Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	T1	Common	7	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:17 Page: 1 ID:yYTtSwQLKWoldtz85ZKmzmzu6Ve-_HjYjl4TiV?iWvil1xAg_mKhHh?pHDwSKKIOW2zu6KS

l	9-1-5	16-6-5	24-6-11	34-11-4	41-1-0 l
1	9-1-5	7-5-0	8-0-6	10-4-9	1 6-1-1Ž 1

Scale = 1:69.3

Plate Offsets (X, Y): [15:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.28	11-13	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.49	11-13	>858	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.86	Horz(CT)	0.07	11	n/a	n/a			
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 230 lb	FT = 20%	

LUMBER TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 (Ib/size) 2=1437/0-3-8, (min. 0-2-5), 10=122/0-3-8, (min. 0-1-8),	BRACING TOP CHORD BOT CHORD WEBS WEBS	Structural wood sheathing directly applied or 3-4-9 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 10-11. 1 Row at midpt 6-13 2 Rows at 1/3 pts 7-11
	Max Horiz 2=199 (LC 10) Max Upift 2=-200 (LC 11), 10=-2 (LC 22), 11=-255 (LC 11) Max Grav 2=1460 (LC 16), 10=160 (LC 21), 11=1888 (LC 17)		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
FORCES	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when show	wn.	

TOP CHORD 2-22=-2470/300, 3-22=-2420/323, 3-4=-2337/331, 4-5=-2192/366, 5-23=-1707/344, 6-23=-1619/368, 6-24=-1350/325, 7-24=-1440/291

 BOT CHORD
 2-15=-199/2261, 15-26=-68/1738, 26-27=-68/1738, 14-27=-68/1738, 14-28=0/1173, 28-29=0/1173, 13-29=0/1173, 12-13=-6/1163, 12-30=-6/1163, 30-31=-6/1163, 11-31=-6/1163

WEBS 9-11=-447/231, 3-15=-385/187, 5-15=-84/661, 5-14=-693/244, 6-14=-154/986, 6-13=-41/348, 7-13=-76/267, 7-11=-1754/176

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -10-0 to 3-1-5, Interior (1) 3-1-5 to 20-6-8, Exterior (2) 20-6-8 to 24-7-13, Interior (1) 24-7-13 to 41-1-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 200 lb uplift at joint 2, 255 lb uplift at joint 11 and 2 lb uplift at joint 10.

5) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TP11.

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	T1A	Common	1	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:17 Page: 1 ID:FzVDBZKOfYEf7OCZ_pALVazu6UT-_HjYjl4TiV?iWvil1xAg_mKg_h?sHDtSKKIOW2zu6KS

Scale = 1:67.7

Plate Offsets (X, Y): [14:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.28	10-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.48	10-12	>868	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.87	Horz(CT)	0.07	10	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 228 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP 2x4 SP 2x4 SP	No.1 No.1 No.3	BRACING TOP CHORD BOT CHORD	Structural wood sh Rigid ceiling directl 6-0-0 oc bracing: 9	neathing directly applied or 3-4-0 oc purlins. Ily applied or 10-0-0 oc bracing, Except: 9-10.		
REACTIONS (lb/size)	1=1376/0-3-8, (min. 0-2-3), 9=122/0-3-8, (min. 0-1-8),	WEBS	2 Rows at 1/3 pts	6-10		
ח ח ח	10=1789/0-3-8, (min. 0-2-15) Max Horiz 1=-192 (LC 9) Max Uplift 1=-164 (LC 11), 9=-1 (LC 22), 1 Max Grav 1=1406 (LC 16), 9=160 (LC 21)			MiTek recommend installed during tru Installation guide.	MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.		
FORGEO	(11.)						

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-21=-2477/308, 2-21=-2406/328, 2-3=-2343/336, 3-4=-2198/371, 4-22=-1707/345, 5-22=-1619/369, 5-23=-1351/327, 6-23=-1441/292

BOT CHORD 1-14=-205/2267, 14-25=-70/1740, 25-26=-70/1740, 13-26=-70/1740, 13-27=0/1174, 27-28=0/1174, 12-28=0/1174, 11-12=-6/1165, 11-29=-6/1165, 10-30=-6/1165

WEBS 8-10=-447/231, 2-14=-388/190, 4-14=-89/667, 4-13=-695/245, 5-13=-155/987, 5-12=-41/347, 6-12=-76/267, 6-10=-1756/177

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 4-1-5, Interior (1) 4-1-5 to 20-6-8, Exterior (2) 20-6-8 to 24-7-13, Interior (1) 24-7-13 to 41-1-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 164 lb uplift at joint 1, 256 lb uplift at joint 10 and 1 lb uplift at joint 9.

5) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TP11.

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	T1B	Common	1	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:17 Page: 1 ID:gvpVffObxbK9gwxT8II_48zu6T5-_HjYjI4TiV?iWvi11xAg_mKgMh0rHD9SKKIOW2zu6KS

<u>-1-0-0</u> 1-0-0 42-1-0 1-0-0 13-10-3 6-8-5 7-1-14 7-1-14 20-6-8 6-8-5 <u>27-2-13</u> 6-8-5 33-11-6-8-5 41-1-0 7-1-14 5x5= 25 26 3x4 ≉ 3x4. 12 6.5 11 5 1; 3x6 🛩 3x6**≈** 4 2x4 w 8 2x4 / 04-4 **B**3 B2 鬣 1413 32 3x4= 4x6= 1716 3x4= 4x6= 28 29 30 31 33 15 3x4= 12 3x4= 3x5= 3x5=

8-5-15	16-6-5	24-6-11	32-7-1	41-1-0
8-5-15	8-0-6	8-0-6	8-0-6	8-5-15

Scale = 1:70.8

200

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.22	12-14	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.42	14-15	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.12	10	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 231 lb	FT = 20%

