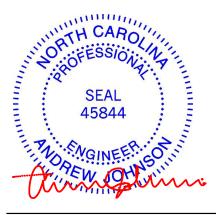


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 21020044-01 160 Crossings at ACC-Kessler A-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

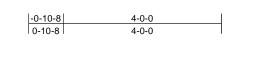
Pages or sheets covered by this seal: I45094141 thru I45094165

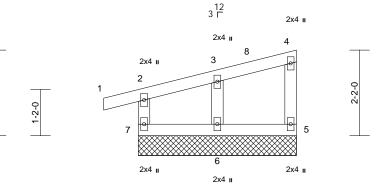
My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

Johnson, Andrew

March 8,2021


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T3GE	Monopitch Supported Gable	1	1	Job Reference (optional)	145094141

2-2-0

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:33 ID:xgAp6L5?n01tuWo8jgtJIVzEbO5-Mock Me

Page: 1

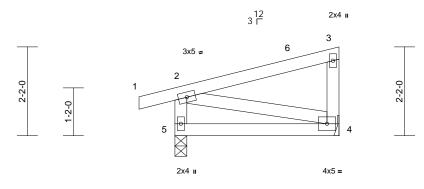
4-0-0

Scale = 1:29.1

Scale = 1:29.1													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-R	0.14 0.06 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103n Cat. II; Exp Exterior (2) vertical left forces & MI DOL=1.60 2) Truss desig only. For s see Standa	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she: 4-0-0 oc purlins, exit Rigid ceiling directly bracing. (size) 5=4-0-0, 6 Max Horiz 7=58 (LC Max Uplift 5=-1 (LC - (LC 11) Max Grav 5=63 (LC (LC 2) (lb) - Maximum Com Tension 2-7=-124/102, 1-2=0 3-8=-35/27, 4-8=-30, 6-7=-37/36, 5-6=-37, 3-6=-112/126 E 7-10; Vult=130mph nph; TCDL=6.0psf; BK B; Enclosed; MWFR3 zone; cantilever left a zone; cantilever left a and right exposed; C- WFRS for reactions sl plate grip DOL=1.33 med for wind loads in tuds exposed to wind urd Industry Gable Enc qualified building design	cept end verticals. applied or 6-0-0 oc 5=4-0-0, 7=4-0-0 12) 15), 6=-12 (LC 15), 7 2), 6=154 (LC 2), 7= pression/Maximum /19, 2-3=-60/40, /30, 4-5=-48/42 /36 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicab	4) d or 5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	DOL=1.15 P snow); Pf=11 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Truss to be f braced agair Gable studs * This truss f on the bottor 3-06-00 tall b chord and ar 1) One RT&A L truss to bear		; Pg=20.0 p snow: Lum II; Exp B; F we been cor ed for greatu s flat roof ke vith other li bottom chor om one fac ment (i.e. d) oc. ed for a liv eas where will fit betw rs. recommen u UPLIFT at	sf (ground ber DOL=1.1 ully Exp.; usidered for th er of min roof bad of 13.9 p: re loads. d bearing. e or securely iagonal web) e load of 20.0 a rectangle veen the botto ded to conne jt(s) 7, 5, an	15 his f live sf on / Dpsf om ect d 6.		Contraction		SEA 4584 VORTH CA SEA 4584	L 44 EER. SOLUTION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




M March 8,2021

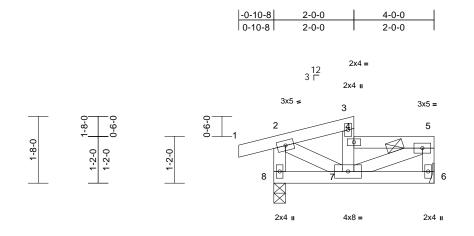
Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	ТЗ	Monopitch	6	1	Job Reference (optional)	l45094142

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:32 ID:xgAp6L5?n01tuWo8jgtJIVzEbO5-Mock Me

Page: 1

4-0-0

Scale = 1:28.1													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.11 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.01 0.00	(loc) - 4-5 4	l/defl n/a >999 n/a	L/d 999 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
	4-0-0 oc purlins, ex Rigid ceiling directly bracing.	applied or 10-0-0 oc anical, 5=0-3-8 12) 15), 5=-35 (LC 11)	8)	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4. One RT8A U truss to bear	has been designer in chord in all area by 2-00-00 wide w hy other members er(s) for truss to tr hanical connectio a capable of withs ISP connectors re ing walls due to U s for uplift only and Standard	as where rill fit betv russ conr n (by oth tanding 7 commen IPLIFT at	a rectangle veen the bott nections. ers) of truss 7 lb uplift at jo uded to conne t jt(s) 5. This	om to sint ect					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD BOT CHORD WEBS	1-2=0/19, 2-6=-56/3 3-4=-103/92, 2-5=-1 4-5=-132/92 2-4=-68/112												
NOTES 1) Wind: ASC Vasd=1030 Cat. II; Exp Exterior (2) vertical left forces & M	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR) zone; cantilever left : and right exposed;C- WFRS for reactions s plate grip DOL=1.33	CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; el- C for members and								Ċ	ti	NITH CA	ROKINI


- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	Τ4	Half Hip	5	1	Job Reference (optional)	I45094143

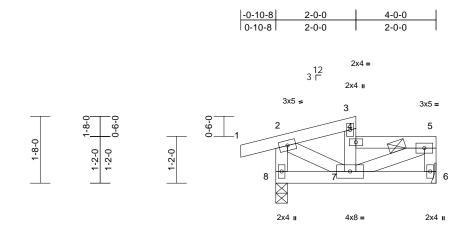
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:33 ID:xgAp6L5?n01tuWo8jgtJIVzEbO5-Mock Me

1-10-4	4-0-0
1-10-4	2-1-12

Scale = 1:28.8

Scale = 1:28.8													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MSH	0.14 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 4-7 Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 8=45 (LC Max Uplift 6=-11 (LC Max Grav 6=152 (LC (lb) - Maximum Com Tension 1-2=0/19, 2-3=-108/ 3-4=-31/25, 4-5=-13 2-8=-212/131 7-8=-90/71, 6-7=-25 5-7=-95/128, 2-7=-3	cept end verticals, a 7, 4-5. 7 applied or 6-0-0 oc anical, 8=0-3-8 12) C 12), 8=-31 (LC 11) C 34), 8=235 (LC 35 hpression/Maximum 145, 4-7=-73/71, 18/90, 5-6=-128/91, 5/30	ind 8 9 1 5) 1	 load of 12.0 overhangs r Provide ade * This truss on the botto 3-06-00 tall chord and a Refer to gird Provide med bearing plat 6. One RT7A I truss to bea connection i forces. Graphical plat 		lat roof I o other Ii prevent I for a liv s where ill fit betw uss conin (by oth anding 1 commer PLIFT a I does n	bad of 13.9 p ve loads. water pondin ve load of 20. a rectangle veen the bott nections. ers) of truss 1 lb uplift at tided to connet t jt(s) 8. This ot consider la bt depict the	esf on g. Opsf to joint ect ateral					
this design 2) Wind: ASC	ed roof live loads have n. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B	n (3-second gust)								\int		ORTH CA	ROLIN

- Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -0-10-8 to 3-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.


Page: 1

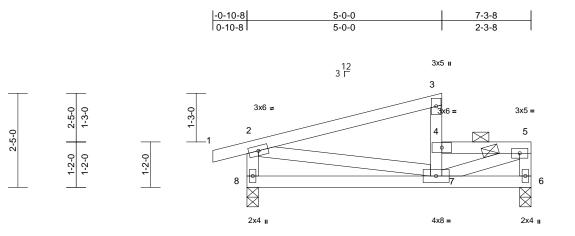
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T4GR	Half Hip Girder	1	2	Job Reference (optional)	145094144

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:34 ID:PtkCJg6dYK9kVgNLGOOYIjzEbO4-Mock Me

Page: 1

1-10-4	4-0-0
1-10-4	2-1-12


Scale = 1:28.8

Scale = 1:28.8													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.01 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20	GRIP 244/190
BCDL	10.0	-										Weight: 44 lb	FT = 20%
4-0-0 2-0-0 BOT CHORD Rigid Max Ho Max Up Max Gr. FORCES (b) - M Tensic TOP CHORD 1-2=0 3-4=-3 2-8=-2 BOT CHORD 7-8=-3 WEBS 5-7=-1 NOTES 1) 2-ply truss to be co (0.131"x3") nails a Top chords conner oc. Bottom chords cor 0-9-0 oc. Web connected as 2) All loads are consi except if noted as CASE(S) section.	 No.2 No.3 ural wood she oc purlins, expoc purlins; 4-7 ceiling directly g. 6= Mecha 8=45 (LC ilif 6=-11 (LC av 6=152 (LC Aaximum Comm 19, 2-3=-108/ 11/13, 4-5=-13 11/240 16/19, 6-7=-7/2 4/125, 2-7=0/ onnected toge s follows: axet as follows: anected as follows: balance and an and a constraint of the analytic only loads andicated. 	applied or 6-0-0 oc nical, 8=0-3-8 8) C 30), 8=-31 (LC 7) C 30), 8=235 (LC 31) ipression/Maximum 0, 4-7=-73/22, 8/9, 5-6=-128/20, 26 102 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x4 - 1 row at 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	nd 6) 7) 9) 10 11 12 0 13 AD LC	Vasd=103mp Cat. II; Exp E left and right exposed; Lui TCLL: ASCE DOL=1.15 P snow); Pf=18 Plate DOL=1 Ct=1.10, Lu= Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded * This truss to a chord and ar) Refer to gird) Provide mec bearing plate 6.) One RT7A U truss to bear sforces.) Graphical pu	snow loads have b so been designed for portion of the second second second pass for 2.00 times file on-concurrent with quate drainage to p has been designed in chord in all areas by 2-00-00 wide will yo other members. er(s) for truss to tru- hanical connection capable of withsta SP connectors rec- ing walls due to UFs for uplift only and rlin representation ation of the purlin a d.	BCDL=6 RS (env tical left ate grip (roof liv g=20.0 p ow: Lun Exp B; F been con or great at roof liv for a liv for a liv s where l fit betw uss conn (by oth anding 1 commen PLIFT at does no does no	.0psf; h=25ft; elope); cantile and right DOL=1.33 e load: Lumbiosf (ground iber DOL=1.1 'ully Exp.; asidered for the er of min roof bad of 13.9 ps re loads. water ponding e load of 20.0 a rectangle veen the botto nections. ers) of truss to 1 lb uplift at jo ded to conner jt(s) 8. This ot consider lat bt depict the s	er 5 live if on psf om bint ct eral		2 contracts		TEW J	EEP. ON

