

								-
RE: 24	434707_M	ASTER - H	&H/Calab	ash/				I renco
Site Int	formation	:						Edenton, NC 27932
Project	t Customer	r: H AND H	Project N	Name:	2434707			
Lot/Blo	ock:			S	ubdivisior	า:		
Model:								
Addres	SS:			c	toto: NC			
Genera	l Truce Er	naineorina (ritoria &	Desid	iale. NC	(Individual T	russ Dosigr	
Drawin	as Show S	Special Loa	ding Con	dition	s):		russ Desigi	•
Design	Code: IR	C2015/TPI2	014]	Design Progra	m: MiTek 20	0/20 8.2
Wind C	ode: ASCE	E 7-10 Wind	Speed: 1	50 mpł	1]	Design Metho	d: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10
Roof Lo	oad: 40.0 ps	sf]	Floor Load: N	/A psf	
Mean R	Roof Height	(feet): 25				Exposure Cate	egory: C	
No.	Seal#	Truss Nam	e Date	No.	Seal#	Truss Nam	e Date	
1 2	142477944 142477945	A01 A02	8/19/20 8/19/20	35 36	142477978 142477979	8 A36 9 A37	8/19/20 8/19/20	
3	142477946	A03	8/19/20	37	14247798) A38 1 A39	8/19/20	
5	142477948	A04	8/19/20	39	142477982	2 A40	8/19/20	
6 7	42477949	A06 A07	8/19/20 8/19/20	40 41	4247798	3 4 A42	8/19/20 8/19/20	
8 9	142477951 142477952	A08 A09	8/19/20 8/19/20	43	14247798 142477986	5 A43 5 A44	8/19/20 8/19/20	
10	142477953	A10 A11	8/19/20	44 45	142477987	7 A45 8 A46	8/19/20	
12	142477955	A12	8/19/20	46	14247798	9 A47	8/19/20	
13	42477956	A13	8/19/20 8/19/20	47 48	4247799	J A48 1 A49	8/19/20 8/19/20	
16	142477958 142477959	A15 A16	8/19/20 8/19/20	49 50	142477992 142477993	2 3 B01	8/19/20 8/19/20	
17	142477960	A17	8/19/20	52	142477994	4 B02	8/19/20	
19	142477962	A19	8/19/20	53	142477996		8/19/20	
20 21	142477963	A20 A21	8/19/20 8/19/20	54 55	14247799	7 B11 8 B12	8/19/20 8/19/20	
22 23	142477965 142477966	A22	8/19/20 8/19/20	56 57	142477999 142478000	9 0 B14	8/19/20 8/19/20	
25	142477967	A24	8/19/20	58	14247800		8/19/20	
26	142477969	A26	8/19/20	59	142478002	3 5001	8/19/20	
27 28	142477970 142477971	A27 A28	8/19/20 8/19/20	61 62	14247800	FG01 5 FG02	8/19/20 8/19/20	
29 30	142477972 142477973	A30 A31	8/19/20	63 64	14247800	5 FG03 7 FG04	8/19/20	
31	142477974	A22	8/19/20	ĕ5	142478008		8/19/20	
52	142477976	A34	8/19/20	67	14247801	G03	8/19/20	
34	142477977	A35	8/19/20	68	14247801	i G04	8/19/20	

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision based on the parameters

Iruss Design Engineer's Name: Sevier, Scott My license renewal date for the state of North Carolina is December 31, 2020 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building incorporate these design. incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

1 of 2

Sevier, Scott

August 19,2020

RE: 2434707_MASTER - H&H/Calabash/

Trenco 818 Soundside Rd Edenton, NC 27932

No.	Seal#	Job ID#	Truss	Name Date
69	142478012	2434707_	MASSIOBR	8/19/20
70		2434707_	MASTER	8/19/20
71	142478014	2434707_	MASTER	8/19/20
72	142478015	2434707_	MASOER	8/19/20
73	142478016	2434707_	MASOBR	8/19/20
<u>74</u>	142478017	2434707_	MASOBAR	8/19/20
<u>75</u>	142478018	2434707	MASOLER	8/19/20
16	142478019	2434707	MASUER	8/19/20
11	142478020	2434707	MASIER	8/19/20
18	142478021	2434707	MASIBAR	8/19/20
19	140470000	2434707		8/19/20
80	142478023	2434707		8/19/20
01	142470024	2434707		8/19/20
02	142470020	2434707		0/19/20
84	142470020	2434707		0/19/20
85	142478027	2434707	MASCHAR	0/19/20
86	142478020	2434707	MASEBAR	8/10/20
87	142478030	2434707	MASCHER	8/10/20
88	112110000	2434707	MASPBOR	8/19/20
89	142478032	2434707	MASEBE	8/19/20
<u>90</u>	42478033	2434707	MASTEER	8/19/20
91	142478034	2434707	MASTEER	8/19/20
92	142478035	2434707	MASEBER	8/19/20
93	142478036	2434707	MASPBEB	8/19/20
94	142478037	2434707	MASCHEER	8/19/20
95	142478038	2434707_	MASCHEER	8/19/20
96	142478039	2434707_	MASCHEER	8/19/20
97		2434707_	MASEBER	8/19/20
98	142478041	2434707_	MASEBER	8/19/20
99	142478042	2434707	MASHE	8/19/20
100	142478043	2434707	MASYDER	8/19/20
101	142478044	2434707	MASYDER	8/19/20
102	142478045	2434707	IVIAS UBR	8/19/20
103	142478046	2434707	IVIA SY UER	8/19/20
104	1424/804/	2434707		8/19/20
105	142470048	2434707_	INIAJUDR	8/19/20

TOP CHORD

BOT CHORD

WEBS

TOP CHORD2x6 SP No.2BOT CHORD2x6 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 55-11-0. (lb) - Max Horz 2=483(LC 1

- Max Horz 2=483(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 30, 44, 45, 46, 47, 48, 49, 55, 43, 42, 41, 40, 39, 33 except 2=-115(LC 8), 50=-116(LC 12), 51=-148(LC 12), 52=-138(LC 12), 53=-137(LC 12), 54=-144(LC 12), 56=-274(LC 12), 38=-106(LC 13), 37=-151(LC 13), 36=-138(LC 13), 35=-137(LC 13), 34=-145(LC 13), 32=-271(LC 13) Max Gray All reactions 250 lb or loss at joint(s) 20, 44, 45, 46, 47, 48, 49, 50
- Max Grav All reactions 250 lb or less at joint(s) 30, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33 except 2=251(LC 20), 56=375(LC 19), 32=372(LC 20)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-430/390, 3-4=-309/307, 4-6=-281/291, 6-7=-254/283, 7-8=-228/308, 8-9=-249/361, 9-10=-328/419, 10-11=-388/463, 11-12=-364/441, 12-13=-363/442, 13-14=-363/442, 14-15=-363/442, 15-16=-363/442, 16-17=-363/441, 17-18=-363/440, 18-19=-363/440, 19-20=-363/440, 20-21=-363/440, 21-22=-387/461, 22-23=-327/388, 23-24=-248/295, 29-30=-281/214
- BOT CHORD
 2-56=-224/330, 55-56=-224/330, 54-55=-224/330, 53-54=-224/330, 52-53=-224/330, 51-52=-224/330, 50-51=-224/330, 49-50=-225/330, 48-49=-225/329, 47-48=-225/329, 46-47=-225/329, 45-46=-225/329, 44-45=-225/329, 43-44=-225/329, 42-43=-226/330, 41-42=-226/330, 40-41=-226/330, 39-40=-226/330, 38-39=-226/330, 37-38=-225/330, 36-37=-225/330, 35-36=-225/330, 34-35=-225/330, 33-34=-225/330, 32-33=-225/330, 30-32=-225/330

 WEBS
 3-66=-349/294, 29-32=-349/292

11200

NOTES- (12)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.

5) All plates are 2x4 MT20 unless otherwise indicated.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

22-38

16-44, 15-45, 14-46, 13-47, 12-48, 11-49,

10-50, 17-43, 18-42, 19-41, 20-40, 21-39,

2-0-0 oc purlins (6-0-0 max.): 11-21.

1 Row at midpt

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						142477944
2434707_MASTER	A01	GABLE	12	1		
					Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Aug 18 15:31:52 2020	Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-bxPz0kbVyW6Mkubz1d2SCnKL4Tf2Lgpdj18XSdyma?5

NOTES- (12)

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 30, 44, 45, 46, 47, 48, 49, 55, 43, 42, 41, 40, 39, 33 except (jt=lb) 2=115, 50=116, 51=148, 52=138, 53=137, 54=144, 56=274, 38=106, 37=151, 36=138, 35=137, 34=145, 32=271.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	7-	-5-2	17-10-8	30-7-4		38-0-8		48-5-14	55-11	-0
	7-	-5-2 '	10-5-6	12-8-12		7-5-4	I	10-5-6	7-5-2	2 1
Plate Offsets	s (X,Y)	[3:0-5-0,0-4-8], [4:0-4-12,0-3-8], [7:0-5-4,	0-3-12], [8:0-5-0,0-4-8], [13:0-3-8,0-2-8], [14:0-4-0,0-	-4-4]			
LOADING (TCLL 2 TCDL 1 BCLL	(psf) 20.0 10.0 0.0 *	SPACI Plate C Lumbe Rep St	NG- 2-0-0 Brip DOL 1.15 r DOL 1.15 ress Incr YES	CSI. TC 0.67 BC 0.62 WB 0.92	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (le -0.25 14- -0.38 14- 0.04	loc) l/defl l-16 >999 l-16 >971 9 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 1	10.0	Code	IRC2015/TPI2014	Matrix-AS	Wind(LL)	0.08 16	5-18 >999	240	Weight: 410 lb	FT = 20%
LUMBER- TOP CHORI BOT CHORI WEBS	D 2x6 SP D 2x6 SP 2x4 SP 5-16,7- S. (size Max Ho Max U Max G	No.2 No.2 No.3 *Except 14: 2x4 SP No e) 2=0-3-8, orz 2=483(LC plift 2=-522(L rav 2=1088(L	t* b.2 14=0-3-8, 9=0-3-8 ; 11) C 12), 14=-805(LC 12), 9=- C 23), 14=2742(LC 2), 9=8	485(LC 13) 79(LC 20)	BRACING- TOP CHOF BOT CHOF WEBS	D Str 2-(D Rig 1 F 2 F	tructural wood s 0-0 oc purlins (igid ceiling direc Row at midpt Rows at 1/3 pts	sheathing dir 6-0-0 max.): ctly applied. 3 5 7	ectly applied, except 4-7. -16, 4-16, 5-16, 5-14, -14	8-13
FORCES. TOP CHORI BOT CHORI WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1673/885, 3-4=-872/567, 4-5=-771/651, 5-7=-22/649, 7-8=-357/342, 8-9=-1216/690 BOT CHORD 2-18=-823/1566, 16-18=-824/1565, 14-16=-705/523, 13-14=-246/302, 11-13=-432/983, 9-11=-432/984 WEBS 3-18=0/355, 3-16=-1234/790, 4-16=-279/289, 5-16=-564/1302, 5-14=-1536/1054, 7-14=-1386/724, 7-13=-198/644, 8-13=-1262/779, 8-11=0/407									
NOTES- 1) Unbalanc 2) Wind: AS MWFRS (3) Provide a 4) This truss 5) * This trus will fit beth 6) Provide rn 2=522, 14 7) This truss sheetrock	(9) ed roof live CE 7-10; V (envelope) for reaction adequate dr. s has been ss has been ween the b nechanical 4 4=805, 9=4 ¹ s design rec k be appliec	e loads have b 'ult=150mph (; gable end zor is shown; Lurr 'ainage to pre' designed for a n designed for ottom chord a connection (b 85. quires that a n d directly to th	een considered for this des 3-second gust) Vasd=119m ne and C-C Exterior(2) zone ober DOL=1.60 plate grip DO vent water ponding. a 10.0 psf bottom chord live a live load of 20.0psf on th nd any other members, with y others) of truss to bearing ninimum of 7/16" structural v e bottom chord.	ign. ph; TCDL=6.0psf; BCl ; end vertical left and DL=1.60 load nonconcurrent w e bottom chord in all a n BCDL = 10.0psf. plate capable of withs wood sheathing be app	DL=6.0psf; h=25ft; (right exposed;C-C f ith any other live loa reas where a rectar standing 100 lb uplif plied directly to the f	Cat. II; Exp or member ads. Igle 3-6-0 t t at joint(s) op chord a	 C; Enclosed; rs and forces & tall by 2-0-0 wid except (jt=lb) and 1/2" gypsur 	de n	OPTH OPTES	AROLINI SION

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road Edenton, NC 27932

2-3-8	8-2-8 15-7-8 5-11-0 7-5-0	17-10-8	30-7-4	38-0-8		47-8-8		<u>55-11-0</u> 8-2-8	
Plate Offsets (X,Y)	[1:0-8-9,0-2-13], [1:0-4-12,	0-3-13], [7:0-5-4,	,0-3-8], [14:0-3-8,0-2-8]	, [15:0-4-0,0-4-8]		000		020	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI:	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.72 BC 0.60 WB 0.98 Matrix-AS	DEFL. ir Vert(LL) -0.22 Vert(CT) -0.34 Horz(CT) 0.07 Wind(LL) 0.14	(loc) 15-17 15-17 10 17-20	l/defl L/d >999 360 >999 240 n/a n/a >999 240		PLATES MT20 Weight: 415 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF 5-17,7 REACTIONS. (siz Max H Max L Max C	P No.2 P No.2 P No.3 *Except* *-15: 2x4 SP No.2 re) 1=0-3-8, 15=0-3-8, 10: Horz 1=-477(LC 8) Jplift 1=-424(LC 12), 15=-96 Grav 1=920(LC 23), 15=292	=0-3-8 \$8(LC 12), 10=-4 7(LC 1), 10=860	175(LC 13) D(LC 20)	BRACING- TOP CHORD BOT CHORD WEBS	Structu 2-0-0 c Rigid c 1 Row 2 Rows	ural wood sheathin cc purlins (6-0-0 m æiling directly appl at midpt s at 1/3 pts	g directly a _i ax.): 4-7. ied. 2-17, 4- ⁻ 7-15	pplied, except 17, 5-17, 5-15, 9	-14
Max Grav 1=920(LC 23), 15=2927(LC 1), 10=860(LC 20) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1508/780, 2-4=-707/462, 4-5=-613/547, 5-7=-236/897, 7-9=-265/456, 9-10=-1109/638 BOT CHORD 1-20=-729/1499, 17-20=-734/1499, 15-17=-960/618, 14-15=-453/428, 12-14=-360/874, 10-12=-360/874 WEBS 2-20=0/345, 2-17=-1288/848, 4-17=-308/302, 5-17=-634/1420, 5-15=-1625/1114, 7-15=-1508/801, 7-14=-228/674, 9-14=-1215/747, 9-12=0/404 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60									
 3) Provide adequate d 4) All plates are 5x8 M 5) This truss has been 6) * This truss has beetwill fit between the b 7) Provide mechanical 1=424, 15=968, 10= 8) This truss design resheetrock be applie 9) Graphical purlin rep 10) This manufactured particular building 	trainage to prevent water po (T20 unless otherwise indica of designed for a 10.0 psf bot en designed for a live load o bottom chord and any other I connection (by others) of tr =475. equires that a minimum of 7/ ed directly to the bottom choir presentation does not depict d truss is designed as an indication is the responsibility of the b	nding. ated. tom chord live lo f 20.0psf on the l members, with E uss to bearing p 16" structural wo d. the size or the o lividual building d uilding designer	bad nonconcurrent with bottom chord in all area BCDL = 10.0psf. elate capable of withstar bod sheathing be applie prientation of the purlin a component. The suitab per ANSI TPI 1 as refer	any other live loads. Is where a rectangle 3- Inding 100 lb uplift at join d directly to the top cho along the top and/or bo ility and use of this con renced by the building o	6-0 tall b ht(s) exco ord and 1 ttom cho nponent f code.	y 2-0-0 wide ept (jt=lb) //2" gypsum rd. for any	A CHARLEN CONTRACT	SEA 0449	AROLINA SIGURAL AL 925

August 19,2020

- 4) All plates are 5x8 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) WARNING: Required bearing size at joint(s) 17 greater than input bearing size.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=436, 11=395, 17=942.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any
 - particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🖊 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

044925 S mm August 19,2020

	10-8-2	17-10-8			38-0	-8	. 4	4-11-0	53-11-8	55-11-0
	10-8-2	7-2-6	12-8-12		7-5-	-4	6	6-10-8	9-0-8	1-11-8
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [7:0-6-	12,0-3-8], [10:0-6-	0.0-3-2], [13:0-7-8,0-3-8],	[17:0-5-0,0-4-	12]					
		/ //		•	-					
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC 0.77	Vert(LL)	-0.24	17-18	>999	360	MT20	244/190
TCDI 10.0	Lumber DOI	1 15	BC 0.64	Vert(CT) -0.38	17-18	>965	240		
BCII 00 *	Rep Stress Incr	YES	WB 1.00	Horz(C)) 0.05	10	n/a	 n/a		
BCDL 10.0	Code IRC2015	/TPI2014	Matrix-AS	Wind(LL	.) 0.27	13-24	>999	240	Weight: 419 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP 8-13: 2) WEBS 2x4 SP 5-18,7- REACTIONS. (size Max Ho Max Uj Max Gi FORCES. (lb) - Max. 1 TOP CHORD 2-3=- 8-10= BOT CHORD 2-20= 10-13 WEBS 3-20= 7-17=	No.2 No.2 *Except* x4 SP No.2 No.3 *Except* 17: 2x4 SP No.2 e) 2=0-3-8, 10=0-3-8 e) 2=0-3-8 e) 2=0-3-8 e] 2=0-3-8 e	8, 17=0-3-8 (req. 0)=-362(LC 13), 17= 0=742(LC 20), 17= forces 250 (lb) or 76, 4-5=-516/536, 6/1324, 17-18=-10 301 0, 4-18=-307/247, /1533	-3-13) 3-13) 3-13) 3-13) 3-206(LC 13) 3206(LC 2) less except when shown. 5-7=-169/995, 7-8=-842/7 126/668, 15-17=-546/414, 5-18=-620/1424, 5-17=-1	77, 13-15=-546/4	13,	Structuu 2-0-0 or Rigid cc 5-8-0 or 1 Row a 2 Rows	ral wood c purlins eiling dire c bracing at midpt at 1/3 pt	sheathing d (6-0-0 max. ctly applied : 8-13 s	lirectly applied, except): 4-7. I. Except: 3-18, 4-18, 5-18, 5-17, 7 7-17	7-15, 7-13
NOTES- (11) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Provide adequate dr. 4) All plates are 5x8 MT 5) This truss has been will fit between the bit 7) WARNING: Required 8) Provide mechanical 2=509, 10=362, 17=1 9) This truss design reactions sheetrock be applied 10) Graphical purlin reg 11) This manufactured particular building is	loads have been consult=150mph (3-second gable end zone and C s shown; Lumber DOL ainage to prevent wate [20 unless otherwise i designed for a 10.0 ps n designed for a 10.0 ps n designed for a live lo ottom chord and any c d bearing size at joint(connection (by others) 884. quires that a minimum I directly to the bottom oresentation does not o truss is designed as a s the responsibility of t	sidered for this des d gust) Vasd=119n -C Exterior(2) zon =1.60 plate grip D er ponding. ndicated. if bottom chord live ad of 20.0psf on th ther members, wit s) 17 greater than of truss to bearing of 7/16" structural chord. depict the size or t n individual buildir he building design	sign. hph; TCDL=6.0psf; BCDL= e; end vertical left and right OL=1.60 e load nonconcurrent with he bottom chord in all area h BCDL = 10.0psf. input bearing size. g plate capable of withstar wood sheathing be applie he orientation of the purlir g component. The suitab er per ANSI TPI 1 as refe	=6.0psf; h=25 It exposed;C- any other live is where a rec iding 100 lb u d directly to th along the top ility and use c renced by the	it; Cat. II; E C for mem loads. tangle 3-6 plift at join ne top choi p and/or bc of this com building c	Exp C; E bbers and -0 tall by t(s) exce rd and 1/ potent fo ode.	nclosed; d forces 8 y 2-0-0 wi ept (jt=lb) /2" gypsu ord. or any	de m	OR OF CONTRACT OF CONTRACT.	AROLA SIONAL AL 925

- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) This manufactured truss is designed as an individual building component. The suitability and use of this component for any
- particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 19,2020 818 Soundside Road Edenton, NC 27932

S mm

Ι	10-7-12 0-1-0 8-11-0	10-11-8	8 5-5	<i>,</i> -0 '	6-10-12 2-0-0	<u>) 4-1-6 4-11-2</u>	1-11-8'
Plate Offsets (X,Y)	[2:0-1-5,0-0-8], [2:0-0-13,0-0-0], [3:0-5-0),0-4-8], [13:0-6-0,0-2-14]	, [18:0-4-8,Edge], [20	:0-4-8,0-3-8]], [22:0-4-0,0-4-4]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.85 BC 0.96 WB 0.98 Matrix-AS	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0 Wind(LL) 0	in (loc) .28 17-18 .54 17-18 .10 13 .42 17-18	l/defl L/d >999 360 >560 240 n/a n/a >726 240	PLATES MT20 Weight: 506 lb	GRIP 244/190 FT = 20%
			-				
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF 10-17: WEBS 2x4 SF 5-20,8 REACTIONS. All be (lb) - Max H Max U	P No.2 P No.2 *Except* 2x4 SP No.2, 16-18: 2x6 SP No.1, 18-2 No.3 *Except* 18: 2x6 SP No.2, 23-24,4-22: 2x4 SP N earings 0-3-8 except (jt=length) 2=0-2-11 orz 2=477(LC 9) plift All uplift 100 lb or less at joint(s) et 22-858(LC 9) 19-145(LC 8)	0: 2x10 SP DSS 5.2 .ccept 2=-512(LC 8), 13=-6	BRACING- TOP CHORD BOT CHORD WEBS JOINTS 650(LC 13),	Structur 2-0-0 oc Rigid ce 6-0-0 oc 1 Row a 1 Brace	ral wood sheathing o c purlins (4-11-11 m eiling directly applied c bracing: 10-17 at midpt e at Jt(s): 23, 24, 25	directly applied, except ax.): 4-9. d. Except: 4-20, 20-23, 23-25, 24-2 6-23, 6-24, 9-17, 4-22	25, 18-24, 9-18,
Max G	arav All reactions 250 lb or less at joint	s) except 2=1062(LC 1),	13=1620(LC				
	1), 22=1939(LC 26), 19=1610(LC 2	7)	(-				
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- 8-9=- BOT CHORD 2-22: 15-1 WEBS 3-22: 24-21: 6-24: 6-24:	Comp./Max. Ten All forces 250 (lb) or 1485/941, 3-4=-1634/1047, 4-5=-1645/5 1687/1010, 9-10=-2654/1449, 10-12=-2 =-343/1192, 20-22=-293/1332, 19-20=-3 7=-1134/2682, 13-15=-1134/2682, 10-1 =-832/745, 4-20=-477/1263, 20-23=-100 5=-914/1277, 18-24=-801/671, 8-24=-43 =-1255/946, 9-17=-788/1456, 4-22=-134	less except when shown 196, 5-6=-1456/913, 6-8=- 501/1230, 12-13=-3112/ 37/1522, 18-19=-337/153 7=-441/419 5/773, 5-23=-595/591, 23 3/498, 9-18=-525/331, 6-2 6/425, 12-17=-1015/574,	1773/1008, 431 7, 17-18=-340/1555, -25=-914/1277, 23=-1486/1014, 12-15=0/271				
NOTES- (14) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) forces & MWFRS fo 3) Provide adequate di 4) All plates are 5x8 M 5) This truss has been 6) * Detiing dead load (5 8) Bottom chord live lo 9) Provide mechanical 10) Provide mechanical 10) Provide mechanical 11) This truss design r sheetrock be applie Cattorebisebergedige references	e loads have been considered for this de (ult=150mph (3-second gust) Vasd=119) gable end zone and C-C Exterior(2) zor reactions shown; Lumber DOL=1.60 pl ainage to prevent water ponding. T20 unless otherwise indicated. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t iottom chord and any other members, wi .0 psf) on member(s). 23-25, 24-25; Wa ad (40.0 psf) and additional bottom chor connection (by others) of truss to bearin al connection (by others) of truss to bearing ft at joint 22 and 145 lb uplift at joint 19. equires that a minimum of 7/16" structure ed directly to the bottom chord. presentation does not depict the size or	sign. mph; TCDL=6.0psf; BCDL te; end vertical left expose ate grip DOL=1.60 e load nonconcurrent with he bottom chord in all are th BCDL = 10.0psf. II dead load (5.0psf) on m d dead load (5.0psf) on sf) applate at joint(s) 2. ng plate capable of withs al wood sheathing be app the orientation of the purli	=6.0psf; h=25ft; Cat. ed; porch left exposed h any other live loads. eas where a rectangle hember(s).20-23, 18-2 lied only to room. 19-2 tanding 512 lb uplift a blied directly to the top in along the top and/o	II; Exp C; Er I;C-C for me 3-6-0 tall by 24 20, 18-19 t joint 2, 650 o chord and r bottom cho	nclosed; imbers and v 2-0-0 wide) Ib uplift at 1/2" gypsum ord.	SE 044	AROL Signales AL 925 VEER HENNIN SEVIENTING SEVIENTING SEVIENTING
WARNING - Verify Design valid for use o a truss system. Befor building design. Brac is always required for fabrication, storage, d Safety Information	design parameters and READ NOTES ON THIS AND nly with MiTek® connectors. This design is based of use, the building designer must verify the applicating indicated is to prevent buckling of individual trus stability and to prevent collapse with possible perse elivery, erection and bracing of trusses and truss sy available from Truss Plate Institute, 2670 Crain Hig	DINCLUDED MITEK REFERENCE willy upon parameters shown, an ility of design parameters and p is web and/or chord members or onal injury and property damage. Stetms, see <u>ANS/TPH</u> way, Suite 203 Waldorf, MD 20	E PAGE MII-7473 rev. 5/19/ d is for an individual buildin roperly incorporate this des nly. Additional temporary a . For general guidance reg Quality Criteria, DSB-89 601	2020 BEFORE I g component, n ign into the ove nd permanent b arding the and BCSI Build	USE. lot rall vracing ding Component	TRI 818 Soundside Edenton, NC 2	ERING BY ENCOD A MiTek Affiliate Road 7932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						42477949
2434707_MASTER	A06	ATTIC	12	1		
					Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:00 2020 F	Page 2