LUMBER TOP CHORD 22 BOT CHORD 22 WEBS 22	x4 SP No.1 x4 SP No.1 x4 SP No.3	BRACING TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 2-11-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be					
REACTIONS (lb/si Max	TIONS (lb/size) 2=1703/0-3-8, (min. 0-2-11), 10=1703/0-3-8, (min. 0-2-11) Max Horiz 2=202 (LC 10) Max Ilpliff 2=-237 (I C 11) 10=-237 (I C 11)		Installation guide.					
Max Max	Uplift 2=-237 (LC 11), 10=-237 (LC 11) Grav 2=1728 (LC 16), 10=1728 (LC 17)							
FORCES TOP CHORD	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown 2-24=-3054/372, 3-24=-2985/395, 3-4=-2952/428, 4-5=-2808/463, 5-25=-2 7-26=-2267/421, 7-8=-2808/463, 8-9=-2953/428, 9-27=-2985/395, 10-27=-	ı. 267/421, 6-25=-2180/4 3054/372	44, 6-26=-2180/444,					
BOT CHORD	CHORD 2-17=-238/2763, 16-17=-112/2233, 16-28=-112/2233, 28-29=-112/2233, 15-29=-112/2233, 15-30=0/1662, 30-31=0/1662, 13-14=-112/2120, 13-32=-112/2120, 32-33=-112/2120, 12-33=-112/2120, 10-12=-238/2612							
WEBS	6-14=-146/1013, 7-14=-681/248, 7-12=-106/702, 9-12=-382/191, 6-15=-14 3-17=-382/191	6/1013, 5-15=-681/248	8, 5-17=-106/702,					
NOTES								

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-0-0 to 3-1-5, Interior (1) 3-1-5 to 20-6-8, Exterior (2) 20-6-8 to 24-7-13, Interior (1) 24-7-13 to 42-1-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 237 lb uplift at joint 2 and 237 lb uplift at joint 10.

5) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	T1C	Common	6	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:18 Page: 1 ID:6J_uwdXwImTokVJwI0?PzAzu6Wo-SUHwx555Tp7Z83HxbehvXzsqh4Lo0gbcZ_1y3Uzu6KR

13-10-(6-8-3 20-6-8 6-8-3 42-1-0 1-0-0 27-2-1 6-8-3 33-10-1 6-8-3 7-2-3 7-2-3 41-1-(7-2-3 5x5= 3x4 🞜 3x4 12 6.5 11-5-12 2-0-0 3x6 🕏 3x6👟 2x4 w 2x4 044 3x5= 1615 3x4= 4x6= 27 28 14 3x4= 29 30 1**3**2 5x14= 32 31 11 3x4= 3x5 16-3-6 7-9-3 <u>24-9-10</u> 8-6-3 32-6-13 7-9-3 8-6-3 8-6-3 <u>41-1-(</u> 8-6-3

Scale = 1:69.3

Plate Offsets (X, Y): [12:0-6-12,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	-0.25	13-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.48	13-14	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.84	Horz(CT)	0.12	9	n/a	n/a			
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 229 lb	FT = 20%	

LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 REACTIONS (lb/size) 1=1643/0-3-8, (min. 0-2-10), 9=1704/0-3-8, (min. 0-2-11) Max Horiz 1=-199 (LC 9) Max Uplift 1=-202 (LC 11), 9=-238 (LC 11) Max Grav 1=1676 (LC 16), 9=1730 (LC 17)	BRACING TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 2-10-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when sho TOP CHORD 1-23=-3058/382, 2-23=-2972/402, 2-3=-2957/435, 3-4=-2813/470, 4-24= 6-25=-2297/427, 6-7=-2807/465, 7-8=-2951/431, 8-26=-2983/397, 9-26=	wn. 2298/428, 5-24=-2211, 3052/374	/451, 5-25=-2210/451,
BOT CHORD 1-16=-244/2767, 15-16=-112/2240, 15-27=-112/2240, 27-28=-112/2240, 13-30=0/1663, 12-13=-111/2126, 12-31=-111/2126, 31-32=-111/2126, 11	14-28=-112/2240, 14-29 -32=-111/2126, 9-11=-2	9=0/1663, 29-30=0/1663, 39/2610
WEBS 5-13=-150/1035, 6-13=-682/251, 6-11=-110/690, 8-11=-383/191, 5-14=- 2-16=-386/193	151/1037, 4-14=-684/25	3, 4-16=-116/696,

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=41ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-0 to 4-1-5, Interior (1) 4-1-5 to 20-6-8, Exterior (2) 20-6-8 to 24-7-13, Interior (1) 24-7-13 to 42-1-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 202 lb uplift at joint 1 and 238 lb uplift at joint 9. This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 4)

5)

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	T1D	Common	7	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:18 Page: 1 ID:1sc0jNSjl7ySnhpRxrL9nCzu6T0-SUHwx555Tp7Z83HxbehvXzsqp4M50gMcZ_1y3Uzu6KR

20-6-8 6-8-5 7-1-14 7-1-14 13-10-3 6-8-5 27-2-13 6-8-5 33-11-6-8-5 41-1-0 7-1-14 5x5= 23 3x4 ≠ 3x4 6 12 6.5 1-5-1 3x6 🕏 3x6**≈** 2x4 w 3 2x4 0-4-4 1514 3x4= 4x6= 1211 30 3x4= 4x6= 13 3x4= 29 10 3x4= 26 27 28 31 3x5= 3x5= 16-6-5 8-0-6 24-6-1 8-0-6 <u>32-7-</u> 8-0-6 8-5-15 8-5-15 41-1-0 8-5-15

Scale = 1:67.7

5-1'

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	-0.22	13-15	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.42	12-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.85	Horz(CT)	0.12	9	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 227 lb	FT = 20%