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	Т5	Half Hip	5	1	Job Reference (optional)	145094145

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:34 ID:PtkCJg6dYK9kVgNLGOOYIjzEbO4-Mock Me

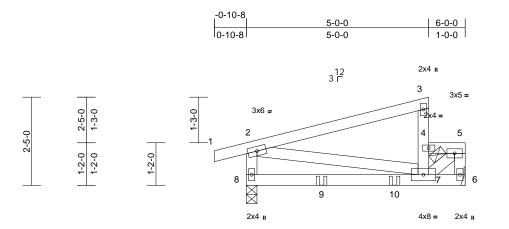
4-10-4	7-3-8
4-10-4	2-5-4

Scale	- 1	1.20	6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.17 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	cept end verticals, ai 0-0 max.): 4-7, 4-5.	d or nd	 load of 12.0 overhangs n Provide ader * This truss I on the bottor 3-06-00 tall I chord and ar 	as been designed psf or 2.00 times on-concurrent wit quate drainage to has been designe n chord in all are: by 2-00-00 wide w hy other members SP connectors re	flat roof le th other line prevent ed for a live as where vill fit betw s.	bad of 13.9 p ve loads. water ponding load of 20.1 a rectangle veen the bott	esf on g. Opsf com					
	Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=72 (LC Max Uplift 6=-9 (LC Max Grav 6=276 (LC	3=0-3-8 12) 12), 8=-34 (LC 11)		truss to bear This connec lateral forces) Graphical pu	ing walls due to L tion is for uplift on s. Irlin representatio ation of the purlin	JPLIFT at	t jt(s) 6 and 8 bes not consider t depict the s	der					
FORCES	(lb) - Maximum Com Tension 1-2=0/19, 2-3=-284/9 3-4=-105/82, 4-5=-4	93, 4-7=-63/101,		LOAD CASE(S)									
BOT CHORD WEBS NOTES	2-8=-333/183 7-8=-214/197, 6-7=- 5-7=-186/398, 2-7=0												
	ed roof live loads have n.	been considered for										TH CA	RO

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) -0-10-8 to 7-1-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.

SEAL 45844 March 8,2021


Page: 1

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	Т6	Half Hip Girder	1	1	Job Reference (optional)	145094146

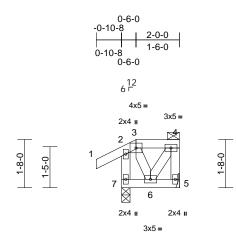
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:35 ID:ebmbCIDHQ5IT52Z3In3f9czEbNx-Mock Me

Page: 1

NAILED NAILED

Scale = 1:31.6

Scale = 1:31.6													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI20	CSI TC BC WB Matrix-MSH	0.55 0.28 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.04 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design (2) Wind: ASG Vasd=103 Cat. II; Ex	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins: 4-7 Rigid ceiling directly bracing. (size) 6= Mecha Max Horiz 8=72 (LC Max Uplift 6=-55 (LC Max Uplift 6=-55 (LC Max Grav 6=265 (LC (lb) - Maximum Com Tension 1-2=0/19, 2-3=-226/ 3-4=-117/45, 4-5=-2 2-8=-308/72 8-9=-82/160, 9-10=- 6-7=-8/19 5-7=-72/305, 2-7=0/ ed roof live loads have	applied or 10-0-0 oc anical, 8=0-3-8 8) 2 11), 8=-69 (LC 7) 2 29), 8=396 (LC 31) ipression/Maximum 39, 4-7=-51/66, 36/62, 5-6=-306/69, 82/160, 7-10=-82/160 75 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope); cantile	load a overh 6) Provi 7) * This d or on the d or 3-06- chorc 8) Refer 9) Provi beari 6. 10) One I truss conne force: 11) Grapl or the botto 12) "NAIL 0, (0.14 13) In the of the LOAD C/ 1) Dea Incr Unif	russ has been designed of 12.0 psf or 2.00 times angs non-concurrent wit de adequate drainage to the truss has been designe a bottom chord in all area 00 tall by 2-00-00 wide w and any other members to girder(s) for truss to t de mechanical connection og plate capable of withs RT7A USP connectors re to bearing walls due to L action is for uplift only an s. nical purlin representatio to crientation of the purlin m chord. ED" indicates 3-10d (0.1 8"x3.25") toe-nails per N LOAD CASE(S) section truss are noted as front ASE(S) Standard d + Snow (balanced): Lu ease=1.15 orm Loads (lb/ft) ert: 1-2=-48, 2-3=-48, 4- centrated Loads (lb) ert: 9=-61 (F), 10=-33 (F	flat roof I th other li p prevent ed for a liv as where will fit betv s. truss com on (by oth standing § ecommer JPLIFT a ad does n along the 148"x3") (10S guidl n, loads a i (F) or ba umber Inc 5=-58, 6-	oad of 13.9 p ve loads. water pondin ve load of 20. a rectangle ween the bott nections. nections. nections. s55 lb uplift at tided to connet tit(s) 8. This ot consider la tot depict the e top and/or or 3-12d nes. pplied to the ick (B).	esf on g. Opsf to joint ect ateral size face		Ĺ	2 mil	WHITH CA	ROLIN	
3) TCLL: AS DOL=1.15 snow); Pf= Plate DOL Ct=1.10, L	Lumber DOL=1.60 pla CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pg: =18.9 psf (flat roof snov L=1.15); Category II; E: Lu=50-0-0 ed snow loads have be	roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.;	5		,				1100Y	N. M. M.		•	WIIIIIII .
											Mar	ch 8,2021	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

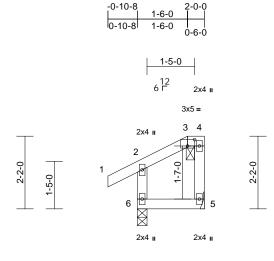
Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	Т7	Half Hip	1	1	Job Reference (optional)	145094147

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:35 ID:t3IaX07GJeHb7qyXq5wnqwzEbO3-Mock Me

Page: 1

1-0-0 2-0-0

Scale = 1:39.8


Scale = 1:39.8														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	12014	CSI TC BC WB Matrix-MSH	0.10 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) right expos for membe Lumber DC 2) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL= Ct=1.10, Lt	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-0-0 oc purlins, exc 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=47 (LC Max Grav 5=78 (LC (lb) - Maximum Com Tension 1-2=0/39, 2-3=-35/36 4-5=-65/79, 2-7=-16 6-7=-71/59, 5-6=-23, 3-6=-21/48, 4-6=-65, SE 7-10; Vult=130mph mph; TCDL=6.0psf; BG 0; B; Enclosed; MWFR 0; 0-10-8 to 1-10-4 zor sed ; end vertical left a rs and forces & MWFR 0, 2=1.60 plate grip DO 2; 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= 18.9 psf (flat roof snos =1.15); Category II; Ex	cept end verticals, a applied or 6-0-0 oc nical, 7=0-3-8 12) 12), 7=-16 (LC 11) 34), 7=171 (LC 35) pression/Maximum 6, 3-4=-12/20, 7/118 /26 /55 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- ne; cantilever left an- nd right exposed;C- RS for reactions sho L=1.33 roof live load: Lumb- =20.0 psf (ground w: Lumber DOL=1.1 cp B; Fully Exp.;	6) * T on 3-(ch bed or 7) Re 5. 9) Or tru co for 10) Gr bo LOAD C d C c wm; er 5	This truss h the botton 06-00 tall b ord and an after to girde ovide mech aring plate the RT8A U uss to bearin nnection is rces. aphical pu the oriental ttom chord	uate drainage to p has been designed in chord in all areas y 2-00-00 wide will yo other members. er(s) for truss to tru- hanical connection capable of withsta SP connectors rec- ing walls due to UF for uplift only and rlin representation tition of the purlin a Standard	for a live s where Il fit betw uss conr (by oth anding 2 commen PLIFT at does no does no	e load of 20.0 a rectangle veen the botto nections. ers) of truss t 2 lb uplift at ju ded to conne- jt(s) 7. This ot consider lat ot depict the s	opsf om oint ct teral				ORTH CA	ROJU	3. Manunun
load of 12.0	has been designed for 0 psf or 2.00 times flat non-concurrent with c	t roof load of 13.9 ps										Mare	OHIN, ch 8,2021	

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	Т8	Half Hip	1	1	Job Reference (optional)	145094148

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:35 ID:t3IaX07GJeHb7qyXq5wnqwzEbO3-Mock Me

Page: 1

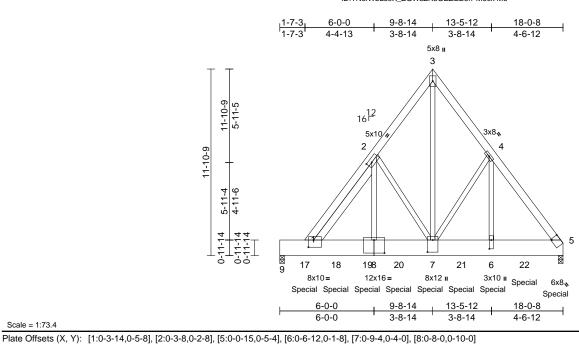
2-0-0

Scale = 1:34.4

Plate Offsets (X, Y): [3:0-2-8,0-2-4]

