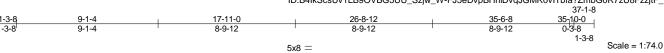
Job	Truss	Truss Type	Qty	Pl	ly	RAY & CHRISTINE HYMBAUGH
		• •	*		·	TO THE CONTROL THE PROPERTY OF
J0221-1067	Δ1	Common	4		1	
00221 1007	/ \ 1	Common	7		•	
						Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28309, Bob Lewis		Rı	n: 8.300 s Mar 22 2019 Prin	nt: 8.300	0 s Mar	22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:47 2021 Page 1

ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-FJ5eDvpBHhiDvqJGMR0vITbfa?ZmbG0R7zU8FzzjtF_


Structural wood sheathing directly applied or 5-0-1 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

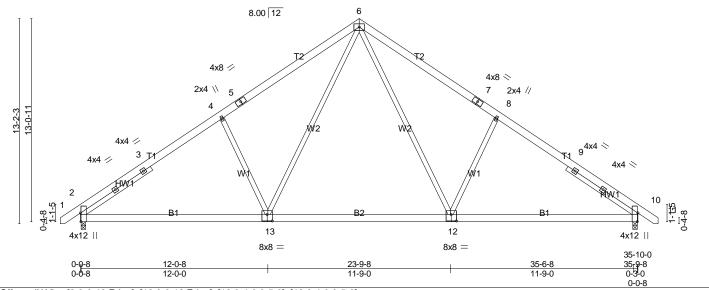


Plate Offsets (X,Y)-- [2:0-6-12,Edge], [10:0-6-12,Edge], [12:0-4-0,0-5-0], [13:0-4-0,0-5-0]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.35	Vert(LL) -0.21 12-13	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.69	Vert(CT) -0.30 2-13	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.44	Horz(CT) 0.05 10	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 2-13	>999 240	Weight: 269 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

Left 2x4 SP No.2 -t 5-5-7, Right 2x4 SP No.2 -t 5-5-7 SLIDER

REACTIONS. (size) 2=0-3-8 (min. 0-2-2), 10=0-3-8 (min. 0-2-2)

Max Horz 2=-253(LC 10)

Max Grav 2=1792(LC 19), 10=1792(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

BOT CHORD

2-4=-2369/294, 4-6=-2202/397, 6-8=-2202/397, 8-10=-2369/294 2-13=-92/2006, 12-13=0/1357, 10-12=-96/1838 6-12=-131/1103, 8-12=-473/293, 6-13=-131/1103, 4-13=-473/293 WEBS

1) Unbalanced roof live loads have been considered for this design.
2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 17-11-0, Exterior(2) 17-11-0 to 25-11-0, Interior(1) 25-11-0 to 36-11-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
		, ,	1	1	TO CO CONTROL TO THE PORT OF T
J0221-1067	Λ1Λ	CADLE	4	4	
30221-1007	AIA	GABLE		'	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:48 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-jVf0RFqp2_q4X_uSw9Y8qh7qlPvbKjJaMdDhnPzjtEz

Structural wood sheathing directly applied or 5-4-13 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

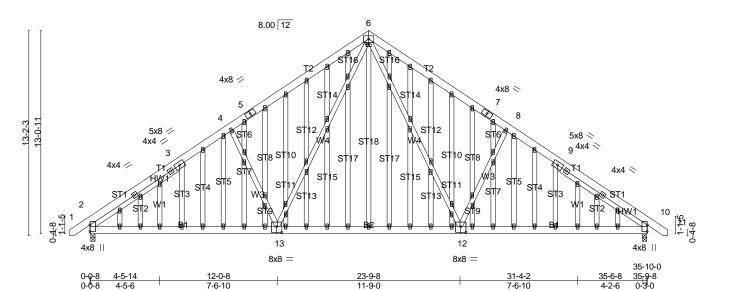


Plate Offsets (X,Y)-- [2:0-5-4,0-0-4], [6:0-2-0,0-0-4], [10:0-5-4,0-0-4], [12:0-4-0,0-4-8], [13:0-4-0,0-4-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) I/defI L/d **PLATES GRIP TCLL** 20.Ó Plate Grip DOL 1.15 TC 0.32 Vert(LL) -0.38 12-13 >999 360 MT20 244/190 **TCDL** 10.0 Lumber DOL ВС 0.65 Vert(CT) -0.46 12-13 >937 240 1.15 **BCLL** 0.0 Rep Stress Incr YES WB 0.44 Horz(CT) 0.05 10 n/a n/a **BCDL** 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.03 2-13 >999 240 Weight: 514 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2 2x4 SP No.2 **OTHERS**

SLIDER Left 2x4 SP No.2 -t 6-11-15, Right 2x4 SP No.2 -t 6-11-15

REACTIONS.

(size) 2=0-3-8 (min. 0-1-13), 10=0-3-8 (min. 0-1-13)

Max Horz 2=-253(LC 10)

Max Grav 2=1562(LC 19), 10=1562(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-2103/292, 4-6=-1937/395, 6-8=-1937/395, 8-10=-2103/292 TOP CHORD

BOT CHORD 2-13=-91/1784, 12-13=0/1204, 10-12=-95/1617

WEBS 6-12=-130/942, 8-12=-473/292, 6-13=-130/942, 4-13=-473/292

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 17-11-0, Exterior(2) 17-11-0 to 25-11-0, Interior(1) 25-11-0 to 36-11-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type		Qty	Ply	RAY &	CHRISTIN	E HYMBAUGH	
J0221-1067	A1B	Roof Special		1		1 Job Refer	ence (optiona))	
Comtech, Inc., Fayet	teville, NC 28309, Bob Lew	S	Run: 8.300 s	Mar 22 2019 Pr	rint: 8.300 s	Mar 22 2019 N	MiTek Industrie	es, Inc. Thu Feb 18	15:44:49 2021 Page 1
	₁ 1-3-8 9	-1-4	17-11-0	ID:B4IKScs	26-4-2	BG5UU_Szjw_ 3	_W-BiDPebqk 80-11-5	35-6-0 35 ₋ 1 ₀ -0	JoGu34CkaHzEJszjtEy
	1-3-8 9 1-3-8 9	-1-4	8-9-12	1	8-5-2	1	4-7-3	4-6-11 0-4-0	
				5x8 =					Scale = 1:80.3
		8.0	00 12	6					
			_						
		4x8 🖊	T2		13	4x8 💸			
		4x6 / 5				7 6x8	>		
13-2-3		4 (5)		W3		8			
13-2-3	4x4 🥢		O1			W5		4x6 <>	
	4x4 // 3	T4			W4	13	#4 W7	4x8 <	Ī
	j. j	₩1	W2		В3	5x8	1 4	10	4-2-6
	2 	B1 B	B2			380 11	12		1-5- 1-4-
]]	4-4-8	2.	B2				2x4	PTV 2	1-1
	4x8	16 ¹⁵ 4x8 =	:	14 8x12 <i>≶</i>	5.50 1	2		8x8	
		2x4							
								35-10-0	

Plate Offsets (X,Y)-- [2:0-5-4,0-0-4], [11:0-3-10,0-0-8], [13:0-5-0,0-2-4], [14:0-8-0,0-4-0]

9-1-4

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.77	Vert(LL) -0.24 13 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.59	Vert(CT) -0.51 13-14 >831 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.78	Horz(CT) 0.39 11 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.13 13 >999 240	Weight: 278 lb FT = 20%

17-2-4

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 **WEBS** 2x4 SP No.2 *Except*

W4: 2x4 SP 2400F 2.0E

SLIDER Left 2x4 SP No.2 -t 5-5-4, Right 2x4 SP No.2 -t 2-11-10

0-<u>0-8</u> 0-0-8

BRACING-

26-4-2

TOP CHORD BOT CHORD WFBS

Structural wood sheathing directly applied or 2-4-13 oc purlins.

35₋9-8 0-3-8

35-6-0

4-6-11

Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 4-14 2x6 SPF No.2 - 8-14

30-11-5

4-7-3

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 11=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-15)

Max Horz 2=253(LC 11)

Max Grav 11=1425(LC 1), 2=1627(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2168/276, 4-6=-1447/332, 6-8=-1377/324, 8-9=-4402/410, 9-11=-3913/436 **BOT CHORD** 2-16=-81/1835, 14-16=-81/1835, 13-14=-203/3879, 12-13=-279/3244, 11-12=-279/3192 WEBS

4-16=0/574, 4-14=-863/213, 6-14=-155/977, 8-14=-3154/327, 8-13=-82/3177,

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 17-11-0, Exterior(2) 17-11-0 to 26-2-6, Interior(1) 26-2-6 to 35-7-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A1C	ROOF SPECIAL	7	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:50 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-gunnrxr3ac4omH1r1Zacv6D2DCc6oXRtpxiorIzjtEx

17-11-0 30-11-5 35-6-0 35-1,0-0 8-9-12 8-5-2 4-7-3 4-6-11

> Scale = 1:78.8 5x8 =

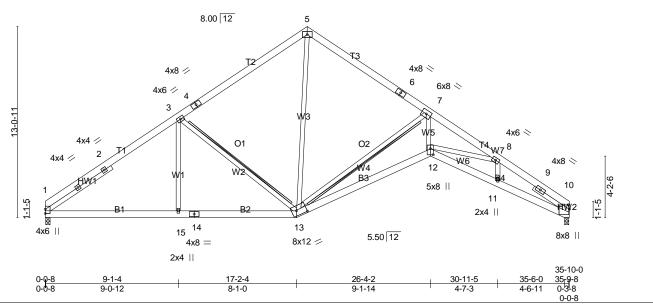


Plate Offsets (X,Y)-- [10:0-3-10,0-0-8], [12:0-5-0,0-2-4], [13:0-8-0,0-4-0]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.77	Vert(LL) -0.24 12 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.59	Vert(CT) -0.52 12-13 >830 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.78	Horz(CT) 0.39 10 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.13 12 >999 240	Weight: 274 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2 *Except* W4: 2x4 SP 2400F 2.0E

SLIDER Left 2x4 SP No.2 -t 5-5-4, Right 2x4 SP No.2 -t 2-11-10

BRACING-

TOP CHORD BOT CHORD WFBS

Structural wood sheathing directly applied or 2-4-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.
T-Brace: 2x4 SPF No.2 - 3-13 2x6 SPF No.2 - 7-13

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

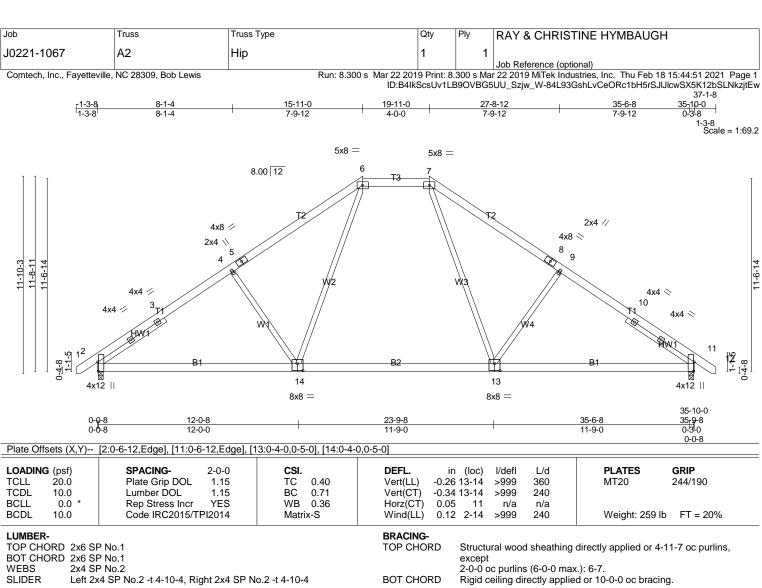
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 10=0-3-8 (min. 0-1-8), 1=0-3-8 (min. 0-1-13)

Max Horz 1=-251(LC 8)

Max Grav 10=1426(LC 1), 1=1562(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 1-3=-2173/285, 3-5=-1448/339, 5-7=-1378/325, 7-8=-4407/411, 8-10=-3916/437 **BOT CHORD** 1-15=-86/1841, 13-15=-86/1841, 12-13=-215/3883, 11-12=-280/3247, 10-11=-279/3195 WEBS

3-15=0/578, 3-13=-868/215, 5-13=-163/980, 7-13=-3157/334, 7-12=-82/3180,

8-12=0/810

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 8-0-0, Interior(1) 8-0-0 to 17-11-0, Exterior(2) 17-11-0 to 26-2-6, Interior(1) 26-2-6 to 35-7-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

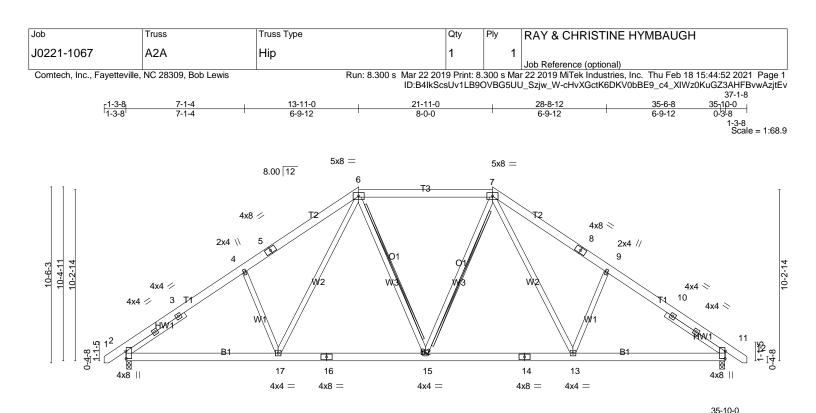
REACTIONS.

(size) 2=0-3-8 (min. 0-2-1), 11=0-3-8 (min. 0-2-1)

Max Horz 2=226(LC 11)

Max Grav 2=1751(LC 19), 11=1752(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


TOP CHORD 2-4=-2324/337, 4-6=-2112/386, 6-7=-1375/356, 7-9=-2111/385, 9-11=-2324/337

2-14=-163/1956, 13-14=0/1435, 11-13=-155/1791 **BOT CHORD**

4-14=-404/287, 6-14=-87/935, 7-13=-86/938, 9-13=-405/287 WFBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 15-11-0, Exterior(2) 15-11-0 to 31-2-12, Interior(1) 31-2-12 to 36-11-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Plate Offsets (X,Y)	[2:0-5-4,0-0-4],	[11:0-5-4,0-0-4]
---------------------	------------------	------------------

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.31	Vert(LL) -0.10 13-15	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.44	Vert(CT) -0.16 13-15	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.26	Horz(CT) 0.05 11	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 17	>999 240	Weight: 279 lb FT = 20%

17-11-0

8-9-12

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WFBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 4-3-0, Right 2x4 SP No.2 -t 4-3-0

9 - 1 - 4

9-0-12

BRACING-TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or 4-11-11 oc purlins,

35-6-8

8-9-12

35-9-8 0-3-0

except

26-8-12

8-9-12

2-0-0 oc purlins (5-10-12 max.): 6-7.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF No.2 - 6-15, 7-15 T-Brace:

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.

(size) 2=0-3-8 (min. 0-2-0), 11=0-3-8 (min. 0-2-0) Max Horz 2=199(LC 11)

Max Grav 2=1678(LC 19), 11=1678(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

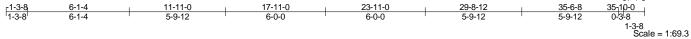
TOP CHORD 2-4=-2312/352, 4-6=-2149/448, 6-7=-1549/351, 7-9=-2149/448, 9-11=-2312/352

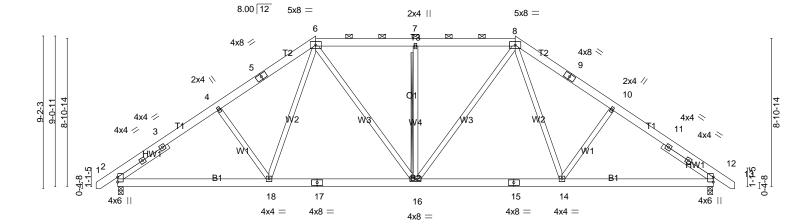
BOT CHORD 2-17=-181/1890, 15-17=-37/1499, 13-15=-28/1459, 11-13=-172/1769 **WEBS**

4-17=-319/243, 6-17=-125/678, 6-15=-36/328, 7-15=-36/328, 7-13=-125/678,

9-13=-319/243

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 7-0-3, Interior(1) 7-0-3 to 13-11-0, Exterior(2) 13-11-0 to 33-2-12, Interior(1) 33-2-12 to 36-11-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-cHvXGctK6DKV0bBE9_c4_XIXx0KIGbZAHFBvwAzjtEv 37-1-8

0-0-8	9-0-12	8-9-12	8-9-12	8-9-12 0- ³ -0 0-0-8
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.25	Vert(LL) -0.10 14-16 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.41	Vert(CT) -0.16 14-16 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.05 12 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 16 >999 240	Weight: 280 lb FT = 20%

17-11-0

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

0-Q-8

2x4 SP No.2 WFRS

SLIDER Left 2x4 SP No.2 -t 3-7-13, Right 2x4 SP No.2 -t 3-7-13 **BRACING-**

WEBS

TOP CHORD

Structural wood sheathing directly applied or 5-1-13 oc purlins,

35-6-8

35-10-0

35₋9-8

except

26-8-12

2-0-0 oc purlins (5-11-11 max.): 6-8. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 7-16

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

(size) 2=0-3-8 (min. 0-1-13), 12=0-3-8 (min. 0-1-13) REACTIONS.