LUMBER TOP CHORD 22 BOT CHORD 22 WEBS 22 REACTIONS (Ib/s	x4 SP No.1 x4 SP No.1 x4 SP No.3 ize) 1=1643/ Mechanical, (min. 0-1-8), 9=1643/ Mechanical, (min. 0-1-8)	BRACING TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 2-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
Max	Horiz 1=-192 (LC 9)		
Max	Uplift $1=-202$ (LC 11), $9=-202$ (LC 11)		
Max	G(av = 1075)(LC = 10), 9 = 1075(LC = 17)		
TOP CHORD	(Ib) - Max. Comp./Max. Ien All forces 250 (Ib) or less except when show 1-22=-3061/382, 2-22=-2975/402, 2-3=-2960/436, 3-4=-2816/470, 4-23=-2 6-24=-2270/423, 6-7=-2816/470, 7-8=-2961/436, 8-25=-2976/402, 9-25=-3	n. 2270/423, 5-23=-2183/4 3061/382	147, 5-24=-2183/447,
BOT CHORD	1-15=-270/2765, 14-15=-140/2230, 14-26=-140/2230, 26-27=-140/2230, 1	3-27=-140/2230, 13-28	3=-7/1659,
WEBS	28-29=-7/1659, 12-29=-7/1659, 11-12=-140/2117, 11-30=-140/2117, 30-31 5-12=-147/1015, 6-12=-683/250, 6-10=-112/708, 8-10=-385/193, 5-13=-14 2-15=-385/193	=-140/2117, 10-31=-14 7/1014, 4-13=-683/250	60/2117, 9-10=-270/2621), 4-15=-112/708,
NOTES 1) Unbalanced ro 2) Wind: ASCE 7	oof live loads have been considered for this design. 7-10: Vult=120mph (3-second guet) Vasd=95mph; TCDI =6 0psf; BCDI =6 0	osf: h=30ft: B=20ft: I =4	1ft eave=5ft Cat II: Exp.B: Enclosed: MWERS (directional)

2) Wind: ASCE 7-10; Vuit=120mpn (3-second gust) Vasd=95mph; 1CDL=6.Upst; BCDL=6.Upst; h=30ft; B=20ft; L=41ft; eave=5tt; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 4-1-5, Interior (1) 4-1-5 to 20-6-8, Exterior (2) 20-6-8 to 24-7-13, Interior (1) 24-7-13 to 41-1-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 202 lb uplift at joint 1 and 202 lb uplift at joint 9.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	T1EGE	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:19 Page: 1 ID:vdsuYkVEpMSuFI7CAhQ5x2zu6Sy-wgrJ8R6jE6FQmCs89LD83BP8tUsXIIdloenVbxzu6KQ

41-1-0

Scale = 1:67.8

Plate Offsets (X, Y): [5:0-0-15,0-1-8], [19:0-0-15,0-1-8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.01	23	n/a	n/a			
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 295 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.1

BOT CHORD 2x4 SP No.1 2x4 SP No.3 OTHERS

REACTIONS All bearings 41-1-0.

(lb) - Max Horiz 1=192 (LC 10)

Max Uplift All uplift 100 (lb) or less at joint(s) 24, 25, 26, 27, 28, 29, 30,

32, 33, 35, 36, 37, 38, 39, 41, 42, 43, 44, 1

Max Grav All reactions 250 (lb) or less at joint(s) 24, 25, 26, 27, 28, 29,

30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 1, 23

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 11-12=-206/251, 12-13=-206/251

TOP CHORD

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=41ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Corner (3) 0-0-0 to 4-1-5, Exterior (2) 4-1-5 to 20-6-8, Corner (3) 20-6-8 to 24-6-8, Exterior (2) 24-6-8 to 41-1-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult 3) qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated. 4)

Gable requires continuous bottom chord bearing. 5)

6) Gable studs spaced at 2-0-0 oc.

This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 7) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 35, 36, 37, 38, 39, 41, 42, 43, 44, 33, 32, 30, 29, 28, 27, 8) 26. 25. 24. 1.

9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 12-34, 11-35, 10-36, 13-33, 14-32

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	T1GE	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:19 Page: 1 ID:85Ntt?PDiuS0I4Wfi?HDcMzu6T4-wgrJ8R6jE6FQmCs89LD83BP8qUsXIIdloenVbxzu6KQ

Scale = 1:69.3

Plate Offsets (X, Y): [5:0	0-0-15,0-1-8], [19:0-0-15,0-1-8]											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.05	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
TCDL Í	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.04 0.15	Vert(CT) Horz(CT)	n/a 0.01	- 49	n/a n/a	999 n/a			
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS		. ,					Weight: 297 lb	FT = 20%	

LUMBER	LU	JM	BB	ER
--------	----	----	----	----

- TOP CHORD 2x4 SP No.1
- BOT CHORD2x4 SP No.1OTHERS2x4 SP No.3

REACTIONS All bearings 41-1-0.

- (lb) Max Horiz 1=-199 (LC 9)
 - Max Uplift All uplift 100 (lb) or less at joint(s) 25, 26, 27, 28, 29, 30, 31,

33, 34, 36, 37, 38, 39, 40, 42, 43, 44, 45, 1

- Max Grav All reactions 250 (lb) or less at joint(s) 25, 26, 27, 28, 29, 30,
 - 31, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 1, 23 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
- FORCES
- TOP CHORD 11-12=-210/260, 12-13=-210/260

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=41ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-0 to 4-1-5, Exterior (2) 4-1-5 to 20-6-8, Corner (3) 20-6-8 to 24-6-8, Exterior (2) 24-6-8 to 42-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 36, 37, 38, 39, 40, 42, 43, 44, 45, 34, 33, 31, 30, 29, 28, 27, 26, 25, 1.

9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACINGTOP CHORDSiBOT CHORDRiWEBS1

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 12-35, 11-36, 10-37, 13-34, 14-33

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 8-1-8, Exterior (2) 8-1-8 to 11-1-8, Interior (1) 11-1-8 to 17-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint 2 and 115 lb uplift at joint 6.

5) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LUMBER

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No.3

REACTIONS All bearings 16-3-0.