	(7, 1). [0:0 2 0,0 2 1]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 18.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.15 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	5/TPI2014	Matrix-MR							Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3	cept end verticals, a		load of 12.0 overhangs n Provide ade * This truss I on the botton 3-06-00 tall I	is been designed f psf or 2.00 times f on-concurrent with quate drainage to has been designed n chord in all area by 2-00-00 wide wi y other members.	lat roof l n other li prevent d for a liv s where ill fit betv	bad of 13.9 p ve loads. water pondin ve load of 20. a rectangle	osf on g. Opsf					
BOT CHORD			8) 9)	Provide med	er(s) for truss to tru hanical connection	n (by oth	ers) of truss						
REACTIONS	Max Horiz 6=63 (LC Max Uplift 5=-33 (LC Max Grav 5=55 (LC	2 12), 6=-11 (LC 11) 38), 6=199 (LC 35)	10	5.)) One RT8A L truss to bear	e capable of withst ISP connectors rea ing walls due to U s for uplift only and	commer PLIFT a	ded to conne jt(s) 6. This	ect					
FORCES	(lb) - Maximum Com Tension 1-2=0/39, 2-3=-50/3		11		rlin representation ation of the purlin a			size					
BOT CHORD	4-5=-56/78, 2-6=-17		L	bottom chore DAD CASE(S)	i	along th							
NOTES			-		etandara								
this design 2) Wind: AS0 Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Br p B; Enclosed; MWFR 2) zone; cantilever left a ft and right exposed;C- WWFRS for reactions s 0 plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e ·C for members and	с							C	tio	NITH CA	• •••

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliate A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

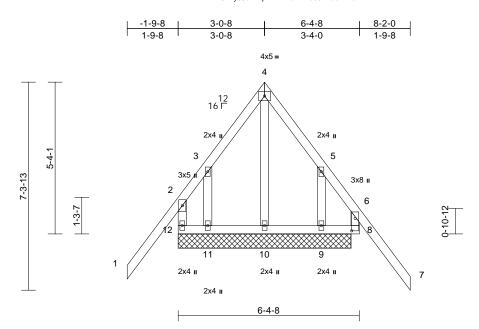
Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T2GR	Roof Special Girder	1	2	Job Reference (optional)	l45094149

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:31 ID:TNefWbLs0X_ZGWsZK6GEZizEerr-Mock Me

Page: 1

Scale = 1:73.4

	7, 1). [1.0-3-14,0-3-0]	j, [2.0-3-6,0-2-6], [5.0	5-0-15,0-0	-4], [0.0-0-12,0	-1-0], [7.0-9-4,0-4	-0], [0.0-	8-0,0-10-0]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.41 0.71 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.32 0.01	(loc) 7-8 7-8 5	l/defl >999 >658 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 399 lb	GRIP 137/130 FT = 20%	
	1.5 X 11.875 Kerto-S 2x4 SP No.2 *Excep Structural wood shee 5-5-4 oc purlins. Rigid ceiling directly bracing. (size) 5=0-3-8, 9 Max Horiz 9=198 (LC Max Grav 5=8411 (L	t* 7-3:2x4 SP No.1 athing directly applie applied or 10-0-0 oc 0=0-3-8 C 6) .C 3), 9=7493 (LC 3)	6)	Vasd=103mj Cat. II; Exp E left and right exposed; Lu TCLL: ASCE DOL=1.15 P snow); Pf=12 Plate DOL=1 Ct=1.10 Provide adec * This truss f	7-10; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF exposed ; end ver mber DOL=1.60 pl 5 7-10; Pr=20.0 psf late DOL=1.15); P 3.9 psf (flat roof sn 1.15); Category II; I quate drainage to p has been designed m chord in all area:	BCDL=6 RS (env rtical left late grip f (roof liv g=20.0 ow: Lun Exp B; F prevent	5.0psf; h=25ft elope); cantil and right DOL=1.33 re load: Lumt bosf (ground bber DOL=1.' jully Exp.; water pondin re load of 20.	ever ber 15 g.						
FORCES	(lb) - Maximum Com	pression/Maximum		3-06-00 tall b	oy 2-00-00 wide wi	ll fit betv		om						
TOP CHORD	Tension 1-2=-7104/0, 2-3=-5- 4-5=-6926/0	401/0, 3-4=-5403/0,	8)	Hanger(s) or	ny other members. other connection ficient to support c	device(s		1651						
BOT CHORD		=0/4173, 8-20=0/417 0/4092, 6-21=0/4092 0/4092 96/0, 4-7=-1546/0,	3,	b down at 1 at 5-7-4, 16 1641 lb down 1641 lb down bottom chore	41 lb down at 7-7- n at 11-7-4, 1641 n at 15-7-4, and 1 d. The design/sele the responsibility o	n at 3-7 4, 1641 lb down 656 lb d ection of	-4, 1641 lb de lb down at 9 at 13-7-4, a own at 17-7 such connec	own)-7-4, nd -4 on					11111	
NOTES	2 0-0/2/01, 4-0=0/2	TUT	14	DAD CASE(S)						_		TH CA	Roil	
 2-ply truss (0.131"x3" Top chord staggered Bottom ch staggered Web conn All loads a except if n CASE(S) s provided tu unless oth 	to be connected togef) nails as follows: s connected as follows at 0-9-0 oc. ords connected as follows at 0-8-0 oc. ected as follows: 2x4 - are considered equally toted as front (F) or back section. Ply to ply conno o distribute only loads iervise indicated. ed roof live loads have h.	2: 2x6 - 2 rows ows: 2x12 - 3 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO. tections have been noted as (F) or (B),	1) AD	Dead + Sni Increase=1 Uniform Lo Vert: 3-1 1-10=-1, Concentrat Vert: 7=- 17=-139	ow (balanced): Lur .15 ads (lb/ft) 2=-48, 3-4=-20, 4-	15=-48, (B), 14=), 19=-1	9-10=-78, =-1432 (B), 418 (B),	Plate		Continue	The second secon	SEA 4584	4 EP. SOT	Zamming.



March 8,2021

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T2GE	Common Structural Gable	1	1	Job Reference (optional)	I45094150

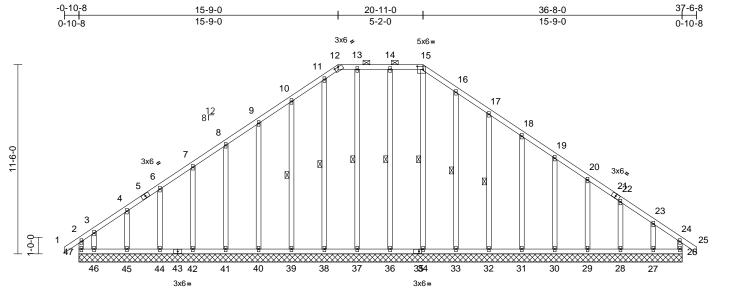
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:30 ID:IFTVCrDyc8c7RqWRBIZfcNzEes0-Mock Me

Page: 1

Scale = 1:40.5

Plate Offsets (X, Y): [6:0-5-4,0-1-8]

	(X, 1). [0.0-3-4,0-1-0]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.51 0.11 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 8=6-1-0, S 11=6-1-0, Max Horiz 12=-170 (Max Uplift 8=-111 (L 11=-99 (L Max Grav 8=209 (LC	applied or 6-0-0 oc ==6-1-0, 10=6-1-0, LC 11) C 10), 9=-84 (LC 9), C 10), 12=-85 (LC 9), C 30), 9=141 (LC 12), LC 2), 11=140 (LC 11, LC 29)	4) d or 5) 6) 7) 8)	only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 overhangs n Truss to be f braced agair Gable studs * This truss f on the bottor 3-06-00 tall h chord and ar	ed for wind loads ids exposed to wi d Industry Gable I alified building de ; 7-10; Pr=20.0 ps late DOL=1.15); F .3.9 ps (flat roof sr .15); Category II; is been designed pesf or 2.00 times on-concurrent wit ully sheathed from st lateral movem spaced at 2-0-0 to nas been designe n chord in all area by 2-00-00 wide w by other members	ind (norm End Deta ssigner a sf (roof lix Pg=20.0 now: Lum Exp B; F for great flat roof I h other li m one fac ent (i.e. c oc. d for a liv as where vill fit betw s.	al to the face ils as applica s per ANSI/TI e load: Lumb sofs (ground uber DOL=1.1 fully Exp.; er of min roof oad of 13.9 p ve loads. er or securely liagonal web) re load of 20.0 a rectangle veen the bott	i), ble, Pl 1. ber 15 f live sf on , Opsf om						
TOP CHORD	Tension 2-12=-228/254, 1-2=	=0/117, 2-3=-98/139, 153/148, 5-6=-88/124		truss to bear and 9. This c consider late	ISP connectors re ing walls due to L connection is for u ral forces. d bearing condition	JPLIFT a plift only	t jt(s) 12, 8, 1 and does not	1,				WITH CA	RO	
this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M	ed roof live loads have	159/188 =-299/102, 5-9=-287 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; e C for members and	/122	OAD CASE(S)	Standard					Commun.	No.	SEA 458/ SAUCHAR	HA	America


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T1GE	Piggyback Base Supported Gable	2	1	Job Reference (optional)	I45094151

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:28 ID:3oyXuaJ_jcc_P27_fzjXx3zEeru-Mock Me

Page: 1

36-8-0	
--------	--

Scale = 1:70 Plate Offsets (X, Y): [12:0-3-0,0-0-2], [15:0-4-4,0-2-4], [35:0-2-0,0-1-8]

