA	IL T	and the second
3) Unbalanc	ed snow loads have be	een considered for th	nis						=	a 1	4584	44 🔅	
design.4) This truss	has been designed fo	r greater of min roof	live									- a / 2	A
load of 12	2.0 psr or 1.00 times fla	it roof load of 20.0 ps								2.11	V.S.NGIN	EEN.O	1.5
5) This trues	s hon-concurrent with	r a 10.0 psf hottom								11	Oprim	TINS.	1
oj mio duoo	last seen designed to		-1 -							100	1, ENI	OHIL	pù.

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

Mon

March 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V08	Valley	1	1	Job Reference (optional)	145285451

5-5-0 5-1-8

0-38

5-5-0

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Fri Mar 19 15:52:09

Page: 1

9-11-2

Scale = 1:38.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-SH	0.25 0.12 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural w 6-0-0 oc pu Rigid ceiling bracing. (size) 4 7 Max Horiz 7 Max Horiz 7 Max Uplift 4 6 (lb) - Maxim Tension 1-7=-85/85, 3-8=-132/61	2 2 3 3 vood sheat rrlins, exc g directly i=9-11-2, '=-169 (LC i=-12 (LC i=-20 (LC i=-129 (LC i=-25 (LC hum Comj , 1-2=-99/ 8, 3-4=-14	athing directly applied sept end verticals. applied or 10-0-0 oc 5=9-11-2, 6=9-11-2, C 12) 11), 5=-135 (LC 15), 10), 7=-37 (LC 11) 2 3), 5=-391 (LC 21), 2 1), 7=85 (LC 20) pression/Maximum 116, 2-8=-92/92, 19/134	3) 4) 60 7) 6) 7) 8) 9) 10	Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable require Gable studs s This truss ha on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 7, 12 lb uplift uplift at joint	ed for wind loads ds exposed to wi d Industry Gable E alified building de 7-16; Pr=20.0 ps s=1.0; Rough Ca 1.10 snow loads have es continuous bot spaced at 4-0-0 o s been designed dn onocncurrent nas been designed n chord in all area by 2-00-00 wide w y other members hanical connectio capable of withs at joint 4, 20 lb u 5.	in the pland (norm End Deta ssigner as is (roof LL (Lum DC t B; Fully been cor ttom chor oc. for a 10.0 with any d for a liv as where vill fit betw s. n (by oth tanding 3 aplift at joi	ane of the tru al to the face ills as applical is per ANSI/TF : Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t i7 lb uplift at j nt 6 and 135	ss), ble, Pl 1. 1.15 ; his ds. opsf om o oint lb						
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and (2R) 1-10- Exterior(2) right expoo for membe Lumber D	6-7=-96/133 2-6=-196/70 ed roof live loa n. CE 7-16; Vult= p B; Enclosed C-C Exterior(0 to 4-10-0, li E) 6-5-12 to 9 sed ; end vert ers and forces OL=1.60 plate	8, 5-6=-96 0, 3-5=-25 ads have =130mph 6.0psf; BC I; MWFRS 2E) 0-1-12 nterior (1) -5-12 zon icial left as & MWFF e grip DOI	5/138, 4-5=-96/138 95/216 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 4-10-0, Exterior 4-10-0, to 6-5-12, ie; cantilever left and nd right exposed; C-C RS for reactions show L=1.60	11 LC) This truss is 4 International R802.10.2 ar DAD CASE(S)	designed in accou Residential Code nd referenced sta Standard	rdance w sections ndard AN	ith the 2018 : R502.11.1 a ISI/TPI 1.	nd		Comme	AND	SEA 458	L L L L L L L L L L L L L L L L L L L	- Summing

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 1-10-0, Exterior (2R) 1-10-0 to 4-10-0, Interior (1) 4-10-0 to 6-5-12, Exterior(2E) 6-5-12 to 9-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

104 munn March 21,2021

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V09	Valley	1	1	Job Reference (optional)	145285452

