

RE: J0521-2802 Weaver/15649 McDougald Rd. Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Lot/Block:	Project Name:	J0521-2802
Address:		
Citv:		

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings.

	A 1.11	_	-		• • • •		-
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E15647852	A1	5/4/2021	21	E15647872	VA7	5/4/2021
2	E15647853	A1A	5/4/2021	22	E15647873	VA8	5/4/2021
3	E15647854	A1GE	5/4/2021	23	E15647874	VA9	5/4/2021
4	E15647855	A2	5/4/2021	24	E15647875	VA10	5/4/2021
5	E15647856	A3	5/4/2021	25	E15647876	VA11	5/4/2021
6	E15647857	A4	5/4/2021	26	E15647877	VP1	5/4/2021
7	E15647858	A4A	5/4/2021	27	E15647878	VP2	5/4/2021
8	E15647859	A4GE	5/4/2021	28	E15647879	VP3	5/4/2021
9	E15647860	G1	5/4/2021	29	E15647880	VP4	5/4/2021
10	E15647861	G1GE	5/4/2021				
11	E15647862	P1	5/4/2021				
12	E15647863	P1GE	5/4/2021				
13	E15647864	PB1	5/4/2021				
14	E15647865	PB1GE	5/4/2021				
15	E15647866	VA1	5/4/2021				
16	E15647867	VA2	5/4/2021				
17	E15647868	VA3	5/4/2021				
18	E15647869	VA4	5/4/2021				
19	E15647870	VA5	5/4/2021				
. •	=						

5/4/2021

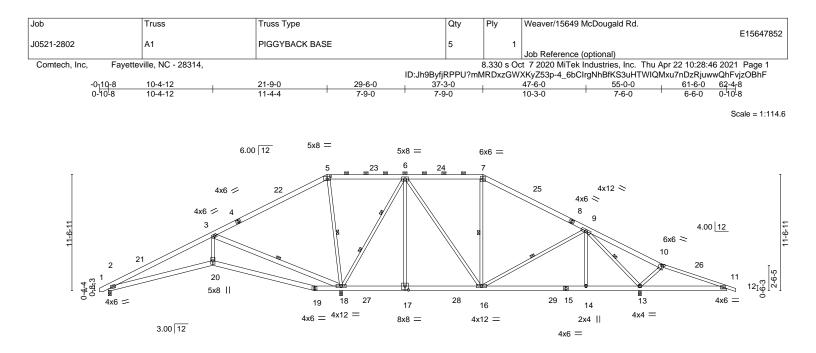
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

VA6

Truss Design Engineer's Name: Strzyzewski, Marvin

My license renewal date for the state of North Carolina is December 31, 2021


North Carolina COA: C-0844

E15647871

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

<u> </u>	10-4-12	20-6-0	23-1-12	29-6-0	37-3-0			47-6-0		52-10-4	61-6-0		
Plate Offsets (X,Y)	10-4-12 [5:0-4-0,0-3-4], [10:0-3-0	10-1-4	¹ 2-7-12 ¹	6-4-4	7-9-0			10-3-0		5-4-4	8-7-12		
Plate Olisets (X,Y)	[5:0-4-0,0-3-4], [10:0-3-0	<u>,0-0-12], [17:0-4</u>	+-0,0-4-8]										
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES PI2014	BC 0	.62 .36 .79	Vert(CT) - Horz(CT)	-0.12 -0.24 0.04	19-20 19-20 18	>999 n/a	L/d 360 240 n/a 240	MT	ATES T20 eight: 461 lb	GRIP 244/190 FT = 2	
10-12: BOT CHORD 2x6 SF WEBS 2x4 SF	P No.1 *Except* 2x4 SP No.1 P No.1 No.2 *Except* 2x6 SP No.1				BRACING- TOP CHORE BOT CHORE WEBS		2-0-0 oc Rigid cei 1 Row a	purlins (6 iling direct	-0-0 max): 5-7. d or 6-0-0 o	lied or 6-0-0 (c bracing. 7-16, 3-18, 9	·	, except
Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 2-3=- 10-1 BOT CHORD 2-20= 14-16 WEBS 5-18=	e) 2=0-3-8, 18=0-3-8, 4 forz 2=-149(LC 10) Jplift 2=-13(LC 13), 18=-2 Grav 2=501(LC 23), 18=-2 Comp./Max. Ten All fo -641/0, 3-5=-194/1107, 5 1=-844/958 =0/618, 19-20=0/617, 18 6=-10/501, 13-14=-10/50 =-966/341, 6-18=-1472/2 =-424/227, 3-18=-1402/2	237(LC 12), 13= 851(LC 1), 13= rces 250 (lb) or -6=-90/994, 6-7 19=0/546, 17-1 1, 11-13=-845/8 98, 9-14=0/288,	1871 (LC 24) less except wh =-463/253, 7-9 8=-328/343, 16 53 6-17=0/364, 6	=-646/247 5-17=-328/ -16=-117/7	, 9-10=-854/1240, 343,								
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) to 37-3-0, Exterior(2 MWFRS for reaction 3) WARNING: This lor handling and erectio Trusses ("BCSI"), jo qualified registered of permanent individual bracing. 4) Provide adequate dr 	e loads have been consid /ult=130mph (3-second g and C-C Exterior(2) -0-8 2) 37-3-0 to 41-7-12, Inter ns shown; Lumber DOL= ng span truss requires ex on guidance, see Guide intly produced by SBCA design professional for th al truss member restraint/ rainage to prevent water designed for a 10 0 ps f	lered for this der just) Vasd=103r -10 to 3-8-3, Int ior(1) 41-7-12 to 1.60 plate grip E treme care and o Good Practice and TPI. The bu ie design and in bracing. MiTek ponding.	sign. nph; TCDL=6.0 erior(1) 3-8-3 to b62-4-8 zone; 0OL=1.60 experience for for Handling, I iilding owner or spection of the assumes no re	Opsf; BCDI 21-9-0, E cantilever proper an nstalling & the owne temporary sponsibili	xterior(2) 21-9-0 to right exposed ;C-C d safe handling and Bracing of Metal P r's authorized agent installation restrair y for truss manufac	26-1- for mo d erec Plate C It shall nt/brac sture,	-13, Interie embers a tion. For o Connected I contract cing and t	or(1) 26-1 nd forces general Wood with a the	& or	MA	SEA 1667		

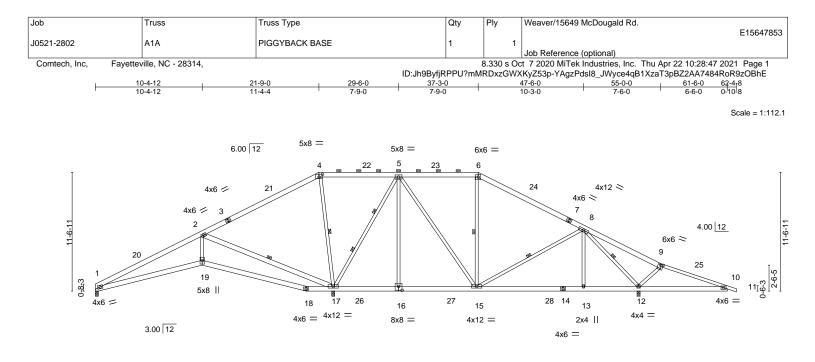
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 2) Bosting a tright() 2 consider parallel to grain value uping ADSI/EDL = 10.0psf.
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 18=237, 13=203.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Continued: ON Pagerig design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see *ANSUTP1 Quality Criteria*, *DSB-89 and BCSI Building Component Safety Information* available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

STR4

mm

April 22,2021


ſ	Job	Truss	Truss Type	Qty	Ply	Weaver/15649 McDougald Rd.
	J0521-2802	A1	PIGGYBACK BASE	5	1	E15647852
				-		Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,			8.330 s Oo	t 7 2020 MiTek Industries, Inc. Thu Apr 22 10:28:46 2021 Page 2
			ID:Jh9Byfjl	RPPU?mN	IRDxzGW	XKyZ53p-4_6bClrgNhBfKS3uHTWIQMxu7nDzRjuwwQhFvjzOBhF

NOTES-

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

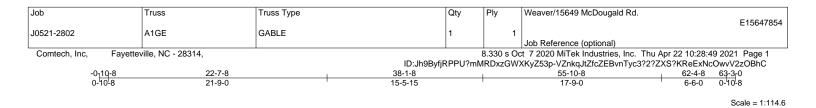
 	10-4-12 20-6-0 10-4-12 10-1-4	23-1-12 21-9-0 29-6-0 1-3-0 6-4-4	37-3-0	47-6-0 10-3-0	52-10-4 55-0-0 61-6-0 5-4-4 2-1-12 6-6-0
Plate Offsets (X,Y)	[4:0-4-0,0-3-4], [9:0-3-0,0-0-12], [16:	<u>1-4-12</u>)-4-0,0-4-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.63 BC 0.37 WB 0.80 Matrix-S	Vert(LL) -0.12 Vert(CT) -0.24 Horz(CT) 0.04	n (loc) l/defl L/d 2 18-19 >999 360 4 18-19 >999 240 4 17 n/a n/a 5 1-19 >999 240	PLATES GRIP MT20 244/190 Weight: 458 lb FT = 20%
9-11: 2 BOT CHORD 2x6 SF WEBS 2x4 SF	2 No.1 *Except* 2x4 SP No.1 2 No.1 2 No.2 *Except* 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathin 2-0-0 oc purlins (6-0-0 m Rigid ceiling directly appl 1 Row at midpt 2 Rows at 1/3 pts	
Max H Max U	e) 1=0-3-8, 17=0-3-8, 12=0-3-8 Horz 1=-149(LC 10) Jplift 1=-12(LC 13), 17=-237(LC 12), Grav 1=447(LC 23), 17=2855(LC 1),				
TOP CHORD 1-2=	Comp./Max. Ten All forces 250 (lb -640/0, 2-4=-194/1110, 4-5=-90/997, =-844/958		8-9=-854/1241,		
BOT CHORD 1-19 13-1	=0/617, 18-19=0/615, 17-18=0/545, 7 5=-10/500, 12-13=-10/500, 10-12=-8		43,		
	=-966/340, 5-17=-1473/304, 8-13=0/2 =-425/230, 2-17=-1408/289, 2-19=0/2		76,		
 Wind: ASCE 7-10; \ MWFRS (envelope) to 37-3-0, Exterior(2) MWFRS for reaction WARNING: This lo handling and erection Trusses ("BCSI"), jo qualified registered permanent individual bracing. 	e loads have been considered for this /ult=130mph (3-second gust) Vasd= and C-C Exterior(2) 0-1-12 to 4-6-9, 2) 37-3-0 to 41-7-12, Interior(1) 41-7- is shown; Lumber DOL=1.60 plate g ing span truss requires extreme care on guidance, see Guide to Good Prac intly produced by SBCA and TPI. Th design professional for the design ar al truss member restraint/bracing. Mi	03mph; TCDL=6.0psf; BCDL= Interior(1) 4-6-9 to 21-9-0, Ext 2 to 62-4-8 zone; cantilever rig p DOL=1.60 ind experience for proper and tice for Handling, Installing & I building owner or the owner' d inspection of the temporary i	terior(2) 21-9-0 to 26-1 ight exposed ;C-C for r I safe handling and ere Bracing of Metal Plate 's authorized agent sha installation restraint/br	Exp C; Enclosed; -13, Interior(1) 26-1-13 nembers and forces & ction. For general Connected Wood Il contract with a acing and the , handling, erection, or	SEAL 16673
5) This truss has been	rainage to prevent water ponding. designed for a 10.0 psf bottom chord				NA INCOME