Loading		(psf)	Spacing	2-0-0		CSI TC	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	18	20.0 .9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		BC	0.20 0.10	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
TCDL	10	10.0	Rep Stress Incr	YES		WB	0.14		0.01	26	n/a	n/a		
BCLL		0.0*	Code	IRC2015/	PI2014	Matrix-R								
BCDL		10.0											Weight: 299 lb	FT = 20%
UMBER TOP CHORD BOT CHORD VEBS DTHERS	2x4 SP No 2x4 SP No 2x4 SP No	0.2 0.3 0.2 *Except		P			26=164 (LC 25), 28=166 (LC 30), 30=166 (LC 26), 32=166 (LC 26), 34=156 (LC 28), 37=159 (LC 2),	29=167 (LC 31=166 (LC 33=173 (LC 36=167 (LC 38=162 (LC	26), 26), 26), 26), 30), 25),	WEBS		13-37 10-39 8-41= 4-45= 16-33	-130/83, 3-46=-1 =-132/77, 17-32=	122/10, 126/78, 28/82, 6-44=-127/8 40/120, 130/85,
	No.3						39=167 (LC 25), 41=166 (LC 25),						=-127/81, 19-30= =-128/82, 22-28=	,
	0		- 41-1				44=166 (LC 25)						=-153/109	120/13,
TOP CHORD							46=253 (LC 11),			NOTES				
				FOF	ES		mum Compressi	on/Maximum	ı	1) Unt	alance		ve loads have be	en considered for
BOT CHORD	0	ng directly	applied or 6-0-0 oc	тог	HORD	Tension	/142, 1-2=0/43, 2	0 0 0 0 1 /04	1		design.		V/	
NEDO	0	nidat	15 24 14 26 42 27		HUKD		/142, 1-2=0/43, 2 159, 4-5=-145/13						; Vult=130mph (3 CDI =6 0psf; BCF	-second gust) DL=6.0psf; h=25ft;
THERS 2x4 SP No.2 *Except* 44-6,45-4,46-3,29-20,28-22,27-23:2x4 SP No.3 RACING OP CHORD Structural wood sheathing directly applied of 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 12-15.			, -8-0	CHORD	9-10=-215 11-12=-25 13-14=-24 15-16=-28 17-18=-18 19-20=-91 22-23=-77 24-26=-13 46-47=-10 44-45=-10 42-43=-10 40-41=-10 38-39=-10 36-37=-10 30-31=-10	5/123, 45-46=-1 5/123, 43-44=-1 5/123, 41-42=-1 5/123, 39-40=-1 5/123, 37-38=-1 5/123, 35-36=-1 5/123, 33-34=-1 5/123, 31-32=-1 5/123, 29-30=-1 5/123, 27-28=-1	5/327, 49/303, 49/303, 49/302, 38/283, 40/164, 70, 21-22=- (107, 24-25= 05/123, 05/123, 05/123, 05/123, 05/123, 05/123, 05/123, 05/123,	71/58,	Ext veri forc DO	erior (2) tical left tes & M L=1.60	zone; and rig WFRS plate g	cantilever left and ht exposed;C-C for reactions sho rip DOL=1.33	,	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design mer user verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

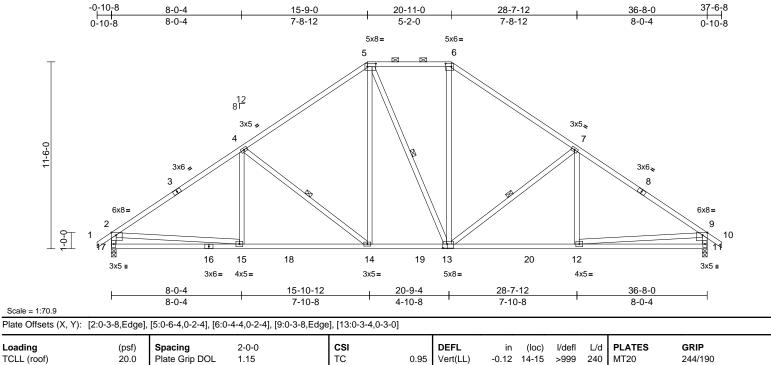
Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T1GE	Piggyback Base Supported Gable	2	1	Job Reference (optional)	145094151
Carter Components (Sanford), S	Sanford, NC - 27332,	Run: 8.43 S Feb 12	2021 Print: 8.	430 S Feb 1	2 2021 MiTek Industries, Inc. Mon Mar 08 11:42:28	Page: 2

ID:3oyXuaJ_jcc_P27_fzjXx3zEeru-Mock Me

Carter Components (Sanford), Sanford, NC - 27332,

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads
- 6) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 47, 26, 36, 39, 40, 41, 42, 44, 45, 46, 33, 32, 31, 30, 29, 28, and 27. This connection is for uplift only and does not consider lateral forces.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T1	Piggyback Base	7	1	Job Reference (optional)	145094152

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:27 ID:7PqmTuHjB_MG9lzbXYg3sezEerw-Mock Me

Page: 1

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.95	DEFL Vert(LL)	in -0.12	(loc) 14-15	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.68	Vert(CT)	-0.25	14-15	>999	180		210,000
TCDL	10.0	Rep Stress Incr	YES		WB	0.30	Horz(CT)	0.06	11	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 242 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood sheat except end verticals, (5-2-6 max.): 5-6. Rigid ceiling directly bracing.	athing directly applie , and 2-0-0 oc purlins	d, 3)	Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=18	7-10; Vult=130m; bh; TCDL=6.0psf; b; Enclosed; MWF one; cantilever lef nd right exposed; FRS for reactions ate grip DOL=1.3; 7-10; Pr=20.0 ps late DOL=1.15); P 8.9 psf (flat roof sn	BCDL=6 RS (env t and rig C-C for n shown; 3 f (roof liv g=20.0 p ow: Lum	a.Opsf; h=25f elope) and C ht exposed ; nembers and Lumber e load: Luml osf (ground uber DOL=1.	c-C end d					
WEBS	0	4-14, 5-13, 7-13			.15); Category II;	Exp B; F	ully Exp.;						
	(size) 11=0-3-8, Max Horiz 17=-242 (Max Grav 11=1516 (LC 11) (LC 2), 17=1516 (LC	4) 2)	load of 12.0	50-0-0 is been designed f psf or 2.00 times f on-concurrent with	lat roof le	oad of 13.9 p						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)		uate drainage to								
TOP CHORD	1-2=0/43, 2-3=-2001 4-5=-1549/403, 5-6= 6-7=-1546/402, 7-8= 8-9=-2001/334, 9-10 9-11=-1443/321	-1173/398, -1781/362,	,	on the bottor 3-06-00 tall t chord and ar Graphical pu	has been designed in chord in all area by 2-00-00 wide w by other members, rlin representation ation of the purlin a	s where ill fit betv , with BC n does no	a rectangle veen the bott DL = 10.0ps ot depict the	tom if.					
BOT CHORD	16-17=-238/570, 15- 15-18=-163/1707, 14- 14-19=0/1245, 13-19 13-20=-161/1560, 12 11-12=-144/450	4-18=-163/1707, 9=0/1245,	L	bottom chord DAD CASE(S)	I.	U	·			Ĺ		OR TH CA	ROJU
WEBS	4-15=0/188, 4-14=-5 5-13=-157/163, 6-13 7-13=-593/216, 7-12 9-12=-18/1223	=-59/519,									N. N. N.	SEA 4584	L 4
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									N. A.	ENGINE REW J	EFR. ON THE

818 Soundside Road Edenton, NC 27932

JULIU March 8,2021

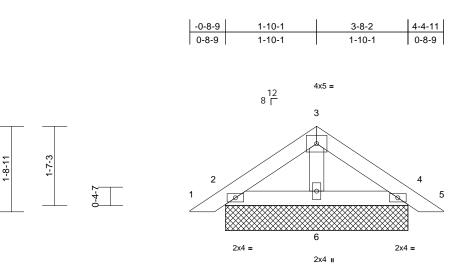
Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T1A	Piggyback Base	9	1	Job Reference (optional)	145094153

