

RE: J0121-0587 Lot 32 Forest Ridge Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0121-0587 Lot/Block: Address: City:

Model: Subdivision: State:

# General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date      | No. | Seal#     | Truss Name | Date      |
|-----|-----------|------------|-----------|-----|-----------|------------|-----------|
| 1   | E15359716 | A01        | 1/28/2021 | 21  | E15359736 | M02        | 1/28/2021 |
| 2   | E15359717 | A02        | 1/28/2021 | 22  | E15359737 | M03        | 1/28/2021 |
| 3   | E15359718 | A03        | 1/28/2021 | 23  | E15359738 | PS-8       | 1/28/2021 |
| 4   | E15359719 | A04        | 1/28/2021 | 24  | E15359739 | PS-8G      | 1/28/2021 |
| 5   | E15359720 | A05        | 1/28/2021 |     |           |            |           |
| 6   | E15359721 | A06        | 1/28/2021 |     |           |            |           |
| 7   | E15359722 | A07        | 1/28/2021 |     |           |            |           |
| 8   | E15359723 | A08        | 1/28/2021 |     |           |            |           |
| 9   | E15359724 | A09        | 1/28/2021 |     |           |            |           |
| 10  | E15359725 | A10        | 1/28/2021 |     |           |            |           |
| 11  | E15359726 | A11        | 1/28/2021 |     |           |            |           |
| 12  | E15359727 | B01        | 1/28/2021 |     |           |            |           |
| 13  | E15359728 | B02        | 1/28/2021 |     |           |            |           |
| 14  | E15359729 | B03        | 1/28/2021 |     |           |            |           |
| 15  | E15359730 | B04        | 1/28/2021 |     |           |            |           |
| 16  | E15359731 | J01        | 1/28/2021 |     |           |            |           |
| 17  | E15359732 | J02        | 1/28/2021 |     |           |            |           |
| 18  | E15359733 | J03        | 1/28/2021 |     |           |            |           |
| 19  | E15359734 | J04        | 1/28/2021 |     |           |            |           |
| 20  | E15359735 | M01        | 1/28/2021 |     |           |            |           |

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2021

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric



|               | 10-3-3<br>10-3-3     | 15-3-0<br>4-11-13 | <u>20-2-13</u><br>4-11-13              | <u> </u>                 |                         |
|---------------|----------------------|-------------------|----------------------------------------|--------------------------|-------------------------|
| LOADING (psf) | SPACING- 2-0-0       | CSI.              | DEFL. in (loc)                         | ) l/defl L/d             | PLATES GRIP             |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.71           | Vert(CT) -0.15 12<br>Vert(CT) -0.31 12 | 2 >999 360<br>2 >999 240 | MT20 244/190            |
| BCDL 10.0     | Code IRC2015/TPI2014 | Matrix-S          | Wind(LL) 0.14 12                       | 2 >999 240               | Weight: 218 lb FT = 20% |
| LUMBER-       |                      |                   | BRACING-                               |                          |                         |

TOP CHORD

BOT CHORD

WFBS

# LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-5-8, 8=0-5-8 Max Horz 2=-226(LC 10) Max Uplift 2=-113(LC 12), 8=-113(LC 13)

Max Grav 2=1545(LC 1), 8=1545(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2425/524, 3-5=-2208/577, 5-7=-2208/577, 7-8=-2425/524

- BOT CHORD 2-13=-319/1996. 12-13=-128/1475. 10-12=-128/1475. 8-10=-328/1970
- WEBS 5-15=-214/1031, 10-15=-170/849, 7-10=-441/266, 13-14=-170/849, 5-14=-214/1031, 3-13=-441/266, 12-16=-299/78

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 15-3-0, Exterior(2) 15-3-0 to 19-7-13, Interior(1) 19-7-13

to 31-4-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=113, 8=113.

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-60, 5-9=-60, 2-8=-20, 14-15=-60



Structural wood sheathing directly applied or 4-9-13 oc purlins.

14-15

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



|                                                                                                                                        | 10-3-3                                                                             | 4-11-13                                           | 4-11-13                                                                                                                                            |                              | 10-3-3                                                    |                                         |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------|-----------------------------------------|------------------------------------|
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0 *           BCDL         10.0 | SPACING-2-1-8Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014 | CSI.<br>TC 0.29<br>BC 0.72<br>WB 0.42<br>Matrix-S | DEFL.         in           Vert(LL)         -0.15           Vert(CT)         -0.32           Horz(CT)         0.05           Wind(LL)         0.15 | (loc)<br>12<br>12<br>8<br>12 | l/defl L/d<br>>999 360<br>>999 240<br>n/a n/a<br>>999 240 | <b>PLATES</b><br>MT20<br>Weight: 218 lb | <b>GRIP</b><br>244/190<br>FT = 20% |

BRACING-

WFBS

TOP CHORD

BOT CHORD

1 Row at midpt

# LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

WEBS 2x4 SP No.2 **REACTIONS.** (size) 2=0-5-8, 8=0-5-8 May Horz 2=-240(1 C 10)

Max Horz 2=-240(LC 10) Max Uplift 2=-118(LC 12), 8=-118(LC 13)

Max Grav 2=1624(LC 1), 8=1624(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2542/548, 3-5=-2312/605, 5-7=-2312/605, 7-8=-2542/548

BOT CHORD 2-13=-332/2091, 12-13=-130/1542, 10-12=-130/1542, 8-10=-341/2064

WEBS 5-15=-222/1076, 10-15=-178/892, 7-10=-470/283, 13-14=-178/892, 5-14=-222/1076, 3-13=-470/283, 12-16=-299/78

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 15-3-0, Exterior(2) 15-3-0 to 19-7-13, Interior(1) 19-7-13

to 31-4-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=118, 8=118.

#### LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (blf)

Vert: 1-5=-64, 5-9=-64, 2-8=-21, 14-15=-60



Structural wood sheathing directly applied or 4-8-2 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

14-15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MaNS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932



| <u> </u>            | 10-3-3                                       | 15-3-0    | 20-2-13              | +          | 30-6-0                  |  |
|---------------------|----------------------------------------------|-----------|----------------------|------------|-------------------------|--|
|                     | 10-3-3                                       | 4-11-13   | 4-11-13              | ·          | 10-3-3                  |  |
| Plate Offsets (X,Y) | [5:0-3-0,0-3-12], [6:0-4-0,0-4-12], [7:0-3-0 | 0,0-3-12] |                      |            |                         |  |
|                     |                                              |           |                      |            |                         |  |
| LOADING (psf)       | <b>SPACING-</b> 2-0-0                        | CSI.      | DEFL. in (loc)       | l/defl L/d | PLATES GRIP             |  |
| TCLL 20.0           | Plate Grip DOL 1.15                          | TC 0.27   | Vert(LL) -0.12 12-14 | >999 360   | MT20 244/190            |  |
| TCDL 10.0           | Lumber DOL 1.15                              | BC 0.37   | Vert(CT) -0.18 12-14 | >999 240   |                         |  |
| BCLL 0.0 *          | Rep Stress Incr YES                          | WB 0.24   | Horz(CT) 0.04 10     | n/a n/a    |                         |  |
| BCDL 10.0           | Code IRC2015/TPI2014                         | Matrix-S  | Wind(LL) 0.04 2-14   | >999 240   | Weight: 202 lb FT = 20% |  |
|                     |                                              |           |                      |            |                         |  |

LUMBER-BRACING-TOP CHORD 2x6 SP No 1 TOP CHORD Structural wood sheathing directly applied or 5-5-11 oc purlins, BOT CHORD 2x6 SP No.1 except 2x4 SP No.2 WFBS 2-0-0 oc purlins (6-0-0 max.): 5-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. (size) 2=0-5-8, 10=0-5-8

Max Horz 2=-215(LC 10) Max Uplift 2=-80(LC 12), 10=-80(LC 13) Max Grav 2=1268(LC 1), 10=1268(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1845/406, 3-5=-1661/456, 7-9=-1661/456, 9-10=-1845/406, 5-6=-1436/454,
- 6-7=-1436/454
- BOT CHORD 2-14=-236/1630. 12-14=-29/1045. 10-12=-237/1492
- WEBS 6-12=-141/773, 9-12=-449/280, 6-14=-141/772, 3-14=-449/280

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 14-5-4, Exterior(2) 14-5-4 to 22-3-7, Interior(1) 22-3-7 to 31-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





|              | L             | 7-9-4                                       | 15-3-0              | 22-8-12                                                      | 30-6-0                         |
|--------------|---------------|---------------------------------------------|---------------------|--------------------------------------------------------------|--------------------------------|
|              | 1             | 7-9-4                                       | 7-5-12              | 7-5-12                                                       | 7-9-4                          |
|              | G (psf)       | SPACING- 2-0-0                              | CSI.                | DEFL. in (loc) I/defl L/d                                    | PLATES GRIP                    |
| TCDL         | 20.0          | Lumber DOL 1.15                             | BC 0.28             | Vert(LL) -0.05 9-11 >999 360<br>Vert(CT) -0.10 9-11 >999 240 | ) M120 244/190                 |
| BCLL<br>BCDL | 0.0 *<br>10.0 | Rep Stress Incr YES<br>Code IRC2015/TPI2014 | WB 0.13<br>Matrix-S | Horz(CT) 0.04 7 n/a n/a<br>Wind(LL) 0.03 9-11 >999 240       | a<br>0 Weight: 213 lb FT = 20% |

BRACING-TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 7=0-5-8, 2=0-5-8 Max Horz 2=177(LC 11) May Unjit 7\_6 7(LC 12) 2= 67(

Max Uplift 7=-67(LC 13), 2=-67(LC 12) Max Grav 7=1268(LC 1), 2=1268(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1919/459, 3-4=-1755/512, 4-5=-1277/416, 5-6=-1755/512, 6-7=-1919/459

BOT CHORD 2-12=-299/1621, 11-12=-148/1236, 9-11=-149/1225, 7-9=-301/1551

WEBS 3-12=-323/214, 4-12=-112/526, 5-9=-112/526, 6-9=-323/214

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 11-10-5, Exterior(2) 11-10-5 to 18-0-15, Interior(1) 18-0-15 to 18-7-11, Exterior(2) 18-7-11 to 24-10-6, Interior(1) 24-10-6 to 31-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Structural wood sheathing directly applied or 5-6-6 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932





|                                                                    | 9-0-0<br>9-0-0                                                                      | 21-<br>12-                                        | 6-0<br>6-0                                                                                                                                                                                                        |                                                           | <u>30-6-0</u><br>9-0-0                            | <u> </u>    |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-------------|
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014 | CSI.<br>TC 0.42<br>BC 0.48<br>WB 0.14<br>Matrix-S | DEFL.         in         (loc)           Vert(LL)         -0.13         8-10           Vert(CT)         -0.28         8-10           Horz(CT)         0.04         6           Wind(LL)         0.04         2-10 | l/defl L/d<br>>999 360<br>>999 240<br>n/a n/a<br>>999 240 | PLATES GRIP<br>MT20 244/19<br>Weight: 193 lb FT = | )0<br>= 20% |

BRACING-

TOP CHORD

BOT CHORD

WFBS

# LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-5-8, 6=0-5-8 Max Horz 2=137(LC 11)

Max Uplift 2=-49(LC 12), 6=-49(LC 13)

Max Grav 2=1268(LC 1), 6=1268(LC 1)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- 2-3=-1864/410, 3-4=-1474/439, 4-5=-1474/439, 5-6=-1864/410 TOP CHORD
- BOT CHORD 2-10=-204/1487 8-10=-313/1697 6-8=-203/1487

WEBS 3-10=0/579, 4-10=-418/198, 4-8=-418/198, 5-8=0/579

# NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 9-0-0, Exterior(2) 9-0-0 to 15-3-0, Interior(1) 15-3-0 to

21-6-0, Exterior(2) 21-6-0 to 27-8-11, Interior(1) 27-8-11 to 31-4-8 zone;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 5-1-6 oc purlins, except

4-10. 4-8

2-0-0 oc purlins (6-0-0 max.): 3-5.