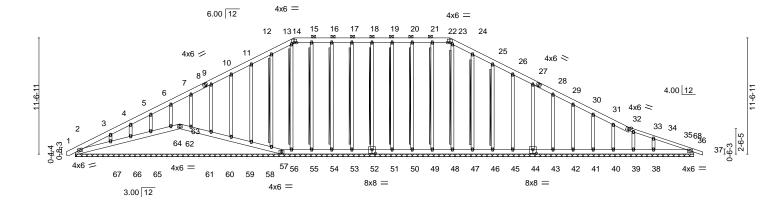
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
7) Recting a tripit(0) 1 appendix parently between the polytomer and the po

7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 17=237, 12=203.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



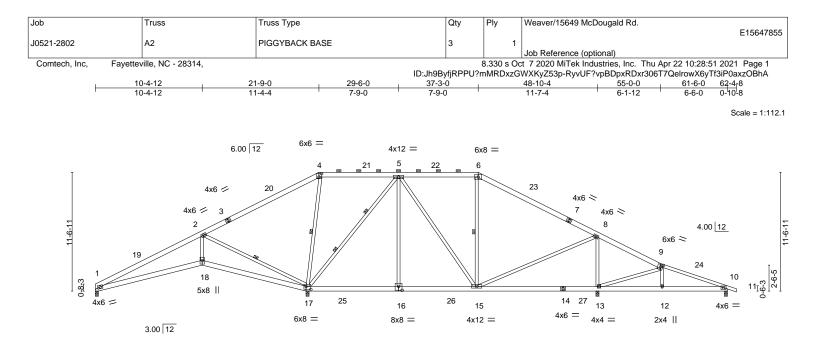
mm

April 22,2021

-0 <u>10-8</u> 0-10-8	<u>11-3-4</u> <u>21-4-8</u> 10-4-12 10-1-4			<u>62-4-8</u> 41-0-0	<u> 63</u> -3-0 0-10-8
Plate Offsets (X,Y)	[44:0-4-0,0-4-8], [52:0-4-0,0-4-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.11 BC 0.05 WB 0.14 Matrix-S	DEFL.inVert(LL)0.00Vert(CT)0.00Horz(CT)0.01	37 n/r 120 37 n/r 120	PLATES GRIP MT20 244/190 Weight: 574 lb FT = 20%
			BRACING- TOP CHORD BOT CHORD WEBS	2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied of T-Brace: 2	or 10-0-0 oc bracing. 2x4 SPF No.2 - 18-52, 17-53, 16-54, 15-55 13-56, 12-58, 19-51, 20-50, 21-49, 23-48, 24-47, 25-46 o narrow edge of web with 10d n 3in minimum end distance.
(Ib) - Max H Max U	earings 61-6-0. łorz 2=228(LC 12) Jplift All uplift 100 lb or less at joint(s) 2 61, 62, 64, 65, 66, 51, 50, 49, 47, 4 67=-142(LC 12), 38=-117(LC 13) Grav All reactions 250 lb or less at joint 59, 60, 61, 62, 64, 65, 66, 51, 50, 39, 36 except 67=274(LC 23), 38=	6, 45, 44, 43, 42, 41, 40, 3 (s) 2, 63, 57, 52, 53, 54, 5 49, 48, 47, 46, 45, 44, 43,	39, 36 except 5, 56, 58,		
TOP CHORD 2-3= 13-1 18-1 23-2	Comp./Max. Ten All forces 250 (lb) o -308/128, 9-10=-90/270, 10-11=-110/32 4=-141/400, 14-15=-138/425, 15-16=-11 9=-138/425, 19-20=-138/425, 20-21=-11 4=-150/429, 24-25=-131/376, 25-26=-11 =-194/267	8, 11-12=-131/388, 12-13 8/425, 16-17=-138/425, 1 8/425, 21-22=-138/425, 2	=-150/441, 7-18=-138/425,		TH CAPOUL
 2) Wind: ASCE 7-10; MWFRS (envelope) Exterior(2) 26-1-13 for reactions shown 3) Truss designed for Gable End Details a 4) WARNING: This lo handling and erection Trusses ("BCSI"), jo qualified registered permanent individua bracing. 5) Provide adequate d 	e loads have been considered for this di /ult=130mph (3-second gust) Vasd=103 gable end zone and C-C Corner(3) -0-6 to 37-3-0, Corner(3) 37-3-0 to 41-6-0, E ; Lumber DOL=1.60 plate grip DOL=1.6 wind loads in the plane of the truss only as applicable, or consult qualified buildin ng span truss requires extreme care and on guidance, see Guide to Good Practico bintly produced by SBCA and TPI. The bi design professional for the design and i al truss member restraint/bracing. MiTe rainage to prevent water ponding.	mph; TCDL=6.0psf; BCDL I-10 to 3-6-0, Exterior(2) 3 (terior(2) 41-6-0 to 62-4-8 D For studs exposed to wir g designer as per ANSI/Tf d experience for proper an e for Handling, Installing 8 uilding owner or the owne nspection of the temporary	-6-0 to 21-9-0, Corner(3) zone;C-C for members a rel (normal to the face), s Pl 1. d safe handling and erec d safe handling and erec r's authorized agent shal v installation restraint/bra	21-9-0 to 26-1-13, and forces & MWFRS see Standard Industry ction. For general Connected Wood Il contract with a cing and the	SEAL 16673 A STRZ April 22,2021
Control Ved Phills a derig du Design valid for use onl a truss system. Before building design. Bracin is always required for s fabrication, storage, del	esign parameters and READ NOTES ON THIS AND y with MITek® connectors. This design is based or use, the building designer must verify the applicabi g indicated is to prevent buckling of individual truss tability and to prevent collapse with possible persoo ivery, erection and bracing of trusses and truss sys- railable from Truss Plate Institute, 2670 Crain High	IV upon parameters shown, and i ity of design parameters and proj web and/or chord members only all injury and property damage. I tems, see ANSI/TPI 10	s for an individual building com berly incorporate this design int . Additional temporary and per for general guidance regarding uality Criteria. DSB-89 and B	ponent, not o the overall manent bracing the	TRENGINEERING BY CREENCO A MiTek Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss		Truss Type	Qty	Ply	Weaver/15649 McDougald Rd.	
10504 0000							E15647854
J0521-2802	A1GE		GABLE	1	1		
						Job Reference (optional)	
Comtech, Inc,	Fayetteville, NO	C - 28314,			8.330 s Oo	ct 7 2020 MiTek Industries, Inc. Thu Apr 22 10:28:50 20	021 Page 2
			ID:Jł	n9ByfjRPPU?ml	MRDxzGW	/XKyZ53p-zIL62fuBQvh4p3MfWJaEaC5iCPfqNhAWq2f5	S2UzOBhB

NOTES-


7) Gable requires continuous bottom chord bearing.

8) Gable studs spaced at 2-0-0 oc.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 57, 52, 53, 54, 55, 58, 59, 60, 61, 62, 64, 65, 66, 51, 50, 49, 47, 46, 45, 44, 43, 42, 41, 40, 39, 36 except (jt=lb) 67=142, 38=117.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	10-4-12	20-6-0	20-7-12	29-6-0	37-3-0			48-10-4		55-0-0 6	1-6-0
1	10-4-12	10-1-4	0-1"-12	8-10-4	7-9-0			11-7-4		6-1-12 6	6-6-0
Plate Offsets (X,Y)	[4:0-3-0,0-4-0], [9:0-2-8,	0-2-8], [16:0-4	-0,0-4-8], [17	0-5-8,0-3-8]							
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.10	1-18	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.22	1-18	>999	240		
3CLL 0.0 *	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.03	10	n/a	n/a		
BCDL 10.0	Code IRC2015/T	PI2014	Matri	x-S	Wind(LL)	0.04	1-18	>999	240	Weight: 443 I	b FT = 20%
LUMBER-					BRACING-						
OP CHORD 2x6 S	SP No.1 *Except*				TOP CHOP	RD	Structu	Iral wood	sheathing	directly applied or 6-0-0) oc purlins, except
9-11:	: 2x4 SP No.1						2-0-0 c	oc purlins	6-0-0 max	.): 4-6.	
BOT CHORD 2x6 S	SP No.1				BOT CHOF	RD.	Rigid c	eiling dire	ctly applied	d or 10-0-0 oc bracing,	Except:
NEBS 2x4 S	SP No.2						6-0-0 c	oc bracing	13-15.		
					WEBS		1 Row	at midpt		4-17, 6-15, 2-17	
							2 Rows	s at 1/3 pt	5	5-17	
	hearings 0-3-8										

REACTIONS. All bearings 0-3-8.