21020044-0	1 T1A		Piggyb	ack Base		9	1		Reference (r	ntional		145094153
	nts (Sanford), Sanford, N	C - 27332,	337.5		Run: 8.43 S Feb		Print: 8.430 S F		<u>o Reference (o</u> 1 MiTek Industri		10n Mar 08 11:42:27	Page: 1
		,			ID:eDGOGYH5R					,		
	-0-	-10-8 8-0-4		15 0	0 40 4 /	0 20 14	0 0	0 7 10		26 4	0	
	ł	10-8 8-0-4 10-8 8-0-4		<u>15-9-</u> 7-8-1		0 <u> 20-11</u>) 2-7-(<u>8-7-12</u> '-8-12		<u>36-4</u> 7-8-1		
	0				5x6=	3x5=	5x6=					
	Ŧ				5	6	7					
						\mathbb{A}						
			81- 81-	2								
				.8 .				\mathcal{M}	3x8			
			4			//			8			
	11-6-0			*		,				3x6💊		
	÷	3x6 = 3			24 4x5 II		29	/	// 🚿	9		
		TH			4.5 1		5x6 (11	\$//			\sim	
		6x8=			、 //						5x6	
		2						/ T				
	⊥ų⊥ ž	22	21 20) 26	甲8 30 19 27		1428 13	29) 12			
		3x5=	3x6= 4x5			2x4 II	2x4=	23	4x5=		3x5 II	
					2x4=	2x4 I						
						5x6	6 WB =					
					14-2-11	20.4.0	22- <u>3,0-0</u> 22-6-1					
		<u> </u>	-+ ⁸⁻⁰⁻⁴ + 2-0-4	<u>13-10-0</u> 5-9-12	14-1-15 ₁₈₋₄₋₀		322-5-5 	<u>28-7-1</u> 5-9-12		<u>36-4</u> 7-8-1		
Scale = 1:85.1		000	204	0012	0-3-15 4-1-5 0-0-12	200	0-0-12	0 0 12		101	2	
late Offsets (>	(, Y): [2:0-3-8,Edge],	[5:0-4-4,0-2-4], [7:0-4	4-4,0-2-4],	, [10:Edge,0-1·	-12]		0-3-15					
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/def	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.92	Vert(LL)	-0.32	16 >999	240	MT20	244/190
now (Pf/Pg)	18.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 NO		BC WB	0.78 0.40	Vert(CT) Horz(CT)	-0.63 0.05	16 >691 11 n/a			
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH	0.40	11012(01)	0.00	11 1/0	n/a		
BCDL	10.0										Weight: 274 lb	FT = 20%
UMBER			WE		4-20=-43/84, 4-19=			/214,			r connection devic	
OP CHORD	2x4 SP No.1 *Excep	t* 5-7:2x4 SP No.2 t* 14-11,21-14:2x4 S∣	Þ		3-12=-114/94, 2-20 10-12=-100/1626,							ntrated load(s) 134 d 134 lb down and 25
	2400F 2.0E	14-11,21-14.284 0	1		18-24=-47/844, 6-2	24=-195	152,		lb up at 1	5-10-0 d	on bottom chord.	The design/selection
VEBS	2x4 SP No.2 *Excep No.3	t* 11-10,17-16:2x4 S	Р		6-23=-226/141, 15 13-15=-69/660, 23			740.	of such co others.	nnectio	n device(s) is the	responsibility of
DTHERS	2x4 SP No.3			Ę	5-24=-41/747, 16-1		,	40	LOAD CASE(S) Sta	ndard	
				DTES	3-25=-305/20				 Dead + S Increase 	· ·	alanced): Lumber	Increase=1.15, Plate
OP CHORD		athing directly applied , and 2-0-0 oc purlins	<i>,</i> , , , , , , , , , , , , , , , , , ,		roof live loads hav	ve been o	considered fo	r	Uniform		b/ft)	
	(4-6-8 max.): 5-7.	•	0)	this design.	7.40. 14.400						2-5=-48, 5-7=-58,	, 7-10=-48,
OT CHORD	Rigid ceiling directly bracing. Except:	applied or 10-0-0 oc	2)		7-10; Vult=130mp h; TCDL=6.0psf;				Concent		-18=-20 ads (lb)	
	6-0-0 oc bracing: 15				3; Enclosed; MWF				Vert: 1	4=-125	, 27=-125	
VEBS OINTS	1 Row at midpt 1 Brace at Jt(s): 23,	4-19, 8-13			nd right exposed;0							
00	24, 18, 15				FRS for reactions ate grip DOL=1.33		Lumber					
EACTIONS	(size) 11= Mech Max Horiz 22=240 (L	anical, 22=0-3-8	3)	TCLL: ASCE	7-10; Pr=20.0 psf	f (roof liv		er				
	Max Grav 11=1729 (25)		ate DOL=1.15); P 3.9 psf (flat roof sn			5				
ORCES	(lb) - Maximum Com	pression/Maximum		Plate DOL=1	.15); Category II;			5			minin	IIII.
OP CHORD	Tension 1-2=0/43. 2-3=-2404	/293, 3-4=-2206/321	. 1)	Ct=1.10, Lu=		or areas	or of min roof	livo			"TH CA	Roilin
	4-5=-1942/368, 5-6=	-1551/369,	, 4)		s been designed f psf or 2.00 times fl				/	· ·	ONEFOS	it in it
	6-7=-1531/366, 7-8= 8-9=-2138/313, 9-10		-	overhangs n	on-concurrent with	n other liv	/e loads.		- 1	FN	white	Anti
	2-22=-1697/296, 10-	-11=-1640/249	5) 6)		quate drainage to p has been designed				C	Store State	19. Y	
OT CHORD	21-22=-238/631, 20- 20-26=-177/2047, 19		3)	on the bottor	n chord in all areas	s where	a rectangle				SEA	
	19-27=-9/1614, 17-2				by 2-00-00 wide wi by other members,						4584	4
	14-17=-9/1614, 14-2		7)	Refer to gird	er(s) for truss to tru	uss conr	nections.			-		1 3
	13-28=-9/1614, 13-2 12-29=-171/1831, 11		8)		rlin representation ation of the purlin a			size		- 7	. En-	ER. AS
	18-30=-48/0, 16-30=			bottom chore			, top anu/or			1	GINE	St. CON

Graphical purlin repre esentation does not depict the size 8) or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

18-30=-48/0, 16-30=-48/0, 16-31=-48/0, 31-32=-48/0, 15-32=-48/0



Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	PB1GE	Piggyback	2	1	Job Reference (optional)	I45094154

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:26 ID:IFTVCrDyc8c7RqWRBIZfcNzEes0-Mock Me

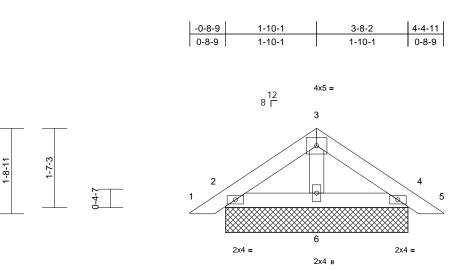
3-8-2

Page: 1

Scale - 1.22.2

Scale = 1:23.2										•			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.05 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (N FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m Cat. II; Exp Exterior (2) vertical left forces & MV DOL=1.60 ff see Standa or consult q 1) Truss desig only. For st see Standa or consult q 1) TCLL: ASC DOL=1.15 ff snow); Pf=1	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-2-0 oc purlins. Rigid ceiling directly bracing. size) 2=3-8-2,4 Max Horiz 2=30 (LC Max Uplift 2=-12 (LC Max Grav 2=110 (LC (LC 2) (lb) - Maximum Com Tension 1-2=0/17, 2-3=-53/25 2-6=-7/24, 4-6=-7/24 3-6=-83/26 droof live loads have E 7-10; Vult=130mph nph; TCDL=6.0psf; BC B; Enclosed; MWFR; zone; cantilever left a and right exposed;C- WFRS for reactions si olate grip DOL=1.33 ned for wind loads in tuds exposed to wind rd Industry Gable Enu ualified building desig E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= 3.9 psf (flat roof snov 1.15); Category II; Ev	applied or 10-0-0 oc 4=3-8-2, 6=3-8-2 12) 13), 4=-15 (LC 14) C 2), 4=110 (LC 2), 6 pression/Maximum 9, 3-4=-51/30, 4-5=0 4 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground	9 9 9 1/1 1/17 1/17 C c c c c c c c c c c c c c	 load of 12.0 overhangs n Gable requirs Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2 and 15 lb u See Standar Detail for Co 	s been designed osf or 2.00 times on-concurrent wite es continuous bo spaced at 2-0-0 û inas been designe n chord in all are: by 2-00-00 wide v by other members hanical connection capable of withs uplift at joint 4. d Industry Piggyt nnection to base fied building desi Standard	flat roof k th other liv ttom chor bc. d for a liv as where vill fit betv s. on (by oth standing 1 back Trus truss as a	bad of 13.9 p ve loads. d bearing. e load of 20.0 a rectangle veen the bott ers) of truss t 2 lb uplift at j s Connection	sf on Opsf om joint		Commun.		SEA 458 NOREW J	44 EERSO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


March 8,2021

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	PB1	Piggyback	16	1	Job Reference (optional)	145094155

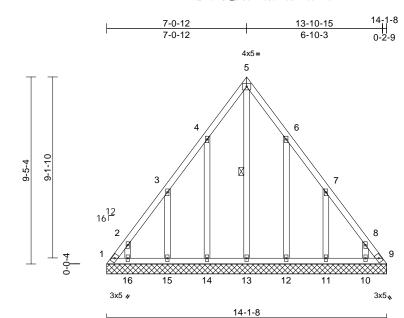
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:24 ID:q3v7?VCKrrUGpgxFda2Q4AzEes1-Mock Me

3-8-2

Page: 1

Scale = 1:23.2		-												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		5/TPI2014	CSI TC BC WB Matrix-P	0.05 0.02 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance- this design 2) Wind: ASC Vasd=1037 Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 3) Truss desig only. For s see Standa or consult d TCLL: ASC DOL=1.15 snow); Pf=	Max Horiz 2=30 (LC Max Uplift 2=-12 (LC Max Grav 2=110 (LC (LC 2) (Ib) - Maximum Com Tension 1-2=0/17, 2-3=-53/2 2-6=-7/24, 4-6=-7/24 3-6=-83/26 d roof live loads have	applied or 10-0-0 oc 4=3-8-2, 6=3-8-2 12) 13), 4=-15 (LC 14) C 2), 4=110 (LC 2), 6 pression/Maximum 9, 3-4=-51/30, 4-5=0 4 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground	9) =129 ¹⁽ L(//17 C c c c c nd ss , le, -r	load of 12.0 p overhangs n Gable requir Gable studs * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 2 and 15 lb u) See Standar Detail for Con	s been designed osf or 2.00 times i son-concurrent witt ses continuous bot spaced at 2-0-0 o has been designed n chord in all area y 2-00-00 wide w y other members hanical connectio capable of withs plift at joint 4. d Industry Piggyb nnection to base I fied building desig Standard	flat roof k h other lin tom chor ic. d for a liv as where ill fit betv n (by oth tanding 1 ack Trus truss as a	bad of 13.9 ps ve loads. d bearing. e load of 20.0 a rectangle veen the botto ers) of truss to 2 lb uplift at jo s Connection	sf on Opsf om o			AND P	THUNN J	L 14 EEP. SOL	" Summing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