Max Horz 2=-173(LC 10)

Max Grav 2=1517(LC 2), 12=1517(LC 2)

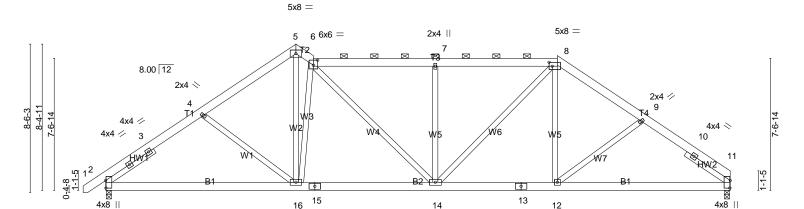
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2123/379, 4-6=-1924/416, 6-7=-1695/402, 7-8=-1695/402, 8-10=-1924/416,

10-12=-2123/379

BOT CHORD 2-18=-209/1685, 16-18=-81/1444, 14-16=-69/1441, 12-14=-197/1611 6-18=-52/463, 6-16=-78/515, 7-16=-414/185, 8-16=-78/515, 8-14=-52/463

WEBS


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 11-11-0, Exterior(2) 11-11-0 to 23-2-12, Interior(1) 23-2-12 to 23-11-0, Exterior(2) 23-11-0 to 35-2-12, Interior(1) 35-2-12 to 36-11-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	F	⊃ly	RAY & CHRISTINE HYMBAUGH
J0221-1067	A3	Roof Special	1		1	
						Job Reference (optional)
Camback Inc. Favottovilla	NC 20200 Dale Lauria		D 0 200 a May 22 2040 Drin	4. 0 2/	00 - 14-	22 2040 MiTak Industrias Inc. Thu Fab 40 45 44 52 2004 Dags 4

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries. Inc ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-4TSvUytysXSMelmQji7JXkrijQh1?rpJVvxSSdzjtEu

10-11-0 18-11-0 25-11-0 30-8-12 35-6-8 35-10-0 11-11_T0 5-3-12 1-0-0 7-0-0 4-9-12 4-9-12 0-3-8

Scale = 1:66.1

					35-10-0
0-φ-8	10-11-0	18-11-0	25-11-0	35-6-8	35 ₁ 9-8
0-0-8	10-10-8	8-0-0	7-0-0	9-7-8	0-3 <u>l</u> -0
					0-0-8

4x8 =

riale Olisels (A, I)	[2.0-3-4,0-0-4], [0.0-3-0,0-3-0], [0.0-2	2-4,0-2-12], [11.0-3-4,0-	U -4]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0.10 14-16	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.38	Vert(CT) -0.20 2-16 :	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 1.00	Horz(CT) 0.05 11	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 14 :	>999 240	Weight: 281 lb FT = 20%

LUMBER-TOP CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

WFBS 2x4 SP No.2

SLIDER

Left 2x4 SP No.2 -t 3-4-3, Right 2x4 SP No.2 -t 3-0-9

Plate Offsets (X V)... [2:0.5-4 0.0-4] [6:0.3-0 0.3-8] [8:0-2-4 0.2-12] [11:0-5-4 0.0-4]

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-3-13 oc purlins,

except

2-0-0 oc purlins (5-5-9 max.): 6-8.

4x8 =

4x4 =

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 11=0-3-8 (min. 0-1-11), 2=0-3-8 (min. 0-1-12)

Max Horz 2=-158(LC 10)

Max Uplift11=-30(LC 13) Max Grav 11=1432(LC 1), 2=1504(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-2013/363, 4-5=-1780/345, 5-6=-1607/357, 6-7=-1881/422, 7-8=-1879/421, TOP CHORD

8-9=-1827/365, 9-11=-2025/383

BOT CHORD 2-16=-197/1607, 14-16=-101/1652, 12-14=-89/1502, 11-12=-211/1523

WEBS 5-16=-244/1429, 6-16=-1115/273, 6-14=-94/462, 7-14=-538/216, 8-14=-110/558,

8-12=0/361

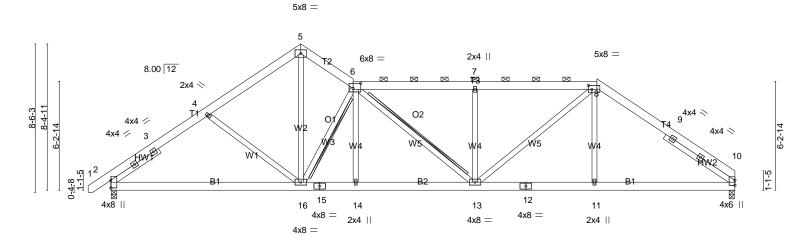
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 10-11-0, Exterior(2) 10-11-0 to 11-11-0, Interior(1) 11-11-0 to 25-11-0, Exterior(2) 25-11-0 to 33-11-0, Interior(1) 33-11-0 to 35-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4x8 =

4x8 =


- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A3A	Roof Special	1	1	
		•			Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:54 2021 Page 1

-				ID:B4lkScsU\	/1LB9OVBG5UU_Szjw_W-Yf0I	hluadqaDFvLcGPfY4yNtb	p0_kQUTkZg?_3zjtEt
_г 1-3-8	5-7-4	10-11-0	13-11-0	20-11-0	27-11-0	35-6-8	35 ₁ 1 ₀ -0
1-3-8	5-7-4	5-3-12	3-0-0	7-0-0	7-0-0	7-7-8	0-3-8

Scale = 1:66.1

						35-10-0
0-φ-8	10-11-0	₁ 13-11-0	20-11-0	27-11-0	35-6-8	35 _r 9-8
0-0-8	10-10-8	3-0-0	7-0-0	7-0-0	7-7-8	0-3 <mark>!</mark> -0 0-0-8
						0-0-8

	Plate Offsets (X,Y)	[2:0-5-4,0-0-4], [6:0-5-4,0-3-8], [8:0-2-8,0-2-12]	
--	---------------------	--	--

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0.10 2-16 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.40	Vert(CT) -0.21 2-16 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.39	Horz(CT) 0.06 10 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 13-14 >999 240	Weight: 274 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-4-3, Right 2x4 SP No.2 -t 4-9-12

BRACING-TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or 5-3-14 oc purlins,

except

2-0-0 oc purlins (5-0-10 max.): 6-8.

Rigid ceiling directly applied or 10-0-0 oc bracing.

T-Brace: 2x4 SPF No.2 - 6-16, 6-13

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 10=0-3-8 (min. 0-1-12), 2=0-3-8 (min. 0-1-12)

Max Horz 2=159(LC 9) Max Uplift10=-30(LC 13)

Max Grav 10=1476(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2017/356, 4-5=-1759/336, 5-6=-1746/365, 6-7=-2231/453, 7-8=-2231/453,

8-10=-2114/352

BOT CHORD 2-16=-192/1566, 14-16=-202/2111, 13-14=-201/2114, 11-13=-146/1640, 10-11=-148/1631 WEBS 5-16=-276/1598, 6-16=-1532/325, 6-13=-56/259, 7-13=-522/201, 8-13=-122/873,

5-16=-276/1598, 6-16=-1532/325, 6-13=-56/259, 7-13=-522/201, 8-13=-122/873, 8-11=0/433

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 10-11-0, Exterior(2) 10-11-0 to 13-11-0, Interior(1) 13-11-0 to 27-11-0, Exterior(2) 27-11-0 to 35-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building Conferius page 2

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A3A	Roof Special	1	1	Inh Reference (ontional)

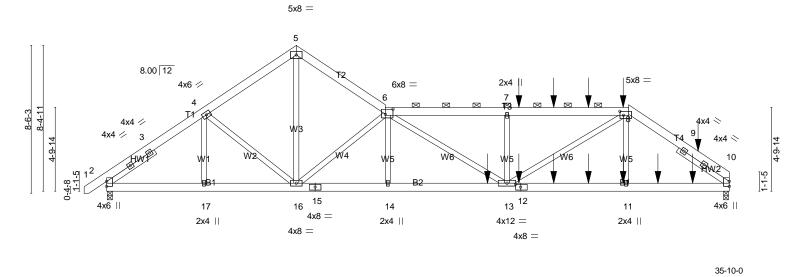
Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:55 2021 Page 2 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-0sagvevCO8i4t2woq7Anc9w2LDMDTtkczCQZWVzjtEs

NOTES-

- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A3GR	Roof Special Girder	1	2	Job Reference (optional)


Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:56 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-U2826_wq9SrxVCV?Oqh09NTBCdfjCGymBs963yzjtEr 16-0-8 23-0-8 30-0-8 35-6-8 5-1-8 7-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 6-8.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:66.3

0-ψ-8	5-7-4	10-11-0	16-0-8	23-0-8	1 30-0-8	35-6-8	35-9-8
0-0-8	5-6-12	5-3-12	5-1-8	7-0-0	7-0-0	5-6-0	0-3-0
							0-0-8
Plate Offsets (X,Y) [6	:0-5-4,0-3-8], [8:0	-2-8,0-2-12], [12:0-3-8	3,0-2-0]				

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.36	Vert(LL) -0.14 13-14 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.64	Vert(CT) -0.28 13-14 >999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.65	Horz(CT) 0.06 10 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.06 13-14 >999 240	Weight: 539 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-4-1, Right 2x4 SP No.2 -t 3-6-7

REACTIONS.

(size) 10=0-3-8 (min. 0-1-10), 2=0-3-8 (min. 0-1-8)

Max Horz 2=159(LC 24) Max Uplift10=-8(LC 9)

Max Grav 10=2714(LC 1), 2=2099(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2998/0, 4-5=-2711/0, 5-6=-2736/0, 6-7=-5751/0, 7-8=-5752/0, 8-10=-4055/4

10-11-0

5-3-12

BOT CHORD 2-17=0/2284, 16-17=0/2284, 14-16=0/5078, 13-14=0/5088, 11-13=0/3134, 10-11=0/3130 **WEBS** 5-16=0/2587, 6-16=-3768/0, 6-14=0/356, 6-13=-199/897, 7-13=-804/285, 8-13=0/3091,

8-11=0/439

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.
4) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) Provide adequate drainage to prevent water ponding.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A3GR	Roof Special Girder	1	2	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:56 2021 Page 2 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-U2826_wq9SrxVCV?Qqh09NTBCdfjCGymBs963yzjtEr

NOTES-

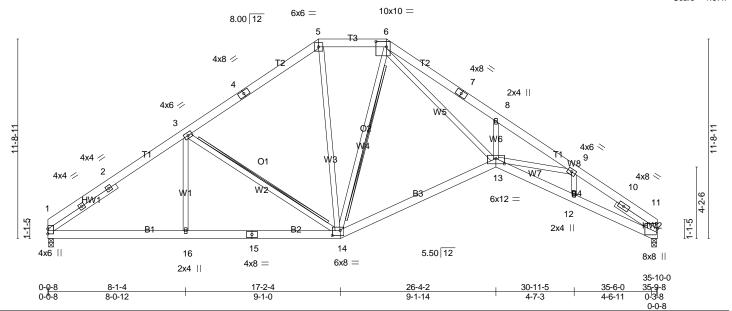
12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 145 lb down and 102 lb up at 23-8-12, 145 lb down and 102 lb up at 25-8-12, 145 lb down and 102 lb up at 27-8-12, and 145 lb down and 102 lb up at 29-8-12, and 145 lb down and 121 lb up at 33-8-12 on top chord, and 1129 lb down at 21-11-0, 75 lb down at 23-8-12, 75 lb down at 27-8-12, 75 lb down at 27-8-12, 75 lb down at 29-8-12, and 75 lb down at 31-8-12, and 75 lb down at 33-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 Uniform Loads (plf)

Vert: 1-5=-60, 5-6=-60, 6-8=-60, 8-10=-60, 2-10=-20

Concentrated Loads (lb)


Vert: 11=-37(F) 12=-37(F) 18=-105(F) 19=-105(F) 20=-105(F) 21=-105(F) 22=-105(F) 23=-1129(F) 24=-37(F) 25=-37(F) 26=-37(F) 27=-37(F) 27=

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A4	Hip	1	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:57 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-yEiQJKxSwlzo6M4ByXCFha?F910NxgtvQWvgbOzjtEq

15-11-0 19-11-0 26-4-2 30-11-5 35-6-0 35-10-0 7-9-12 4-0-0 6-5-2 4-6-11

Scale = 1:67.7

Plate Offsets (X,Y)	[6:0-7-8,0-3-12], [11:0-3-14,0-0-12],	[13:0-6-0,0-3-12], [14:0-5-8,0-3-8]

LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/	defl L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.79	Vert(LL) -0.25	13 >	999 360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.55	Vert(CT) -0.53 1:	3-14 >	811 240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.86	Horz(CT) 0.39	11	n/a n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.15	13 >	999 240	Weight: 283 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

Left 2x4 SP No.2 -t 4-10-1, Right 2x4 SP No.2 -t 2-11-10 SLIDER

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-3-2 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-6.

BOT CHORD WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SPF No.2 - 3-14, 6-14 T-Brace: Fasten (2X) T and I braces to narrow edge of web with 10d

(0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 11=0-3-8 (min. 0-1-8), 1=0-3-8 (min. 0-1-12)

Max Horz 1=225(LC 11)

Max Grav 11=1426(LC 1), 1=1502(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2123/314, 3-5=-1459/351, 5-6=-1144/352, 6-8=-4476/692, 8-9=-4360/501,

9-11=-3933/504

1-16=-145/1782, 14-16=-145/1782, 13-14=0/1406, 12-13=-338/3267, 11-12=-336/3214

3-16=0/518, 3-14=-783/215, 5-14=-69/456, 6-14=-542/53, 6-13=-402/3519,

8-13=-475/266, 9-13=0/717

WEBS

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

30-11-5 to 35-7-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type		Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A4A	Hip		1	1	
						Job Reference (optional)
Comtech, Inc., Fayettevi	le, NC 28309, Bob Lewis		Run: 8.300 s Mar 22 2019	9 Print: 8.	300 s Ma	r 22 2019 MiTek Industries, Inc. Thu Feb 18 15:44:58 2021 Page 1
			ID-B4IkSco	LIV1I RO	1VRG5U	LL Sziw W-PPGoYay/h35fkWaNVFiLIFoVOhPMTa8e3fAaD7azitEn

17-2-4

3-3-4

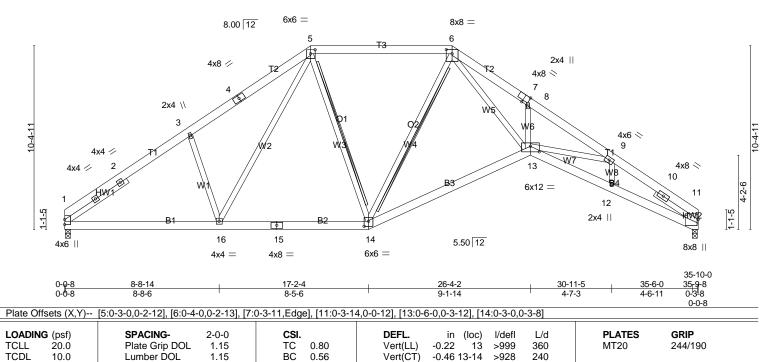
21-11-0

4-8-12

26-4-2

4-5-2

30-11-5


35-6-0

4-6-11

Scale = 1:65.2

35,10-0

0-4-0

LUMBER-

BCLL

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

0.0

10.0

SLIDER Left 2x4 SP No.2 -t 4-3-0, Right 2x4 SP No.2 -t 2-11-10

Rep Stress Incr

Code IRC2015/TPI2014

BRACING-TOP CHORD

0.34

0.13

11

13

n/a

>999

n/a

240

Horz(CT)

Wind(LL)

Structural wood sheathing directly applied or 2-2-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-6.

Weight: 275 lb

FT = 20%

BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing.

T-Brace: 2x4 SPF No.2 - 5-14, 6-14

Fasten (2X) T and I braces to narrow edge of web with 10d

(0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 11=0-3-8 (min. 0-1-8), 1=0-3-8 (min. 0-1-12)

Max Horz 1=-198(LC 8)

7-1-4

7-1-4

13-11-0

6-9-12

Max Grav 11=1426(LC 1), 1=1492(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2136/353, 3-5=-1999/468, 5-6=-1307/359, 6-8=-4381/689, 8-9=-4332/543,

YES

9-11=-3941/559 BOT CHORD 1-16=-187/1751

1-16=-187/1751, 14-16=-41/1315, 13-14=-69/1743, 12-13=-400/3284, 11-12=-393/3225

3-16=-336/255, 5-16=-145/750, 6-14=-716/87, 6-13=-363/3328, 8-13=-363/197,

9-13=0/695

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 8-0-0, Interior(1) 8-0-0 to 13-11-0, Exterior(2) 13-11-0 to 33-2-12, Interior(1) 33-2-12 to 35-7-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WB

Matrix-S

0.82

- 6) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A4B	GABLE	1	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:01 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-r0xx9h_z__TEbzNyBNHBsQA4deP0tfnVL8ttk9zjtEm

6-7-14 13-0-4 17-11-0 22-9-12 4-10-12 6-4-6 4-10-12

Scale = 1:64.9

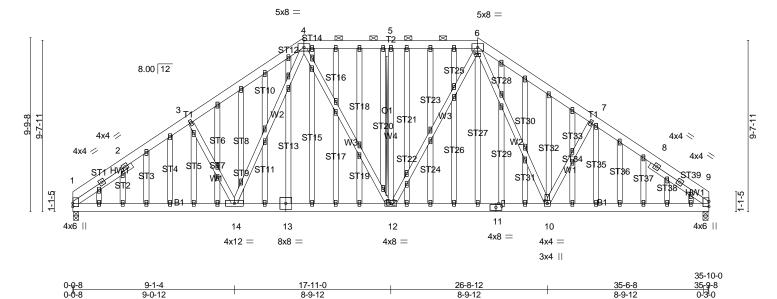


Plate Offsets (X,Y)-- [6:0-2-0,0-0-4], [10:0-2-0,0-1-8], [13:0-1-12,0-0-0], [13:0-0-0,0-2-12], [14:0-0-7,0-0-0], [42:0-1-12,0-0-0], [57:0-2-0,0-2-0]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.25	Vert(LL) -0.11 10-12 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.44	Vert(CT) -0.17 10-12 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.05 9 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 12 >999 240	Weight: 500 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2 2x4 SP No.2 **OTHERS**

SLIDER Left 2x4 SP No.2 -t 3-11-13, Right 2x4 SP No.2 -t 3-11-13

BRACING-TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 5-1-6 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-6.