1 Row at midpt

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Scale = 1:52.6



| ⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-2-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                  | 20-3-2                                                                                                                                                                                                             |                                                                                  |                                                                        | 30-6-0                                                                     |                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|--|
| Plate Offsets (X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y) [4:0-4-0,0-4-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                  | 10-0-4                                                                                                                                                                                                             |                                                                                  |                                                                        | 10-2-14                                                                    |                          |  |
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr NO<br>Code IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSI.<br>TC 0.27<br>BC 0.32<br>WB 0.13<br>Matrix-S                                                                                                                                                                                                | DEFL.         in           Vert(LL)         -0.05           Vert(CT)         -0.12           Horz(CT)         0.03           Wind(LL)         0.06                                                                 | (loc)<br>6-8<br>6-8<br>6<br>8-10                                                 | I/defl L/d<br>>999 360<br>>999 240<br>n/a n/a<br>>999 240              | PLATES GF<br>MT20 24<br>Weight: 373 lb F                                   | RIP<br>4/190<br>FT = 20% |  |
| LUMBER-<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x6 SP No.1<br>x6 SP No.1<br>x4 SP No.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                  | BRACING-<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                                 | Structura<br>2-0-0 oc<br>Rigid cei                                               | al wood sheathing di<br>purlins (6-0-0 max.)<br>iling directly applied | rectly applied or 6-0-0 oc pu<br>: 3-5.<br>or 10-0-0 oc bracing.           | urlins, except           |  |
| REACTIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (size) 2=0-5-8, 6=0-5-8<br>Max Horz 2=99(LC 7)<br>Max Uplift 2=-426(LC 5), 6=-428(LC 4)<br>Max Grav 2=1680(LC 1), 6=1681(LC 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                                                  |                                                                        |                                                                            |                          |  |
| FORCES. (Ib)<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max. Comp./Max. Ten All forces 250 (lb) (<br>2-3=-2520/821, 3-4=-2841/849, 4-5=-2841//<br>2-10=-729/2062, 8-10=-1228/3380, 6-8=-66<br>3-10=-196/1078, 4-10=-700/526, 4-8=-699/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or less except when shown.<br>351, 5-6=-2522/825<br>8/2063<br>524, 5-8=-195/1077                                                                                                                                                                 |                                                                                                                                                                                                                    |                                                                                  |                                                                        |                                                                            |                          |  |
| <ul> <li>WEBS 3-10=-186/1078, 4-10=-700/526, 4-8=-699/524, 5-8=-195/1077</li> <li>NOTES- <ol> <li>1) 2-pty truss to be connected together with 10d (0.131*x3*) nails as follows:<br/>Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.</li> <li>Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.</li> <li>Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.</li> <li>Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.</li> <li>Webs connection have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.</li> <li>3) Urbalanced roof live loads have been considered for this design.</li> <li>Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15f; Cat. II; Exp C; Enclosed;<br/>MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60</li> <li>Provide adequate drainage to prevent water ponding.</li> <li>This truss has been designed for a 10.0 psf bottom chord in el areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.</li> <li>Provide mechanical connection device(s) shall be provided sufficient to support concentrated load(s) 78 lb down and 78 lb up at 42-7, 716 lb down and 108 lb up at 14-3-9, 111 lb down and 108 lb up at 8-3-9, 111 lb down and 108 lb up at 3-2-7, 75 lb down and 73 lb up at 12-2-3, 111 lb down and 108 lb up at 12-3-9, 111 lb down and 108 lb up at 12-3-9, 111 lb down and 108 lb up at 22-3-9, 34 lb down at 12-3-9, 34 lb down</li></ol></li></ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                    |                                                                                  |                                                                        |                                                                            |                          |  |
| LOOP CASE(S)<br>Design valid for<br>a truss system.<br>building design.<br>is always requir<br>fabrication, stor<br>Safety Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A stand of the second stand st | ND INCLUDED MITEK REFERENCE<br>nly upon parameters shown, and i<br>illity of design parameters and prop<br>s web and/or chord members only<br>nal injury and property damage. F<br>stems, see <b>ASUTPI</b> Q<br>way, Suite 203 Waldorf, MD 2060 | E PAGE MII-7473 rev. 5/19/202<br>s for an individual building com<br>perly incorporate this design inth<br>. Additional temporary and per<br>for general guidance regarding<br>tuality Criteria, DSB-89 and B<br>1 | 20 BEFORE<br>ponent, not<br>o the overall<br>manent brace<br>the<br>CSI Building | USE.<br>sing<br>g Component                                            | ENGINEERING F<br>EREAN<br>A Mil<br>818 Soundside Road<br>Edenton, NC 27932 | Tek Affiliate            |  |

| Job                   | Truss              | Truss Type | Qty | Ply        | Lot 32 Forest Ridge                                         |         |
|-----------------------|--------------------|------------|-----|------------|-------------------------------------------------------------|---------|
|                       |                    |            |     |            | E1:                                                         | 5359721 |
| J0121-0587            | A06                | Hip Girder | 1   | 2          |                                                             |         |
|                       |                    |            |     | <b>_</b>   | Job Reference (optional)                                    |         |
| Comtech, Inc, Fayette | /ille, NC - 28314, |            |     | 8.330 s Oc | t 7 2020 MiTek Industries, Inc. Thu Jan 28 13:24:26 2021 Pa | age 2   |

ID:WeU20\_wZYqtTA5MeuIVrNIzoaVc-K30KOD6HOXzw9FqVZbZoR2TkHy8fYcm0vaaTFHzqpOJ

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 5-7=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 3=-41(F) 5=-41(F) 9=-17(F) 10=-17(F) 8=-17(F) 11=-38(F) 12=-35(F) 13=-41(F) 14=-41(F) 15=-41(F) 16=-41(F) 17=-41(F) 18=-41(F) 19=-41(F) 20=-41(F) 21=-35(F) 22=-38(F) 23=-25(F) 24=-23(F) 25=-17(F) 26=-17(F) 27=-17(F) 28=-17(F) 29=-17(F) 30=-17(F) 31=-17(F) 32=-23(F) 33=-25(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





| LOADING (ps<br>TCLL 20.<br>TCDL 10.<br>BCLL 0. | sf)<br>.0<br>.0<br>.0 * | SPACING-<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr | 2-0-0<br>1.15<br>1.15<br>YES | CSI.<br>TC<br>BC<br>WB | 0.25<br>0.35<br>0.30 | DEFL.<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>-0.12<br>-0.17<br>0.01 | (loc)<br>8-9<br>8-9<br>8 | l/defl<br>>999<br>>999<br>n/a | L/d<br>360<br>240<br>n/a | PLATES<br>MT20            | <b>GRIP</b> 244/190 |
|------------------------------------------------|-------------------------|-------------------------------------------------------------|------------------------------|------------------------|----------------------|-------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------|---------------------|
| BCDL IU.                                       | .0                      | CODE IRC2015/11                                             | -12014                       | IVIAUIX                | -0                   | VVIIIQ(LL)                                | 0.03                         | 2-9                      | >999                          | 240                      | Weight. 146 lb            | FI = 20%            |
| LUMBER-<br>TOP CHORD<br>BOT CHORD              | 2x6 SP<br>2x6 SP        | No.1<br>No.1                                                |                              |                        |                      | BRACING-<br>TOP CHOR                      | RD                           | Structu<br>except        | ral wood<br>end verti         | sheathing di<br>cals.    | rectly applied or 6-0-0 c | oc purlins,         |
| WEBS                                           | 2x4 SP                  | No.2                                                        |                              |                        |                      | BOT CHOR                                  | RD .                         | Rigid c                  | eiling dire                   | ectly applied            | or 10-0-0 oc bracing.     |                     |
| REACTIONS.                                     | (size                   | e) 2=0-5-8, 8=Mechanie                                      | cal                          |                        |                      | WEBS                                      |                              | 1 Row                    | at midpt                      | 5                        | 5-8                       |                     |
|                                                | Max He                  | orz 2=253(LC 12)                                            |                              |                        |                      |                                           |                              |                          |                               |                          |                           |                     |