GINEERING

818 Soundside Road Edenton, NC 27932

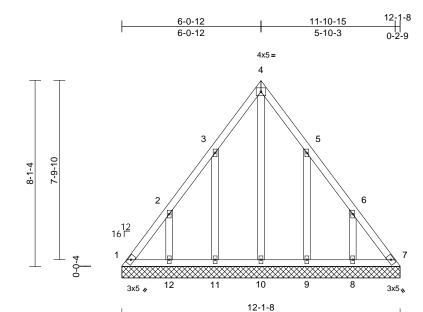
March 8,2021

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	V1	Valley	1	1	Job Reference (optional)	145094156

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:37 ID:mR1tQBEbNSk_3z5ek?4u9bzEes?-Mock Me Page: 1

Scale = 1:58.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	13.5	(psf) 20.0 9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		15/TPI2014	CSI TC BC WB Matrix-SH	0.08 0.04 0.15 ave been	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%
BOT CHORD OTHERS BRACING TOP CHORD	No.2	3 *Excep vood shea	t* 13-5,14-4,12-6:2x athing directly applie	4 SP	Vasd=103m Cat. II; Exp E Exterior (2) z vertical left a forces & MW	7-10; Vult=130m ph; TCDL=6.0psf 3; Enclosed; MW zone; cantilever le ind right exposed /FRS for reaction	; BCDL=6 FRS (env eft and rig l;C-C for r is shown;	6.0psf; h=25ft; elope) and C- ht exposed ; o nembers and	C					
BOT CHORD WEBS	Rigid ceiling bracing. 1 Row at mi		applied or 10-0-0 or 5-13	D (Truss desigr 	late grip DOL=1.3 ned for wind loads uds exposed to w	s in the pl							
REACTIONS	(size) 1 1 Max Horiz 1 Max Uplift 1 1 Max Grav 1 1 1 1 1 1 1	= 14-1-8, 1=14-1-8 4=14-1-8 =-194 (L: =-151 (L: 0=-84 (L: 2=-102 (5=-105 (=219 (LC 0=166 (L 2=206 (L 4=207 (L 6=166 (L	9=14-1-8, 10=14-1- 8, 12=14-1-8, 13=14 8, 15=14-1-8, 16=14 C 9) C 11), 9=-125 (LC 1 C 14), 11=-106 (LC LC 14), 14=-103 (LC LC 13), 16=-84 (LC C 13), 9=207 (LC 14 C 25), 13=152 (LC C 24), 15=202 (LC - C 24), 15=202 (LC - C 24)	-1-8, 2), -1-8 2), 14), 2 13), 4 13) 6), - 25), 8 14),	or consult qu 4) TCLL: ASCE DOL=1.15 P snow); Pf=1: Plate DOL=' Ct=1.10 5) All plates are 5) Gable requir 7) Gable studs 8) * This truss I on the botton 3-06-00 tall I	d Industry Gable alified building d 57-10; Pr=20.0 p late DOL=1.15); 3.9 psf (flat roof s 1.15); Category II e 2x4 MT20 unles es continuous bo spaced at 2-0-0 nas been designe n chord in all are oy 2-00-00 wide v y other member:	esigner a: sf (roof liv Pg=20.0 p now: Lum ; Exp B; F ss otherwi ottom chor oc. ed for a liv as where will fit betw	s per ANSI/TF e load: Lumb osf (ground iber DOL=1.1 iully Exp.; se indicated. d bearing. e load of 20.0 a rectangle	PI 1. er 5 0psf					Round
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum	ę	 Provide med 	hanical connections e capable of with	on (by oth				(ORIEEBS	6. N
TOP CHORD		71, 5-6=-	208/160, 3-4=-132/9 163/171, 6-7=-108/6 341/268	a'	joint 1 and 1 10) One RT8A L	25 lb uplift at join JSP connectors r	t 9. ecommen	ded to conne	ct		C.	<u>مر</u>	1 plants	vigier
BOT CHORD	1-16=-160/2 14-15=-160	211, 15-1 /211, 13- /211, 11-	6=-160/211, 14=-160/211, 12=-160/211,	I	truss to bearing walls due to UPLIFT at jt(s) 14, 15, 16, 12, 11, and 10. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard								• • •	
WEBS	5-13=-203/1 3-15=-227/2 6-12=-217/1 8-10=-176/1	133, 4-14 207, 2-16 194, 7-11	=-217/194, =-176/157,									in Plant	NOREW 1	EEP. ONIT
NOTES													MACW J	111111 h 0 0004


March 8,2021

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	V2	Valley	1	1	Job Reference (optional)	145094157

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:37 ID:EebFdWED8msrg7gqljc7hozEes_-Mock Me

Page: 1

Scale = 1:50.2

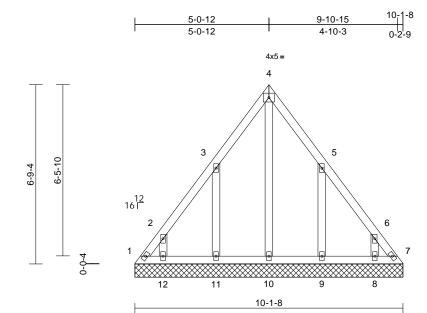
this design.

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-SH								
BCDL	10.0										Weight: 79 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	o.3 *Except* 10-4:2x4 SP No.2
BRACING		
TOP CHORD	Structural 6-0-0 oc p	I wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=12-1-8, 7=12-1-8, 8=12-1-8, 9=12-1-8, 10=12-1-8, 11=12-1-8, 12=12-1-8
	Max Horiz	1=-165 (LC 9)
	Max Uplift	1=-77 (LC 11), 7=-55 (LC 12), 8=-108 (LC 14), 9=-103 (LC 14), 11=-103 (LC 13), 12=-108 (LC 13)
	Max Grav	1=153 (LC 13), 7=143 (LC 14), 8=209 (LC 25), 9=205 (LC 25), 10=127 (LC 27), 11=206 (LC 24), 12=208 (LC 24)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		/182, 2-3=-128/95, 3-4=-143/147, /147, 5-6=-108/67, 6-7=-236/182
BOT CHORD	10-11=-13	5/182, 11-12=-135/182, 35/182, 9-10=-135/182,
		/182, 7-8=-135/182
WEBS		4/100, 3-11=-226/208,
	2-12=-220	0/202, 5-9=-226/208, 6-8=-220/202
NOTES		
1) Unbalance	ed roof live l	oads have been considered for

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 1 and 55 lb uplift at joint 7.
- One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11, 12, 9, and 8. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	V3	Valley	1	1	Job Reference (optional)	145094158

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:39 ID:EebFdWED8msrg7gqljc7hozEes_-Mock Me

Page: 1

Scale = 1:43.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-SH								
BCDL	10.0										Weight: 61 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	o.3 *Except* 10-4:2x4 SP No.2
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=10-1-8, 7=10-1-8, 8=10-1-8, 9=10-1-8, 10=10-1-8, 11=10-1-8, 12=10-1-8
	Max Horiz	1=-137 (LC 9)
	Max Uplift	1=-100 (LC 11), 7=-82 (LC 12),
		8=-85 (LC 14), 9=-109 (LC 14),
		11=-109 (LC 13), 12=-84 (LC 13)
	Max Grav	1=148 (LC 13), 7=140 (LC 14),
		8=163 (LC 25), 9=215 (LC 25),
		10=115 (LC 27), 11=215 (LC 24), 12=163 (LC 24)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-243/	/185, 2-3=-123/97, 3-4=-124/125,
	4-5=-124/	125, 5-6=-106/75, 6-7=-243/185
BOT CHORD	1-12=-109	9/151, 11-12=-109/151,
	10-11=-10	09/151, 9-10=-109/151,
	8-9=-109/	/151, 7-8=-109/151
WEBS	4-10=-127	7/71, 3-11=-240/226,
	2-12=-186	6/177, 5-9=-240/226, 6-8=-186/177
NOTES		

1) Unbalanced roof live loads have been considered for

this design.

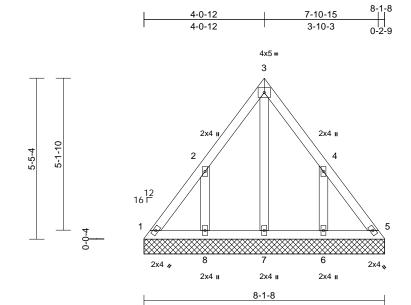
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 3)

2) Wind: ASCE 7-10; Vult=130mph (3-second gust)

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 2-0-0 oc. 7)

- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 1 and 82 lb uplift at joint 7.
- 10) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11, 12, 9, and 8. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

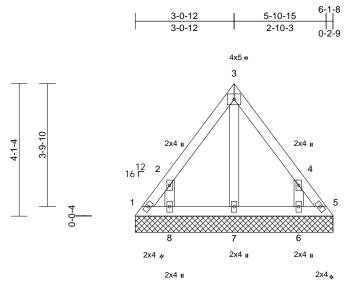


Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	V4	Valley	1	1	Job Reference (optional)	145094159

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:39 ID:EebFdWED8msrg7gqljc7hozEes_-Mock Me