Rigid ceiling directly applied or 10-0-0 oc bracing. 2x4 SPF No.2 - 5-12 T-Brace:

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 1=0-3-8 (min. 0-1-12), 9=0-3-8 (min. 0-1-12)

Max Horz 1=184(LC 11)

Max Grav 1=1481(LC 19), 9=1481(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2161/374, 3-4=-1965/442, 4-5=-1590/389, 5-6=-1590/389, 6-7=-1965/442,

7-9=-2161/374

BOT CHORD 1-14=-209/1745, 12-14=-68/1434, 10-12=-56/1410, 9-10=-197/1647 **WEBS** 3-14=-281/228, 4-14=-95/534, 4-12=-75/471, 5-12=-318/140, 6-12=-75/471,

6-10=-95/535, 7-10=-281/228

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 8-0-0, Interior(1) 8-0-0 to 13-0-4, Exterior(2) 13-0-4 to 34-1-8, Interior(1) 34-1-8 to 35-10-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. OdntWaeeing; Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A4B	GABLE	1	1	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:01 2021 Page 2
ID:B4IkScsUv1LB9OVBG5UU_Szjw_W-r0xx9h_z__TEbzNyBNHBsQA4deP0tfnVL8ttk9zjtEm

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A4C	Hip	1	1	
					Job Reference (optional)

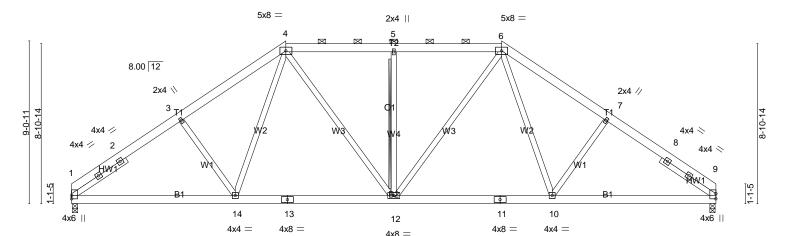
6-0-0

6-0-0

Comtech, Inc., Fayetteville, NC 28309, Bob Lewis

11-11-0

5-9-12


Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:04 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-Fad4nj0rHvroSR6XsWquU3oamrR740Yx165XLUzjtEj 17-11-0 29-8-12 35-6-8

5-9-12

35-10-0

5-9-12

Scale: 3/16"=1

LOADING (0	ODAONO	2.2.2	001	DEEL		 D: 4750	0.DUD
							0-0-8
0-0-8	9-0-12		8-9-12		8-9-12	8-9-12	0-3-0
0- 0 -8	9-1-4		17-11-0	1	26-8-12	35-6-8	35 _г 9-8

LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	I/defl L/d	PLATES GRIP
TCLL	20.Ó	Plate Grip DOL 1.15	TC 0.25	Vert(LL) -0.10 10-12	>999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.41	Vert(CT) -0.16 10-12	>999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.05 9	n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 12	>999 240	Weight: 273 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFRS

SLIDER Left 2x4 SP No.2 -t 3-7-13, Right 2x4 SP No.2 -t 3-7-13 **BRACING-**

TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 5-1-8 oc purlins, except 2-0-0 oc purlins (5-11-9 max.): 4-6.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF No.2 - 5-12 T-Brace:

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 1=0-3-8 (min. 0-1-12), 9=0-3-8 (min. 0-1-12)

Max Horz 1=169(LC 11)

Max Grav 1=1459(LC 2), 9=1459(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-3=-2132/386, 3-4=-1933/422, 4-5=-1698/409, 5-6=-1698/409, 6-7=-1933/422, TOP CHORD

7-9=-2132/386

BOT CHORD 1-14=-220/1694, 12-14=-90/1447, 10-12=-78/1446, 9-10=-208/1621 WEBS 4-14=-53/471, 4-12=-78/514, 5-12=-411/185, 6-12=-78/514, 6-10=-53/471

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 8-0-0, Interior(1) 8-0-0 to 11-11-0, Exterior(2) 11-11-0 to 23-2-12, Interior(1) 23-2-12 to 23-11-0, Exterior(2) 23-11-0 to 35-2-12, Interior(1) 35-2-12 to 35-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

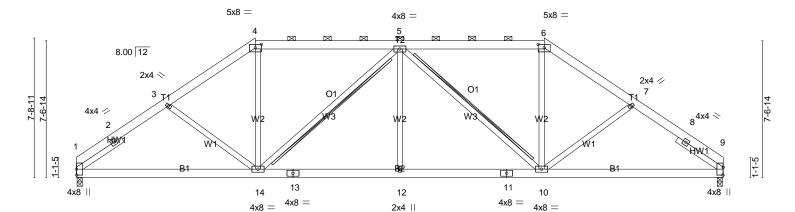
 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A4D	Hip	1	1	
		•			Job Reference (optional)

8-0-0

Comtech, Inc., Fayetteville, NC 28309, Bob Lewis

9-11-0


4-9-12

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:05 2021 Page 1 ID:B4IkScsUv1LB9OVBG5UU_Szjw_W-jnBS?31T2Dzf4bhjQDL70GKk2Fn9pPY4Gmr5twzjtEi 17-11-0 25-11-0 30-8-12 35-6-8 35-10-0

4-9-12

Scale: 3/16"=1"

4-9-12

					35-10-0
0-φ-8	9-11-0	17-11-0	25-11-0	35-6-8	35 _г 9-8
0-0-8	9-10-8	8-0-0	8-0-0	9-7-8	0-¦3 <mark>l</mark> -0
					0-0-8

Plate Offsets (X,Y)-- [1:0-4-0,0-0-4], [4:0-4-0,0-2-6], [6:0-4-0,0-2-6], [9:0-5-4,0-0-4] SPACING-**GRIP** LOADING (psf) 2-0-0 CSI. **DEFL** in (loc) I/defI L/d **PLATES TCLL** 20.Ó Plate Grip DOL 1.15 TC 0.28 Vert(LL) -0.08 12-14 >999 360 MT20 244/190 **TCDL** 10.0 Lumber DOL 1.15 ВС 0.36 Vert(CT) -0.15 9-10 >999 240 **BCLL** 0.0 Rep Stress Incr YES WB 0.44 Horz(CT) 0.06 n/a n/a **BCDL** 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.04 12 >999 240 Weight: 265 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-0-9, Right 2x4 SP No.2 -t 3-0-9

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-3-8 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-6.

BOT CHORD WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing.
T-Brace: 2x4 SPF No.2 - 5-14, 5-10
Fasten (2X) T and I braces to narrow edge of web with 10d
(0.131"x3") nails. 6in o.c. with 3in minimum end distance.

(0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 1=0-3-8 (min. 0-1-11), 9=0-3-8 (min. 0-1-11)

Max Horz 1=143(LC 9)

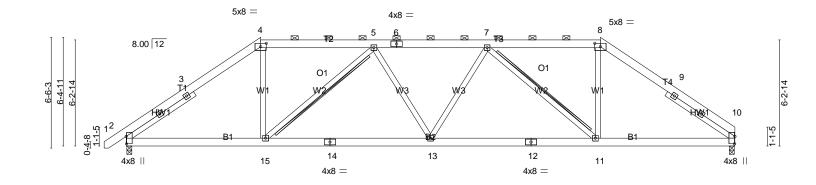
Max Grav 1=1433(LC 1), 9=1433(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-2026/397, 3-4=-1846/381, 4-5=-1530/360, 5-6=-1530/360, 6-7=-1846/381,

7-9=-2026/397

BOT CHORD 1-14=-223/1550, 12-14=-195/2008, 10-12=-195/2008, 9-10=-222/1522 WEBS 4-14=-58/660, 5-14=-710/128, 5-12=0/499, 5-10=-710/128, 6-10=-58/660


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 8-0-0, Interior(1) 8-0-0 to 9-11-0, Exterior(2) 9-11-0 to 21-2-12, Interior(1) 21-2-12 to 25-11-0, Exterior(2) 25-11-0 to 35-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

J0221-1067 A4E Hip 1 1	
Job Refer	rence (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:05 2021 Page 1
ID:B4lkScsUv1LB90VBG5UU_Szjw_W-jnBS?31T2Dzf4bhjQDL70GKj2Fl8pQ04Gmr5twzjtEi

Scale = 1:67.8

					35-10-0 35 ₅ 9-8
0-φ-8	7-11-0	17-11-0	27-11-0	35-6-8	35 ₁ 9-8
0-0-8	7-10-8	10-0-0	10-0-0	7-7-8	0-3 <mark>-</mark> 0 0-0-8
					0-0-8

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.35	Vert(LL) -0.11 13-15 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.49	Vert(CT) -0.21 13-15 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.38	Horz(CT) 0.07 10 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 13 >999 240	Weight: 253 lb FT = 20%

LUMBER-TOP CHORD 2x6 SP No.1

BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

WEB5 2X4 5P NO.2

SLIDER Left 2x4 SP No.2 -t 4-9-12, Right 2x4 SP No.2 -t 4-9-12

BRACING-TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied or 5-0-12 oc purlins,

except

2-0-0 oc purlins (4-11-9 max.): 4-8.

Rigid ceiling directly applied or 10-0-0 oc bracing.

T-Brace: 2x4 SPF No.2 - 5-15, 7-11 Fasten (2X) T and I braces to narrow edge of web with 10d

(0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.

(size) 10=0-3-8 (min. 0-1-13), 2=0-3-8 (min. 0-1-14)

Max Horz 2=118(LC 9)

Max Grav 10=1518(LC 2), 2=1578(LC 2)

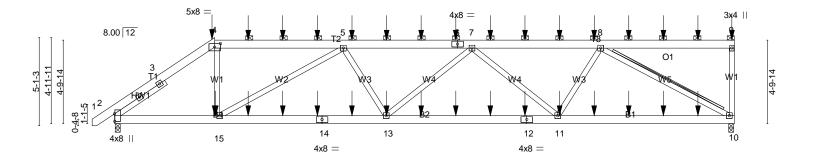
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2197/352, 4-5=-1719/356, 5-7=-2453/442, 7-8=-1723/370, 8-10=-2202/362

BOT CHORD 2-15=-142/1695, 13-15=-268/2345, 11-13=-278/2346, 10-11=-156/1699 WEBS 4-15=-11/933, 5-15=-893/168, 5-13=0/251, 7-11=-891/162, 8-11=-6/935

NOTES

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 7-11-0, Exterior(2) 7-11-0 to 19-2-12, Interior(1) 19-2-12 to 27-11-0, Exterior(2) 27-11-0 to 35-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 4x4 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job Trus	ss Truss Type	Qty	/ Ply	RAY & CHRISTINE HYMBAUGH	
J0221-1067 A40	GR Half Hip	Girder 1		2 Job Reference (optional)	
0 : I I F :: II NO.6	20000 B I I :	D 0.000 M 00.0040 D:		N 00 00 10 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Comtech, Inc., Fayetteville, NC 28309, Bob Lewis

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 1019 MiTck Industries, Inc. Thu Feb 18 15:45:08 2021 Page 1

Scale = 1:66.6

					35-10-0
0-φ-8	5-9-8	15-8-8	25-7-8	35-6-8	35 _г 9-8
0-0-8	5-9-0	9-11-0	9-11-0	9-11-0	0- ¹ 3 ¹ -0 0-0-8
					0-0-8

Plate Offsets (X,Y) [2:0-5-4,0-0-4], [4:0-4-0,0-2-6]						
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2015/TPI2014	CSI. TC 0.47 BC 0.48 WB 0.90 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.12 11-13 >999 360 Vert(CT) -0.25 11-13 >999 240 Horz(CT) 0.08 10 n/a n/a Wind(LL) 0.12 11-13 >999 240	PLATES GRIP MT20 244/190 Weight: 497 lb FT = 20%			

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-6-7

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-9. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD WEBS

T-Brace: 2x4 SPF No.2 - 8-10
Fasten (2X) T and I braces to narrow edge of web with 10d

(0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS.

(size) 10=0-3-8 (min. 0-1-9), 2=0-3-8 (min. 0-1-10)

Max Horz 2=122(LC 8)

Max Uplift10=-502(LC 5), 2=-443(LC 5) Max Grav 10=2689(LC 1), 2=2711(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-4086/736, 4-5=-3249/626, 5-7=-5584/1017, 7-8=-4557/799, 9-10=-351/134 BOT CHORD 2-15=-618/3185, 13-15=-1099/5392, 11-13=-1115/5524, 10-11=-787/3841 WEBS 4-15=-212/1851, 5-15=-2541/587, 5-13=0/661, 7-13=0/301, 7-11=-1288/422, 8-11=-23/1504, 8-10=-4373/906

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 4x4 MT20 unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=502, 2=443.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	A4GR	Half Hip Girder	1	2	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:08 2021 Page 2 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-8Msad43MK8LEx2Pl5LvqevyCSTn?0eyXyk3lUFzjtEf

NOTES-

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 124 lb down and 106 lb up at 5-9-8, 127 lb down and 102 lb up at 7-8-12, 127 lb down and 102 lb up at 9-8-12, 127 lb down and 102 lb up at 11-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 125-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down and 102 lb up at 13-8-12, 127 lb down at 13-8-12,

14) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-9=-60, 2-10=-20

Concentrated Loads (lb)

Vert: 4=-105(B) 6=-105(B) 9=-31 14=-37(B) 15=-350(B) 13=-37(B) 11=-37(B) 12=-37(B) 16=-105(B) 17=-105(B) 18=-105(B) 19=-105(B) 20=-105(B) 21=-105(B) 22=-105(B) 23=-105(B) 23=-105(B) 25=-105(B) 25=-1

Job	Truss		Truss Type		Qty	Ply	RAY & 0	CHRISTINE HYME	BAUGH	
J0221-1067	B1		Common		3	1				
							Job Refere	ence (optional)		
Comtech, Inc., Fayetteville, NC 28309, Bob Lewis			Run: 8.300 s Mar 22 20	19 Print: 8	.300 s Ma	r 22 2019 N	MiTek Industries, Inc. The	u Feb 18 15:45:08	2021 Page 1	
				ID:B4	kScsUv1L	.B9OVBG	5UU_Szjw_	W-8Msad43MK8LEx2PI	5LvqevyHLTmk0o ⁻	TXyk3lUFzjtEf
	-1-3-8	6-1-4	1	11-11-0		17-8-12		23-6-8	23 ₁ 10-0	
ı	1-3-8	6-1-4		5-9-12		5-9-12		5-9-12	0-3-8	

8.00 12 6 4x6 / 2x4 || 2x4 || 5 4 9-0-11 4x4 // 4x4 < 8 3 4x4 // 4x4 < • Ø 11 12 10 3x6 || 3x6 || 4x6 =

17-8-12

BRACING-

TOP CHORD

BOT CHORD

3x4 =

23-6-8

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

5x5 =

Scale = 1:51.0

23-10-0

23-8-8 0-2-0

0-1-8

DI 1	011	()()()	10 0 4 0 0 0 41	•
Plate	Offsets	(X.Y)	[9:0-4-0.0-0-1]	

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -0.25 10-12 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.56	Vert(CT) -0.36 10-12 >792 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.30	Horz(CT) 0.02 9 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.02 10-12 >999 240	Weight: 183 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

Left 2x4 SP No.2 -t 3-7-10, Right 2x6 SP No.1 -t 3-7-10 SLIDER

REACTIONS. (size) 9=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-8)

Max Horz 2=173(LC 11) Max Uplift2=-3(LC 12)

Max Grav 9=1010(LC 20), 2=1077(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

6 - 1 - 4

6-0-12

2-4=-1494/179, 4-6=-1447/354, 6-7=-1456/367, 7-9=-1498/188 2-12=-46/1211, 10-12=0/775, 9-10=-47/1110 TOP CHORD **BOT CHORD**

4-12=-313/254, 6-12=-160/776, 6-10=-162/788, 7-10=-314/257 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 11-11-0, Exterior(2) 11-11-0 to 19-11-0, Interior(1) 19-11-0 to 23-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3x4 =

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Truss Trus
Comtech, Inc., Fayetteville, NC 28309, Bob Lewis Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:09 2021 Page 1 ID:B4lkScsUv1LB9OVBGSUU_Sziw_W-CVQzrQ4_5RT5VC_Vf3Q3B6VSvsSLIHzgBOplohzjitEe 1-1-3-8 6-1-4 9-11-0 13-11-0 17-8-12 23-6-8 23-110-0 13-11-0 3-9-12 5-9-12 0-13-8 Scale = 1:46.9 5x5 = 5x5
Comtech, Inc., Fayetteville, NC 28309, Bob Lewis Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:09 2021 Page 1 D:B4IkScsUv1LB9OVBG5UU_Szjw_W-cyQzrQ4_SRT5YC_V3836VSvStsLHzgBOplohzjtEe 1-3-8 6-1-4 9-11-0 17-8-12 23-6-8 23-10-0 3-9-12 4-0-0 3-9-12 5-9-12 01-3 8 Scale = 1:46.9 5x5 =
Di.B4lkScsUv1LB90VBGSUU_Szjw_W-cYQzrQ4_5RT5YC_VI3Q3B6VSvs5LlhzgBOpl0inzjtEe 1-1-3-8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Scale = 1:46.9 $5x5 = 5x5 = $ $8.00 \boxed{12} \qquad 2x4 \parallel $ $4x4 = $
$5x5 = 5x5 = $ $\begin{array}{c} 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
$5x5 = 5x5 = $ $\begin{array}{c} 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$8.00 \boxed{12} \qquad 2x4 \parallel \\ 7 \qquad \\ 4x4 = 3 \qquad \\ 4$
8.00 12 4 4x4 7 10 12 12 12 12 12 12 12
0.00 12
F-0-1-1 4 4x4 × 4x
4x4 × 3
4x4 × 3
4x4 = 3
4x4 × 3
I I I I I I I I I I I I I I I I I I I
$3x6 \mid $ $3x4 =$ $4x8 =$ $3x4 =$ $3x4 =$
23-10-0
0-0-8 6-1-4 17-8-12 23-6-8 23-8-8 0-0-8 6-0-12 11-7-8 5-9-12 0-2-0
0-1-8
Plate Offsets (X,Y) [9:0-4-0,0-0-1]
LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL 20.0 Plate Grip DOL 1.15 TC 0.16 Vert(LL) -0.27 10-12 >999 360 MT20 244/190
TCDL 10.0 Lumber DOL 1.15 BC 0.60 Vert(CT) -0.38 10-12 >751 240 BCLL 0.0 * Rep Stress Incr YES WB 0.15 Horz(CT) 0.02 9 n/a n/a
BCLL 0.0 * Rep Stress Incr YES WB 0.15 Horz(CT) 0.02 9 n/a n/a Meight: 175 lb FT = 20% BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.03 12 >999 240 Weight: 175 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-7-10, Right 2x6 SP No.1 -t 3-7-10

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 5-6.
BOT CHORD Rigid ceiling directly applied or 10

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.