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:10 ID:?pcSs5WxmomtQIg8uoXPODzZPiu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.27 0.09 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 4=7-11-: 7=7-11-: Max Horiz 7=-121 (Max Uplift 4=-50 (L 6=-231 (L 6=231 (L)	eathing directly applie xcept end verticals. y applied or 10-0-0 oc 2, 5=7-11-2, 6=7-11-2 LC 12) C 13), 5=-126 (LC 15 : 10), 7=-30 (LC 11) C 10), 5=360 (LC 21), C 21), 7=89 (LC 20)	 3) Truss d only. F see Sta or cons 4) TCLL: / Plate D DOL=1 Cs=1.0 5) Unbala design. 6) Gable r 7) Gable s 8) This tru chord li 9) * This ti on the l 3-06-00 	esigned for wind load or studs exposed to wind and Industry Gable ult qualified building di SCE 7-16; Pr=20.0 ps 15); Is=1.0; Rough C: 0; Ct=1.10 inced snow loads have equires continuous bo tuds spaced at 4-0-0 as has been designed te load nonconcurren uss has been designed ottom chord in all are tall by 2-00-00 wide to any other member	s in the pl vind (norm End Deta lesigner a lesigner a sis (roof Li f (Lum DC at B; Fully be been con oc. d for a 10. t with any ed for a liv as where will fit betv s	ane of the true al to the face ils as applical s per ANSI/TF L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto	ss), ble, PI 1. 1.15 0; ds. 0psf					
FORCES TOP CHORD	(Ib) - Maximum Co Tension 1-7=-85/81, 1-2=-7 3-8=-120/55, 3-4=-	mpression/Maximum 9/94, 2-8=-72/70, 121/115	10) Provide bearing 7, 50 lb uplift at	mechanical connecti plate capable of with uplift at joint 4, 4 lb u joint 5	on (by oth standing 3 plift at joir	ers) of truss t 30 lb uplift at j t 6 and 126 lb	o oint o					
BOT CHORD WEBS NOTES	6-7=-73/101, 5-6=- 2-6=-161/46, 3-5=-	73/101, 4-5=-73/101 290/240	11) This tru Internat R802.1	ss is designed in acco ional Residential Cod 0.2 and referenced sta	ordance w e sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd				TH CA	Roilin

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 1-10-0, Exterior (2R) 1-10-0 to 4-5-12, Exterior(2E) 4-5-12 to 7-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V10	Valley	1	1	Job Reference (optional)	145285453

1-10-0

1-10-0

8 Г

2x4 **I**

ø

2-9-0 2-5-8

1-6-5

2-9-0

4x5 =

2

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:10 ID:?pcSs5WxmomtQIg8uoXPODzZPiu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-15

3-7-15

6

3

2x4 💊

 The second se

Scale = 1:27.8

Loading	(psf)	Spacing 2	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-P								
BCDL	10.0											Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 3=5-11-2 Max Horiz 5=-73 (LC	eathing directly applied of except end verticals. / applied or 10-0-0 oc , 4=5-11-2, 5=5-11-2 2 12)	4) 5) or 6) 7) 8) 9)	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss F on the bottom	5 7-16; Pr=20.0 1.15); Pf=20.0 p 1.15); Rough (=1.10 snow loads hav es continuous b spaced at 4-0-0 is been designe ad nonconcurre has been design n chord in all an	psf (roof LL ssf (Lum DC Cat B; Fully ve been cor bottom chor o oc. ed for a 10.0 nt with any ned for a liv reas where	.: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. Dipsf bottom other live loa e load of 20.0 a rectangle	1.15); ds. Opsf					
	Max Uplift 3=-21 (LC Max Grav 3=163 (L 5=82 (LC	C 15), 5=-28 (LC 14) C 21), 4=252 (LC 21), 20)	10)	3-06-00 tall to chord and an Provide mec bearing plate	by 2-00-00 wide by other membe hanical connec capable of wit	e will fit betw ers. tion (by oth hstanding 2	veen the botto ers) of truss t :8 lb uplift at j	om o oint					
FORCES	(lb) - Maximum Con	npression/Maximum		5 and 21 lb u	plift at joint 3.								
TOP CHORD	1-5=-80/74, 1-2=-55 3-6=-80/41	5/71, 2-6=-53/70,	11)	I his truss is International R802.10.2 ai	designed in acc Residential Co nd referenced s	cordance w de sections standard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	nd					
BOT CHORD	4-5=-49/63, 3-4=-49	9/63	LO	AD CASE(S)	Standard								
WEBS	2-4=-177/67												
NOTES 1) Unbalance this design	ed roof live loads have 	been considered for								~		TH CA	RO
O) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(O										AL	TOD X/A //