Max Uplift 2=-44(LC 12), 8=-83(LC 12) Max Grav 2=842(LC 19), 8=867(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1089/158. 3-5=-937/232

BOT CHORD 2-9=-280/949. 8-9=-84/311

WFBS 3-9=-503/285, 5-9=-146/868, 5-8=-706/201

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 15-3-0, Exterior(2) 15-3-0 to 19-5-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





|                                                                         |                                                                                                     | 0100                                              |                                                                                                                                                    | 1000                                                                         |                                                                        |                                                                   |                                    |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|
|                                                                         | I                                                                                                   | 9-10-8                                            | 1                                                                                                                                                  | 9-10-8                                                                       |                                                                        | 1                                                                 |                                    |
| Plate Offsets (X,Y) [5:0                                                | )-3-0,0-3-12], [7:0-3-0,0-3-12], [11:0-                                                             | 4-0,0-4-8]                                        |                                                                                                                                                    |                                                                              |                                                                        |                                                                   |                                    |
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0      | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014                 | CSI.<br>TC 0.22<br>BC 0.34<br>WB 0.27<br>Matrix-S | DEFL.         in           Vert(LL)         -0.11           Vert(CT)         -0.17           Horz(CT)         0.01           Wind(LL)         0.03 | l (loc) l/defl<br>10-11 >999<br>10-11 >999<br>10 n/a<br>2-11 >999            | L/d<br>360<br>240<br>n/a<br>240                                        | PLATES<br>MT20<br>Weight: 147 lb                                  | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER-<br>TOP CHORD 2x6 SP No<br>BOT CHORD 2x6 SP No<br>WEBS 2x4 SP No | .1<br>.1<br>.2                                                                                      | E<br>T                                            | BRACING-<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                         | Structural wood<br>except end vertie<br>Rigid ceiling dire<br>1 Row at midpt | sheathing directly<br>cals, and 2-0-0 oc<br>ctly applied or 10<br>6-10 | / applied or 6-0-0 o<br>c purlins (6-0-0 max<br>)-0-0 oc bracing. | oc purlins,<br>x.): 5-7.           |
| REACTIONS. (size)<br>Max Horz<br>Max Uplift<br>Max Grav                 | 2=0-5-8, 10=Mechanical<br>2=248(LC 12)<br>2=-44(LC 12), 10=-73(LC 12)<br>2=838(LC 1), 10=837(LC 19) |                                                   |                                                                                                                                                    | ·                                                                            |                                                                        |                                                                   |                                    |
|                                                                         | mp /Max Ten - All forces 250 (lb) or                                                                | less except when shown                            |                                                                                                                                                    |                                                                              |                                                                        |                                                                   |                                    |

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when show

- TOP CHORD 2-3=-1070/171, 3-5=-915/241, 5-6=-753/268
- BOT CHORD 2-11=-302/920, 10-11=-99/297
- WEBS 3-11=-467/288, 6-11=-152/839, 6-10=-645/227

#### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 14-5-4, Exterior(2) 14-5-4 to 19-5-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| LOADING (psf) | SPACING- 2-0-0       | CSI.     | DEFL.    | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
|---------------|----------------------|----------|----------|-------|-------|--------|-----|----------------|----------|
| TCLL 20.0     | Plate Grip DOL 1.15  | TC 0.61  | Vert(LL) | -0.12 | 2-9   | >999   | 360 | MT20           | 244/190  |
| TCDL 10.0     | Lumber DOL 1.15      | BC 0.40  | Vert(CT) | -0.24 | 2-9   | >959   | 240 |                |          |
| BCLL 0.0 *    | Rep Stress Incr YES  | WB 0.39  | Horz(CT) | 0.01  | 8     | n/a    | n/a |                |          |
| BCDL 10.0     | Code IRC2015/TPI2014 | Matrix-S | Wind(LL) | 0.02  | 2-9   | >999   | 240 | Weight: 143 lb | FT = 20% |
| I IIMBER.     | 1                    |          | BRACING- |       |       |        |     |                |          |

| TOP CHORD<br>BOT CHORD<br>WEBS | 2x6 SP No.1<br>2x6 SP No.1<br>2x4 SP No.2 | TOP CHORD<br>BOT CHORD | Structural wood sheathing directly applied or 6-0-0 oc purlins,<br>except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-6.<br>Rigid ceiling directly applied or 10-0-0 oc bracing. |
|--------------------------------|-------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REACTIONS.                     | (size) 8=Mechanical, 2=0-5-8              |                        |                                                                                                                                                                                          |

Max Horz 2=236(LC 12) Max Uplift 8=-77(LC 9), 2=-39(LC 12) Max Grav 8=779(LC 1), 2=838(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1048/210, 3-4=-725/131, 4-5=-550/166, 5-8=-726/268

BOT CHORD 2-9=-379/892

WEBS 3-9=-436/246. 5-9=-219/736

# NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 11-10-5, Exterior(2) 11-10-5 to 18-0-15, Interior(1) 18-0-15 to 19-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





| 1                                                                                                            | 9-0-0                                                                                                                                                                                 |                                                   | 19-9-0                                                                         |                                                                  |                                                                     |                                                                                      |                                    |  |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|--|--|
| T                                                                                                            | 9-0-0                                                                                                                                                                                 | 9-0-0                                             |                                                                                |                                                                  | 10-9-0                                                              |                                                                                      |                                    |  |  |
| Plate Offsets (X,Y)                                                                                          | [3:0-2-4,0-5-0]                                                                                                                                                                       |                                                   |                                                                                |                                                                  |                                                                     |                                                                                      |                                    |  |  |
| LOADING (psf)<br>TCLL 20.0<br>TCDL 10.0<br>BCLL 0.0 *<br>BCDL 10.0                                           | SPACING- 2-0-0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015/TPI2014                                                                               | CSI.<br>TC 0.59<br>BC 0.35<br>WB 0.54<br>Matrix-S | DEFL. in<br>Vert(LL) -0.08<br>Vert(CT) -0.15<br>Horz(CT) 0.01<br>Wind(LL) 0.04 | (loc) l/def<br>7-9 >999<br>7-9 >999<br>7 n/a<br>2-9 >999         | l L/d<br>360<br>240<br>a n/a<br>240<br>240                          | PLATES<br>MT20<br>Weight: 130 lb                                                     | <b>GRIP</b><br>244/190<br>FT = 20% |  |  |
| LUMBER-<br>TOP CHORD 2x6 SF<br>BOT CHORD 2x6 SF<br>WEBS 2x4 SF<br>REACTIONS. (siz<br>Max H<br>Max L<br>Max C | <ul> <li>No.1</li> <li>No.2</li> <li>re) 7=Mechanical, 2=0-5-8</li> <li>lorz 2=182(LC 12)</li> <li>lplift 7=-80(LC 9), 2=-40(LC 12)</li> <li>rav 7=779(LC 1), 2=846(LC 19)</li> </ul> |                                                   | BRACING-<br>TOP CHORD<br>BOT CHORD<br>WEBS                                     | Structural wo<br>except end v<br>Rigid ceiling o<br>1 Row at mid | od sheathing dir<br>erticals, and 2-0<br>directly applied o<br>pt 3 | rectly applied or 6-0-0 (<br>-0 oc purlins (6-0-0 ma<br>or 10-0-0 oc bracing.<br>3-7 | oc purlins,<br>x.): 3-5.           |  |  |
| FORCES.(lb) - Max.TOP CHORD2-3=BOT CHORD2-9=WEBS3-9=                                                         | Comp./Max. Ten All forces 250 (lb) or<br>-1063/177, 4-7=-310/157<br>-241/818, 7-9=-237/829<br>0/463, 3-7=-891/253                                                                     | less except when shown.                           |                                                                                |                                                                  |                                                                     |                                                                                      |                                    |  |  |

- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 9-0-0, Exterior(2) 9-0-0 to 15-2-11, Interior(1) 15-2-11 to 19-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932



| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-0-1                                                                                                                                      | 10-0-1                                                   |                                                                                                                                                    |                                           | 19-                                                                                                                           | <del>)</del> -9-0                                                                             |                                    |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10-0-1                                                                                                                                      |                                                          | 1                                                                                                                                                  | 9-8-15                                    |                                                                                                                               |                                                                                               |                                    |  |  |
| Plate Offsets (X,Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [9:0-4-0,0-4-8]                                                                                                                             |                                                          |                                                                                                                                                    |                                           |                                                                                                                               | L.                                                                                            |                                    |  |  |
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014                                                           | <b>CSI.</b><br>TC 0.14<br>BC 0.25<br>WB 0.32<br>Matrix-S | DEFL.         in           Vert(LL)         -0.03           Vert(CT)         -0.06           Horz(CT)         0.07           Wind(LL)         0.02 | n (loc)<br>3 2-9<br>3 2-9<br>1 8<br>2 2-9 | I/defl         L/d           >999         360           >999         240           n/a         n/a           >999         240 | <b>PLATES</b><br>MT20<br>Weight: 255 lb                                                       | <b>GRIP</b><br>244/190<br>FT = 20% |  |  |
| LUMBER-<br>TOP CHORD 2x6 SP<br>BOT CHORD 2x6 SP<br>WEBS 2x4 SP<br>REACTIONS. (size<br>Max H<br>Max U<br>Max G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P No.1<br>No.1<br>No.2<br>e) 8=Mechanical, 2=0-5-8<br>orz 2=132(LC 8)<br>plift 8=-368(LC 5), 2=-246(LC 8)<br>rav 8=1052(LC 1), 2=1095(LC 1) |                                                          | BRACING-<br>TOP CHORD<br>BOT CHORD                                                                                                                 | Structu<br>except<br>Rigid c              | ral wood sheathir<br>end verticals, and<br>eiling directly app                                                                | ng directly applied or 6-0-0 o<br>d 2-0-0 oc purlins (6-0-0 max<br>lied or 10-0-0 oc bracing. | c purlins,<br>ĸ.): 3-6.            |  |  |
| FORCES.       (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       2-3=-1430/449, 3-4=-1363/383         BOT CHORD       2-9=-413/1135, 8-9=-504/1284         WEBS       3-9=0/461, 4-9=0/396, 4-8=-1435/574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                          |                                                                                                                                                    |                                           |                                                                                                                               |                                                                                               |                                    |  |  |
| <ul> <li>NOTES-</li> <li>1) 2-ply truss to be connected together with 10d (0.131*x3") nails as follows:<br/>Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.<br/>Bottom chords connected as follows: 2x6 - 1 rows to 49-0 oc.</li> <li>2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.</li> <li>3) Wind: ASCE 7-10; Vult=130mph (5-second guard) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15f; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60</li> <li>4) Provide adequate drainage to prevent water ponding.</li> <li>5) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.</li> <li>7) Refer to grider(s) for truss to truss connections.</li> <li>8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8-368, 2=246.</li> <li>9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.</li> <li>10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 75 lb down and 78 lb up at 12-27, 101 lb down and 108 lb up at 14-27, and 111 lb down and 108 lb up at 14-27, and 34 lb down at 16-27, and 34 lb down at 16-27,</li></ul> |                                                                                                                                             |                                                          |                                                                                                                                                    |                                           |                                                                                                                               |                                                                                               |                                    |  |  |
| LOAD CASE(S) Stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dard                                                                                                                                        |                                                          |                                                                                                                                                    |                                           |                                                                                                                               | January                                                                                       | 28,2021                            |  |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TREENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

4x6 =

| Job                    | Truss              | Truss Type      | Qty | Ply        | Lot 32 Forest Ridge                                         |         |
|------------------------|--------------------|-----------------|-----|------------|-------------------------------------------------------------|---------|
|                        |                    |                 |     |            | E1                                                          | 5359726 |
| J0121-0587             | A11                | Half Hip Girder | 1   | 2          |                                                             |         |
|                        |                    |                 |     | <b>_</b>   | Job Reference (optional)                                    |         |
| Comtech, Inc, Fayetter | ville, NC - 28314, |                 |     | 8.330 s Oc | t 7 2020 MiTek Industries, Inc. Thu Jan 28 13:24:30 2021 Pa | age 2   |

ID:WeU20\_wZYqtTA5MeuIVrNIzoaVc-DqGrEa9nRITLdt8GoQdkbudSKaXaUOpcpCYgO2zqpOF

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-6=-20, 2-7=-20

Concentrated Loads (lb)

Vert: 3=-41(B) 9=-17(B) 10=-38(B) 11=-35(B) 12=-41(B) 13=-41(B) 14=-41(B) 15=-41(B) 16=-41(B) 17=-41(B) 18=-25(B) 19=-23(B) 20=-17(B) 21=-17(B) 22=-17(B) 23=-17(B) 24=-17(B) 25=-17(B) 25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

![](_page_15_Figure_0.jpeg)

![](_page_15_Picture_1.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MaNS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road

Edenton, NC 27932

![](_page_16_Figure_0.jpeg)