Page: 1

Scale = 1:38.9

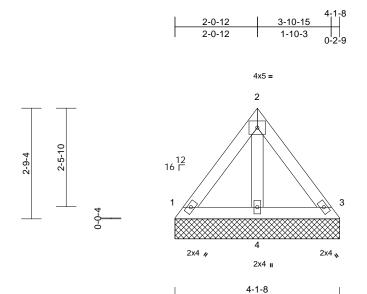

00010 = 1.00.0													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/T		CSI TC BC WB Matrix-P	0.09 0.03 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=8-1-8, § 7=8-1-8, § Max Horiz 1=108 (LC Max Uplift 1=-31 (LC 6=-121 (L Max Grav 1=105 (LC	5=8-1-8, 6=8-1-8, 3=8-1-8 C 10) C 11), 5=-17 (LC 12), C 14), 8=-121 (LC 12 C 25), 5=95 (LC 27), C 25), 7=100 (LC 27)	d or 5) (6) (7) * 8) F 8) F	DOL=1.15 Pl snow); Pf=13 Plate DOL=1 (t=1.10) Gable require Gable studs s This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 1 and 17 lb u One RT8A U russ to beari This connecti	7-10; Pr=20.0 ps ate DOL=1.15); I .9 psf (flat roof si .15); Category II; as continuous bo spaced at 2-0-0 c as been designed as been designed y 2-00-00 wide w y other members nanical connectic capable of withs plift at joint 5. SP connectors re ng walls due to L ion is for uplift on	Pg=20.0 ; now: Lum Exp B; F ttom chor oc. d for a liv as where vill fit betv s. n (by oth ttanding 3 ecommen JPLIFT ai	osf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle veen the botto ers) of truss t 11 lb uplift at ju ded to conne- jt(s) 8 and 6.	5 Opsf om oint ct					
FORCES	(lb) - Maximum Com Tension	,		ateral forces D CASE(S)									
TOP CHORD		103/97, 3-4=-103/97,	,										
BOT CHORD	1-8=-88/125, 7-8=-8 5-6=-88/125	8/125, 6-7=-88/125,										minin	110m
 this design Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 Truss desi only. For see Stand 	ed roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-0 and right exposed; e C for members and hown; Lumber the plane of the trus (normal to the face), d Details as applicab	C nd s							Comme	Live Provent	SEA 458 NGIN Mar	44 EER. ON

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	V5	Valley	1	1	Job Reference (optional)	45094160

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:40 ID:iq9ersFrv3_iIHF0sQ7ME0zEerz-Mock Me

Page: 1

Scale = 1:35.7


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.08 0.02 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
	7=6-1-8, 8 Max Horiz 1=-80 (LC Max Uplift 1=-60 (LC 6=-106 (L Max Grav 1=87 (LC	applied or 10-0-0 oc 5=6-1-8, 6=6-1-8, 3=6-1-8 : 9) : 11), 5=-50 (LC 12), C 14), 8=-106 (LC 12)	DOL=1.15 snow); Pf= Plate DOL= Ct=1.10 6) Gable stud: 7) * This truss on the botto 3-06-00 tall chord and a 8) Provide me bearing pla 1 and 50 lb 9) One RT8A truss to bea	E 7-10; Pr=20.0 p Plate DOL=1.15); 13.9 psf (flat roof s =1.15); Category II irres continuous bot s spaced at 2-0-0 has been designo m chord in all are by 2-00-00 wide i by 2-00-00 wide i by 2-00-00 wide i te capable of with uplift at joint 5. USP connectors r irring walls due to ction is for uplift o	Pg=20.0 ; snow: Lum ; Exp B; F bottom chor oc. ed for a liv eas where will fit betv s. on (by oth standing 6 recommen UPLIFT at	esf (ground ber DOL=1.1 ully Exp.; d bearing. e load of 20.0 a rectangle veen the botto ers) of truss t 0 lb uplift at j ded to conne jt(s) 8 and 6.	5 Opsf om oint ct				Weight: 31 lb	FT = 20%
FORCES	24) (Ib) - Maximum Com	pression/Maximum	lateral force	s.	ing and de							
TOP CHORD	Tension 1-2=-149/113, 2-3=- 4-5=-149/113	95/69, 3-4=-86/69,										
BOT CHORD	1-8=-57/87, 7-8=-57/ 5-6=-57/87	/87, 6-7=-57/87,									mmm	un _n ,
WEBS	3-7=-52/6, 2-8=-242	/243, 4-6=-242/243							_		"TH CA	Roille
NOTES										hi	ONEESS	iA shin
 Unbalance this design 	d roof live loads have	been considered for								R	non	main
2) Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M	E 7-10; Vult=130mph mph; TCDL=6.0psf; B(b B; Enclosed; MWFR3) zone; cantilever left at and right exposed;C- WFRS for reactions s plate grip DOL=1.33	CDL=6.0psf; h=25ft; S (envelope) and C-0 and right exposed ; e C for members and							Summer	7	SEA 4584	
 Truss designed only. For see Standa 	gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig	(normal to the face), d Details as applicab	le,								THUN J	EFF: 60 11 0HN ch 8,2021

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	V6	Valley	1	1	Job Reference (optional)	145094161

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:41 ID:iq9ersFrv3_iIHF0sQ7ME0zEerz-Mock Me

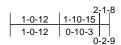
Page: 1

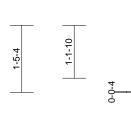
Scale = 1:28.8

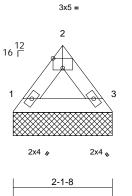
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.09 0.02 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-1-14 oc purlins. Rigid ceiling directly bracing. (size) 1=4-1-8, 3 Max Horiz 1=51 (LC Max Uplift 1=-13 (LC Max Grav 1=92 (LC (LC 2)	applied or 10-0-0 oc 3=4-1-8, 4=4-1-8 10) : 14), 3=-10 (LC 13)	 6) Gable stud 7) * This truss on the bott 3-06-00 tal chord and i expression 8) Provide me bearing pla 1 and 10 lb LOAD CASE(S 	ires continuous bott s spaced at 2-0-0 or has been designed om chord in all area: by 2-00-00 wide wi any other members. chanical connection te capable of withst uplift at joint 3.) Standard	c. I for a liv s where Il fit betv n (by oth	e load of 20.0ps a rectangle veen the bottom ers) of truss to	n					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-76/35, 2-3=-70, 1-4=-21/41, 3-4=-21, 2-4=-56/20	/35										
NOTES												
 Unbalance this design 	d roof live loads have	been considered for										900
Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 3) Truss desi only. For s see Stand or consult or consult DOL=1.15 snow); Pf=	E 7-10; Vult=130mph mph; TCDL=6.0psf; Bt b; Enclosed; MWFR3) zone; cantilever left at and right exposed;C- IWFRS for reactions s plate grip DOL=1.33 gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig CE 7-10; Pr=20.0 psf (D=7=20.0 psf) Plate DOL=1.15); Pg= 13.9 psf (flat roof snov =1.15); Category II; Ex	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1!	end , , l 1. er						O	A CONTRACTOR	SEA 4584	• •

- 3 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

818 Soundside Road Edenton, NC 27932


111111111


March 8,2021

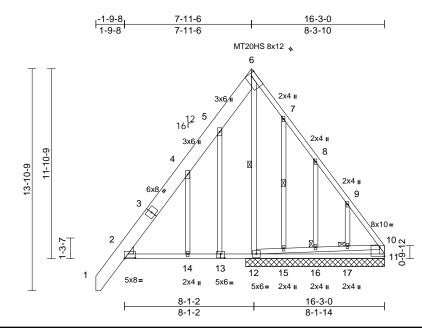

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	V7	Valley	1	1	Job Reference (optional)	145094162

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:42 ID:iq9ersFrv3_IIHF0sQ7ME0zEerz-Mock Me

Page: 1

Scale = 1:24.7

Plate Offsets (X, Y): [2:Edge,0-2-8]

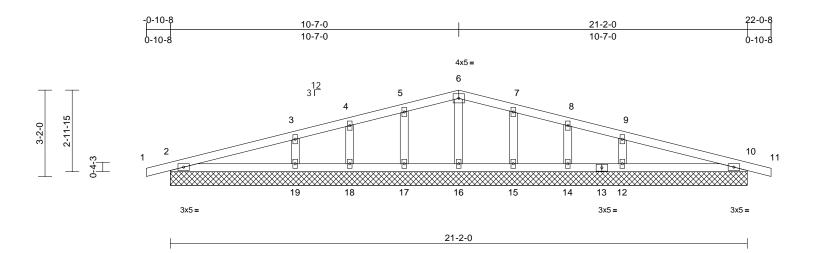

TCLL (roof) Snow (Pf/Pg) 13 TCDL BCLL BCDL	.9/20.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-P	0.02 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
2-1-14 oc	.2 wood sheat ourlins.	thing directly applie	on the botto 3-06-00 tall chord and a d or LOAD CASE(S	has been designe om chord in all are by 2-00-00 wide any other member) Standard	eas where will fit betw	a rectangle	•					
Max Horiz Max Grav	1=63 (LC 2 num Comp	2) ?), 3=63 (LC 2) vression/Maximum										
 NOTES Unbalanced roof live Ic this design. Wind: ASCE 7-10; Vult Vasd=103mph; TCDL= Cat. II; Exp B; Enclose Exterior (2) zone; canti vertical left and right ey forces & MWFRS for re DOL=1.60 plate grip D Truss designed for win only. For studs exposs see Standard Industry or consult qualified bui TCLL: ASCE 7-10; Pr= DOL=1.15 Plate DOL= snow); Pf=13.9 psf (fla Plate DOL=1.15); Cate Ct=1.10 	=130mph (6.0psf; BC d; MWFRS lever left ar posed;C-C actions shi DL=1.33 d loads in ti d loads in ti d loads in ti d loads in ti do to wind (Gable End ding design 20.0 psf (rc 1.15); Pg=2 r roof snow	3-second gust) DL=6.0psf; h=25ft; (envelope) and C- nd right exposed ; e c for members and own; Lumber he plane of the trus normal to the face) Details as applicat her as per ANSI/TP pof live load: Lumbe 20.0 psf (ground : Lumber DOL=1.1!	C and ss , , le, 11. er						D'annan.	2.00	SEA SEA	• •

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	T2SE	Common Structural Gable	1	1	Job Reference (optional)	l45094163

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:31 ID:5cxTQtsVuVnpxZc_0HIXVWzEa?K-Mock Me

Page: 1

Scale = 1:72.1


Plate Offsets (X, Y): [2:0-8-0,0-0-8], [6:0-2-5,Edge], [10:Edge,0-6-13], [13:0-3-0,0-3-0]