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 1-10-0, Exterior (2R) 1-10-0 to 2-5-12, Exterior(2E) 2-5-12 to 5-5-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	V11	Valley	1	1	Job Reference (optional)	145285454

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:10 ID:T0Aq3RWZX6vk1SFKSV2exQzZPit-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-5-15

1-7-15

1-10-0

1-7-15

Page: 1

S

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 13 lb	FT = 20%

TOP CHORD	2X4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied or
	3-11-2 oc	purlins.
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=3-11-8, 3=3-11-8, 4=3-11-8,
		9=3-11-8
	Max Horiz	1=28 (LC 11)
	Max Uplift	1=-29 (LC 21), 4=-21 (LC 15)
	Max Grav	1=57 (LC 20), 4=298 (LC 21)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-48/1	33, 2-3=-48/150
BOT CHORD	1-4=-106/	/96, 3-4=-106/96
WEBS	2-4=-205/	127

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- design.
- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1 and 21 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	PB01G	Piggyback	2	1	Job Reference (optional)	145285455

-0-8-12

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S. Mar. 4 2021 MiTek Industries. Inc. Fri Mar. 19 15:52:07 ID:aExKD3T2TtOIYqxZDfzimazZPix-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-12

4-5-12

5-2-8

Page: 1

2-2-14

Scale = 1:26.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.09 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER				4)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	.: Lum DOL='	1.15					
TOP CHORD	2x4 SP N	o.2			Plate DOL=1	.15); Pf=20.0 psf (L	um DC	L=1.15 Plate						
BOT CHORD	2x4 SP N	0.2			DOL=1.15); I	s=1.0; Rough Cat I	B; Fully	Exp.; Ce=0.9	9;					
OTHERS	2x4 SP N	0.3			Cs=1.00; Ct=	■1.10								
BRACING				5)	Unbalanced	snow loads have b	een cor	nsidered for th	nis					
TOP CHORD	Structura	I wood she	athing directly applie	d or	design.									
	6-0-0 oc	purlins.	5	6)	This truss ha	s been designed fo	or greate	er of min roof	live					
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc		load of 12.0	osf or 1.00 times fla	at roof lo	bad of 20.0 ps	sf on					
	bracing.	• •		_`	overhangs no	on-concurrent with	other In	/e loads.						
REACTIONS	(size)	2=4-5-12.	4=4-5-12, 6=4-5-12.	7)	Gable require	es continuous botto	m chor	d bearing.						
	(/	7=4-5-12,	11=4-5-12	8)	Gable studs	spaced at 2-0-0 oc								
	Max Horiz	2=-43 (LC	12), 7=-43 (LC 12)	9)	I his truss ha	s been designed fo	or a 10.0) pst bottom	ala					
	Max Uplift	2=-25 (LC	14), 4=-31 (LC 15),	10			far a liv	other live loa	us.					
		7=-25 (LC	14), 11=-31 (LC 15)	10) This truss r	as been designed	whore	e load of 20.0	psi					
	Max Grav	2=179 (LC	21), 4=179 (LC 22)	,		1 CIUTU III all aleas	fit botu	a reclarigie	-m					
		6=162 (LC	21), 7=179 (LC 21)	,	chord and an	y 2-00-00 Wide Will	in Delv							
		11=179 (L	C 22)	44					~ t					

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/24, 2-3=-80/58, 3-4=-80/58, 4-5=0/24

BOT CHORD 2-6=-8/36. 4-6=-4/36 WEBS 3-6=-71/15 NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 4, and 6. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	PB01	Piggyback	10	1	Job Reference (optional)	145285456

2-2-14

2-2-14

12 8 Г

-0-8-12

0-8-12

2

2x4 =

Carter Components (Sanford), Sanford, NC - 27332,

1-10-6

-4-7

2-0-0

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:06 ID:pR35PuqK?LQ4mqidgDyhkFzZQpV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