![](_page_16_Figure_1.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

![](_page_17_Figure_0.jpeg)

|                         |                               | 6-9-               | 3                      | C-0-0                    |                        |                 | 6-9                 | -13          |                           |             |
|-------------------------|-------------------------------|--------------------|------------------------|--------------------------|------------------------|-----------------|---------------------|--------------|---------------------------|-------------|
| Plate Offsets (X,Y      | [1:0-0-13,0-1-0], [1:0-1-11   | ,0-4-13], [5:0-    | 1-11,0-4-13], [5:0-0-1 | 3,0-1-0], [6:0-4-0,0-4-1 | 2], [8:0               | -4-0,0-         | 4-12]               |              |                           |             |
| LOADING (psf)           | SPACING-                      | 2-0-0              | <b>CSI.</b>            | DEFL.                    | in                     | (loc)           | l/defl              | L/d          | PLATES                    | GRIP        |
| TCDL 10.0<br>BCLL 0.0   | Lumber DOL<br>Rep Stress Incr | 1.15<br>1.15<br>NO | BC 0.94<br>WB 0.43     | Vert(CT)<br>Horz(CT)     | -0.08<br>-0.16<br>0.03 | 0-0<br>1-8<br>5 | >999<br>>999<br>n/a | 240<br>n/a   | MT20                      | 244/190     |
| BCDL 10.0               | Code IRC2015/TP               | 12014              | Matrix-S               | Wind(LL)                 | 0.08                   | 5-6             | >999                | 240          | Weight: 302 lb            | FT = 20%    |
| LUMBER-<br>TOP CHORD 23 | 5 SP No.1                     |                    |                        | BRACING-<br>TOP CHOR     | D                      | Structu         | Iral wood           | sheathing di | rectly applied or 6-0-0 o | oc purlins. |

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

WEDGE Left: 2x4 SP No.3 , Right: 2x4 SP No.3

| REACTIONS. | (size)     | 1=0-5-8, 5=0-5-8           |
|------------|------------|----------------------------|
|            | Max Horz   | 1=-235(LC 4)               |
|            | Max Uplift | 1=-607(LC 8), 5=-659(LC 9) |
|            | Max Grav   | 1=4730(IC2) 5=3930(IC1)    |

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-5258/712, 2-3=-5071/805, 3-4=-4878/890, 4-5=-5090/797

- BOT CHORD 1-8=-536/3803, 6-8=-337/2648, 5-6=-522/3650
- WEBS 3-6=-668/2983, 4-6=-263/394, 3-8=-481/3489, 2-8=-265/385

# NOTES-

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 607 lb uplift at joint 1 and 659 lb uplift at joint 5.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 779 lb down and 103 lb up at 1-4-4, 779 lb down and 103 lb up at 3-4-4, 779 lb down and 103 lb up at 5-4-4, 779 lb down and 103 lb up at 7-0-12, 754 lb down and 103 lb up at 9-0-12, 754 lb down and 93 lb up at 10-1-4, 759 lb down and 97 lb up at 12-1-4, and 759 lb down and 100 lb up at 14-1-4, and 1032 lb down and 388 lb up at 16-0-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

# LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_17_Picture_20.jpeg)

![](_page_17_Picture_21.jpeg)

| Job                    | Truss              | Truss Type    | Qty | Ply        | Lot 32 Forest Ridge                                      |           |
|------------------------|--------------------|---------------|-----|------------|----------------------------------------------------------|-----------|
|                        |                    |               |     |            |                                                          | E15359730 |
| J0121-0587             | B04                | Common Girder | 1   | 2          |                                                          |           |
|                        |                    |               |     | <b></b>    | Job Reference (optional)                                 |           |
| Comtech, Inc, Fayettey | /ille, NC - 28314, |               |     | 8.330 s Oc | t 7 2020 MiTek Industries, Inc. Thu Jan 28 13:24:34 2021 | Page 2    |

ID:WeU20\_wZYqtTA5MeuIVrNIzoaVc-5bVM4yCIV\_zn6UR11Gigmko0jBjmQA5CkqWuXpzqpOB

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 1-5=-20

Concentrated Loads (lb)

Vert: 7=-759(B) 8=-754(B) 9=-754(B) 10=-754(B) 11=-754(B) 13=-754(B) 14=-754(B) 15=-759(B) 16=-1032(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_18_Picture_8.jpeg)

![](_page_19_Figure_0.jpeg)

|                     | 1                                                   | 4-0-0 |  |
|---------------------|-----------------------------------------------------|-------|--|
|                     | Г                                                   | 4-0-0 |  |
| Plate Offsets (X,Y) | [2:0-0-13,0-1-0], [2:0-1-11,0-4-13], [2:0-5-8,Edge] |       |  |

| LOADING | G (psf) | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL. in (loc) I/defl L/d PLATES GRIP                                                          |    |
|---------|---------|-----------------------|----------|------------------------------------------------------------------------------------------------|----|
| TCLL    | 20.0    | Plate Grip DOL 1.15   | TC 0.11  | Vert(LL) -0.00 2-4 >999 360 MT20 244/190                                                       |    |
| TCDL    | 10.0    | Lumber DOL 1.15       | BC 0.05  | Vert(CT) -0.01 2-4 >999 240                                                                    |    |
| BCLL    | 0.0 *   | Rep Stress Incr YES   | WB 0.00  | Horz(CT) -0.00 3 n/a n/a                                                                       |    |
| BCDL    | 10.0    | Code IRC2015/TPI2014  | Matrix-P | Wind(LL)         0.00         2         ****         240         Weight: 26 lb         FT = 20 | )% |

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-5-8, 4=Mechanical Max Horz 2=128(LC 12) Max Uplift 3=-95(LC 12) Max Grav 3=124(LC 19), 2=224(LC 1), 4=74(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 3-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 3.

![](_page_19_Picture_13.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_19_Picture_15.jpeg)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

![](_page_20_Figure_0.jpeg)

| Plate Offsets (X,Y)                            | [2:0-0-13,0-1-0], [2:0-1-11,0-4-13], [2:0- | -5-8,Edge]             |                      |               |              |                |             |                          |                        |
|------------------------------------------------|--------------------------------------------|------------------------|----------------------|---------------|--------------|----------------|-------------|--------------------------|------------------------|
| LOADING (psf)<br>TCLL 20.0                     | SPACING- 2-0-0<br>Plate Grip DOL 1.15      | <b>CSI.</b><br>TC 0.06 | DEFL.<br>Vert(LL)    | in<br>-0.00   | (loc)<br>2-5 | l/defl<br>>999 | L/d<br>360  | PLATES<br>MT20           | <b>GRIP</b><br>244/190 |
| TCDL         10.0           BCLL         0.0 * | Lumber DOL 1.15<br>Rep Stress Incr YES     | BC 0.05<br>WB 0.00     | Vert(CT)<br>Horz(CT) | -0.00<br>0.01 | 2-5<br>4     | >999<br>n/a    | 240<br>n/a  |                          |                        |
| BCDL 10.0                                      | Code IRC2015/TPI2014                       | Matrix-P               | Wind(LL) BRACING-    | -0.00         | 2-5          | >999           | 240         | Weight: 25 lb            | FT = 20%               |
| TOP CHORD 2x6 S                                | SP No.1                                    |                        | TOP CHOR             | D :           | Structu      | ral wood       | sheathing d | irectly applied or 4-0-0 | oc purlins, except     |