(size) 9=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-8) Max Horz 2=145(LC 11)

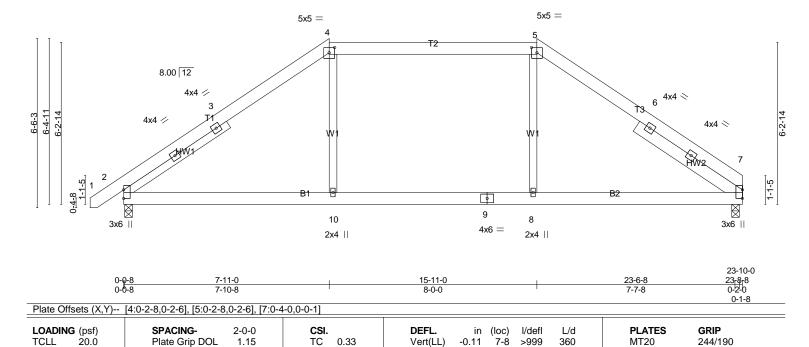
Max Grav 9=1014(LC 20), 2=1080(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1507/204, 4-5=-1399/353, 5-6=-844/264, 6-7=-1410/351, 7-9=-1511/207 BOT CHORD 2-12=-64/1187, 10-12=-8/869, 9-10=-60/1113

WEBS 5-12=-120/677, 6-10=-125/690, 7-10=-256/234

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 9-11-0, Exterior(2) 9-11-0 to 23-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH	
J0221-1067	В3	Hip	2	1		
		·			Job Reference (optional)	
Comtech, Inc., Fay	vetteville, NC 28309, Bob I	ewis Rur	: 8.300 s Mar 22 2019 Print: 8.	300 s Mai	r 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:10 2021 P	age 1
			ID:B4lkScsUv1Ll	39OVBG5	UU_Szjw_W-4k_L2m5cslbyAMZhCmxljK2a1GUUUlbpP2YsY8	8zjtEd
լ -1-	3-8	7-11-0	15-11-0		23-6-8 23 ₁ 10-0	
4.	2.0	7.44.0	0.00		770 020	

8-0-0

Scale = 1:44.4

0-3-8

LUMBER-

TCDL

BCLL

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

10.0

0.0

10.0

1-3-8

SLIDER Left 2x4 SP No.2 -t 4-9-12, Right 2x6 SP No.1 -t 4-9-12

Lumber DOL

Rep Stress Incr

Code IRC2015/TPI2014

BRACING-TOP CHORD

-0.14

0.03

0.09 2-10

7-8

Vert(CT)

Horz(CT)

Wind(LL)

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

Weight: 158 lb FT = 20%

7-7-8

2-0-0 oc purlins (6-0-0 max.): 4-5. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

>999

>999

n/a

240

n/a

240

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.

(size) 7=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-8)

Max Horz 2=118(LC 11)

Max Grav 7=1140(LC 2), 2=1200(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1.15

YES

7-11-0

2-4=-1581/241, 4-5=-1213/270, 5-7=-1579/239 2-10=-57/1201, 8-10=-55/1213, 7-8=-58/1202 TOP CHORD **BOT CHORD**

4-10=0/565, 5-8=0/565 WFBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 7-11-0, Exterior(2) 7-11-0 to 23-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ВС

WB

Matrix-S

0.41

0.13

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

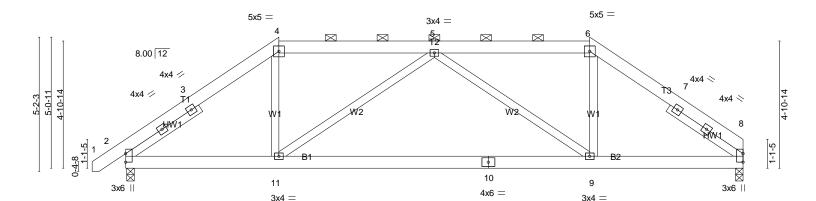
Job	Truss	Truss Type		Qty	Ply		RAY & CHRISTINE HYMBAUGH
J0221-1067	B4	Hip		2		1	
							Job Reference (optional)
Comtech, Inc., Fayettevill	e, NC 28309, Bob Lewis	F	un: 8.300 s Mar 22 201	9 Print: 8.	300 s l	Mar	22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:10 2021 Page 1
ID:RAIkScel Iv.11.R9D\/RC5UIL_Sziw_W-Ak_L2m5celbv/AM7bCmvlik2dMGLlft.lamp2ve/8zi							

17-11-0

6-0-0

11-11-0

6-0-0


Scale = 1:44.5

23-10-0

0-3-8

23-6-8

5-7-8

	7-8 5-11-0		17-11-0	23-6-8 23 ₋₁ 10-0
0-0	". 5-10-8"		12-0-0	5-7-8 0-3-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.18 BC 0.40 WB 0.43 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.12 9-11 >999 360 Vert(CT) -0.26 9-11 >999 240 Horz(CT) 0.02 8 n/a n/a Wind(LL) 0.02 9-11 >999 240	PLATES GRIP MT20 244/190 Weight: 165 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFRS

-1-3-8 1-3-8

5-11-0

5-11-0

SLIDER Left 2x4 SP No.2 -t 3-5-4, Right 2x4 SP No.2 -t 3-5-4 **BRACING-**

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-6.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 8=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-8)

Max Horz 2=92(LC 9)

Max Grav 8=952(LC 1), 2=1025(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1355/220, 4-5=-978/236, 5-6=-984/240, 6-8=-1337/224

BOT CHORD 2-11=-70/990, 9-11=-198/1280, 8-9=-75/996

WEBS 4-11=0/510, 5-11=-435/156, 5-9=-431/153, 6-9=0/510

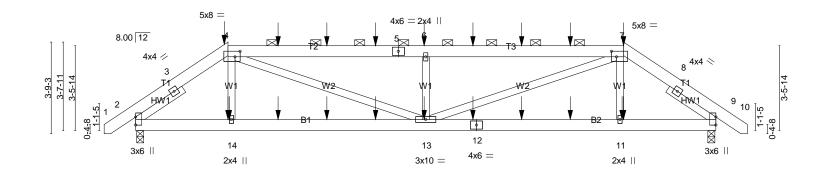
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 17-2-12, Interior(1) 17-2-12 to 17-11-0, Exterior(2) 17-11-0 to 23-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	B5GR	Hip Girder	1	2	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:12 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-0765TS6sOMsgPgj4KBzmol7yJ4DkydH6tM1yd0zjtEb


Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-7.

Rigid ceiling directly applied or 10-0-0 oc bracing.

					25-1-8
₁ -1-3-8	3-9-8	11-11-0	20-0-8	23-6-8	23 _t 10-0
1-3-8	3-9-8	8-1-8	8-1-8	3-6-0	0 ¹ 3 ¹ 81-3-8

Scale = 1:47.3

					23-10-0
0-@-8	3-9-8	11-11-0	20-0-8	23-6-8	23-9-8
0-ტ-8	3-9-0	8-1-8	8-1-8	3-6-0	0 <u>1</u> 3 <u>1</u> 0
					0-0-8

BRACING-

TOP CHORD

BOT CHORD

Plate Offsets (X,Y)	[4:0-2-8,0-2-12],	[7:0-2-8,0-2-12]
---------------------	-------------------	------------------

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.22	Vert(LL) -0.05 13 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT) -0.09 13 >999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.18	Horz(CT) 0.02 9 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.05 13 >999 240	Weight: 331 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 2-4-0, Right 2x4 SP No.2 -t 2-4-0

REACTIONS.

(size) 2=0-3-8 (min. 0-1-8), 9=0-3-8 (min. 0-1-8)

Max Horz 2=-65(LC 25)

Max Uplift2=-213(LC 8), 9=-211(LC 4) Max Grav 2=1451(LC 1), 9=1449(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2044/353, 4-6=-2915/554, 6-7=-2915/554, 7-9=-2041/352

BOT CHORD 2-14=-302/1561, 13-14=-299/1576, 11-13=-249/1573, 9-11=-253/1558 **WEBS** 4-14=0/447, 4-13=-324/1455, 6-13=-793/365, 7-13=-327/1458, 7-11=0/446

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.
4) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) Provide adequate drainage to prevent water ponding.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=213, 9=211.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	B5GR	Hip Girder	1	2	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:12 2021 Page 2 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-0765TS6sOMsgPgj4KBzmol7yJ4DkydH6tM1yd0zjtEb

NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 85 lb down and 78 lb up at 3-9-8, 89 lb down and 75 lb up at 5-10-4, 89 lb down and 75 lb up at 7-10-4, 89 lb down and 75 lb up at 11-10-4, 89 lb down and 75 lb up at 13-10-4, 89 lb down and 75 lb up at 15-10-4, and 89 lb down and 75 lb up at 15-10-4, and 89 lb down and 75 lb up at 17-10-4, and 85 lb down and 75 lb up at 15-10-4, 35 lb down at 15-10-4, and 35 lb down at 17-10-4, and 182 lb down at 15-10-4, and 18

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-7=-60, 7-10=-60, 2-9=-20

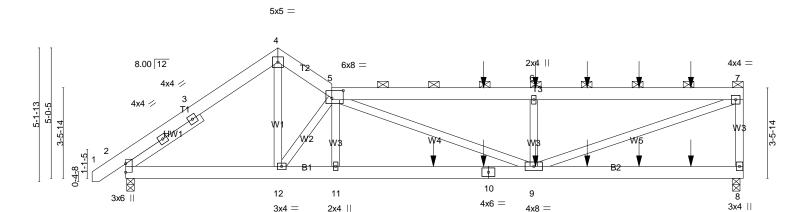
Concentrated Loads (lb)

Vert: 4a-41(B) 12=-17(B) 14=-182(B) 13=-17(B) 6=-41(B) 7=-41(B) 11=-182(B) 15=-41(B) 16=-41(B) 17=-41(B) 18=-41(B) 19=-41(B) 20=-41(B) 21=-17(B) 22=-17(B) 23=-17(B) 24=-17(B) 25=-17(B)

Job Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067 B6GR	Roof Special Girder	1	2	Job Reference (optional)

5-10-8

5-10-8


7-11-8

2-1-0

-1-3-8 1-3-8

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:13 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-UJgTgo7V9g_X1pIGuvU?Lyg7RUVth1tG60nW9SzjtEa 15-9-0 23-6-8 23₁10-0 7-9-8

Scale = 1:44.5

					23-10-0
0-ω-8	5-10-8	₁ 7-11-8	15-9-0	23-6-8	23-10-0 23 _r 8 _r 8
0-0-8	5-10-0	2-1-0	7-9-8	7-9-8	0-2-0
					0-1-8

Plate	Offsets	(X,Y)	[5:0-5-4,0-3-8]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL) -0.07 9-11 >999	360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.43	Vert(CT) -0.15 9-11 >999	240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.35	Horz(CT) 0.01 8 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.03 9-11 >999	240	Weight: 342 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-6-0

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 8=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-8)

Max Horz 2=101(LC 27)

Max Uplift8=-108(LC 9)

Max Grav 8=1359(LC 1), 2=1284(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1682/18, 4-5=-1578/25, 5-6=-2715/121, 6-7=-2713/119, 7-8=-1277/150

BOT CHORD 2-12=0/1257, 11-12=0/2437, 9-11=0/2461

WEBS 4-12=0/1612, 5-12=-2107/0, 5-11=0/519, 5-9=-259/356, 6-9=-703/311, 7-9=-114/2838

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc, 2x4 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.
4) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) Provide adequate drainage to prevent water ponding.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=108.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	B6GR	Roof Special Girder	1	2	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:13 2021 Page 2 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-UJgTgo7V9g_X1plGuvU?Lyg7RUVth1tG60nW9SzjtEa

NOTES-

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 89 lb down and 75 lb up at 13-9-12, 89 lb down and 75 lb up at 15-9-12, 89 lb down and 75 lb up at 17-9-12, and 89 lb down and 75 lb up at 19-9-12, and 89 lb down and 75 lb up at 19-9-12, and 89 lb down and 75 lb up at 21-9-12 on top chord, and 388 lb down at 11-10-8, 35 lb down at 13-9-12, 35 lb down at 15-9-12, 35 lb down at 15-9-12, and 89 lb down at 19-9-12, and 35 lb down at 21-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-60, 5-7=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 10=-17(F) 6=-41(F) 9=-17(F) 13=-41(F) 14=-41(F) 15=-41(F) 16=-41(F) 17=-388(F) 18=-17(F) 19=-17(F) 20=-17(F)

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	C1	Common	3	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:14 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-zWEru887w_6OfztSRc?EuACE5tsEQRmPKgW3hvzjtEZ

Scale: 1/4"=1'

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

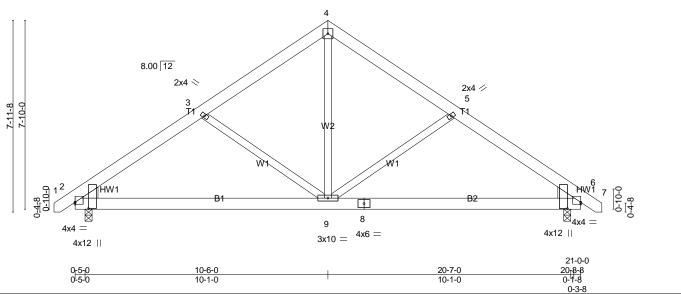


Plate Offsets (X,Y)-- [2:0-0-0,0-0-15], [2:0-3-2,0-6-11], [6:Edge,0-0-15], [6:0-3-2,0-6-11]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.46	Vert(LL) -0.06 2-9 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -0.12 2-9 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.56	Horz(CT) 0.02 6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.10 2-9 >999 240	Weight: 145 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

WEDGE

Left: 2x6 SP No.1, Right: 2x6 SP No.1

REACTIONS. (size) 2=0-3-8 (min. 0-1-8), 6=0-3-8 (min. 0-1-8)

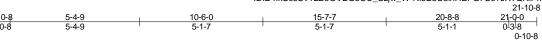
Max Horz 2=-149(LC 10) Max Uplift2=-64(LC 9), 6=-64(LC 8) Max Grav 2=882(LC 1), 6=882(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1095/712. 3-4=-847/685. 4-5=-847/685. 5-6=-1095/712 TOP CHORD

BOT CHORD 2-9=-501/834, 6-9=-504/834

WEBS 4-9=-637/583, 5-9=-296/198, 3-9=-296/198


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 7-3-1, Interior(1) 7-3-1 to 10-6-0, Exterior(2) 10-6-0 to 18-6-0, Interior(1) 18-6-0 to 21-8-15 zone; cantilever left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	C1GE	GABLE	1	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:15 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-RioE5U8lhHEFG7Se?JXTQNIPrHCT9u0ZZKGdELzjtEY

5x5 =

Scale: 1/4"=1

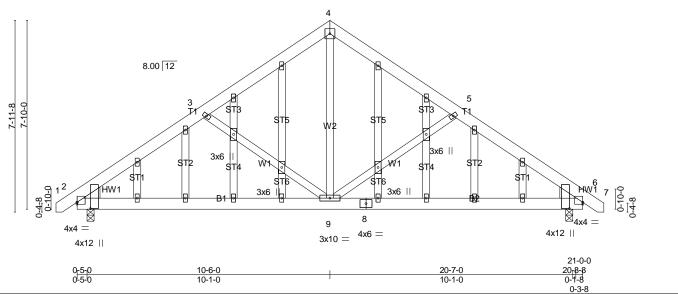


Plate Offsets (X,Y)-- [2:0-0-0,0-0-15], [2:0-3-2,0-6-11], [6:Edge,0-0-15], [6:0-3-2,0-6-11]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.46	Vert(LL) -0.06 2-9 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -0.12 2-9 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.56	Horz(CT) 0.02 6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.10 2-9 >999 240	Weight: 187 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 **WEBS** 2x4 SP No.2 **OTHERS**

WEDGE

Left: 2x6 SP No.1, Right: 2x6 SP No.1

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 2=0-3-8 (min. 0-1-8), 6=0-3-8 (min. 0-1-8)

Max Horz 2=-187(LC 10)

Max Uplift2=-109(LC 12), 6=-109(LC 13) Max Grav 2=882(LC 1), 6=882(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1095/712, 3-4=-847/685, 4-5=-847/685, 5-6=-1095/712

BOT CHORD 2-9=-501/834, 6-9=-504/834

WEBS 4-9=-637/583, 5-9=-297/222, 3-9=-297/222

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-15 to 7-3-1, Interior(1) 7-3-1 to 10-6-0, Exterior(2) 10-6-0 to 18-6-0, Interior(1) 18-6-0 to 21-8-15 zone; cantilever left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=109, 6=109.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	C2GE	GABLE	1	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:15 2021 Page 1 ID:B4IkScsUv1LB9OVBG5UU_Szjw_W-RioE5U8IhHEFG7Se?JXTQNIThHDb9?bZZKGdELzjtEY

12-6-8
-0-10-8 5-10-0 11-4-8 11-8-0
0-10-8 5-10-0 5-6-8 0-3-8-0-10-8

5x5 = Scale = 1:29.1

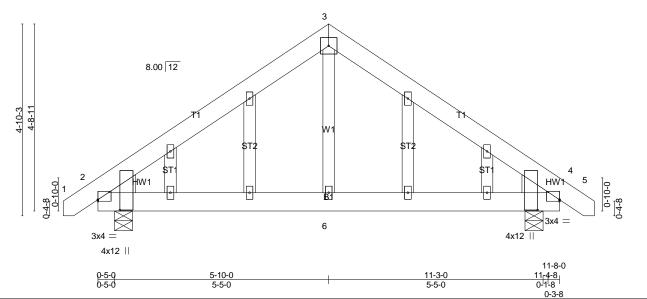


Plate Offsets (X,Y)-- [2:0-0-0,0-0-7], [2:0-3-2,0-6-11], [4:Edge,0-0-7], [4:0-3-2,0-6-11]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL) -0.01 4-6 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.29	Vert(CT) -0.01 4-6 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00 4 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.02 4-6 >999 240	Weight: 85 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2

WEDGE

Left: 2x6 SP No.1, Right: 2x6 SP No.1

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (size) 2=0-5-8 (min. 0-1-8), 4=0-5-8 (min. 0-1-8)

Max Horz 2=87(LC 11)

Max Uplift2=-33(LC 9), 4=-33(LC 8) Max Grav 2=507(LC 1), 4=507(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-521/390, 3-4=-521/390 BOT CHORD 2-6=-212/338, 4-6=-212/338

WEBS 3-6=-282/270

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

	" NO 20000 D. I			0 14 00 0040 5		Reference (option		1 10 15 15 10 0001 5
Comtech, Inc., Fayette	/ille, NC 28309, Bob	Lewis	Run: 8.30					b 18 15:45:16 2021 Page 1
	120	E 7 1	10-11-			zjw_vv-vuLcJq		zblfdhWGuQOio_?AmnzjtEX
	1-3-8	5-7-4 5-7-4			16-2-12	+	21-6-0	21-9-8 0-3-8
	1-3-8	5-7-4	5-3-12	'	5-3-12	,	5-3-4	0-3-8
				5x5 =				Scale = 1:47.1
8-6-3	4x 4x4 ∕⁄	8.00 12 20	4 4 W2		MS	2x4 6 72	7 ^{4x4} ×	4x4 ×
1 7 0.448	1 2 3x6	w	11 3x4 =		10 4x6 =	9 3x4 =	32	8 N2 ===================================
	0-0-8 0-0-8	5-7-4 5-6-12	-	16-2-12 10-7-8		-	21-6-0 5-3-4	21-9-8 0-3-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip D Lumber DOL Rep Stress I Code IRC20	1.15 ncr YES	CSI. TC 0.13 BC 0.45 WB 0.24 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) l/defl -0.17 9-11 >999 -0.25 9-11 >999 0.02 8 n/a 0.01 9-11 >999	360 240 n/a	PLATES MT20 Weight: 16	GRIP 244/190 65 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Qty