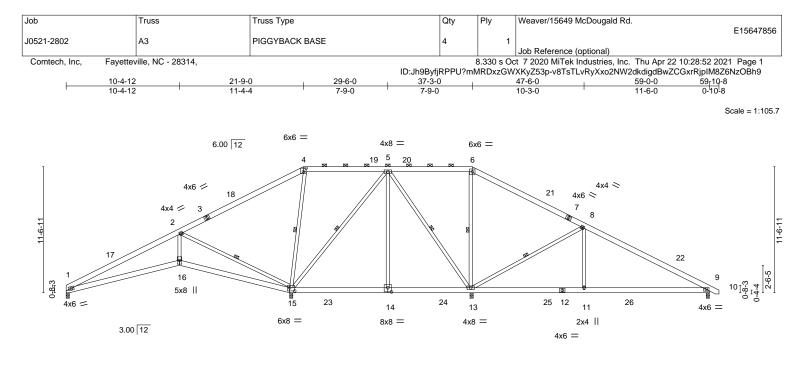
- (lb) Max Horz 1=-149(LC 10)
 - Max Uplift All uplift 100 b or less at joint(s) 1, 10 except 17=-173(LC 12), 13=-159(LC 13) Max Grav All reactions 250 lb or less at joint(s) except 1=382(LC 23), 17=2635(LC 1), 13=1656(LC 24), 10=431(LC 24)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD
 1-2=-324/88, 2-4=-105/1082, 4-5=0/741, 5-6=-509/333, 6-8=-713/265, 8-9=-6/347, 9-10=-472/91

 BOT CHORD
 1-18=-57/256, 17-18=-56/251, 16-17=-81/402, 15-16=-81/402, 12-13=-5/372,
- 10-12=-2/380

 WEBS
 4-17=-956/303, 5-17=-1356/258, 5-15=-88/441, 8-15=-6/699, 8-13=-1255/395, 5-16=0/485, 6-15=-393/196, 2-17=-1187/329, 2-18=0/477, 9-13=-553/149

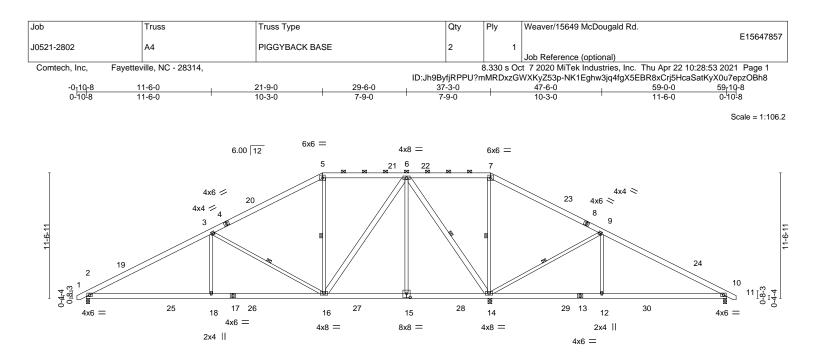
NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 21-9-0, Exterior(2) 21-9-0 to 26-1-13, Interior(1) 26-1-13 to 37-3-0, Exterior(2) 37-3-0 to 41-7-12, Interior(1) 41-7-12 to 62-4-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) WARNING: This long span truss requires extreme care and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10 except (jt=lb) 17=173, 13=159.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


L		4-12	20-6-0	29-6-0	37-4-0			47-6-0		59-0-0	
	10	4-12	10-1-4	9-0-0	7-10-0			10-2-0		11-6-0	
Plate Offse	ets (X,Y)	[4:0-3-0,0-4-0], [14	1:0-4-0,0-4-8], [15:0-5	-8,0-3-8]							
OADING		SPACING-	2-0-0	CSI.	DEFL.		(loc)	l/defl	L/d	PLATES	GRIP
CLL	20.0	Plate Grip [TC 0.63	Vert(LL)		9-11	>999	360	MT20	244/190
CDL	10.0	Lumber DO		BC 0.38	Vert(CT)		9-11	>999	240		
SCLL	0.0 *	Rep Stress		WB 0.77	Horz(CT)	0.04		n/a	n/a		
SCDL	10.0	Code IRC2	2015/TPI2014	Matrix-S	Wind(LL)	0.06	9-11	>999	240	Weight: 426 lb	FT = 20%
UMBER-					BRACING-						
ОР СНО					TOP CHOR	D	Structu	ral wood	sheathing di	irectly applied or 6-0-0 c	oc purlins, except
	RD 2x6 SP								(10-0-0 max		
/EBS	2x4 SP	No.2			BOT CHOR	D				or 6-0-0 oc bracing.	
EACTIO		arings 0-3-8.			WEBS		1 Row	at midpt	2	2-15, 4-15, 5-15, 5-13, 6	6-13, 8-13
DRCES. DP CHO DT CHO YEBS	RD 1-2=∹ RD 1-16= 9-11= 2-16=	351/92, 2-4=-107/ =-60/274, 15-16=-5 =-17/558 =0/481, 2-15=-1200	1077, 4-5=0/739, 5-6= 9/269, 14-15=-392/26	less except when sho :0/573, 6-8=0/708, 8-9 :1, 13-14=-392/261, 11 :5-15=-690/107, 5-14= :56, 8-11=0/523	=-740/169 -13=-17/558,		· ·	,,	,		
OTES-	nced roof live	loads have been	considered for this de	sian							
				nph; TCDL=6.0psf; BC	DL=6.0psf; h=15ft: C	at. II: I	Exp C: E	nclosed:			
				erior(1) 4-6-9 to 21-9-0							
				43-5-10 to 59-8-10 zor	ne;C-C for members a	and for	rces & N	IWFRS fo	or	UNIORTH CA	n
			ate grip DOL=1.60							11111 CA	- 11 m
		ainage to prevent								I' TH CA	ROIL
				e load nonconcurrent v						NON	: MA'IA
			ve load of 20.0psf on t ny other members, wi	he bottom chord in all a th BCDL = 10.0psf.	areas where a rectan	gle 3-6	5-0 tall b	y 2-0-0 w	ide	2.00	MAN
Bearing	at ioint(s) 1	considers parallel	to grain value using A	NSI/TPL1 angle to gra	in formula Building o	design	er shoul	d verifv		: :0`	111

- 6) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 15=219, 13=111, 9=102.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	11-6-0	21-9-0	29-6-0	37-2-4	37-3-0			59-0-0	
te Offsets (X,Y	11-6-0) [15:0-4-0,0-4-8]	10-3-0	7-9-0	7-8-4	0-0 ⁴ 12	10-3	-0	11-6-0	1
	<u>] [15.0-4-0,0-4-0]</u>								
OADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (lo	oc) l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC 0.63		-0.11 2-	18 >999	360	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC 0.49	(-)	-0.26 2-		240		
CLL 0.0		YES	WB 0.88	Horz(CT)		14 n/a	n/a		
CDL 10.0	Code IRC2015/1	FPI2014	Matrix-S	Wind(LL)	0.08 2-	18 >999	240	Weight: 452 lb	FT = 20%
JMBER-				BRACING-					
	6 SP No.1			TOP CHORE	D Str	uctural wood	sheathing d	lirectly applied or 4-7-14	oc purlins,
OT CHORD 2>	6 SP No.1				exc	cept	•		
/EBS 2>	4 SP No.2 *Except*						(6-0-0 max.		
6-	16,6-14: 2x6 SP No.1			BOT CHORE				l or 6-0-0 oc bracing.	
				WEBS	1 F	low at midpt		3-16, 5-16, 6-14, 7-14, 9	9-14
EACTIONS.	(size) 2=0-3-8, 14=0-4-4, ax Horz 2=146(LC 11)	10=0-3-8							
	ax Horz 2=146(LC 11) ax Uplift 2=-106(LC 12), 14=	12(I C 12) 10-	107/LC 12)						
	ax Grav 2=1292(LC 23), 14=	· //	()						
10	ax olav 2=1232(E0 23), 14-	-5505(20 2), 10	-040(20 24)						
ORCES. (lb) - I	Max. Comp./Max. Ten All fo	orces 250 (lb) or	less except when show	/n.					
	2-3=-2033/440, 3-5=-1002/36	3, 5-6=-750/412	, 6-7=0/1013, 7-9=-74/	1214,					
	9-10=-412/390								
	2-18=-269/1727, 16-18=-269	,	,						
	3-18=0/520, 3-16=-1182/350		1, 6-15=0/424, 6-14=-19	953/431,					
	7-14=-926/295, 9-14=-1223/3	359, 9-12=0/521							
OTES-									
	of live loads have been consi	dered for this de	sian.						
	10; Vult=130mph (3-second			DL=6.0psf; h=15ft: Ca	at. II; Exp	C; Enclosed:			
	ope) and C-C Exterior(2) -0-8								
	3-0, Exterior(2) 37-3-0 to 43-						or		
reactions show	au Lumber DOL -1 60 plate au							a and a second s	

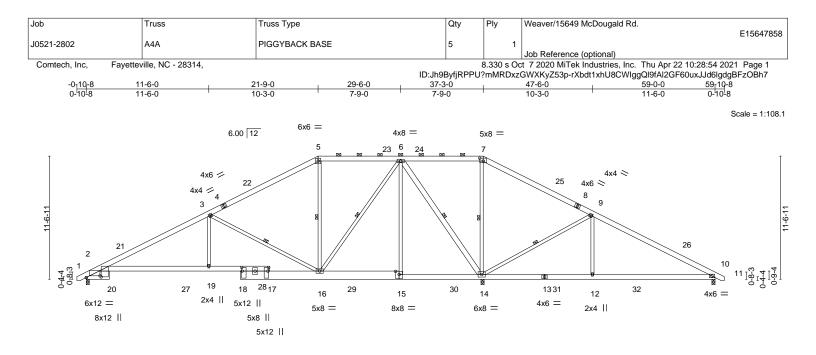
reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14 except (jt=lb) 2=106, 10=107.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

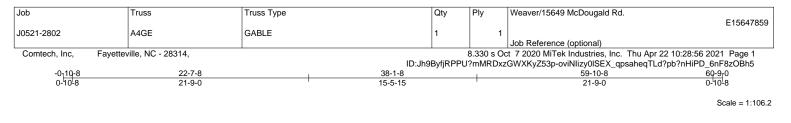
April 22,2021

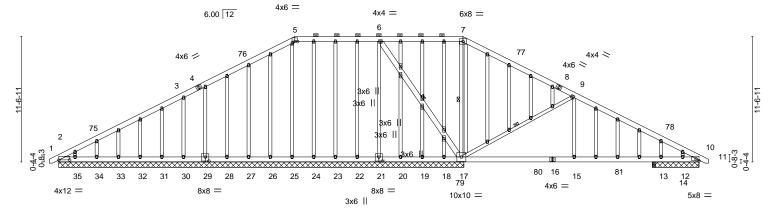
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⊢–	<u>11-6-0</u> 11-6-0	21-9-0	29-6-0	37-2-4	37-3-0 0-0-12	47-6-0	<u> </u>	———————————————————————————————————————
Plate Offsets (X	,Y) [2:0-0-11,1-4-13], [2	:1-3-7,0-1-14], [7:0-	4-0,0-3-4], [15:0-4-0,0-3-8	8], [17:0-4-1,0-0-14], [18:0-4-1,0-	0-9]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DC Lumber DOL * Rep Stress Ir	1.15 ncr YES	CSI. TC 0.69 BC 0.61 WB 0.94 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.19 2-19 -0.40 2-19 0.10 14 0.15 2-19	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 474 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS	2x6 SP No.1 2x6 SP 2400F 2.0E *Excep 2-20,15-18: 2x10 SP No.1 2x4 SP No.2 *Except* 6-14: 2x6 SP No.1	t*		BRACING- TOP CHORI BOT CHORI WEBS	except 2-0-0 c D Rigid c	t oc purlins (6-0-0 max	directly applied or 4-8-13 x.): 5-7. d or 6-0-0 oc bracing. 3-16, 5-16, 6-16, 6-14, 7	•
REACTIONS.	(size) 2=0-3-8, 14=0-3 Max Horz 2=148(LC 11) Max Uplift 2=-90(LC 12), 1 Max Grav 2=1131(LC 23),	4=-57(LC 12), 10=-						
FORCES. (Ib) TOP CHORD	- Max. Comp./Max. Ten / 2-3=-1905/437, 3-5=-636, 9-10=-173/976							
BOT CHORD	2-19=-281/1609, 16-19=- 10-12=-809/202	263/1609, 15-16=-3	79/255, 14-15=-381/254,	12-14=-809/202,				
WEBS	3-19=0/635, 3-16=-1395/- 6-14=-2089/461, 7-14=-1)/444,				

NOTES-

1) Unbalanced roof live loads have been considered for this design.