3

4-5-12

4-5-12

2-2-14

5-2-8 0-8-12 Page: 1

Scale = 1:26.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.09 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=4-5-12. 7=4-5-12. Max Horiz 2=-43 (LC Max Uplift 2=-25 (LC 7=-25 (LC Max Grav 2=179 (LC 6=162 (LC	athing directly applie applied or 10-0-0 o , 4=4-5-12, 6=4-5-12 , 11=4-5-12 ; 12), 7=-43 (LC 12) ; 14), 4=-31 (LC 15) ; 14), 11=-31 (LC 15) ; 14), 11=-31 (LC 22) ; 21), 7=179 (LC 21)	4) 5) ed or 6) c 2, 7) 8) 9) 5) 10) 2),),	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced s design. This truss ha load of 12.0 p overhangs no Gable require Gable studs s This truss ha chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an	7-16; Pr=20.0 psf .15); Pf=20.0 psf (s=1.0; Rough Cat .1.10 snow loads have b s been designed fr pho-concurrent with s continuous botto spaced at 4-0-0 oc s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members	(roof LL Lum DC B; Fully een cor or greate at roof lo other liv om chor or a 10.0 vith any for a liv s where I fit betw	: Lum DOL=1 IL=1.15 Plate Exp.; Ce=0.9 isidered for the er of min roof pad of 20.0 ps re loads. d bearing. 0 psf bottom other live loar e load of 20.0 a rectangle reen the botto	I.15); live sf on ds.)psf						
FORCES TOP CHORD BOT CHORD	11=179 (I (Ib) - Maximum Corr Tension 1-2=0/24, 2-3=-80/5 2-6=-8/36, 4-6=-4/36	_C 22) npression/Maximum 8, 3-4=-80/58, 4-5=(5	11) 0/24 12)) One RT7A U truss to beari This connecti lateral forces	SP connectors rec ng walls due to UF on is for uplift only designed in accord	ommen PLIFT at and do	ded to connec jt(s) 2, 4, and es not consid	ct d 6. ler						

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

3-6=-71/15

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) See Standard Industry Piggyback Truss Connection Detril for Connection to hear three new Pilophian
- Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B	
21030102-A	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional)	145285457

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:01 ID:xCkDGnXBIQ1bfcqW0DZtTdzZPis-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:37.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.29 0.11 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 6-9 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-7-1 oc purlins, ex Rigid ceiling directly bracing. (size) 2-0-4-9 f	athing directly applie cept end verticals. applied or 10-0-0 oc	6) 7) d or 8) 9)	* This truss h on the bottor 3-06-00 tall h chord and ar Refer to girde Provide mec bearing plate 5. One RT7A U truss to bear	has been designed in chord in all area by 2-00-00 wide wi by other members. er(s) for truss to tr hanical connection e capable of withst ISP connectors re- ing walls due to U	I for a liv s where II fit betv uss conr h (by oth anding 3 commen PLIFT at	e load of 20. a rectangle veen the bott nections. ers) of truss i 8 lb uplift at j ded to conne jt(s) 2. This	Opsf om to joint ect					
FORCES	(Size) 2=0-4-9, 5 Max Horiz 2=115 (LC Max Uplift 2=-67 (LC Max Grav 2=444 (LC (b) - Maximum Com	= Mechanical C 11) C 12), 5=-38 (LC 12) C 19), 5=292 (LC 19)	10)	connection is forces. This truss is International	s for uplift only and designed in accor Residential Code	l does no dance w sections	ot consider la ith the 2018 R502.11.1 a	and					
TOP CHORD	Tension 1-2=0/48, 2-3=-374/ 4-5=-98/26	101, 3-4=-64/32,	11) 12)	"NAILED" ind (0.148"x3.25	dicates 3-10d (0.14 ") toe-nails per NE CASE(S) section	48"x3") (S guidli)	or 2-12d nes.	face					
BOT CHORD WEBS	2-6=-114/299, 5-6=- 3-6=0/114, 3-5=-343	30/299 5/52	LO	of the trues are noted as front (F) or back (B). DAD CASE(S) Standard									
NOTES 1) Wind: ASI Vasd=103 Cat. II; Ex zone; can and right DOL=1.66 2) TCLL: AS Plate DOI DOL=1.16 Cs=1.00; 3) Unbalance	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi y B; Enclosed; MWFR; tilever left and right exp exposed; Lumber DOL: 0 CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10 ed snow loads have be	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior oosed ; end vertical le =1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; ven considered for thi	1) eft .15 s	Dead + Snc Increase=1 Uniform Loa Vert: 1-4 Concentrat Vert: 6=1	ow (balanced): Lur .15 ads (lb/ft) =-60, 5-7=-20 ed Loads (lb) (F=0, B=0)	nber Inc	rease=1.15,	Plate			da	SEA	ROCN L