(lb) - Max Horiz 2=-109 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 12, 13, 14, 16, 17, 19, 2 Max Grav All reactions 250 (lb) or less at joint(s) 13, 14, 16, 17, 19, 2 except 12=252 (LC 1), 15=341 (LC 1)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 6-15=-303/0

WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Corner (3) -1-0-0 to 2-1-8, Exterior (2) 2-1-8 to 8-1-8, Corner (3) 8-1-8 to 11-1-8, Exterior (2) 11-1-8 to 17-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated. 4)

Gable requires continuous bottom chord bearing. 5)

6) Gable studs spaced at 2-0-0 oc.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 17, 19, 14, 13, 12, 2. 8)

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 10-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

15-3-0 Scale = 1:38.9 Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.10 Vert(LL) n/a 999 MT20 244/190 n/a BC Vert(CT) TCDL 10.0 Lumber DOL 0.07 999 1.15 n/a n/a BCLL 0.0 Rep Stress Incr YES WB 0.14 Horz(CT) 0.00 12 n/a n/a BCDL IBC2015/TPI2014 10.0 Code Matrix-MS Weight: 82 lb FT = 20%

LUMBER

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.3

REACTIONS All bearings 15-3-0.

(lb) - Max Horiz 2=-103 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 12, 13, 14, 16, 17, 18, 2 Max Grav All reactions 250 (lb) or less at joint(s) 12, 13, 14, 16, 17, 18, 2

except 15=296 (LC 1)

- FORCES
 (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

 WEBS
 6-15=-257/0

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -1-0-0 to 2-0-0, Exterior (2) 2-0-0 to 7-7-8, Corner (3) 7-7-8 to 10-7-8, Exterior (2) 10-7-8 to 16-3-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 16, 17, 18, 14, 13, 12, 2.

9) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 10-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

Job		Truss		Truss Type			Qty	Ply	Robertson	-Roberts	on		
Q-2003191-1		T3GR	D	Common Gi	rder		1	3	Job Refere	ence (opt	ional)		
Peak Truss Builders LL	C, New H	lill, user				Run: 8.31 S	Sep 9 2019	Print: 8.310 S			stries, Ir	nc. Mon Jan 18 14:	24:20 Page: 1
				3_11_0	I	7-7-8		11-3	-7		15-3		
				3-11-9	\rightarrow	3-7-15	\rightarrow	3-7-1	15	1	3-11-	-9	
			ļ.		I		I			1		ļ	
							40						
							4x6 3	Ш					
			_				1						
					12 °		$/\!\!\!/$	\sim					
					o 2x4			$\langle \rangle >$	2	2x4 //			
					2	<u></u>		(XX)	- TT-	4			
	-6-12	-6-12			Ð	$\langle \rangle$	/		\searrow	<u> </u>			
	5	5			/						\searrow		
						$\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{i$		\backslash					
			. 1			\mathcal{H}			\mathcal{H}			5	i
			0-5-12					B1	ЦЩ,				
				14	15	7 16		17	6	18		19	
			5x5=			/x6=			7x6=			5x5=	
				HUS26	HUS2	e HUS26	HU	S26	HUS26	HUS26		HUS26	
0				5-2-3			10-0-13	3		15	-3-0		
Scale = 1:38.2	. [0:0.0.0	0.4.01	17:0 0 0 0 1 0	5-2-3			4-10-10	,		5	-2-3		
	: [6:0-3-0	J,U-4-8],	[7:0-3-0,0-4-8]										
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL		2-0-0 C	CSI TC	0.35 V	EFL ert(LL) ·	in (loc) -0.06 6-7	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
		10.0	Lumber DOL Rep Stress Incr		1.15 E	3C MB	0.78 V	ert(CT)	-0.12 6-7	>999	180 n/a		
BCDL		10.0	Code	IBC2015/TI	PI2014	/atrix-MS	0.71	012(01)	0.02 0	n/a	n/a	Weight: 261 lb	FT = 20%
				-		F		-					
TOP CHORD 22	x4 SP No	D.1				T	OP CHOR	D S	Structural woo	od sheath	ning dir	ectly applied or	6-0-0 oc purlins.
WEBS 2	x6 SP No x4 SP No	5.1 5.3				E		D F	agia ceiling a	irectiy ap	plied c	or 10-0-0 oc brad	cing.
REACTIONS (lb/s	ize) 1 Horiz 1	=5965/0	-3-8, (min. 0-3-2), 5	=6618/0-3-8, (m	iin. 0-3-7)								
Max	Uplift 1	=-91 (LC =-782 (L	.C 7), 5=-868 (LC 7)										
FORCES	(lb) - M	ax. Com	np./Max. Ten All foi	ces 250 (lb) or	less excep	ot when shown. 9/1160							
BOT CHORD	1-14=-9	903/7094	4, 14-15=-903/7094,	7-15=-903/709	4, 7-16=-5	60/4864, 16-17=	-560/4864	, 6-17=-560	/4864,				
WEBS	3-6=-69	96/5154,	, 4-6=-284/132, 3-7=	-673/4973	1								
NOTES 1) 3-ply truss to	he conne	ected tor	nether with 10d (0.13	(1"x3") nails as	follows								
Top chords co	nnected	as follow	ws: 2x4 - 1 row at 0-	9-0 oc.	4.0.00								
Web connecte	ed as foll	ows: 2x4	4 - 1 row at 0-9-0 oc	slaggered at 0-	4-0 00.								
 All loads are of distribute only 	loads n	ed equal oted as (ly applied to all plies (F) or (B), unless oth	, except if noted erwise indicate	d as front (d.	(F) or back (B) fa	ce in the L	OAD CASE	(S) section. I	Ply to ply	conne	ctions have bee	n provided to
 Unbalanced r Wind: ASCE 7 	oof live lo 7-10; Vul	bads hav t=120mp	ve been considered oh (3-second gust) V	for this design. asd=95mph; T(CDL=6.0ps	sf; BCDL=6.0psf;	h=30ft; B=	=20ft; L=20f	t; eave=4ft; C	Cat. II; Ex	p B; Ei	nclosed; MWFR	S (directional);
cantilever left	and righ	t expose	ed ; end vertical left a	and right expose	ed; Lumbe	r DOL=1.60 plate	e grip DOL	=1.60) tall by 2-00.	-00 wide	will fit k	hetween the hot	tom chord and
any other mer	nbers.								1 000 II	-00 Wide			
6) Provide mech7) This truss is d	anical co lesigned	in accor	n (by others) of truss dance with the 2015	International B	e capable uilding Co	of withstanding de section 2306.	1 and refe	t at joint 1 a renced stan	dard ANSI/T	liπ at join PI 1.	15.		
 Use USP HUS (es) T1D (1 pl 	S26 (Witl v 2x4 SF	h 14-16d P) to bac	d nails into Girder & k face of bottom cho	6-16d nails into ord.	Truss) or	equivalent space	d at 2-0-0	oc max. sta	rting at 2-0-1	2 from th	e left e	end to 14-0-12 to	o connect truss
9) Fill all nail hol	es where	hanger	is in contact with lu	nber.									
1) Dead + Root	Standa Live (ba	ard alanced):	: Lumber Increase=1	.15, Plate Incre	ase=1.15								
Uniform Loa	ds (lb/ḟt) Vert∙1₋'	, 3=-60 3	-5=-60 8-11=-20										
Concentrate	d Loads	(lb)	-000, 0-1120	1000 (5) 10	4000 (=)	47 4000 (=)	0 4000 -						
	Vert: 6=	-1623 (E	3), 14=-1623 (B), 15	=-1623 (B), 16=	-1623 (B),	17=-1623 (B), 1	8=-1623 (E	3), 19=-1623	3 (B)				