NOTES- (14)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-MUt_hThW4_7Dh7CVVIBKXTfXOhA1D6NpZG4zj9yma_z

13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	L	10-7-12	19-7-12	30	-7-4	36-0-	4		46-4-4	55-11-0	0
Diata Offacto		10-7-12	9-0-0	10-	-11-8	<u> </u>) '	01 [24.0	10-4-0	9-6-12	
Plate Olisets	S (X, Y)	[3:0-5-0,0-4-8], [6:0-2-8,0	-2-0], [15:0-5-0	,∈agej, [17:0-5-0,Eage	9, [19:0-1-15,0-	1-8], [20:0-	3-12,0-3-	8], [21:0-	2-8,0-3-8]	1	
LOADING (TCLL 2 TCDL 1 BCLL BCDL 1	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.48 BC 0.78 WB 1.00 Matrix-AS	DEFL Vert(L Vert(C Horz(0 Wind)	in -) -0.28 T) -0.55 T) 0.06 -L) 0.33	(loc) 13-15 13-15 12 12 13-15	l/defl >999 >550 n/a >918	L/d 360 240 n/a 240	PLATES MT20 Weight: 497 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORI BOT CHORI WEBS	D 2x6 SP D 2x6 SP 15-17: 2x4 SP 5-17,8- 19-20:	No.2 P No.2 *Except* 2x10 SP DSS P No.3 *Except* 15: 2x6 SP No.2, 20-21,4 2x4 SP No.1	-19,9-13,13-21	: 2x4 SP No.2	BRAC TOP C BOT C WEBS JOINT	NG- HORD HORD	Structu 2-0-0 o Rigid co 1 Row a 2 Rows 1 Brace	ral wood c purlins eiling dire at midpt at 1/3 pt e at Jt(s):	sheathing dir (4-2-4 max.): ectly applied. 1 is 6 20, 21, 22	rectly applied, except 4-9. 5-21, 6-21, 4-19, 9-13, 5-20, 19-20	13-21
REACTIONS (Ib	S. All be b) - Max H Max U Max G	earings 0-3-8 except (jt=le orz 2=477(LC 11) plift All uplift 100 lb or le 9), 12=-647(LC 13) irav All reactions 250 lb 26), 12=1743(LC 21)	ngth) 2=0-3-0. ss at joint(s) 16 or less at joint(, 16=1452(LC ^	5 except 2=-335(LC 13) s) except 2=717(LC 1), 18)), 19=-870(LC , 19=2186(LC						
FORCES. TOP CHORI BOT CHORI WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-865/586, 3-4=-948/723, 4-5=-343/250, 5-6=-304/226, 6-8=-2547/1047, 8-9=-2543/1055, 9-11=-3189/1707, 11-12=-2969/1287 BOT CHORD 2-19=-117/610, 17-19=-357/1699, 16-17=-359/1735, 15-16=-361/1747, 13-15=-362/1725, 12-13=-909/2478 WEBS 3-19=-830/746, 17-20=/725, 5-20=-523/542, 20-22=-737/1021, 21-22=-737/1021, 15-21=-289/494, 8-21=-404/504, 11-13=-910/792, 6-20=-2677/1509, 6-21=-605/1010, 4-19=-781/653, 19-20=-2060/920, 9-13=-812/1087, 13-21=-505/739, 4-20=-592/475, 9-21=-248/735										
 NOTES- (12) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 20-22, 21-22; Wall dead load (5.0 psf) applied only to room. 16-17, 15-16 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 2=335, 19=870, 12=647. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Graphical purlin re											
WARI Design v a truss s building is always fabricatic Safety In	NING - Verify of valid for use or system. Before design. Braci is required for on, storage, do nformation	design parameters and READ NO nly with MiTek® connectors. This use, the building designer must ing indicated is to prevent bucklir stability and to prevent collapse elivery, erection and bracing of tr available from Truss Plate Institu	TES ON THIS AND s design is based o verify the applicab ig of individual trus with possible perso russes and truss sy te, 2670 Crain High	INCLUDED MITEK REFERE! Inly upon parameters shown, litly of design parameters and s web and/or chord members onal injury and property dama stems, see ANSUTI way, Suite 203 Waldorf, MD	NCE PAGE MII-747 and is for an individ d properly incorpora s only. Additional te ge. For general gu PI1 Quality Criteria 20601	rev. 5/19/202 Jal building cc e this design mporary and p dance regardi , DSB-89 and	0 BEFORE omponent, r into the ove permanent to ng the BCSI Buil	USE. not erall pracing ding Comp	ponent	B18 Soundside Edenton, NC 2	A MITek Affiliate

I	lob	Truss	Truss Type	Qtv	Plv	H&H/Calabash/	
		11400		~.,	,	142	477950
	2434707 MASTER	407	ATTIC	12	1	172	111000
	2434707_MASTER	7.07	ATTIC	12	· ·	lab Deference (entional)	
						Job Reference (optional)	
	Builders FirstSource. S	umter, SC - 29153.		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:01 2020 Pag	ae 2

 Builders FirstSource,
 Sumter, SC - 29153,
 8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:01 2020 Page 2 ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-qgRMupi8rlF4JHni20iZ3hCow5Z0yZHynwqWFbyma_y

 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					142477	951
2434707_MASTER	A08	ATTIC	21	1		
					Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:03 2020 Page 2	2

NOTES- (12)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-m3Z7JVjPNvVoYax4ARk186H8Uul5QWqFFEJdKUyma_w

11) Attic room checked for L/360 deflection.

12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

1-b	Taura	T	04.1	Div		
JOD	Truss	Truss Type	Qty	PIY	H&H/Calabash/	
						42477952
		17710	~			
2434707_MASTER	A09	ATTIC	21	1		
					Job Reference (optional)	
Builders FirstSource. S	Sumter, SC - 29153.		. 8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:04 2020	Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-FF7VXrk18CdfAkVHk8FGhJqJDIdm9wyOTu2Aswyma_v 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					142477953
2434707_MASTER	A10	ATTIC GIRDER	21	1	
_					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:06 2020 Page 2
		ID:	iTqi18Swf	vF8hvT9h0)Yt9kzZiYQ-BeFFyWmHfqtNP2ffrZlkmkvdn6K3ds8hxCXHxpyma t

NOTES-(14)

12) Attic room checked for L/360 deflection.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).
14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-9=-60, 9-12=-60, 2-20=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-20

Drag: 20-27=-10, 17-24=-10

Concentrated Loads (lb) Vert: 32=-635(B)

lah	Truco	Truco Turco	011	DIV	LI&L/Colobook/	
100	TTUSS	inuss type	Qiy	PIY	nan/Calabash/	
						142477954
2424707 MARTED	A 1 1	ATTIC	24	1		
2434707_IVIA51ER	AII	ATTIC	21	1		
					Job Reference (optional)	
Builders FirstSource S	umter SC - 29153		8	240 s Mar	9 2020 MiTek Industries Inc. Tue Aug 18 15:32:08 2020	Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-70M0MCnXBR75fMp2z_KCr9_wzv?x5mD_OW0O?hyma_r 14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	/	Ply	H&H/Calabash/				
						142477	955			
2434707_MASTER	A12	ATTIC	21		1					
						Job Reference (optional)				
Builders FirstSource,	Sumter, SC - 29153,			8.	240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:09 2020 Page 2	2			
			lD:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-bDwOaYo9ylFyGVOEWhrRONX5mJLBqDR7dAmxX8yma_q							

NOTES-(15)

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 14) Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	C	Qty	Ply	H&H/Calabash/	
							142477956
2434707_MASTER	A13	ATTIC	4	2	1		
						Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,			8	.240 s Mai	r 9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:1	11 2020 Page 2
			ID:jTqj185	SwfyF8h	vT9h0Yt9k	kzZiYQ-Yb28?EqQUMWgWpYde6tvTocPG7?NI430	25UF2c0yma o

NOTES-(15)

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					142477957
2434707_MASTER	A14	ATTIC	42	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:13 2020 Page 2
		ID:jT	qj18SwfyF	8hyT9h0Y	(19kzZiYQ-U AvQwrg0zmNl7h?lXwNYDhk6wjam?2jYok9gvyma m

NOTES- (15)

10) Refer to girder(s) for truss to truss connections.

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 321 lb uplift at joint 14, 487 lb uplift at joint 11, 369 lb uplift at joint 22, 184 lb uplift at joint 18 and 267 lb uplift at joint 17.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Scale = 1:100.7

	10-8-12	17-5-8	19-7-12	30-7-4		36-0-4	43-3-	4	55-11-0		
	10-8-12	6-8-12	2-2-4	10-11-8	3	5-5-0	7-3-0) '	12-7-12	I	
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [4:0-6-12,0)-3-8], [13:0-0	-1,Edge], [15:	0-5-0,0-4-8]	, [16:0-4-8,0-3-8]	, [18:0-4-8,	0-3-8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix-	0.43 0.48 0.99 AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (l -0.12 15 -0.24 15 0.02 0.14 21	oc) l/defl -27 >999 -27 >626 13 n/a -30 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 510 lb	GRIP 244/190 FT = 20%	6
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S 10-15 WEBS 2x4 S 5-18,6 REACTIONS. All b (lb) - Max H	P No.2 P No.2 *Except* :: 2x4 SP No.2, 16-18: 2x10 P No.3 *Except* 8-16: 2x6 SP No.2, 22-23: 2 pearings 0-3-8 except (jt=len Horz 2=483(LC 11)	SP DSS x4 SP No.2 gth) 2=0-2-11		/// C 422 40	BRACING TOP CHO BOT CHO WEBS JOINTS	- RD St 2- RD Ri 6- 1	ructural wood 0-0 oc purling gid ceiling dii 0-0 oc bracin Row at midpt Brace at Jt(s)	d sheathing di s (6-0-0 max.) rectly applied. g: 10-15 1 2 1: 22, 23, 24	rectly applied, except : 4-9. Except: 18-22, 22-24, 23-24, 16 9-15, 4-21, 4-19	5-23, 6-22, 6-	23,
Max (Max (FORCES. (b) - Max TOP CHORD 2-3= 8-9= BOT CHORD 10-1 16-1 WEBS 3-21 16-2 9-15	12), 13=-190(LC 13), 2 Grav All reactions 250 lb o 2), 13=434(LC 21), 2= c. Comp./Max. Ten All forc =-1079/560, 3-4=-1220/799, =-531/490, 9-10=-69/376, 10 15=-512/467, 2-21=-430/104 17=-234/615, 15-16=-183/46 1=-848/714, 18-22=-879/700 23=-876/658, 8-23=-495/489 5=-1090/452, 12-15=-657/49	s ar joint(s) £2 2=-334(LC 12) r less at joint(879(LC 24), 1 es 250 (lb) or 4-5=-525/486 0-12=-150/366 77, 19-21=-21 8 0, 5-22=-493/5 0, 9-16=-466/6 15, 4-21=-735	(ktep) 15=-747) s) except 15= 17=1263(LC 1 less except w 5, 5-6=-483/44 7/440, 18-19= 528, 22-24=-9: 335, 6-22=-13: 1/1255, 4-19=-	(LC 13), 19 :1829(LC 1) 8) /hen shown. 16, 6-8=-508 :-215/457, 1 23/1294, 23 57/974, 6-2: 1443/549, 4							
NOTES- (13) 1) Unbalanced roof liv 2) Wind: ASCE 7-10; MWFRS (envelope MWFRS for reactio 3) Provide adequate of 4) This truss has been will fit between the 6) Ceiling dead load (7) Bottom chord live liv 8) Provide mechanica 9) Provide mechanica 9) Provide mechanica 9) Provide mechanica 9) Provide mechanica 10) This truss design sheetrock be appl 11) Graphical purlin re Ca)thtlier corp.age.com	ve loads have been consider Vult=150mph (3-second gus e) gable end zone and C-C E ons shown; Lumber DOL=1.6 drainage to prevent water po n designed for a 10.0 psf bot en designed for a 10.0 psf bot en designed for a live load o bottom chord and any other 5.0 psf) on member(s). 22-2 oad (40.0 psf) and additiona al connection (by others) of t fl at joint 13 and 334 lb uplifi requires that a minimum of lied directly to the bottom ch epresentation does not depic ad for L/360 deflection.	red for this de st) Vasd=119 ixterior(2) zor 50 plate grip ID onding. ttom chord liv f 20.0psf on t members, wi 4, 23-24; Wa I bottom chor russ to bearin russ to bearin russ to bearin t at joint 2. 7/16" structur: ord. ct the size or	sign. mph; TCDL=6 le; end vertica DOL=1.60 e load noncor he bottom chr th BCDL = 10 ll dead load (f g plate at join g plate capab al wood sheat the orientatior	.0psf; BCDL al left and rig nourrent with ord in all are 0.0psf. 5.0psf) on m 5.0 psf) appl t(s) 2. le of withsta hing be app n of the purli	=6.0psf; h=25ft; ht exposed;C-C n any other live lo as where a recta nember(s).18-22, ied only to room. anding 747 lb upli blied directly to th in along the top a	Cat. II; Exp for member ads. ngle 3-6-0 16-23 17-18, 16- 17-18, 16- ft at joint 15 e top chord nd/or botto	C; Enclosed is and forces tall by 2-0-0 to 17 5, 525 lb uplif and 1/2" gyp m chord.	; & wide t at osum	SE 044	ARO SI AL 925 NEER SE	A MANUMUM
WARNING - Verify Design valid for use a truss system. Befo building design. Bra is always required fo fabrication, storage, Safety Information	y design parameters and READ NOT only with MiTek® connectors. This or re use, the building designer must v acing indicated is to prevent buckling or stability and to prevent collapse w delivery, erection and bracing of tru available from Truss Plate Institute	ES ON THIS AND design is based of verify the applicat g of individual trus ith possible perss isses and truss sy a, 2670 Crain Hig	D INCLUDED MITE only upon parame bility of design parases web and/or cho onal injury and pro- rstems, see hway, Suite 203 V	EK REFERENC ters shown, an ameters and p ord members or operty damage. ANSI/TPI1 Valdorf, MD 20	E PAGE MII-7473 rev d is for an individual b roperly incorporate th nly. Additional tempo . For general guidanc Quality Criteria, DS 601	5/19/2020 BE uilding compo s design into t rary and perma e regarding th B-89 and BCS	FORE USE. nent, not he overall anent bracing e SI Building Corr	ponent	B18 Soundsid Edenton, NC	ERING BY ENCL A MITek Affil Re Road 27932	Diate

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
				-		l42477960
2434707_MASTER	A17	ATTIC	9	1		
					Job Reference (optional)	
Builders FirstSource.	Sumter, SC - 29153.			3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:17 202	0 Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-MIPPFHuB4CGpEK?n_N_Jj3sYhY5ZioKJTPiMqgyma_i 13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Scale = 1:100.7