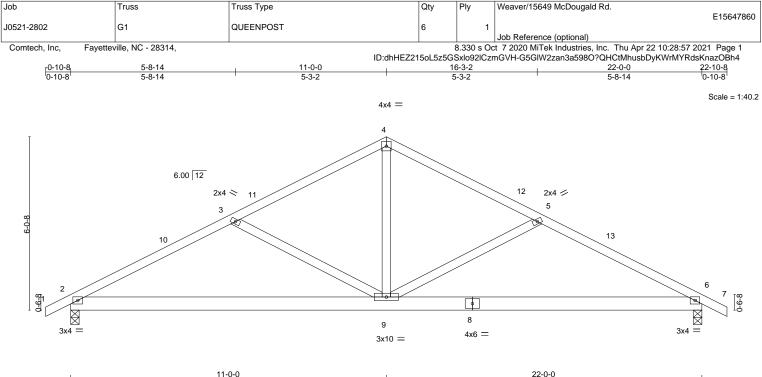

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 21-9-0, Exterior(2) 21-9-0 to 27-11-11, Interior(1) 27-11-11 to 37-3-0, Exterior(2) 37-3-0 to 43-5-10, Interior(1) 43-5-10 to 59-8-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14 except (jt=lb) 10=226.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

0-'10-'8 Plate Offsets (X	3 22-7-8		38-1-8	+	59-10-8	<u>60-9</u> -0 0-10-8
		·0-4-0 0-4-81 [58·0-1-12 0-0-	15-5-15		21-9-0	0-10-8
	<u>, , , , , , , , , , , , , , , , , , , </u>	.0-4-0,0-4-8], [38.0-1-12,0-0-	14]			
OADING (psf	f) SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl L/	d PLATES	GRIP
CLL 20.0		TC 0.54	Vert(LL) -0.05	15-17 >999 36	60 MT20	244/190
CDL 10.0	0 Lumber DOL 1.15	BC 0.50	Vert(CT) -0.11	15-17 >999 24	0	
BCLL 0.0	0 * Rep Stress Incr YES	WB 0.65	Horz(CT) 0.05	10 n/a n/	/a	
SCDL 10.0	0 Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03	15 >999 24	Weight: 628 lb	FT = 20%
UMBER-			BRACING-			
OP CHORD	2x6 SP No.1		TOP CHORD	Structural wood shea	athing directly applied or 6-0-0) oc purlins, except
SOT CHORD	2x6 SP No.1			2-0-0 oc purlins (6-0-	0 max.): 5-7.	
VEBS	2x4 SP No.2 *Except*		BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc bracing.	
	6-17: 2x6 SP No.1		WEBS	1 Row at midpt	6-17, 7-17, 9-17	
THERS	2x4 SP No.2					
EACTIONS.	All bearings 37-4-0 except (jt=length) 10=	-4-3-8, 13=4-3-8, 12=4-3-8, 1	14=0-3-8.			
	Max Horz 2=228(LC 12)					
	Max Uplift All uplift 100 lb or less at joint(
	21=-365(LC 19), 17=-416(LC 13	3), 35=-374(LC 12), 18=-271	(LC 3), 13=-453(LC 2),			
	12=-396(LC 13)		07.00			
	Max Grav All reactions 250 lb or less at j					
	31, 32, 33, 34, 20, 19, 13 excep					
	10=448(LC 1), 35=521(LC 23),	12=003(LC 1), 14=497(LC 2)			
	Max Comp (Max Top All forces 250 (lk) or loop avaant whan about	_			
ORCES. (10)) - Max. Comp./Max. Ten All forces 250 (lk 2-3=-1111/538, 3-5=-1123/904, 5-6=-855					
OF CHORD	9-10=-1283/682	/947, 0-7=-304/535, 7-9=-39	0/499,			
BOT CHORD	2-35=-301/855, 34-35=-301/855, 33-34=-	301/855 32-33301/855 3	1-32301/855			
	30-31=-301/855, 28-30=-301/855, 27-28=					
	24-25=-301/855, 23-24=-301/855, 22-23=					
	19-20=-301/855. 18-19=-301/855. 17-18=					
			, 1110-001/1000,		annu i	111.
	13-14=-361/1003 12-13=-361/1003 10-1	2=-361/1003				
VEBS	13-14=-361/1003, 12-13=-361/1003, 10-1 3-30=-728/686, 6-21=-304/468, 6-17=-11		7=-991/579		IN TH C	ARC
VEBS	3-30=-728/686, 6-21=-304/468, 6-17=-11		7=-991/579,		TH C	AROUN
WEBS			7=-991/579,		NUOPTER	AROLINI
	3-30=-728/686, 6-21=-304/468, 6-17=-11		7=-991/579,		TH C	AROLINI
IOTES-	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421	42/728, 7-17=-451/294, 9-17	7=-991/579,		TH C	AROLINI
IOTES-) Unbalanced	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for this	42/728, 7-17=-451/294, 9-17 s design.	,	xp C: Enclosed:	CHARTH C	ARQUIN
IOTES-) Unbalanced) Wind: ASCE	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 57-10; Vult=130mph (3-second gust) Vasd=	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD	0L=6.0psf; h=15ft; Cat. Ⅱ; E		A SE	ARQUIN AL
IOTES-) Unbalanced) Wind: ASCE MWFRS (en	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for this	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) :)L=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3)	21-9-0 to 26-1-13,	SE/	AR AL 73
IOTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 20	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for this 7-10; Vult=130mph (3-second gust) Vasd= ivelope) gable end zone and C-C Corner(3)	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) 2, Exterior(2) 41-7-12 to 59-)L=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3)	21-9-0 to 26-1-13,	SE/	AR AL 173
OTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 2 MWFRS for	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 5-7-10; Vult=130mph (3-second gust) Vasd= ivelope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) 2 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60	bL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe	21-9-0 to 26-1-13, rs and forces &	SE/	AR AL 73
IOTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 20 MWFRS for) Truss design	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 6-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) i 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nly. For studs exposed to w	0L=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so	21-9-0 to 26-1-13, rs and forces &	SE/	AROLAN AL 73
IOTES-) Unbalanced) Wind: ASCE MWFRS (em Exterior(2) 2/ MWFRS for) Truss design Gable End D	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= ivelope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) i 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nly. For studs exposed to w	0L=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so	21-9-0 to 26-1-13, rs and forces &	SE/	AROLAN AL 73
IOTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 2 MWFRS for) Truss design Gable End D) Provide adec	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) i 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nly. For studs exposed to w	0L=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so	21-9-0 to 26-1-13, rs and forces &	MARY SE	AR AL 73
IOTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 2 MWFRS for) Truss design Gable End D) Provide adec) All plates are	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for this 7-10; Vult=130mph (3-second gust) Vasd= ivelope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o betails as applicable, or consult qualified buil quate drainage to prevent water ponding.	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) i 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nly. For studs exposed to w	0L=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so	21-9-0 to 26-1-13, rs and forces &	SE/ MARUNA ST	AR AL 573 VEER LENING
IOTES-) Unbalanced) Wind: ASCE MWFRS (em Exterior(2) 2/ MWFRS for) Truss design Gable End D) Provide adec) All plates are) Gable studs) This truss ha	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) 1 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nJy. For studs exposed to w Iding designer as per ANSI/T	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so PI 1.	21-9-0 to 26-1-13, rs and forces & ee Standard Industry	SEA 166	AR AL 573 VEER LEVIN
OTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 22 MWFRS for) Truss design Gable End D) Provide adec) All plates are) Gable studs) This truss ha) * This truss f	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) 3 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nJy. For studs exposed to w lding designer as per ANSI/T d live load nonconcurrent wit on the bottom chord in all ar	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so PI 1.	21-9-0 to 26-1-13, rs and forces & ee Standard Industry	A ST	AR AL 73 NEER TRZY Linit
IOTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 2 MWFRS for) Truss design Gable End D) Provide adec) All plates are) Gable studs) This truss ha) * This truss ha)	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf ten the bottom chord and any other members	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) 3 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nJy. For studs exposed to w lding designer as per ANSI/T d live load nonconcurrent wit on the bottom chord in all ar	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so PI 1.	21-9-0 to 26-1-13, rs and forces & ee Standard Industry	A ST	AR AL 573 VEER LEV IRZY LEV ril 22,2021
NOTES-) Unbalanced) Wind: ASCE MWFRS (en Exterior(2) 2 MWFRS for b) Truss design Gable End D) Provide adec) All plates are) Gable studs) This truss ha) * This truss ha will fit betwee ontinued on page	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf ten the bottom chord and any other members age 2	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) : 2, Exterior(2) 41-7-12 to 59- rip DCL=1.60 nly. For studs exposed to w iding designer as per ANSI/T d live load nonconcurrent wit on the bottom chord in all ar s, with BCDL = 10.0psf.	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so PI 1. th any other live loads. eas where a rectangle 3-6	21-9-0 to 26-1-13, rs and forces & ee Standard Industry -0 tall by 2-0-0 wide	A ST	AR AL 573 NEER TRZY ZENN TRZY ZENN TRZY ZENN TRZY ZENN TRZY ZENN
NOTES-) Unbalanced) Wind: ASCE MWFRS (em Exterior(2) 2 MWFRS for) Truss design Gable End D) Provide adec) All plates are) Gable studs) This truss h will fit between output definition of the state (MARNING)	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for this 7-10; Vult=130mph (3-second gust) Vasd= twelope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf een the bottom chord and any other members age 2	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) : 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nly. For studs exposed to w Iding designer as per ANSI/T d live load nonconcurrent wit on the bottom chord in all ar s, with BCDL = 10.0psf.	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so PI 1. th any other live loads. eas where a rectangle 3-6	21-9-0 to 26-1-13, rs and forces & ee Standard Industry -0 tall by 2-0-0 wide	A ST	AR AL 73 NEER TRZY TRZY TRZY TRZY TRZY TRZY TRZY TRZ
NOTES-) Unbalanced) Wind: ASCE MWFRS (en: Exterior(2) 2 MWFRS for b) Truss design Gable End D d) Provide adec) All plates are) Gable studs 2) This truss h will fit between ontinued on paction WARNING Design valid for a truss system	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf ten the bottom chord and any other members age 2 - Verity design parameters and READ NOTES ON THIS A or use only with MITEK® connectors. This design is base n. Before use, the building designer must verity the appli	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) : 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nly. For studs exposed to w iding designer as per ANSI/T d live load nonconcurrent wit on the bottom chord in all ar s, with BCDL = 10.0psf.	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for member ind (normal to the face), so PI 1. th any other live loads. eas where a rectangle 3-6 E PAGE MII-7473 rev. 5/19/2020 B is for an individual building comp perly incorporate this design into	21-9-0 to 26-1-13, rs and forces & ee Standard Industry -0 tall by 2-0-0 wide EFORE USE. onent, not the overall	A ST	AR AL 73 NEER HILL RZY LINI RZ
NOTES-) Unbalanced 2) Wind: ASCE MWFRS (em Exterior(2) 2/ MWFRS for (3) Truss design Gable End D 4) Provide adec 5) Gable studs 1) This truss ha 2) * This truss ha 2) * This truss have continued on paction Design valid for a truss system building design	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for this 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf ten the bottom chord and any other members age 2 - Verity design parameters and READ NOTES ON THIS A or use only with MTele® connectors. This design is base n. Before use, the building designer must verify the appi n. Bracing indicated is to prevent buckling of individual	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) 1 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nJy. For studs exposed to w Iding designer as per ANSI/T d live load nonconcurrent wit on the bottom chord in all ar s, with BCDL = 10.0psf.	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so "PI 1. th any other live loads. eas where a rectangle 3-6 "PAGE MII-7473 rev. 5/19/2020 B lis for an individual building comp operly incorporate this design int v. Additional temporary and per	21-9-0 to 26-1-13, rs and forces & ee Standard Industry -0 tall by 2-0-0 wide EFORE USE. onent, not the overall nament bracing	A ST	AL 73 VEEER AL FIL 22,2021 FIL 22,2021 FIL 22,2021
NOTES- 1) Unbalanced 2) Wind: ASCE MWFRS (en Exterior(2) 22 MWFRS for 3) Truss design Gable End D 4) Provide adec 5) Gable studs 7) This truss ha 3) * This truss ha 3) * This truss ha 3) * This truss ha 3) * This truss system building design building design building design building design	3-30=-728/686, 6-21=-304/468, 6-17=-11 9-15=0/421 roof live loads have been considered for thi 7-10; Vult=130mph (3-second gust) Vasd= welope) gable end zone and C-C Corner(3) 26-1-13 to 37-3-0, Corner(3) 37-3-0 to 41-7-1 reactions shown; Lumber DOL=1.60 plate g ned for wind loads in the plane of the truss o Details as applicable, or consult qualified buil quate drainage to prevent water ponding. e 2x4 MT20 unless otherwise indicated. spaced at 2-0-0 oc. as been designed for a 10.0 psf bottom chor has been designed for a live load of 20.0psf ten the bottom chord and any other members age 2 - Verity design parameters and READ NOTES ON THIS A or use only with MITEK® connectors. This design is base n. Before use, the building designer must verity the appli	42/728, 7-17=-451/294, 9-17 s design. 103mph; TCDL=6.0psf; BCD -0-8-10 to 3-8-3, Exterior(2) 3 2, Exterior(2) 41-7-12 to 59- rip DOL=1.60 nJy. For studs exposed to w Iding designer as per ANSI/T d live load nonconcurrent wit on the bottom chord in all ar s, with BCDL = 10.0psf.	DL=6.0psf; h=15ft; Cat. II; E 3-8-3 to 21-9-0, Corner(3) 8-10 zone;C-C for membe ind (normal to the face), so "PI 1. th any other live loads. eas where a rectangle 3-6 "PAGE MII-7473 rev. 5/19/2020 B lis for an individual building comp operly incorporate this design int v. Additional temporary and per	21-9-0 to 26-1-13, rs and forces & ee Standard Industry -0 tall by 2-0-0 wide EFORE USE. onent, not the overall nanent bracing the	A ST	ENING BY A MITEK Affiliate