Scale = 1:36.5				5-11-12 5-11-12		<u> </u>	1	1-11-8 -11-12				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015/TPI2014	CSI TC BC WB Matrix-MS	0.33 0.25 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 6-12 6-12 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%

BRACING

Structural wood sheathing directly applied or 6-0-0 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer

Rigid ceiling directly applied or 10-0-0 oc bracing.

Installation guide.

LUMBER

TOP CHORD 2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.3 WEBS REACTIONS (lb/size) 2=538/0-3-8, (min. 0-1-8), 4=538/0-3-8, (min. 0-1-8) Max Horiz 2=-83 (LC 9) Max Uplift 2=-94 (LC 11), 4=-94 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-13=-568/62, 13-14=-477/69, 3-14=-472/89, 3-15=-472/89, 15-16=-477/69, 4-16=-568/62

BOT CHORD 2-6=-39/393, 4-6=0/393

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-11-12, Exterior (2) 5-11-12 to 8-11-12, Interior (1) 8-11-12 to 12-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 3) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 2 and 94 lb uplift at joint 4. 4)

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 5)

Job	Truss		Truss Type		Qty	Ply	F	obertson-	Robertsc	n		
Q-2003191-1	T4A		Common		1	1	J	ob Refere	nce (opti	onal)		
Peak Truss Builde	rs LLC, New Hill, user		-	Run: 8.31 S	Sep 9 20	19 Print: 8.	310 S Se	p 9 2019 M	iTek Indus	tries, li	nc. Mon Jan 18 14	:24:20 Page:
					ID:KW	nkeznkPz	45Rcn50	tjvv?jzu617-	-OsPnMn7	L?QN		4u8FOMWu1IW2/NZu6KI
			ļ	5-11-12		-		11-11-8				
				5-11-12				5-11-12				
						4x5= 2						
				12			<					
							\searrow					
				11 1		W		12 12	2			
	-2-9	-5-9]		\sim				
	4	4							\searrow			
			1							\sim		
		0-5-12					B1				À'	
	<u> </u>		X			4	DI				Ř	
			3x4=			2x4 II					3x4=	
				5 44 40		1		44 44 0				
Scale = 1:34.8				5-11-12		1		5-11-12				
Loading	(psf)	Spacing	2-0-0	CSI	Ī	DEFL	i	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	-0.0	4 4-10	>999	240	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.27	Horz(CT)) -0.0	1 1	>999 n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS		X ⁻					Weight: 45 lb	FT = 20%
LUMBER				E	BRACINO	G						
TOP CHORD	2x4 SP No.1			1		ORD	Struc	ctural woo	d sheathi	ing di	rectly applied or	6-0-0 oc purlins.
WEBS	2x4 SP No.3			Ľ			MiT	k recomm	onde the	at Stal	bilizers and requ	uired cross bracing be

REACTIONS (lb/size) 1=478/0-3-8, (min. 0-1-8), 3=478/0-3-8, (min. 0-1-8) Max Horiz 1=-71 (LC 9) Max Uplift 1=-59 (LC 11), 3=-59 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-11=-578/77, 2-11=-485/97, 2-12=-485/97, 3-12=-578/77

BOT CHORD 1-4=-84/403, 3-4=0/403

NOTES

1)

Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-11-12, Exterior (2) 5-11-12 to 8-11-12, Interior (1) 8-11-12 to 11-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 3) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 1 and 59 lb uplift at joint 3. 4)

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSi/TPI 1. 5)

LOAD CASE(S) Standard

Scale = 1:35.5

		-	1								-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.00	10	n/a	n/a			
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 60 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.3 OTHERS

REACTIONS All bearings 11-11-8.

(lb) - Max Horiz 2=-83 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 10, 11, 13, 14, 2

- Max Grav All reactions 250 (lb) or less at joint(s) 10, 11, 13, 14, 2 except
 - 12=356 (LC 1)
- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 5-12=-308/5
- WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Corner (3) -1-0-0 to 1-11-12, Exterior (2) 1-11-12 to 5-11-12, Corner (3) 5-11-12 to 8-11-12, Exterior (2) 8-11-12 to 12-11-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated. 4)

Gable requires continuous bottom chord bearing. 5)

6) Gable studs spaced at 2-0-0 oc.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 13, 14, 11, 10, 2. 8)
- This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

11-11-8

Structural wood sheathing directly applied or 10-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