2

Ply

1

RAY & CHRISTINE HYMBAUGH

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

Job Reference (optional)

LUMBER-

Job

J0221-1067

Truss

D1

Truss Type

Common

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-4-1, Right 2x4 SP No.2 -t 3-3-15

REACTIONS. (size) 8=Mechanical, 2=0-3-8 (min. 0-1-8)

Max Horz 2=159(LC 9) Max Uplift2=-4(LC 12)

Max Grav 8=913(LC 20), 2=979(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1330/167, 4-5=-1265/330, 5-6=-1266/342, 6-8=-1330/177

BOT CHORD 2-11=-43/1073, 9-11=0/694, 8-9=-44/977

WEBS 4-11=-277/234, 5-11=-149/679, 5-9=-154/679, 6-9=-271/238

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-15 to 6-10-1, Interior(1) 6-10-1 to 10-11-0, Exterior(2) 10-11-0 to 18-11-0, Interior(1) 18-11-0 to 21-9-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

000	11400	11400	, 1, pc	"	,	NAI	a Christi	INE HINDA	NUGH	
J0221-1067	E1	Con	nmon	5	. 1			_		
Comtech, Inc., Fayette	ville NC 28309 Bob) Lewis	Run: 8.30	0 s Mar 22 2019	Print: 8 300 s M		ference (optior 9 MiTek Indust		Feb 18 15:45	·16 2021 Page 1
comcon, mo., r ayono	VIIIO, 110 20000, BOX	20110	ran. 5.55	ID:B4lkS	ScsUv1LB9OVB	G5UU_Sz	zjw_W-vuLcJq	9NSbM5uH1rZ	12izblglhYDu 20-10-8	ıMLio_?AmnzjtEX
	-0-10-8 0-10-8	5-1-9 5-1-9	10-0-0 4-10-7	I	14-10-7 4-10-7		19	9-8-8	20-0-0	
	0-10-8	5-1-9	4-10-7	l	4-10-7		4-	10-1		
				5x5 =					0-10-8	Scale = 1:43.0
				4						
		8.00 12								
		2x4 < 3					2x4 🕢 5			
7-7-8		X		W2)	M			
			W1		W1					
0-4-8	12		B1		<u></u>		B2		67	0-10-0 0-4-8
I 1 410	4x4 =			9 3x10 =	8 4x6 =				4x4 =	0 10
	<u> </u>		0-0-0 0-0-0	-		19-8 9-8			20-0-0 0-3-8	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- Plate Grip I Lumber DC	2-0-0 DOL 1.15	CSI. TC 0.13 BC 0.33	DEFL. Vert(LL) Vert(CT)	in (loc) -0.05 2-9 -0.10 2-9	l/defl >999 >999	L/d 360 240	PLATES MT20		
BCLL 0.0 *	Rep Stress		WB 0.49	Horz(CT)	0.01 6	n/a	n/a			

Qty

Ply

LUMBER-

BCDL

Job

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

10.0

Wind(LL) BRACING-

TOP CHORD BOT CHORD

0.09

2-9

>999

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

RAY & CHRISTINE HYMBAUGH

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 136 lb FT = 20%

REACTIONS. (size) 6=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-8)

Max Horz 2=-143(LC 10)

Truss

Truss Type

Max Uplift6=-61(LC 8), 2=-61(LC 9) Max Grav 6=842(LC 1), 2=842(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

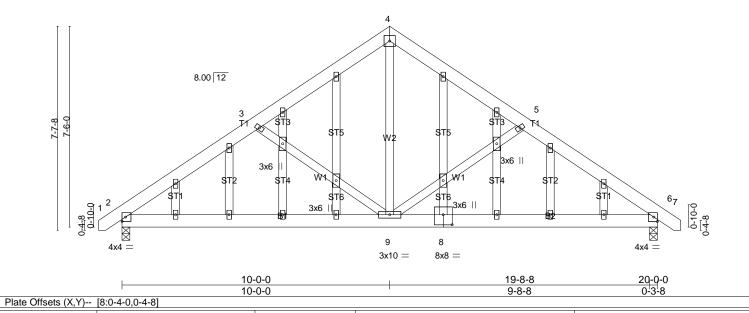
TOP CHORD 2-3=-1038/686, 3-4=-803/662, 4-5=-803/662, 5-6=-1038/686

Code IRC2015/TPI2014

BOT CHORD 2-9=-482/788, 6-9=-485/788

WEBS 4-9=-616/551, 5-9=-279/187, 3-9=-279/187

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 7-3-1, Interior(1) 7-3-1 to 10-0-0, Exterior(2) 10-0-0 to 18-0-0, Interior(1) 18-0-0 to 20-8-15 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss		Truss Type		Qty	Ply	RAY & CHRISTINE HYN	1BAUGH	
J0221-1067	E1GE		GABLE		1	1			
							Job Reference (optional)		
Comtech, Inc., Fayette	ville, NC 28309,	Bob Lewis		Run: 8.300 s M			r 22 2019 MiTek Industries, Inc. ⁻ UU_Szjw_W-N5v_W9A?DvUyWI		
	-0-10-8	5-1-9	1	10-0-0	1	4-10-7	19-8-8	20-0-0 0-3-8	
	0-10-8	5-1-9		4-10-7		-10-7	4-10-1	0 2 0	

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

in (loc)

2-9

2-9

2-9

6

-0.05

-0.10

0.01

0.09

I/defI

>999

>999

>999

Installation guide.

n/a

L/d

360

240

n/a

240

PLATES

MT20

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP

Weight: 173 lb FT = 20%

244/190

LUMBER-

REACTIONS.

TCLL

TCDL

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

20.Ó

10.0

0.0

10.0

WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2

(size) 6=0-3-8 (min. 0-1-8), 2=0-3-8 (min. 0-1-8)

2-0-0

1.15

1.15

YES

Max Horz 2=-178(LC 10)

Max Uplift6=-104(LC 13), 2=-104(LC 12) Max Grav 6=842(LC 1), 2=842(LC 1)

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1038/686, 3-4=-803/662, 4-5=-803/662, 5-6=-1038/686 BOT CHORD 2-9=-482/788. 6-9=-485/788

WEBS 4-9=-616/551, 5-9=-280/211, 3-9=-279/210

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-15 to 7-3-1, Interior(1) 7-3-1 to 10-0-0, Exterior(2) 10-0-0 to 18-0-0, Interior(1) 18-0-0 to 20-8-15 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

CSI.

TC

ВС

WB

Matrix-S

0.13

0.33

0.49

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=104, 2=104
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

00221 1007		Common	'	Job Reference (op	tional)
Comtech, Inc., Favette	eville, NC 28309, Bob Lewis	Run: 8.	.300 s Mar 22 2019 Print: 8	.300 s Mar 22 2019 MiTek Ind	ustries, Inc. Thu Feb 18 15:45:18 2021 Page
			ID:B4lkScsUv1LB9O\		_Ccp7bADgS4A20N0GVDaMGn?FHUHqgzjtE
	5-1-9	10-0-0		4-10-7	19-8-8 20-0-0 4-10-1 0-3-8
	5-1-9	4-10-7	۱ 4	-10-7	4-10-1 0 ¹ 3 ¹ 8
			5x5 =		Scale = 1:41.
			3		
Ī					
			// \\		
	8.0	00 12	/ \`		
	5	//			
		2x4 📎			
				2x4 //	
		2 71		T1 4	
0-9-2					
7			₩2	// \ \	
				// \	
		W4		W1	
	1 //		\ //		5
	_ '//				_
		B1		¬ B2	10-
C		DI DI		BZ	⊸ 1 <u>:</u>
			7 6		
	3x4 =		Δy	6 =	3x4 =
			3x10 =	-	
		10-0-0	1	19-8-8	20-0-0
		10-0-0		9-8-8	20-0-0 0-3-8
Plate Offsets (X,Y)	[1:0-0-0,0-0-11], [5:Edge,0-				
LOADING (==f)	OD A OINIO	0.0	DEE!	(1) 1/-1-11 1 / 1	DI ATEO ODID
LOADING (psf) TCLL 20.0		0-0 CSI. .15 TC 0.12		n (loc) I/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0		.15 TC 0.12 .15 BC 0.34	Vert(LL) -0.05 Vert(CT) -0.11		MT20 244/190
BCLL 0.0 *		ES WB 0.50	Horz(CT) -0.11		
	1100 011000 11101		11012(01) 0.01	. 5 1,4 1,4	

Qty

1

LUMBER-

BCDL

Job

J0221-1067

Truss

E2

Truss Type

Common

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

10.0

Wind(LL) BRACING-

0.09

1-7

>999

240

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

RAY & CHRISTINE HYMBAUGH

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 131 lb FT = 20%

REACTIONS. (size) 1=0-3-8 (min. 0-1-8), 5=0-3-8 (min. 0-1-8)

Max Horz 1=-139(LC 8)

Max Uplift1=-59(LC 9), 5=-59(LC 8) Max Grav 1=788(LC 1), 5=788(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1044/694, 2-3=-809/669, 3-4=-809/669, 4-5=-1044/694 1-7=-492/794, 5-7=-493/794 TOP CHORD

Code IRC2015/TPI2014

BOT CHORD

3-7=-621/553, 4-7=-278/183, 2-7=-278/183 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 8-1-12, Interior(1) 8-1-12 to 10-0-0, Exterior(2) 10-0-0 to 18-0-0, Interior(1) 18-0-0 to 19-10-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

000	11466	Trado Typo	a.y	,	KAT & CHRIST	INE HTIVIDAUGH
J0221-1067	F1	Common	1	1		
					Job Reference (option	
Comtech, Inc., Fayette	eville, NC 28309, Bob Lewis	Run: 8.3	300 s Mar 22 2019 Print: 8.	.300 s Ma	r 22 2019 MiTek Indu	stries, Inc. Thu Feb 18 15:45:18 2021 Page 1
			ID:B4lkScsUv1LB9O	VBG5UU_		Ccp7bADgS4A20N0HVHxMNc?FHUHqgzjtEV
	1-3-8 1-3-8	5-10-8			11-5-8	11-9-0 0-3-8
	' 1-3-8 '	5-10-8	,		5-7-0	0'-3-'8
			5x5 =			Scale = 1:28.4
			4			
		8.00 12	// `			
		4x4 //				
		3			\ \ \	4x4 ≪
м	4x4				T2 T2	
5-1-13	4x4				>>>	4x4 ×
2			W1			
		W1				6
	2 / /					
	9 1					ιά
			B1			1-1-5
	1 4-0					
1	4 🗀		7			
	_					
	3x6		2x4			3x6
	0-Q-8	5-10-8	1		11-5-8	11-9 _□ 0
	0-0-8	5-10-0			5-7-0	11-9-0 0-3-8
LOADING (psf)	SPACING- 2-0)-0 CSI .	DEFL. ir	ı (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.	15 TC 0.12	Vert(LL) -0.01	`6-Ź	>999 360	MT20 244/190
TCDL 10.0		15 BC 0.12	Vert(CT) -0.02		>999 240	
BCLL 0.0 *		S WB 0.06	Horz(CT) 0.00		n/a n/a	Weight 00 lb FT 000'
BCDL 10.0	Code IRC2015/TPI20	14 Matrix-S	Wind(LL) 0.00	2-7	>999 240	Weight: 82 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Qty

Ply

RAY & CHRISTINE HYMBAUGH

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

LUMBER-

Job

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-6-0, Right 2x4 SP No.2 -t 3-6-0

REACTIONS. (size) 6=Mechanical, 2=0-3-8 (min. 0-1-8)

Max Horz 2=92(LC 11) Max Uplift2=-6(LC 12)

Truss

Truss Type

Max Grav 6=467(LC 1), 2=543(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-540/118, 4-6=-514/116 BOT CHORD 2-7=0/339, 6-7=0/339

WEBS 4-7=0/270

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply RAY &	CHRISTINE HY	MBAUGH
J0221-1067	F1GE	Common Supported Gab	le 1	1		
Comtech, Inc., Fayetteville	NC 28309, Bob Lewis	Run: 8.300		8.300 s Mar 22 2019		Thu Feb 18 15:45:19 2021 Page 1
	-1-3-8	7-2-0	ID:B4lkScsUv1L		_W-JT1kxrCFlWkglklQ 3-0-8	E9bPbDwCWuev5qL8UxEqN6zjtEU
	-1-3-8 1-3-8	5-10-8	+		-10-8	
			5x5 =			Scale = 1:28.4
5-1-13	4x4 // 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ST3	7 ST2	T2 8	3x10 9
α	2 7 1		B1	•		-1-5 -1-5
-4-0				*******		
	3x6	15 14	13	12	11	10
	-1-3-8 1-3-8		13-0-8 11-9-0			
COADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE: Code IRC2015/TPI201	TC 0.03 BC 0.01 WB 0.03	DEFL. i Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	0 1 n/r	120 MT 120 n/a	ATES GRIP 20 244/190 eight: 87 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.2 **WEBS OTHERS** 2x4 SP No.2

Left 2x4 SP No.2 -t 1-7-3 SLIDER

REACTIONS. All bearings 11-8-8.

(lb) - Max Horz 2=92(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 15, 12, 11

Max Grav All reactions 250 lb or less at joint(s) 10, 2, 13, 14, 15, 12, 11

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 15, 12, 11.
- 9) Non Standard bearing condition. Review required.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Digital Company Digital Co	Job	Truss	Truss Type		Qty	Ply	RAY & CHRISTINE HYMBAUGH
Comtech, Inc., Fayetteville, NC 28309, Bob Lewis Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:20 20 ID:B4IKScsUv1LB9OVBG5UU_Sziw_W-nfb78BCuVqsXNuKcof6e7RSMsI_rqGllj 7-3-7 16-9-15 7-3-7 9-6-8 3x4 = 3x4 = Sc 3x4 = Sc 14.42 12 3T1 4					Q ty	'	
Comtech, Inc., Fayetteville, NC 28309, Bob Lewis Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MTRk Industries, Inc. Thu Feb 18 15:45:20 20 ID:B4lkScsUv1LB90VBG5UU_Szjw_W-nfb78BCuVqsXNuKcot6e7RSMsl_rqGIlj 7-3-7 16-9-15 9-6-8 3x4 = 3x4 = Sc 3x4 = Sc 14.42 12 3T1 ST1 ST1 ST2 14 ST3 ST2 14 ST3 ST2 ST1 ST1 ST1 ST1 ST1 ST1 ST2 ST2	J0221-1067	QA1	GABLE		1	1	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comtech, Inc., Fayettevill	e, NC 28309, Bob Lewis		Run: 8.300 s Mar 22 20	019 Print:	8.300 s M	Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:20 2021 P
3x4 = 3x4 = 3x4 = 56		7-3-7		ID:I 16-9-15	B4lkScsU	Jv1LB9OV	/BG5UU_Szjw_W-nfb78BCuVqsXNuKcot6e7RSMsI_rqGIIjbzNv2
5 6 7 8 9 10 11 14.42 12 14.42 12 ST1 ST1 ST1 15		7-3-7					6-11-15 0-3-8
14.42 12 14.42 12 3T1 ST1 ST2 ST2 ST1 15			3x4 =				3x4 = Scale =
	8-9-1	3тт	4 Ø O1 ST4			01 ST4	12 T1 13 ST3 ST2 14
$3x4$ // 26 25 24 23 22 21 20 19 18 17 16 $3x4$ \\ 5x5 =	3	3x4 // 26 25	24 23	22 21	20		18 17 16
23-9-13 24-1-5 23-9-13 0-3-8 Plate Offsets (X,Y) [5:0-3-0,0-1-8], [11:0-3-0,0-1-8], [19:0-2-8,0-3-0]			4.01.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	23-9-13		0,0 —	

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.11	Horz(CT)	0.01	15	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	, ,					Weight: 182 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 **OTHERS** 2x4 SP No.2 **BRACING-**TOP CHORD

BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-11.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SPF No.2 - 8-21, 7-22, 6-23, 9-20, T-Brace:

10-19

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 24-1-5. (lb) - Max Horz 1=-178(LC 8)

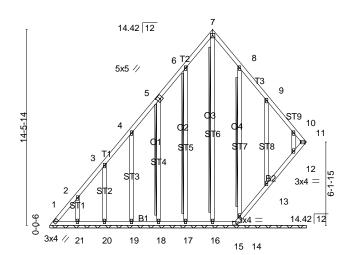
Max Uplift All uplift 100 lb or less at joint(s) 1, 15, 21, 22, 23, 24, 25, 26, 20,

18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 1, 15, 21, 22, 23, 24, 25, 26, 20,

19, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 15, 21, 22, 23, 24, 25, 26, 20, 18, 17, 16.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	QA2	GABLE	1	1	Joh Reference (ontional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:20 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-nfb78BCuVqsXNuKcot6e7RSLTI_pqEDljbzNvZzjtET

12-0-11 18-8-5 18-11-13 12-0-11 6-7-11 0-3-8

4x4 = Scale = 1:85.2

13-10-5 13-10-5 13-10-5 18-8-518-11-13 4-10-0 0-3-8

Plate Offsets (X,Y)-- [5:0-2-8,0-3-0], [11:Edge,0-1-8], [15:0-3-0,0-1-8]

LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.08 BC 0.03	Vert(LL) n/a Vert(CT) n/a	loc) l/defl - n/a - n/a	L/d 999 999	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.25 Matrix-S	Horz(CT) 0.01	11 n/a	n/a	Weight: 175 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD WEBS Structural wood sheathing directly applied or 6-0-0 oc purlins.
Rigid ceiling directly applied or 10-0-0 oc bracing.
T-Brace: 2x4 SPF No.2 - 7-16, 6-17, 5-18, 8-14

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 18-11-13.