ſ	lob	Truss	Truss Type	Qty	Ply	Weaver/15649 McDougald Rd.
	10504 0000					E15647859
	10521-2802	A4GE	GABLE	1	1	
						Job Reference (optional)
	Comtech, Inc, Fayetter	/ille, NC - 28314,		8	3.330 s Oo	t 7 2020 MiTek Industries, Inc. Thu Apr 22 10:28:56 2021 Page 2
			ID:Jh9	ByfjRPPU'	mMRDxz?	GWXKyZ53p-oviNlizy0lSEX_qpsaheqTLd?pb?nHiPD_6nF8zOBh5


NOTES-

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 34, 14 except (jt=lb) 30=526, 21=365, 17=416, 35=374, 18=271, 13=453, 12=396.

Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	11-0-0 11-0-0							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.29	Vert(LL) -(0.08 2-	9 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -(0.18 2-9	9 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.23	Horz(CT)	0.02	6 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) (0.03 2-9) >999	240	Weight: 117 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

WEBS 2x4 SP No.2 **REACTIONS.** (size) 6=0-3-8, 2=0-3-8 Max Horz 2=77(LC 11)

Max Uplift 6=-66(LC 13), 2=-66(LC 12) Max Grav 6=930(LC 1), 2=930(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1425/377, 3-4=-1076/286, 4-5=-1076/286, 5-6=-1425/377

BOT CHORD 2-9=-249/1194, 6-9=-258/1194

WEBS 3-9=-365/248, 4-9=-76/632, 5-9=-365/248

NOTES-

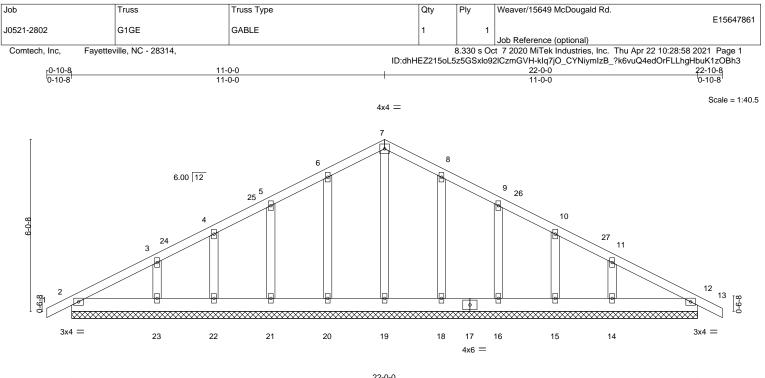
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Interior(1) 15-4-13 to 22-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.



Structural wood sheathing directly applied or 5-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Ma/S/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.08	Vert(LL)	0.00	<u>12</u>	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT)	0.00	12	n/r	120		
CLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT)	0.00	12	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 133 lb	FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 22-0-0.

Max Horz 2=120(LC 16) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 20, 21, 22, 18, 16, 15 except 23=-108(LC 12), 14=-106(LC 13)

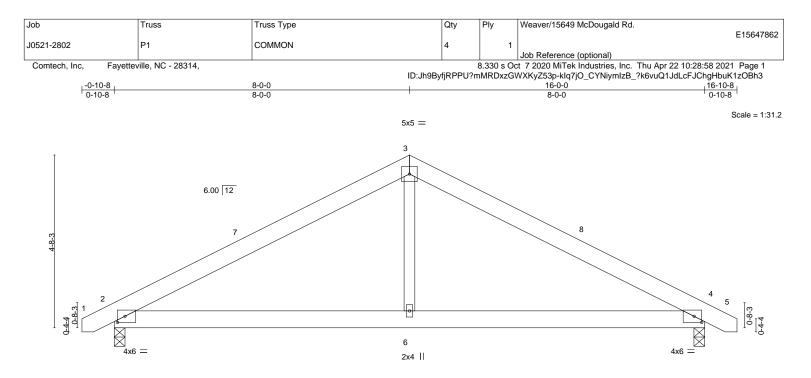
Max Grav All reactions 250 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 23, 18, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 11-0-0, Corner(3) 11-0-0 to 15-4-13, Exterior(2) 15-4-13 to 22-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 20, 21, 22, 18, 16, 15 except (jt=lb) 23=108, 14=106.

Rigid ceiling directly applied or 10-0-0 oc bracing.

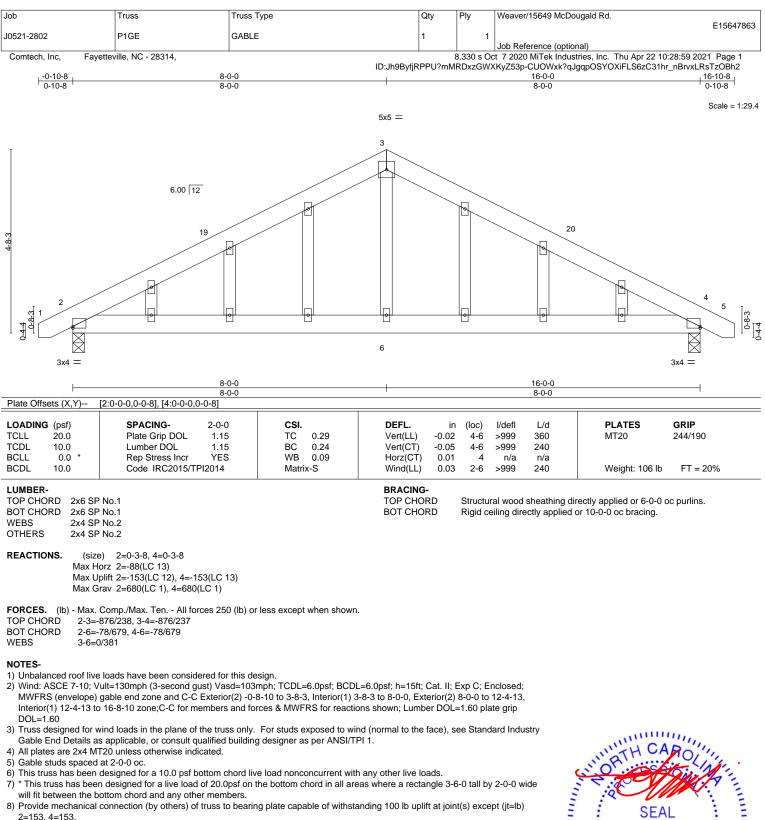
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F	8-0-0			16-0-0	
Plate Offsets (X,Y)	8-0-0 [2:0-2-8,0-2-0], [4:0-2-8,0-2-0]			8-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.29 BC 0.24 WB 0.13 Matrix-S	DEFL. in Vert(LL) 0.06 Vert(CT) -0.05 Horz(CT) 0.01	4-6 >999 240	PLATES GRIP MT20 244/190 Weight: 90 lb FT = 20%
3OT CHORD 2x6 S VEBS 2x4 S REACTIONS. (siz Max I Max I	P No.1 P No.1 P No.2 ze) 2=0-3-8, 4=0-3-8 Horz 2=-57(LC 10) Uplift 2=-142(LC 9), 4=-142(LC 8) Grav 2=680(LC 1), 4=680(LC 1)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins. or 9-5-12 oc bracing.
TOP CHORD 2-3= BOT CHORD 2-6=	.: Comp./Max. Ten All forces 250 (lb) o =-876/845, 3-4=-876/843 =-619/679, 4-6=-619/679 =-478/381	or less except when shown.			
2) Wind: ASCE 7-10; MWFRS (envelope	ve loads have been considered for this d Vult=130mph (3-second gust) Vasd=10) and C-C Exterior(2) -0-8-10 to 38-3, li b loft and right avgrad. C for mombo	Bmph; TCDL=6.0psf; BCDL= nterior(1) 3-8-3 to 8-0-0, Exte	erior(2) 8-0-0 to 12-4-13	3, Interior(1) 12-4-13 to	

MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 8-0-0, Exterior(2) 8-0-0 to 12-4-13, Interior(1) 12-4-13 16-8-10 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60

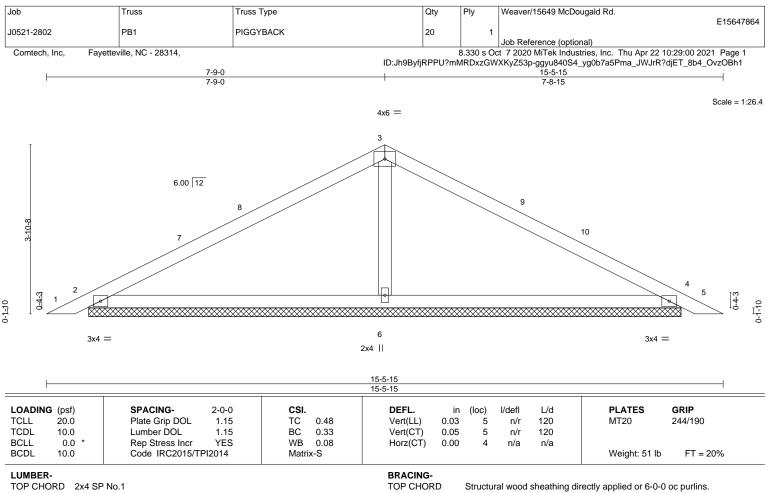
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=142, 4=142.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 2=13-6-13, 4=13-6-13, 6=13-6-13 Max Horz 2=-48(LC 10)

Max Uplift 2=-48(LC + 10)Max Uplift 2=-42(LC + 12), 4=-51(LC + 13)

Max Grav 2=291(LC 23), 4=291(LC 24), 6=586(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-6=-379/187

NOTES-

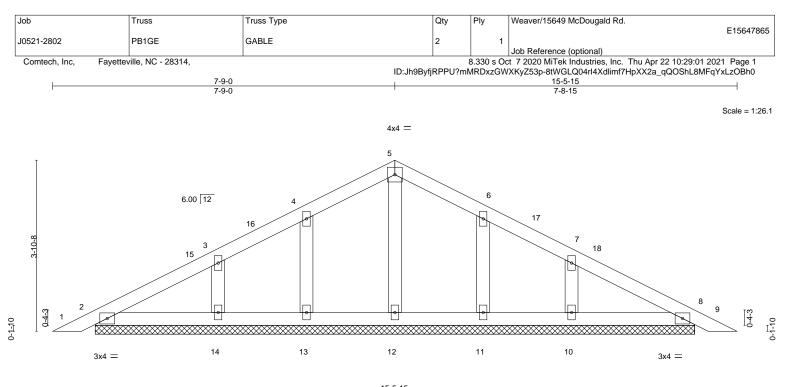
1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-15 to 4-8-11, Interior(1) 4-8-11 to 7-9-0, Exterior(2) 7-9-0 to 12-1-12, Interior(1) 12-1-12 to 15-2-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

15-5-15 15-5-15

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	n (loc) l/defl L/c	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) 0.0) 8 n/r 120) MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) 0.0) 9 n/r 120)
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.0) 8 n/a n/a	1
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 61 lb FT = 20%
LUMBER-			BRACING-		·
TOP CHORD 2x4 SP	No.1		TOP CHORD	Structural wood sheat	hing directly applied or 6-0-0 oc purlins.
BOT CHORD 2x4 SP	No.1		BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc bracing.
OTHERS 2x4 SP	No.2			0 0 ,	

REACTIONS. All bearings 13-6-13.

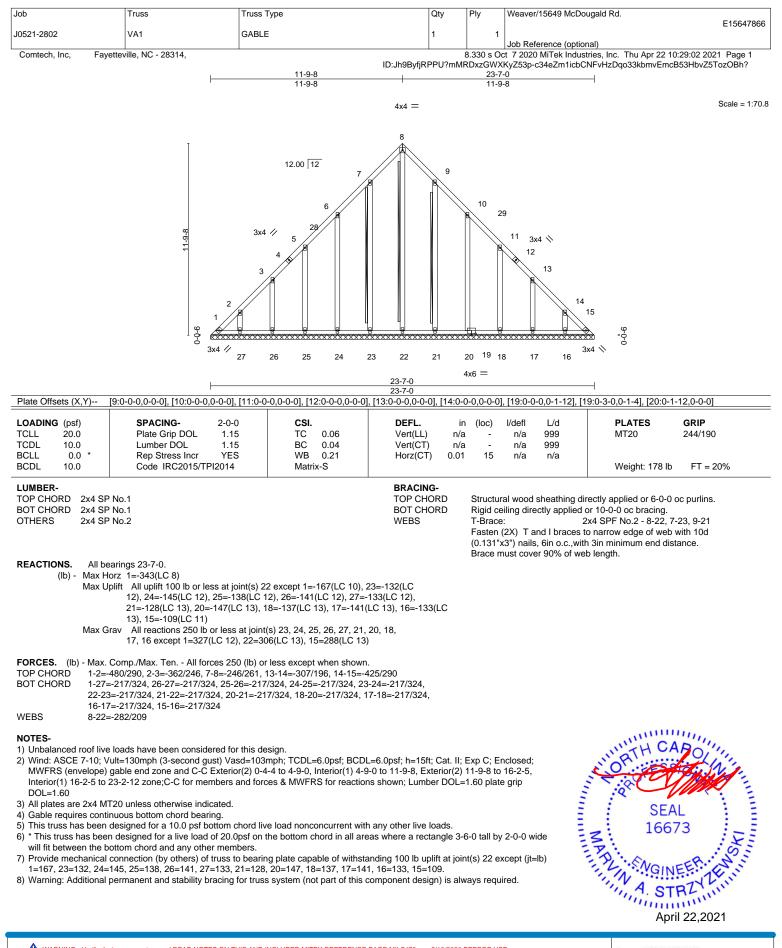
(lb) - Max Horz 2=75(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

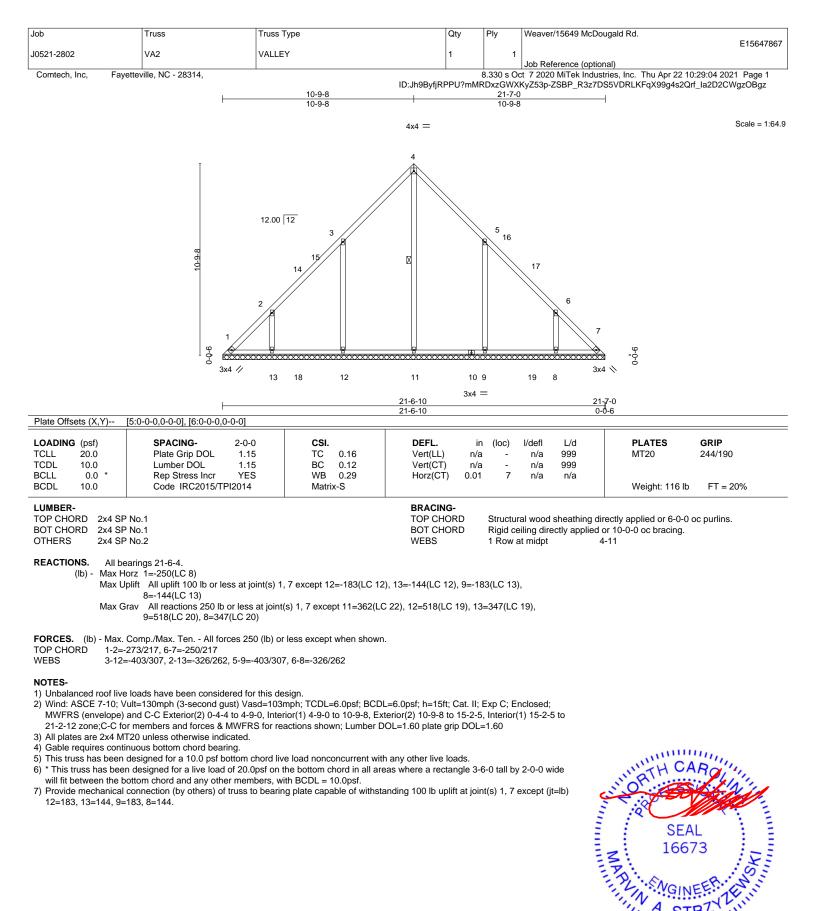
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-3-15 to 4-8-11, Exterior(2) 4-8-11 to 7-9-0, Corner(3) 7-9-0 to 12-1-12, Exterior(2) 12-1-12 to 15-2-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