		1												
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.83	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.40	Vert(CT)	n/a	-	n/a	999	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	YES		WB	0.68	Horz(CT)	0.01	11	n/a	n/a			
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 185 lb	FT = 20%	
LUMBER	2x10 SP 2400F 2.0E No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left: 2x6 SP No.2 Structural wood she 7-6-8 oc purlins, ex Rigid ceiling directly bracing, Except: 8-11-2 oc bracing: 1 Row at midpt 1 Brace at Jt(s): 16,	athing directly applied cept end verticals. applied or 6-0-0 oc 1-12. 6-12, 7-15	P 3) I or	Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13	7-10; Vult=130mp bh; TCDL=6.0psf; I 8; Enclosed; MWF one; cantilever lef nd right exposed; 0 FRS for reactions ate grip DOL=1.33 ed for wind loads ids exposed to wir d Industry Gable E alified building de: 7-10; Pr=20.0 psf late DOL=1.15); P 8.9 psf (flat roof sn .15); Category II; I	BCDL=6 RS (env t and rig C-C for r shown; a in the pl nd (norm and Deta signer a f (roof liv g=20.0 p ow: Lum	6.0psf; h=25ft elope) and C ht exposed ; nembers and Lumber ane of the tru ial to the face ils as applica s per ANSI/T ee load: Lumb osf (ground aber DOL=1.1	-C end ss e), ble, PI 1. per				Weight: 185 lb	FT = 20%	
	17 (size) 11=8-8-0, Max Horiz 12=268 (I Max Uplift 11=-268 (Max Grav 11=156 (I	(LC 29), 12=-47 (LC 9	(⁰)	This truss ha load of 12.0 overhangs n All plates are	s been designed f psf or 2.00 times fl pn-concurrent with MT20 plates unle spaced at 2-0-0 oc	lat roof le n other li ess othe	oad of 13.9 p ve loads.	sf on						
FORCES	(lb) - Maximum Corr	pression/Maximum	8)		has been designed			0psf				munn	11111	
TOP CHORD		351, 3-4=-337/448, 439/638, 6-7=-229/57 432/542, 9-10=-455/4		3-06-00 tall b chord and ar One RT7A U	n chord in all areas by 2-00-00 wide wi by other members. SP connectors reas ing walls due to UI	ill fit betv commen	veen the bott	ect		(ORTH CA	ROUN	5
BOT CHORD	2-14=-407/526, 13-1 12-13=-408/522, 11-			This connect lateral forces	ion is for uplift only	y and do	es not consid	der		Ξ		SEA		
WEBS	6-12=-1102/768, 12 15-16=-942/803, 16 10-17=-934/796, 5-1 7-15=-76/48, 8-16=-	-17=-936/798, I3=-118/0, 4-14=-111,	LC) Non Standar)AD CASE(S)	d bearing condition Standard	n. Revie	ew required.			THINK.		4584	4	I
NOTES 1) Unbalance this design	ed roof live loads have 1.	been considered for									and and a second	MOREW J	E.P. O. M.	

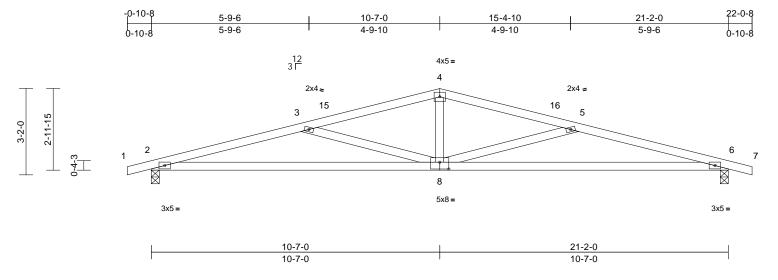
Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	TG1GE	Common Supported Gable	1	1	Job Reference (optional)	145094164

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:36 ID:atLm1cg_OGBHJVizCpejWAzeKpt-Mock Me

Scale = 1:42.3

00010 - 111210													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.19		n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.18	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	24	n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 83 lb	FT = 20%
LUMBER			1)		roof live loads ha	ve been	considered fo	r					
TOP CHORD			0)	this design.	7 40. 1/1. 400-	- h (0							
BOT CHORD	2x4 SP No.2		2)		7-10; Vult=130m ph; TCDL=6.0psf;								
OTHERS	2x4 SP No.3				B; Enclosed; MWI								
BRACING	0				zone; cantilever le								
TOP CHORD	6-0-0 oc purlins.	eathing directly applie	aor	vertical left a	ind right exposed	;C-C for r	nembers and						
BOT CHORD	Rigid ceiling directl bracing.	y applied or 10-0-0 oc		DOL=1.60 p	/FRS for reactions late grip DOL=1.3	33							
REACTIONS		, 10=21-2-0, 12=21-2	,		ned for wind loads uds exposed to wi								
		0, 15=21-2-0, 16=21-			d Industry Gable	· ·							
		0, 18=21-2-0, 19=21-	-2-0,		alified building de								
		0, 24=21-2-0 C 16), 20=-28 (LC 16)	(4)	TCLL: ASCE	57-10; Pr=20.0 ps	sf (roof liv	e load: Lumb	er					
	,	C 10), 20=-28 (LC 16) C 11), 10=-31 (LC 12)	·		late DOL=1.15); I								
		LC 16), 14=-6 (LC 12)			3.9 psf (flat roof s			5					
		LC 16), 17=-12 (LC 1			1.15); Category II;	; Exp B; F	fully Exp.;						
		C 11), 19=-21 (LC 15)	\	Ct=1.10									
		LC 11), 24=-31 (LC 1		design.	snow loads have	been co	nsidered for ti	าเร					
		C 2), 10=214 (LC 2),		•	as been designed	for groat	or of min roof	livo					
		LC 35), 14=64 (LC 23	3), -/		psf or 2.00 times								
		LC 35), 16=126 (LC 2			on-concurrent wit								1.1
		LC 34), 18=64 (LC 22		0	e 2x4 MT20 unles								in the second second
		LC 34), 20=214 (LC 2	^{2),} 8)		es continuous bo					_		N'TH UA	ROUL
	24=214 (,	9)		spaced at 2-0-0 d		5				1 million	A	in Alate
FORCES		npression/Maximum	10)) * This truss I	nas been designe	d for a liv	e load of 20.0	Opsf			52	FE	SWA AND
TOP CHORD	Tension 1-2=0/16, 2-3=-86/2	04 2 4 49/40			m chord in all area							var	
TOP CHORD	4-5=-36/65, 5-6=-4				oy 2-00-00 wide w		veen the botte	om				:4	N 1 - E
	7-8=-36/66, 8-9=-4				ny other members						11. 1	SEA	a i E
	10-11=0/16	o, 10, 0 10– 01/11,	11	,	JSP connectors re								• •••
BOT CHORD	2-19=-2/74, 18-19=	0/34, 17-18=0/34.			ing walls due to L					-	<u>a</u> 1	4584	14 : E
	16-17=0/34, 15-16=				4, 12, and 10. Th as not consider lat			ш					1 2
	13-14=0/34, 12-13=	=0/34, 10-12=0/34					-3.				- 0	·	a:23
WEBS	6-16=-92/14, 5-17=	-143/75, 4-18=-64/47	, LO	DAD CASE(S)	Sianuaru						N. N.	VSNGIN	EET.ON
	3-19=-242/116, 7-1	5=-143/75, 8-14=-64/	47,								11,	Op	. NS IN
	9-12=-242/116										10	ILEW I	OHIM
NOTES												in min	man
													6. A 4

March 8,2021


Page: 1

Job	Truss	Truss Type	Qty	Ply	160 Crossings at ACC-Kessler A-Roof	
21020044-01	TG1	Common	6	1	Job Reference (optional)	145094165

Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Mon Mar 08 11:42:36 ID:PmAcjrX5_uorUoMs20x7ZrzeKq2-Mock Me

Page: 1

Scale = 1:42.3

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

Plate Offsets (X, Y): [8:0-	-4-0,0-3-0]												
Loading TCLL (roof) Snow (Pf/Pg) 1: TCDL BCLL BCDL	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.99 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.41 0.07	(loc) 8-14 8-11 6	l/defl >999 >616 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
BOT CHORD 3-1-3 oc Rigid ceil bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-2=0/16, 4-15=-18 5-16=-18 BOT CHORD 2-8=-578,	o.2 o.3 I wood sheat purlins. ing directly 2=0-3-8, 6 2=-28 (LC 2=-33 (LC 2=-33 (LC 2=399 (LC cimum Com , 2-3=-2497, 03/409, 4-1 44/397, 5-6 /2409, 6-8= 594, 5-8=-7 ⁻¹ loads have It=130mph .=6.0psf; BC ed; MWFRS ed; MWFRS Ed; BC ed; MWFRS DOL=1.33 =20.0 psf (r =20.0 psf (r =1.15); Pg= at roof snov	20) 11), 6=-33 (LC 12) ; 2), 6=899 (LC 2) pression/Maximum /653, 3-15=-1844/36 6=-1803/409, =-2497/653, 6-7=0/- -583/2409 17/298, 3-8=-717/29 been considered for (3-second gust) CDL=6.0psf; h=25ft; 5 (envelope) and C- ind right exposed ; e C for members and hown; Lumber roof live load: Lumber 20.0 psf (ground v: Lumber DOL=1.13	ed or 6, 7, 10 97, 16 18 r C end er	 design. This truss ha load of 12.0 overhangs n This truss h on the bottor 3-06-00 tall b chord and ar One RT7A L truss to bear 		or great at roof le other liv for a liv s where Il fit betv commen PLIFT at	er of min roo bad of 13.9 p re loads. e load of 20. a rectangle reen the bott ded to conne jt(s) 2 and 6	f live osf on Opsf com ect		Continue		SEA 458 WOREW J	ROL 14 44 EEF. 60 0HN50000000000000000000000000000000000