(lb) - Max Horz 1=283(LC 9)

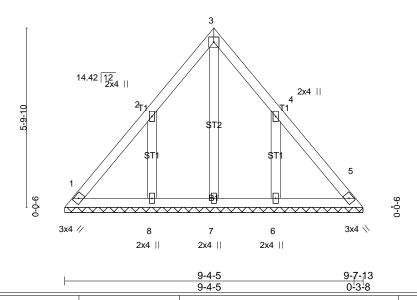
Max Uplift All uplift 100 lb or less at joint(s) 17, 18, 19, 20, 21, 14, 13, 12 except 11=-202(LC 11), 1=-157(LC 10), 15=-139(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 15, 16, 17, 18, 19, 20, 21, 14, 13, 12 except 11=292(LC 13), 1=318(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $\,$ 1-2=-502/422, 2-3=-378/306

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-12 to 8-0-9, Interior(1) 8-0-9 to 12-0-11, Exterior(2) 12-0-11 to 18-9-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 11, 14, 13, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 18, 19, 20, 21, 14, 13, 12 except (it=lb) 11=202, 1=157, 15=139.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 11, 14, 13, 12.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	QA3	GABLE	1	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:21 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-Fs9VMXDWG7_O_2voMaetge?WKiKxZkWRxFjxR?zjtES

	10.0	-110030V1LD30VD0300_02JV	v_vv i 35 v ivi.
1	4-9-15	9-4-5	9-7-13
	4-9-15	4-6-7	0-3-8

4x4 = Scale = 1:37.3

LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	I/defI	L/d	PLATES GR	RIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL)	n/a -	n/a	999	MT20 244	4/190
TCDL	10.0	Lumber DOL 1.15	BC 0.04	Vert(CT)	n/a -	n/a	999		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.05	Horz(CT)	0.00 5	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 51 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 9-7-13.

(lb) - Max Horz 1=-114(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-116(LC 12), 6=-116(LC

13

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=261(LC 19), 6=261(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-268/243, 4-6=-268/243

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=116. 6=116.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	QB1	GABLE	1	1	Joh Reference (ontional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:22 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-k2jtZtE81R6FcCU?vl96CsXiG6gFl96bAvSU_RzjtER

	ID:B4lkScsUv1LB9OVBG5UU_Szj	w_W-k2jtZtE81R6FcCU?vI96CsX
8-0-11	15-9-13	16 ₋ 1-5
8-0-11	7-9-3	0-3-8

 $4x4 \equiv$ Scale = 1:55.9

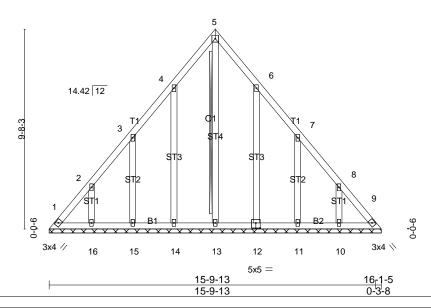


Plate Offsets (X,Y)-- [12:0-2-8,0-3-0]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.00 9 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 112 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD WEBS Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 5-13

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 16-1-5.

(lb) - Max Horz 1=-195(LC 8)

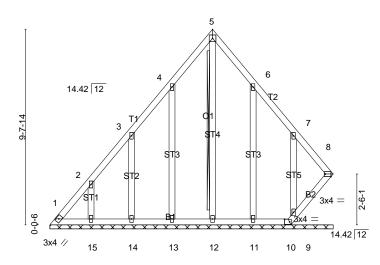
Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 14, 15, 16, 12, 11, 10

Max Grav All reactions 250 lb or less at joint(s) 1, 9, 13, 14, 15, 16, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-281/223, 8-9=-280/221

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 14, 15, 16, 12, 11, 10.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	QB2	GABLE	1	1	Joh Reference (ontional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:23 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-CEHFnDFmolE6EM3BT?gLl34t_W0T1cKkPZC2WtzjtEQ

	ID:B4IK	(SCSOVILB9OVBGSOC	J_52JW_VV-CEHI	rnu
1	8-0-7	13-8-5	13-11-13	
	8-0-7	5-7-15	0-3-8	

 $4x4 \equiv$ Scale = 1:56.9

13-11-13 11-10-13 11-10-13 11-10-13

Plate Offsets (X,Y)	[8:Edge,0-1-8],	[10:0-3-0,0-1-8]
---------------------	-----------------	------------------

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.00 8 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	• •	Weight: 103 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD WEBS Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 5-12

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 13-11-13.

(lb) - Max Horz 1=190(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 14, 15, 11 except 8=-117(LC 11), 10=-117(LC 13), 9=-104(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 8, 10, 12, 13, 14, 15, 11, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD $\,$ 1-2=-317/248

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 8, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 14, 15, 11 except (jt=lb) 8=117, 10=117, 9=104.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8, 9.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

J0221-1067	V1					HYMBAUGH
	V I	GABLE	1	1	Job Reference (optional)	
Comtech, Inc., Fayetteville,	NC 28309, Bob Lewis	ID:B4lk3 16-7-11	019 Print: 8 ScsUv1LB	8.300 s Ma 9OVBG5U	ur 22 2019 MiTek Industries, IU_Szjw_W-gRqd_ZFOZ2Mz 27-0-11	nc. Thu Feb 18 15:45:24 2021 Page 1 sWeN1iBaHHd2vvLpm3ateDxb2KzjtEF 27 _F 4-3 0-3-8
	ı	16-7-11	'		10-5-0	0-3-8
			4x4	=		Scale: 3/16"=1
	T	8.00 12	9			
	2ST1	5x5 = 7 T2 T3 T4 ST5 ST6 ST7 ST2 ST2 ST3 ST4 ST5 ST6 ST7	G2 \$T8	10 G3 ST7	11 B T3 12 ST6 ST5 ST4	3x4 14 15 ST3 W1

Plate Offsets	(X,Y)	[6:0-2-8,0-3-0]
---------------	-------	-----------------

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc	c) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) n/a -	- n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n/a	- n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.00 1	6 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 213 lb FT = 20%

27-0-11 27-0-11

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2 **BRACING-**

TOP CHORD

BOT CHORD WEBS Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

27₋4-3 0-3-8

Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 9-22, 8-24, 10-21 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 27-4-3.

(lb) - Max Horz 1=211(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 16, 1, 22, 24, 25, 26, 27, 28, 29, 30, 21, 20, 19, 18, 17

Max Grav All reactions 250 lb or less at joint(s) 16, 1, 22, 24, 25, 26, 27, 28, 29, 30, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 8-9=-240/271, 9-10=-240/272

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 8-7-11, Interior(1) 8-7-11 to 16-7-11, Exterior(2) 16-7-11 to 24-7-11, Interior(1) 24-7-11 to 27-2-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 1, 22, 24, 25, 26, 27, 28, 29, 30, 21, 20, 19, 18, 17.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type		Qty	Ply	RAY & CH	RISTINE HYME	BAUGH	
J0221-1067	V2	Valley		1	1				
0			D 0.000	- M 00 0040 Print	0.000 - 14-	Job Reference		· F-b 40 45:45	04 0004 D 4
Comtech, Inc., Fayette	eville, NC 28309, Bob Le	WIS	Run: 8.300	s Mar 22 2019 Print:			k Industries, Inc. Thi d_ZFOZ2MzsWeN1i		
	1	14-7-	11	ID.D-INOCSOVILL	30 V B 0 30 V	25-0-11	25	-4-3	IZUIODADZINZJILI
		14-7-	11			10-5-0	0-	-4-3 3-8	
				4x4 =					Scale = 1:57.4
		8.0	00 12 5 T2 8	6		7			
	2 11	3x4 / 4 5T2	ST3	\$174 \$174	18	ST3 B2	ST2	9 (2.7-8)	
	3x4 🕢	16	15	14	13	12	11	10	
					3x4 =			3x4	
	0- 0 -9 0- 0 -9			25-0-11			25	-4-3 3-8	
	0-0-9			25-0-2			0-	3'-8	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- Plate Grip DOI Lumber DOL	L 1.15	CSI. TC 0.15 BC 0.17		in (loc) n/a - n/a -	l/defl L/d n/a 999 n/a 999	MT20	S GRIF 244/	

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 WFBS **OTHERS** 2x4 SP No.2

0.0 *

10.0

BRACING-

TOP CHORD

Horz(CT) 0.00

10

n/a

BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

Weight: 132 lb FT = 20%

Rigid ceiling directly applied or 6-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 6-14

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 25-3-10.

Max Horz 1=186(LC 9) (lb) -

YES

Rep Stress Incr

Code IRC2015/TPI2014

Max Uplift All uplift 100 lb or less at joint(s) 10, 1, 15, 16, 17, 12, 11

Max Grav All reactions 250 lb or less at joint(s) 10, 1 except 14=495(LC 22),

15=542(LC 19), 16=428(LC 19), 17=279(LC 23), 12=549(LC 20), 11=393(LC 20)

WB 0.22

Matrix-S

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-6=-237/258, 6-7=-238/259

WEBS 5-15=-270/174, 4-16=-261/165, 7-12=-276/177

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 8-5-15, Interior(1) 8-5-15 to 14-7-11, Exterior(2) 14-7-11 to 22-7-11, Interior(1) 22-7-11 to 25-2-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 1, 15, 16, 17,
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
			'	1	TAT & OTTOTINE THIMBAGGIT
J0221-1067	V3	Valley	1	1	Job Reference (optional)
Comtech, Inc., Fayetteville,	NC 28309, Bob Lewis	Run: 8.300 s Mar 2	2 2019 Print: 8	.300 s Ma	22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:25 2021 Page 1
		ID:B	4lkScsUv1LB9	OVBG5U	U_Szjw_W-8dO0CvG0KMUqTfDZbQipqU9B4Jf_VVO1sth8amzjtEO
		12-7-11 12-7-11	+		23-0-11 23-4-3 10-5-0 0-3-8
		12-7-11			10-5-0
		4	x4 =		Scale = 1:50.6
8-5-2	8.00 ST1) 12 3	T73	s	5 7 ST1 80 6 2 80 6 7 ST1 80 6 7
	3x4 // 14	13	12	11 1 3x4 =	
				5,. 1	3x4
0-(0-()-9)-9	23-0-11 23-0-2			23-4-3 0-3-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1: Lumber DOL 1.1: Rep Stress Incr YES Code IRC2015/TPI201-	5 TC 0.15 Ve 5 BC 0.16 Ve 6 WB 0.25 Ho	FL. ir t(LL) n/a t(CT) n/a rz(CT) 0.00	a - a -	I/defl L/d PLATES GRIP n/a 999 MT20 244/190 n/a 999 n/a n/a Weight: 112 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N OTHERS 2x4 SP N	o.1 o.2	ТО	ACING- P CHORD T CHORD	except Rigid co	ral wood sheathing directly applied or 6-0-0 oc purlins, end verticals. eiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 23-3-10.

(lb) - Max Horz 1=161(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 14, 10, 9

Max Grav All reactions 250 lb or less at joint(s) 1, 8 except 12=479(LC 22), 13=515(LC 19), 14=406(LC 19), 10=534(LC 20), 9=327(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-13=-263/172, 2-14=-286/184, 5-10=-276/178

- 1) Unbalanced roof live loads have been considered for this design.
 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 8-7-11, Interior(1) 8-7-11 to 12-7-11, Exterior(2) 12-7-11 to 20-7-11, Interior(1) 20-7-11 to 23-2-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 14, 10, 9.

 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

Job	Truss	Truss Type		Qty	Ply	RAY & CHRIS	TINE HYMBAUGH	
J0221-1067	V4	Valley		1	1	Job Reference (op	tional)	
Comtech, Inc., Fayette	eville, NC 28309, Bob Lew	is				r 22 2019 MiTek Ind	ustries, Inc. Thu Feb 18 15:4	
	i.	10-7-11	ID:B4IK	SCSUVII	_B9OVBG	20-11-15	PEHf5gch5pnm87D2NiiMtj?ı 21 ₋ -3-7	1EZPA5XQI/CZJIEN
		10-7-11				10-4-3	21-3-7 0-3-8	
			4x4 =					Scale = 1:43.7
7-1-2	2 ST1 ST1 3x4 = 13		\$ТЗ		ST		6 ST1 7 3x4	9-0-0
	13	12	11		1	0 9 3x4 =	8 3x4 ~	
	0- 0 -9 0-0-9		20-11-15 20-11-6				21-3-7 0-3-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 BC 0 YES WB 0	DEFL. 1.15 Vert(LL) 1.19 Vert(CT) 1.14 Horz(CT		a `-´ a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRI MT20 244	P /190

LUMBER-

BCDL

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **OTHERS**

10.0

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Weight: 93 lb

FT = 20%

REACTIONS. All bearings 21-2-5.

(lb) - Max Horz 1=-135(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 12, 13, 10, 8

Code IRC2015/TPI2014

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 11=442(LC 19),

12=449(LC 19), 13=273(LC 1), 10=448(LC 20), 8=273(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. **WEBS** 3-12=-279/180, 5-10=-279/180

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 8-5-15, Interior(1) 8-5-15 to 10-7-11, Exterior(2) 10-7-11 to 18-7-11, Interior(1) 18-7-11 to 20-9-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 12, 13, 10, 8. 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

T-1	T	T	104	Div	DAYA GUBIOTINI	
Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE	E HYMBAUGH
J0221-1067	V5	Valley	1	1		
Comtech, Inc., Fayetteville	NC 28300 Rob Lowis	Pup: 8 300 c Ma	r 22 2010 Print: 8	300 e Ma	Job Reference (optional)	s, Inc. Thu Feb 18 15:45:27 2021 Page 1
Contlecti, inc., rayetteville	, NC 20309, BOD Lewis	Kuii. 6.300 5 Ma				HszlYjzMyirkHvvFXF7LezRUKKBAFffzjtEM
		8-7-11			16-11-15	17-3-7 0-3-8
	"	8-7-11	ı		8-4-3	0-3-8
		4x	x4 =			Scale = 1:37.2
5.9-2	8.00	3 2x4 2 T1 ST1 B1			2x4 T1 ⁴ ST1 B2	5 9-0-1
	3x4 //	9 8		7	6	3x4 📎
		2x4 2x4			κ4 =	
					2x4	
C	-0-9	16-11	-15			17-3-7
C	- Q-9 - 0-9	16-1				17-3-7 0-3-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	TC 0.17 BC 0.15 WB 0.08	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 70 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N OTHERS 2x4 SP N	0.1	٦	BRACING- FOP CHORD BOT CHORD	Rigid c MiTel be ins	eiling directly applied or recommends that Stab	ctly applied or 6-0-0 oc purlins. 10-0-0 oc bracing. illizers and required cross bracing tion, in accordance with Stabilizer

REACTIONS. All bearings 17-2-5.

(lb) - Max Horz 1=-108(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 9, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=395(LC 19), 9=429(LC

19), 6=429(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-304/192, 4-6=-304/192

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.

 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

J0221-1067	V6	Valley	1	1	Job Reference (option	ol)
Comtech, Inc., Fayette	eville, NC 28309, Bob Lewis	Run: 8.300 s	Mar 22 2019 Print: 8	3.300 s Mai	r 22 2019 MiTek Indust	ries, Inc. Thu Feb 18 15:45:27 2021 Page 1
		6-7-11	ID:B4IKScsUV1	ILB9OVBG	12-11-15	alHszlYjzMyirkHvvFYy7MYzSyKKBAFffzjtEM 13-3 _F 7
		6-7-11	I		6-4-3	0-3-8
			4x4 =			Scale = 1:27.2
			3			
2.7.2			ST2		V1 22 4 ST1	5 900
	0		7	XXXX	6	
	3x4 <∕ 8 2x4		2x4		2x4	3x4 ≫
	0- <u>0-9</u> 0-0-9		12-11-15 12-11-6			13-3 ₋ 7 0-3-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC2015/TPI201	5 TC 0.13 5 BC 0.09 S WB 0.05	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 51 lb FT = 20%
LUMBER-			BRACING-		L	

Qty

LUMBER-

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

RAY & CHRISTINE HYMBAUGH

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 13-2-5.

(lb) - Max Horz 1=82(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=264(LC 1),

8=311(LC 19), 6=310(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRIST	NE HYMBAUGH	
J0221-1067	V7	Valley	1	1			
		-			Job Reference (option		
Comtech, Inc., Fayett	eville, NC 28309, Bob Lewis	Run: 8.300 s	Mar 22 2019 Print:	8.300 s Ma	ar 22 2019 MiTek Indus	tries, Inc. Thu Feb 18 15 JvdHtOK7x8GYGWS7ni	5:45:28 2021 Page 1
		4-7-11	ID.B4IK3C5UV II	LDSOVDG	8-11-15	9-3-7	y/ibiv v i Trvpb3zjiEL
		4-7-11			4-4-3	9-3-7 0-3-8	
			4x4 =				Scale = 1:19.9
			2				
		8.00 12					
			`	\ \			
2		TJ /			11		
3-1-2			ST1				
1		///					
						_	
						3	
	1 //						
(O			B1			→	(0
9-0-0	(/////////////////////////////////////	/////////////////////////////////////		/////////////////////////////////////	/////	9-0-0
J			~~~~~	×	V V V V V V V V V V V V V V V V V V V	/	O
	3x4 🕢		4			3x4 ≫	
	3,4 %	2x4	1			3.4 <	
	0- <u>0-9</u> 0-0-9		-11-15			9-3-7 0-3-8	
	0-0-9	8	3-11-6			0-3-8	
LOADING (psf)	SPACING- 2-0		DEFL.	in (loc)	I/defl L/d	PLATES GI	RIP
TCLL 20.0	Plate Grip DOL 1.		Vert(LL) n	′a -	n/a 999	MT20 24	14/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1. Rep Stress Incr YE	15 BC 0.13 ES WB 0.03	Vert(CT) na Horz(CT) 0.0		n/a 999 n/a n/a		
BCDL 10.0	Code IRC2015/TPI20	14 Matrix-S	11012(01) 0.0	iu 3	11/d 11/d	Weight: 32 lb	FT = 20%
						- 3	
LUMBER- TOP CHORD 2x4:	SD No 1		BRACING- TOP CHORD	Structi	iral wood shoothing o	lirectly applied or 6-0-0) oc purline
BOT CHORD 2x4			BOT CHORD			or 10-0-0 oc bracing.	oc pullins.
	SP No.2					tabilizers and required	cross bracing

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.