Job	Truss		Truss Type		Qty	Ply	,	Robe	ertson-F	Roberts	on			
Q-2003191-1	V1		Valley		1	1	Job Reference (ontional)							
Peak Truss Builders LL	C, New Hill, user			Run: 8.31	S Sep 9 20	19 Print: 8	.310 S	Sep 92	2019 Mi	Tek Indu	stries, I	nc. Mon Jan 18 14	:24:20	Page: 1
	i.				ID:8	5Ntt?PDiu	JS0I4W	Vfi?HDcN	Mzu6T4	-OsPhM	17L?QN	IGNMRKi3kNcOyl	H7uASUjwu1IW2	7Nzu6KP
			<u>15-5-7</u> 15-5-7							<u>30</u> 15	- <u>5-11</u> -0-4			30-10-13 0-5-3
152.8	8 □ 2 8 □ 1 1 0 3x4 ≠	3x4 = 3 42 1 1 1 1 1 1 1 1 1 1 1 1 1			4x5= 6 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	3	22				8 SIG	3x4		11 3x4
Loading	(psf)	Spacing	2-0-0	CSI	0.44	DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (root)	20.0 10.0	Lumber DOL	1.15 1.15	BC	0.14	Vert(LL) Vert(TL))	n/a n/a	-	n/a n/a	999 999	M120	244/190	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IBC2015/TPI2014	WB Matrix-MS	0.27	Horiz(TL	_)	0.01	11	n/a	n/a	Weight: 154 lb	FT = 20%	
LUMBER BRACING TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.3 REACTIONS All bearings 30-10-13. BOT CHORD (lb) - Max Horiz 1=183 (LC 10) Max Uplift All uplift 100 (lb) or less at joint(s) 1, 12, 19 except 13=-102 (LC 11, 14=-105 (LC 11), 17=-107 (LC 11), 18=-102 (LC 11) Max Grav All reactions 250 (lb) or less at joint(s) 1, 11, 15=399 (LC 16), 17=469 (LC 16), 18=375 (LC 16), 19=333 (LC 1) Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. WEBS 5-17=-261/154, 7-14=-258/152 NOTES									ns. cing be r					
 Unbalanced re Wind: ASCE 7 and C-C Extern vertical left an All plates are 2 	oot live loads ha 7-10; Vult=120m rior (2) 0-0-6 to 3 id right exposed; 2x4 MT20 unles	ve been considered t bh (3-second gust) V B-1-7, Interior (1) 3-1- C-C for members an s otherwise indicated	tor this design. 'asd=95mph; TCDL=6.0 -7 to 15-5-13, Exterior (id forces & MWFRS for 1.	0psf; BCDL=6.0 2) 15-5-13 to 18 reactions show	psf; h=30ft; 3-6-14, Inter n; Lumber [B=20ft; L ior (1) 18 DOL=1.60	_=31ft 3-6-14 0 plate	; eave= to 30-′ e grip D	=4ft; Ca 11-3 zo)OL=1.	at. II; Ex one; car 60	p B; E itilever	nclosed; MWFF left and right ex	RS (directional) (posed ; end	

Cable requires continuous bottom chord bearing. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 4) 5)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 12 except (jt=lb) 17=106, 18=101, 14=104, 13=102. This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 6) 7)

Job	Truss		Truss Type		Qty	Ply	Rob	ertson-F	Roberts	on		
Q-2003191-1	V2		Valley		1	1 Job Reference (optional)						
Peak Truss Builders LLC, Ne	w Hill, user			Run: 8.31 S	Sep 9 20 ID:c	19 Print: 8.310 HxF4LQrTCat) S Sep 9 wD4sFjoS	2019 Mi⊺ 9Zzu6T3	Fek Indu -s3z3Z6	stries, I 8zmkV	nc. Mon Jan 18 14 7?W0WGmFc9cUS	:24:21 Page: 1 SulWhDBK2FyGcfpzu6KO
Ļ			13-9-15						27-	2-11		27-7-13
I			13-9-15						13-4	4-12		0-5-3
					4x5=							
<u> </u>					6							
				/		\searrow						
				24			> 25					
			5				$\overline{\ }$	7				
				Ê			B					
					ST4				\searrow			
8-11		4		(0	×					\searrow	. 8	
			B	013			5					
	3x4 • 3x4 •											
1												
8		5										10
			e B1							B 2	0	11
~~ 0-9-4			626	k								
	3x4 ≈			3x4=								3x4 ≈
Scale = 1:48.6					27-7-13	3						ł
Loading	(psf)	Spacing	2-0-0	CSI	0.44	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL	20.0 10.0	Lumber DOL	1.15	BC	0.14	Vert(LL) Vert(TL)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB Matrix-MS	0.20	Horiz(TL)	0.00	11	n/a	n/a	Weight: 132 lb	ET = 20%
	10.0	Code	IBC2015/1712014	Maurix-IMS							Weight. 152 lb	
						G	0.4		41	- i		
BOT CHORD 2x4 SP	2 No.1 2 No.1				BOT CH	ORD	Rigid ce	ai wood	sneatr ectly ap	oplied	or 10-0-0 oc bra	cing.
OTHERS 2x4 SP	9 No.3				WEBS		1 Row a	at midpt	ande th	at Sta	6-15 bilizors and rogu	uirod cross bracing bo
(lb) - Max Horiz	gs 27-7-13. z 1=-162 (L0	C 9)					installe	d during	truss e	erectio	n, in accordance	e with Stabilizer
Max Uplift	All uplift 10	00 (lb) or less at joir 4=-105 (LC 11)_17=	t(s) 1, 11, 12, 19 excep	ot 13=-104 (LC 11)			Installa	tion guid	de.			
Max Grav	All reaction	ns 250 (lb) or less a	t joint(s) 1, 11 except 12	2=279 (LC								
	(LC 16), 1	8=375 (LC 16), 19=	279 (LC 1)), 17=404								
FORCES (Ib) ·	- Max. Com	p./Max. Ten All for 7-14=-257/152	ces 250 (lb) or less exc	ept when shown.								
NOTES 3-17	200/134,	7-142577152										
1) Unbalanced roof liv	e loads hav	e been considered f	or this design.	Incf: BCDI -6 One	of: h=30ft.	B-20ft·1-2	eft: oovo	-4ft: Co	+ II. Ev	n B· E	nclosod: MM/EP	(directional)
and C-C Exterior (2	2) 0-0-6 to 3-	0-6, Interior (1) 3-0-	6 to 13-10-5, Exterior (2) 13-10-5 to 16-	10-5, Inter	ior (1) 16-10)-5 to 27-	-411, Ca -8-3 zon	e; cant	ilever l	left and right exp	osed ; end
 All plates are 2x4 M 	it exposed;C IT20 unless	otherwise indicated	d forces & MWFRS for	reactions shown;	; Lumber L	DOL=1.60 pl	ate grip I	DOL=1.0	50			
4) Gable requires cont			•									
This trues has been	tinuous botte	om chord bearing. for a live load of 20	Opst on the bottom ch	ord in all areas wi	here a rec	tangle 3-06-	00 tall h	12-00-0	0 wide	will fit	between the bot	tom chord and
 5) * This truss has been any other members 6) Provide members 	tinuous botto en designed s, with BCDL	om chord bearing. for a live load of 20 . = 10.0psf.	.0psf on the bottom cho	ord in all areas wi	here a rec	tangle 3-06-	00 tall by	/ 2-00-0	0 wide	will fit	between the bot	tom chord and

7) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 107 lb uplift at joint 12, 101 lb uplift at joint 13, 105 lb uplift at joint 9 and 103 lb uplift at joint 8.

7) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=21ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 10-7-5, Exterior (2) 10-7-5 to 13-7-5, Interior (1) 13-7-5 to 21-2-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 8 except (jt=lb) 11=113, 9=111.

7) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 8-11-13, Exterior (2) 8-11-13 to 11-11-13, Interior (1) 11-11-13 to 17-11-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 lb uplift at joint 8 and 128 lb uplift at joint 6.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

		1						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.15	Vert(LL)	n/a	-
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	5

IBC2015/TPI2014

LUMBER

BCDL

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No.3

REACTIONS All bearings 14-7-13.

(lb) - Max Horiz 1=-85 (LC 9)

10.0

Code

- Max Uplift All uplift 100 (lb) or less at joint(s) except 6=-103 (LC 11),
- 8=-104 (LC 11)
- Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=346 (LC 21), 7=308 (LC 1), 8=345 (LC 20)
- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-255/142, 4-6=-253/140 WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-3-15, Interior (1) 3-3-15 to 7-4-5, Exterior (2) 7-4-5 to 10-4-5, Interior (1) 10-4-5 to 14-8-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-MS

3) Gable requires continuous bottom chord bearing.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 8 and 102 lb uplift at joint 6. 5)

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing

l/defl

n/a 999

n/a n/a

L/d

999 n/a

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

PLATES

Weight: 58 lb

MT20

GRIP

244/190

FT = 20%

 Max Grav
 1=66 (LC 20), 3=70 (LC 21), 4=883 (LC 1)

 FORCES
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-9=-90/342, 2-9=-74/432, 2-10=-72/425, 3-10=-88/325

 BOT CHORD
 1-4=-315/132, 3-4=-309/130

 WEBS
 2-4=-690/184

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 5-8-13, Exterior (2) 5-8-13 to 8-8-13, Interior (1) 8-8-13 to 11-5-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1, 45 lb uplift at joint 3 and 156 lb uplift at joint 4.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LUMBER		BRACING	
TOP CHORD 2	x4 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 8-1-13 oc purlins.
BOT CHORD 2	x4 SP No.1	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.
OTHERS 2	2x4 SP No.3		MiTek recommends that Stabilizers and required cross bracing be
REACTIONS (lb/s	size) 1=37/8-1-13, (min. 0-1-8), 3=42/8-1-13, (min. 0-1-8), 4=573/8-1-13, (min. 0-1-8)		installed during truss erection, in accordance with Stabilizer Installation guide.
Мах	(Horiz 1=46 (LC 10)		
Мах	(Uplift 1=-13 (LC 21), 3=-10 (LC 20), 4=-96 (LC 11)		
Max	(Grav 1=69 (LC 20), 3=72 (LC 21), 4=573 (LC 1)		
FORCES	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when showr	۱.	
TOP CHORD	2-9=-41/253		
WEBS	2-4=-412/103		

WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) 2) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-1-5, Exterior (2) 4-1-5 to 7-3-1, Interior (1) 7-3-1 to 8-2-3 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1, 10 lb uplift at joint 3 and 96 lb uplift at joint 4. 5)

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	V9	Valley	1	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:22 Page: 1 ID:5UVdlhQTEWikXNf2pQJhinzu6T2-LFXRnS8cX1d_dgbjqUmrhp1fBit5yh6BUc?9CGzu6KN

Scale = 1:26				<u> </u>		4-10-13						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MP		. ,					Weight: 16 lb	FT = 20%

TOP CHORD	2x4 SP	No.1
BOT CHORD	2x4 SP	No.1
OTHERS	2x4 SP	No.3
REACTIONS	(lb/size)	1=51/4-10-13, (min. 0-1-8), 3=55/4-10-13, (min. 0-1-8), 4=287/4-10-13, (min. 0-1-8)
	Max Horiz	1=27 (LC 10)
	Max Uplift	1=-5 (LC 11), 3=-6 (LC 11), 4=-38 (LC 11)
	Max Crow	1-62 (1 C 20) 2-65 (1 C 21) 4-297 (1 C 1)

Max Grav 1=62 (LC 20), 3=65 (LC 21), 4=287 (LC 1)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 1, 6 lb uplift at joint 3 and 38 lb uplift at joint 4.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-10-13 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

IN IN	1ax Horiz = 1=58 (LC + 10)
N	/lax Uplift 1=-28 (LC 21), 3=-25 (LC 20), 4=-125 (LC 11)
N	/lax Grav 1=73 (LC 20), 3=77 (LC 21), 4=745 (LC 1)
FORCES	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
TOP CHORD	9-10=-53/271, 2-10=-53/347, 2-11=-51/340, 11-12=-51/264
BOT CHORD	1-4=-251/107
WEBS	2-4=-570/148