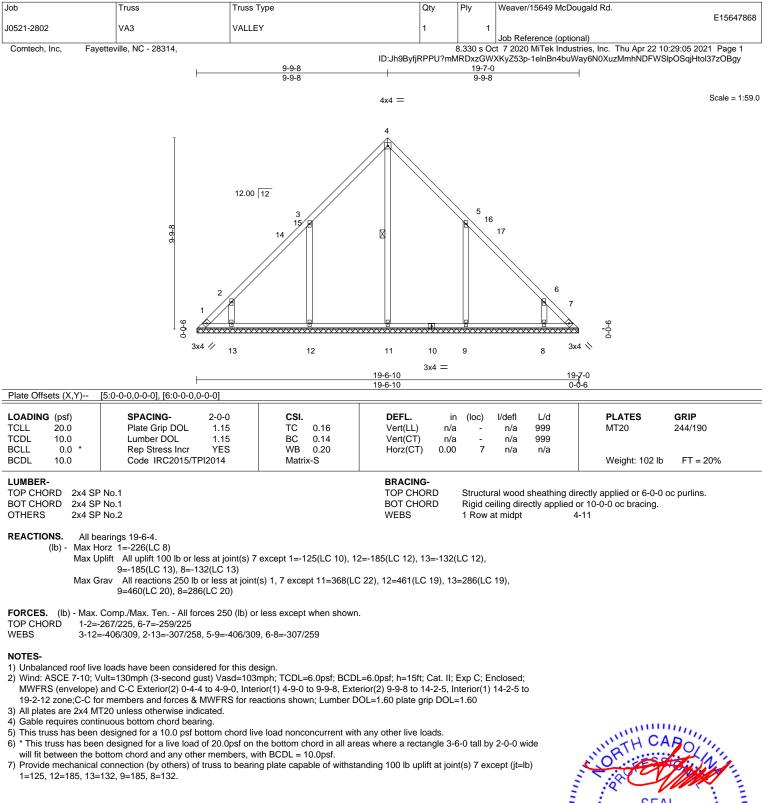

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

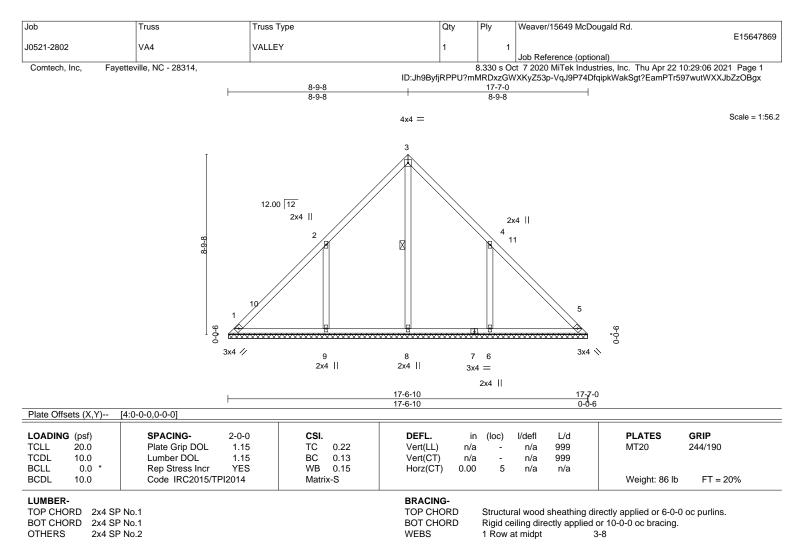


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



April 22,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 17-6-4.

(lb) - Max Horz 1=-202(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-213(LC 12), 6=-213(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=345(LC 22), 9=523(LC 19), 6=522(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-457/338, 4-6=-457/338

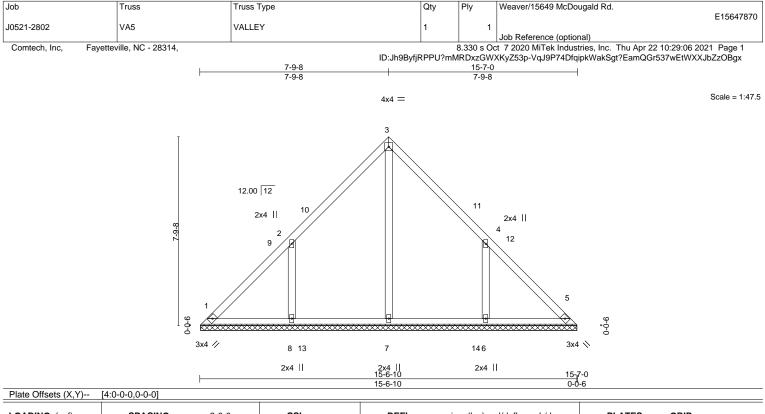
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-8, Interior(1) 4-9-8 to 8-9-8, Exterior(2) 8-9-8 to 13-2-5, Interior(1) 13-2-5 to 17-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 On the transitional devices of the transition of the transitio

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=213, 6=213.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

LUMBER- TOP CHORD 2x4 SP	No 1		BRACING- TOP CHOR	П	Structu	ral wood	sheathing di	rectly applied or 6-0-0) oc purlins
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.16 BC 0.14 WB 0.13 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%

BOT CHORD 2x4 SP No.1

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-6-4.

2x4 SP No.2

(lb) -Max Horz 1=-178(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-186(LC 12), 6=-186(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=348(LC 22), 8=449(LC 19), 6=449(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-403/309, 4-6=-403/309

NOTES-

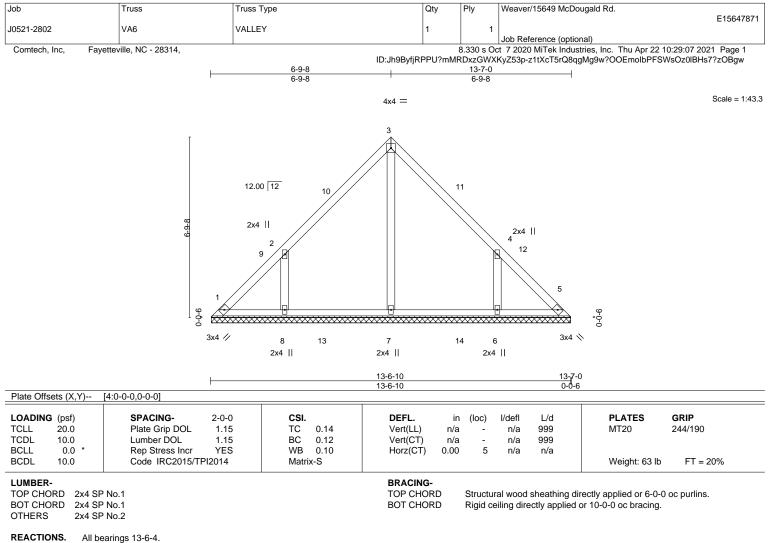
OTHERS

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 7-9-8, Exterior(2) 7-9-8 to 12-2-5, Interior(1) 12-2-5 to 15-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=186, 6=186.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

(lb) - Max Horz 1=-154(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-166(LC 12), 6=-166(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=335(LC 19), 8=379(LC 19), 6=379(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

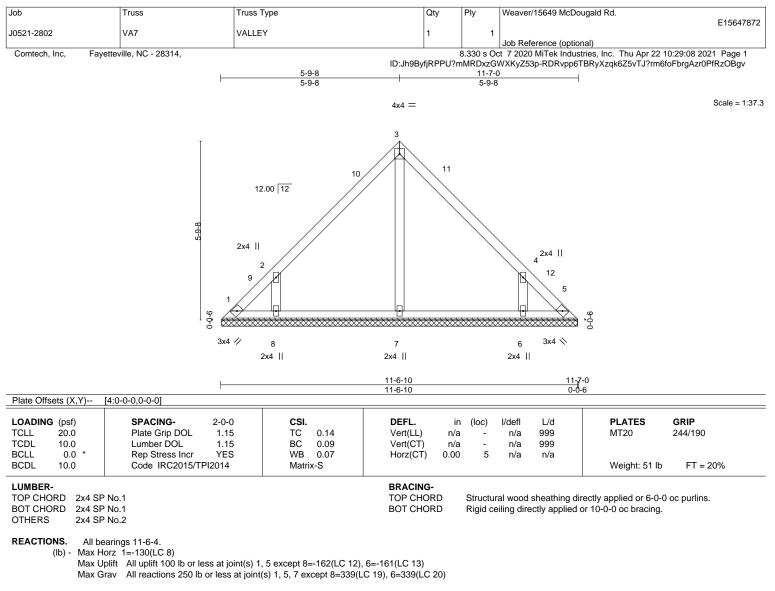
WEBS 2-8=-364/291, 4-6=-364/292

NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-9-8, Exterior(2) 6-9-8 to 11-2-5, Interior(1) 11-2-5 to 13-2-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=166, 6=166.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-361/303, 4-6=-361/303

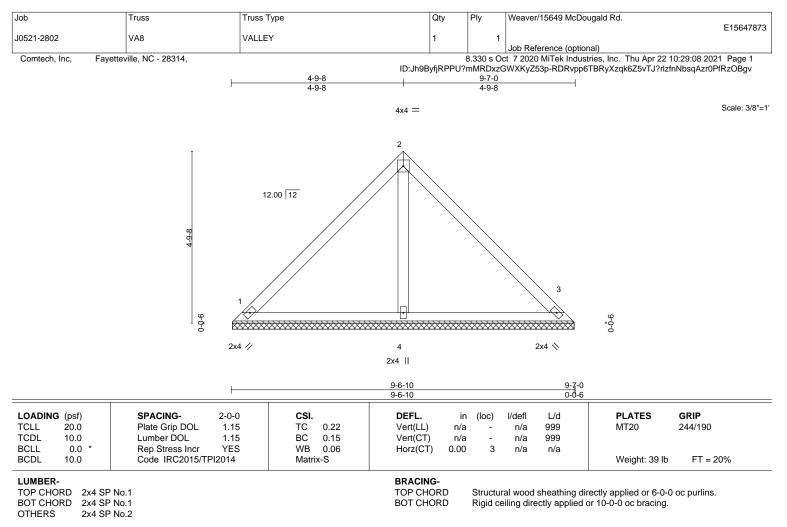
NOTES-

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-9-8, Exterior(2) 5-9-8 to 10-2-5, Interior(1) 10-2-5 to 11-2-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=162, 6=161.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (size) 1=9-6-4, 3=9-6-4, 4=9-6-4

Max Horz 1=-106(LC 8)

Max Uplift 1=-26(LC 13), 3=-26(LC 13)

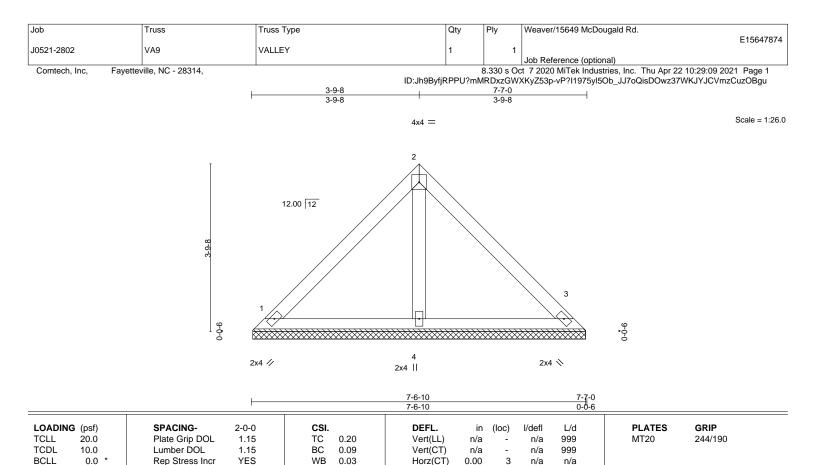
Max Grav 1=201(LC 1), 3=201(LC 1), 4=308(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-
TOP CHORD

BCDL

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

2x4 SP No.1

10.0

REACTIONS. (size) 1=7-6-4, 3=7-6-4, 4=7-6-4

Max Horz 1=82(LC 9)

Max Uplift 1=-30(LC 13), 3=-30(LC 13)

Max Grav 1=168(LC 1), 3=168(LC 1), 4=215(LC 1)