Plate Offices (X,Y) 136-113.0-0.0], [160-40.2-49, [170-46.0-38] LOADNO (pst) SPACING-20-0 CSL DEFL in (pc) (pst) SPACING-20-0 TCLL 20.0 Plate Grites (X,Y) SPACING-20-0 CSL DEFL in (pc) (pst) Mathing (pst) TCLL 20.0 Plate Grites (pst) TS Kong (pst) SPACING-20-0 CSL DEFL in (pc) (pst) Mathing (pst) Plate (pst) SPACING-20-0 SPACING-10-02-14-15-28-28-29-99 Adv Mathing (pst) Plate (pst) SPACING-10-02-14-14-28-38 DECL Adv Nathing (pst) Plate (pst) SPACING-10-02-14-14-Na Nathing (pst) SPACING-10-02-14-14-12-13-14-12-12-14-14-12-12-14-14-12-12-14-14-12-12-14-14-12-12-14-14-12-12-14-14-12-14-12-14-12-14-12-14-12-14-12-12-14-12-12-14-14-12-12-14-12-12-14-14-12-14-12-14-12-12-14-14-12-14-14-14-14-14-14-14-14-14-14-14-14-14-
Plane Offsets (XY)- Stol-113.0-40, [24-4.0.4-4.1, [24-0-4.0.4-21]; [5:6-12.0-35], [14:0-1.15] In (loc) Uddl Use of the stole of the sto
LoADING (psf) TCLL 200 Flag 6 Gip D0L 1.15 ECL 100 ECL
TCLL 20.0 Plate Grip DoL 1.15 TC 0.43 Vert(L) -0.21 16-28 -989 360 MT20 244/190 BCLL 0.0 Code IRC2015(TPI2C)14 Wattix-AS Vert(L) -0.24 16-28 -666 240 BCLL 0.0 Code IRC2015(TPI2C)14 Wattix-AS Vert(L) -0.24 16-28 -666 240 BCLL 0.0 Code IRC2015(TPI2C)14 Wattix-AS Vert(L) -0.24 16-28 -699 240 Weight: 510.16 FT = 20% LUMBER COD Code IRC2015(TPI2C)14 Wattix-AS Weight: 510.16 FT = 20% BOT CHORD 2x6 SP No.2 Except FO FO FO PCHORD Structural wood sheathing directly applied, except = 20% WEBS 2x4 SP No.2 Except FO CHORD Frage and indepi 19-23, 23-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 JOINTS 1 Brace ant J(6): 23, 24, 25 Frage and J(6): 23, 23-24, 25 Frage and J(6): 23, 23-24, 25 Frage and J(6): 23, 24-25
TCDL 10.0 Lumber DOL 1.15 BC 0.48 Vert(CT) -0.22 14 and and the analysis BCDL 10.0 Code IRC2015/TPI2014 Matrix-AS Wind(LL) 0.14 22.31 5.99 24.0 Weight: 51.0 Ib FT = 20% LUMBER- FOR CHORD 266 SP No.2 TEXEST TOP CHORD 266 SP No.2 TEXEST TOP CHORD 26.9 SP No.2 TOP CHORD 20.9 oc punition (Fe/O max): 54.0 BOT CHORD 26.4 SP No.2 TEXEST BOT CHORD 20.9 oc punition (Fe/O max): 54.0 TOP CHORD 20.9 oc punition (Fe/O max): 54.0 WEBS 4.4 SP No.3 "Except' BOT CHORD Top CHORD 19-23, 23-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 REACTIONS All bearings 0-3-8 except (fileingth) 2-0-211.1 JOINTS 1 Brace at Jt(s): 23, 24, 25 19-23, 23-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 FORCES. (b) Max form / All reactions 250 (b) to ress at point(s) except 16-1830(LC 1), 20=1723(LC 2), 14-190(LC 2), 2-279(LC 24), 18-1263(LC 18) 19-23, 23-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 FORCES. (b) -10-16, 6-22, 6-22-4789, C-2-471440, 19-20-2154/457, 18-19-=-233/609, 17-18-23/67, 12-16-209/67, 1
BCLL 0.0 Kep Stress Indr. YES WB 0.99 Horz(C1) 0.02 14 nra main BCDL 1.00 Code IRC216TPI2/014 Matrix-AS Wind(L) 0.14 22:31 > 99 240 Weight: 510 Ib FT = 20% LUMBER. TOP CHORD 2x6 SP No.2 Except 2x0 SP
BCDL 10.0 Code IRC2015/1P/2014 Matrix-AS Wind(L) 0.14 22:31 3989 240 Weight: 510 Ib F1 = 20% LUMBER- TOP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied, except 2x0-00 or pullins (6-0-0 max), 5:-10. BOT CHORD 2x6 SP No.2 TOP CHORD BTACING- WEBS 2x4 SP No.2, 17-19; 2x10 SP DSS BOT CHORD Rigid celling directly applied, Except 1116: 2x4 SP No.2, 17-19; 2x10 SP DSS BOT CHORD Rigid celling directly applied, Except 1116: 2x4 SP No.2, 17-19; 2x10 SP DSS BOT CHORD Rigid celling directly applied, Except 1116: 2x4 SP No.2, 17-19; 2x10 SP DSS BOT CHORD Rigid celling directly applied, Except 1116: 2x4 SP No.2, 17-19; 2x10 SP DSS BOT CHORD Toward and the second toward in the sec
UMBER - IOP CHORD 266 SP No.2 "Except" BRACINC- TOP CHORD Structural wood sheathing tirectly applied, except 2/4 SP No.3 "Except" Structural wood sheathing tirectly applied. Except WEBS 2/4 SP No.3 "Except" BOT CHORD BOT CHORD Provide middle (6+0) max.): 5:10.10. Except WEBS 2/4 SP No.3 "Except" BOT CHORD BOT CHORD Provide middle (6+0) max.): 5:10.10. Except WEBS 2/4 SP No.3 "Except" BOT CHORD BOT CHORD Provide middle (6+0) max.): 5:10.10. Except WEBS 10:43.12.23.24.23.24.24 SP No.2 WEBS 10:43.23.23.25.24.25.17-24.7-23.7-24. 10:16.5-22.5-20 Max Horz 2-e443[LC 10] Max Horz 2-e443[LC 11] Max Horz 2-e443[LC 11].2-e33[LC 12].2-e33[LC 13].20=526[LC 12].1.2-e1723[LC 2].14:434[LC 21].2-e33[LC 12].2-e33[LC 12].2-
TOP CHORD 2x6 SP No.2 *Except BOT CHORD 2x6 SP No.2 *Except 11-16; 2x4 SP No.3; *Except 6-19,9-17; 2x6 SP No.2, 23-24; 2x4 SP No.2 WEBS 4x4 SP No.3; *Except 6-19,9-17; 2x6 SP No.2, 23-24; 2x4 SP No.2 WEBS 4x4 SP No.3; *Except 6-19,9-17; 2x6 SP No.2, 23-24; 2x4 SP No.2 USES 4x4 SP No.3; *Except 6-19,9-17; 2x6 SP No.2, 23-24; 2x4 SP No.2 USES 4x4 SP No.3; *Except 6-19,9-17; 2x6 SP No.2, 23-24; 2x4 SP No.2 USES 4x4 SP No.3; *Except 6-19,9-17; 2x6 SP No.2, 23-24; 2x4 SP No.2 USES 4x4 SP No.3; *Except 6-19,0-23, 23-25; 24-25, 17-24, 7-23, 7-24, 10-16; 5-22, 5-20 USES 4x4 SP No.3; *Except 10, for 223, 23-25; 24-25, 17-24, 7-23, 7-24, 10-16; 5-22, 5-20 USES 4x4 SP No.3; *Except 6x4 SP No.3; *Except 6x4 SP No.2; *Except 4x4 SP No.3; *Except 6x4 SP No.2; *Except 4x4 SP No.3; *Except 6x4 SP No.3; *Except 4x4 SP No.3; *Excep
BOT CHORD 2x8 SP No.2, T2xcept* 2-0-0 co puting (6-0-0 max): 5-10. 11-16: 2x4 SP No.3, TExcept* 6-0.9 to co bracing: 11-16 6-19.9-17: 2x6 SP No.2, 22-34: 2x4 SP No.2 WEBS 11 Row ar midpt 19-23, 32-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 VERS JOINTS 1 Brace at Jt(s): 23, 24, 25 Nak Hotz 2-4-83(LC 10) Max Hotz 2-4-83(LC 10) 19-23, 32-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 REACTIONS. All bearings 0-3-8 except (jelength) 2=0-2-11. JOINTS 1 Brace at Jt(s): 23, 24, 25 (ii) Max Hotz 2-4-83(LC 10) Max Hotz 2-4-83(LC 10) Max Hotz 2-4-83(LC 10) Max Grav All reactions 250 (b or less at joint(s) except 16=-1630(LC 1), 20=1723(LC 2), 14-434(LC 21), 2=679(LC 24), 18-1263(LC 18) PO-0-5248(LC 1) FORCES. (b) - Max: Comp.Max. Ten - All forces 250 (ii) or less except when shown. PO -0-5248(LT 1), 11-38-1230 ef 7, 11-13-e-1230 ef 7, 11-13-e-1248(PL 2), 2-2-2171/238, 5-20=-1240/549, 5-22=-2171/238, 5-20=-1240/549, 5-22=-2171/238, 5-20=-1240/549, 5-22=-2171/238, 5-20=-1440/549, 5-13=-2730 ef 7, 11-14-ef 7, 245, 9-224=49/4489, 10-1746/8035, 7-23=-1357/957, 7-24=-1327/957, 10-16-e-6/7485, 5-22=-7211/238, 5-20=-1440/549, 5-22=-7211/238, 5-20=-1440/549, 5-22=-7211/238, 5-20=-1440/549, 5-22=-7211/238, 5-20=-1440/549, 5-22=-7211/238, 5-20=-1440/549, 5-22=-7211/238, 5-20=-1440/549, 5-21=-7211/238, 5
 H1-bit 224 SP No.2, 124 SP No.2, 23-24: 2x4 SP No.2 WEBS BOT CHORD Neglo Celling directly applied. Except: 6-19,9-17: 2x6 SP No.2, 23-24: 2x4 SP No.2 WEBS HCW at midpt H9-23, 23-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 REACTIONS. All bearings 0-3-8 except (tie-length) 2=0-2-11. (b) - Max Horz 2=-483(LC 10) Max Holt All upilit 10b or less at joint(s) except 16=-748(LC 13), 20=-526(LC 12), 14=-190(LC 13), 2=-331(LC 12) Max Grav All meactions 250 bor less at joint(s) except 16=1830(LC 1), 20=-526(LC 2), 14=-434(LC 21), 2=879(LC 24), 18=1263(LC 18) FORCES, (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 9: 10-529/489, 10-11=-70/376, 11-13=-152/367 DT CHORD 9: 10-529/489, 10-11=-70/376, 11-13=-152/367 DT CHORD 9: 10-23=-1083/467, 2-22=-434(L051), 2-23=-923/1294, 24-25=-923/1294, 24-25=-923/1294, 17-24-876(658, 9-24-494/489, 10-11=-406/835, 7-24=-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-22=-721/1238, 5-19=-430/990 NOTES- (13) Uhobalanced rool live loads have been considered for this design. Winck ASCE 7-10; Uult-5106 plate grids, 20=-140/6549, 5-19=-430/990 NOTES- (13) Uhobalanced for a 10.0 gol gaily 034=119mph; TCDL=6.0psf, BCDL=6.0psf, h=25t; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for vertains are bene designed for a 10.0 gol gaily 034=119mph; TCDL=6.0 psf, h=251; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for vertains abeen designed for a 10.0 gol gaily 04=01.160 page. Provide mechanical connectind; Wib BCDL = 10.0 psf. Orbitor, Hoody and any
 WEBS 244 SP No.5 EX6pt 6-13.9-17: 2x6 SP No.2, 2324: 2x4 SP No.2 WEBS 1 Row at midpt 19-23, 23-25, 24-25, 17-24, 7-23, 7-24, 10-16, 5-22, 5-20 REACTIONS. All bearings 0-3-8 except (i=length) 2=0-2-11. (b) Max Horz 2=-483(LC 10) Max Upift: All upift 100 lb or less at joint(s) except 16=-748(LC 13), 20=-526(LC 12), 14-190(LC 13), 2=-333(LC 12) Max Grav. All reactions 250 lb or less at joint(s) except 16=1830(LC 1), 20=1723(LC 2), 14-434(LC 21), 2=879(LC 24), 18=1263(LC 18) FORCES. (b) - Max. Comp.Max. Ten All torces 250 (lb) or less except when shown. TOP CHORD 2-31083/564, 3-51204/78, 15-6-524/485, 6-7=-481/444, 7-9=-506/441, 9-10=-522/489, 10-11=-7076, 11-13=-1523/67 BOT CHORD 11-16=-5124/467, 2-22=-434/1051, 20-22=-217/440, 19-20=215/457, 18-19=-233/609, 17-18=-234/489, 10-11=-7076, 11-13=-153/476 MVEBS 3-22=-242/709, 19-23=-877/701, 6-23=-431/244, 7-9=-506/441, 9-10=-529/4489, 10-11=-406835, 7-2a=-1327/957, 7-4-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/0990 NOTES- (13) I) Unbalanced root live loads have been considered for this design. 2) Wind: ASCE 7-10; Vulia-150mph (3-second gust) Vasci=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Extrastrofic zone; end vertical left and right exposed/C-C for members and forces 8. MWFRS for reactions shown; Lumber DDL=1.60 plate gip DDL=1.60 3) Provide mechanical connection (by others) of truss to bearing plate azplate (s) 493 bupift at joint 18, 528 bup iff at joint 20, 514 bupift at joint 16, 528 bupift at joint 19, 20-20 wide will fit between the bottom chord and any other members, with BCD = 1-10.0psd. 6) Celling dead load (c) psf and adding to gable at joint(s) 2. 6) Provide mechanical connection (by others) of truss to bearing plate azplate of withstanding 748 bupift at joint 16, 528 bupift at joint 14 and 333 bupift at joint 2. 7) Provide
 bit spart / 28 of N0.2, 25.24, 24 of N0.2 VIESS I Brace at Jul(s): 23, 25.25, 24.25, 17.24, 12.
 JOINTS 1 Brace at Jt(s): 23, 24, 25 REACTIONS. All bearings 0-3-8 except (lie-length) 2=0-2-11. (b) - Max Horz Z=+483(LC 10) Max Upit A upit 100 to ress at joint(s) except 16=-748(LC 13), 20=-526(LC 12), 14=-190(LC 13), 2=333(LC 12) Max Grav All reactions 250 to relss at joint(s) except 16=-1830(LC 1), 20=1723(LC 2), 14=434(LC 21), 2=879(LC 24), 18=1263(LC 18) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 23=-1083/564, 3.5=-1204/767, 5.6=-524/485, 67=-461/444, 7.9=-506/481, 9=-108-239489, 10-11=-703/65, 11-13=-123/867 BOT CHORD 11-16=-512/467, 2:22=-434/1051, 20-22=-217/440, 19-20=-215/457, 18-19=-233/609, 17-18=-234/615, 16-17-8-183/467 WEBS 3:222=-842/709, 19-23=-877/701, 6:23=-491/530, 23-25=-923/1294, 24-25=-923/
 REACTIONS. All bearings 0-3-8 except (ile-length) 2=0-2-11. (ib) Max Horz 2=433(LC 10) Max Uplift JAII uplift 100 lb or less at joint(s) except 16=-748(LC 13), 20=-526(LC 12), JA=-130(LC 13), 2=-332(LC 2), JA=-526(LC 12), JA=-527(JA=-527(JA=12), JA=-527(JA=12), JA=-52
 (b) - Max Horz 2=-434(LC 10) Max Upit 100 bor less at joint(s) except 16=-748(LC 13), 20=-526(LC 12), 14=-190(LC 13), 2=-333(LC 12) Max Grav All reactions 250 bor less at joint(s) except 16=1830(LC 1), 20=1723(LC 2), 14=434(LC 21), 2=879(LC 24), 18=1263(LC 18) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3=-1083/564, 3-5=-120/4787, 5-6=-524/485, 6-7=-481/444, 7-9==-506/461, 9=10=-523/4681, 10=-17=-183/467 BOT CHORD 11-16=-512/467, 2-22=-434/1051, 20-22=-217/401, 19-20=-215/457, 18-19=-233/609, 17:18=-234/615, 16:17=-183/467 WEBS 3-22=-642/709, 19-23=-877/701, 6-23=-491/530, 23-25=-923/1294, 24-25=-923/1294, 14-25=-923/1294, 17-24=-876/658, 9-24=-494/489, 10-17=-466/835, 7-23=-1357/975, 7-24=-1327/957, 10-16=-1091/453, 13-16=-67/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=430/990 NOTES- (13) I) Unbalanced roof live loads have been considered for this design. Vi Wrich XSCE 7-10; Vult=150mp (3-second gust) Vasd=119mph; TCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; WVFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the botom chord and any other members, with BCDL = 10.0 psf. O Celling deal load (5.0 psf) on member(s), 19-23, 17-24 Rottom chord ine load diational botom chord dead (5.0 psf) on member(s), 19-23, 17-24 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 528 lb uplift at joint 20, 190 lb uplift at joint 2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 528 lb uplift at joint 20, 190 lb uplift at joint 4. Provide mechanical connection (by others) of truss to bearing plate capabl
 In the optime to be been provided by the size of the providence of the provide mechanical connection (by others) of trusts to bearing plate at joint(s) except 16=1830(LC 1), 20=1723(LC 2), 2=879(LC 24), 8=1826(LC 24),
Max Grav All reactions 250 lb or less at joint(s) except 16=1830(LC 1), 20=1723(LC 2), 14=434(LC 21), 2=879(LC 24), 18=1263(LC 18) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1035/64, 3-5=-1204/78, 5-6=-524/48, 6-7=-481/444, 7-9=-506/461, 9-10=-529/498, 10-11=-70/376, 11-13=-152/367 BOT CHORD 11-16=-512/467, 2-22=-431/140, 19-20=-215/457, 18-19=-233/609, 17-18=-234/615, 16-17=-183/467 WEBS 3-22=-842/709, 19-23=-8777/01, 6-23=-491/530, 23-25=-923/1294, 24-25=-923/1294, 17-24=-876/658, 9-24=-494/489, 10-117=-466/835, 7-23=-13577/957, 7-24=-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Dlate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) "This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will it between the bottom chord and any other members, with BCDL = 1.00,psf. 6) Ceiling deal load (5.0 psf) on member(s). 3-25, 2-425; Wall dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 20, 190 lb uplift at joint 12. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 20, 190 lb uplift at joint 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint
 2), 14=434(LC 21), 2=879(LC 24), 16=1263(LC 18) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2:3=-1083/564, 3:5=-1204/787, 5:6=-524/485, 6:7=-481/444, 7:9=:506/461, 9:10=:529/4989, 10:11:3=-152/367 BOT CHORD 11:16=-512/467, 2:22=434/1051, 20:22=:217/440, 19:20=:215/457, 18:19=:233/609, 17:18=:234/615, 16:17=:183/467 WEBS 3:22=-8427/09, 19:23=-877/701, 6:23=-491/530, 23:25=:923/1294, 24:25=:923/1294, 17:24=:376/658, 9:24=-494/489, 10:17=:466/835, 7:23=:1357/975, 7:24=:1327/957, 10:16=-1091/453, 13:16=:657/495, 5:22=:721/1238, 5:20=:1440/549, 5:19=:430/990 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7:10; Vult=150mph (3:second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS for reactions shown; Lumber DOL=1.60 pate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a loy polate grip DOL=1.60 3) Provide mechanical connection (by others) of truss to bearing plate at joint(s). 2. 6) Ceiling dead load (6:0 psf) on members, with BCDL = 10.0psf. 6) Ceiling dead load (6:0 psf) on members, with BCDL = 10.0psf. 6) Ceiling dead load (6:0 psf) on members, with BCDL = 10.0psf. 6) Ceiling dead load (6:0 psf) on members, with BCDL = 10.0psf. 7) This truss has been designed for a live load of truss to bearing plate at joint(s). 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s). 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s). 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplitf at joint 14 and 338 lb uplitf at joint 2. 10) This truss design requires that a minimum of 7/16* structural wood sheathing be applied directly to the bottom chord.
 FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3=-1083/564, 3-5=-1204/787, 5-6=524/485, 6-7=-481/444, 7-9=-506/461, 9-10=-529/489, 10-11=-70/376, 11-12=-152/367 BOT CHORD 11-16=-512/467, 2-22=-434/1051, 20-22=-217/440, 19-20=-215/457, 18-19=-233/609, 17-18=-234/615, 16-17=-183/467 WEBS 3-22=-842/709, 19-23=8777701, 6-23=-491/500, 23-25=-923/1294, 24-25=-923/1294, 17-24=-876/658, 9-24=-494/489, 10-17=-466/835, 7-23=-1357/975, 7-24=-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) I) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 [Date grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf blottom chord for all all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Ceiling deal bad (5.0 psf) on member(s). 23-22, 24-25; Wild dead load (5.0 psf) pon member(s). 19-23, 17-24 Bottom chord ine load add out of thers) of truss to bearing plate at joint(s). Provide mechanical connection (by others) of truss to bearing plate at apine(s). Provide mechanical connection (by others) of truss to bearing plate at apine(s). Provide mechanical connection (by others) of truss to bearing plate at apine(s). Provide mechanical connection (by others) of truss to bearing plate at apine(s). Provide mechanical connection (by others) of truss to bearing plate applied directly to the top chord and 11/2" gypsum sheetrock be apipled directly to the bottom chord. Alugust
 PORCES. (III) - Max. Colling/Max. Tell An Ilottes 220 (III) of tess except when shown. TOP CHORD 2-3=-1083/564, 35–1204/787, 56–524/455, 67–481/444, 7-9–50/641, 9-10–529/489, 10-11–70/376, 11-13–152/367 BOT CHORD 11.16=-512/467, 2-22=-434/1051, 20-22=-217/440, 19-20=-215/457, 18-19=-233/609, 17-18=-234/615, 16-17=-183/467 WEBS 3-22=-842/709, 19-23=-877/701, 6-23=-491/530, 23-25=-923/1294, 24-25=-923/1294, 17-24=-876/658, 9-24=-494/489, 10-117–-466/857, 724=-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS (envelope) gable of a low load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 1.00 psf. 6) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) an member(s). 19-23, 17-24 7) Bottom chord live load d fo.0 psf) of truss to bearing plate arjoint(s). 9) Provide mechanical connection (by others) of truss to bearing plate acpable of withstanding 748 lb uplift at joint 14, 6526 lb uplift at joint 20, 190 lb uplift at joint 14-and 331 bu uplift at joint 12. 10) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2° gypsum sheetrock be applied directive to the size or the orientation of the putfin along the top and/or bottom chord. Alucust 19, 2020
 Hor chock 2: 25-1030/03, 30-112-70/376, 11-132-152/367 BOT CHORD 11-16-512/467, 2:22=-434/1051, 20-22=217/440, 19-20=215/457, 18-19=-233/609, 17-18-234/615, 16-17=-183/467 WEBS 3: 22=-842/709, 19-23=877/701, 6-23=-491/530, 23-25=-923/1294, 24-25=-923/1294, 17-24=-876/658, 9-24=-494/489, 10-17=-466/835, 7-23=-1357/975, 7-24=-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (6.0 psf) on member(s), 23-25, 24-25; Wall dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14, 10 joint 24, 033 lb uplift at joint 12. 10) This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2' gypsum sheetrock be applied directly to the bottom chord. Auroust 19, 2020
 BOT CHORD 11-16-51/2467, 2-22-434/1051, 20-22-217/440, 19-20-215/457, 18-19=-233/609, 17-18=-234/615, 16-17=-183/467 WEBS 3-22=-842/709, 19-23=877/701, 6-23=491/530, 23-25=923/1294, 24-25=-923/1294, 17-24=-4576/658, 9-24=-494/4989, 10-17=-466/835, 7-23=-1357/975, 7-24=-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS (envelope) gable of a 10.0 psf bottom chord inve load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom chord dead load (5.0 psf) on member(s).19-23, 17-24 Bottom chord inve load of 40.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 Bottom chord inve load additional bottom chord dead load (5.0 psf) on member(s).19-23, 17-24 Bottom chord inve load additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 Provide mechanical connection (by others) of truss to bearing plate azpable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 2. Provide mechanical connection (by others) of truss to bearing plate azpable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 2. Provide mechanical connection (by others) of truss to bearing plate azpable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 2. Provide mechanical connection (by others) of truss to bearing plate azpable of withstanding 748 lb uplift at joint 14, and 331 lb uplift at joint 2. Provide mec
 11 To Both, P12-Both, P12-B
 WEBS 3:22=-842/709, 19:23=-877/701, 6-23=-491/530, 23-25=-923/1294, 24-25=-923/1294, 17:24=-876/658, 9:24=-494/489, 10:17=-466/835, 7-23=-1357/975, 7-24=-1327/957, 10:16=-1091/453, 13:16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10:0 pst bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other embers, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 2:2. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Alucust 19, 2020
 17-24=8766658, 9-24=494/489, 10-17=-466/835, 7-23=-1357/975, 7-24=-1327/957, 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 1.00psf. 6) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) on member(s). 19-73. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 20, 190 lb uplift at joint 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. August 19, 2020
 10-16=-1091/453, 13-16=-657/495, 5-22=-721/1238, 5-20=-1440/549, 5-19=-430/990 NOTES- (13) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 20, 190 lb uplift at joint 14 and 333 lb uplift at joint 2. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Alugust 19, 2020
 NOTES- (13) 1) Uhbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MVFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 23-25; 24-25; Wall dead load (5.0 psf) applied only to room. 18-19, 17-18 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Aurgust 19, 2020
 NOTES- (13) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s). 19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) on member(s). 19-23, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Auroust 19, 2020
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical putIn representation does not depict the size or the orientation of the putIn along the top and/or bottom chord.
 2) Wind: ASCE 7-10; Vulter150mph (3-second gust) Vase=119mph; 15DL=6.0ps; BCDL=6.0ps; n=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.00 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical putIn representation does not depict the size or the orientation of the putIn along the top and/or bottom chord.
 MWFRS (envelope) gabe end 20ne and 0-0 Externol (2) 20ne, end ventoal refit and night exposed, 0-0 to thermolers and notices a MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 Porvide mechanical connection (by others) of truss to bearing plate at joint(s) 2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Write drainage to prevent water pooling. Provide adequate drainage to prevent water pooling. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 a) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. b) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. c) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 c) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 g) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. e) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. f) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. f) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 20, 190 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purifur representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 6) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s).19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical putlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 20, 190 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 748 lb uplift at joint 16, 526 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
joint 20, 190 lb uplift at joint 14 and 333 lb uplift at joint 2. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. August 19,2020
 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. August 19.2020
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
r) Graphical punin representation does not depict the size of the orientation of the punin along the top and/or bottom chord.
Childhiorage oberked for L/360 deflection
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not
a usos system. Device usos, me bulining uesignet musis veriny une applicatime you uesign plantmeters and property inflotipulate tinis design influe the device and property inflotipulate tinis design influe the device and property infloting temperature and parameters and parameters and parameters and property infloting temperature and parameters and
bunung design. Brading indicated is to prevent buckling of individual truss web and/of chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent outcoming or monotonic ford memory and poperty damage. For general guidance regarding the AMITek Affiliate

Ì	lob	Trues		Otv	Plv	H&H/Calabash/	
	305	11033		Giy	' 'y		
						14247	7961
	2434707_MASTER	A18	ATTIC	9	1		
	_					Job Reference (optional)	
	Builders FirstSource. S	umter, SC - 29153.		8	240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:18 2020 Page	2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-qyzoTdvprWOgruazY4VYFGPjVxRoRFaSi3RvM6yma_h 13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	10-8-12 10-8-12	17-5-8 19- 6-8-12 2-2	7-12 <u>30-7-4</u> 2-4 10-11-8	3	36-0-4 5-5-0	43-3-4 7-3-0		55-11-0 12-7-12	
Plate Offsets (X,Y)	[2:0-6-0,0-2-14], [5:0-6-2	12,0-3-8], [14:0-0-1	I,Edge], [16:0-5-0,0-4-	-8], [17:0-4-8,0-3	8], [19:0-4-8,	0-3-8], [22:0-	5-0,0-4-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.15 1.15 YES 'Pl2014	CSI. TC 0.43 BC 0.53 WB 0.98 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (lo -0.12 16-3 -0.24 16-3 0.03 0.18 22-2	ic) l/defl 32 >999 32 >632 18 n/a 27 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 517 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF 11-16: WEBS 2x4 SF 6-19,9 REACTIONS. All b	P No.2 P No.2 *Except* : 2x4 SP No.2, 17-19: 2x1 P No.3 *Except* I-17: 2x6 SP No.2, 24-25: earings 0-3-8 except (it=1	10 SP DSS 2x4 SP No.2 enath) 2=0-2-11.		BRACING TOP CHO BOT CHO WEBS JOINTS	5- DRD Stru 2-0 DRD Rig 6-0 1 R 1 B	uctural wood -0 oc purlins id ceiling dire -0 oc bracing ow at midpt race at Jt(s):	sheathing dii (6-0-0 max.): ectly applied. j: 11-16 1 24, 25, 26	rectly applied, except : 5-10. Except: 19-24, 24-26, 25-26, 17 10-16, 5-22, 5-20	7-25, 7-24, 7-25,
(Ib) - Max H Max U Max G	Horz 2=484(LC 11) Jplift All uplift 100 lb or l 20=-566(LC 12), 14 Grav All reactions 250 lb 1), 20=1781(LC 20)	ess at joint(s) exce 4=-189(LC 13) o or less at joint(s) , 14=358(LC 21), *	ept 2=-295(LC 12), 16 except 2=789(LC 24) 8=1270(LC 18)	=-749(LC 13), , 16=1931(LC					
FORCES. (lb) - Max. TOP CHORD 2-3= 9-10: BOT CHORD 2-22: 16-1' WEBS 3-22: 17-2: 12-21	. Comp./Max. Ten All fc -966/505, 3-5=-1019/713 =-365/472, 10-11=-126/5 =-427/871, 20-22=-356/4 7=-348/429, 11-16=-512/ =-840/701, 19-24=-889/6 5==870/656, 9-25=-491/4	orces 250 (lb) or le 5-6=-360/473, 6- 90, 11-13=-234/59 19, 19-20=-326/41 467 96, 6-24=-502/526 89, 10-17=-460/81 0405 C = 0 - 700/	ss except when shown 7=-311/438, 7-9=-347 31, 13-14=-223/339 17, 18-19=-248/479, 1 3, 24-26=-924/1293, 2 4, 7-24=-1364/978, 7	n. 7442, 7-18=-244/485, 5-26=-924/1293, -25=-1318/953,					
NOTES- (14) 1) Unbalanced roof live 2) Wind: ASCE 7-10; M WFRS (envelope) MWFRS for reaction 3) Provide adequate d 4) All plates are 5x8 M 5) This truss has been 6) * This truss has been will fit between the b 7) Ceiling dead load (5 8) Bottom chord live lo 9) Provide mechanical 10) Provide mechanical 10) Provide mechanical 10) Provide mechanical 11) This truss design r sheetrock be appli	e loads have been consid Vult=150mph (3-second g) gable end zone and C-C ns shown; Lumber DOL= Irainage to prevent water 1T20 unless otherwise inc a designed for a 10.0 psf 1 en designed for a live load bottom chord and any oth 5.0 psf) on member(s). 24 pad (40.0 psf) and additio I connection (by others) al connection (by others) lift at joint 20 and 189 b u requires that a minimum of ed directly to the bottom expresentation does not de	dered for this desig yust) Vasd=119mp C Exterior(2) zone; 1.60 plate grip DO ponding. dicated. bottom chord live I d of 20.0psf on the er members, with 4-26, 25-26; Wall of nal bottom chord of f truss to bearing of truss to bearing plift at joint 14. of 7/16" structural chord. epict the size or the	In. h; TCDL=6.0psf; BCD end vertical left and ri L=1.60 bottom chord in all ar BCDL = 10.0psf. dead load (5.0psf) on lead load (5.0psf) on lead load (5.0psf) on lead load (5.0psf) app olate at joint(s) 2. I plate capable of with wood sheathing be ap	DL=6.0psf; h=25ft ight exposed;C-C th any other live I reas where a rect member(s).19-24 blied only to roorr standing 295 lb u plied directly to ti din along the top	Cat. II; Exp (for members pads. angle 3-6-0 ta , 17-25 . 18-19, 17-1 plift at joint 2, ne top chord a and/or bottom	C; Enclosed; and forces of all by 2-0-0 w 8 749 lb uplift and 1/2" gyps n chord.	& ide at sum	SE 044	AROL SIONAL 925 NEEER, IER, IN SEVILI, IN SE
WARNING - Verify Design valid for use of a truss system. Befor building design. Brac is always required for fabrication, storage, of Safety Information	design parameters and READ N only with MiTek® connectors. Th re use, the building designer mu cing indicated is to prevent buck r stability and to prevent collapse delivery, erection and bracing of available from Truss Plate Instit	OTES ON THIS AND IN his design is based only st verify the applicability ling of individual truss v e with possible persona trusses and truss syste tute, 2670 Crain Highwa	CLUDED MITEK REFEREN upon parameters shown, a v of design parameters and veb and/or chord members s l injury and property damag ms, see ANS/TPI ay, Suite 203 Waldorf, MD 2	CE PAGE MII-7473 re nd is for an individual properly incorporate to only. Additional temp e. For general guidar I1 Quality Criteria, D 0601	2. 5/19/2020 BEF building compon his design into th orary and permar ce regarding the SB-89 and BCSI	ORE USE. ent, not e overall nent bracing Building Comp	ponent	818 Soundsid Edenton, NC	e Road 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					142477	7962
2434707_MASTER	A19	ATTIC	18	1		
_					Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:20 2020 Page 2	2

NOTES- (14)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-nK5YuJx3M7eO5CkLgVY0KhU3xl6Nv9Gl9Nw0Q?yma_f

13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

L	10-8-12	17-5-8	19-7-12	30-7-4	1	36-0-4		43-3-4	44-9-0) 54-1-8	55-11-0
	10-8-12	6-8-12	2-2-4	10-11-	8	5-5-0	1	7-3-0	1-5-12	9-4-8	1-9-8 '
Plate Offsets (X,Y)	[2:0-6-0,0-2-14], [2:0-3-1	4,0-8-9], [3:0-5·	-0,0-4-8], [4:0-	6-12,0-3-8	, [13:0-6-8,0-2·	14], [16:0	-7-0,0-7	-0], [17:0-	4-8,0-3-8], [1	9:0-4-8,0-3-8], [22:0-5-	-0,0-4-8]
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.10	2-22	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.54	Vert(CT) -0.24	2-22	>864	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.96	Horz(C) 0.02	13	n/a	n/a		
BCDL 10.0	Code IRC2015/TI	PI2014	Matrix-	AS	Wind(LL	.) 0.18	2-22	>999	240	Weight: 520 lb	FT = 20%
LUMBER-					BRACIN	IG-					
TOP CHORD 2x6 S	P No.2				TOP CH	ORD	Structu	Iral wood	sheathing di	rectly applied, except	
BOT CHORD 2x6 S	P No.2 *Except*						2-0-0 c	oc purlins	(6-0-0 max.)	: 4-9.	
10-16	: 2x4 SP No.2. 17-19: 2x1	0 SP DSS			BOT CH	ORD	Riaid a	eilina dire	ctly applied.	Except:	
WEBS 2x4 S	P No.3 *Except*						6-0-0 c	c bracing	: 10-16		
5-19.8	3-17: 2x6 SP No.2. 24-25:	2x4 SP No.2			WEBS		1 Row	at midpt	1 10	19-24, 24-26, 25-26, 17	-25, 6-24, 6-25,
,-	,								ç	-16 4-22 4-20	, ,,
					JOINTS		1 Brac	e at .lt(s).	24 25 26	,,,	
REACTIONS. All h	earings 0-3-8 except (it=le	enath) 2=0-2-11			001110		i Bido	0 41 01(0).	21, 20, 20		
(lb) - Max H	-10rz 2=479(1 C 11)	ngin) 2=0 2 11	•								
(ib) Max I Max I	Inlift All unlift 100 lb or le	es at ioint(s) a	(cont 2-323)	C 12) 16-	-752(I C 13)						
Max	13-142(I C 13) 20	531/L C 12)	(copt 2= 020(20 12), 10=	102(2010),						
Max (Grav All reactions 250 lb	or less at joint(c) 13 excent 3	D-775(I C 2	1) 16-1002(1)	•					
Wida V	1) 20–1862(I C 2)	18-1289/I C 18		L=115(LC 2	4), 10=1332(L	<i>,</i>					
	1), 20=1002(20 2),	10=1203(EO 10	<i>'</i>)								
FORCES (Ib) - Max	Comp /Max Ten - All for	rces 250 (lb) or	less except w	hon shown							
	- 020/525 2 4- 027/740	1 5- 260/491 F	6- 224/444		52 9 0_ 277/4	٥ <u>٥</u>					
	-0/716 10 12 - 215/722	12 12 66/126	-0=-224/444,	0-0=-203/4	52, 0-9=-27774	50,					
	0=0/710, 10-12=-215/722, 0 = 511/727, 20.22 = 410/40	12-13=-00/430	/ ///// /0 /0_/	256/200 17	10 255/400						
BUT CHURD 2-22		JZ, 19-20=-360/	400, 10-19=-	556/599, 17	-16=-355/400,						
10-1	7=-408/415, 13-16=-359/	154, 10-16=-52	6/4/3		00 004/4004						
VVEDO 3-22	2=-839/692, 19-24=-887/70	JU, 5-24=-501/5	29, 24-26=-9	24/1294, 20	-20=-924/1294	,					
17-2	25=-872/652, 8-25=-493/48	34, 9-17=-449/8	103, 6-24=-13	51/980, 6-2	5 = -1.321/951,						
9-10	5=-1272/488, 12-16=-629/2	486, 4-22=-710/	1243, 4-20=-	1519/564, 4	-19=-425/933						
NOTES- (14)	a laada haya haan aanaid									IN THO	ARO
1) Unbalanced root liv	ve loads have been consid		sign.		C On of h OF			-		() A	and bloken
2) WIND: ASCE 7-10;	Vull=150mph (3-second g	ust) vasu=119	npn; TCDL=6	Upsi; BCDi	_=6.0psi; n=25	it; Cat. II; I	Exp C; E	nciosea;		10.0.1.55	SIG
MWFRS (envelope) gable end zone and C-C	Exterior(2) 201	ie; end vertica	nen and ng	jni exposed;C-	C for men	ibers an	d lorces a	× 7	AROLA /_	Priper J
NIVERS for reactio	ns snown; Lumber DOL=1	1.60 plate grip L	JOL=1.60							2	
3) Provide adequate d	AT20 uplace otherwise indi	bonding.								E :	
4) All plates are 5x8 iv	1120 unless otherwise ind	icated.				I				= : SE	AL : =
5) This truss has been	designed for a 10.0 pst b	ottom chora IIV	e load noncon	icurrent witi	h any other live	loads.					025 : =
6) This truss has bee	en designed for a live load	of 20.0pst on t	ne bottom cho	ord in all are	eas where a rec	tangle 3-6	5-0 tall d	y 2-0-0 wi	ide	- 044	525 : 2
will fit between the	bottom chord and any othe	er members, wi	th BCDL = 10	.0pst.							
7) Ceiling dead load (5.0 psf) on member(s). 24	-26, 25-26; Wa	II dead load (5.0pst) on n	nember(s).19-2	4, 17-25				E al a	0 10 E
 Bottom chord live lo 	bad (40.0 psf) and addition	al bottom chore	d dead load (5	5.0 psf) app	lied only to roo	m. 18-19,	17-18			S. OO SNOU	NEED
9) Provide mechanica	l connection (by others) of	truss to bearin	g plate at join	t(s) 2.						1.0	
10) Provide mechanic	al connection (by others)	of truss to bear	ng plate capa	ble of withs	tanding 323 lb	uplift at jo	int 2, 75	2 lb uplift	at	TI, TM	SEVIN
joint 16, 142 lb up	lift at joint 13 and 531 lb u	plift at joint 20.									· · · · · · · · · · · · · · · · · · ·
11) This truss design	requires that a minimum o	f //16" structur	al wood sheat	ning be app	blied directly to	the top ch	ord and	1/2" gyps	um		
sheetrock be appl	ied directly to the bottom of	chord.				., .				Augu	JSt 19,2020
Ochticicephorapagei 2 re	epresentation does not de	pict the size or t	the orientation	of the purl	in along the top	and/or bo	ottom ch	ord.			
WARNING - Verify	design parameters and READ NO	OTES ON THIS AND	INCLUDED MITE	K REFERENC	E PAGE MII-7473	ev. 5/19/2020) BEFORE	USE.		ENGINE	ERING BY
Design valid for use	only with MiTek® connectors. Thi	is design is based o	only upon parame	ters shown, an	d is for an individu	al building co	mponent,	not			
a truss system. Befor	re use, the building designer mus	t verify the applicat	ility of design par	ameters and p	roperly incorporate	this design i	nto the ov	erall			
is always required for	r stability and to prevent buckli	with possible perso	is web and/or cho	ra members o	 For general guids 	porary and p ance recarding	ermanent	bracing			A MiTek Affiliate
fabrication, storage,	delivery, erection and bracing of t	trusses and truss sy	stems, see	ANSI/TPI1	Quality Criteria,	DSB-89 and	BCSI Bui	Iding Comp	onent	818 Soundeide	e Road
Safety Information	available from Truss Plate Institu	ute, 2670 Crain Hig	nway, Suite 203 V	Valdorf, MD 20	601					Edenton, NC 2	27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					1424779)63
2434707_MASTER	A20	ATTIC	27	1		
					Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:21 2020 Page 2	