BOT CHORD

2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x6 SP No.1 WEDGE Left: 2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-5-8, 5=Mechanical Max Horz 2=90(LC 12) Max Uplift 4=-38(LC 9), 2=-4(LC 12) Max Grav 4=95(LC 1), 2=224(LC 1), 5=70(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 4 and 4 lb uplift at joint 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

![](_page_20_Picture_14.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_20_Picture_16.jpeg)

![](_page_21_Figure_0.jpeg)

|            |                                                                                           |                      | 1-2-6          | 1        | 4-0-0     |            | 1             |          |
|------------|-------------------------------------------------------------------------------------------|----------------------|----------------|----------|-----------|------------|---------------|----------|
|            |                                                                                           |                      | 1-2-6          |          | 2-9-10    |            | 1             |          |
| Plate Offs | Plate Offsets (X,Y) [2:0-5-8.Edge], [2:0-1-11,0-4-13], [2:0-0-13,0-1-0], [3:0-2-0,0-3-13] |                      |                |          |           |            |               |          |
|            |                                                                                           |                      |                |          |           |            |               |          |
| LOADING    | í (psf)                                                                                   | SPACING- 2-0         | -0 <b>CSI.</b> | DEFL.    | in (loc)  | l/defl L/d | PLATES        | GRIP     |
| TCLL       | 20.0                                                                                      | Plate Grip DOL 1.1   | 15 TC 0.07     | Vert(LL) | -0.00 2-5 | >999 360   | MT20          | 244/190  |
| TCDL       | 10.0                                                                                      | Lumber DOL 1.1       | I5 BC 0.05     | Vert(CT) | -0.00 2-5 | >999 240   |               |          |
| BCLL       | 0.0 *                                                                                     | Rep Stress Incr N    | O WB 0.00      | Horz(CT) | 0.01 4    | n/a n/a    |               |          |
| BCDL       | 10.0                                                                                      | Code IRC2015/TPI2014 | 4 Matrix-P     | Wind(LL) | 0.00 2-5  | >999 240   | Weight: 24 lb | FT = 20% |

| LUMBER-          |        | BRACING-  |                                   |                                           |
|------------------|--------|-----------|-----------------------------------|-------------------------------------------|
| TOP CHORD 2x6 SF | 9 No.1 | TOP CHORD | Structural wood sheathing dir     | ectly applied or 4-0-0 oc purlins, except |
| BOT CHORD 2x6 SF | 9 No.1 |           | 2-0-0 oc purlins: 3-4.            |                                           |
| WEDGE            |        | BOT CHORD | Rigid ceiling directly applied of | or 10-0-0 oc bracing.                     |

Left: 2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-5-8, 5=Mechanical Max Horz 2=56(LC 27)

Max Uplift 4=-44(LC 5), 2=-24(LC 8)

Max Grav 4=98(LC 20), 2=225(LC 1), 5=72(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 4 and 24 lb uplift at joint 2.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 54 lb down and 34 lb up at 1-2-6, and 55 lb down and 32 lb up at 3-3-2 on top chord, and 7 lb down at 1-3-2, and 8 lb down at 3-3-2 on bottom chord. The
- design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

#### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 2-5=-20 Concentrated Loads (lb)

![](_page_21_Picture_23.jpeg)

![](_page_21_Picture_24.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate B18 Soundside Road

Edenton, NC 27932

![](_page_22_Figure_0.jpeg)

|      |         |                       |          | 2-1-11                                          |
|------|---------|-----------------------|----------|-------------------------------------------------|
|      | G (psf) | <b>SPACING-</b> 2-0-0 | CSI.     | DEFL. in (loc) I/defl L/d PLATES GRIP           |
| TCLL | 20.0    | Plate Grip DOL 1.15   | IC 0.03  | Vert(LL) -0.00 2 >999 360 M120 244/190          |
| TCDL | 10.0    | Lumber DOL 1.15       | BC 0.01  | Vert(CT) -0.00 2 >999 240                       |
| BCLL | 0.0 *   | Rep Stress Incr YES   | WB 0.00  | Horz(CT) 0.00 3 n/a n/a                         |
| BCDL | 10.0    | Code IRC2015/TPI2014  | Matrix-P | Wind(LL) 0.00 2 **** 240 Weight: 14 lb FT = 20% |

2-1-11

BRACING-

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

**REACTIONS.** (size) 3=Mechanical, 2=0-5-8, 4=Mechanical

Max Horz 2=54(LC 12)

Max Uplift 3=-31(LC 12), 2=-12(LC 12)

Max Grav 3=44(LC 19), 2=160(LC 1), 4=37(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

#### NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 3 and 12 lb uplift at joint 2.

![](_page_22_Picture_15.jpeg)

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 2-1-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_23_Figure_0.jpeg)

# A. GILBERT

![](_page_23_Picture_2.jpeg)

A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

![](_page_24_Figure_0.jpeg)

|            |       | 0-4-0           |        |       |      | 6-2-0    |       |       |        |     |               |          |
|------------|-------|-----------------|--------|-------|------|----------|-------|-------|--------|-----|---------------|----------|
| LOADING (p | psf)  | SPACING-        | 2-0-0  | CSI.  |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL 2     | 0.0   | Plate Grip DOL  | 1.15   | TC    | 0.64 | Vert(LL) | -0.08 | 2-4   | >946   | 360 | MT20          | 244/190  |
| TCDL 1     | 0.0   | Lumber DOL      | 1.15   | BC    | 0.82 | Vert(CT) | -0.16 | 2-4   | >473   | 240 |               |          |
| BCLL       | 0.0 * | Rep Stress Incr | YES    | WB    | 0.00 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |          |
| BCDL 1     | 0.0   | Code IRC2015/TF | PI2014 | Matri | к-Р  | Wind(LL) | 0.19  | 2-4   | >385   | 240 | Weight: 22 lb | FT = 20% |

BRACING-

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 4=0-1-8, 2=0-3-0

Max Horz 2=62(LC 6) Max Uplift 4=-128(LC 6), 2=-136(LC 6)

Max Grav 4=247(LC 1), 2=280(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 lb uplift at joint 4 and 136 lb uplift at joint 2.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

![](_page_24_Picture_16.jpeg)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_25_Figure_0.jpeg)

|         |       | 0-4-0             |       |        |      | 2-4-0    |       |       |        |     |              |          |
|---------|-------|-------------------|-------|--------|------|----------|-------|-------|--------|-----|--------------|----------|
| LOADING | (psf) | SPACING-          | 2-0-0 | CSI.   |      | DEFL.    | in    | (loc) | l/defl | L/d | PLATES       | GRIP     |
| TCLL    | 20.0  | Plate Grip DOL    | 1.15  | TC     | 0.22 | Vert(LL) | -0.00 | 2-4   | >999   | 360 | MT20         | 244/190  |
| TCDL    | 10.0  | Lumber DOL        | 1.15  | BC     | 0.05 | Vert(CT) | -0.00 | 2-4   | >999   | 240 |              |          |
| BCLL    | 0.0 * | Rep Stress Incr   | YES   | WB     | 0.00 | Horz(CT) | -0.00 | 3     | n/a    | n/a |              |          |
| BCDL    | 10.0  | Code IRC2015/TPI2 | 2014  | Matrix | κ-P  | Wind(LL) | 0.00  | 2     | ****   | 240 | Weight: 8 lb | FT = 20% |
|         |       |                   |       |        |      |          |       |       |        |     |              |          |

BRACING-

TOP CHORD

BOT CHORD

# LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No 1

REACTIONS. All bearings 2-5-0.

(lb) - Max Horz 2=36(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 3, 2 Max Grav All reactions 250 lb or less at joint(s) 3, 3, 2, 4

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

# NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) \* This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

![](_page_25_Picture_17.jpeg)

Structural wood sheathing directly applied or 2-4-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

![](_page_26_Figure_0.jpeg)

|                     | 6-0-0                          |                                                                 | 1                             | 12-0-0                 |                |          |
|---------------------|--------------------------------|-----------------------------------------------------------------|-------------------------------|------------------------|----------------|----------|
|                     | 6-0-0                          |                                                                 | 1                             | 6-0-0                  |                |          |
| Plate Offsets (X,Y) | [2:0-3-0,Edge], [4:0-3-0,Edge] |                                                                 |                               |                        |                |          |
| LOADING (psf)       | SPACING- 2-0-0                 | CSI.                                                            | DEFL. ir                      | n (loc) l/defl L/d     | PLATES         | GRIP     |
| CLL 20.0            | Plate Grip DOL 1.15            | TC 0.39                                                         | Vert(LL) 0.10                 | 2-6 >999 240           | MT20           | 244/190  |
| CDL 10.0            | Lumber DOL 1.15                | BC 0.31                                                         | Vert(CT) -0.07                | 2-6 >999 240           |                |          |
| BCLL 0.0 *          | Rep Stress Incr YES            | WB 0.06                                                         | Horz(CT) -0.01                | 4 n/a n/a              |                |          |
| 3CDL 10.0           | Code IRC2015/TPI2014           | Matrix-S                                                        |                               |                        | Weight: 41 lb  | FT = 20% |
| UMBER-              | •                              | · · ·                                                           | BRACING-                      |                        |                |          |
| OP CHORD 2x4 S      | P No.1                         | TOP CHORD                                                       | Structural wood sheathing dir | ectly applied or 5-10- | 12 oc purlins. |          |
| OT CHORD 2x4 S      | P No.1                         | BOT CHORD Rigid ceiling directly applied or 5-10-11 oc bracing. |                               |                        |                |          |
| VEBS 2x4 S          | P No.2                         |                                                                 |                               |                        | -              |          |
|                     |                                |                                                                 |                               |                        |                |          |
| CEACTIONS. (SIZ     | ze) 2=0-3-0, 4=0-3-0           |                                                                 |                               |                        |                |          |

Max Horz 2=28(LC 10) Max Uplift 2=-236(LC 6), 4=-236(LC 7) Max Grav 2=500(LC 1), 4=500(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-873/1166, 3-4=-873/1166

BOT CHORD 2-6=-1022/771, 4-6=-1022/771 WEBS 3-6=-430/283

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=236, 4=236.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

![](_page_26_Figure_13.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MaNS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_26_Picture_15.jpeg)

![](_page_27_Figure_0.jpeg)

Scale = 1:20.4

![](_page_27_Figure_2.jpeg)

| L                                                                                                                                    |                                                                                                                |                                                          | 12-0-0                                                                                                             |                                                                   |                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                                                                                      |                                                                                                                |                                                          | 12-0-0                                                                                                             |                                                                   |                                                                                             |
| Plate Offsets (X,Y)                                                                                                                  | [2:0-3-0,Edge], [6:0-3-0,Edge]                                                                                 |                                                          |                                                                                                                    |                                                                   |                                                                                             |
| LOADING         (psf)           TCLL         20.0           TCDL         10.0           BCLL         0.0           BCDL         10.0 | SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014                             | <b>CSI.</b><br>TC 0.42<br>BC 0.41<br>WB 0.07<br>Matrix-S | DEFL.         ir           Vert(LL)         0.11           Vert(CT)         -0.09           Horz(CT)         -0.02 | i (loc) l/defl L/d<br>2-10 >999 240<br>2-10 >999 240<br>6 n/a n/a | PLATES         GRIP           MT20         244/190           Weight: 44 lb         FT = 20% |
| LUMBER-<br>TOP CHORD 2x4 S<br>BOT CHORD 2x4 S<br>OTHERS 2x4 S                                                                        | P No.1<br>P No.1<br>P No.2                                                                                     | /                                                        | BRACING-<br>TOP CHORD<br>BOT CHORD                                                                                 | Structural wood sheathing dir<br>Rigid ceiling directly applied c | ectly applied or 6-0-0 oc purlins.<br>or 5-0-8 oc bracing.                                  |
| REACTIONS. (siz<br>Max H<br>Max U<br>Max 0                                                                                           | te) 2=0-3-8, 6=0-3-8<br>Horz 2=48(LC 14)<br>Jplift 2=-325(LC 6), 6=-325(LC 7)<br>Grav 2=500(LC 1), 6=500(LC 1) |                                                          |                                                                                                                    |                                                                   |                                                                                             |

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-880/1434. 3-4=-829/1483. 4-5=-829/1483. 5-6=-880/1434

BOT CHORD 2-10=-1259/786, 9-10=-1259/786, 8-9=-1259/786, 6-8=-1259/786 WFBS 4-9=-559/291

#### NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) \* This truss has been designed for a live load of 40.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=325, 6=325.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

![](_page_27_Figure_15.jpeg)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

![](_page_27_Picture_17.jpeg)

![](_page_28_Figure_0.jpeg)