(size) 1=9-2-5 (min. 0-1-8), 3=9-2-5 (min. 0-1-8), 4=9-2-5 (min. 0-1-8)

Max Horz 1=-55(LC 10)

Max Uplift1=-9(LC 12), 3=-15(LC 13)

Max Grav 1=165(LC 1), 3=165(LC 1), 4=334(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qt	у	Ply	RAY & CHRIST	NE HYMBAUGH	
J0221-1067	V8	Valley	1		1			
	" NO 00000 B L L .				200 14	Job Reference (option	nal)	15.00.0001.0
Comtech, Inc., Fayette	ville, NC 28309, Bob Lewis	Run:	8.300 s Mar 22 2019 P ID:B4lkScs	rint: 8. SUv1LE	300 s Mar 390VBG5	· 22 2019 Milek Indus UU Sziw W-YC48aw	tries, Inc. Thu Feb 18 15 JvdHtOK7x8GYGWS7nk	6:45:28 2021 Page 1 knXidivrTYrvpB5zitEL
		2-7-11			4-1	1-15	5-3-7 0-3-8	,.
	ı	2-7-11	ı		2-	4-3	0-3-8	
			4x4 =					Scale = 1:12.7
			4x4 —					004.0 11.2.1
			2					
	Ī							
		8.00 12						
			/ 人 ``					
_		T1	/ `		11	_		
6 9 2			ST1					
*			311			3		
	1	/						
	'//						>	
			B1					
				///	777			9-0-0
	· \			$\times\!\!\times\!$	$\times\!\!\times\!\!\times$			Ó
			4					
	3x4 🥢		2x4			3x4 ≫		
	0.00		4.44.45				5.0.7	
	0- <u>0-9</u> 0-0-9		<u>4-11-15</u> 4-11-6				5-3-7 0-3-8	
LOADING (psf) TCLL 20.0		0-0 CSI. .15 TC 0.06	DEFL. Vert(LL)	in n/a		l/defl L/d n/a 999		RIP 14/190
TCDL 10.0		.15 BC 0.03	Vert(CT)	n/a		n/a 999	W1120 24	4/190
BCLL 0.0 *		ES WB 0.01	Horz(CT)	0.00	3	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2	014 Matrix-P					Weight: 17 lb	FT = 20%
LUMBER-			BRACING-					
TOP CHORD 2x4 S BOT CHORD 2x4 S			TOP CHOF BOT CHOF				lirectly applied or 5-3-7 I or 10-0-0 oc bracing.	oc purlins.
	P No.2		BOT CHOP	\D			tabilizers and required	cross bracing
					be inst	alled during truss er	rection, in accordance	
REACTIONS. (siz	ro) 1_E 2 E /min 0 1 0) 3	_5.2.5 (min 0.4.9) 4.5.2.4	5 (min 0.1.9)		Installa	ation guide.		
	e) 1=5-2-5 (mm. 0-1-8), 3 Horz 1=29(LC 11)	=5-2-5 (min. 0-1-8), 4=5-2-5	(IIIIII. U-1-0)					
Max l	Jplift1=-8(LC 12), 3=-11(LC							
Max	Grav 1=94(LC 1), 3=94(LC 1), 4=15/(LC 1)						

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

		7.		, ,	TO THE CONTROLL	L IIIIID/(OOII
J0221-1067	VA1	Valley		1 1		
					Job Reference (optional	al)
Comtech, Inc., Fayette	eville, NC 28309, Bob Lewis		Run: 8.300 s Mar 22 201	9 Print: 8.300 s Ma	ar 22 2019 Mi Lek Industri	es, Inc. Thu Feb 18 15:45:29 2021 Page 1 Db?FyHWLqGnl_KKtBw27RL8cnVfMjXzjtEK
		7-10-11	ID.D4IKGC	SOVILD9OVDG30	15-5-15	15-9-7
		7-10-11			7-7-3	15-9-7 0-3-8
		7 10 11			1 1 0	000
			4x4 =			Scale = 1:32.5
			3			
	1	8.00 12 2x4 2 T1	\$T2		2x4 \$T1 4	5

	3x4 🕢	8	7		6	3x4 ≫
		2x4	2x4		2x4	
	0-0-9 0-0-9		15-5-15 15-5-6			15-9-7 0-3-8
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL Lumber DOL		0.14 Vert(LL 0.08 Vert(CT 0.07 Horz(C') n/a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190 Weight: 63 lb FT = 20%
LUMBER-			BRACIN	G-		

Qty

Job

Truss

Truss Type

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

RAY & CHRISTINE HYMBAUGH

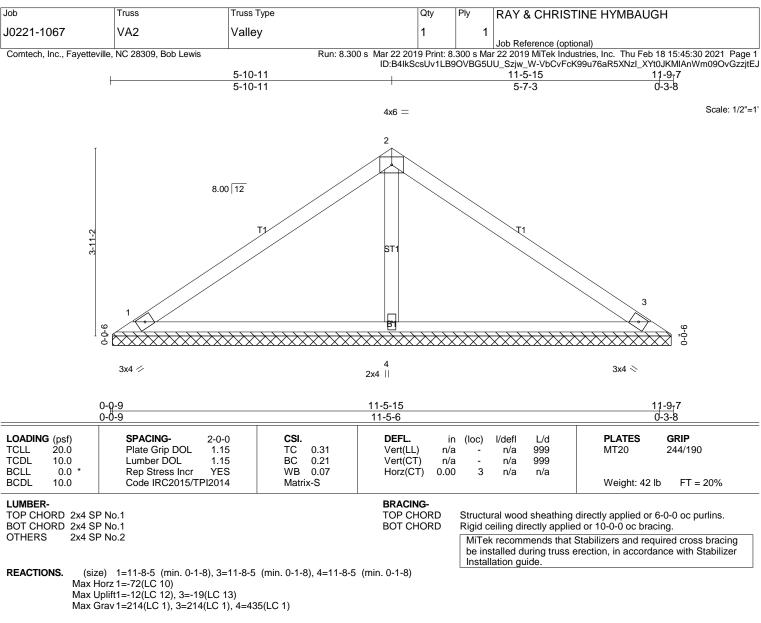
MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 15-8-5.

(lb) - Max Horz 1=-98(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=362(LC 19),


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-276/177, 4-6=-276/177

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-4=-275/96

NOTES-

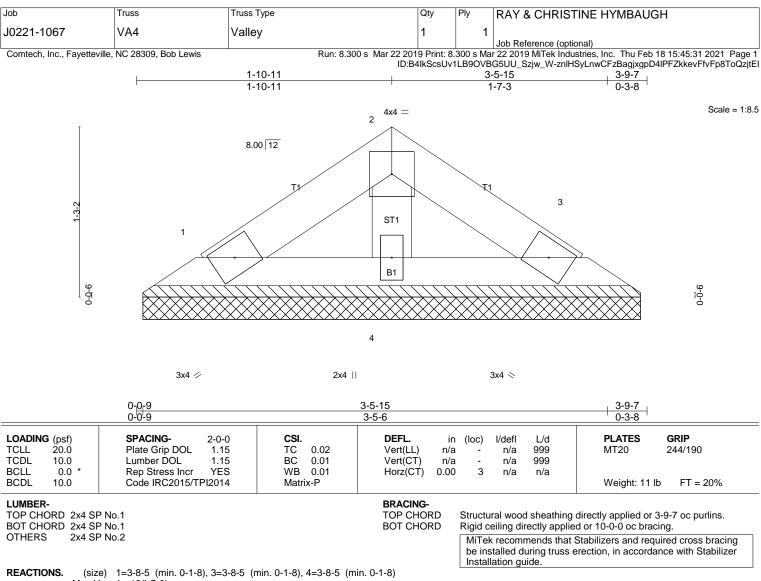
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE	E HYMBAUGH	
J0221-1067	VA3	Valley	1	1			
		-			Job Reference (optional)		
Comtech, Inc., Fayetteville	, NC 28309, Bob Lewis	Run: 8.300 s	Mar 22 2019 Print: 8	.300 s Ma	r 22 2019 MiTek Industries JU_Szjw_W-VbCvFcK99u	s, Inc. Thu Feb 18 15: i76aR5XNzI_XYt2hKO	45:30 2021 Page 1
	1	3-10-11	ID.D4IROCSOVIEL	30 VD030	7-5-15	7-9-7	IAODI1109OVOZZJILO
		3-10-11	ı		3-7-3	7-9-7 0-3-8	
							Scale = 1:16.9
			4x4 =				Scale = 1.16.9
0-0-6	1	71 T1	ST1		1 1	3	0-Ö-6
			~~~~~~~	~~~			
	3x4 🕢	2x4	4		3x4 \	_	
	3X4 1/	2X4	+ 11		3X4 \	`	
	0-0-0	=	7-5-15			7-0-7	
	0-0-9 0-0-9		7-5-15 7-5-6			7-9-7 0-3-8	
					.,, ,,		
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15		DEFL. in Vert(LL) n/a		l/defl L/d n/a 999	PLATES GR MT20 244	I <b>P</b> I/190
TCDL 10.0	Lumber DOL 1.15	BC 0.09	Vert(CT) n/a	a -	n/a 999	20 2	
BCLL 0.0 *	Rep Stress Incr YES		Horz(CT) 0.00	3	n/a n/a	Maiabt. 07 lk	ET 200/
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 27 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N			BRACING- TOP CHORD BOT CHORD	Structu Rigid c	ral wood sheathing dire	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins.

OTHERS 2x4 SP No.2

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS.


(size) 1=7-8-5 (min. 0-1-8), 3=7-8-5 (min. 0-1-8), 4=7-8-5 (min. 0-1-8)

Max Horz 1=-45(LC 10) Max Uplift1=-13(LC 12), 3=-17(LC 13)

Max Grav 1=148(LC 1), 3=148(LC 1), 4=248(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- Unbalanced roof live loads have been considered for this design.
   Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
  3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Max Horz 1=-19(LC 8)

Max Uplift1=-5(LC 12), 3=-7(LC 13)

Max Grav 1=61(LC 1), 3=61(LC 1), 4=102(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH	
J0221-1067	VB1	Valley	1	1	Job Reference (optional)	
Comtech, Inc., Fayette	ville, NC 28309, Bob Lewis	10-5-3	s Mar 22 2019 Print: 8. ID:B4lkScsUv1	.300 s Ma LB9OVB0	r 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:: 35UU_Szjw_W-znlHSyLnwCFzBagjxgpD4lPDRkizvl 17-0-3 17 _T 3 _T 11	31 2021 Page 1 DAvFp8ToQzjtEI
	'	10-5-3	'		6-7-0 0-3-8	
			4x4 =			Scale = 1:40.9
	2x4    2 3T	8.00 12 2x4    3 T1 P1	\$T3	×××	2x4    5 3x4    6 8T2 W1 47 72	
	3x4 🕖 12		10	9	8 7	
	2x4	2x4	2x4	3x4 =	2x4    3x4	
	0-0-9 0-0-9		17-0-3 6-11-10		17 ₁ 3 ₇ 11 0 ¹ 3-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 CSI. 1.15 TC 0.16 1.15 BC 0.19 YES WB 0.17 2014 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	ı - ı -	I/defl	= 20%
OTHERS 2x4 S		1	BRACING- TOP CHORD BOT CHORD	except Rigid co MiTek be ins	ral wood sheathing directly applied or 6-0-0 oc end verticals. eiling directly applied or 6-0-0 oc bracing. Trecommends that Stabilizers and required crotalled during truss erection, in accordance with ation guide.	ss bracing

**REACTIONS.** All bearings 17-3-2.

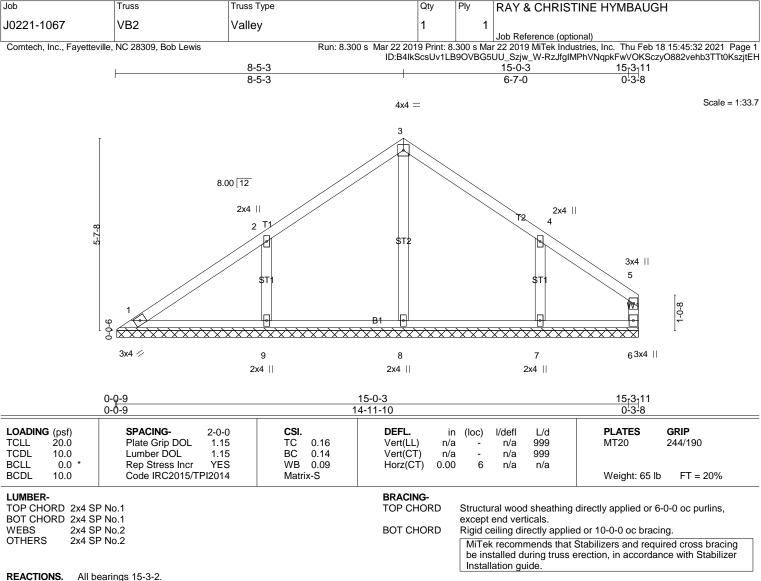
(lb) - Max Horz 1=130(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 11, 12, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=502(LC 19),

11=449(LC 19), 12=268(LC 1), 8=419(LC 20)

**FORCES.** (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-11=-279/178, 5-8=-253/164


1) Unbalanced roof live loads have been considered for this design.
2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 8-5-15, Interior(1) 8-5-15 to 10-5-3, Exterior(2) 10-5-3 to 17-1-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

  6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 11, 12, 8.

  7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

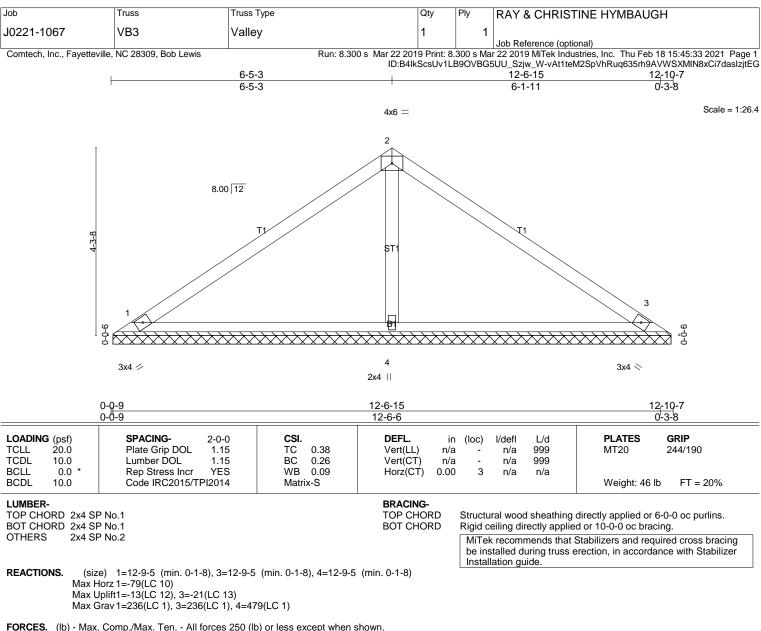


Max Horz 1=105(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 8=433(LC 19), 9=409(LC

19), 7=352(LC 20)


**FORCES.** (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-296/190, 4-7=-257/169

1) Unbalanced roof live loads have been considered for this design.

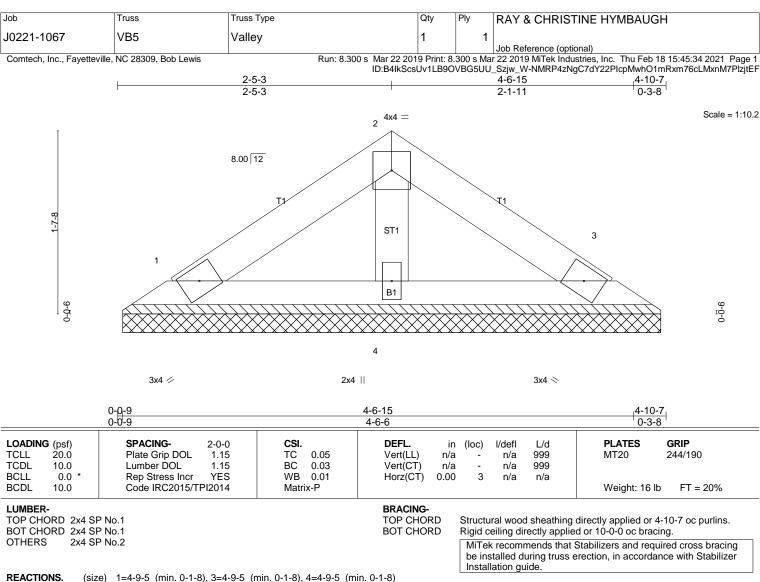
2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 7.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



**WEBS** 2-4=-303/104


# NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Lib	T	T		01:	Div		TIME IN A 45 ALION	
Job	Truss	Truss Type		Qty	Ply	RAY & CHRIS	TINE HYMBAUGH	
J0221-1067	VB4	Valley		1	1	Job Reference (op	tional)	
Comtech, Inc., Fayette	eville, NC 28309, Bob Lewis	Ri	un: 8.300 s Mar 22 201	I 9 Print: 8	3.300 s Ma	ar 22 2019 MiTek Ind	ustries, Inc. Thu Feb 18 15:45	i:33 2021 Page 1
		4-5-3	ID:B4II	kScsUv1	LB9OVBG	5UU_Szjw_W-vAt1to 8-6-15	eM2SpVhRuq635rh9AVY?XP 8 _r 10 ₋ 7	KN9pCi7dasIzjtEG
		4-5-3				4-1-11	0-3-8	
								01- 4:40.0
			4x4 =					Scale = 1:19.0
ī			2					
		8.00 12		. \				
2-11-8		T1						
2-1			ST1					
							3	
	1 //							
φ			B1					<b>ဖ</b>
9-0-0					$\Rightarrow \Rightarrow \Rightarrow$			9-0-0
			4					
	3x4 🖊		2x4				3x4 ≫	
	0- <u>0-9</u> 0-0-9		8-6-15				8 ₋ 10 ₋ 7 0-3-8	
	0-0-9		8-6-6				0-3-8	
LOADING (psf)	SPACING-	2-0-0 <b>CSI.</b>	DEFL.		n (loc)	I/defI L/d	PLATES GRIF	
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.23 1.15 BC 0.13				n/a 999 n/a 999	MT20 244/	190
BCLL 0.0 *	Rep Stress Incr	YES WB 0.03				n/a n/a	Weight Od III	F 000/
BCDL 10.0	Code IRC2015/TI	Pl2014 Matrix-P					Weight: 31 lb F	Γ = 20%
LUMBER-	D No. 4		BRACIN TOP CH		Ct		. dina eth canadia d an C O O a	
TOP CHORD 2x4 S BOT CHORD 2x4 S			BOT CI		Rigid o	irai wood sneatning eiling directly appli	g directly applied or 6-0-0 or ed or 10-0-0 oc bracing.	punins.
OTHERS 2x4 S	P No.2				MiTe	k recommends that	Stabilizers and required cr	
					be ins	stalled during truss lation guide.	erection, in accordance wit	h Stabilizer
		), 3=8-9-5 (min. 0-1-8), 4=8-	9-5 (min. 0-1-8)					
	Horz 1=-53(LC 10) Uplift1=-15(LC 12), 3=-20	)(LC 13)						
	Grav 1=171(LC 1), 3=171							

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- Unbalanced roof live loads have been considered for this design.
   Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
  3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) This truss has been designed for a live load of 30.0ps on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
  6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
  7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.



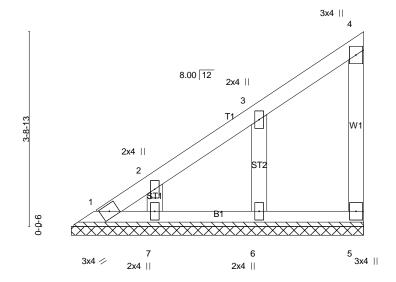
(size) 1=4-9-5 (min. 0-1-8), 3=4-9-5 (min. 0-1-8), 4=4-9-5 (min. 0-1-8)

Max Horz 1=-26(LC 10)

Max Uplift1=-7(LC 12), 3=-10(LC 13)

Max Grav 1=84(LC 1), 3=84(LC 1), 4=142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	VC1	GABLE	1	1	
					Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:34 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-NMRP4zNgC7dY22PlcpMwhO1mYxmC6cDMxnM7PlzjtEF

5-3-11 5-7-3 5-3-11 0-3-8

Scale = 1:22.1



LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.04	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 26 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 WFRS **OTHERS** 2x4 SP No.2 **BRACING-**

TOP CHORD

Structural wood sheathing directly applied or 5-7-3 oc purlins,

except end verticals.

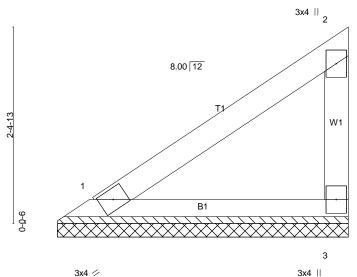
BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. All bearings 5-7-3.

(lb) - Max Horz 1=90(LC 12)


Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 6, 7 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6, 7

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
  2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 6, 7.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type		Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	VC2	Valley		1	1	
		-				Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28309, Bob Lewis			Run: 8.300 s Mar 22 20	19 Print: 8	.300 s M	ar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:35 2021 Page 1
			ID:B4Ik	ScsUv1L	B9OVBG	65UU_Szjw_W-rY?oIJOIzQIPgCzUAWu9Ebaw4L5fr3mV9R6gxBzjtEE
		1	3-3-11			3-7-3
			3-3-11			0-3-8
					3	3x4    Scale = 1:14.1



LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 13 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 **WEBS** 

**BRACING-**

TOP CHORD

Structural wood sheathing directly applied or 3-7-3 oc purlins,

except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

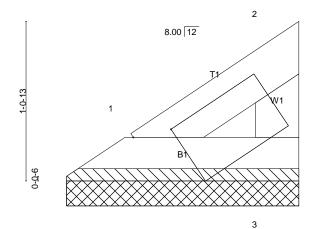
REACTIONS. (size) 1=3-6-10 (min. 0-1-8), 3=3-6-10 (min. 0-1-8)

Max Horz 1=54(LC 12) Max Uplift3=-23(LC 12)

Max Grav 1=118(LC 1), 3=123(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-


- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
  2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	VC3	Valley	1	1	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:35 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-rY?olJOlzQlPgCzUAWu9EbaxmL6ir3mV9R6gxBzjtEE

	ID.D4IK3C3UVILD30	J v DO300_32jw_	_ v v
1-3-11	ı	1-7-3	
1-3-11		0-3-8	

Scale = 1:7.7



5x8 /

Plate Offsets (X,Y)-- [1:0-2-6,0-1-9], [1:0-2-14,0-1-2], [2:0-2-2,0-0-0], [3:0-1-7,0-1-0]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.01	Vert(LL) n/a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	` ,	Weight: 5 lb FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 BRACING-

TOP CHORD Structural wood sheathing directly applied or 1-7-3 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

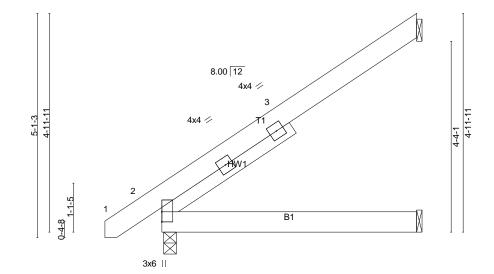
**REACTIONS.** (size) 1=1-6-10 (min. 0-1-8), 3=1-6-10 (min. 0-1-8)

Max Horz 1=18(LC 12) Max Uplift3=-7(LC 12)

Max Grav 1=38(LC 1), 3=40(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

# NOTES-


- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	X1		21	1	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:36 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-JkZAVfPwkktGlMYhkEPOnp72TlR2aW0eO5rETdzjtED

-1-3-8 1-3-8	ID:D INCOCCV IEDOC V DCCCC	1D:D 1110000 V 12D00 V D0000 _02JW_VV 01				
-1-3-8 1-3-8	5-6-0	5-9-8				
1-3-8	5-6-0	0-3-8				

Scale = 1:26.2



LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) -0.01 2-5 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.13	Vert(CT) -0.03 2-5 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01 4 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 39 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

SLIDER Left 2x4 SP No.2 -t 3-6-7

**BRACING-**

TOP CHORD BOT CHORD

5-9-8 5-9-0

Structural wood sheathing directly applied or 5-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 4=Mechanical, 2=0-3-8 (min. 0-1-8), 5=Mechanical

 $\vdash$ 

Max Horz 2=124(LC 12) Max Uplift4=-88(LC 12)

Max Grav 4=178(LC 19), 2=306(LC 1), 5=115(LC 3)

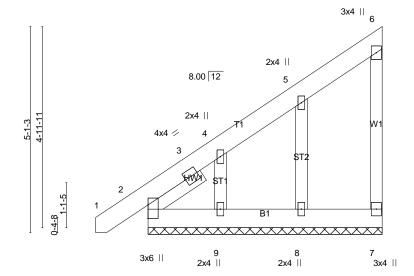
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	X1GE	Jack-Open Supported Gable	2	1	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:37 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-nx7Yj?QYV2?7vV7tlxwdJ0fGv9n7Jzqodlbn?3zjtEC


Structural wood sheathing directly applied or 5-9-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

-1-3-8 7-1-0 1-3-8 5-9-8

Scale = 1:28.5



-1-3-8	7-1-0
1-3-8	5-9-8

**BRACING-**

TOP CHORD

BOT CHORD

LOADING	(psf)	SPACING- 2-	-0-0	CSI.		DEFL.	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.Ó	Plate Grip DOL 1	1.15	TC	0.03	Vert(LL)	0.00	ìí	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL 1	1.15	BC	0.01	Vert(CT)	-0.00	1	n/r	120		
BCLL	0.0 *	Rep Stress Incr Y	/ES	WB	0.03	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TPI20	014	Matri	x-P						Weight: 48 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 1-7-3

**REACTIONS.** All bearings 5-9-8.

(lb) - Max Horz 2=122(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9

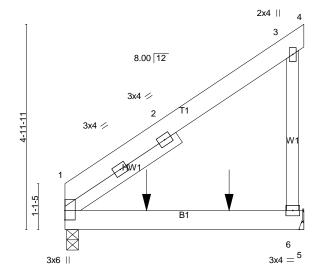
Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	X1GR	Jack-Open Girder	1	2	Job Reference (optional)


Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:37 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-nx7Yj?QYV2?7vV7tlxwdJ0fFi9cZJz3odlbn?3zjtEC

Structural wood sheathing directly applied or 5-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	12.2 11100001 12200 120000	_
5-6-0	5 ₋ 9- ₈	
5-6-0	0-3-8	

Scale = 1:27.9



5-9-8
5-9-0

**BRACING-**

TOP CHORD

BOT CHORD

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.11	Vert(LL) -0.06 1-6 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.75	Vert(CT) -0.13 1-6 >497 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.01	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) -0.01 1-6 >999 240	Weight: 82 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-3-7

REACTIONS. (size) 1=0-3-8 (min. 0-1-8), 6=Mechanical

Max Horz 1=120(LC 8)

Max Grav 1=1003(LC 1), 6=1149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
  - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
  - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
  - Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 850 lb down at 1-11-12, and 850 lb down at 3-11-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

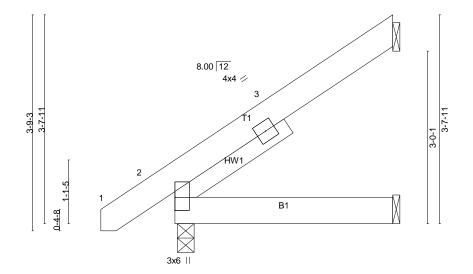
## LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-20, 1-5=-20

Concentrated Loads (lb)


Vert: 7=-850(B) 8=-850(B)

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	X2	Jack-Open	14	1	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:38 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Sziw_W-G7hwwLQAGL7_Xfi3rfRssECQlY7j2QVxsPKKYWzitEB

		12.2 11100001 122001	
ı	-1-3-8	3-6-0	3-9-8
Γ	1-3-8	3-6-0	0-3-8

Scale = 1:20.1



3-9-8
3-9-0

LOADING (psf)	SPACING- 2-0-0	CSI.	<b>DEFL.</b> in (loc)	I/defI L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL) -0.00 2-5	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.01 2-5	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 4	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2	**** 240	Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

SLIDER Left 2x4 SP No.2 -t 2-4-0

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 4=Mechanical, 2=0-3-8 (min. 0-1-8), 5=Mechanical

Max Horz 2=87(LC 12) Max Uplift4=-61(LC 12)

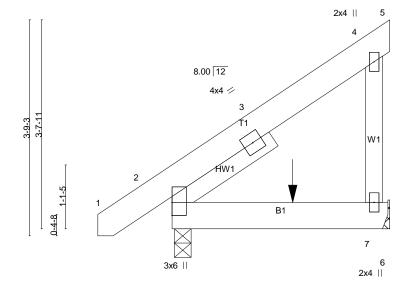
Max Grav 4=112(LC 19), 2=230(LC 1), 5=75(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	X2GR	Jack-Open Girder	1	2	Job Reference (optional)


Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:39 2021 Page 1 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-kJEl8hRo1fFr9pHGPMy5ORlcOyR?ntf5434u4yzjtEA

Structural wood sheathing directly applied or 3-9-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



Scale = 1:20.1



LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL Ž0.Ó	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.01 2-7 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.18	Vert(CT) -0.01 2-7 >999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.01	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) -0.00 2 >999 240	Weight: 61 lb FT = 20%

**BRACING-**

TOP CHORD

BOT CHORD

3-9-8 3-9-0

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFRS

SLIDER Left 2x4 SP No.2 -t 2-1-0

REACTIONS. (size) 2=0-3-8 (min. 0-1-8), 7=Mechanical

Max Horz 2=87(LC 8)

Max Grav 2=401(LC 1), 7=407(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

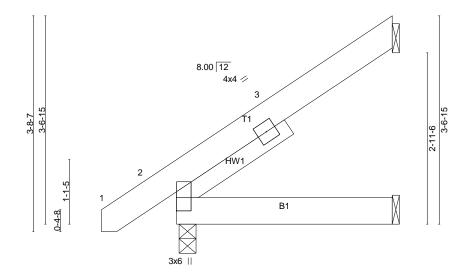
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated
- 3) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 447 lb down at 2-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-20, 2-6=-20

Concentrated Loads (lb)


Vert: 8=-447(B)

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	Y1	Jack-Open	2	1	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:39 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-kJEl8hRo1fFr9pHGPMy5ORlbZyT?ntl5434u4yzjtEA

		ID.DTINOCSOV ILDSC	/
ī	-1-3-8	3-4-15	3-8-7
Γ	1-3-8	3-4-15	0-3-8

Scale = 1:19.8



3-8-7
3-7-15

LOADING (psf)	SPACING- 2-0-0	CSI.	<b>DEFL.</b> in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL) -0.00 2-5 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.00 2-5 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 4 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 27 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

SLIDER Left 2x4 SP No.2 -t 2-3-6

**BRACING-**

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-8-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8 (min. 0-1-8), 5=Mechanical

Max Horz 2=86(LC 12) Max Uplift4=-60(LC 12)

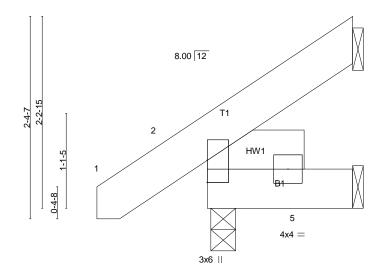
Max Grav 4=109(LC 19), 2=226(LC 1), 5=73(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	Y1A	Jack-Open	2	1	Job Reference (optional)


Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:40 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-CWohL1SRozNimzsSz3TKxfHnDMprWK?EJjpRcOzjtE9

Structural wood sheathing directly applied or 1-8-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		D.D41K3C3OV 1LD3O VDG3OO_	_02jvv_v
	-1-3-8	1-4-15	1-8-7
ı	1-3-8	1-4-15	0-3-8

Scale = 1:13.5



1-8-7
1-7-15

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	<b>CSI.</b> TC 0.03	<b>DEFL.</b> in (loc) I/defl L/d Vert(LL) -0.00 2 >999 360	<b>PLATES GRIP</b> MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 2 >999 240	W1120 24-4/130
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 16 lb FT = 20%

BRACING-TOP CHORD

**BOT CHORD** 

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

SLIDER Left 2x6 SP No.1 -t 1-1-10

Leit 2x0 of 140.1 -t 1-1-10

**REACTIONS.** (size) 3=Mechanical, 2=0-3-8 (min. 0-1-8), 4=Mechanical

Max Horz 2=51(LC 12) Max Uplift3=-33(LC 12)

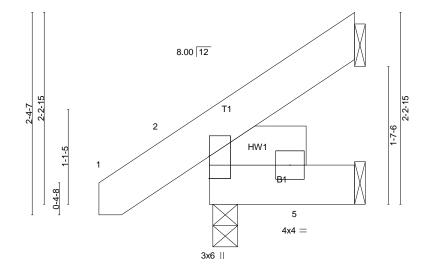
Max Grav 3=36(LC 19), 2=161(LC 1), 4=34(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	Y2	Jack-Open	4	1	Job Reference (optional)


Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:40 2021 Page 1
ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-CWohL1SRozNimzsSz3TKxfHnDMprWK?EJjpRcOzjtE9

Structural wood sheathing directly applied or 1-8-7 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		ID.D4IKOCSOV ILDSOVI	DO300_32jw
ı	-1-3-8	1-4-15	1-8-7
	1-3-8	1-4-15	0-3-8

Scale = 1:13.5



1-8-7
1-7-15

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	<b>CSI.</b> TC 0.03	<b>DEFL.</b> in (loc) I/defl L/d Vert(LL) -0.00 2 >999 360	<b>PLATES GRIP</b> MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 2 >999 240	W1120 24-4/130
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 16 lb FT = 20%

BRACING-TOP CHORD

**BOT CHORD** 

LUMBER-

REACTIONS.

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

SLIDER Left 2x6 SP No.1 -t 1-1-10

(size) 3=Mechanical, 2=0-3-8 (min. 0-1-8), 4=Mechanical

Max Horz 2=51(LC 12) Max Uplift3=-33(LC 12)

Max Grav 3=36(LC 19), 2=161(LC 1), 4=34(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



4-0-6	7-9-5	8-0-13
4-0-6	3-8-14	0-3-8

Plate	Offsets	(X,Y)	[2:0-7-4,Edge]	

LOADING (psf) TCLL 20.0	<b>SPACING-</b> 2-0-0 Plate Grip DOL 1.15	<b>CSI.</b> TC 0.08	<b>DEFL.</b> Vert(LL)	in -0.00	(loc) 9	l/defl >999	L/d 360	<b>PLATES GRIP</b> MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT)	-0.01	8-9	>999	240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.12	Horz(CT)	0.00	8	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.00	9	>999	240	Weight: 65 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x6 SP No.1 -t 2-2-8

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 8=Mechanical, 2=0-4-15 (min. 0-1-8)

Max Horz 2=123(LC 8)

Max Uplift8=-90(LC 8), 2=-27(LC 4) Max Grav 8=342(LC 29), 2=437(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-447/32

BOT CHORD 2-9=-87/292, 8-9=-87/292

WEBS 4-8=-352/105

### NOTES-

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 37 lb up at 2-5-15, 64 lb down and 37 lb up at 2-5-15, and 94 lb down and 78 lb up at 5-3-15, and 94 lb down and 78 lb up at 5-3-15 on top chord, and at 2-5-15, at 2-5-15, and 19 lb down at 5-3-15, and 19 lb down at 5-3-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

# LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	Z1	Diagonal Hip Girder	1	1	Job Reference (optional)

Run: 8.300 s Mar 22 2019 Print: 8.300 s Mar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:41 2021 Page 2 ID:B4lkScsUv1LB9OVBG5UU_Szjw_W-giM3YNT3ZGVYO7ReXn_ZUsqx5m83FmSOYMZ?8rzjtE8

Job	Truss	Truss Type	Qty	Ply	RAY & CHRISTINE HYMBAUGH
J0221-1067	Z2	Diagonal Hip Girder	2	1	Job Reference (optional)
Comtech, Inc., Fayett	eville, NC 28309, Bob Lewis	Run: 8.3	00 s Mar 22 2019 Print	: 8.300 s M	lar 22 2019 MiTek Industries, Inc. Thu Feb 18 15:45:42 2021 Page
		-1-9-15	ID:B4lkScsUv1Ll 4-1		JU_Szjw_W-8uwRmjThKadP0H0r4UWo04N52AUr_EVXm0IYhHzjtE 5-2-14
	H	-1-9-15 1-9-15	4-1		5 ₇ 2-1 ₄ 0-3-8
	3-8-7 0-4-8 1-1-5	3x10	5.66 12 4x4 = 3 T1 HW1	<u>J</u> B1	3x4    5 W1 W1 7 6 3x4
		-		2-14 2-14	
Plate Offsets (X,Y)-	- [2:0-7-4,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/Ti	2-0-0	Vert(CT) -0 Horz(CT) 0	in (loc) .01 2-7 .02 2-7 .00	>999 360 MT20 244/190

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WFBS 2x4 SP No.2

SLIDER Left 2x6 SP No.1 -t 2-8-12 BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-2-14 oc purlins,

except end verticals.

**BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 7=Mechanical, 2=0-4-15 (min. 0-1-8)

Max Horz 2=87(LC 8)

Max Uplift7=-32(LC 8), 2=-8(LC 4)

Max Grav 7=193(LC 1), 2=317(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

### NOTES-

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 37 lb up at 2-5-15, and 64 lb down and 37 lb up at 2-5-15 on top chord, and at 2-5-15, and at 2-5-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

### LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-20, 2-6=-20