NOTES- (14)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-FXfw5fxh7RmFiMJYDD3Ftv1El9SXeduvO1gazRyma_e

13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	—	10-8-12	17-5-8	19-7-12	30-7-4	, – – – – –	36-0-4		43-3-4	44-9-0	54-1-8	55-11-0
Plate Offs	ets (X,Y)	[2:0-1-5,0-0-8], [2:0-0-10,	0-0-0], [3:0-5-0),0-4-8], [4:0	-6-12,0-3-8],	, [13:0-6-0,0-3-2],	[16:0-7-0	0,0-7-0],	[17:0-4-8	,0-3-8], [19:	0-4-8,0-3-8]	1-3-0
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.43 0.44 0.96 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.20 0.02 0.15	(loc) 16-31 22-28 13 22-28	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 513 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHO BOT CHO WEBS REACTIO	RD 2x6 SF RD 2x6 SF 10-16: 2x4 SF 5-19,8 NS. All be (lb) - Max H	P No.2 P No.2 *Except* 2x4 SP No.2, 17-19: 2x10 No.3 *Except* -17: 2x6 SP No.2, 23-24: 2 earings 0-3-8 except (jt=le lorz 2=477(LC 9)) SP DSS 2x4 SP No.2 ngth) 2=0-2-11	.rcent 2352	R(I C 12) 16-	BRACING TOP CHC BOT CHC WEBS JOINTS	F RD RD	Structu 2-0-0 o Rigid c 6-0-0 o 1 Row 1 Brace	ral wood s c purlins (eiling direc c bracing: at midpt e at Jt(s): 2	sheathing di 6-0-0 max.) ctly applied. 10-16 1 2 23, 24, 25	rectly applied, except : 4-9. Except: 19-23, 23-25, 24-25, 17 -16, 4-22, 4-20	7-24, 6-23, 6-24,
	Max Uplift All uplift 100 lb or less at joint(s) except 2=-353(LC 12), 16=-743(LC 13), 13=-152(LC 13), 20=-506(LC 12) Max Grav All reactions 250 lb or less at joint(s) except 2=848(LC 24), 16=1917(LC 1), 13=288(LC 21), 20=1804(LC 2), 18=1281(LC 18)											
FORCES. TOP CHO BOT CHO WEBS	*ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. *OP CHORD 2-3=-1016/576, 3-4=-1079/808, 4-5=-410/500, 5-6=-373/458, 6-8=-389/477, 8-9=-414/504, 9-10=0/538, 10-12=-133/541, 12-13=-45/277 3OT CHORD 2-22=-516/898, 20-22=-331/381, 19-20=-328/380, 18-19=-326/476, 17-18=-324/482, 16-17=-304/402, 10-16=-525/473 VEBS 3-22=-848/712, 19-23=-876/701, 5-23=-491/529, 23-25=-923/1294, 24-25=-923/1294, 17-24=-880/653, 8-24=-498/485, 9-17=-452/820, 6-23=-1353/976, 6-24=-1330/956, 9-16=-1186/448, 12-16=-636/486, 4-22=-728/1248, 4-20=-151/539, 4-19=-431/980											
NOTES- 1) Unbalaa 2) Wind: A MWFR3 3) Provide 4) This tru 5) * This tr will fit b 6) Ceiling 7) Bottom 8) Provide 9) Provide 9) Provide 10) This tr sheetr 11) Graph Ca)trAttisch	 9-16=-1186/448, 12-16=-636/486, 4-22=-728/1248, 4-20=-1515/539, 4-19=-431/980 NOTES- (13) 1) Uhbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a 10.0 psf bottom chord live load (5.0 psf) on member(s). 19-23, 17-24 7) Bottom chord and any other members, with BCDL = 10.0psf. 2) Ceiling dead load (5.0 psf) on member(s). 23-25, 24-25; Wall dead load (5.0 psf) on member(s). 19-23, 17-24 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) on psf papilied only to room. 18-19, 17-18 3) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 3) Provide mechanical connection (by others) of truss to bearing plate at gable of withstanding 353 lb uplift at joint 2, 743 lb uplift at joint 13 and 506 lb uplift at joint 20. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 12) August 19,2020 											
Desig a trus buildir is alw fabric: Safet	ARNING - Verify n valid for use o s system. Before ng design. Brac ays required for ation, storage, d y Information	design parameters and READ NO nly with MiTek® connectors. This use, the building designer must ing indicated is to prevent bucklir stability and to prevent collapse elivery, erection and bracing of tr available from Truss Plate Institu	TES ON THIS AND s design is based o verify the applicat of individual trus with possible perso usses and truss sy te, 2670 Crain High	PINCLUDED MI inly upon param ility of design p s web and/or cl onal injury and p rstems, see tway, Suite 203	TEK REFERENC neters shown, and arameters and pi hord members or property damage. ANSI/TPI1 & Waldorf, MD 200	E PAGE MII-7473 rev d is for an individual roperly incorporate th ly. Additional tempo For general guidan Quality Criteria, DS 601	5/19/2020 puilding co is design in rary and po ce regardin B-89 and	BEFORE mponent, r nto the ove ermanent l ng the BCSI Buil	USE. not erall bracing ding Compo	onent	818 Soundsid Edenton, NC	e Road 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
2434707 MASTER	A21	ATTIC	9	1	1424	477964
			Ŭ		Job Reference (optional)	
Builders FirstSource. S	umter, SC - 29153.		8.	240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:23 2020 Pag	le 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-BvmhWKzyf20zyfSwLd5jyK6Z8y9W6WHBrL9g1Kyma_c 13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					14247	77965
2434707_MASTER	A22	ATTIC	9	1		
					Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:24 2020 Page	2

NOTES- (14)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-f5K3jg_aQM8pZp17vLcyVXfj2MUhrzzL4?uEZmyma_b

13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					14	42477966
2434707_MASTER	A23	ATTIC	9	1		
					Job Reference (optional)	
Builders FirstSource. S	umter, SC - 29153.		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:26 2020 P	age 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-bUSp8M?qyzPXp7BV0mfQayk3tA2SJt?eXJNLefyma_Z 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

9) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

818 Soundside Road

Edenton, NC 27932

044925

S mm August 19,2020

L	10-8-2	17-10-8	30-7-4	1	38-0-8	43-5	5-0	
I	10-8-2	7-2-6	12-8-12	I	7-5-4	5-4-	-8	
Plate Offsets (X,Y)	[8:0-5-0,0-2-4], [13:0-4-0,0-4-8]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.68 BC 0.66 WB 0.86 Matrix-AS	DEFL. in Vert(LL) -0.26 Vert(CT) -0.43 Horz(CT) 0.03 Wind(LL) 0.14	(loc) l/defl 13-14 >999 13-14 >859 10 n/a 16-19 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 340 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SP 8-9: 2x- BOT CHORD 2x6 SP WEBS 2x4 SP 6-14,8-	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing direct (6-0-0 max.): 5-{ ctly applied. 3-14	ly applied, except e 3. I, 5-14, 6-14, 6-13, 8	and verticals, and -13, 8-11, 9-10			
EACTIONS. (size) 2=0-5-8, 13=0-3-8, 10=0-3-8 Max Horz 2=633(LC 12) Max Uplift 2=-504(LC 12), 13=-909(LC 9), 10=-161(LC 8) Max Grav 2=1196(LC 19), 13=2228(LC 2), 10=349(LC 26)								
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-16= WEBS 3-16=	Comp./Max. Ten All forces 250 (lb) or 1632/780, 3-5=-990/559, 5-6=-905/616, -982/1653, 14-16=-966/1711 0/343, 3-14=-1154/710, 6-14=-579/115	less except when shown. 6-8=-109/319, 9-10=-265/ 3, 6-13=-1432/1112, 8-13=	185 628/418					
NOTES- (9) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) reactions shown; Lun 3) Provide adequate dr 4) This truss has been 5) * This truss has been 6) Provide mechanical 2=504, 13=909, 10= 7) This truss design reac sheetrock be applied 8) Graphical purlin repri- 9) This manufactured tr	loads have been considered for this de ult=150mph (3-second gust) Vasd=119r gable end zone and C-C Exterior(2) zor nber DOL=1.60 plate grip DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members, wi connection (by others) of truss to bearin 161. juires that a minimum of 7/16" structural directly to the bottom chord. esentation does not depict the size or th uss is designed as an individual buildim	sign. nph; TCDL=6.0psf; BCDL= e; end vertical left exposed e load nonconcurrent with he bottom chord in all area th BCDL = 10.0psf. g plate capable of withstar wood sheathing be applie e orientation of the purlin a g component. The suitabili	=6.0psf; h=25ft; Cat. II; I d;C-C for members and any other live loads. as where a rectangle 3-6 nding 100 lb uplift at join d directly to the top cho along the top and/or bot ity and use of this comp	Exp C; Enclosed; forces & MWFRS 5-0 tall by 2-0-0 wi t(s) except (jt=lb) rd and 1/2" gypsu tom chord. onent for any	i for de m	ORTH CA	AROLINI SION AL	

particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

M. SEVIER on number

818 Soundside Road Edenton, NC 27932

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	142477072			
2434707_MASTER	A30	ATTIC GIRDER	8	1	lab Deference (entionel)	142477972			
Builders FirstSource, S	Sumter, SC - 29153,		8.	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 1	8 15:32:34 2020 Page 2			
NOTES- (15) 13) Attic room checked for 14) In the LOAD CASE(S) : 15) This manufactured trus building designer per A	L/360 deflection. section, loads applied to the f s is designed as an individua NSI TPI 1 as referenced by ti	ID:jTg face of the truss are noted as front (F) or back (I building component. The suitability and use o he building code.	∣18SwfyF8l B). f this com∣	hyT9h0Yt9	kzZiYQ-M1xrq55r3QPPmLo2URolve3P20 r any particular building is the responsit	DurAVfpNZJmwByma_R			
LOAD CASE(S) Standard 1) Dead + Roof Live (balan Uniform Loads (plf) Vert: 1-4=-60, 4 Drag: 20-27=-10	ced): Lumber Increase=1.15, -9=-60, 9-12=-60, 20-28=-20, 0, 17-24=-10	Plate Increase=1.15 , 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-20							
Concentrated Loads (lb) Vert: 33=-700(F 2) Dead + 0.75 Roof Live (l	Concentrated Loads (lb) Vert: 33=-700(F) Dead + 0.75 Roof Live (balanced) + 0.75 Uninhab. Attic Storage + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15								
Uniform Loads (plf) Vert: 1-4=-50, 4 Drag: 20-27=-10 Concentrated Loads (lb) Vert: 33=-700/E	Uniform Loads (Jb) Vert: 1-4=-50, 4-9=-50, 9-12=-50, 28-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20, 24-27=-10, 13-15=-20 Drag: 20-27=-10, 17-24=-10 Concentrated Loads (Jb)								
3) Dead + Uninhabitable At Uniform Loads (plf) Vert: 1-4=-20, 4 Drag: 20-27=-10	, titc Without Storage: Lumber -9=-20, 9-12=-20, 20-28=-40, 0, 17-24=-10	Increase=1.25, Plate Increase=1.25 , 17-20=-30, 16-17=-40, 24-27=-10, 13-15=-40							
Vert: 33=-700(F 4) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=6, 2-4 Horz: 1-2=-18, 2) ld (Pos. Internal) Left: Lumbe =-17, 4-9=57, 9-12=27, 20-28 2-4=5 9-12=39	r Increase=1.60, Plate Increase=1.60 3=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-15=	-12						
Drag: 20-27=-10 Concentrated Loads (lb) Vert: 33=-700(F 5) Dead + 0.6 MWFRS Wir Uniform Loads (pf)	0, 17-24=-10) Id (Pos. Internal) Right: Lumb	per Increase=1.60, Plate Increase=1.60	40						
Verit 1-2=-79, 2 Horz: 1-2=-29, 2 Drag: 20-27=-1(Concentrated Loads (lb) Vert: 33=-700(F 6) Dead + 0.6 MWFRS Wir		er Increase=1.60. Plate Increase=1.60	=-12						
Uniform Loads (plf) Vert: 1-2=-35, 2 Horz: 1-2=15, 2 Drag: 20-27=-10 Concentrated Loads (lb)	-4=-45, 4-9=29, 9-12=-1, 20-; -4=25, 9-12=19 0, 17-24=-10	28=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-1	5=-20						
Vert: 33=-700(F 7) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=9, 2-4 Horz: 1-2=-29, 2) nd (Neg. Internal) Right: Lumt =-1, 4-9=29, 9-12=-45, 20-28 2-4=-19, 9-12=-25	ber Increase=1.60, Plate Increase=1.60 =-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-15	=-20						
Concentrated Loads (Ib) Vert: 33=-700(F 8) Dead + 0.6 MWFRS Wir Uniform Loads (plf))) id (Pos. Internal) 1st Parallel:	Lumber Increase=1.60, Plate Increase=1.60							
Vert: 1-2=47, 2- Horz: 1-2=-59, 2 Drag: 20-27=-10 Concentrated Loads (Ib) Vert: 33=-700/E	4=57, 4-9=27, 9-12=27, 20-2 2-4=-69, 9-12=39), 17-24=-10)	8=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-15:	- -12						
9) Dead + 0.6 MWFRS Wir Uniform Loads (plf) Vert: 1-2=17, 2- Horz: 1-2=-29, 2 Drag: 20-27=-10	/ Id (Pos. Internal) 2nd Parallel 4=27, 4-9=27, 9-12=57, 20-2 2-439, 9-12=69 0, 17-24=-10	l: Lumber Increase=1.60, Plate Increase=1.60 8=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-15=	-12						
Concentrated Loads (lb) Vert: 33=-700(F 10) Dead + 0.6 MWFRS W Uniform Loads (plf)) ind (Pos. Internal) 3rd Paralle	el: Lumber Increase=1.60, Plate Increase=1.60							
Vert: 1-2=47, 2 Horz: 1-2=-59, Drag: 20-27=- Concentrated Loads (Ib	2-4=57, 4-9=27, 9-12=27, 20- 2-4=-69, 9-12=39 10, 17-24=-10 >)	28=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-1!	5=-12						
11) Dead + 0.6 MWFRS W	ind (Pos. Internal) 4th Paralle	el: Lumber Increase=1.60, Plate Increase=1.60							

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/			
2434707 MASTER	A30	ATTIC GIRDER	8	1	142477972			
Duilden FirstOsuns	0.00450				Job Reference (optional)			
Builders FirstSource,	Sumter, SC - 29153,	ID:jT	ہ j18SwfyF8	3.240 s Ma 3hyT9h0Yt	9kzZiYQ-M1rek industries, inc. Tue Aug 18 15:32:34 2020 Page 3 9kzZiYQ-M1xrq55r3QPPmLo2URolve3P2OurAVfpNZJmwByma_R			
LOAD CASE(S) Standar Uniform Loads (plf) Vert: 1-2=17, Horz: 1-2=-2: Drag: 20-27= Concentrated Loads (Vert: 33=-700 12) Dead + 0.6 MWFRS V Uniform Loads (plf) Vert: 1-2=39, Horz: 1-2=-55 Drag: 20-27= Concentrated Loads (Vert: 33=-700 13) Dead + 0.6 MWFRS V Uniform Loads (plf) Vert: 1-2=9, 2 Horz: 1-2=-52 Drag: 20-27=	d 2-4=27, 4-9=27, 9-12=57, 20- 9, 2-4=-39, 9-12=69 -10, 17-24=-10 lb) Vind (Neg. Internal) 1st Paralle 2-4=29, 4-9=-1, 9-12=-1, 20-2 9, 2-4=-49, 9-12=19 -10, 17-24=-10 lb) Vind (Neg. Internal) 2nd Parall 2-4=-1, 4-9=-1, 9-12=29, 20-28 9, 2-4=-19, 9-12=49 -10, 17-24=-10	ID:;T -28=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13- el: Lumber Increase=1.60, Plate Increase=1.60 28=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13- lel: Lumber Increase=1.60, Plate Increase=1.6 3=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-1	5=-12 5=-20 0 5=-20	hyT9h0Yt	9kzZîYQ-M1xrq55r3QPPmLo2URolve3P2OurAVfpNZJmwByma_R			
Concentrated Loads (Vert: 33=-70(14) Dead + Uninhab. Attic Uniform Loads (plf) Vert: 1-4=-20 Drag: 20-27= Concentrated Loads (Vert: 33=-700	lb) (F) Storage + Attic Floor: Lumbe , 4-9=-20, 9-12=-20, 28-31=-2 -10, 17-24=-10 lb) (F)	r Increase=1.00, Plate Increase=1.00 0, 31-32=-60, 20-32=-20, 17-20=-110, 16-17=-	20, 24-27	=-10, 13-1	5=-20			
 15) Dead + Uninhabitable Uniform Loads (plf) Vert: 1-4=-20 Drag: 20-27= Concentrated Loads (Vert: 33=-700 16) Dead + 0.75 Roof Live Uniform Loads (plf) Vert: 1-2=-61 Horz: 1-2=11 Drag: 20-27= 	Vert: 33=-700(F) 15) Dead + Uninhabitable Attic Storage: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 1-4=-20, 4-9=-20, 9-12=-20, 28-31=-20, 31-32=-60, 20-32=-20, 17-20=-110, 16-17=-20, 24-27=-10, 13-15=-20 Drag: 20-27=-10, 17-24=-10 Concentrated Loads (lb) Vert: 33=-700(F) 16) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-61, 2-4=-69, 4-9=-13, 9-12=-35, 28-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20, 24-27=-10, 13-15=-20 Horz: 1-2=11, 2-4=19, 9-12=15 Drag: 20-27=-10, 17-24=-10							
Concentrated Loads (Vert: 33=-70(17) Dead + 0.75 Roof Liv Uniform Loads (plf) Vert: 1-2=-28 Horz: 1-2=-2? Drag: 20-27= Concentrated Loads (Vert: 33=-70(18) Dead + 0.75 Roof Liv	lb) (F) ((bal.) + 0.75 Uninhab. Attic S , 2-4=-35, 4-9=-13, 9-12=-69, 2, 2-4=-15, 9-12=-19 -10, 17-24=-10 lb) (F) 6 (bal.) + 0.75 Uninhab. Attic S	Storage + 0.75 Attic Floor + 0.75(0.6 MWFRS \ 28-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, Storage + 0.75 Attic Floor + 0.75(0.6 MWFRS \	Vind (Neg. 16-17=-20 Vind (Neg.	. Int) Right), 24-27=- . Int) 1st P	t): Lumber Increase=1.60, Plate Increase=1.60 10, 13-15=-20 Parallel): Lumber Increase=1.60, Plate			
Increase=1.60 Uniform Loads (plf) Vert: 1-2=-5, Horz: 1-2=-4 Drag: 20-27= Concentrated Loads (Vert: 33=-700 19) Dead + 0.75 Roof Live Lumber Increase=1.6 Uniform Loads (plf)	2-4=-13, 4-9=-35, 9-12=-35, 2 5, 2-4=-37, 9-12=15 -10, 17-24=-10 b) 0(F) 6 (bal.) + 0.75 Uninhab. Attic S 0, Plate Increase=1.60 -2435 4 9- 35 0 12 42	8-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, 1 Storage + 0.75 Attic Floor + 0.75(0.6 MWFRS V	6-17=-20, Vind (Neg	24-27=-1	0, 13-15=-20 Parallel):			
Vert: 1-2=-28 Horz: 1-2=-22 Drag: 20-27= Concentrated Loads (Vert: 33=-700 20) 1st Dead + Roof Live Uniform Loads (plf) Vert: 1-4=-60 Drag: 20-27= Concentrated Loads (Vert: 33=-700 21) 2nd Dead + Roof Live Uniform Loads (plf) Vert: 1-4=-20	, 2-4=-35, 9-12=-13, 2, 2-4=-15, 9-12=37 -10, 17-24=-10 bb) ((Inbalanced): Lumber Increas , 4-9=-60, 9-12=-20, 20-28=-2 -10, 17-24=-10 bb) ((F) (unbalanced): Lumber Increa , 4-9=-60, 9-12=-60, 20-28=-2	28-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, se=1.15, Plate Increase=1.15 0, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-2 se=1.15, Plate Increase=1.15 0, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-2	16-17=-20 0	J, 24-27=-	10, 13-15=-20			
Drag: 20-27= Concentrated Loads (Vert: 33=-700	-10, 17-24=-10 lb) 0(F)							