- design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	11 Remington-Roof-HPG 1509B				
21030102-A	J02	Jack-Open	2	1	Job Reference (optional)	145285458			

-1-4-0

1-4-0

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Fri Mar 19 15:52:06 ID:62Nx0jTQiaGSxhMNfySTENzZPiy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-11-7

1-11-7

Page: 1

1-11-7

Scale = 1:25.9 Plate Offsets (X, Y): [2:0-1-9.Edge]

	Lugej										
Loading ((TCLL (roof) 2 Snow (Pf) 2 TCDL 1 BCLL BCDL 1	psf) Spacing Plate Grip DOL 20.0 Lumber DOL 10.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood 1-11-7 oc puril BOT CHORD Rigid ceiling of bracing. REACTIONS (size) 2=(Me Max Horiz 2=7 Max Uplift 2=- Max Grav 2=2 (LC FORCES (lb) - Maximur Tension TOP CHORD 1-2=0/69, 2-3 BOT CHORD 1-2=0/69, 2-3 BOT CHORD 1-2=0/69, 2-3 BOT CHORD 2-4=-69/71 NOTES 1) Wind: ASCE 7-16; Vult=11 Vasd=103mph; TCDL=6.0 Cat. II; Exp B; Enclosed; M zone and C-C Exterior(2E exposed ; end vertical left members and forces & MM Lumber DOL=1.60 plate g 2) TCLL: ASCE 7-16; Pr=20. Plate DOL=1.15); Is=1.0; Rough Cs=1.00; Ct=1.10 3) Unbalanced snow loads h design. 4) This truss has been desig load of 12.0 psf or 1.00 tin overhangs non-concurrent	od sheathing directly applied tins. directly applied or 10-0-0 oc 0-3-8, 3= Mechanical, 4= ichanical 75 (LC 14) -36 (LC 14), 3=-23 (LC 14) 277 (LC 21), 3=56 (LC 21), -37) m Compression/Maximum =-106/64 30mph (3-second gust) Dpsf; BCDL=6.0psf; h=25ft; WFRS (envelope) exterior) zone; cantilever left and ri and right exposed; C-C for WFRS for reactions shown; prip DOL=1.60 .0 psf (roof LL: Lum DOL=1.15 Plate h Cat B; Fully Exp.; Ce=0.9; vave been considered for thi ned for greater of min roof I nes flat roof load of 20.0 psf t with other live loads.	5) This trus chord live 6) * This trus on the be 3-06-00 f chord an 7) Refer to 8) Provide r bearing r 3. 9) One RT7 truss to b connection forces. 10) This trus Internatic R802.10. LOAD CASE	a has been designed for load nonconcurrent w ss has been designed tom chord in all areas all by 2-00-00 wide will by 2-00-00 wide will her members. jirder(s) for truss to tru- nechanical connection late capable of withsta A USP connectors rec earing walls due to UF on is for uplift only and is is designed in accord nal Residential Code s 2 and referenced stand (S) Standard	or a 10.0 vith any for a liv where I fit betw ass conr (by oth unding 2 ommen PLIFT at does no lance w sections dard AN	 a) psf bottom other live load e load of 20.0µ a rectangle veen the botto nections. b) of truss to 3 lb uplift at joudded to connect jt(s) 2. This ot consider late the the 2018 R502.11.1 ar ISI/TPI 1. 	ls. psf m int t eral				SEA 4584 WGIN	L EER. OTINI OHNSUUM

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