Code IRC2015/TPI2014

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

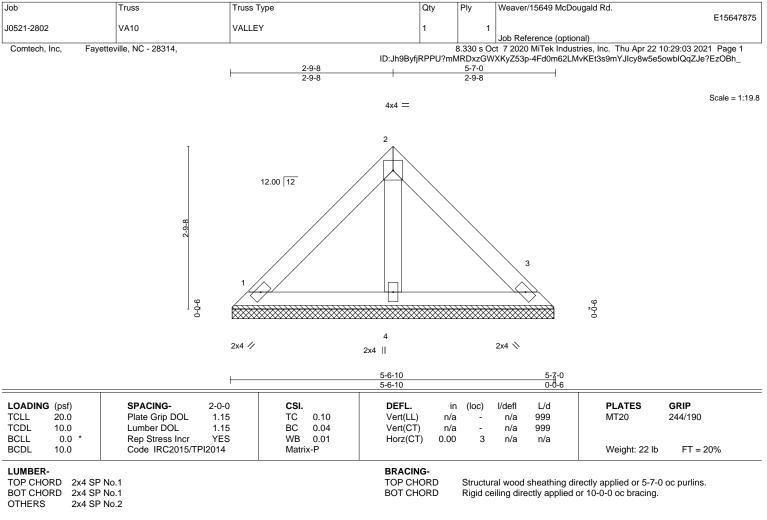
Matrix-P

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Weight: 30 lb


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=5-6-4, 3=5-6-4, 4=5-6-4

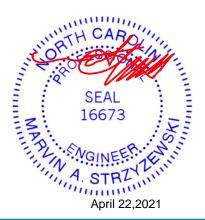
Max Horz 1=-58(LC 8)

Max Uplift 1=-21(LC 13), 3=-21(LC 13)

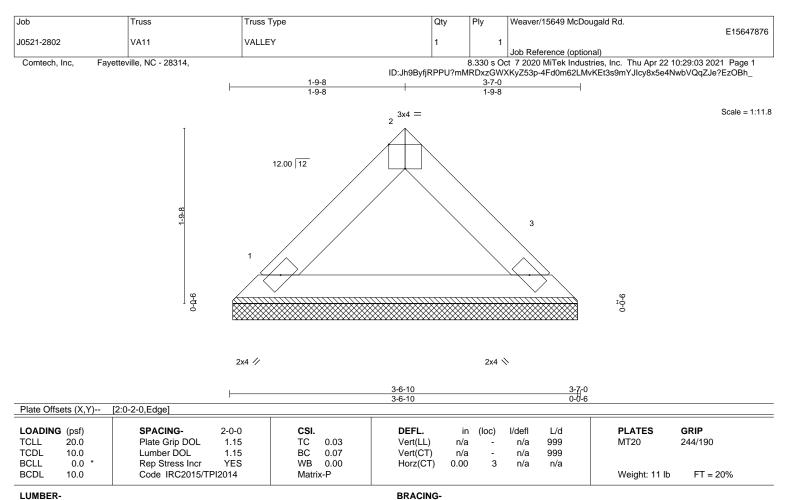
Max Grav 1=119(LC 1), 3=119(LC 1), 4=153(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS.

(size) 1=3-6-4, 3=3-6-4 Max Horz 1=35(LC 11) Max Uplift 1=-4(LC 12), 3=-4(LC 12)

Max Grav 1=115(LC 1), 3=115(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

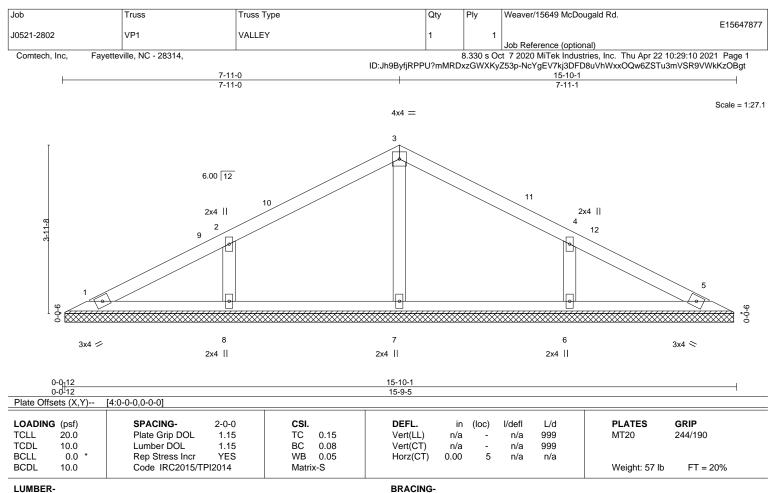
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



Structural wood sheathing directly applied or 3-7-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-		BRA
TOP CHORD	2x4 SP No.1	TOF
BOT CHORD	2x4 SP No.1	BOT
OTHERS	2x4 SP No.2	

P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 15-8-9.

(lb) -Max Horz 1=48(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=272(LC 1), 8=344(LC 23), 6=344(LC 24)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. FORCES.

WEBS 2-8=-260/202, 4-6=-260/202

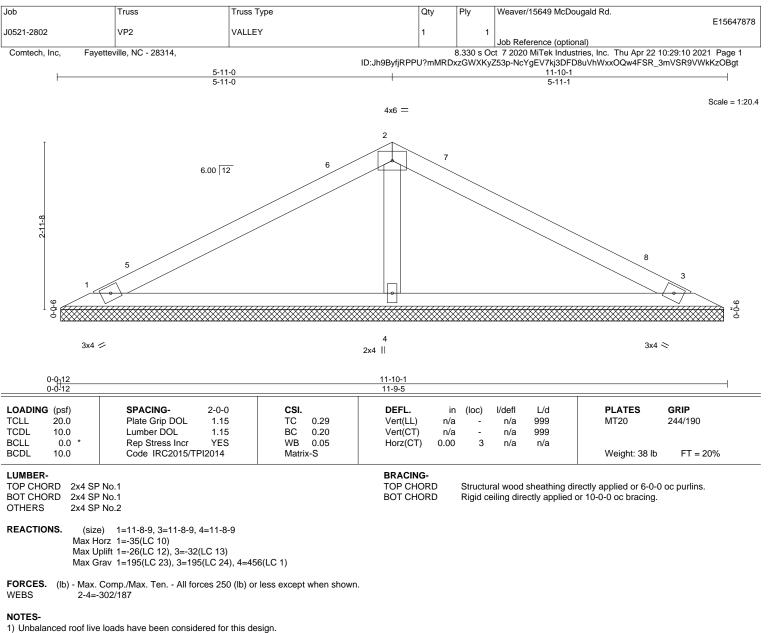
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-13 to 5-0-10, Interior(1) 5-0-10 to 7-11-0, Exterior(2) 7-11-0 to 12-3-13, Interior(1) 12-3-13 to 15-2-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

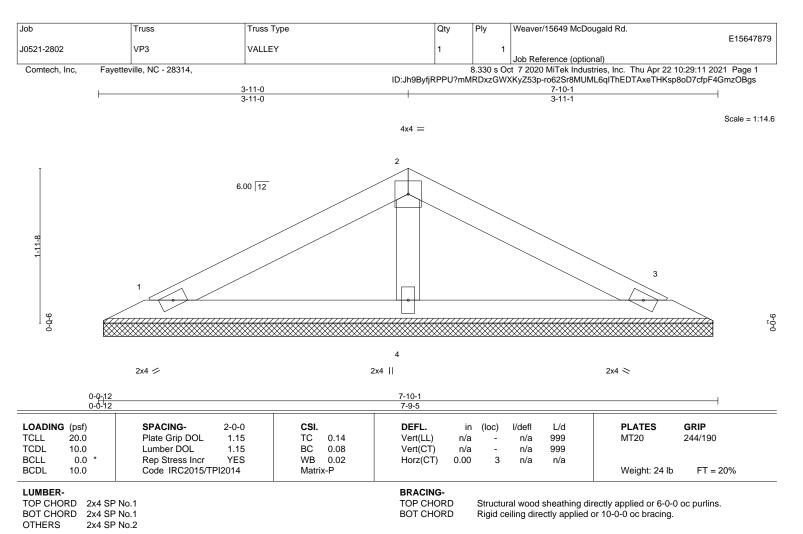
6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-13 to 5-0-10, Interior(1) 5-0-10 to 5-11-0, Exterior(2) 5-11-0 to 10-3-13, Interior(1) 10-3-13 to 11-2-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=7-8-9, 3=7-8-9, 4=7-8

NS. (size) 1=7-8-9, 3=7-8-9, 4=7-8-9 Max Horz 1=-21(LC 8)

Max Uplift 1=-21(LC - 3)Max Uplift 1=-21(LC - 12), 3=-25(LC - 13)

Max Grav 1=133(LC 1), 3=133(LC 1), 4=256(LC 1)

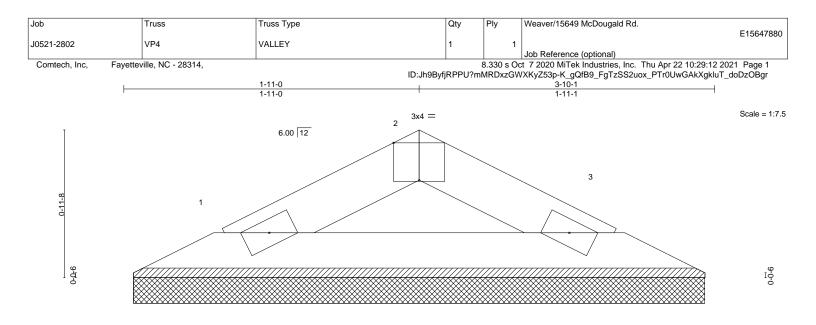
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 ⋍

2x4 📚

TCLL 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) n/a - n/a 999 MT20 244 TCDL 10.0 Lumber DOL 1.15 BC 0.06 Vert(CT) n/a - n/a 999 MT20 244							1		т		2:0-2-0,Edge]	ets (X,Y) [2	Plate Offs
TCDL 10.0 Lumber DOL 1.15 BC 0.06 Vert(CT) n/a - n/a 999	RIP	PLATES	L/d	/defl	(loc)	in	DEFL.		CSI.	2-0-0	SPACING-	(psf)	LOADING
	44/190	MT20	999	n/a	-	n/a	Vert(LL)	0.03	TC	1.15	Plate Grip DOL	20.0	TCLL
			999	n/a	-	n/a	Vert(CT)	0.06	BC	1.15	Lumber DOL	10.0	TCDL
BCLL 0.0 * Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a			n/a	n/a	3	0.00	Horz(CT)	0.00	WB	YES	Rep Stress Incr	0.0 *	BCLL
BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 10 lb I	FT = 20%	Weight: 10 lb						x-P	Matrix	기2014	Code IRC2015/TF	10.0	BCDL

REACTIONS. (size) 1=3-8-9, 3=3-8-9

Max Horz 1=8(LC 9) Max Uplift 1=-6(LC 12), 3=-6(LC 13)

Max Grav 1=101(LC 1), 3=101(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