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
2434707_MASTER	A30	ATTIC GIRDER	8	1	Job Reference (optional)	142477972
Builders FirstSource, S	Sumter, SC - 29153,	ID:iTa	8.	240 s Mar	9 2020 MiTek Industries, Inc. Tue	e Aug 18 15:32:34 2020 Page 4
LOAD CASE(S) Standard 22) 3rd Dead + 0.75 Roof I Uniform Loads (plf) Vert 1-4=-50	_ive (unbalanced) + 0.75 Unir 4-9=-50 9-12=-20 28-31=-2	nhab. Attic Storage + 0.75 Attic Floor: Lumber Ii	105wiyroi ncrease=1	.15, Plate	-20	ivesP2OurAvipin2JiniwByina_R
Drag: 20-27=- Concentrated Loads (Ik	10, 17-24=-10 b)	., , , ,	,	-,		
23) 4th Dead + 0.75 Roof L	Live (unbalanced) + 0.75 Unir	nhab. Attic Storage + 0.75 Attic Floor: Lumber Ir	crease=1	.15, Plate	Increase=1.15	
Vert: 1-4=-20, Drag: 20-27=- Concentrated Loads (It	4-9=-50, 9-12=-50, 28-31=-2 10, 17-24=-10	0, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20	, 24-27=-7	10, 13-15	=-20	
Vert: 33=-700(24) Reversal: Dead + Roof Uniform Loads (plf)	(F) Live (balanced): Lumber Inc	rease=1.15, Plate Increase=1.15				
Vert: 1-4=-60, Drag: 20-27=- Concentrated Loads (Ik	4-9=-60, 9-12=-60, 20-28=-2 10, 17-24=-10)	0, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-20	1			
Vert: 33=-700(25) Reversal: Dead + 0.75 Uniform Loads (plf)	F) Roof Live (balanced) + 0.75	Uninhab. Attic Storage + 0.75 Attic Floor: Lumb	er Increas	e=1.15, F	Plate Increase=1.15	
Vert: 1-4=-50, Drag: 20-27=- Concentrated Loads (Ik	4-9=-50, 9-12=-50, 28-31=-2 10, 17-24=-10 o)	0, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20	, 24-27=-^	10, 13-15	=-20	
Vert: 33=-700(26) Reversal: Dead + Unin Uniform Loads (plf)	(F) hab. Attic Storage + Attic Floo	or: Lumber Increase=1.00, Plate Increase=1.00				
Vert: 1-4=-20, Drag: 20-27=- Concentrated Loads (Ik	4-9=-20, 9-12=-20, 28-31=-2 10, 17-24=-10 o)	0, 31-32=-60, 20-32=-20, 17-20=-110, 16-17=-2	0, 24-27=	-10, 13-1	5=-20	
Vert: 33=-700(27) Reversal: Dead + Unin Uniform Loads (plf)	F) habitable Attic Storage: Lumb	per Increase=1.00, Plate Increase=1.00				
Vert: 1-4=-20, Drag: 20-27=- Concentrated Loads (It	4-9=-20, 9-12=-20, 28-31=-2 10, 17-24=-10))	0, 31-32=-60, 20-32=-20, 17-20=-110, 16-17=-2	0, 24-27=	-10, 13-1	5=-20	
28) Reversal: 1st Dead + F Uniform Loads (plf)	Roof Live (unbalanced): Lumb	er Increase=1.15, Plate Increase=1.15				
Vert: 1-4=-60, Drag: 20-27=- Concentrated Loads (II	4-9=-60, 9-12=-20, 20-28=-2 10, 17-24=-10	0, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-20)			
29) Reversal: 2nd Dead +	(F) Roof Live (unbalanced): Luml	ber Increase=1.15, Plate Increase=1.15				
Vert: 1-4=-20, Drag: 20-27=- Concentrated Loads (It	4-9=-60, 9-12=-60, 20-28=-2 10, 17-24=-10 b)	0, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=-20	I			
Vert: 33=-700(30) Reversal: 3rd Dead + 0 Increase=1.15	(F)).75 Roof Live (unbalanced) +	+ 0.75 Uninhab. Attic Storage + 0.75 Attic Floor:	Lumber Ir	ncrease="	1.15, Plate	
Uniform Loads (pif) Vert: 1-4=-50, Drag: 20-27=- Concentrated Loads (It	4-9=-50, 9-12=-20, 28-31=-2 10, 17-24=-10 p)	0, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20), 24-27=- <i>*</i>	10, 13-15	=-20	
Vert: 33=-700(31) Reversal: 4th Dead + 0 Increase=1.15 Uniform Loads (plf)	(F) 9.75 Roof Live (unbalanced) +	- 0.75 Uninhab. Attic Storage + 0.75 Attic Floor:	Lumber Ir	ncrease="	1.15, Plate	
Vert: 1-4=-20, Drag: 20-27=- Concentrated Loads (Ik	4-9=-50, 9-12=-50, 28-31=-2 10, 17-24=-10))	0, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20), 24-27=- <i>*</i>	10, 13-15	=-20	
32) Reversal: Dead + 0.6 M Uniform Loads (plf)	//////////////////////////////////////	Left: Lumber Increase=1.60, Plate Increase=1.6	60 - 12			
Horz: 1-2=-0, 2- Horz: 1-2=-18, Drag: 20-27=- Concentrated Loads (It	, 2-4=5, 9-12=39 10, 17-24=-10 0)	20-12, 11-20-10, 10-11-12, 24-21-0, 10-10	12			
Vert: 33=-700(33) Reversal: Dead + 0.6 M	F) /IWFRS Wind (Pos. Internal)	Right: Lumber Increase=1.60, Plate Increase=1	.60			
Vert: 1-2=17, 2 Horz: 1-2=-29, Drag: 20-27=-	2-4=27, 4-9=57, 9-12=-17, 20 , 2-4=-39, 9-12=-5 10, 17-24=-10	-28=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-1	5=-12			
Concentrated Loads (Ik Vert: 33=-700(5) (F)					

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	142477072
2434707_MASTER	A30	ATTIC GIRDER	8	1	Job Reference (optional)	1424/1312
Builders FirstSource, S	umter, SC - 29153,	ID:iTa	8. 18SwfvF8	240 s Mar	9 2020 MiTek Industries, Inc. Tue kzZiYQ-M1xrg55r3QPPmI o2URoly	Aug 18 15:32:34 2020 Page 5 (e3P2OurAVfpNZ.ImwByma_R
		رو رو رو ارو	,	.,	·	
34) Reversal: Dead + 0.6 N	WFRS Wind (Neg. Internal)	Left: Lumber Increase=1.60, Plate Increase=1.6	0			
Uniform Loads (plf) Vert: 1-2=-35	2-4=-45 4-9=29 9-12=-1 20	-28=-20 17-20=-30 16-17=-20 24-27=-10 13-	15=-20			
Horz: 1-2=15, 2	2-4=25, 9-12=19	20-20, 11 20-00, 10 11-20, 21 21-10, 10	10-20			
Drag: 20-27=-1 Concentrated Loads (Ib	10, 17-24=-10)					
Vert: 33=-700(F)	Bight: Lumber Increase 1.60. Blots Increase 1	60			
Uniform Loads (plf)	INFRS wind (Neg. Internal)	Right: Lumber increase=1.60, Plate increase=1	.60			
Vert: 1-2=9, 2- Horz: 1-2=-29	4=-1, 4-9=29, 9-12=-45, 20-2 2-4=-19 9-12=-25	8=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-1	5=-20			
Drag: 20-27=-1	0, 17-24=-10					
Concentrated Loads (lb Vert: 33=-700() F)					
36) Reversal: Dead + 0.6 N	WFRS Wind (Pos. Internal)	1st Parallel: Lumber Increase=1.60, Plate Increa	ase=1.60			
Vert: 1-2=47, 2	-4=57, 4-9=27, 9-12=27, 20-	28=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-15	=-12			
Horz: 1-2=-59, Drag: 20-27=-1	2-4=-69, 9-12=39 0. 17-24=-10					
Concentrated Loads (Ib)					
37) Reversal: Dead + 0.6 M	⊢) IWFRS Wind (Pos. Internal)∷	2nd Parallel: Lumber Increase=1.60, Plate Incre	ase=1.60			
Uniform Loads (plf)	-4-27 4-9-27 9-12-57 20-	28-12 17-20-18 16-17-12 24-27-6 12-15	12			
Horz: 1-2=-29,	2-4=-39, 9-12=69	20 12, 17 20 10, 10 17 12, 24 27 0, 10 10	- 12			
Drag: 20-27=-1 Concentrated Loads (lb	10, 17-24=-10)					
Vert: 33=-700(É) NV/EBS Wind (Dec. Internel)	2rd Darallal: Lumbar Ingrada - 1.60. Dicto Ingra				
Uniform Loads (plf)		Sid Parallel. Lumber increase=1.00, Plate incre	ase=1.00			
Vert: 1-2=47, 2 Horz: 1-2=-59	2-4=57, 4-9=27, 9-12=27, 20- 2-4=-69, 9-12=39	28=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-15	=-12			
Drag: 20-27=-1	0, 17-24=-10					
Concentrated Loads (lb Vert: 33=-700() F)					
39) Reversal: Dead + 0.6 N	WFRS Wind (Pos. Internal)	4th Parallel: Lumber Increase=1.60, Plate Incre	ase=1.60			
Vert: 1-2=17, 2	-4=27, 4-9=27, 9-12=57, 20-	28=-12, 17-20=-18, 16-17=-12, 24-27=-6, 13-15	=-12			
Horz: 1-2=-29, Drag: 20-27=-1	2-4=-39, 9-12=69 10, 17-24=-10					
Concentrated Loads (lb)					
40) Reversal: Dead + 0.6 M	WFRS Wind (Neg. Internal)	1st Parallel: Lumber Increase=1.60, Plate Incre	ase=1.60			
Uniform Loads (plf) Vert: 1-2=39. 2	-4=29, 4-9=-1, 9-12=-1, 20-2	8=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-1	i=-20			
Horz: 1-2=-59,	2-4=-49, 9-12=19	,,, -,,				
Concentrated Loads (lb)					
Vert: 33=-700(41) Reversal: Dead + 0.6 M	F) IWFRS Wind (Neg. Internal)	2nd Parallel: Lumber Increase=1.60 Plate Incre	ase=1.60			
Uniform Loads (plf)						
Horz: 1-2=9, 2-4	4=-1, 4-9=-1, 9-12=29, 20-28 2-4=-19, 9-12=49	=-20, 17-20=-30, 16-17=-20, 24-27=-10, 13-15=	-20			
Drag: 20-27=-1 Concentrated Loads (Ib	10, 17-24=-10					
Vert: 33=-700(, F) Daraf Lina (hall) - 0.75 Llaiah			Caral (N.La a	Let () L = (().	
Lumber Increase=1.60,	Plate Increase=1.60	ab. Allic Storage + 0.75 Allic Floor + 0.75(0.6 N	INFRS W	ina (neg.	int) Leit):	
Uniform Loads (plf) Vert: 1-2=-61	2-4=-69 4-9=-13 9-12=-35	28-31=-20 31-32=-50 20-32=-20 17-20=-90 1	6-17=-20	24-27=-1	0 13-15=-20	
Horz: 1-2=11, 2	2-4=19, 9-12=15				0,1010 20	
Concentrated Loads (lb))					
Vert: 33=-700(43) Reversal: Dead + 0.75	F) Roof Live (bal) + 0 75 Uninh	ab Attic Storage + 0.75 Attic Floor + 0.75(0.6 M	WFRS W	ind (Nea	Int) Right):	
Lumber Increase=1.60,	Plate Increase=1.60					
Uniform Loads (pif) Vert: 1-2=-28, 3	2-4=-35, 4-9=-13, 9-12=-69, 3	28-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, 1	6-17=-20,	24-27=-1	0, 13-15=-20	
Horz: 1-2=-22,	2-4=-15, 9-12=-19 0 17-24=-10					
Concentrated Loads (Ib)					
Vert: 33=-700(44) Reversal: Dead + 0.75	⊢) Roof Live (bal.) + 0.75 Uninh	ab. Attic Storage + 0.75 Attic Floor + 0.75(0.6 N	IWFRS W	/ind (Neg.	Int) 1st	
Parallel): Lumber Increa	ase=1.60, Plate Increase=1.6	60		1		

Truss	Truss Type	Qty	Ply	H&H/Calabash/	
				4	42477972
A30	ATTIC GIRDER	8	1		
				Job Reference (optional)	
umter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:34 2020 P	age 6
	Truss A30 umter, SC - 29153,	Truss Truss Type A30 ATTIC GIRDER umter, SC - 29153,	Truss Truss Type Qty A30 ATTIC GIRDER 8 umter, SC - 29153, 8	Truss Truss Type Qty Ply A30 ATTIC GIRDER 8 1 umter, SC - 29153, 8.240 s Mar	Truss Truss Type Qty Ply H&H/Calabash/ A30 ATTIC GIRDER 8 1 Job Reference (optional) umter, SC - 29153, 8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:34 2020 F

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-M1xrq55r3QPPmLo2URolve3P2OurAVfpNZJmwByma_R

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-2--5, 2-4=-13, 4-9=-35, 9-12=-35, 28-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20, 24-27=-10, 13-15=-20

Horz: 1-2=-45, 2-4=-37, 9-12=15

Drag: 20-27=-10, 17-24=-10

Concentrated Loads (lb)

Vert: 33=-700(F)

45) Reversal: Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-28, 2-4=-35, 4-9=-35, 9-12=-13, 28-31=-20, 31-32=-50, 20-32=-20, 17-20=-90, 16-17=-20, 24-27=-10, 13-15=-20

Horz: 1-2=-22, 2-4=-15, 9-12=37

Drag: 20-27=-10, 17-24=-10 Concentrated Loads (lb)

Vert: 33=-700(F)

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					142477973
2434707_MASTER	A31	ATTIC	8	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:37 2020 Page 2
		ID:iTgi	18SwfyF8	nyT9h0Yt9	kzZiYQ-ncdzS78kMLnzdpXd9aL?XGht cs1NsKF3XYQXWyma O

NOTES-(14)

(12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 (13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	H&H/Calabash/	
							142477974
2434707_MASTER	A32	ATTIC		8	1		
						Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,			8	.240 s Mar	ar 9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:39 2020	Page 2
			ID:jTe	aj18SwfyF	8hyT9h0Y	Yt9kzZiYQ-j kktp9 uy1ht7h?H OTchmCUPYVrmbYXr1XbO	yma M

NOTES-(15)

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					142477975
2434707_MASTER	A33	ATTIC	16	1	
					Job Reference (optional)
Builders FirstSource, S	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:40 2020 Page 2

NOTES- (15)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-BAI649AcfG9YUGGBrivi8vJM_puQaCsilVm48ryma_L

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19 except (jt=lb) 2=916, 16=479, 13=495, 23=1148.
 This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					142477976
2434707_MASTER	A34	ATTIC	16	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:42 2020 Page 2
		ID:jTo	aj18SwfyF	8hyT9h0Yt	9kzZiYQ-7ZQsVqCsBtQGkaPay7xADKOnRdd027i DoFBCjyma J

NOTES-(15)

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Attic room checked for L/360 deflection.

15) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

a trust system before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Scale = 1:100.7

		10-8-12	17-5-8 6-8-12	19-7-12 2-2-4	<u>30-7</u> 10-11	-4	36-0-4	43-	3-4	<u>55-11-0</u> 12-7-12	
Plate Offs	ets (X,Y)	[3:0-1-13,0-0-0], [4:0-4-0	,0-4-4], [4:0-0-0),0-2-12], [5:	0-6-12,0-3-8]	, [14:0-0-0,0-1-4],	[16:0-5-0),0-4-8], [17:0-	4-8,0-3-8], [1	9:0-4-8,0-3-8]	
LOADING TCLL TCDL BCLL BCDL	i (psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.41 0.51 0.92 k-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 1 -0.25 1 0.02 0.11 2	(loc) l/defl 6-28 >999 6-28 >602 16 n/a 2-31 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 518 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHO BOT CHO WEBS WEDGE Left: 2x4 S	- RD 2x6 SF 11-16: 2x4 SF 6-19,9- SP No.3, Righ	P No.2 P No.2 *Except* 2x4 SP No.2, 17-19: 2x10 No.3 *Except* 17: 2x6 SP No.2, 23-24,5 nt: 2x4 SP No.3	0 SP DSS 5-22: 2x4 SP No	p.2		BRACING- TOP CHOF BOT CHOF WEBS JOINTS	RD S 2 RD F 6 1	Structural wood 2-0-0 oc purlins Rigid ceiling dii 3-0-0 oc bracin I Row at midpt I Brace at Jt(s)	d sheathing d s (6-0-0 max.) rectly applied g: 11-16 : 23, 24, 25	lirectly applied, except): 5-10. I. Except: 19-23, 23-25, 24-25, 17 7-24, 10-16, 5-22, 5-20	-24, 10-17, 7-23,
REACTIO	REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-2-11. (lb) - Max Horz 2=-494(LC 10) Max Uplift All uplift 100 lb or less at joint(s) except 16=-729(LC 13), 20=-502(LC 12), 14=-230(LC 13), 2=-377(LC 12) Max Grav All reactions 250 lb or less at joint(s) except 16=1751(LC 1), 20=1677(LC 26), 14=532(LC 21), 2=961(LC 1), 18=1263(LC 18)										
FORCES. TOP CHO BOT CHO WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1203/601, 3-5=-1336/832, 5-6=-664/534, 6-7=-633/505, 7-9=-651/517, 9-10=-670/538, 10-11=-236/278, 13-14=-377/166 BOT CHORD 11-16=-511/464, 2-22=-420/1125, 20-22=-178/507, 19-20=-183/524, 18-19=-218/667, 17-18=-218/673, 16-17=-135/532 WEBS 3-22=-831/715, 19-23=-849/685, 6-23=-451/506, 23-25=-847/1186, 24-25=-847/1186, 17-24=-853/645, 9-24=-461/468, 10-17=-458/818, 7-23=-1241/890, 7-24=-1214/877, 10-16=-1005/415, 13-16=-642/495, 5-22=-714/1197, 5-20=-1380/514, 5-19=-413/963										
NOTES- 1) Unbalai 2) Wind: A MWFR: 3) Provide 4) This tru 5) * This tr will fit b 6) Ceiling 7) Bottom 8) Provide 9) Provide 9) Provide 10) This tr sheetr Cdn)tforced	(13) nced roof live ASCE 7-10; V S (envelope) S for reaction iss has been russ has been russ has been etween the b dead load (5 chord live loa e mechanical a mechanical a mechanical chord live loa e mechanical e mechanica	e loads have been consid (ult=150mph (3-second g gable end zone and C-C is shown; Lumber DOL=1 ainage to prevent water p designed for a 10.0 psf b n designed for a live load ottom chord and any oth- 0 psf) on member(s). 23- ad (40.0 psf) and addition connection (by others) of connection (by others) of connection (by others) of at joint 14 and 377 lb upl equires that a minimum of ed directly to the bottom (b) presentation does not dep	ered for this de: ust) Vasd=119r Exterior(2) zon .60 plate grip E oonding. oottom chord livv of 20.0psf on ti er members, wi -25, 24-25; Wa al bottom chord i truss to bearin i truss to bearin lift at joint 2. f 7/16" structura shord. pict the size or f	sign. mph; TCDL= e; end vertic ODL=1.60 e load noncc he bottom ch th BCDL = 1 III dead load g plate at joi g plate at joi g plate capa al wood shea the orientatic	6.0psf; BCDL cal left and rig poncurrent with hord in all are 0.0psf. (5.0psf) on n (5.0psf) on sf) (5.0 psf) appl nt(s) 2. ble of withsta athing be app on of the purli	=6.0psf; h=25ft; (ht exposed;C-C for any other live loa eas where a rectar nember(s).19-23, ied only to room. anding 729 lb uplif plied directly to the in along the top ar	Cat. II; Ex or member ngle 3-6-0 17-24 18-19, 17 t at joint 1 top chor nd/or bott	xp C; Enclosed ers and forces 0 tall by 2-0-0 v 7-18 16, 502 lb uplif rd and 1/2" gyp om chord.	; & vide t at osum	SE 044	AL 925 NEEP, IC, IIII SEVILITION IST 19,2020
Desig a trus buildii is alw fabric Safet	ARNING - Verify gn valid for use o is system. Before ng design. Braci rays required for ration, storage, d y Information	design parameters and READ NC nly with MiTek® connectors. Thi o use, the building designer mus ng indicated is to prevent buckli stability and to prevent collapse elivery, erection and bracing of f available from Truss Plate Institu	DTES ON THIS AND is design is based o it verify the applicab ng of individual trus with possible perso rrusses and truss sy ute, 2670 Crain Higt	D INCLUDED MI only upon param vility of design pris is web and/or ch onal injury and p vstems, see nway, Suite 203	TEK REFERENC neters shown, an arameters and p nord members or property damage ANSI/TPI1 Waldorf, MD 20	E PAGE MII-7473 rev. d is for an individual bu roperly incorporate this ly. Additional tempora . For general guidance Quality Criteria, DSE 601	5/19/2020 B iliding comp design into ary and perr regarding 5-89 and BC	BEFORE USE. bonent, not bothe overall manent bracing the CSI Building Corr	ponent	B18 Soundside Edenton, NC 2	ERING BY ENCCO A MITek Affiliate e Road 27932

lah	Truco	Truco Turco	044	DIV	LIQU/Calabaab/	
JOD	Truss	Truss Type	Qiy	Piy	nan/Calabash/	
					424779	79
2434707 MASTER	A37	ATTIC	5	1		
2434707_IMASTER	A37	ATTIC	5			
					Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:49 2020 Page 2	
		ID:jTgj1	8SwfyF8h	yT9h0Yt9k	zZiYQ-QvLWzDHFX1IG3fSws5Zp0oB0 R0aBHR0qOS2ypyma C	

NOTES- (13)

12) Attic room checked for L/360 deflection.

13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Scale = 1:100.7

F	<u>10-8-12</u> 10-8-12	17-5-8 6-8-12	19-7-12 2-2-4	<u>30-7-4</u> 10-11-8	+	36-0-4 5-5-0	43-3-4 7-3-0	<u>55-11-0</u> 12-7-12		
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [4:0-6-12,	,0-3-8], [13:0-0	-0,0-1-4], [15:0-5-0	,0-4-8], [16:	0-4-8,0-3-8],	18:0-4-8,0-3-	8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.41 BC 0.51 WB 0.91 Matrix-AS		DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.13 15-27 -0.25 15-27 0.02 15 0.11 21-30	l/defl L/d >999 360 >602 240 n/a n/a >999 240	PLATES GRI MT20 244/ Weight: 518 lb FT	Ρ /190 Γ = 20%	
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x6 SI 10-15: WEBS 2x4 SI 5-18,8 WEDGE Left: 2x4 SP No.3, Rig	P No.2 P No.2 *Except* : 2x4 SP No.2, 16-18: 2x1(P No.3 *Except* 8-16: 2x6 SP No.2, 22-23,4	0 SP DSS I-21: 2x4 SP N	0.2	BRACING- TOP CHOR BOT CHOR WEBS JOINTS	CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 4-9. CHORD Rigid ceiling directly applied. Except: 6-0-0 oc bracing: 10-15 S 1 Row at midpt 18-22, 22-24, 23-24, 16-23, 9-16, 6-22 6-23, 9-15, 4-21, 4-19 ITS 1 Brace at Jt(s): 22, 23, 24					
REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-2-11. (lb) - Max Horz 2=-494(LC 10) Max Uplift All uplift 100 lb or less at joint(s) except 15=-728(LC 13), 19=-499(LC 12), 13=-231(LC 13), 2=-379(LC 12) Max Grav All reactions 250 lb or less at joint(s) except 15=1749(LC 1), 19=1678(LC 26), 13=533(LC 21), 2=962(LC 1), 17=1263(LC 18)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1202/601, 3-4=-1355/847, 4-5=-669/538, 5-6=-638/509, 6-8=-656/521, 8-9=-674/542, 9-10=-243/276, 12-13=-379/168 BOT CHORD 10-15=-511/464, 2-21=-418/1124, 19-21=-179/508, 18-19=-185/524, 17-18=-220/669, 16-17=-220/674, 15-16=-136/533, 13-15=0/254 WEBS 3-21=-837/721, 18-22=-850/684, 5-22=-453/505, 22-24=-846/1185, 23-24=-846/1185, 16-23=-854/645, 8-23=-461/468, 9-16=-458/818, 6-22=-1240/889, 6-23=-1214/877, 9-15=-1003/415, 12-15=-642/495, 4-21=-728/1213, 4-19=-1381/512, 4-18=-412/965										
NOTES- (13) 1) Unbalanced roof liv 2) Wind: ASCE 7-10; MWFRS (envelope MWFRS for reactio 3) Provide adequate of 4) This truss has beer will fit between the 6) Ceiling dead load (5 7) Bottom chord live lo 8) Provide mechanica 9) Provide mechanica 10) This truss design sheetrock be appl CdohtGreeting bageige ref	e loads have been conside Vult=150mph (3-second gr) gable end zone and C-C ns shown; Lumber DOL=1 drainage to prevent water p in designed for a 10.0 psf b en designed for a live load bottom chord and any othe 5.0 psf) on member(s). 22- pad (40.0 psf) and addition I connection (by others) of t at joint 13 and 379 lb upl requires that a minimum o ied directly to the bottom co apresentation does not dep	ered for this de ust) Vasd=119r Exterior(2) zor .60 plate grip I oonding. ottom chord liv of 20.0psf on t er members, wi :24, 23-24; Wa al bottom chor truss to bearin truss to bearin if at joint 2. f 7/16" structur: shord. pict the size or	sign. mph; TCDL=6.0psl ne; end vertical left DOL=1.60 e load nonconcurre the bottom chord ir ith BCDL = 10.0psi all dead load (5.0psi d dead load (5.0psi d dead load (5.0psi g plate at joint(s) 2 ig plate capable of al wood sheathing the orientation of t	; BCDL=6.0 and right ex and right ex all areas w f) on memb applied o withstandin be applied o the purlin alo	psf; h=25ft; C posed;C-C fo other live loa here a rectan er(s).18-22, 1 nly to room. 1 g 728 lb uplift directly to the ng the top an	at. II; Exp C; r members al gle 3-6-0 tall I 6-23 7-18, 16-17 at joint 15, 49 top chord and d/or bottom cl	Enclosed; nd forces & by 2-0-0 wide 99 lb uplift at d 1/2" gypsum hord.	SEAL 044925	9,2020	
WARNING - Verify Design valid for use - a truss system. Befo building design. Bra- is always required fo fabrication, storage, Safety Information	v design parameters and READ NC only with MiTek® connectors. Thi re use, the building designer mus cing indicated is to prevent bucklii r stability and to prevent collapse delivery, erection and bracing of t available from Truss Plate Institu	DTES ON THIS AND s design is based of t verify the applicating of individual trus with possible person russes and truss sy tte, 2670 Crain Hig	D INCLUDED MITEK RE only upon parameters si oility of design paramete ss web and/or chord me onal injury and property ystems, see A hway, Suite 203 Waldon	FERENCE PAG nown, and is fo irs and properly mbers only. Ar damage. For SSI/TPI1 Qualit f, MD 20601	E MII-7473 rev. 5 r an individual bui v incorporate this dditional temporal general guidance ty Criteria, DSB-	/19/2020 BEFOR Iding component design into the or y and permanen regarding the 89 and BCSI Bu	E USE. , not verall t bracing illding Component	818 Soundside Road Edenton, NC 27932	BY ICO ITek Atfiliate	

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					142477	7980
2434707_MASTER	A38	ATTIC	5	1		
					Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:51 2020 Page 2	2

NOTES- (13)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-NITGOvJW3eY_JzbJ_WbH5DGMPFi2fB_JHix90iyma_A

12) Attic room checked for L/360 deflection.

13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Scale = 1:102.2

F		10-8-12	17-5-8 6-8-12	19-7-12	30-7-4		<u>36-0-4</u> 5-5-0		43-3-4		<u>55-11-0</u> 12-7-12	
Plate Offsets (X	,Y)	[3:0-5-0,0-4-8], [4:0-6-1	2,0-3-8], [13:0-0-	-0,0-1-4], [15:0	0-5-0,0-4-8],	[16:0-4-8,0-3-8], [18:0-4	-8,0-3-8	1			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0))) *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES TPI2014	CSI. TC BC WB Matrix-	0.43 0.50 0.91 AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.25 0.02 0.14	(loc) 15-32 15-32 15 22-27	l/defl >999 >598 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 525 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Right: 2x4 SP N	2x6 SF 2x6 SF 10-15: 2x4 SF 5-18,8- lo.3	No.2 No.2 *Except* 2x4 SP No.2, 16-18: 2x No.3 *Except* 16: 2x6 SP No.2, 24-25	:10 SP DSS 5: 2x4 SP No.2			BRACING TOP CHC BOT CHC WEBS JOINTS	j- DRD DRD	Structu 2-0-0 o Rigid c 6-0-0 o 1 Row 1 Brace	ral wood c purlins eiling dire c bracing at midpt e at Jt(s):	sheathing dii (6-0-0 max.): ctly applied. : 10-15 1 6 24, 25, 26	rectly applied, except 4-9. Except: 8-24, 24-26, 25-26, 1 -25, 9-15, 4-22, 4-19	6-25, 9-16, 6-24,
REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-2-11. (lb) - Max Horz 2=495(LC 11) Max Uplift All uplift 100 lb or less at joint(s) except 2=-349(LC 12), 15=-732(LC 13), 19=-531(LC 12), 13=-227(LC 13) Max Grav All reactions 250 lb or less at joint(s) except 2=910(LC 1), 15=1809(LC 1), 19=1722(LC 20), 13=478(LC 21), 17=1270(LC 18)												
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1118/559, 3-4=-1246/791, 4-5=-537/492, 5-6=-501/461, 6-8=-533/478, 8-9=-544/496, 9-10=-130/405, 10-12=-125/337, 12-13=-278/160 BOT CHORD 2-22=-404/1036, 19-22=-190/433, 18-19=-183/448, 17-18=-191/579, 16-17=-191/585, 15-16=-163/447, 10-15=-509/464 WEBS 3-22=-843/705, 18-24=-862/682, 5-24=-464/503, 24-26=-847/1184, 25-26=-847/1184, 16-25=-850/644, 8-25=-459/468, 9-16=-453/802, 6-24=-1243/891, 6-25=-1209/874, 9-15=-1067/441, 12-15=-650/495, 4-22=-704/1240, 4-19=-1374/525, 4-18=-410/900											
NOTES- (14 1) Unbalanced 2) Wind: ASCE MWFRS (enr 3) Provide adec 4) All plates are 5) This truss ha 6) * This truss ha 6) * This truss ha 6) * This truss ha 7) Ceiling dead 8) Bottom chorc 9) Provide med joint 15, 53 11) This truss d Contableatorchab) roof live 7-10; V velope) reaction juate dr 5x8 M s been tas bee en the b load (5 d live loo hanical chanical chanical chanical geapplie	e loads have been cons 'ult=150mph (3-second gable end zone and C- is shown; Lumber DOL- sinage to prevent wate T20 unless otherwise in designed for a 10.0 psf n designed for a live loa ottom chord and any ot 0.0 psf) on member(s). 2 ad (40.0 psf) and additic connection (by others) Il connection (by others) I at a init 19 and 227 lb equires that a minimum ad directly to the bottom	idered for this de gust) Vasd=119r C Exterior(2) zon =1.60 plate grip 2 dicated. bottom chord liv ad of 20.0ps for 40.0ps for divers, wi 4-26, 25-26; Wa onal bottom chord of truss to bearin 0 of truss to bearin uplift at joint 13. of 7/16" structura o chord.	sign. mph; TCDL=6 le; end vertica DOL=1.60 e load noncom he bottom chc th BCDL = 10 ill dead load (5 g plate at join ing plate capa al wood sheat	.0psf; BCDL I left and rig current with ord in all are. .0psf. 5.0psf) on m 5.0 psf) appli t(s) 2. ble of withst hing be app	=6.0psf; h=25ft; ht exposed;C-C any other live k as where a recta ember(s).18-24 ed only to room anding 349 lb u ied directly to th	Cat. II; E for mem pads. angle 3-6 , 16-25 . 17-18, ⁻ plift at joi ne top che	Exp C; E bers and -0 tall by 16-17 nt 2, 732 ord and	inclosed; d forces 8 y 2-0-0 wi 2 lb uplift 1/2" gyps	de at um	SE 044	ARO SION AL 925 NEFRIERING UST 19,2020
WARNING Design valid a truss syste building desi is always rec fabrication, s Safety Inform	G - Verify for use o m. Before gn. Braci quired for torage, d mation	design parameters and READ nly with MiTek® connectors. T use, the building designer m ing indicated is to prevent buc stability and to prevent collap- leivery, erection and bracing q available from Truss Plate Insi	NOTES ON THIS AND This design is based o ust verify the applicat kling of individual trus se with possible perso so f trusses and truss sy titute, 2670 Crain Higl	D INCLUDED MITE only upon parame bility of design par ss web and/or cho onal injury and pro stems, see hway, Suite 203 V	EK REFERENCI ters shown, and ameters and pr rd members on operty damage. ANSI/TPI1 Valdorf, MD 206	E PAGE MII-7473 rev l is for an individual operly incorporate th ly. Additional tempo For general guidan Quality Criteria, DS 001	y. 5/19/2020 building cor his design ir orary and pe ce regardin SB-89 and	BEFORE mponent, r nto the ove ermanent b g the BCSI Buil	USE. not erall bracing ding Comp	onent	B18 Soundsia Edenton, NC	EERING BY ENCO A MiTek Affiliate le Road 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					142477981
2434707_MASTER	A39	ATTIC	10	1	
					Job Reference (optional)
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:52 2020 Page 2
		ID:jTgj	18SwfyF8	hyT9h0Yt9	kzZiYQ-rU1ebFJ8qygrw6AVYD6WdRpXwf2OOeITWMgjZ8yma_9

NOTES-(14)

(12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 (13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Scale = 1:97.9

	10-8-12	17-5-8 6-8-12	19-7-12	30-7-	4 +	36-0-4	43-3-4	44-9-0	54-1-8 9-4-8	55-11-0	
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [4:0-6-12,0)-3-8], [13:0-1-0	6,0-2-8], [16:0-7	7-0,0-7-0], [[19:0-4-8,0-3-	8]	1012	0 4 0	100	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES I2014	CSI. TC 0.4 BC 0.4 WB 0.9 Matrix-AS	13 16 99 5	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.10 16-33 -0.21 23-28 0.02 13 0.14 23-28	l/defl L/d >999 360 >999 240 n/a n/a >999 240	P M W	LATES T20 /eight: 527 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF 10-16: WEBS 2x4 SF 5-19,8	P No.2 P No.2 *Except* 2x4 SP No.2, 17-19: 2x10 P No.3 *Except* -17: 2x6 SP No.2, 25-26: 2	SP DSS x4 SP No.2			BRACING- TOP CHOR BOT CHOR WEBS JOINTS	2D Struct 2-0-0 2D Rigid 6-0-0 1 Row 1 Brac	blied, except -27, 26-27, 17 3, 4-20	-26, 6-25, 6-26,			
REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-2-11. (lb) - Max Horz 2=483(LC 9) Max Uplift All uplift 100 lb or less at joint(s) except 2=-367(LC 12), 16=-731(LC 13), 13=-164(LC 13), 20=-513(LC 12) Max Grav All reactions 250 lb or less at joint(s) except 2=868(LC 24), 16=1897(LC 1), 13=312(LC 21), 20=1797(LC 20), 18=1287(LC 18)											
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1033/570, 3-4=-1099/801, 4-5=-417/497, 5-6=-386/465, 6-8=-410/485, 8-9=-423/502, 9-10=0/498, 10-12=-120/499 BOT CHORD 2-23=-495/889, 20-23=-302/364, 19-20=-293/363, 18-19=-283/448, 17-18=-281/454, 16-17=-260/378, 10-16=-519/470 W/EBS 3-23=-843/105 19-25=-25=-847/1184, 26-27=-847/1184											
17-2 9-16 NOTES- (14)	6=-854/639, 8-26=-463/463 =-1146/440, 12-16=-634/48	3, 9-17=-442/78 35, 4-23=-708/	85, 6-25=-1239/ 1232, 4-20=-14	/893, 6-26= 43/517, 4-1	-1212/873, 9=-409/897				WTH C	ARO	
 Unbalanced roof live Wind: ASCE 7-10; \ MWFRS (envelope) MWFRS for reaction 	e loads have been conside /ult=150mph (3-second gu gable end zone and C-C E ns shown; Lumber DOL=1.	red for this des st) Vasd=119m Exterior(2) zone 60 plate grip D	sign. hph; TCDL=6.0p e; end vertical le OL=1.60	osf; BCDL= eft and right	6.0psf; h=25ft; 0 exposed;C-C fe	Cat. II; Exp C; or members ar	Enclosed; nd forces &	J.	DR. FES	Sig Wa	
 Provide adequate d All plates are 5x8 M This truss has been This truss has beee will fit between the b Ceiling dead load (5 Bottom chord live load 	 3) Provide adequate drainage to prevent water ponding. 4) All plates are 5x8 MT20 unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Ceiling dead load (5.0 psf) on member(s). 25-27, 26-27; Wall dead load (5.0psf) on member(s).19-25, 17-26 										
 a) Bottom choid live load (40.0 ps) and additional bottom choid dea (5.0 ps) applied only to foor. 16-19, 17-18 b) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 367 lb uplift at joint 2, 731 lb uplift at joint 13 and 513 lb uplift at joint 20. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Clantification does not depict the size or the orientation of the purlin along the top and/or bottom chord. 											
WARNING - Verify Design valid for use of a truss system. Befor building design. Brac is always required for fabrication, storage, of Safety Information	design parameters and READ NOT only with MiTek® connectors. This e use, the building designer must ing indicated is to prevent bucklin stability and to prevent collapse v lelivery, erection and bracing of tra available from Truss Plate Institut	TES ON THIS AND design is based or verify the applicabi g of individual truss vith possible persoo usses and truss sys e, 2670 Crain High	INCLUDED MITEK Ily upon parameters lity of design param s web and/or chord nal injury and prope stems, see way, Suite 203 Wal	REFERENCE I s shown, and is eters and prop members only rty damage. F ANSI/TPI1 Q dorf, MD 2060	PAGE MII-7473 rev. s for an individual bu- berly incorporate this Additional tempora or general guidance uality Criteria, DSE 1	5/19/2020 BEFOR illding component, design into the or rry and permanen regarding the -89 and BCSI Bu	E USE. not verall t bracing ilding Component		818 Soundside	ERING BY ENCO A MITek Atfiliate P Road 27932	

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					142477982
2434707_MASTER	A40	ATTIC	15	1	
					Job Reference (optional)
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:54 2020 Page 2

NOTES- (14)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-nt8P0xLOMZwZAQKufe9_jsusQSjQsXalzg9pd1yma_7

13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

	10-8-12 10-8-12	17-5-8 6-8-12	19-7-12 2-2-4	30-7-4 10-11-8		36-0-4 5-5-0		43-3-4 7-3-0	44-9-0 1-5-12	54-1-8 9-4-8	55-11-0 1-9-8
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [4:0-6-12,	0-3-8], [13:0-0	-2,0-2-8], [16:0-7-	0,0-7-0], [17:0)-4-8,0-3-8]	, [19:0-4	-8,0-3-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES 212014	CSI. TC 0.42 BC 0.48 WB 0.99 Matrix-AS	2	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.20 0.02 0.11	(loc) 16-31 16-31 13 22-28	l/defl >999 >734 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 520 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP 10-16: 2x4 SP WEBS 2x4 SP WEDGE Left: 2x4 SP No.3	P No.2 P No.2 *Except* 2x4 SP No.2, 17-19: 2x10 P No.3 *Except* -17: 2x6 SP No.2, 23-24,4) SP DSS -22: 2x4 SP N	0.2		BRACING- TOP CHORDStructural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 4-9.BOT CHORDRigid ceiling directly applied. Except: 6-0-0 oc bracing: 10-16WEBS1 Row at midpt19-23, 23-25, 24-25, 17-24, 6-23, 6-24, 9-16, 4-22, 4-20JOINTS1 Brace at Jt(s): 23, 24, 25						
REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-2-11. (lb) - Max Horz 2=484(LC 9) Max Uplift 100 lb or less at joint(s) except 2=-392(LC 12), 16=-726(LC 13), 13=-169(LC 13), 20=-486(LC 12) Max Grav All reactions 250 lb or less at joint(s) except 2=914(LC 24), 16=1845(LC 1), 13=360(LC 21), 20=1757(LC 2), 18=1281(LC 18) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1088/603, 3-4=-1193/843, 4-5=-531/540, 5-6=-506/510, 6-8=-514/523, 8-9=-535/544, 9-10=-7/380, 10-12=-64/380 BOT CHORD 2-22=-500/971, 20-22=-272/383, 18-19=-306/525, 17-18=-306/531, 16-17=-245/414, 10-16=-518/470 WEBS 3-22=-840/718, 19-23=-848/685, 5-23=-452/505, 23-25=-847/1186, 24-25=-847/1186, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-23=-1235/890, 6-24=-1217/876, 17-24=-858/641, 8-24=-466/464, 9-17=-446/795, 6-											
9-16- NOTES- (14) 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Provide adequate di 4) All plates are 5x8 M 5) This truss has been 6) * This truss has been will fit between the b 7) Ceiling dead load (5 8) Bottom chord live lo 9) Provide mechanical 10) Provide mechanical 10) Provide mechanical 10) Provide mechanical 10) Provide mechanical 11) This truss design n Contribuedrociphg-applie	=-1089/410, 12-16=-634/4 e loads have been conside /ult=150mph (3-second gu gable end zone and C-C is shown; Lumber DOL=1 rainage to prevent water p T20 unless otherwise indii designed for a 10.0 psf bu in designed for a live load bottom chord and any othe (50 psf) on member(s). 23- ad (40.0 psf) and addition connection (by others) of al connection (by others) of al connection (by others) of equires that a minimum of ed directly to the bottom c	85, 4-22=-720 ered for this de ust) Vasd=119 Exterior(2) zor .60 plate grip I conding. cated. ottom chord liv of 20.0psf on t er members, wi 25, 24-25; Wa al bottom chor truss to bearin of truss to bearin of truss to bearin of truss to bearin of truss to bearin f 7/16" structur hord.	/1214, 4-20=-145 sign. mph; TCDL=6.0ps te; end vertical lef DOL=1.60 the bottom chord i th BCDL = 10.0ps all dead load (5.0p d dead load (5.0p d dead load (5.0p ing plate at joint(s) ing plate capable al wood sheathing	7/508, 4-19=-4 sf; BCDL=6.0p t and right exp rent with any o n all areas wh sf. ssf) on membe ssf) applied or 2. of withstandin g be applied di	415/953 osf; h=25ft; bosed;C-C f other live lo here a recta er(s).19-23, hly to room. Ig 392 lb up irectly to the	Cat. II; E for mem nads. ngle 3-6 17-24 18-19, blift at joi e top ch	Exp C; E bers an -0 tall b 17-18 nt 2, 72 ord and	inclosed; d forces 8 y 2-0-0 wi 6 lb uplift : 1/2" gyps	de at um	SE 044	AROLINA SIGNATION AL 925 NEER SEVINIUM JST 19,2020
WARNING - Verify Design valid for use o a truss system. Before building design. Brac	design parameters and READ NO only with MiTek® connectors. This e use, the building designer must ing indicated is to prevent bucklin atbility and to prevent buckling	TES ON THIS AND s design is based of t verify the application of individual true	D INCLUDED MITEK RI ponly upon parameters s bility of design paramet ss web and/or chord m	EFERENCE PAGE shown, and is for ters and properly embers only. Add	E MII-7473 rev. an individual b incorporate thi ditional tempor	5/19/2020 building con is design in rary and po	BEFORE mponent, into the over ermanent	USE. not erall bracing			ENCO A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601
Job	Truss	Truss Type		Qty	Ply	H&H/Calabash/		
						1424	477983	
2434707_MASTER	A41	ATTIC	1	5	1			
						Job Reference (optional)		
Builders FirstSource,	Sumter, SC - 29153,			8	240 s Mar	r 9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:56 2020 Pag	ge 2	
		ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-jFG9RdMeuBAHPkUGn3BSoHZC3GPgKRy2R fwivyma 5						

NOTES-(14)

(12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 (13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

 WEDGE
 JOINTS
 1 Brace at Jt(s): 22, 23, 24

REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-2-11. (lb) - Max Horz 2=484(LC 9)

 $\frac{1}{100} \quad \frac{1}{100} \quad \frac{1}$

- Max Uplift
 All uplift 100 lb or less at joint(s) except 2=-233(LC 12), 16=-709(LC 13), 13=-193(LC 12), 21=-642(LC 12)

 Max Grav
 All reactions 250 lb or less at joint(s) except 2=418(LC 24), 16=1590(LC 25), 13=691(LC 2), 21=2156(LC 2), 18=1277(LC 18)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-180/380, 3-4=-765/491, 4-5=-683/550, 5-6=-1029/720, 6-8=-943/699,

8-9=-1010/737, 9-10=-734/530, 10-12=-730/303, 12-13=-961/440

BOT CHORD 2-21=-288/251, 19-21=-533/231, 18-19=-447/991, 17-18=-448/997, 16-17=-362/862, 13-16=-242/840, 10-16=-514/470

WEBS 3-21=-1853/909, 19-22=-509/458, 5-22=-122/282, 22-24=-840/1194, 23-24=-840/1194, 17-23=-897/651, 8-23=-494/473, 9-17=-462/852, 6-22=-1217/894, 6-23=-1271/890, 9-16=-808/432, 12-16=-633/484, 3-19=-385/1578, 3-5=-766/647

NOTES- (14)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent under reactions

3) Provide adequate drainage to prevent water ponding.

- 4) All plates are 5x8 MT20 unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) Ceiling dead load (5.0 psf) on member(s). 22-24, 23-24; Wall dead load (5.0 psf) on member(s). 19-22, 17-23
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 18-19, 17-18
- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
 Provide mechanical connection (by others) of trust to be a state of the state

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 2, 709 lb uplift at joint 16, 193 lb uplift at joint 13 and 642 lb uplift at joint 21.
11) This truss design requires that a minimum of 7/16" structured up of the structured at a trust of the structured at a structure of the s

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum Continuetroclpageapplied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6-22, 6-23, 9-16, 3-19, 3-5

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/			
					142477984			
2434707_MASTER	A42	ATTIC	8	1				
					Job Reference (optional)			
Builders FirstSource,	Sumter, SC - 29153,		8	240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:58 2020 Page 2			
		ID;jTqj18SwfyF8hyT9h0Yt9kzZiYQ-feQvsIOvQoR?e1efuUDwti3Xk349oQmLul81moyma 3						

NOTES-(14)

(12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 (13) Attic room checked for L/360 deflection.

14) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					14247798
2434707_MASTER	A43	ATTIC	8	1	
					Job Reference (optional)
Builders FirstSource, S	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:32:59 2020 Page 2

NOTES- (12)

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-8qyI4ePXB6ZsGBDrSBk9QvbiVTKxXrfU7ytaJEyma_2

11) Attic room checked for L/360 deflection.

12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/		
					142477986		
2434707_MASTER	A44	ATTIC	8	1			
					Job Reference (optional)		
Builders FirstSource,	Sumter, SC - 29153,	8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:01 2020 Page 2					
		ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-4D32UKQnjjpZVVMEZcndVKh2VH4A?iKnaGMhN7yma_0					

NOTES-(13)

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 Attic room checked for L/360 deflection.

13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/		
					142477987		
2434707_MASTER	A45	ATTIC	8	1			
					Job Reference (optional)		
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:03 2020 Page 2		
		ID:Tgj18SwfyF8hyT9h0Yt9kzZiYQ-0cBov0S1EK3HlpWch1p5almO_4msTd?42aroS?yma					

NOTES-(13)

(1) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 (2) Attic room checked for L/360 deflection.

13) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

F			55-11-0 55-11-0							
Plate Offsets (X	<u>,Y) [11:0-4-0,0-3-3], [17:0-5-0,0-4-8], [2</u>	:0-4-0,0-3-3], [38:0-5-0,0-4-8	8], [44:0-5-0,0-4-8], [50:0	-5-0,0-4-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IPC/2015/TPI/2014	CSI. TC 0.11 BC 0.07 WB 0.18 Matrix S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.02	(loc) l/defl 31 n/r 31 n/r 30 n/a	L/d 120 120 n/a	PLATES GRIP MT20 244/190 Weight: 570 lb ET = 20%				
BCDL 10.0	Code 1RC2013/1112014	Matilx-S				Weight: 570 lb FT = 20 %				
LUMBER- TOP CHORD BOT CHORD OTHERS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling diru 1 Row at midpt	sheathing dired (6-0-0 max.): 1 ectly applied or 16- 10- 21-	ctly applied or 6-0-0 oc purlins, except 1-21. 10-0-0 oc bracing. -44, 15-45, 14-46, 13-47, 12-48, 11-49, -50, 9-51, 17-43, 18-42, 19-41, 20-40, -39, 22-38, 23-37				
(lb) -	 All bearings 55-11-0. (lb) - Max Horz 2=-493(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 30, 44, 45, 46, 47, 48, 49, 55, 43, 42, 41, 40, 39, 33 except 2=-137(LC 8), 50=-115(LC 12), 51=-148(LC 12), 52=-138(LC 12), 53=-138(LC 12), 54=-144(LC 12), 56=-296(LC 12), 38=-105(LC 13), 37=-151(LC 13), 36=-139(LC 13), 35=-137(LC 13), 34=-144(LC 13), 32=-286(LC 13) Max Grav All reactions 250 lb or less at joint(s) 30, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33 except 2=283(LC 20), 56=378(LC 19), 32=367(LC 20) 									
FORCES. (Ib) TOP CHORD	- Max. Comp./Max. Ten All forces 250 (lb 2-3=-443/405, 3-4=-309/308, 4-5=-283/25 9-10=-338/429, 10-11=-397/472, 11-12= 14-15=-371/450, 15-16=-371/450, 16-17= 19-20=-371/450, 20-21=-371/449, 21-22= 20-20=-387/210	or less except when shown 4, 5-7=-257/287, 7-8=-231/3 372/450, 12-13=-371/450, 1 372/451, 17-18=-371/450, 1 396/472, 22-23=-337/400, 2	17, 8-9=-258/371, 3-14=-371/450, 8-19=-371/450, 23-24=-258/306,							
BOT CHORD	2-56230/339, 55-56=-230/339, 54-55=- 51-52230/339, 50-51=-230/339, 49-50= 46-47=-230/338, 45-46=-230/338, 44-45= 41-42=-230/338, 40-41=-230/338, 39-40= 36-37=-230/338, 35-36=-230/338, 34-35= 20-22=-230/238	230/339, 53-54=-230/339, 52 -230/339, 48-49=-230/338, 4 -230/338, 43-44=-230/338, 4 -230/338, 38-39=-231/339, 3 -230/338, 33-34=-230/338, 3	2-53=-230/339, 17-48=-230/338, 12-43=-230/338, 17-38=-230/338, 12-33=-230/338,		Ş	TH CARO				
WEBS	30-32=-230/338 3-56=-366/318, 29-32=-367/308				E	SEAL				
30-32=-230/338 WEBS 3-56=-366/318, 29-32=-367/308 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Dlate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Provide adequate drainage to prevent water ponding. 5) All plates are 2x4 MT20 unless otherwise indicated. GhyGebletrequirese:continuous bottom chord bearing.										
Design valid a truss system building design	- Verify design parameters and READ NOTES ON THIS for use only with MiTek® connectors. This design is ba m. Before use, the building designer must verify the app	AND INCLUDED MITEK REFERENC ed only upon parameters shown, an icability of design parameters and p	CE PAGE MII-7473 rev. 5/19/2020 Ind is for an individual building co properly incorporate this design in by Additional temporary and p	0 BEFORE USE. omponent, not into the overall						

building design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent ordering is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					1424	477988
2434707_MASTER	A46	GABLE	3	1		
					Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:06 2020 Pag	je 2
		ID:jTgj18	SwfyF8hy	T9h0Yt9kz	ZiYQ-QBtxY1UwXFRscGFBM9NoCOO?JlwNq99WkX4S1Kym	Zzx

NOTES-

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 30, 44, 45, 46, 47, 48, 49, 55, 43, 42, 41, 40, 39, 33 except (jt=lb) 2=137, 50=115, 51=148, 52=138, 53=138, 54=144, 56=296, 38=105, 37=151, 36=139, 35=137, 34=144, 32=286.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

I	<u>9-5-8 17-5-8</u>	17-10-8 <u>30-7-4</u>		43-3-4	55-11-0	
Plate Offsets (X,Y)	[3:0-5-0,0-4-8], [8:0-5-0,0-4-8], [9:0-0-0	.0-0-11], [15:0-4-0.0-4-4]		12-0-0	12-7-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.62 BC 0.70 WB 0.68 Matrix-AS	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0. Wind(LL) 0.	in (loc) l/defl L/d 19 13-15 >789 360 30 13-15 >506 240 02 9 n/a n/a 11 11-23 >999 240	PLATES MT20 Weight: 404 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF 5-15,7 WEDGE Left: 2x4 SP No.3, Rigi	P No.2 P No.2 P No.3 *Except* -13: 2x4 SP No.2 ht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathir 2-0-0 oc purlins (6-0-0 m Rigid ceiling directly app 1 Row at midpt	ng directly applied, except nax.): 4-7. lied. 3-15, 4-15, 5-15, 5-13, 7	7-13, 7-11
REACTIONS. All be (lb) - Max H Max U Max G	earings 0-3-8. lorz 2=494(LC 11) lplift All uplift 100 lb or less at joint(s) e 13=-442(LC 9), 11=-501(LC 13), S Grav All reactions 250 lb or less at join 2), 13=1128(LC 26), 11=1078(LC 2	xcept 2=-367(LC 12), 15=-6 =-377(LC 13) (s) except 2=780(LC 19), 15 :0), 9=721(LC 20)	51(LC 12), =1433(LC			
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-17- WEBS 3-17- 7-13: 7-13-	Comp./Max. Ten All forces 250 (lb) o -884/454, 3-4=-206/345, 4-5=-247/349, 386/903, 15-17=-384/909, 13-15=-21 =0/358, 3-15=-1103/711, 4-15=-541/399 324/207, 8-11=-833/696	r less except when shown. 5-7=-382/441, 7-8=-533/429 /301, 11-13=-99/325, 9-11=- I, 5-15=-311/295, 5-13=-487/	, 8-9=-605/370 -87/418 /554,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Provide adequate di 4) This truss has been 5) * This truss has been	e loads have been considered for this d /ult=150mph (3-second gust) Vasd=119 gable end zone and C-C Exterior(2) zo ns shown; Lumber DOL=1.60 plate grip rainage to prevent water ponding. designed for a 10.0 psf bottom chord lin n designed for a live load of 20.0psf on	esign. mph; TCDL=6.0psf; BCDL= (ne; end vertical left and right DOL=1.60 re load nonconcurrent with a the bottom chord in all areas	6.0psf; h=25ft; Cat. exposed;C-C for m ny other live loads. s where a rectangle	II; Exp C; Enclosed; embers and forces & 3-6-0 tall by 2-0-0 wide	CORTH C	AROLINI

- c) This trust has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wid will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 6) Provide mechanical connection (by others) of trust to bearing plate capable of withstanding 367 lb uplift at joint 2, 651 lb uplift at
- joint 15, 442 lb uplift at joint 13, 501 lb uplift at joint 11 and 377 lb uplift at joint 9.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 19,2020

ENGINEERING BY **TREENCO** A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

	9-5-8 9-5-8	<u>17-5-8 17</u> 8-0-0 0	7-10-8)-5-0	<u>30-7-4</u> 12-8-12			43-3-4		44-9-0 1-5-12	54-1-8 9-4-8	<u>55-11-0</u> 1-9-8
Plate Offsets (X,Y)	[2:0-0-0,0-1-0], [2:0-0-12,0	0-0-0], [3:0-5-0),0-4-8], [14:0	-9-8,0-4-0], [16	0-0-0,0-2-12], [17:0-2	-0,0-4-12	2], [18:0-4-	0,0-4-4]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrix	0.63 0.71 0.59 -AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.31 0.02 0.08	(loc) 17-18 17-18 11 20-23	l/defl >801 >492 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 421 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 7-17,5- WEDGE Left: 2x6 SP NJ.2	UMBER- OP CHORD 2x6 SP No.2 TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 4-7. VEBS 2x4 SP No.3 *Except* 7-17,5-18: 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 3-18, 5-17, 7-14, 4-18, 7-17, 5-18										
REACTIONS. All bearings 0-3-8 except (jt=length) 2=0-5-8, 11=0-5-8. (lb) Max Horz 2=484(LC 9) Max Uplift All uplift 100 lb or less at joint(s) except 2=-363(LC 12), 11=-237(LC 13), 18=-652(LC 12), 17=-468(LC 9), 14=-636(LC 13) Max Grav All reactions 250 lb or less at joint(s) except 2=786(LC 19), 11=454(LC 20), 18=1442(LC 25), 17=1045(LC 26), 14=1225(LC 20)											
FORCES. (lb) - Max. TOP CHORD 2-3=- 10-11 BOT CHORD 2-20= WEBS 3-20= 8-14=	ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 2-3=-814/416, 3-4=-135/319, 4-5=-184/313, 5-7=-238/386, 7-8=-160/309, 10-11=-387/243 OT CHORD 2-20=-403/896, 18-20=-402/902, 17-18=-281/288, 14-17=-244/366, 11-14=-59/284 VEBS 3-20=0/355, 3-18=-1108/714, 5-17=-555/532, 7-14=-366/209, 4-18=-565/393, 8-14=-339/315, 7-17=-259/136, 5-18=-306/278, 10-14=-664/555										
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Provide adequate dr 4) This truss has been 5) * This truss has been will fit between the b 6) Provide mechanical joint 11, 652 lb uplift 7) This truss design rec sheetrock be applied 8) Graphical purlin rep	e loads have been conside (ult=150mph (3-second gu gable end zone and C-C I is shown; Lumber DOL=1. rainage to prevent water pr designed for a 10.0 psf bc n designed for a live load (oottom chord and any othe connection (by others) of 1 at joint 18, 468 lb uplift at quires that a minimum of 7 d directly to the bottom cho resentation does not depice	ered for this der ist) Vasd=119r Exterior(2) zon 60 plate grip do onding. bitom chord live of 20.0psf on ti r members, wi truss to bearin joint 17 and 6 7/16" structural ord. t the size or th	sign. nph; TCDL=6 e; end vertica OOL=1.60 e load noncoo he bottom ch th BCDL = 1(g plate capat 36 lb uplift at wood sheath re orientation	6.0psf; BCDL=6 al left and right of ncurrent with an ord in all areas).0psf. ole of withstandi joint 14. ing be applied of of the purlin alc	Opsf; h=25ft; C exposed;C-C fo y other live load where a rectang ng 363 lb uplift directly to the to ng the top and/	at. II; E r mem ds. gle 3-6 at join op choi ′or bott	Exp C; Er bers and 6-0 tall by t 2, 237 It rd and 1/2 tom chore	nclosed; forces & 2-0-0 wide o uplift at 2" gypsum d.	•	SE/ 0449	AROLINA SIGNAL AL 225

August 19,2020
BEFORE USE.
nponent, not
to the overall
manent bracing

818 Soundside Road Edenton, NC 27932

Edenton, NC 27932

August 19,2020

		-		DL			
JOD	Truss		Qty	Ріу	H&H/Calabash/	142477995	
2434707_MASTER	B03	COMMON GIRDER	21	3	Job Reference (optional)		
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Ma	r 9 2020 MiTek Industries, Ind	c. Tue Aug 18 15:33:16 2020 Page 1	
	5-4-2	10-5-8	ID:j1gj18Swr 15-6-	/F8ny19n 14	20-11-0	→ → → → → → → → → → → → → → → → → → →	
	5-4-2	5-1-6	5-1-	6	5-4-2	1	
			5x6			Scale = 1:48.7	
	6727	00 12 5x6 # 2	3		5x6 ≈ 4		
	₹ 1					5 14	
						<u></u>	
	16	17 ₉ 18 19	20 ₈ 7	21	6 ²² 23	24	
	6x8 = LUS28	LUS28 3x8	$10x12 = \frac{6x8}{10} =$		3x8	6x8 =	
		LUS28					
	<u>5-4-2</u> 5-4-2	10-5-8 5-1-6	15-6- 5-1-	14 6	<u>20-11-0</u> 5-4-2		
Plate Offsets (X,Y)	[1:0-0-0,0-0-4], [5:Edge,0-0-4],	[6:0-5-12,0-1-8], [8:0-6-0,0-6-4], [9	<u>):0-5-12,0-1-8]</u>				
LOADING (psf)	SPACING- 2-0-	0 CSI.	DEFL. in	(loc)	I/defl L/d	PLATES GRIP	
TCDL 10.0	Lumber DOL 1.1	5 BC 0.43	Vert(CT) -0.15	8-9	>999 240	M120 244/190	
BCLL 0.0 * BCDI 10.0	Rep Stress Incr N Code IRC2015/TPI2014	O WB 0.76 Matrix-MS	Horz(CT) 0.04 Wind(L) 0.11	5 6-8	n/a n/a >999 240	Weight: 482 lb $FT = 20\%$	
JUMBER- Image: Figure Figu							
FORCES. (lb) - Max. TOP CHORD 1-2=- BOT CHORD 1-9=-3 WEBS 3-8=-3	rav 1=6548(LC 2), 5=9624(LC Comp./Max. Ten All forces 2 10606/4293, 2-3=-8702/3285, 3 3644/8745, 8-9=-3644/8745, 6- 3368/9249, 4-8=-4646/2340, 4-	2) 50 (lb) or less except when shown. 5-4=-8711/3285, 4-5=-13067/5221 8=-4226/10861, 5-6=-4226/10861 6=-2137/4798, 2-8=-2065/1378, 2-	OR THE BUILDING -9=-1081/2017	DESIGNE	R.		
 WEBS 3-8-=3368/9249, 4-8=-4646/2340, 4-6=-2137/4798, 2-8=-2065/1378, 2-9=-1081/2017 NOTES- (12) 1) 3-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 2 rows staggered at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 4) Winci: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 7) WARNING: Required bearing size at joint(s) 5 greater than input bearing size. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 1=2918, 5=3926. 9) Use Simpson Strong-Tile LUS28 (6-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 6-0.12, 107 fT b down and 796 lb up at 17-8-4, and 1767 lb down and 796 lb up at 14-0-12, 1767 lb down and 381 lb up at 10-0-12, 1767 lb down and 796 lb up at 17-8-9.176 lb down and 796 lb up at 14-0-12, 1767 lb down and 396 lb up at 15-0-12, and 1767 lb down and 796 lb up at 19-9.912 obtom chord. 12) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced							
Continue of Site Stand	iaro						
WARNING - Verify d	lesign parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENCE	E PAGE MII-7473 rev. 5/19/2020	BEFORE L	JSE.	ENGINEERING BY	

TRENCO A MiTek Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						42477995
2434707_MASTER	B03	COMMON GIRDER	21	2		
				3	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:16 2020	Page 2
		ID:	jTqj18Swf	/F8hyT9h0)Yt9kzZiYQ-86TjeScBAKiRpo06yGY9cVofcKF60Yc?15V OI	ymZzn

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 7=-1411 16=-586(B) 17=-549(B) 18=-549(B) 19=-1857 20=-1857 21=-1411 22=-1411 23=-1411 24=-1411

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 19,2020

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=357, 3=413.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

818 Soundside Road

Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component

Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qtv	Ply	H&H/Calabash/	
					142477	7999
2434707 MASTER	B13	Common Girder	8	•		
			-	3	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Ma	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:21 2020 Page 2	2
		ID:u2XELe	CnRWP0	nPLJeNfnr	KyCKHZ-U3HchAqK?sKkvau4kp8KJYWVLLyYhp5kBNCl3zymZzi	

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 7=-1373 16=-593(B) 17=-553(B) 18=-553(B) 19=-1938 20=-1938 21=-1373 22=-1373 23=-1373 24=-1376

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

BOT CHORD 2-6=-610/434, 5-6=-610/434

WEBS 4-6=-633/298

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=240, 2=297

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
					I	42478004
2434707_MASTER	FG01	FLAT GIRDER	9	2	Ish Deference (anti-nel)	
				_	Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,			.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:26 2020 F	Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-r14VktkTqPy0?Ln1XMjV0cDLmMexM0_TKfwWlAymZzd

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 7=-1931(F=-1549, B=-383) 6=-1931(F=-1549, B=-383) 9=-1431(F=-1043, B=-389) 10=-1420(F=-1037, B=-383) 11=-1931(F=-1549, B=-383) 12=-1549(F) 13=-383(B) 14=-1935(F=-1549, B=-386)

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						142478005
2434707_MASTER	FG02	FLAT GIRDER	8	2		
				_	Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,			3.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:28 2020 I	Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-nPCF9ZljM0CkFewQfnmz51lhJ9Lqqv3moyPdp3ymZzb

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 7=-1898(F=-1547, B=-352) 6=-1898(F=-1547, B=-352) 9=-1402(F=-1045, B=-357) 10=-1390(F=-1039, B=-352) 11=-1898(F=-1547, B=-352) 12=-1547(F) 13=-352(B) 14=-1904(F=-1550, B=-355)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/
					14247800
2434707_MASTER	FG04	FLAT GIRDER	12	2	
				–	Job Reference (optional)
Builders FirstSource, S	Sumter, SC - 29153,			.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:30 2020 Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-joK0aFnztdTSUy4omCoRASN1sz0zlq93FGujuxymZzZ

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 5-8=-20

Concentrated Loads (lb)

Vert: 7=-1900(F=-1549, B=-352) 6=-1900(F=-1549, B=-352) 9=-1400(F=-1043, B=-357) 10=-1389(F=-1037, B=-352) 11=-1900(F=-1549, B=-352) 12=-1549(F) 13=-352(B) 14=-1904(F=-1549, B=-355)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A Mi Tek Affiliat

818 Soundside Road Edenton, NC 27932

August 19,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Af 818 Soundside Road Edenton, NC 27932

August 19,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 21, 23, 15 except (jt=lb) 22=110, 24=120, 25=136, 26=183, 20=148, 18=139, 17=151.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 15.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ORE USE. hent, not he overall he overall Building Component Building Component Building Component

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=403, 4=403.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>0-6-8</u> 		<u> </u>						
Plate Offsets (X,Y)	[2:0-3-12,0-0-0]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 NO 12014	CSI. TC 0.43 BC 0.78 WB 0.00 Matrix-MP	DEFL. Vert(LL) -0.2 Vert(CT) -0.3 Horz(CT) 0.0 Wind(LL) 0.2	in (loc) 1 5 9 5-9 1 4 7 5-9	l/defl >624 >335 n/a >474	L/d 360 240 n/a 240	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x8 SP DSSWEBS2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-0 Max Horz 2=223(LC 8) Max Uplift 4=-143(LC 8), 2=-845(LC 8)

Max Grav 4=541(LC 0), 2=-045(LC 0)Max Grav 4=541(LC 1), 2=1856(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left exposed ; end vertical left exposed; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=143, 2=845.
- 6) Load case(s) 1, 2, 15, 16, 17, 18, 29, 30, 31, 32 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 7) Use Simpson Strong-Tie LUS28 (6-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent at 0-0-9 from the left end to connect truss(es) to back face of bottom chord.
- 8) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 4-0-12 to connect truss(es) to back face of bottom chord.
- 9) Fill all nail holes where hanger is in contact with lumber.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 2-5=-20, 4-5=-60

- Concentrated Loads (lb)
- Vert: 2=-537(B) 10=-527(B) 11=-527(B)
- 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf)

Vert: 1-3=-50, 2-5=-20, 4-5=-50

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 6-11-15 oc bracing

except end verticals.

lob	Truco	Truco Tupo	011	Div		H8H/Colobach/	
doc	Truss	Truss Type	QIY	Piy			142470012
2434707 MASTER	101		29		1		142470013
	301		25		'	Job Reference (optional)	
Builders FirstSource.	Sumter, SC - 29153.			3.240 s M	Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:36 202	0 Page 2
	20100,		ID:iTai18Sv	/fvF8hvT	T9h	0Yt9kzZiYQ-YvhHrlrkTTDcCtYv7TvrQid2oO NimNxdCL2	25bvmZzT
							00)
LOAD CASE(S) Standard	l						
Concentrated Loads (lb)							
Vert: 2=-469(B)	10=-459(B) 11=-459(B)						
15) Dead + 0 75 Roof Live	(bal) + 0.75(0.6 MWERS Wi	nd (Neg. Int) Left): Lumber Increase=1.60	Plate Increas	e=1 60			
Liniform Loads (nlf)			, i lato morodo	0=1.00			
Vort: 1 2- 42	2 2 - 50 2 5 - 5 4 5 - 50						
V = 11. 1 - 2 - 42,	$2^{-3} = -50, 2^{-3} = -50$						
Concentrated Loads (II	2 - 3 = -0, 7 - 3 = -23						
Vort: 2-126/P) 10_124(P) 11_124(P)						
16) Dood + 0.75 Doof Live	(bol) + 0.75(0.6 MW/EDS W/	nd (Nog. Int) Bight): Lumber Increase-1.6	0 Dioto Inoroc	1 60	^		
10) Deau + 0.75 Root Live	(bal.) + 0.75(0.6 WWFRS W	nu (Neg. III.) Right). Lumber increase=1.0	0, Plate Increa	ise=1.00	0		
Uniform Loads (pil)							
vert: 1-2=-26,	2-3=-33, 2-5=-20, 4-5=-50						
Horz: 1-2=-24	, 2-3=-17						
Concentrated Loads (II))))						
Vert: 2=149(B) 10=159(B) 11=159(B)						
17) Dead + 0.75 Roof Live	(bal.) + 0.75(0.6 MWFRS W	nd (Neg. Int) 1st Parallel): Lumber Increas	e=1.60, Plate	Increase	e=1	1.60	
Uniform Loads (plf)							
Vert: 1-2=-5, 2	2-3=-13, 2-5=-20, 4-5=-50						
Horz: 1-2=-45	, 2-3=-37						
Concentrated Loads (II	o)						
Vert: 2=149(B) 10=159(B) 11=159(B)						
18) Dead + 0.75 Roof Live	(bal.) + 0.75(0.6 MWFRS W	nd (Neg. Int) 2nd Parallel): Lumber Increa	se=1.60, Plate	Increas	se=	1.60	
Uniform Loads (plf)							
Vert: 1-2=-28,	2-3=-35, 2-5=-20, 4-5=-50						
Horz: 1-2=-22	, 2-3=-15						
Concentrated Loads (II	o)						
Vert: 2=149(B) 10=159(B) 11=159(B)						
29) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75(0.6 N	IWFRS Wind (Neg. Int) Left): Lumber Incre	ease=1.60, Pla	ite Incre	ease	e=1.60	
Uniform Loads (plf)							
Vert: 1-2=-42,	2-3=-50, 2-5=5, 4-5=-50						
Horz: 1-2=-8, 2	2-3=-0, 7-9=-25						
Concentrated Loads (II	o)						
Vert: 2=-353(E	3) 10=-355(B) 11=-355(B)						
30) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75(0.6 N	IWFRS Wind (Neg. Int) Right): Lumber Inc	rease=1.60, P	late Inci	reas	se=1.60	
Uniform Loads (plf)							
Vert: 1-2=-26,	2-3=-33, 2-5=-20, 4-5=-50						
Horz: 1-2=-24	, 2-3=-17						
Concentrated Loads (II	o)						
Vert: 2=-340(E	3) 10=-331(B) 11=-331(B)						
31) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75(0.6 N	IWFRS Wind (Neg. Int) 1st Parallel): Lumb	er Increase=1	.60, Pla	te I	ncrease=1.60	
Uniform Loads (plf)							
Vert: 1-2=-5, 2	2-3=-13, 2-5=-20, 4-5=-50						
Horz: 1-2=-45	, 2-3=-37						
Concentrated Loads (II	o)						
Vert: 2=-340(E	3) 10=-331(B) 11=-331(B)						
32) Reversal: Dead + 0.75	Roof Live (bal.) + 0.75(0.6 N	IWFRS Wind (Neg. Int) 2nd Parallel): Lum	ber Increase=	1.60, Pla	ate	Increase=1.60	
Uniform Loads (plf)							
Vert: 1-2=-28,	2-3=-35, 2-5=-20, 4-5=-50						
Horz: 1-2=-22	, 2-3=-15						
Concentrated Loads (II	o)						
Vert: 2=-340(E	B) 10=-331(B) 11=-331(B)						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<mark>0-6-8</mark> 0-6-8		<u>10-10-8</u> 10-4-0	
Plate Offsets (X,Y)	[2:0-3-8,0-0-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.40 BC 0.72 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.26 5-9 >504 240 Vert(CT) -0.34 5-9 >383 240 Horz(CT) 0.00 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 55 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x8 SP DSSWEBS2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-0 Max Horz 2=216(LC 22)

Max Uplift 4=-125(LC 8), 2=-937(LC 8) Max Grav 4=392(LC 1), 2=1798(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=125, 2=937.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 4-0-12 to connect truss(es) to back face of bottom chord.

8) Fill all nail holes where hanger is in contact with lumber.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 528 lb down and 324 lb up at 0-0-9 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 2-4=-20

Concentrated Loads (lb) Vert: 2=-528(B) 10=-527(B) 11=-527(B)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 8-4-5 oc bracing.

except end verticals.

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

0-6-8 10-10-8 10-4-0 LOADING (psf) SPACING-DEFL. PLATES GRIP 2-0-0 CSI. in (loc) I/defl L/d Vert(LL) 244/190 TCLL 20.0 Plate Grip DOL 1.15 тс 0.28 -0.09 5 >999 360 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.44 Vert(CT) -0.16 >791 240 5 BCLL 0.0 Rep Stress Incr NO WB 0.00 Horz(CT) -0.00 4 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-AS Wind(LL) 5 >690 240 Weight: 55 lb FT = 20% 0.19

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.2BOT CHORD2x8 SP DSSWEBS2x4 SP No.3

REACTIONS. (size) 4=Mechanical, 2=0-3-0 Max Horz 2=223(LC 12) Max Uplift 4=-39(LC 12), 2=-200(LC 12) Max Grav 4=325(LC 1), 2=481(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-5=-151/281

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left exposed ; end vertical left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=200.

6) Load case(s) 1, 2, 19, 20, 21, 22 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 2-5=-20, 4-5=-60

- Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-3=-50, 2-5=-20, 4-5=-50

19) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-42, 2-3=-50, 2-5=5, 4-5=-50

Horz: 1-2=-8, 2-3=-0, 7-9=-25

20) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Job	Truss	Truss Type	Qty	Ply	H&H/Calabash/	
						42478015
0 40 4707 NA OTED	100	DOOFOREOUN	50	· ·		112-110010
2434707_MASTER	J02	ROOF SPECIAL	58	1		
					Job Reference (optional)	
Builders FirstSource. S	Sumter, SC - 29153.			.240 s Mar	9 2020 MiTek Industries, Inc. Tue Aug 18 15:33:37 2020	Page 2

ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-08Ff2esMEnLTq169gAQ4ywAFqoQuRDd4ss4bd1ymZzS

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-2=-26, 2-3=-33, 2-5=-20, 4-5=-50

Horz: 1-2=-24, 2-3=-17

21) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf) Vert: 1-2=-5, 2-3=-13, 2-5=-20, 4-5=-50

Horz: 1-2=-5, 2-3=-13, 2-5=-20, 4-5=-50

22) Dead + 0.75 Roof Live (bal.) + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-28, 2-3=-35, 2-5=-20, 4-5=-50

Horz: 1-2=-22, 2-3=-15

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offse	ts (X,Y)	[2:0-4-11,0-1-8], [4:Edge	,0-3-8]										
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.96 0.48 0.00 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.19 -0.22 0.01	(loc) 4-7 4-7 2	l/defl >623 >560 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%	
LUMBER-	RD 2x6 SP	? No.2				BRACING- TOP CHOF	RD	Structu	ıral wood	sheathing di	rectly applied, except	end verticals.	

BOT CHORD

Rigid ceiling directly applied.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 4=Mechanical, 2=0-3-8 Max Horz 2=434(LC 12)

Max Uplift 4=-350(LC 12), 2=-142(LC 12) Max Grav 4=564(LC 19), 2=477(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-4=-423/347

NOTES-(7)

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=350. 2=142.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 7) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Qu Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4x6 11

9-5-4 9-5-4

TOP CHORD

BOT CHORD

Plate Off	sets (X,Y)	[4:Edge,0-3-8]										
LOADIN	G (psf)	SPACING- 2	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	0.15	4-7	>720	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.16	4-7	>710	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.05	1	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI20	014	Matrix	-AS						Weight: 59 lb	FT = 20%
	2_		•			BRACING						

TOP CHORD 2x6 SP No.2 2x6 SP No.2 BOT CHORD

WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 1-11-12

REACTIONS. (size) 1=Mechanical, 4=Mechanical Max Horz 1=376(LC 12)

Max Uplift 1=-79(LC 12), 4=-343(LC 12) Max Grav 1=395(LC 19), 4=531(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-3=-419/146, 3-4=-401/336

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=343.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

Scale = 1:37.2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

August 19,2020

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.65 BC 0.11 WB 0.11 Matrix-S	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) -0.00	n (loc) a - a -) 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-					

_ _ _ _ _ _ _ _

TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 2-0-0

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-5-4.

Max Horz 1=405(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 9 except 8=-152(LC 12), 10=-310(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 8, 9 except 10=358(LC 19)

ł

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-574/519, 3-4=-353/329, 4-5=-290/286

WEBS 5-8=-267/232, 3-10=-416/383

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 9 except (jt=lb) 8=152, 10=310.
- 8) This manufactured truss is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid to use only design parameters and READ NOTES ON THIS AND INCLUDED WITH REPORT PAGE MIT 475 169 (2020 BEFORE USE). Design valid for use only with MITEK deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

BOT CHORD

LUMBER-	
TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No 2

.

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2

Left: 2x4 SP No.3

REACTIONS. (size) 6=Mechanical, 2=0-3-8

Max Horz 2=453(LC 12) Max Uplift 6=-370(LC 12), 2=-146(LC 12) Max Grav 6=580(LC 19), 2=499(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-265/155, 3-6=-446/372

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=370, 2=146.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

BOT CHORD

1

Rigid ceiling directly applied.

N	lax G	irav 1=	:397(L	.C 19),	4=542(LC	C 19)			
 <i></i> .		~		-					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-3=-445/173, 3-4=-407/343

Code IRC2015/TPI2014

(size) 1=Mechanical, 4=Mechanical

Max Uplift 1=-69(LC 12), 4=-353(LC 12)

NOTES-

BCDL

LUMBER-

WEBS

SLIDER

TOP CHORD

BOT CHORD

REACTIONS.

10.0

2x6 SP No.2

2x6 SP No.2

2x4 SP No.3

Left 2x6 SP No.2 1-11-12

Max Horz 1=376(LC 12)

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-AS

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=353.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

FT = 20%

Weight: 61 lb

Structural wood sheathing directly applied, except end verticals.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 9, 8, 11 except (jt=lb) 10=143, 12=306.

9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

9-5-4 9-5-4

6 Ţ 5 7.00 12 4 6-9-9 3 4x6 💋 2 1-3-8 ***** 3x8 || 10 9 7 8

LOADING (psf) SPACING-2-0-0 CSI. DEFL. PLATES GRIP in (loc) I/defl L/d Plate Grip DOL 1.15 Vert(LL) 244/190 TCLL 20.0 тс 0.19 n/a n/a 999 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.05 Vert(CT) 999 n/a n/a BCLL 0.0 Rep Stress Incr YES WΒ 0.12 Horz(CT) -0.00 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 78 lb FT = 20% LUMBER-BRACING-

2x6 SP No.2 TOP CHORD 2x6 SP No.2 BOT CHORD WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x6 SP No.2 2-0-11 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. All bearings 9-5-4. Max Horz 1=432(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 9 except 8=-145(LC 12), 10=-380(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 7, 8, 9 except 10=360(LC 19)

ł

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-3=-441/360

WEBS 3-10=-417/395

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

- Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 9 except (jt=lb) 8=145, 10=380.

Scale = 1:36.1

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

			20-2-0	
Plate Offsets (X,Y)	[3:0-3-0,0-1-12], [11:0-3-0,0-1-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.05 WB 0.04	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.00 12 n/r 120 MT20 244/190 Vert(CT) 0.00 12 n/r 120 MT20 244/190 Horz(CT) 0.00 12 n/a n/a n/a N	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 68 lb FT = 20%	6
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	P No.2 P No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0-0 max.): 3-11.	cept

BOT CHORD

20-2-0

REACTIONS. All bearings 18-5-4.

(lb) - Max Horz 2=-63(LC 10)

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 16, 18, 19, 20, 22, 12 except 15=-110(LC 9), 21=-106(LC

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 15, 16, 18, 19, 20, 21, 22, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.

8)

- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 16, 18, 19, 20, 22, 12 except (jt=lb) 15=110, 21=106.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

DRE USE. ent, not e overall ent bracing Building Component Building Component

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			20-2-0			
Plate Offsets (X V)	[6:0-3-0 Edge]		20-2-0			· · · · · · · · · · · · · · · · · · ·
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.12 WB 0.07 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) l/defl L 8 n/r 12 9 n/r 12 8 n/a r	/d PLATES 20 MT20 20 1/a Weight: 70 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP REACTIONS. All be	No.2 No.2 No.3 arings 18-5-4		BRACING- TOP CHORD BOT CHORD	Structural wood she 2-0-0 oc purlins (6-0 Rigid ceiling directly	athing directly applied or 6-0-0 9-0 max.): 3-6. 9 applied or 10-0-0 oc bracing.	oc purlins, except
(lb) - Max H Max U Max G FORCES. (lb) - Max. WEBS 4-13=	 All rigs 10:5-4. All uplift 100 lb or less at joint(s) 2, 10=-141(LC 13) rav All reactions 250 lb or less at joint(10=278(LC 24) Comp./Max. Ten All forces 250 (lb) or -255/251 	8 except 14=-137(LC 12) s) 2, 8 except 14=295(LC less except when shown.	, 13=-206(LC 8), 11=-18 1), 13=334(LC 24), 11=	18(LC 9), 325(LC 23),		
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for v Gable End Details a 4) Provide adequate dr 5) Gable requires conti 6) Gable studs spaced 7) This truss has been 8) * This truss has been 8) * This truss has been 9) Provide mechanical 14–137, 13=206, 11 10) See Standard Indu designer.	loads have been considered for this de ult=150mph (3-second gust) Vasd=119r gable end zone and C-C Exterior(2) zon s shown; Lumber DOL=1.60 plate grip D vind loads in the plane of the truss only. s applicable, or consult qualified building ainage to prevent water ponding. nuous bottom chord bearing. at 4-0-0 oc. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on t ottom chord and any other members. connection (by others) of truss to bearin =188, 10=141. stry Piggyback Truss Connection Detail	sign. nph; TCDL=6.0psf; BCDL e; end vertical left and rig DOL=1.60 For studs exposed to win designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are g plate capable of withsta for Connection to base tru	=6.0psf; h=25ft; Cat. II; I ht exposed;C-C for merr d (normal to the face), s l 1. any other live loads. as where a rectangle 3-6 nding 100 lb uplift at join uss as applicable, or con	Exp C; Enclosed; ibers and forces & ee Standard Industry 5-0 tall by 2-0-0 wide t(s) 2, 8 except (jt=lb) sult qualified building	ON OR THE SE	AROLING Signa Kaco

or the orientation of the purlin along the rap ιορ

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

REACTIONS. All bearings 18-5-4. Max Horz 2=165(LC 11)

(lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 9 except 14=-183(LC 9), 15=-246(LC 12), 12=-175(LC 8), 11=-243(LC 13)

- Max Grav All reactions 250 lb or less at joint(s) 2, 9 except 14=316(LC 23), 15=362(LC 19), 12=316(LC 24), 11=357(LC 20)
- FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WFBS 3-15=-325/283. 8-11=-326/279

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9 except (jt=lb) 14=183, 15=246, 12=175, 11=243.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road

Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 4-7.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

			20-2-0					
Plate Offsets (X,Y)	[5:0-3-0,Edge], [6:0-3-0,Edge], [7:0-0-0,	0-0-0], [8:0-0-0,0-0-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.14 WB 0.10 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.01	1 (loc) 10 10 9	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structu 2-0-0 o Rigid c	ral wood c purlins eiling dire	sheathing dire (6-0-0 max.): { ctly applied of	ectly applied or 6-0-0 5-6. r 10-0-0 oc bracing.	oc purlins, except
REACTIONS. All be (lb) - Max H Max U Max G	arings 18-5-4. orz 2=-211(LC 10) plift All uplift 100 lb or less at joint(s) 2, 11=-299(LC 13) rav All reactions 250 lb or less at joint(11=387(LC 20)	9 except 14=-130(LC 12), s) 2, 9 except 14=375(LC	, 15=-298(LC 12), 13=- 19), 15=386(LC 19), 13	103(LC 1 3=345(LC	3), ; 20),			
FORCES. (lb) - Max. WEBS 3-15=	Comp./Max. Ten All forces 250 (lb) or 393/337, 8-11=-393/339	less except when shown.						
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for w Gable End Details as	loads have been considered for this de ult=150mph (3-second gust) Vasd=119 gable end zone and C-C Exterior(2) zor s shown; Lumber DOL=1.60 plate grip D ind loads in the plane of the truss only. s applicable, or consult qualified building	sign. nph; TCDL=6.0psf; BCDL- le; end vertical left and righ 0CL=1.60 For studs exposed to wind g designer as per ANSI/TP	=6.0psf; h=25ft; Cat. II; tt exposed;C-C for mer d (normal to the face), ; I 1.	Exp C; E nbers an see Stand	inclosed; d forces & dard Indu	stry		

- Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9 except (jt=lb) 14=130, 15=298, 13=103, 11=299.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TRENCO AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			_
	IM	RF	R-
_			

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
OTHERS	2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-7.

Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. All bearings 18-5-4. Max Horz 2=-152(LC 10)

(lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 9 except 14=-174(LC 9), 15=-229(LC 12), 12=-169(LC 8), 11=-224(LC 13)

- Max Grav All reactions 250 lb or less at joint(s) 2, 9 except 14=310(LC 23), 15=347(LC 19), 12=310(LC 24), 11=341(LC 20)
- FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WFBS 3-15=-304/264, 8-11=-305/259

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9 except (jt=lb) 14=174, 15=229, 12=169, 11=224.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 			20-2-0						
Plate Offsets (X,Y)	[3:0-4-15,Edge], [6:0-4-15,Edge]		20-2-0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.11 WB 0.08 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 8 8 7	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF OTHERS 2x4 SF	P No.2 P No.2 P No.3		BRACING- TOP CHORE BOT CHORE		Structur 2-0-0 o Rigid ce	ral wood c purlins eiling dire	sheathing dir (6-0-0 max.): actly applied o	ectly applied or 6-0-0 3-6. r 10-0-0 oc bracing.	oc purlins, except
REACTIONS. All be (lb) - Max H Max U Max G	earings 18-5-4. lorz 2=-93(LC 10) plift All uplift 100 lb or less at joint(s) 2 9), 9=-101(LC 8) srav All reactions 250 lb or less at joint(9=287(LC 24)	except 12=-206(LC 8), 13 s) 2, 7 except 12=340(LC	3=-123(LC 9), 7=-1(24), 13=287(LC 23	08(LC 1 3), 10=;	I3), 10= 339(LC	=-205(LC 23),			
FORCES. (lb) - Max. WEBS 4-12	Comp./Max. Ten All forces 250 (lb) or =-259/252, 5-10=-259/252	less except when shown.							
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; MWVFRS (envelope) MWVFRS (envelope) MWFRS for reaction 3) Truss designed for MGB adequate distribution 4) Provide adequate distribution 6) Gable studs spaced 7) This truss has been will fit between the b 9) Provide mechanical 12=206, 13=123, 7= 10) See Standard Indu designer. 11) Graphical purlin re 	e loads have been considered for this de /ult=150mph (3-second gust) Vasd=119r gable end zone and C-C Exterior(2) zon is shown; Lumber DOL=1.60 plate grip D wind loads in the plane of the truss only. is applicable, or consult qualified building rainage to prevent water ponding. inuous bottom chord bearing. at 4-0-0 oc. designed for a 10.0 psf bottom chord livin n designed for a live load of 20.0psf on the sottom chord and any other members. connection (by others) of truss to bearin :108, 10=205, 9=101. stry Piggyback Truss Connection Detail presentation does not depict the size or the sottom chord so the size or the size o	sign. nph; TCDL=6.0psf; BCDL e; end vertical left and rig)OL=1.60 For studs exposed to wir designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are g plate capable of withsta for Connection to base tru he orientation of the purli	=6.0psf; h=25ft; Ca ht exposed;C-C for nd (normal to the fac Pl 1. n any other live load as where a rectang unding 100 lb uplift a uss as applicable, c n along the top and	at. II; E> · memb ce), see ls. le 3-6-(at joint(or consu l/or bott	xp C; E ers and e Stand 0 tall by s) 2 ex ult qual tom cho	nclosed; J forces & lard Indu / 2-0-0 w cept (jt=ll ified build ord.	stry ide b)	SE O44	AROLA SIGULA AL 1925 NEEP, HALL

August 19,2020

818 Soundside Road Edenton, NC 27932

			20-2-0						I
Plate Offsets (X,Y)	[3:0-3-0,0-1-12], [11:0-3-0,0-1-12]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.08 BC 0.08 WB 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 13 13 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 67 lb	FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S	SP No.2 SP No.2		BRACING- TOP CHORE		Structur 2-0-0 oc	ral wood	sheathing dii (6-0-0 max.):	rectly applied or 6-0-0	oc purlins, except

20-2-0

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 18-5-4.

Max Horz 2=-62(LC 10) (lb) -

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 18, 19, 16 except 2=-103(LC 12), 20=-107(LC 8), 21=-115(LC 9), 15=-105(LC 9), 14=-109(LC 8), 12=-107(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 21, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 19, 16 except (jt=lb) 2=103, 20=107, 21=115, 15=105, 14=109, 12=107.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. (size) 2=4-6-8, 4=4-6-8, 6=4-6-8 Max Horz 2=-82(LC 10)

Max Uplift 2=-89(LC 12), 4=-100(LC 13), 6=-29(LC 12) Max Grav 2=132(LC 1), 4=138(LC 20), 6=161(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 4=100.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L						20-1-15						
						20-1-15						•
Plate Offsets ()	X,Y) [3	3:0-3-0,0-1-12], [11:0-3-0),0-1-12]									
LOADING (psi	f)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	0.00	13	n/r	120	MT20	244/190
TCDL 10.0	0	Lumber DOL	1.15	BC	0.08	Vert(CT)	0.00	13	n/r	120		
BCLL 0.	.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	12	n/a	n/a		
BCDL 10.0	0	Code IRC2015/TF	912014	Matri	k-S						Weight: 71 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SP N 2x4 SP N	No.2 No.2				TOP CHOR	D	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins, except

 2x4 SP No.2
 2-0-0 oc purlins (6-0-0 max.): 3-11.

 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 18-5-3.

(lb) - Max Horz 2=77(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 18, 19, 16 except 2=-109(LC 12), 12=-116(LC 13), 20=-117(LC 8), 21=-116(LC 9), 15=-113(LC 9), 14=-104(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 12, 20, 21, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 19, 16 except (jt=lb) 2=109, 12=116, 20=117, 21=116, 15=113, 14=104.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			20-1-15		
Plate Offsets (X,Y)	[4:0-3-0,Edge], [7:0-3-0,Edge], [8:0-0-0,	0-0-0]	20-1-13		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.16 BC 0.11 WB 0.07 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) l/defl L 10 n/r 12 10 n/r 12 9 n/a n	/d PLATES GRIP 20 MT20 244/190 20 /a Weight: 72 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S OTHERS 2x4 S REACTIONS. All b	P No.2 P No.2 P No.3 earings 18-5-3.		BRACING- TOP CHORD BOT CHORD	Structural wood she 2-0-0 oc purlins (6-0 Rigid ceiling directly	athing directly applied or 6-0-0 oc purlins, except -0 max.): 4-7. applied or 10-0-0 oc bracing.
(Ib) - Max Max Max	Horz 2=132(LC 11) Jplift All uplift 100 lb or less at joint(s) 2, 11=-195(LC 13) Grav All reactions 250 lb or less at joint(11=318(LC 20)	9 except 14=-171(LC 9), s) 2, 9 except 14=310(LC	15=-202(LC 12), 12=-17 23), 15=326(LC 19), 12=	0(LC 9), =310(LC 24),	
FORCES. (Ib) - Max WEBS 3-15	. Comp./Max. Ten All forces 250 (lb) or =-280/236, 8-11=-282/229	less except when shown.			
 NOTES- 1) Unbalanced roof lin 2) Wind: ASCE 7-10; MWFRS (envelope MWFRS for reaction 3) Truss designed for Gable End Details 4) Provide adequate of 5) All plates are 2x4 M 6) Gable requires com 7) Gable studs space 8) This truss has beer 9) * This truss has beer 9) * This truss has beer 9) * This truss has beer 10) Provide mechanic (jt=lb) 14=171, 155 11) See Standard Indi designer. 12) Graphical purlin ref 	e loads have been considered for this de Vult=150mph (3-second gust) Vasd=119r) gable end zone and C-C Exterior(2) zor ns shown; Lumber DOL=1.60 plate grip I wind loads in the plane of the truss only. as applicable, or consult qualified building trainage to prevent water ponding. 1T20 unless otherwise indicated. tinuous bottom chord bearing. d at 4-0-0 oc. n designed for a 10.0 psf bottom chord liv en designed for a live load of 20.0psf on t bottom chord and any other members. al connection (by others) of truss to beari =202, 12=170, 11=195. ustry Piggyback Truss Connection Detail epresentation does not depict the size or	sign. nph; TCDL=6.0psf; BCDL: e; end vertical left and rigl VDL=1.60 For studs exposed to win a designer as per ANSI/TP e load nonconcurrent with he bottom chord in all area ng plate capable of withst for Connection to base tru the orientation of the purlir	=6.0psf; h=25ft; Cat. II; E ht exposed;C-C for mem of (normal to the face), so any other live loads. as where a rectangle 3-6 tanding 100 lb uplift at joi uss as applicable, or con: n along the top and/or bo	Exp C; Enclosed; bers and forces & ee Standard Industry -0 tall by 2-0-0 wide nt(s) 2, 9 except sult qualified building ttom chord.	SEAL 044925

August 19,2020

		:	20-1-15					
Plate Offsets (X,Y)	[4:0-0-0,0-1-2], [4:0-4-14,Edge], [5:0-1-1	2,0-0-0], [6:0-1-12,0-0-0], [[7:0-0-0,0-1-2], [7:0-4	-14,Edge]	, [8:0-0-0	,0-0-0]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.19 BC 0.14 WB 0.10 Matrix-S	DEFL. Vert(LL) 0.0 Vert(CT) 0.0 Horz(CT) 0.0	in (loc) 10 10 10 10 10 9	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF OTHERS 2x4 SF	2 No.2 2 No.2 2 No.3		BRACING- TOP CHORD BOT CHORD	Structu 2-0-0 c Rigid c	iral wood oc purlins ceiling dire	sheathing di (6-0-0 max.) ectly applied	rectly applied or 6-0-0 : 4-7. or 6-0-0 oc bracing.	oc purlins, except
REACTIONS. All be (lb) - Max H Max U Max G	earings 18-5-3. orz 2=191(LC 11) plift All uplift 100 lb or less at joint(s) 2, 11=-278(LC 13) rav All reactions 250 lb or less at joint(11=380(LC 20)	9 except 14=-187(LC 9), 1 s) 2, 9 except 14=359(LC 2	5=-282(LC 12), 12=- 25), 15=383(LC 19), 7	158(LC 8) 2=359(LC	, C 26),			
FORCES. (lb) - Max. WEBS 5-14=	Comp./Max. Ten All forces 250 (lb) or =-256/237, 3-15=-372/320, 6-12=-256/20	less except when shown. 17, 8-11=-373/316						
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for v Gable End Details a 4) Provide adequate du 5) Gable requires conti 6) Gable studs spaced	e loads have been considered for this de: fult=150mph (3-second gust) Vasd=119r gable end zone and C-C Exterior(2) zon is shown; Lumber DOL=1.60 plate grip D vind loads in the plane of the truss only. s applicable, or consult qualified building rainage to prevent water ponding. inuous bottom chord bearing. at 4-0-0 oc.	sign. nph; TCDL=6.0psf; BCDL= e; end vertical left and right)OL=1.60 For studs exposed to wind I designer as per ANSI/TPI	6.0psf; h=25ft; Cat. I t exposed;C-C for me I (normal to the face) 1.	; Exp C; E mbers an see Stan	Enclosed; d forces a dard Indu	\$ stry	and C	APO

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9 except (jt=lb) 14=187, 15=282, 12=158, 11=278.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ENGINEERING BY REPART ANTITUDE A MITCH ATTILIATE 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENGINEERING BY A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

<u> </u>		20-1-15		
Plate Offsets (X,Y) [4:0-3-0,Edge], [7:0-3-0,Edge], [8:0-0-0,	0-0-0]	20-1-10		
LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPl2014	CSI. TC 0.18 BC 0.11 WB 0.08 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) l/defl L/d 10 n/r 120 10 n/r 120 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 74 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of 2-0-0 oc purlins (6-0-0 max Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, except): 4-7. d or 10-0-0 oc bracing.
REACTIONS. All bearings 18-5-3. (Ib) - Max Horz 2=155(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 2. 11=-229(LC 13) Max Grav All reactions 250 lb or less at joint(11=345(LC 20)	, 9 except 14=-176(LC 9), (s) 2, 9 except 14=311(LC	, 15=-233(LC 12), 12=-17 C 23), 15=350(LC 19), 12=	1(LC 8), =311(LC 24),	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or WEBS 3-15=-309/269, 8-11=-310/264	less except when shown			
 NOTES- 1) Unbalanced roof live loads have been considered for this de 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=1190 MWFRS (envelope) gable end zone and C-C Exterior(2) zor MWFRS for reactions shown; Lumber DOL=1.60 plate grip D 3) Truss designed for wind loads in the plane of the truss only. Gable End Details as applicable, or consult qualified building 4) Provide adequate drainage to prevent water ponding. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord liv 9) * This truss has been designed for a live load of 20.0psf on twill fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bear (t=b) 14=176, 15=233, 12=171, 11=229. 11) See Standard Industry Piggyback Truss Connection Detail designer. 12) Graphical purlin representation does not depict the size or 	sign. mph; TCDL=6.0psf; BCDL re; end vertical left and rig DOL=1.60 For studs exposed to wir g designer as per ANSI/TF re load nonconcurrent with the bottom chord in all are ing plate capable of withs for Connection to base tri the orientation of the purli	L=6.0psf; h=25ft; Cat. II; E ght exposed;C-C for mem nd (normal to the face), se PI 1. n any other live loads. eas where a rectangle 3-6 tanding 100 lb uplift at joi uss as applicable, or cons in along the top and/or bo	Exp C; Enclosed; bers and forces & ee Standard Industry -0 tall by 2-0-0 wide nt(s) 2, 9 except sult qualified building ottom chord.	SEAL 044925

August 19,2020

I			20-1-15				I
Plate Offsets (X,Y)	[3:0-4-14,Edge], [6:0-4-14,Edge]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.11 WB 0.07 Matrix-S	DEFL. ir Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) l/d 8 8 7 r	lefi L/d n/r 120 n/r 120 n/a n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP	No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural w 2-0-0 oc pu Rigid ceiling	vood sheathing di ırlins (6-0-0 max.) g directly applied	irectly applied or 6-0-0 : 3-6. or 10-0-0 oc bracing.	oc purlins, except
REACTIONS. All be (lb) - Max H Max U Max G	earings 18-5-3. orz 2=-97(LC 10) plift All uplift 100 lb or less at joint(s) 2 9), 9=-103(LC 8) rav All reactions 250 lb or less at joint(9=293(LC 24)	except 12=-203(LC 8), 13 s) 2, 7 except 12=336(LC	3=-126(LC 9), 7=-107(LC C 24), 13=293(LC 23), 10	; 13), 10=-20)=336(LC 23)	92(LC),		
FORCES. (lb) - Max. WEBS 4-12=	Comp./Max. Ten All forces 250 (lb) or 255/249, 5-10=-255/249	less except when shown					
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) MWFRS for reaction 3) Truss designed for v Gable End Details a 4) Provide adequate dr 5) Gable studs spaced 7) This truss has been 8) * This truss has been will fit between the b 9) Provide mechanical 12=203, 13=126, 7= 10) See Standard Indu designer. 11) Graphical purlin rep	e loads have been considered for this de lut=150mph (3-second gust) Vasd=119r gable end zone and C-C Exterior(2) zon is shown; Lumber DOL=1.60 plate grip D vind loads in the plane of the truss only. s applicable, or consult qualified building ainage to prevent water ponding. nuous bottom chord bearing. at 4-0-0 oc. designed for a 10.0 psf bottom chord livin n designed for a live load of 20.0psf on t ottom chord and any other members. connection (by others) of truss to bearin 107, 10=202, 9=103. stry Piggyback Truss Connection Detail presentation does not depict the size or t	sign. mph; TCDL=6.0psf; BCDL le; end vertical left and rig DOL=1.60 For studs exposed to wir designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are g plate capable of withsta for Connection to base tru the orientation of the purli	L=6.0psf; h=25ft; Cat. II; ght exposed;C-C for men nd (normal to the face), s PI 1. h any other live loads. eas where a rectangle 3- anding 100 lb uplift at join russ as applicable, or cor in along the top and/or b	Exp C; Enclo bers and for ee Standard 3-0 tall by 2-0 tt(s) 2 except isult qualified ottom chord.	osed; rces & Industry 0-0 wide t (jt=lb) t building	SE 044	AROL SIGNAL 925 NEERIE
•							

			20-1-15						
Plate Offsets (X,Y)	[3:0-3-0,0-1-12], [11:0-3-0,0-1-12]		20-1-15						
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL)	0.00	13	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.08	Vert(CT)	0.00	13	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT)	0.00	12	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 71 lb	FT = 20%
LUMBER-			BRACING-						
TOP CHORD 2x4 SI	P No.2		TOP CHOR	D	Structu	ral wood	sheathing dir	ectly applied or 6-0-0	oc purlins, except
BOT CHORD 2x4 SI	P No.2				2-0-0 o	c purlins	(6-0-0 max.):	3-11.	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3

REACTIONS. All bearings 18-5-3.

Max Horz 2=77(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 18, 19, 16 except 2=-109(LC 12), 20=-117(LC 8), 21=-116(LC 9), 15=-113(LC 9), 14=-104(LC 8), 12=-116(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 21, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 19, 16 except (jt=lb) 2=109, 20=117, 21=116, 15=113, 14=104, 12=116.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

2=3-9-4, 4=3-9-4, 6=3-9-4 REACTIONS. (size) Max Horz 2=-70(LC 10) Max Uplift 2=-78(LC 12), 4=-87(LC 13), 6=-22(LC 12) Max Grav 2=113(LC 1), 4=119(LC 20), 6=132(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-3-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTReK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LUMBER-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

818 Soundside Road Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Orain Highway, Suite 203 Waldorf, MD 20601

lob	Truss		Otv	Plv	H&H/Calabash/								
2434707 MASTER	V03	GABLE	1	1		142478045							
Builders FirstSource.	Sumter, SC - 29153.		ˈ	3.240 s Ma	Job Reference (option	al) ies. Inc. Tue Aug 18 15:34:08 2020 Page 1							
ID:jTgj18SwfyF8hyT9h0Yt9kzZiYQ-c6cNYEEpxJF32o_6?BULjTyRvH2KC9Oe_B5kDkymZyz													
		6-7-4	10-1-4	4									
		4x	ĸ6			Scale = 1:66.5							
8.00 12 5													
4 6													
3													
	3>	4 2 B		8									
					9								
	10-9-6				10								
	1	2-1	0-0										
	6-4-				3x6 =								
				B	11 0-4								
				12									
		19 18 17 16	15 14 13		8.00 12								
		3x4 =	3x6 🖉	•									
10-7-8 16-8-8 10-7-8 6-1-0													
Plate Offsets (X,Y)	[10:0-4-1,Edge], [13:0-3-0,0-0-2]												
TCLL 20.0	Plate Grip DOL 1.15	CSI. TC 0.74	DEFL. in Vert(LL) n/a	1 (IOC) 1 -	l/defl L/d n/a 999	PLATES GRIP MT20 244/190							
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.23 WB 0.38	Vert(CT) n/a Horz(CT) 0.01	10 -	n/a 999 n/a n/a								
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S				Weight: 139 lb FT = 20%							
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood					al wood sheathing dir	ectly applied or 6-0-0 oc purlins,							
BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.3	except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.											
OTHERS 2x4 SP No.3 WEBS 1 Row at midpt 4-16, 6-15													
REACTIONS. All bearings 16-8-8. (Ib) - Max Horz 19=-533(LC 10)													
Max Uplift All uplift 100 lb or less at joint(s) 19, 16 except 10=-383(LC 9), 13=-238(LC 10), 17=-224(LC 12), 18=-111(LC 9), 15=-171(LC 10), 14=-236(LC 13), 12=-129(LC 13), 11=-189(LC 13)													
Max Grav All reactions 250 lb or less at joint(s) 19, 13, 17, 18, 14, 12, 11 except 10=514(LC 10), 16=306(LC 20), 15=403(LC 20)													
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.													
TOP CHORD 1-2=-264/289, 2-3=-282/312, 3-4=-428/489, 4-5=-351/387, 5-6=-351/387, 6-7=-428/489, 7-8=-376/348, 8-9=-414/365, 9-10=-448/376													
BOT CHORD 18-19=-309/377, 17-18=-309/377, 16-17=-309/377, 15-16=-309/377, 14-15=-309/377, 13-14=-300/377, 13-14=-300/377, 13-1													
WEBS 3-17=-303/295, 6-15=-286/228, 7-14=-299/293													
NOTES- (9) 1) Unbalanced roof live loads have been considered for this design													
 a) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 a) All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. b) This trues has been designed for a 10.0 performer bearing. 													
							 6) * This trace has been designed for a live load of 20.0psf on the bottom of all areas where a rectangle 3-6-0 tall by 2-0-0 wide 						
							 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 16 except SEAL 						
No.													
9) This manufactured russ is designed as an individual building component. The suitability and use of this component for any particular building is the responsibility of the building designer per ANSI TPI 1 as referenced by the building code.													
100 NGINEER AS													
						TIM SENT							

818 Soundside Road Edenton, NC 27932

ΓΩ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

19=-139(LC 12), 16=-126(LC 8), 13=-155(LC 13), 12=-185(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 20, 11, 14, 18, 19, 15, 13, 12 except 17=251(LC 26), 16=256(LC 25)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 13-14=-196/280, 12-13=-196/278, 11-12=-203/282

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 18, 15 except (jt=lb) 11=137, 14=143, 17=129, 19=139, 16=126, 13=155, 12=185.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 11, 13, 12.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

a truss system Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