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 5-1-3, Exterior (2) 5-1-3 to 8-1-3, Interior (1) 8-1-3 to 10-2-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1, 25 lb uplift at joint 3 and 125 lb uplift at joint 4.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type		Qty	Ply	Robertson-Robertson
Q-2003191-1	V11	Valley		1	1	Job Reference (optional)
Peak Truss Builders LLC,	New Hill, user		Run: 8.31 S Se	p 9 2019 P ID:5U'	rint: 8.310 S VdIhQTEWik	Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:22 Page: 1 xNf2pQJhinzu6T2-LFXRnS8cX1d_dgbjqUmrhp1eGisGygeBUc?9CGzu6KN
			3-5-5			6-5-8 6-10-10
			3-5-5		1	3-0-2 0-5-3
					4x5=	
	2-3-13	8		10		Ĩ₹
	Ń	1	9			12 3

2x4 🖌

2x4 II

R

Scale = 1:27.3			<u></u>			6-10-10				\rightarrow			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MP							Weight: 23 lb	FT = 20%	

LUMBER TOP CHORD

BOT CHORD OTHERS	2x4 SP 2x4 SP	No.1 No.3
REACTIONS	(lb/size)	1=47/6-10-10, (min. 0-1-8), 3=51/6-10-10, (min. 0-1-8), 4=452/6-10-10, (min. 0-1-8)
	Max Horiz	1=-38 (LC 9)
	Max Uplift	4=-69 (LC 11)
	Max Grav	1=70 (LC 20), 3=73 (LC 21), 4=452 (LC 1)
FORCES	(lb) - 2-4=-	Max. Comp./Max. Ten All forces 250 (lb) or less except when 310/76
	6 7	

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 3-5-11, Exterior (2) 3-5-11 to 6-5-11, Interior (1) 6-5-11 to 6-11-0 zone; cantilever left and right exposed ; end vertical left 2) and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

shown.

3)

2x4 SP No.1

 Cable requires continuous bottom chord bearing.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and

 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 4. 5)

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-10-10 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

2x4

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	V12	Valley	1	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:22 Page: 1 ID:Zg2?V1R5?pqb9XEEN7qwE_zu6T1-LFXRnS8cX1d_dgbjqUmrhp1eiit_yheBUc?9CGzu6KN

2 2 0	

	5-2-0	
1-9-13		3-7-11
1-9-13	1-4-10	0-5-3

3-7-11

Scale = 1:24.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

	[======================================											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

1=146/3-7-11, (min. 0-1-8), 3=146/3-7-11, (min. 0-1-8) REACTIONS (lb/size) Max Horiz 1=-19 (LC 9)

Max Uplift 1=-18 (LC 11), 3=-18 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber 2) DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 18 lb uplift at joint 3. 5)

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-7-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

Max Grav All reactions 250 (lb) or less at joint(s) 1, 5 except 6=322 (LC

21), 7=282 (LC 1), 8=323 (LC 20)

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 2-8-14, Interior (1) 2-8-14 to 6-9-4, Exterior (2) 6-9-4 to 9-9-4, Interior (1) 9-9-4 to 13-6-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 5-1-12, Exterior (2) 5-1-12 to 8-1-12, Interior (1) 8-1-12 to 10-3-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1, 26 lb uplift at joint 3 and 127 lb uplift at joint 4.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type		Qty	Ply	Robertson-Robertson
Q-2003191-1	V15	Valley		1	1	Job Reference (optional)
Peak Truss Builders LLC,	, New Hill, user		Run: 8.31 S	Sep 9 2019 ID:Zg2	Print: 8.310 2?V1R5?pqb	S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:22 Page: 1 9XEEN7qwE_zu6T1-LFXRnS8cX1d_dgbjqUmrhp1eCisDygcBUc?9CGzu6KN
			3-5-14			6-6-10 6-11-12
			3-5-14			3-0-11 0-5-3
					4x5=	
					2	
			12	10		

Scale = 1:27.4			<u> </u>	6-11-12									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.11 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	

LUMBER TOP CHORD

BOT CHORD OTHERS	2x4 SP 2x4 SP	No.1 No.3
REACTIONS	(lb/size)	1=47/6-11-12, (min. 0-1-8), 3=51/6-11-12, (min. 0-1-8), 4=461/6-11-12, (min. 0-1-8)
1	Max Horiz	1=39 (LC 10)
I	Max Uplift	4=-71 (LC 11)
I	Max Grav	1=70 (LC 20), 3=73 (LC 21), 4=461 (LC 1)
FORCES	(lb) -	Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.
WEBS	2-4=-	317/78

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 3-6-4, Exterior (2) 3-6-4 to 6-6-4, Interior (1) 6-6-4 to 7-0-2 zone; cantilever left and right exposed ; end vertical left and 2) right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3)

2x4 SP No.1

Cable requires continuous bottom chord bearing. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 4. 5)

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-11-12 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

Job	Truss	Truss Type	Qty	Ply	Robertson-Robertson
Q-2003191-1	V16	Valley	1	1	Job Reference (optional)

Run: 8.31 S Sep 9 2019 Print: 8.310 S Sep 9 2019 MiTek Industries, Inc. Mon Jan 18 14:24:23 Page: 1 ID:Zg2?V1R5?pqb9XEEN7qwE_zu6T1-LFXRnS8cX1d_dgbjqUmrhp1efitxyheBUc?9CGzu6KN

2	2	1	n	

		3-3-10	
	1-10-6		3-8-12
\square	1-10-6		0-5-3
		1-5-3	

3-8-12

Scale = 1:24.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

	. [= = .,=3-]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MP							Weight: 11 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

1=149/3-8-12, (min. 0-1-8), 3=149/3-8-12, (min. 0-1-8) REACTIONS (lb/size) Max Horiz 1=20 (LC 10)

Max Uplift 1=-18 (LC 11), 3=-18 (LC 11)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber 2) DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 4) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 18 lb uplift at joint 3. 5)

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing