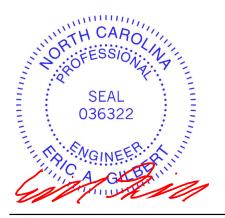


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 21030024-A 89 Lake Forest-Roof-BB-2086

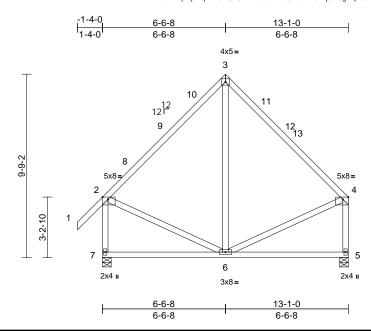
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Chesapeake, VA).

Pages or sheets covered by this seal: E15498410 thru E15498485

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844




March 15,2021

Gilbert, Eric

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | К03   | Common     | 2   | 1   | Job Reference (optional)    | E15498410 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:36:04 ID:FEaVX2pFyTYpNh5FQLUNHIzano4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

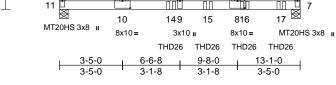


Scale = 1:61.3

## Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

|                                                                                                          | (X, T). [2.0-5-0,Euge],                                                                                                                                                                                                                    | [4.0-5-0,Luge]                                                                                                                                                         |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                       |                                                               |                          |                               |                          |                                 |                                    |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                              | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                              | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2                                                  | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.78<br>0.36<br>0.08                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                              | in<br>-0.04<br>-0.07<br>0.00                                  | (loc)<br>5-6<br>5-6<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 92 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS               | <ul> <li>2x4 SP No.2<br/>2x4 SP No.3</li> <li>Structural wood she<br/>6-0-0 oc purlins, ex</li> <li>Rigid ceiling directly<br/>bracing.</li> </ul>                                                                                         | cept end verticals.<br>applied or 10-0-0 o<br>7=0-5-8<br>C 11)<br>C 14), 7=-57 (LC 15)<br>C 1), 7=606 (LC 1)                                                           | DOL<br>Lum<br>Fully<br>ed or 5) This<br>c load<br>over<br>6) This<br>chor<br>7) * Thi<br>3-06 | L: ASCE 7-10; Pr=20.0 p<br>=1.15 Plate DOL=1.15);<br>ber DOL=1.15 Plate DOL<br>Exp.; Ct=1.10<br>alanced snow loads have<br>gn.<br>truss has been designed<br>of 12.0 psf or 1.00 times<br>hangs non-concurrent w<br>truss has been designed<br>d live load nonconcurrent<br>s truss has been designed<br>d live load nonconcurrent<br>s truss has been designed<br>d live load nonconcurrent<br>of the load nonconcurrent<br>of the load nonconcurrent<br>d live load nonco | Pf=20.0 p<br>L=1.15); C<br>e been co<br>d for great<br>flat roof I<br>d for a 10.<br>t with any<br>ed for a liv<br>as where<br>will fit bett | esf (flat roof s<br>category II; E<br>ensidered for<br>er of min roo<br>oad of 20.0 p<br>ve loads.<br>0 psf bottom<br>o ther live loa<br>ve load of 20<br>e load of 20<br>a rectangle | snow:<br>Exp B;<br>this<br>of live<br>osf on<br>ads.<br>.0psf |                          |                               |                          |                                 |                                    |
| TOP CHORD                                                                                                | Tension                                                                                                                                                                                                                                    | 127, 8-9=-321/150,<br>)=-295/176,<br>2=-313/137,<br>3=-406/134,                                                                                                        | 8) One<br>truss<br>This<br>later                                                              | RT7A USP connectors r<br>to bearing walls due to<br>connection is for uplift o<br>al forces.<br>ASE(S) Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ecommer<br>UPLIFT a                                                                                                                          | t jt(s) 7 and 8                                                                                                                                                                       | 5.                                                            |                          |                               |                          |                                 |                                    |
| BOT CHORD                                                                                                | ,                                                                                                                                                                                                                                          |                                                                                                                                                                        |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                       |                                                               |                          |                               |                          | minin                           | 11111                              |
| WEBS<br>NOTES                                                                                            | 3-6=-43/180, 2-6=-8                                                                                                                                                                                                                        | 3/257, 4-6=-76/240                                                                                                                                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                       |                                                               |                          |                               |                          | TH CA                           | Bolin                              |
|                                                                                                          | ced roof live loads have                                                                                                                                                                                                                   | been considered fo                                                                                                                                                     | r                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                       |                                                               |                          |                               | A.                       | OFESC                           | ich sin                            |
| 2) Wind: AS<br>Vasd=10<br>Cat. II; E:<br>zone and<br>1-8-0 to 3<br>9-6-8 to 9<br>cantileve<br>right expo | SCE 7-10; Vult=130mph<br>(3mph; TCDL=6.0psf; Br<br>xp B; Enclosed; MWFR<br>1 C-C Exterior (2) -1-4-0<br>3-6-8, Exterior (2) 3-6-8<br>9-11-4, Exterior (2) 9-11<br>r left and right exposed<br>osed;C-C for members<br>ons shown; Lumber DO | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>to 1-8-0, Interior (1)<br>to 9-6-8, Interior (1)<br>-4 to 12-11-4 zone;<br>; end vertical left an<br>and forces & MWFF | or<br>)<br>d                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                       |                                                               |                          | S, erritter                   |                          | SEA<br>0363                     | • -                                |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




GI 11111111 March 15,2021

| Job        | Truss | Truss Type    | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|---------------|-----|-----|-----------------------------|-----------|
| 21030024-A | K04   | Common Girder | 1   | 2   | Job Reference (optional)    | E15498411 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:04 ID:RpbTGAz0QDoR8EeEd1YmZfzan0p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-4-0 3-5-0 6-6-8 9-8-0 13-1-0 1-4-0 3-1-8 3-1-8 3-5-0 3-5-0 8x10 🅢 4 12 12 12 13 2x4 2x4 II 3 5 4x6、 4x6 2 6 3-2-10 Ŀ 11 ПП ΠΠ Πr 7



Scale = 1:62.7

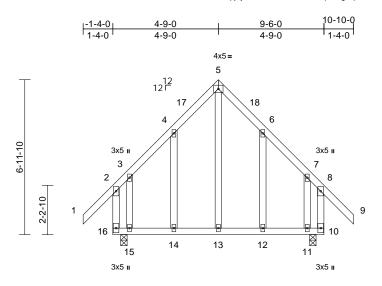
## Plate Offsets (X, Y): [4:0-6-8,0-3-0], [8:0-5-0,0-4-12], [10:0-5-0,0-4-12]

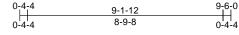
9-9-2

|                                                               | ,, ,, ,, ,, [1:0 0 0,0 0 0],                                                                                                                            | [0.0 0 0,0 1],[                                                                                              | 0.0 0 0,0                                         | =1                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                      |                              |                                              |                                                                                             |                                                                                      |                                                                                             |                                               |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL   | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                           | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                    | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC20 <sup>2</sup> | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                             | 0.27<br>0.58<br>0.61                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                             | in<br>0.04<br>-0.06<br>0.01  | (loc)<br>9-10<br>8-9<br>7                    | l/defl<br>>999<br>>999<br>n/a                                                               | L/d<br>240<br>180<br>n/a                                                             | PLATES<br>MT20<br>MT20HS<br>Weight: 279 lb                                                  | <b>GRIP</b><br>244/190<br>187/143<br>FT = 20% |
|                                                               | 2x6 SP No.2<br>2x4 SP No.3 *Excep<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing, Except:<br>6-0-0 oc bracing: 10 | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 or<br>-11.<br>11=0-5-8<br>_C 9)<br>LC 13) | ed or 3<br>c 4                                    | <ul> <li>except if not<br/>CASE(S) se<br/>provided to o<br/>unless other</li> <li>Unbalanced<br/>this design.</li> <li>Wind: ASCE<br/>Vasd=103m<br/>Cat. II; Exp E<br/>zone; cantile<br/>and right exp<br/>DOL=1.60</li> <li>TCLL: ASCE</li> </ul>                                                                                                       | considered equal<br>ed as front (F) or b<br>ction. Ply to ply co<br>distribute only load<br>wise indicated.<br>roof live loads hav<br>7-10; Vult=130mp<br>bh; TCDL=6.0psf;<br>8; Enclosed; MWF<br>ver left and right e<br>bosed; Lumber DC<br>57-10; Pr=20.0 ps | vack (B)<br>nnection<br>s noted<br>ve been<br>oh (3-sec<br>BCDL=6<br>RS (env<br>exposed<br>pL=1.60<br>f (roof liv | face in the LC<br>s have been<br>as (F) or (B),<br>considered for<br>cond gust)<br>0.0psf; h=25ft<br>elope) exteric<br>; end vertical<br>plate grip<br>re load: Lumb | or<br>;<br>or<br>left<br>wer | 14) Mir<br>trus<br>LOAD<br>1) Do<br>In<br>Ui | timum of<br>sto atta<br>CASE(S<br>ead + Sr<br>crease=<br>niform Lo<br>Vert: 1-:<br>oncentra | a dou<br>ach LU<br>) Sta<br>now (ba<br>1.15<br>bads (l<br>2=-60,<br>ted Lo<br>=-2460 | ble stud required<br>GT2 tiedown.<br>ndard<br>alanced): Lumber<br>b/ft)<br>2-4=-60, 4-6=-60 | ,                                             |
| FORCES                                                        | (lb) - Maximum Com<br>Tension<br>1-2=0/63, 2-3=-2414                                                                                                    | pression/Maximum                                                                                             | ,                                                 | DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow:<br>Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;<br>Fully Exp.; Ct=1.10<br>Unbalanced snow loads have been considered for this                                                                                                                                                             |                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                      |                              |                                              |                                                                                             |                                                                                      |                                                                                             |                                               |
| BOT CHORD                                                     | 4-12=-2374/880, 4-1<br>5-13=-3274/313, 5-6<br>2-11=-3312/925, 6-7<br>10-11=-268/239, 10-<br>9-14=-502/1981, 9-1<br>8-15=-502/1981, 8-1<br>7-47-47/20    | 5=-3269/190,<br>'=-4338/206<br>-14=-502/1981,<br>5=-502/1981,                                                | 8                                                 | <ul> <li>design.</li> <li>7) This truss has been designed for greater of min roof live<br/>load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on<br/>overhangs non-concurrent with other live loads.</li> <li>8) All plates are MT20 plates unless otherwise indicated.</li> <li>9) This truss has been designed for a 10.0 psf bottom</li> </ul> |                                                                                                                                                                                                                                                                 |                                                                                                                   |                                                                                                                                                                      |                              |                                              |                                                                                             |                                                                                      |                                                                                             | ROLIN                                         |
| WEBS                                                          | 7-17=-17/73<br>2-10=-611/2277, 6-8<br>3-10=-221/227, 4-10<br>4-9=-1522/3432, 4-8                                                                        | )=-914/50,                                                                                                   |                                                   | 0) * This truss I<br>on the bottor                                                                                                                                                                                                                                                                                                                       | ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w                                                                                                                                                                               | l for a liv<br>s where                                                                                            | e load of 20.0<br>a rectangle                                                                                                                                        | Opsf                         |                                              | 4                                                                                           | in                                                                                   | O: FESS                                                                                     | AL AL                                         |
| (0.131"x3"<br>Top chords<br>oc.<br>Bottom chords<br>staggered | to be connected toger<br>) nails as follows:<br>s connected as follows<br>ords connected as follow<br>at 0-4-0 oc.<br>ected as follows: 2x4 -           | s: 2x4 - 1 row at 0-9-<br>ows: 2x6 - 2 rows                                                                  | -0                                                | <ol> <li>One LUGT2<br/>truss to bear<br/>connection is<br/>forces.</li> <li>Use USP TH<br/>12-10d x 1-1<br/>2-0-0 oc mat</li> </ol>                                                                                                                                                                                                                      | by other members.<br>USP connectors r<br>ing walls due to U<br>s for uplift only and<br>ID26 (With 18-16d<br>/2 nails into Truss<br>k. starting at 6-0-1<br>ponnect truss(es) to                                                                                | ecomme<br>PLIFT at<br>does n<br>nails int<br>nails int<br>) or equi<br>2 from th                                  | i jt(s) 11. This<br>ot consider la<br>o Girder &<br>valent spaced<br>ie left end to                                                                                  | teral                        |                                              | 111100                                                                                      |                                                                                      | SEA<br>0363                                                                                 | 22<br>EER.K.                                  |

March 15,2021

Page: 1


818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | H01   | Common     | 1   | 1   | Job Reference (optional)    | E15498412 |

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Mon Mar 15 12:35:58 ID:J1tTPwA0RAsKWYY3pj1yeazanov-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1





| Loading     | (psf) | Spacing         | 2-0-0           | CSI       |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|-----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC        | 0.44 | Vert(LL) | -0.04 | 13    | >999   | 240 | MT20          | 244/190  |
| Snow (Pf)   | 20.0  | Lumber DOL      | 1.15            | BC        | 0.42 | Vert(CT) | -0.08 | 13    | >999   | 180 |               |          |
| TCDL        | 10.0  | Rep Stress Incr | YES             | WB        | 0.14 | Horz(CT) | 0.00  | 11    | n/a    | n/a |               |          |
| BCLL        | 0.0*  | Code            | IRC2015/TPI2014 | Matrix-MR |      |          |       |       |        |     |               |          |
| BCDL        | 10.0  |                 |                 |           |      |          |       |       |        |     | Weight: 76 lb | FT = 20% |

| LUMBER    |                                                                                          |
|-----------|------------------------------------------------------------------------------------------|
| TOP CHORD | 2x4 SP No.2                                                                              |
| BOT CHORD | 2x4 SP No.2                                                                              |
| WEBS      | 2x4 SP No.3                                                                              |
| OTHERS    | 2x4 SP No.3                                                                              |
| BRACING   |                                                                                          |
| TOP CHORD | Structural wood sheathing directly applied or<br>6-0-0 oc purlins, except end verticals. |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc<br>bracing.                                  |
| REACTIONS | (size) 11=0-3-8, 15=0-3-8                                                                |
|           | Max Horiz 15=223 (LC 13)                                                                 |
|           | Max Uplift 11=-49 (LC 15), 15=-49 (LC 14)                                                |
|           | Max Grav 11=457 (LC 1), 15=457 (LC 1)                                                    |
| FORCES    | (lb) - Maximum Compression/Maximum                                                       |
|           | Tension                                                                                  |
| TOP CHORD | 1-2=0/63, 2-3=-145/59, 3-4=-209/91,                                                      |
|           | 4-17=-228/180, 5-17=-220/193,                                                            |
|           | 5-18=-220/193, 6-18=-228/180, 6-7=-209/91,                                               |
|           | 7-8=-145/59, 8-9=0/63, 2-16=-171/119,                                                    |
|           | 8-10=-171/119                                                                            |
| BOT CHORD |                                                                                          |
|           | 13-14=-84/170, 12-13=-84/170,                                                            |
|           | 11-12=-84/170, 10-11=-84/170                                                             |
| WEBS      | 5-13=-170/172, 4-14=-96/117, 3-15=-191/64,<br>6-12=-96/117, 7-11=-191/64                 |

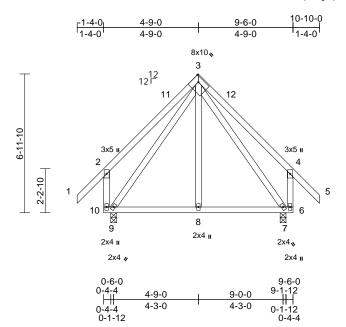
#### NOTES

5 L

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 11) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15 and 11. This connection is for uplift only and does not consider lateral forces.
- LOAD CASE(S) Standard






| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | H02   | Common     | 1   | 1   | Job Reference (optional)    | E15498413 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:59 ID:YmwsI?HfKx?25wkor6i3VTzanom-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:57.8

## Plate Offsets (X, Y): [3:Edge,0-2-12]

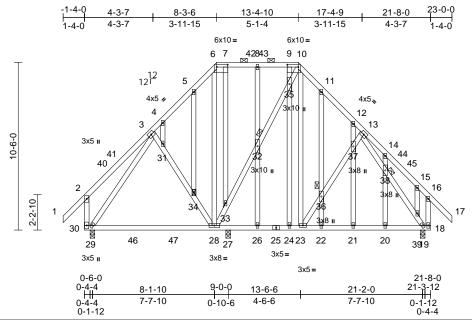
|                                                                                                           |                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                  |                                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                    |                                                       |                          |                               |                          |                                 |                                    |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                               | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                       | 0.41<br>0.15<br>0.29                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                           | in<br>-0.01<br>-0.01<br>0.00                          | (loc)<br>7-8<br>7-8<br>7 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 77 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORE<br>BOT CHORE<br>WEBS<br>BRACING<br>TOP CHORE<br>BOT CHORE<br>REACTIONS                | <ul> <li>2x4 SP No.2<br/>2x4 SP No.3</li> <li>Structural wood she<br/>6-0-0 cc purlins, exits</li> <li>Rigid ceiling directly<br/>bracing.</li> <li>(size) 7=0-3-8, S</li> <li>Max Horiz 9=-223 (L<br/>Max Uplift 7=-49 (LC</li> </ul>                                          | cept end verticals.<br>2 applied or 6-0-0 oc<br>9=0-3-8<br>.C 12)<br>C 15), 9=-49 (LC 14)                                                                                          | 7)                                     | design.<br>This truss ha<br>load of 12.0<br>overhangs m<br>This truss ha<br>chord live lo<br>* This truss<br>on the botto<br>3-06-00 tall<br>chord and a<br>One RT16A<br>truss to beal | snow loads have I<br>as been designed f<br>psf or 1.00 times f<br>on-concurrent with<br>as been designed<br>an onconcurrent i<br>has been designed<br>m chord in all area<br>by 2-00-00 wide wi<br>ny other members.<br>USP connectors r<br>ring walls due to U<br>tion is for uplift onl | for great<br>lat roof I<br>o other li<br>for a 10.<br>with any<br>I for a liv<br>s where<br>s where<br>ill fit betw<br>ecomme<br>PLIFT a | er of min roo<br>bad of 20.0 p<br>ve loads.<br>0 psf bottom<br>other live loa<br>re load of 20.<br>a rectangle<br>veen the bott<br>ended to com<br>t jt(s) 9 and 7 | f live<br>osf on<br>ads.<br>Opsf<br>tom<br>nect<br>7. |                          |                               |                          |                                 |                                    |
| FORCES                                                                                                    | Tension                                                                                                                                                                                                                                                                         |                                                                                                                                                                                    |                                        |                                                                                                                                                                                        | s.<br>Standard                                                                                                                                                                                                                                                                            | y and de                                                                                                                                 |                                                                                                                                                                    |                                                       |                          |                               |                          |                                 |                                    |
|                                                                                                           | 9-10=-15/65, 8-9=-6<br>6-7=-15/65                                                                                                                                                                                                                                               | 0/180, 7-8=-60/180,                                                                                                                                                                |                                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                    |                                                       |                          |                               |                          | 5000 1 1 I I                    |                                    |
| WEBS                                                                                                      | 3-8=0/183, 3-9=-276                                                                                                                                                                                                                                                             | 5/87, 3-7=-275/87                                                                                                                                                                  |                                        |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                    |                                                       |                          |                               |                          |                                 |                                    |
| NOTES<br>1) Unbaland<br>this designed                                                                     | ced roof live loads have<br>gn.                                                                                                                                                                                                                                                 | been considered fo                                                                                                                                                                 | r                                      |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                    |                                                       |                          |                               | ALL                      | ORTHUR                          | N'I''                              |
| Vasd=10<br>Cat. II; E<br>zone and<br>exposed<br>members<br>Lumber I<br>3) TCLL: AS<br>DOL=1.1<br>Lumber I | SCE 7-10; Vult=130mph<br>(3mph; TCDL=6.0psf; BK<br>xp B; Enclosed; MWFRS<br>1C-C Exterior (2) zone;<br>; end vertical left and rig<br>s and forces & MWFRS<br>DOL=1.60 plate grip DO<br>SCE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pf=<br>DOL=1.15 Plate DOL=1<br>.; Ct=1.10 | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown<br>DL=1.60<br>roof live load: Lumb<br>=20.0 psf (flat roof sr | or<br>ight<br>;<br>er<br>now:          |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                    |                                                       |                          |                               |                          | SEA<br>0363                     | • –                                |

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G١ mmm March 15,2021


| Job        | Truss | Truss Type                      | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|---------------------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | G01   | Piggyback Base Structural Gable | 1   | 1   | Job Reference (optional)    | E15498414 |

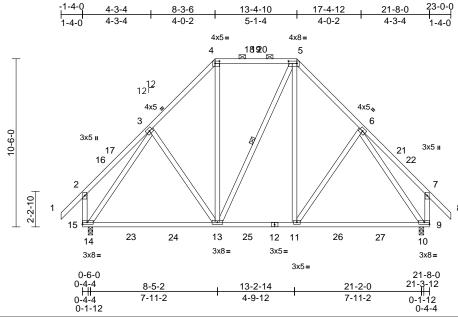
Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:35:54 ID:?3oFXfse6h8oxoj6wJaOjbzanqc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

SINEERING

818 Soundside Road Edenton, NC 27932

Page: 1




## Scale = 1:72.1 Plate Offsets (X, Y): [6:0-8-4,0-1-12], [10:0-8-4,0-1-12]

| Loading                                                                                                  | (psf)                                                                                                                                                                                                 | Spacing                                                                                                                                                               | 2-0-0                                                                               | CSI                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                   | DEFL                                                                                                                                                                                  | in                                    | (loc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l/defl                                                                                                                                                                          | L/d                                                                                                                                        | PLATES                                                                                                                                                                                                                                                                              | GRIP                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCLL (roof)                                                                                              | 20.0                                                                                                                                                                                                  | Plate Grip DOL                                                                                                                                                        | 1.15                                                                                | TC                                                                                                                                                                                                                                                                                                                                                          | 0.48                                                                                                                                              |                                                                                                                                                                                       |                                       | 28-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >999                                                                                                                                                                            | 240                                                                                                                                        | MT20                                                                                                                                                                                                                                                                                | 244/190                                                                                                                                                    |
| Snow (Pf)                                                                                                | 20.0                                                                                                                                                                                                  | Lumber DOL                                                                                                                                                            | 1.15                                                                                | BC                                                                                                                                                                                                                                                                                                                                                          | 0.53                                                                                                                                              |                                                                                                                                                                                       | -0.17                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >623                                                                                                                                                                            | 180                                                                                                                                        |                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |
| TCDL                                                                                                     | 10.0                                                                                                                                                                                                  | Rep Stress Incr                                                                                                                                                       | YES                                                                                 | WB                                                                                                                                                                                                                                                                                                                                                          | 0.66                                                                                                                                              | Horz(CT)                                                                                                                                                                              | 0.01                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/a                                                                                                                                                                             | n/a                                                                                                                                        |                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |
| BCLL                                                                                                     | 0.0*                                                                                                                                                                                                  | Code                                                                                                                                                                  | IRC2015/TP                                                                          | 2014 Matrix-MSH                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                            |                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |
| BCDL                                                                                                     | 10.0                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                            | Weight: 259 lb                                                                                                                                                                                                                                                                      | FT = 20%                                                                                                                                                   |
| UMBER<br>OP CHORD<br>OT CHORD<br>//EBS<br>ITHERS<br>IRACING<br>OP CHORD<br>OT CHORD<br>OINTS<br>EACTIONS | 2x4 SP No.2<br>2x4 SP No.3 *Excep<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Brace at Jt(s): 32,<br>34, 36, 38 | athing directly applie<br>cept end verticals, ar<br>-0 max.): 6-10.<br>applied or 10-0-0 oc<br>27=0-3-8, 29=0-3-8                                                     | d or<br>id<br><b>NOTES</b><br>1) Un<br>this                                         | balanced roof live loads h<br>design.                                                                                                                                                                                                                                                                                                                       | 6-28=-54<br>32-33=-1<br>10-35=-1<br>23-36=-2<br>13-37=-1<br>38=-866/<br>31=-12/12<br>7-33=-18/2<br>35=-169/<br>12-37=0/1<br>38=-63/52<br>ave been | /210,<br>43/142,<br>55/153,<br>22/189,<br>61/152,<br>), 38-39=-758/0<br>2, 8-32=-217/54<br>28, 5-34=-74/44<br>11-36=-137/85<br>09, 21-37=-11/<br>, 15-39=-88/44<br>considered for     | ,<br>1,<br>5,                         | <ol> <li>All 9) Tru<br/>bra</li> <li>Tru<br/>bra</li> <li>Gal</li> <li>Thi<br/>chc</li> <li>Thi<br/>chc</li> <li>* TI</li> <li>* TI</li> <li>on</li> <li>3-0</li> <li>chc</li> <li>Ti</li> <li< td=""><td>plates ar<br/>ss to be<br/>ced agai<br/>ble studs<br/>s truss h<br/>rd live lc<br/>nis truss<br/>the botto<br/>6-00 tall<br/>ord and a<br/>e RT16A<br/>ss to bea<br/>This con<br/>usider lat</td><td>e 2x4<br/>fully sl<br/>nst late<br/>space<br/>as bee<br/>bad nor<br/>has be<br/>m cho<br/>by 2-0<br/>ny oth<br/>USP of<br/>ring wannectio<br/>eral for</td><td>MT20 unless oth<br/>heathed from one<br/>eral movement for<br/>ad at 2-0-0 oc.<br/>an designed for a<br/>nconcurrent with<br/>een designed for<br/>rd in all areas wh<br/>0-00 wide will fit<br/>er members, with<br/>connectors recon<br/>alls due to UPLIF<br/>on is for uplift only<br/>rces.</td><td>any other live loads<br/>a live load of 20.0p:<br/>lere a rectangle<br/>between the bottom<br/>h BCDL = 10.0psf.<br/>nmended to connec<br/>T at jt(s) 29, 19, an</td></li<></ol> | plates ar<br>ss to be<br>ced agai<br>ble studs<br>s truss h<br>rd live lc<br>nis truss<br>the botto<br>6-00 tall<br>ord and a<br>e RT16A<br>ss to bea<br>This con<br>usider lat | e 2x4<br>fully sl<br>nst late<br>space<br>as bee<br>bad nor<br>has be<br>m cho<br>by 2-0<br>ny oth<br>USP of<br>ring wannectio<br>eral for | MT20 unless oth<br>heathed from one<br>eral movement for<br>ad at 2-0-0 oc.<br>an designed for a<br>nconcurrent with<br>een designed for<br>rd in all areas wh<br>0-00 wide will fit<br>er members, with<br>connectors recon<br>alls due to UPLIF<br>on is for uplift only<br>rces. | any other live loads<br>a live load of 20.0p:<br>lere a rectangle<br>between the bottom<br>h BCDL = 10.0psf.<br>nmended to connec<br>T at jt(s) 29, 19, an |
| <b>ORCES</b><br>OP CHORD                                                                                 | 3-41=-164/190, 3-4=                                                                                                                                                                                   | C 14)<br>C 40), 27=381 (LC 3<br>C 40)<br>pression/Maximum<br>/159, 40-41=-169/17<br>-606/161, 4-5=-548/                                                               | +), Va<br>(9), Ca<br>1-8<br>17<br>2, rig<br>185, for                                | nd: ASCE 7-10; Vult=130<br>sd=103mph; TCDL=6.0ps<br>t. II; Exp B; Enclosed; MV<br>ee and C-C Exterior (2) -1<br>-0 to 4-0-7, Exterior (2) 4<br>6-10 to 20-0-0, Exterior (<br>titlever left and right expo<br>t exposed;C-C for memb<br>reactions shown; Lumber                                                                                              | f; BCDL=6<br>/FRS (env<br>-4-0 to 1-8<br>0-7 to 17-<br>2) 20-0-0 t<br>sed ; end<br>ers and fo                                                     | 6.0psf; h=25ft;<br>relope) exterior<br>8-0, Interior (1)<br>6-10, Interior (1)<br>o 23-0-0 zone;<br>vertical left and<br>rces & MWFRS                                                 |                                       | or t<br>bot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 | tation o<br>d.                                                                                                                             | of the purlin along                                                                                                                                                                                                                                                                 |                                                                                                                                                            |
| 30T CHORD                                                                                                | 8-42=-384/206, 8-43<br>9-43=-384/206, 9-10<br>10-11=-540/273, 11<br>12-13=-709/157, 13<br>14-44=-153/200, 44<br>15-45=-174/190, 15<br>16-17=0/63, 2-30=-3                                             | =-384/206,<br>12=-580/201,<br>14=-124/248,<br>45=-155/192,<br>16=-169/175,<br>122/230, 16-18=-269,<br>140/551,<br>47=-140/551,<br>17=-22/408,<br>13=0/453, 21-22=0/43 | 3) Tr<br>on<br>se<br>or<br>4) TC<br>232 Lu<br>5) Un<br>5) Un<br>de<br>de<br>53, loa | L=1.60<br>iss designed for wind load<br>y. For studs exposed to v<br>a Standard Industry Gable<br>consult qualified building v<br>LL: ASCE 7-10; Pr=20.0<br>L=1.15 Plate DOL=1.15)<br>mber DOL=1.15 Plate DOL<br>y Exp.; Ct=1.10<br>balanced snow loads hav<br>sign.<br>s truss has been designed<br>d of 12.0 psf or 1.00 time<br>rrhangs non-concurrent w | vind (norm<br>End Deta<br>designer a<br>osf (roof lin<br>Pf=20.0 p<br>L=1.15); C<br>e been co<br>d for great<br>s flat roof l                     | hal to the face),<br>ills as applicable<br>s per ANSI/TPI<br>ve load: Lumber<br>issf (flat roof sno<br>Category II; Exp<br>nsidered for this<br>her of min roof li<br>oad of 20.0 psf | e,<br>1.<br>r<br>ww:<br>B;<br>s<br>ve |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mannana.                                                                                                                                                                        |                                                                                                                                            | SEA<br>0363                                                                                                                                                                                                                                                                         | 22<br>EER. A.                                                                                                                                              |

| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | G02   | Piggyback Base | 2   | 1   | Job Reference (optional)    | E15498415 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:55 ID:3DkMEbFjaWAFnj9Go29u0Lzanq6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Plate Offsets (X, Y): [4:0-3-4,0-1-12], [5:0-6-4,0-1-12]

Scale = 1:71.9

| Loading     | (psf) | Spacing         | 2-0-0           | CSI        |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
|-------------|-------|-----------------|-----------------|------------|------|----------|-------|-------|--------|-----|----------------|----------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC         | 0.67 | Vert(LL) | -0.10 | 13-14 | >999   | 240 | MT20           | 244/190  |
| Snow (Pf)   | 20.0  | Lumber DOL      | 1.15            | BC         | 0.54 | Vert(CT) | -0.20 | 13-14 | >999   | 180 |                |          |
| TCDL        | 10.0  | Rep Stress Incr | YES             | WB         | 0.87 | Horz(CT) | 0.02  | 10    | n/a    | n/a |                |          |
| BCLL        | 0.0*  | Code            | IRC2015/TPI2014 | Matrix-MSH |      |          |       |       |        |     |                |          |
| BCDL        | 10.0  |                 |                 |            |      |          |       |       |        |     | Weight: 174 lb | FT = 20% |

| LUMBER    |                                                                                                                                 | 2) |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|----|
| TOP CHORD | 2x4 SP No.2                                                                                                                     |    |
| BOT CHORD | 2x4 SP No.2                                                                                                                     |    |
| WEBS      | 2x4 SP No.3 *Except* 13-5:2x4 SP No.2                                                                                           |    |
| BRACING   |                                                                                                                                 |    |
| TOP CHORD | Structural wood sheathing directly applied or 5-10-15 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. |    |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc<br>bracing.                                                                         |    |
| WEBS      | 1 Row at midpt 5-13                                                                                                             | 3) |
| REACTIONS | (size) 10=0-3-8, 14=0-3-8                                                                                                       |    |
|           | Max Horiz 14=-312 (LC 12)                                                                                                       |    |
|           | Max Uplift 10=-107 (LC 15), 14=-107 (LC 14)                                                                                     | 4) |
|           | Max Grav 10=1114 (LC 40), 14=1114 (LC 40)                                                                                       |    |
| FORCES    | (lb) - Maximum Compression/Maximum<br>Tension                                                                                   | 5) |
| TOP CHORD | 1-2=0/63, 2-16=-230/146, 16-17=-167/158,                                                                                        |    |
|           | 3-17=-167/177, 3-4=-821/266,                                                                                                    | 6) |
|           | 4-18=-480/246, 18-19=-480/246,                                                                                                  | 7) |
|           | 19-20=-480/246, 5-20=-480/246,                                                                                                  |    |
|           | 5-6=-821/265, 6-21=-167/177,                                                                                                    | 8) |
|           | 21-22=-167/158, 7-22=-230/146, 7-8=0/63,                                                                                        |    |
| BOT CHORD | 2-15=-318/218, 7-9=-317/218                                                                                                     |    |
| BOICHORD  | 14-15=0/100, 14-23=-172/640,<br>23-24=-172/640, 13-24=-172/640,                                                                 | 0) |
|           | 13-25=-46/524, 12-25=-46/524,                                                                                                   | 9) |
|           | 11-12=-46/524, 11-26=-6/520, 26-27=-6/520,                                                                                      |    |
|           | 10-27=-6/520, 9-10=0/100                                                                                                        |    |
| WEBS      | 3-13=-156/212, 4-13=-73/284,                                                                                                    | 10 |
|           | 5-13=-115/116, 5-11=-92/346, 6-11=-156/212,                                                                                     |    |
|           | 3-14=-911/51, 6-10=-910/51                                                                                                      |    |
| NOTES     |                                                                                                                                 | LC |

Unbalanced roof live loads have been considered for

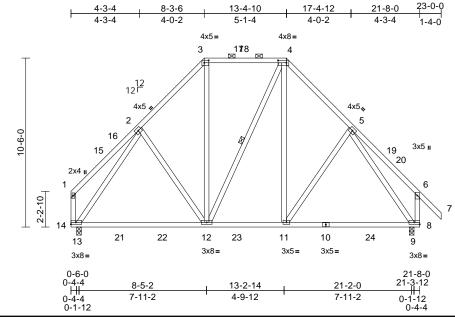
1)

this design.

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-4-0 to 1-8-0, Interior (1) 1-8-0 to 4-0-7, Exterior (2) 4-0-7 to 17-6-9, Interior (1) 17-6-9 to 20-0-0, Exterior (2) 20-0-0 to 23-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

- DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- i) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14 and 10. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard






| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | G03   | Piggyback Base | 1   | 1   | Job Reference (optional)    | E15498416 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:56 ID:baDqAtePofKaEnBcETFdrlzanpb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Plate Offsets (X, Y): [3:0-3-4,0-1-12], [4:0-6-4,0-1-12]

1 Row at midpt

Tension

6-8=-319/218

8-9=0/100

Max Horiz 13=-300 (LC 10)

4-12

9=0-3-8, 13=0-3-8

Max Uplift 9=-106 (LC 15), 13=-77 (LC 14) Max Grav 9=1118 (LC 40), 13=1021 (LC 40)

(Ib) - Maximum Compression/Maximum

6-20=-232/147, 6-7=0/63, 1-14=-225/107,

10-11=-5/524, 10-24=-5/524, 9-24=-5/524,

4-12=-113/117, 4-11=-92/348, 5-11=-156/213,

1-15=-229/97. 15-16=-177/101.

3-17=-482/247, 17-18=-482/247, 4-18=-482/247, 4-5=-826/266,

5-19=-169/177, 19-20=-169/158,

21-22=-169/652, 12-22=-169/652,

12-23=-45/528, 11-23=-45/528,

2-12=-164/210, 3-12=-72/292,

2-13=-905/90, 5-9=-915/49

1) Unbalanced roof live loads have been considered for

13-14=0/87, 13-21=-169/652,

2-16=-156/117, 2-3=-831/270,

Scale = 1:71.6

WEBS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

**REACTIONS** (size)

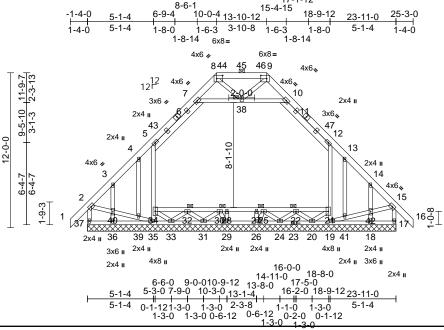
| Loading<br>TCLL (roof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (psf)<br>20.0                                                                                             | Spacing<br>Plate Grip DOL               | 2-0-0<br>1.15 |                                                              | CSI<br>TC                                              | 0.67                                | DEFL<br>Vert(LL)                                | in<br>-0.11 | (loc)<br>9-11 | l/defl<br>>999 | L/d<br>240 | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|-------------------------------------------------|-------------|---------------|----------------|------------|----------------|------------------------|
| Snow (Pf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0                                                                                                      | Lumber DOL                              | 1.15          |                                                              | BC                                                     | 0.54                                | Vert(CT)                                        | -0.20       | 9-11          | >999           | 180        | -              |                        |
| TCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                                      | Rep Stress Incr                         | YES           |                                                              | WB                                                     | 0.88                                | Horz(CT)                                        | 0.02        | 9             | n/a            | n/a        |                |                        |
| BCLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0*                                                                                                      | Code                                    | IRC2015/      | /TPI2014                                                     | Matrix-MSH                                             |                                     |                                                 |             |               |                |            |                |                        |
| BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                                      |                                         |               |                                                              |                                                        |                                     |                                                 |             |               |                |            | Weight: 171 lb | FT = 20%               |
| LUMBER       2)       Wind: ASCE 7-10; Vult=130mph (3-second gust)         TOP CHORD       2x4 SP No.2       Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;         BOT CHORD       2x4 SP No.2       Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior         WEBS       2x4 SP No.3 *Except* 12-4:2x4 SP No.2       cat. II; Exp B; Enclosed; MWFRS (envelope) exterior         BRACING       3-1-12 to 4-0-7, Exterior (2) 0-1-12 to 3-1-12, Interior (1)         TOP CHORD       Crustwal wood exertise directly explicited |                                                                                                           |                                         |               |                                                              |                                                        |                                     |                                                 |             |               |                |            |                |                        |
| TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Structural wood she<br>5-10-12 oc purlins,<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing. | except end verticals<br>0-0 max.): 3-4. | s, and<br>c   | cantilever left<br>right expose<br>for reactions<br>DOL=1.60 | ft and right expos<br>d;C-C for membe<br>shown; Lumber | ed ; end ;<br>ers and fo<br>DOL=1.6 | vertical left ar<br>rces & MWFI<br>) plate grip | nd<br>RS    |               |                |            |                |                        |

| 3) | TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber   |
|----|--------------------------------------------------------|
|    | DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: |
|    | Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;   |
|    | Fully Exp.; Ct=1.10                                    |

| 4) | Unbalanced snow | loads | have | been | considered for this |  |
|----|-----------------|-------|------|------|---------------------|--|
|    | design.         |       |      |      |                     |  |

- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT16A USP connectors recommended to connect 9) truss to bearing walls due to UPLIFT at jt(s) 13 and 9. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard






| Job        | Truss | Truss Type            | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|-----------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | A01   | Attic Supported Gable | 1   | 1   | Ich Reference (ontional)    | E15498417 |

Page: 1

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:35:16 ID:SeB4K7eHufP7JGViWcGi7IzansB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Scale = | 1:89.3 |
|---------|--------|
|---------|--------|

| Plate Offsets (                                                                 | (X, Y): [8:0-                                                                                                                                                                          | 5-8,0-3-0],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [9:0-5-8,0-3-0]                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                    | -3-0 1-3-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )                                                          |                                            |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 |                  |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                     |                                                                                                                                                                                        | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                              | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2                        | 015/TPI2014                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15<br>0.13<br>0.24                                                                                                                                                                                                                                                                                                                                                                               | Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in<br>n/a<br>n/a<br>0.01                                   | (lo                                        | oc) l/defl<br>- n/a<br>- n/a<br>17 n/a                                                                                                                                                                                                                         | 999                                                                                                                                                                                             | MT20             | <b>GRIP</b><br>244/1<br>b FT = 2                                                                                                                                                                                             | 90                                                                                                                                                                                                                                                                     |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>BRACING<br>TOP CHORD<br>JOINTS<br>REACTIONS | 2x4 SP No<br>2x4 SP No<br>2x4 SP No<br>Structural<br>6-0-0 oc p<br>2-0-0 oc p<br>Rigid ceilli<br>bracing.<br>1 Brace ai<br>22, 30, 25<br>(size)<br>Max Horiz<br>Max Uplift<br>Max Grav | b.2<br>b.3 *Excep<br>b.3<br>wood she<br>burlins, ex<br>burlins (6-C<br>ng directly<br>t Jt(s): 32,<br>5, 38<br>17=23-11<br>24=23-11<br>24=23-11<br>36=23-11<br>36=23-11<br>36=23-11<br>36=23-11<br>36=23-11<br>17=-71 (L<br>17=-70 (L<br>19=459 (L<br>24=253 (L<br>29=266 (L)<br>33=268 (L)<br>33=28 (L)<br>34=28 (L)<br>34=28 (L)<br>35=28 (L)<br>35=28 (L)<br>35=28 (L)<br>35=28 (L)<br>35=28 (L)<br>35=28 (L)<br>35=28 (L | athing directly applie<br>cept end verticals, ar<br>l-0 max.): 8-9.<br>applied or 6-0-0 oc<br>-0, 18=23-11-0,<br>-0, 20=23-11-0,<br>-0, 20=23-11-0,<br>-0, 35=23-11-0,<br>-0, 35=23-11-0,<br>-0, 35=23-11-0<br>[C 12], 18=-112 (LC -<br>(LC 14), 37=-83 (LC -<br>LC 14), 37=-83 (LC -<br>2C 42), 18=169 (LC 3)<br>-C 52), 20=258 (LC 2)<br>-C 21), 26=266 (LC 2)<br>-C 21), 26=263 (LC 2)<br>-C 21), 26=263 (LC 2)<br>-C 23), 37=709 (LC 4)<br>pression/Maximum | 15),<br>14),<br>10)<br>30),<br>21),<br>21),<br>21),<br>30), | TOP CHORD<br>BOT CHORD<br>WEBS | $\begin{array}{l} 2.37 = -694/85, \\ 3.4 = -622/114, \\ 4.5 + 6-303/68, \\ 4.5 + 60 = -303/68, \\ 10 - 11 = -567/16, \\ 12 - 47 = -712/13, \\ 13 - 14 = -622/10, \\ 15 - 16 = 0/63, \\ 15 - 36 - 37 = -311/30; \\ 33 - 35 = -82/426, \\ 29 - 31 = -37/219, \\ 24 - 26 = -39/220, \\ 20 - 23 = -48/32, \\ 20 - 23 = -48/32, \\ 20 - 31 = -37/219, \\ 24 - 26 = -39/246, \\ 22 - 25 = -25/207, \\ 24 - 26 = -39/246, \\ 22 - 25 = -25/207, \\ 24 - 26 = -39/449, \\ 36 - 32 = -36/42, \\ 35 - 34 = -69/449, \\ 35 - 34 = -69/449, \\ 35 - 34 = -69/449, \\ 35 - 34 = -69/449, \\ 35 - 34 = -69/449, \\ 35 - 34 = -86/450, \\ 5 - 34 = -48/27, \\ 32 - 33 = -128/10, \\ 31 - 32 = -159/0, \\ 24 - 25 = -30/0, \\ 24 - 25 = -30/0, \\ 29 - 38 = -41/103, \\ 36 - 40 = -223/14, \\ 14 - 42 = -211/117, \\ \end{array}$ | 4-5=-520/11<br>6-7=-567/<br>44-45=-303<br>9-46=-303<br>1, 11-47=-5<br>4, 12-13=-5<br>4, 12-13=-5<br>4, 12-13=-5<br>4, 12-13=-5<br>4, 12-13=-5<br>3, 35-36=-33<br>31-33=-34<br>26-29=-43<br>23-24=-48<br>19-20=-77<br>15-42=-72<br>10-35=-42<br>34-35=-42<br>19-21=-45<br>3, 19-41=-7<br>15-42=-72<br>10-38=-22<br>20-21=-16<br>20-22=-12<br>22-24=-167<br>29-30=-73/0<br>6-27=-90/0<br>4, 13-41=-2 | 23, 5-43=-71<br>161, 7-8=-39<br>//68, 9-10=-3<br>7/0/149,<br>120/111,<br>129/105,<br>6<br>11/303,<br>//344,<br>//185,<br>//352,<br>//424,<br>11/32-34=-1<br>//246,<br>12426,<br>12426,<br>12426,<br>12426,<br>12426,<br>12426,<br>12427,<br>14/155,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/455,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>12/451,<br>1/450,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>10/170,<br>1 | 2/134,<br>2/85,<br>92/85,<br>9/153,<br>5/24,<br>/0,<br>03, | <ul><li>3)</li><li>4)</li><li>5)</li></ul> | Vasd=103/<br>Cat. II; Exp<br>zone and (<br>1-11-5 to 5<br>18-1-11 to zone; cant<br>and right e<br>MWFRS fc<br>grip DOL=<br>Truss desis<br>only. For s<br>see Standd<br>or consult<br>TCLL: ASC<br>DOL=1.15<br>Lumber DC<br>Fully Exp.;<br>Unbalance<br>design. | mph; T<br>b B; En<br>C-C Ex<br>i-9-5, E<br>21-11-<br>ilever li k<br>xposed<br>or react<br>1.60<br>gned fo<br>studs e<br>ard Ind<br>qualifie<br>CE 7-10<br>Plate I<br>DL=1.1<br>Ct=1.'<br>d snov | or loads have be | CDL=6.0p:<br>S (envelop<br>to 1-11-5,<br>5 to 18-1-1-<br>21-11-11<br>posed ; en<br>ers and fc<br>mber DOL<br>the plane<br>(normal tt<br>d Details a<br>gner as per<br>roof live lo<br>20.0 psf (f<br>15); Cates<br>en consid | sf; h=25ft;<br>be) exterior<br>Interior (1)<br>11, Interior (1)<br>12, Interior (1)<br>to 25-3-0<br>d vertical left<br>prces &<br>=1.60 plate<br>of the truss<br>to the face),<br>as applicable,<br>or ANSI/TPI 1.<br>ad: Lumber<br>flat roof snow:<br>gory II; Exp B; |
|                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | NOTES                          | d roof live loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | have been                                                                                                                                                                                                                                                                                                                                                                                          | considered f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or                                                         |                                            |                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                               | A.En.            | -R                                                                                                                                                                                                                           | in E                                                                                                                                                                                                                                                                   |

1) Unbalanced roof live loads have been considered for this design.



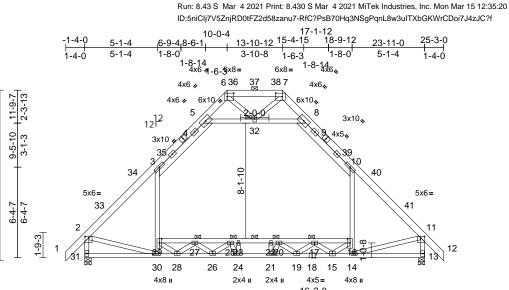
Unummin March 15,2021

| Job                          | Truss      | Truss Type            | Qty            | Ply          | 89 Lake Forest-Roof-BB-2086                    |           |
|------------------------------|------------|-----------------------|----------------|--------------|------------------------------------------------|-----------|
| 21030024-A                   | A01        | Attic Supported Gable | 1              | 1            | Job Reference (optional)                       | E15498417 |
| Carter Components Chesapeake | VA - 23323 | Run: 8 43 S Mar 4 20  | )21 Print: 8 4 | 30 S Mar 4 3 | 2021 MiTek Industries Inc. Mon Mar 15 12:35:16 | Page: 2   |

ID:SeB4K7eHufP7JGViWcGi7IzansB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components, Chesapeake, VA - 23323,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 3x5 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 5-7, 10-12, 7-38, 10-38; Wall dead load (5.0psf) on member (s).5-34, 12-21
- 15) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 37, 17, 35, 19, 36, and 18. This connection is for uplift only and does not consider lateral forces.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Page: 2

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | A02   | Attic      | 5   | 1   | Job Reference (optional)    | E15498418 |



 16-2-04x\$8-9-12

 14-11-0

 14-11-0

 14-11-0

 14-11-0

 14-11-0

 14-11-0

 14-11-0

 14-11-0

 14-11-0

 13-10

 5-1-4

 5-1-4

 5-1-4

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

 1-10

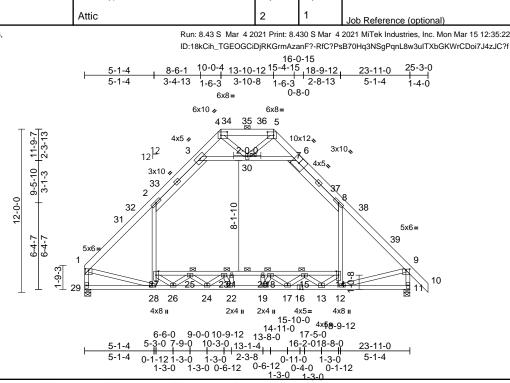
 1-10

Scale = 1:81

Plate Offsets (X, Y): [2:0-3-4,0-1-0], [6:0-5-8,0-3-0], [7:0-5-8,0-3-0], [11:0-3-4,0-1-0]

12-0-0

|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          | ,,, [                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                            |                                                                                                |                                                                                                                                                      |                                                                                                                 | -                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading                                                                                              | (psf)                                                                                                                                                                                                                                                                                                                                                                    | Spacing                                                                                                                                                                                                                                  | 2-0-0                                                                                                                                                                                                                                                    | CSI                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                          | DEFL                                                                                                                                                                                                                | in                                                                         | (loc)                                                                                          | l/defl                                                                                                                                               | L/d                                                                                                             | PLATES                                                                                                                                                                                                                                    | GRIP                                                                                                                                                                                                                                   |
| TCLL (roof)                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                                     | Plate Grip DOL                                                                                                                                                                                                                           | 1.15                                                                                                                                                                                                                                                     | TC                                                                                                                                                                                                                                                                                                                                                                | 0.80                                                                                                                                                                                     | Vert(LL)                                                                                                                                                                                                            |                                                                            | 22-23                                                                                          | >999                                                                                                                                                 | 240                                                                                                             | MT20                                                                                                                                                                                                                                      | 244/190                                                                                                                                                                                                                                |
| Snow (Pf)                                                                                            | 20.0                                                                                                                                                                                                                                                                                                                                                                     | Lumber DOL                                                                                                                                                                                                                               | 1.15                                                                                                                                                                                                                                                     | BC                                                                                                                                                                                                                                                                                                                                                                | 0.79                                                                                                                                                                                     | Vert(CT)                                                                                                                                                                                                            | -0.39                                                                      |                                                                                                | >718                                                                                                                                                 | 180                                                                                                             |                                                                                                                                                                                                                                           | 210.000                                                                                                                                                                                                                                |
| TCDL                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                     | Rep Stress Incr                                                                                                                                                                                                                          | YES                                                                                                                                                                                                                                                      | WB                                                                                                                                                                                                                                                                                                                                                                | 0.61                                                                                                                                                                                     | Horz(CT)                                                                                                                                                                                                            | 0.05                                                                       | 13                                                                                             | n/a                                                                                                                                                  | n/a                                                                                                             | 1                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                        |
| BCLL                                                                                                 | 0.0*                                                                                                                                                                                                                                                                                                                                                                     | Code                                                                                                                                                                                                                                     | IRC2015/TPI20                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   | 0.01                                                                                                                                                                                     | Attic                                                                                                                                                                                                               |                                                                            | 16-29                                                                                          | >999                                                                                                                                                 | 360                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                        |
| BCDL                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                     | Code                                                                                                                                                                                                                                     | 11(02013/11/120                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                          | Auto                                                                                                                                                                                                                | -0.12                                                                      | 10-23                                                                                          | 2000                                                                                                                                                 | 500                                                                                                             | Weight: 242 II                                                                                                                                                                                                                            | o FT = 20%                                                                                                                                                                                                                             |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>JOINTS<br>REACTIONS | 2x6 SP 2400F 2.0E<br>6-7,3-5,8-10:2x6 SP<br>2x4 SP No.2 *Excep<br>2x4 SP No.3 *Excep<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins (10-<br>Rigid ceiling directly<br>bracing. Except:<br>3-6-0 oc bracing: 20<br>3-9-0 oc bracing: 25<br>5-10-0 oc bracing: 2<br>1 Brace at Jt(s): 32,<br>27, 17, 25, 20<br>(size) 13=0-5-4,<br>Max Horiz 31=-335 ( | No.2 <sup>'</sup><br>t* 31-18:2x4 SP No.2<br>t* 5-8:2x4 SP No.2<br>athing directly applie-<br>cept end verticals, ar<br>0-0 max.): 6-7.<br>applied or 10-0-0 oc<br>-25<br>-27, 17-20<br>7-29, 16-17<br>31=0-5-8<br>LC 12)                | d or<br>d<br>1) Unba<br>this d<br>2) Wind<br>Vasd:<br>Cat. I<br>zone<br>1-8-0<br>18-1-<br>cantil                                                                                                                                                         | 29-30=-187/75,<br>10-16=0/793, 5-<br>8-32=-1701/134<br>6-32=-118/190,<br>28-29=0/1151, 1<br>15-17=-1105/0,<br>25-26=-526/0, 1<br>20-21=-39/258,<br>21-22=-177/36<br>anced roof live loads h<br>ssign.<br>ASCE 7-10; Vult=130r<br>=103mph; TCDL=6.0ps<br>; Exp B; Enclosed; MW<br>and C-C Exterior (2) -1<br>to 5-9-5, Exterior (2) -1<br>1to 22-3-0, Exterior (2) | 32=-1702/,<br>2-30=0/1<br>7-32=-118<br>5-16=0/11<br>26-27=0/6<br>9-20=-528<br>23-24=-17<br>ave been<br>mph (3-sec<br>f; BCDL=6<br>//FRS (env<br>-4-0 to 1-8<br>9-5 to 18<br>2) 22-3-0 tr | 136,<br>047, 11-14=0,<br>/190,<br>55, 27-28=-1<br>02, 17-19=0/(<br>/0, 24-25=-38<br>7/34,<br>considered fo<br>cond gust)<br>6.0psf; h=25ft;<br>elope) exteric<br>-0, Interior (1]<br>-11, Interior<br>o 25-3-0 zone | /1051,<br>108/0,<br>602,<br>3/259,<br>or<br>;<br>;<br>or<br>)<br>(1)<br>3; | on 1<br>3-0<br>cho<br>10) Cei<br>5-3<br>10-<br>11) Bot<br>cho<br>25-<br>12) Gra<br>or t<br>bot | the bottc<br>6-00 tall<br>ord and a<br>ling dea<br>2, 8-32;<br>16<br>tom cho<br>ord dead<br>27, 23-2<br>aphical p<br>he orien<br>tom cho<br>c room c | om cho<br>by 2-0<br>any oth<br>d load<br>Wall d<br>load (5<br>5, 22-2<br>urlin re<br>tation o<br>rd.<br>checked | een designed fc<br>rd in all areas v<br>0-00 wide will fi<br>er members.<br>(5.0 psf) on me<br>dead load (5.0ps<br>load (40.0 psf)<br>5.0 psf) applied<br>23, 20-22, 17-20<br>epresentation do<br>of the purlin aloo<br>d for L/360 defi- | or a live load of 20.0psf<br>where a rectangle<br>it between the bottom<br>mber(s). 3-5, 8-10,<br>sf) on member(s).3-29,<br>and additional bottom<br>only to room. 27-29,<br>0, 16-17<br>bes not depict the size<br>ing the top and/or |
| FORCES                                                                                               | Max Grav 13=1780<br>(Ib) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          | for rea                                                                                                                                                                                                                                                  | exposed;C-C for memb<br>actions shown; Lumber                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                          |                                                                                                                                                                                                                     | RS                                                                         |                                                                                                |                                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                           | 11.000                                                                                                                                                                                                                                 |
| TOP CHORD                                                                                            | 1-2=0/63, 2-33=-173<br>3-34=-1567/0, 3-35=<br>4-35=-1111/106, 4-5<br>6-36=0/545, 36-37=(<br>9-39=-1111/106, 10-<br>10-40=-1565/0, 40-4<br>11-41=-1735/0, 11-1<br>11-13=-1732/0<br>30-31=-317/458, 28-<br>26-28=0/2734, 24-22<br>19-21=0/3449, 18-19                                                                                                                      | -1151/102,<br>=-862/139, 5-6=-164<br>)/545, 37-38=0/545,<br>4/367, 8-9=-861/139<br>39=-1151/102,<br>1=-1599/0,<br>2=0/63, 2-31=-1732/<br>30=-39/1215,<br>5=0/3448, 21-24=0/3<br>3=0/2580, 15-18=0/2<br>4=-49/189, 27-29=-9<br>5=-2714/0, | DOL=           /367,         Lumb           Fully         Unba           desig         5)           0,         5)           55)         This t           100,         1000           553,         7)           800,         8)           200,         8) | ASCE 7-10; Pr=20.0 p<br>1.15 Plate DOL=1.15);<br>er DOL=1.15 Plate DO<br>Exp.; Ct=1.10<br>anced snow loads hav                                                                                                                                                                                                                                                    | Pf=20.0 p<br>L=1.15); C<br>e been cor<br>d for great<br>s flat roof le<br>rith other li<br>o prevent<br>ss otherwid<br>d for a 10.                                                       | sf (flat roof sr<br>category II; Ex<br>ansidered for th<br>er of min roof<br>boad of 20.0 pr<br>ve loads.<br>water ponding<br>se indicated.<br>0 psf bottom                                                         | now:<br>kp B;<br>his<br>f live<br>sf on<br>g.                              |                                                                                                | A CHINE                                                                                                                                              |                                                                                                                 | SE/<br>0363                                                                                                                                                                                                                               | NEER.K                                                                                                                                                                                                                                 |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932 Page: 1

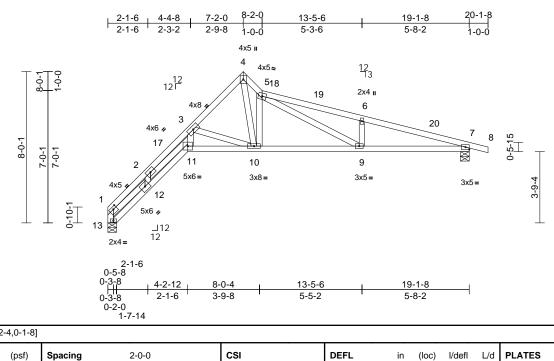
| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | A03   | Attic      | 2   | 1   | Job Reference (optional)    | E15498419 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:22

Page: 1



Scale = 1:84.7


|                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               | <u>1-3-0 1-3-0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X, Y): [1:0-3-0,0-1-4],                                                                                                                                                                                                                                                                      | [4:0-5-8,0-3-0], [5:0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5-8,0-3-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , [7:0-6-0,0-4                                                                                                                                                                                                                         | -12], [9:0-3-4,0-1-0]                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/TPI2014                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                               | 0.80<br>0.79<br>0.62                                                                                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Attic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.40<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20-21<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l/defl<br>>999<br>>715<br>n/a<br>>999                                                                                                                                                                                                                                                                                                                  | L/d<br>240<br>180<br>n/a<br>360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLATES<br>MT20<br>Weight: 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>GRIP</b><br>244/1<br>b FT = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SP No.2<br>2x4 SP No.2 *Excep<br>2x4 SP No.3 *Excep<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins (10-<br>Rigid ceiling directly<br>bracing. Except:<br>3-6-0 oc bracing: 18<br>3-9-0 oc bracing: 23<br>5-10-0 oc bracing: 2<br>1 Brace at Jt(s): 30,<br>25, 15, 23, 18 | t* 29-16:2x4 SP No.<br>t* 3-6:2x4 SP No.2<br>athing directly applie<br>cept end verticals, ar<br>0-0 max.): 4-5.<br>applied or 10-0-0 oc<br>-23<br>-25, 15-18<br>5-27, 14-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2x6<br>I<br>Id or<br>Id<br>N(<br>1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OTES<br>Unbalance<br>this design<br>Wind: ASC<br>Vasd=103<br>Cat. II; Exp<br>zone and (                                                                                                                                                | 8-14=0/793, 3-30=<br>6-30=-1704/136, 1<br>4-30=-11704/136, 1<br>4-30=-119/188, 5-<br>26-27=0/1152, 13<br>13-15=-1105/0, 24<br>23-24=-526/0, 17-<br>18-19=-40/262, 21<br>19-20=-179/36<br>d roof live loads hav<br>E 7-10; Vult=130m<br>mph; TCDL=6.0psf;<br>B; Enclosed; MWF<br>C-C Exterior (2) 0-1                              | 1697/1:<br>-28=0/10<br>30=-117,<br>-14=0/11<br>-25=0/60<br>18=-529,<br>-22=-17<br>/// ve been of<br>bh (3-seco<br>BCDL=6<br>RS (env)<br>12 to 3-1                                             | 34,<br>045, 9-12=0/-<br>(190,<br>54, 25-26=-1<br>02, 15-17=0/t<br>(0, 22-23=-38<br>7/35,<br>considered for<br>sond gust)<br>6.0psf; h=25ft<br>elope) exterior<br>i-12, Interior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1053,<br>107/0,<br>503,<br>b/258,<br>or<br>;<br>or<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on 1<br>3-00<br>cho<br>10) Cei<br>6-30<br>11) Bot<br>cho<br>23-1<br>12) Gra<br>or ti<br>bott<br>13) Attie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the botto<br>6-00 tall<br>ord and a<br>ling dead<br>0; Wall d<br>tom choi<br>ord dead<br>25, 21-2<br>aphical pi<br>he orient<br>tom chor<br>c room c                                                                                                                                                                                                   | m cho<br>by 2-0<br>ny oth<br>d load<br>dead le<br>rd live<br>load (<br>3, 20-2<br>urlin re<br>tation<br>d.<br>hecke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | een designed f<br>rrd in all areas<br>00-00 wide will<br>eer members.<br>(5.0 psf) on me<br>oad (5.0psf) or<br>load (40.0 psf)<br>5.0 psf) applied<br>21, 18-20, 15-1<br>epresentation c<br>of the purlin alc<br>d for L/360 def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or a live lo<br>where a re<br>fit between<br>ember(s).<br>member(<br>and addit<br>d only to ro<br>8, 14-15<br>loes not do<br>ong the top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pad of 20.0psf<br>ectangle<br>n the bottom<br>2-3, 6-8, 3-30,<br>s).2-27, 8-14<br>ional bottom<br>poom. 25-27,<br>epict the size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                              | LC 10)<br>(LC 48), 29=1704 (L0<br>pression/Maximum<br>2=-1601/0, 2-32=-156<br>33=-941/147,<br>-0/543, 34-35=0/543,<br>0/543, 5-6=-166/366,<br>1007/139,<br>38=-1568/0,<br>9=-1738/0, 9-10=0/63<br>=-1735/0<br>-28=-39/1224,<br>4=0/3449, 19-22=0/3<br>7=0/2580, 13-16=0/2<br>2=-50/189, 25-27=-9;<br>23=-2715/0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 5)<br>554, 6)<br>580, 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18-1-11 to<br>cantilever<br>right expos<br>for reaction<br>DOL=1.60<br>TCLL: ASC<br>DOL=1.15<br>Lumber DC<br>Fully Exp.;<br>Unbalance<br>design.<br>This truss<br>load of 12.<br>overhangs<br>Provide ac<br>All plates a<br>This truss | 22-3-0, Exterior (2)<br>eft and right expose<br>sed;C-C for member<br>is shown; Lumber D<br>CE 7-10; Pr=20.0 ps<br>Plate DOL=1.15); P<br>DL=1.15 Plate DOL=<br>Ct=1.10<br>d snow loads have<br>has been designed<br>0 psf or 1.00 times f<br>non-concurrent witt<br>equate drainage to<br>re 3x5 MT20 unless<br>has been designed | 22-3-0 to<br>s and for<br>S and for<br>ODL=1.60<br>f (roof livit<br>f=20.0 p<br>=1.15); C<br>been cor<br>for greated<br>lat roof lo<br>n other livit<br>prevent v<br>s otherwit<br>for a 10.0 | b 25-3-0 zone<br>vertical left ar<br>vertical left ar<br>vertical left ar<br>vertical left ar<br>vertical left ar<br>vertical left ar<br>vertical left ar<br>sidered for the<br>er of min roof<br>bad of 20.0 p<br>vertical vertical<br>vertical left ar<br>vertical le | e;<br>d<br>S<br>er<br>now:<br>cp B;<br>his<br>f live<br>sf on<br>g.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Within                                                                                                                                                                                                                                                                                                                                                 | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A REAL PROVIDENCE AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                              | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0<br>0.0*<br>10.0<br>0.0*<br>10.0<br>2x6 SP 2400F 2.0E<br>SP No.2<br>2x4 SP No.2 *Excep<br>2x4 SP No.2 *Excep<br>2x4 SP No.3 *Excep<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins, ex<br>2-0-0 oc purlins, ex<br>2-0-0 oc purlins, ex<br>2-0-0 oc bracing: 18<br>3-9-0 oc bracing: 23<br>5-10-0 oc bracing: 23<br>3-9-0 oc bracing: 23<br>5-10-0 oc bracing: 23<br>3-10-0 oc bracing: 23<br>5-10-0 oc bracing: 23<br>3-10-0 oc bracing: 2 | (psf)         Spacing           20.0         Plate Grip DOL           10.0         Plate Grip DOL           10.0         Rep Stress Incr           0.0*         Code           10.0         Rep Stress Incr           0.0*         Code           10.0         Rep Stress Incr           0.0*         Code           2x6 SP 2400F 2.0E *Except* 4-5,2-3,6-8:           SP No.2         2x4 SP No.2 *Except* 29-16:2x4 SP No.1           2x4 SP No.2 *Except* 29-16:2x4 SP No.2           Structural wood sheathing directly applies           6-0-0 oc purlins, except end verticals, ar           2-0-0 oc purlins (10-0-0 max.): 4-5.           Rigid ceiling directly applied or 10-0-0 oc           bracing: Except:           3-6-0 oc bracing: 18-23           3-9-0 oc bracing: 25-27, 14-15           1 Brace at Jt(s): 30,           25, 15, 23, 18           (size)         11=0-5-4, 29=0-5-8           Max Horiz         29=-323 (LC 10)           Max Grav         11=1783 (LC 48), 29=11704 (LC           (lb) - Maximum Compression/Maximum         Tension           1-31=-1737/0, 31-32=-1601/0, 2-32=-156           2-33=-1120/112, 3-33=-941/147,           3-4=-166/363, 4-34=0/543, 3-6==166/366,      < | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                            | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                       | X, Y): [1:0-3-0,0-1-4], [4:0-5-8,0-3-0], [5:0-5-8,0-3-0], [7:0-6-0,0-4-12], [9:0-3-4,0-1-0](pst)<br>20.0<br>20.0<br>20.0<br>10.0<br>10.0<br>10.0Spacing<br>Plate Grip DOL<br>1.15<br>Rep Stress Incr<br>YES<br>CodeCSI<br>BC<br>DC<br>Matrix-MSH2x6 SP 2400F 2.0E *Except* 4-5,2-3,6-8:2x6<br>SP No.2WEBS<br>27-28=-201/88, 2-27=0/78<br>8-14=0/793, 3-30=1697/11<br>3-30=1697/11<br>3-30=117/3/10, 24-25=0/62x6 SP 2400F 2.0E *Except* 4-5,2-3,6-8:2x6<br>SP No.2WEBS<br>27-28=-201/88, 2-27=0/78<br>8-14=0/793, 3-30=1697/11<br>3-30=117/3/136, 1-28=0/11<br>3-6-0 co bracing: 18-23<br>3-9-0 co bracing: 25-27, 14-15<br>1 Brace at Jt(s): 30,<br>25, 15, 23, 18<br>(size)WEBS<br>11=0-5-4, 29=-05-8<br>11=1737/0, 31-32=-1601/0, 2-32=-1567/0,<br>3-3=-01/71/3, 31-28=01/12<br>2-33=-1120/112, 3-33=-941/147,<br>3-4=166/363, 4-34=0/543, 34-35=0/543,<br>3-39=-1602/0, 9-39=-1738/0, 9-10=0/63,<br>1-29=-1555/0, 9-11=-1735/0WEBS<br>27-282/152, 12-28-107<br>2-20=-179/36NOTESNOTES1) Unbalanced for of live loads have been of<br>this design.10 Unbalanced for of live loads have been of<br>this design.2011=0-5-4, 29=-05-8<br>1 Brace at Jt(s): 30,<br>2-33=-1120/112, 3-33=-941/147,<br>3-4=166/363, 4-34=0/543, 3-43=0/543,<br>3-39=-1602/0, 9-39=-1738/0, 9-10=0/63,<br>1-29=-155/0, 9-11=1735/03011=0-54, 29=-05-8<br>1 Ba-111 to 22-3-0, Exterior (2) 22-3-0 the<br>this design.3111=1783 (LC 48), 29=1704 (LC 48)<br>(23==1120/112, 3-33=-941/147,<br>3-3==0/143, 3-28=-0/5630,<br>38-39=-1602/0, 9-39=-1738/0, 9-10=0/63,<br>1-29=-294/433, 26-28=-39/1224,<br>224=0/2743, 22-24=0/3449, 19-22=0/3554,<br>1-13=1737/0, 31-32=-166/366,<br>42-26=0/2743, 22-24=0/3449, 19-22=0/3554,<br>1-129=002, 9-31120/112, 3-160/107, 23=-160/2580,<br>3-11-20/2580, 13-16=0/2580,<br>3-160/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X, Y):       [1:0-3-0,0-1-4], [4:0-5-8,0-3-0], [5:0-5-8,0-3-0], [7:0-6-0,0-4-12], [9:0-3-4,0-1-0]         (pst)       Spacing       2-0-0       CSI       DEFL         20.0       Lumber DOL       1.15       BC       0.79         10.0       Pate Grip DOL       1.15       BC       0.79         0.0       0.0°       Code       IRC2015/TPI2014       Matrix-MSH       Vert(LT)         2x6 SP 2400F 2.0E *Except* 4-5,2-3,6-8:2x6       SP 44=0/793, 3-30=-1697/134, 45-30=-1704/136, 1-28=0/1045, 9-12=0/7       Attic         2x4 SP No.2       2x4 SP No.2 *Except* 3-6:2x4 SP No.1       2x4 SP No.2 *Except* 3-6:2x4 SP No.1       2x2=-526/002, 17-18=-5290, 22-22=-36         Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, 10-0-0 max, 1-4.5.       Pieze-11050, 24-22=-040062, 17-18=-05290, 22-22=-36         Sigic 11=0-5-4, 29=-0-5-8       WGH       Sigic 11=0-5-4, 29=-0-5-8         Max Grav 11=1783 (LC 48), 29=-1704 (LC 48)       (b) - Maximum Compression/Maximum Tension       Sigic 23=-2207(313, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/147, 3-33=-941/14 | X, Y):       [1:0-3-0,0-1-4], [4:0-5-8,0-3-0], [5:0-5-8,0-3-0], [7:0-6-0,0-4-12], [9:0-3-4,0-1-0]         (ps)       Spacing       2-0-0       CSI       DEFL       in         20.0       Plate Grip DOL       1.15       TC       0.00       Vert(LL)       -0.22         0.0.°       Code       IRC2015/TPI2014       BC       0.79       Vert(CL)       -0.22         0.0.°       Code       IRC2015/TPI2014       Matrix-MSH       DEFL       in         2x6 SP 2400F 2.0E       *Except* 4-5,2-3,6-8:2x6 $8^{-14=0/793}$ , $3\cdot30-1697/134$ , $4^{-52=-10/1045}$ , $9\cdot12=-0/1053$ , $2\cdot32$ Structural wood sheathing directly applied or 6-0-0 oc purlins, except and verticals, and 2-0-0 co tracing: 18-23       So the consing: 18-23         3-9-0 oc bracing: 23-25, 15-18       S-10-0 oc bracing: 18-23       So cor bracing: 23-25, 15-18       So cor bracing: 18-23         3-10 oc bracing: 23-32, 15-18       So cor bracing: 18-23       So cor bracing: 18-23       So cor bracing: 18-23         3-9-0 oc bracing: 18-23       So cor bracing: 18-23       So cor bracing: 18-23       So cor bracing: 18-23         3-9-0 oc bracing: 18-23       So | X, Y):[1:0-3-0,0-1-4], [4:0-5-8,0-3-0], [5:0-5-8,0-3-0], [7:0-6-0,0-4-12], [9:0-3-4,0-1-0](psf)<br>20.0<br>10.0Spacing<br>Plate Grip DOL<br>1.15CCSI<br>TCDEFLin(loc)<br>Vert(LL)<br>-0.2220.0<br>10.0Rep Stress Incr<br>CodeYES<br>(CodeWB0.62<br>Matrix-MSHDEFLin(loc)<br>Vert(CT)2x6 SP 2400F 2.0E<br>2 X4 SP No.2********************************* | X, Y): [1:0-3-0,0-1-4], [4:0-5-8,0-3-0], [5:0-5-8,0-3-0], [7:0-6-0,0-4-12], [9:0-3-4,0-1-0]         (psf)       Spacing       2-0-0       CSI       DEFL       in       (loc)       //defl         20.0       Lumber DOL       1.15       BC       0.79       Vert(LL)       -0.22       20-21       >999         10.0       Rep Stress Incr       YES       WB       0.62       Matrix-MSH       Horz(CT)       -0.40       20-21       >715         10.0       Code       IRC2015/TPI2014       Matrix-MSH       Attic       -0.12       14-27       >999         2x6 SP 2400F 2.0E *Except* 4-5,2-3,6-8:2x6       8-14=0/793, 3-30=-1697/134,       9) * This truss       3-06-00 tall       -0.12       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-27       >999       -0.12       14-20       -0.22       -0.22 </td <td>X, Y): <math>[1:0-3-0,0-1-4], [4:0-5-8,0-3-0], [5:0-5-8,0-3-0], [7:0-6-0,0-4-12], [9:0-3-4,0-1-0]         (pst)       Spacing       2-0-0         (pst)       Spacing       2-0-0         (1:0-0)       Plate Grip DOL       1.15       DEFL       in       (loc)       //defl       L/d         (1:0-0)       Plate Grip DOL       1.15       BC       0.79       Wert(CT)       -0.40       20-21       &gt;715       180         (1:0-0)       Qoid       Indian       (ndian       (ndian      </math></td> <td>X, Y):       [1:0-3-0,0-1-4].       [4:0-5-8,0-3-0].       [5:0-5-8,0-3-0].       [7:0-6-0,0-4-12].       [9:0-3-4,0-1-0]         (psf)       Plate Grip DOL       1.15       TC       0.80       Vert(LL)       -0.22       20-21       &gt;999       240         0.0.0       Lumber DOL       1.15       BC       0.79       Vert(CT)       -0.40       20-21       &gt;715       180         0.0.1       Code       IRC2015/TPI2014       Matrix-MSH       DEFL       in       (loc)       //defl       L/d       PLATES         2x6 SP 2400F 2.0E       *Except* 4-5,2-3,6-8:2x6       8-14-0/793, 3:301697/134,       6-30170/4136, 5-12-0/1045, 5-12-0/1053,       99       * This truss has been designed fn         2x4 SP No.2       Except* 3-6:2x4 SP No.1       26-27-0/1452, 1-28117/185, 4-25-66-1170/165, 0.22-2339/258,       19-20-179/36       10-06-00 trad up 4-00-00 max); 4-5.       19:20-179/36       100-06 trad up 4-00-00 max); 4-5.       19:20-179/36       10-02-179/36       100-00 max); 4-5.       10:10-161/24, 2-25-2-170/14, 2-12-2-177/35,       10:10-160, 2-22-2-39/258,       11:10-16-4, 2-29-0-5.8       11:11 Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, threatior (1)       10:10-10-10, 12-12, 12-11, 11:10-10(1)       11:10-22-3, 0.5:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-1</td> <td>X, Y):       [1:0-3-0,0-1-4]; [4:0-5-8,0-3-0]; [5:0-5-8,0-3-0]; [7:0-6-0,0-4-12]; [9:0-3-4,0-1-0]         Spacing       2-0-0       CSI       DEFL       in       (loc)       //deft       L/d       PLATES       GRIP         20.0       Umber DOL       1.15       BC       0.79       Vert(L1)       -0.22       20:21       &gt;999       240       MT20       244/1         20.0       Umber DOL       1.15       BC       0.79       Vert(L1)       -0.42       20:21       &gt;715       180         0.0*       Code       IRC2015/TPI2014       WB       0.62       11       n/a       n/</td> | X, Y): $[1:0-3-0,0-1-4], [4:0-5-8,0-3-0], [5:0-5-8,0-3-0], [7:0-6-0,0-4-12], [9:0-3-4,0-1-0]         (pst)       Spacing       2-0-0         (pst)       Spacing       2-0-0         (1:0-0)       Plate Grip DOL       1.15       DEFL       in       (loc)       //defl       L/d         (1:0-0)       Plate Grip DOL       1.15       BC       0.79       Wert(CT)       -0.40       20-21       >715       180         (1:0-0)       Qoid       Indian       (ndian       (ndian      $ | X, Y):       [1:0-3-0,0-1-4].       [4:0-5-8,0-3-0].       [5:0-5-8,0-3-0].       [7:0-6-0,0-4-12].       [9:0-3-4,0-1-0]         (psf)       Plate Grip DOL       1.15       TC       0.80       Vert(LL)       -0.22       20-21       >999       240         0.0.0       Lumber DOL       1.15       BC       0.79       Vert(CT)       -0.40       20-21       >715       180         0.0.1       Code       IRC2015/TPI2014       Matrix-MSH       DEFL       in       (loc)       //defl       L/d       PLATES         2x6 SP 2400F 2.0E       *Except* 4-5,2-3,6-8:2x6       8-14-0/793, 3:301697/134,       6-30170/4136, 5-12-0/1045, 5-12-0/1053,       99       * This truss has been designed fn         2x4 SP No.2       Except* 3-6:2x4 SP No.1       26-27-0/1452, 1-28117/185, 4-25-66-1170/165, 0.22-2339/258,       19-20-179/36       10-06-00 trad up 4-00-00 max); 4-5.       19:20-179/36       100-06 trad up 4-00-00 max); 4-5.       19:20-179/36       10-02-179/36       100-00 max); 4-5.       10:10-161/24, 2-25-2-170/14, 2-12-2-177/35,       10:10-160, 2-22-2-39/258,       11:10-16-4, 2-29-0-5.8       11:11 Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, threatior (1)       10:10-10-10, 12-12, 12-11, 11:10-10(1)       11:10-22-3, 0.5:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-12, 12:10-1 | X, Y):       [1:0-3-0,0-1-4]; [4:0-5-8,0-3-0]; [5:0-5-8,0-3-0]; [7:0-6-0,0-4-12]; [9:0-3-4,0-1-0]         Spacing       2-0-0       CSI       DEFL       in       (loc)       //deft       L/d       PLATES       GRIP         20.0       Umber DOL       1.15       BC       0.79       Vert(L1)       -0.22       20:21       >999       240       MT20       244/1         20.0       Umber DOL       1.15       BC       0.79       Vert(L1)       -0.42       20:21       >715       180         0.0*       Code       IRC2015/TPI2014       WB       0.62       11       n/a       n/ |



| Job        | Truss | Truss Type   | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------|-----|-----|-----------------------------|-----------|
| 21030024-A | E01   | Roof Special | 5   | 1   | Job Reference (optional)    | E15498420 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:51 ID:Es8NuXyqMSI4AfynEKostCzaqCq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

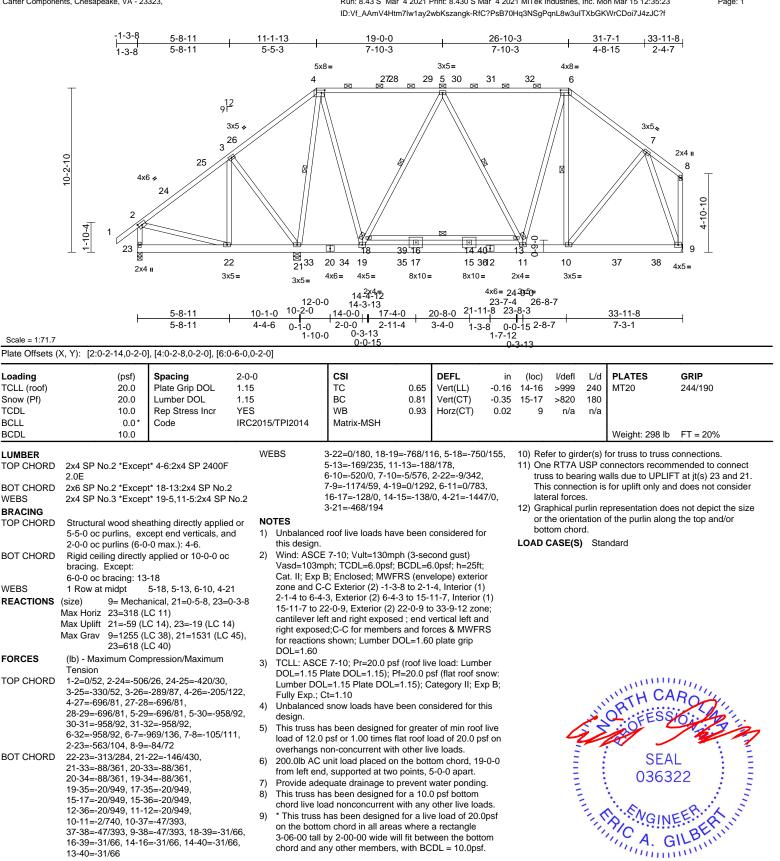
Page: 1



| Scale = 1:61          |                 |
|-----------------------|-----------------|
| Plate Offsets (X, Y): | [1:0-2-4,0-1-8] |

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                  | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                           | 0.55<br>0.67<br>0.81                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                         | in<br>0.17<br>-0.34<br>0.35                           | (loc)<br>10-11<br>9-10<br>7 | l/defl<br>>999<br>>678<br>n/a | L/d<br>240<br>180<br>n/a              | PLATES<br>MT20<br>Weight: 104 lb | <b>GRIP</b> 244/190<br>FT = 20%   |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|-------------------------------|---------------------------------------|----------------------------------|-----------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>2-9-10 oc purlins, e<br>Rigid ceiling directly<br>bracing. | applied or 6-10-11 of<br>13=0-5-8<br>_C 14)<br>.C 11), 13=-54 (LC 15 | 3)                                     | Vasd=103mj<br>Cat. II; Exp E<br>zone and C-<br>3-11-13 to 5<br>9-0-1 to 17-1<br>cantilever lef<br>right expose<br>for reactions<br>DOL=1.60<br>TCLL: ASCE<br>DOL=1.15 P<br>Lumber DOL | 7-10; Vult=130mp<br>ph; TCDL=6.0psf;<br>3; Enclosed; MWFI<br>C Exterior (2) 0-11<br>-0-1, Exterior (2) 5-<br>11-9, Exterior (2) 1 <sup>-</sup><br>ft and right expose<br>d;C-C for members<br>shown; Lumber D<br>E 7-10; Pr=20.0 psf<br>late DOL=1.15; P<br>=-1.15 Plate DOL= | BCDL=6<br>RS (env<br>-13 to 3<br>-0-1 to 9<br>7-11-9 to<br>3 and fo<br>OL=1.6<br>(roof liv<br>f=20.0 p | 6.0psf; h=25ft<br>elope) exterio<br>-11-13, Interior<br>-0-1, Interior<br>o 20-11-9 zor<br>vertical left an<br>rcces & MWFF<br>0 plate grip<br>ve load: Lumb<br>sf (flat roof sr | br<br>br (1)<br>(1)<br>he;<br>hd<br>RS<br>per<br>how: |                             |                               |                                       | riogia: io no                    |                                   |
| FORCES                                                                                     | (lb) - Maximum Com<br>Tension                                                                                                  |                                                                      | 4)                                     |                                                                                                                                                                                       | snow loads have b                                                                                                                                                                                                                                                             | been coi                                                                                               | nsidered for th                                                                                                                                                                  | his                                                   |                             |                               |                                       |                                  |                                   |
| TOP CHORD                                                                                  | 1-2=-2216/609, 2-17<br>3-17=-3439/852, 3-4<br>4-5=-1480/296, 5-18<br>18-19=-1965/317, 6-                                       | 4=-1177/210,<br>3=-1930/318,                                         | 5)<br>6)<br>15,<br>7)                  | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa                                                                                                                        | as been designed f<br>psf or 1.00 times fl<br>on-concurrent with<br>as been designed f<br>ad nonconcurrent v<br>nas been designed                                                                                                                                             | at roof l<br>other li<br>or a 10.<br>vith any                                                          | bad of 20.0 p<br>ve loads.<br>0 psf bottom<br>other live loa                                                                                                                     | sf on<br>Ids.                                         |                             |                               |                                       |                                  |                                   |
| BOT CHORD                                                                                  |                                                                                                                                | ,                                                                    | ")                                     | on the bottor<br>3-06-00 tall b                                                                                                                                                       | n chord in all areas<br>by 2-00-00 wide wi<br>by other members.                                                                                                                                                                                                               | s where<br>Il fit betv                                                                                 | a rectangle                                                                                                                                                                      |                                                       |                             |                               | AN                                    | TH CA                            | ROLIN                             |
| WEBS                                                                                       | 3-11=-567/2049, 3-1<br>4-10=-292/1676, 5-1<br>5-9=-193/820, 6-9=-<br>1-12=-434/1650, 2-1<br>2-12=-416/142                      | 0=-1086/243,<br>326/165,                                             | 8)<br>9)                               | Bearing at jo<br>using ANSI/<br>designer sho<br>One RT7A L                                                                                                                            | int(s) 13 considers<br>TPI 1 angle to grain<br>buld verify capacity<br>JSP connectors rec<br>ring walls due to UI                                                                                                                                                             | paralle<br>formul<br>of bear                                                                           | a. Building<br>ing surface.<br>ded to conne                                                                                                                                      | ct                                                    |                             | 1                             | in                                    | SEA                              | L                                 |
| NOTES<br>1) Unbalance<br>this design                                                       | ed roof live loads have                                                                                                        | been considered for                                                  | L                                      |                                                                                                                                                                                       | tion is for uplift only<br>3.                                                                                                                                                                                                                                                 |                                                                                                        |                                                                                                                                                                                  |                                                       |                             | THUND                         | A A A A A A A A A A A A A A A A A A A | 0363                             | L<br>22<br>ILBERTINI<br>ILBERTINI |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

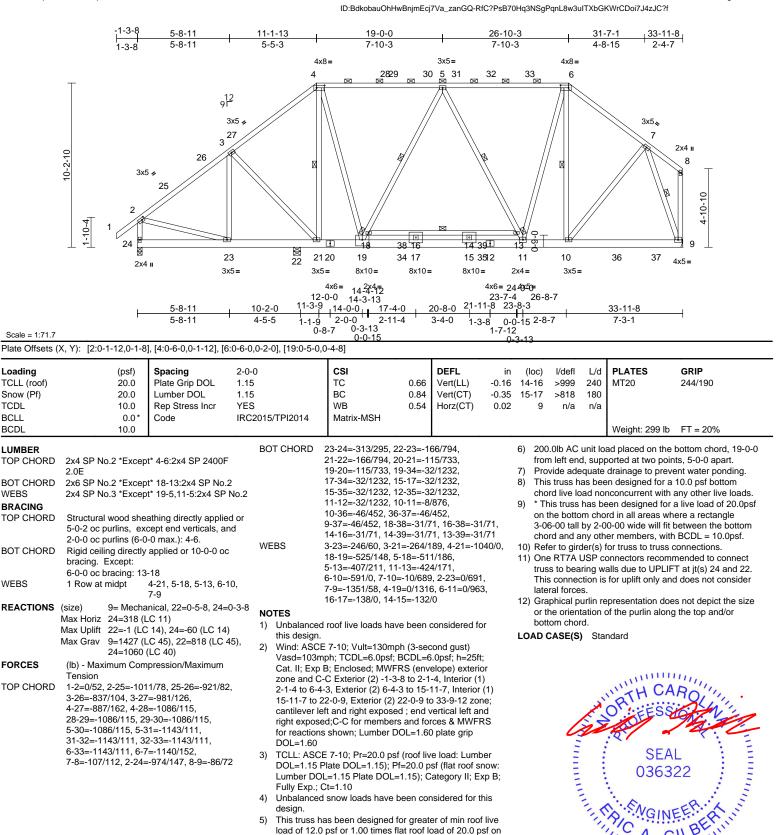

818 Soundside Road Edenton, NC 27932

March 15,2021

| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B01   | Piggyback Base | 3   | 1   | Job Reference (optional)    | E15498421 |

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S.Mar. 4 2021 MiTek Industries. Inc. Mon.Mar.15 12:35:23

Page: 1




March 15,2021

| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B09   | Piggyback Base | 1   | 1   | Job Reference (optional)    | E15498422 |

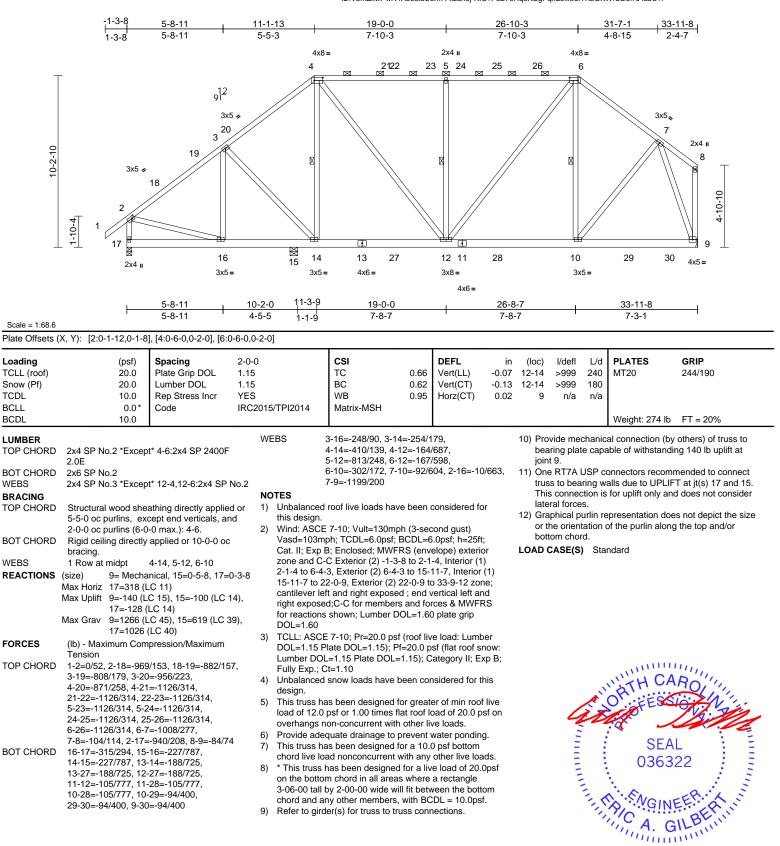
Run: 8 43 S. Mar. 4 2021 Print: 8 430 S.Mar. 4 2021 MiTek Industries. Inc. Mon.Mar.15 12:35:30

Page: 1



5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

mmm March 15,2021


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantietis and property incorporate dust using in the version of the second property incorporate and begin into version of the version of the



GI

| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B10   | Piggyback Base | 1   | 1   | Job Reference (optional)    | E15498423 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:31 ID:V5mZxwPwR4A3o8laUem7Fxzan6j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 15,2021

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B02   | Нір        | 1   | 1   | Job Reference (optional)    | E15498424 |

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

TOP CHORD

BOT CHORD

BRACING

TOP CHORD

BOT CHORD

**REACTIONS** (size)

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3 \*Except\*

bracing, Except:

1 Row at midpt

Max Horiz

Max Uplift

Max Grav

Tension

6-0-0 oc bracing: 16-17.

18=0-3-8

18=359 (LC 11)

18=-105 (LC 14)

18=721 (LC 40)

3-20=-242/213, 3-21=-687/249,

4-5=-532/297, 5-23=-460/298,

6-23=-461/297, 6-24=-607/304

24-25=-606/304, 7-25=-605/304,

7-26=-748/308, 8-26=-846/270,

8-27=-548/200, 27-28=-583/192,

9-28=-650/190, 2-18=-425/241,

9-10=-1099/201

21-22=-669/254, 4-22=-548/275,

(lb) - Maximum Compression/Maximum

1-2=0/52, 2-19=-354/179, 19-20=-250/210,

16-5,16-6,6-13,12-6,12-7:2x4 SP No.2

2-0-0 oc purlins (6-0-0 max.): 5-7.

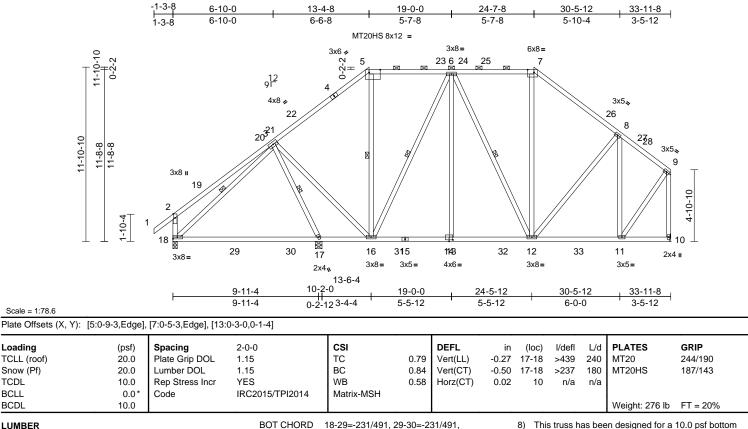
Structural wood sheathing directly applied or

5-1-10 oc purlins, except end verticals, and

3-18

10= Mechanical, 17=0-5-8,

10=-136 (LC 15), 17=-121 (LC 14),


10=1112 (LC 40), 17=1180 (LC 46),

3-17, 5-16, 6-16, 6-12,

Rigid ceiling directly applied or 10-0-0 oc

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S.Mar. 4 2021 MiTek Industries. Inc. Mon.Mar.15 12:35:25 ID:i0TSIH6xewrc2yzv2iH0YCzandN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



17-30=-231/491, 16-17=-255/200,

16-31=-156/703, 15-31=-156/703,

14-15=-156/703, 13-14=-156/703,

13-32=-156/703. 12-32=-156/703.

3-17=-1027/256, 3-16=-56/804,

6-12=-256/150, 7-12=-45/192,

8-12=-112/269, 8-11=-588/152

3-18=-422/139, 9-11=-102/858

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior

zone and C-C Exterior (2) -1-3-8 to 2-1-4, Interior (1)

2-1-4 to 8-6-14, Exterior (2) 8-6-14 to 18-2-2, Interior (1)

18-2-2 to 19-9-14, Exterior (2) 19-9-14 to 29-5-2, Interior

(1) 29-5-2 to 30-5-0. Exterior (2) 30-5-0 to 33-9-12 zone:

cantilever left and right exposed ; end vertical left and

right exposed;C-C for members and forces & MWFRS

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

All plates are MT20 plates unless otherwise indicated.

overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding.

DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow:

Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;

for reactions shown; Lumber DOL=1.60 plate grip

Wind: ASCE 7-10; Vult=130mph (3-second gust)

12-33=-91/499, 11-33=-91/499, 10-11=-64/72

5-16=-110/98, 6-16=-643/123, 6-13=0/333,

- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 136 lb uplift at joint 10
- 12) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 17. This connection is for uplift only and does not consider lateral forces
- 13) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 18. This connection is for uplift only and does not consider lateral forces
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



# 818 Soundside Road Edenton, NC 27932

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WEBS

NOTES

this design.

DOL=1.60

design.

Fully Exp.; Ct=1.10

1)

2)

3)

4)

5)

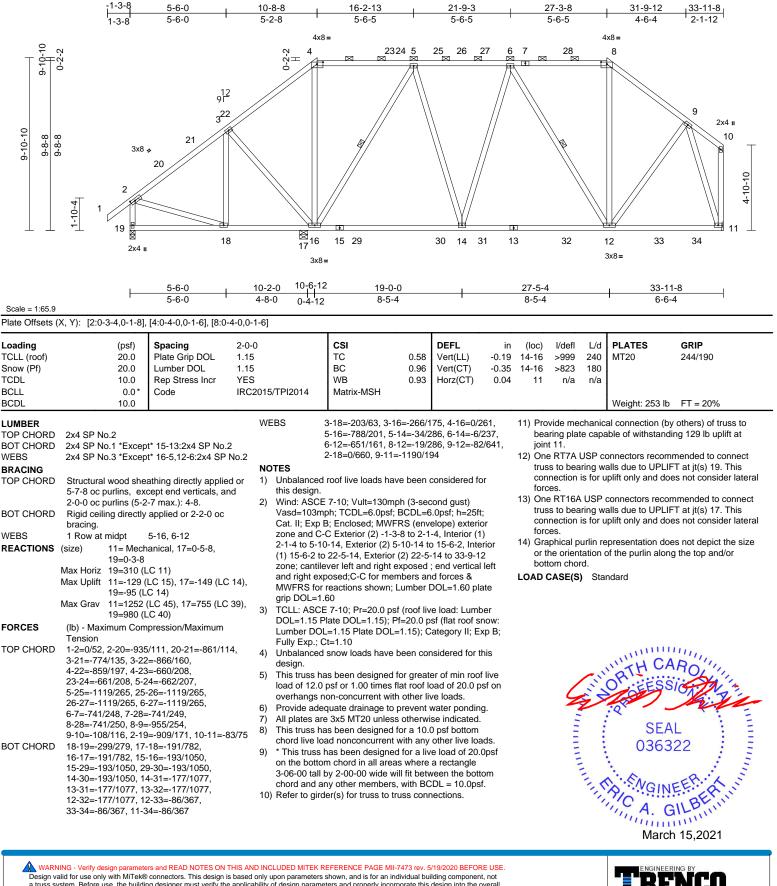
6)

7)

| Job                         | Truss           | Truss Type     | Qty              | Ply         | 89 Lake Forest-Roof-BB-2086                     |           |
|-----------------------------|-----------------|----------------|------------------|-------------|-------------------------------------------------|-----------|
| 21030024-A                  | B02             | Нір            | 1                | 1           | Job Reference (optional)                        | E15498424 |
| Carter Components, Chesapea | ke, VA - 23323, | Run: 8.43 S Ma | 4 2021 Print: 8. | 430 S Mar 4 | 2021 MiTek Industries, Inc. Mon Mar 15 12:35:25 | Page: 2   |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:25 ID:i0TSIH6xewrc2yzv2iH0YCzandN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

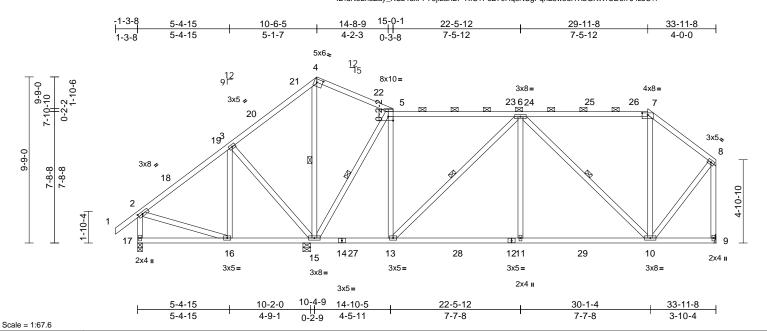
LOAD CASE(S) Standard




| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B03   | Нір        | 1   | 1   | Job Reference (optional)    | E15498425 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:26 ID:CFvM0S7Mgdni1OZqa8zQjVzanEq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


818 Soundside Road Edenton, NC 27932



| Job        | Truss | Truss Type   | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B04   | Roof Special | 1   | 1   | Job Reference (optional)    | E15498426 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:27 ID:dNeLn6Zay\_RSz4uxFP75jlzanEF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

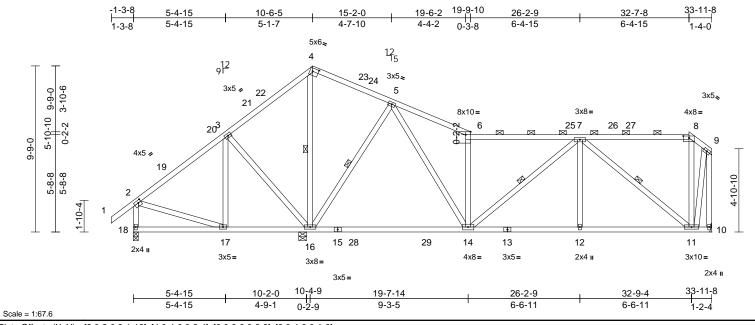


## Plate Offsets (X, Y): [2:0-3-4,0-1-8], [4:0-4-0,0-2-4], [5:0-3-8,0-2-12], [7:0-4-0,0-1-6]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI        |      | DEFL     | in    | (loc)   | l/defl   | L/d      | PLATES           | GRIP                  |
|-------------|-------|-----------------|-----------------|------------|------|----------|-------|---------|----------|----------|------------------|-----------------------|
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | TC         | 0.92 | Vert(LL) | -0.07 | 10-11   | >999     | 240      | MT20             | 244/190               |
| Snow (Pf)   | 20.0  | Lumber DOL      | 1.15            | BC         | 0.64 | Vert(CT) | -0.14 | 11-13   | >999     | 180      |                  |                       |
| TCDL        | 10.0  | Rep Stress Incr | YES             | WB         | 0.48 | Horz(CT) | 0.02  | 9       | n/a      | n/a      |                  |                       |
| BCLL        | 0.0*  | Code            | IRC2015/TPI2014 | Matrix-MSH |      |          |       |         |          |          |                  |                       |
| BCDL        | 10.0  |                 |                 |            |      |          |       |         |          |          | Weight: 242 lb   | FT = 20%              |
|             | NOTES |                 |                 |            |      |          |       | 12) Gra | phical p | urlin re | presentation doe | s not depict the size |

TOP CHORD or the orientation of the purlin along the top and/or 2x4 SP No.2 \*Except\* 5-7:2x4 SP No.1 Unbalanced roof live loads have been considered for 1) BOT CHORD 2x4 SP No.2 bottom chord. this design WEBS 2x4 SP No.3 \*Except\* 13-6,10-6:2x4 SP No.2 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) LOAD CASE(S) Standard Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; BRACING Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior TOP CHORD Structural wood sheathing directly applied or zone and C-C Exterior (2) -1-3-8 to 2-1-4, Interior (1) 6-0-0 oc purlins, except end verticals, and 2-1-4 to 7-1-9, Exterior (2) 7-1-9 to 13-11-1, Interior (1) 2-0-0 oc purlins (2-2-0 max.): 5-7. 13-11-1 to 26-6-12, Exterior (2) 26-6-12 to 33-9-12 zone; BOT CHORD Rigid ceiling directly applied or 10-0-0 oc cantilever left and right exposed ; end vertical left and bracing, Except: right exposed;C-C for members and forces & MWFRS 6-0-0 oc bracing: 15-16. for reactions shown; Lumber DOL=1.60 plate grip WEBS 4-15, 5-15, 6-13, 6-10 1 Row at midpt DOL=1.60 REACTIONS 9= Mechanical, 15=0-5-8, 17=0-3-8 (size) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) Max Horiz 17=-264 (LC 12) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Max Uplift 9=-140 (LC 15), 15=-247 (LC 15), Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; 17=-42 (LC 14) Fully Exp.; Ct=1.10 Max Grav 9=954 (LC 42), 15=1677 (LC 50), 4) Unbalanced snow loads have been considered for this 17=409 (LC 21) desian. (Ib) - Maximum Compression/Maximum FORCES This truss has been designed for greater of min roof live 5) Tension load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on TOP CHORD 1-2=0/52, 2-18=-258/139, 18-19=-88/191, overhangs non-concurrent with other live loads 3-19=-61/197, 3-20=-54/323, 20-21=-32/366, Provide adequate drainage to prevent water ponding. 6) ORT 4-21=-23/403, 4-22=-14/332, 5-22=-27/289, This truss has been designed for a 10.0 psf bottom 7) 5-23=-289/133, 6-23=-289/133, chord live load nonconcurrent with any other live loads. 6-24=-462/176, 24-25=-462/177 8) \* This truss has been designed for a live load of 20.0psf 25-26=-460/177, 7-26=-458/177, on the bottom chord in all areas where a rectangle Vinneeren 7-8=-575/167, 2-17=-361/97, 8-9=-935/145 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 16-17=-237/275, 15-16=-210/228, SEAL chord and any other members, with BCDL = 10.0psf. 14-15=-101/314, 14-27=-101/314, Refer to girder(s) for truss to truss connections. 036322 13-27=-101/314, 13-28=-164/876, 10) Provide mechanical connection (by others) of truss to 12-28=-164/876, 11-12=-164/876, bearing plate capable of withstanding 140 lb uplift at 11-29=-164/876, 10-29=-164/876, ioint 9. 9-10 = -60/6911) One RT7A USP connectors recommended to connect WEBS 3-16=0/235, 3-15=-452/195, 4-15=-529/78, truss to bearing walls due to UPLIFT at jt(s) 17 and 15. 5-15=-1096/200, 5-13=-17/768, This connection is for uplift only and does not consider 6-13=-818/135, 6-11=0/408, 6-10=-597/112, G lateral forces. mmm 7-10=-90/105, 2-16=-192/150, 8-10=-77/736

March 15,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type   | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B05   | Roof Special | 1   | 1   | Job Reference (optional)    | E15498427 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:28 ID:dSI22MOExt?p7X50EhL2TezanDB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

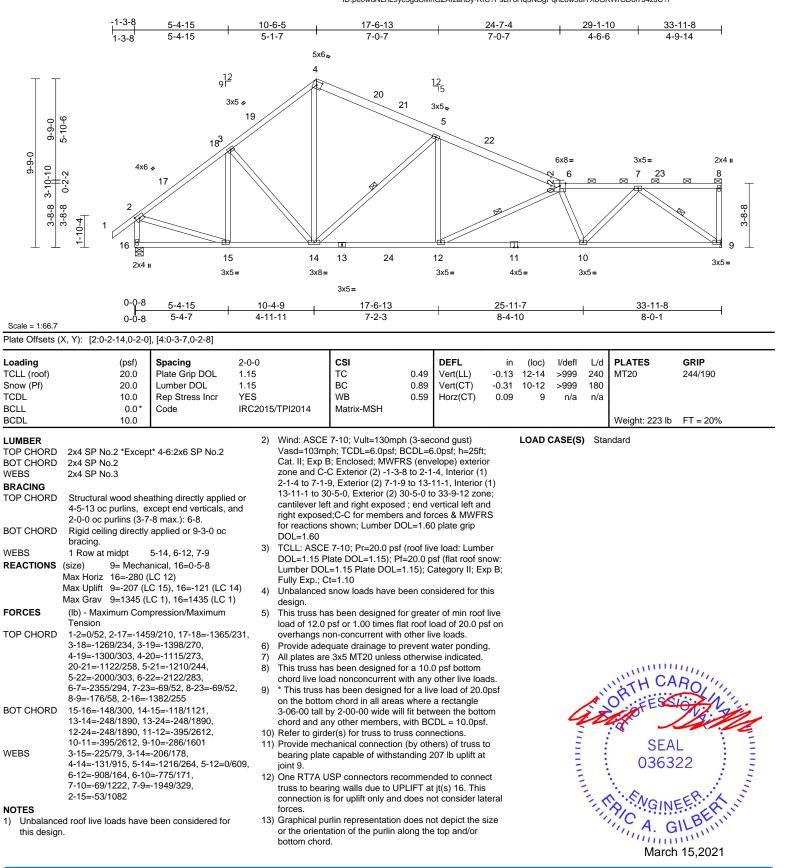
Page: 1



| Plate Offsets (X, Y): | [2:0-2-0,0-1-12], [4:0-4-0,0-2-4], [6:0-3-8,0-2-2], [8:0-4-0,0-1-6] |
|-----------------------|---------------------------------------------------------------------|
|                       |                                                                     |

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL      | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                      | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5/TPI2014                                                                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                     | 0.91<br>0.73<br>0.50                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                         | in<br>-0.26<br>-0.42<br>0.02 | (loc)<br>14-16<br>14-16<br>10 | l/defl<br>>999<br>>667<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 238 lb | <b>GRIP</b><br>244/190<br>FT = 20%         |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|--------------------------|----------------------------------|--------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she                                                                                                                                  | athing directly appliec<br>cept end verticals, an<br>-0 max.): 6-8.                                                                    | 1)<br>2)<br>I or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | this design.<br>Wind: ASCE<br>Vasd=103mp<br>Cat. II; Exp B<br>zone and C-0<br>2-1-4 to 7-1-5                                     | roof live loads have<br>7-10; Vult=130mph<br>h; TCDL=6.0psf; B<br>i; Enclosed; MWFR<br>C Exterior (2) -1-3-<br>9, Exterior (2) 7-1-9                                                    | n (3-sec<br>SCDL=6<br>SS (env<br>3 to 2-1<br>to 13-                              | cond gust)<br>.0psf; h=25ft;<br>elope) exterio<br>-4, Interior (1)<br>11-1, Interior (                           | r<br>r<br>(1)                | or th                         | he orient                     | ation o<br>d.            | of the purlin along              | es not depict the size<br>g the top and/or |
|                                                                  | Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(size) 10= Mech<br>18=0-3-8<br>Max Horiz 18=-271 (<br>Max Uplift 10=-128 (<br>18=-182 (<br>Max Grav 10=929 (L<br>18=276 (L | 15),                                                                                                                                   | <ul> <li>13-11-1 to 29-2-12, Exterior (2) 29-2-12 to 33-9-12 zone;<br/>cantilever left and right exposed ; end vertical left and<br/>right exposed;C-C for members and forces &amp; MWFRS<br/>for reactions shown; Lumber DOL=1.60 plate grip<br/>DOL=1.60</li> <li>3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber<br/>DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow:<br/>Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;<br/>Fully Exp.; Ct=1.10</li> <li>4) Unbalanced snow loads have been considered for this</li> </ul> |                                                                                                                                  |                                                                                                                                                                                         |                                                                                  |                                                                                                                  |                              |                               |                               |                          |                                  |                                            |
| FORCES                                                           | 4-22=-41/648, 4-23=<br>5-24=-36/487, 5-6=-<br>7-25=-561/119, 7-26<br>26-27=-211/107, 8-2                                                                                           | 352, 19-20=-75/409,<br>62/560, 21-22=-44/5<br>24/538, 23-24=-27/5<br>660/174, 6-25=-561/1<br>=-213/107,<br>?=-211/107,                 | 05, 7)<br>19,<br>8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | load of 12.0 p<br>overhangs no<br>Provide adeo<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton             | s been designed fo<br>osf or 1.00 times fla<br>on-concurrent with<br>juate drainage to p<br>s been designed fo<br>d nonconcurrent w<br>as been designed<br>n chord in all areas         | at roof le<br>other liv<br>revent<br>or a 10.0<br>rith any<br>for a liv<br>where | bad of 20.0 ps<br>ve loads.<br>water ponding<br>0 psf bottom<br>other live load<br>e load of 20.0<br>a rectangle | sf on<br>j.<br>ds.<br>)psf   |                               | 4                             |                          | OP FESS                          | ROLIN                                      |
| BOT CHORD                                                        | 17-18=-174/285, 16-<br>15-16=-98/123, 15-2<br>28-29=-98/123, 14-2<br>13-14=-156/876, 12-<br>11-12=-156/876, 10-<br>3-17=0/231, 3-16=-4<br>5-16=-884/241, 5-14                      | 28=-98/123,<br>29=-98/123,<br>13=-156/876,<br>11=-63/72<br>463/207, 4-16=-770/10<br>=-140/1163,<br>==-408/79, 7-12=0/243<br>=-239/123, | 9)<br>10<br>07, 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>chord and an Refer to girde</li> <li>Provide mech bearing plate joint 10.</li> <li>One RT7A U truss to beari</li> </ul> | y 2-00-00 wide will<br>y other members, ,<br>er(s) for truss to tru<br>nanical connection<br>capable of withsta<br>SP connectors record<br>ng walls due to UP<br>ion is for uplift only | with BC<br>ss conr<br>(by oth<br>nding 1<br>ommen<br>LIFT at                     | EDL = 10.0psf.<br>nections.<br>ers) of truss to<br>28 lb uplift at<br>ded to connect<br>jt(s) 18 and 1           | o<br>ct<br>16.               |                               | ALTERNA                       |                          | SEA<br>0363                      | EER. Kultur                                |

March 15,2021


818 Soundside Road Edenton, NC 27932

| WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.<br>Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not<br>a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall<br>building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing<br>is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the<br>fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <b>ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</b><br><b>Safety Information</b> available from Truss Plate Institute, 2670 Crain Highway. Suite 203 Waldorf, MD 20601 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Job        | Truss | Truss Type   | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B06   | Roof Special | 1   | 1   | Job Reference (optional)    | E15498428 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:28 ID:pe0wdNLnL9yc5gdCMnGZAIzanBy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

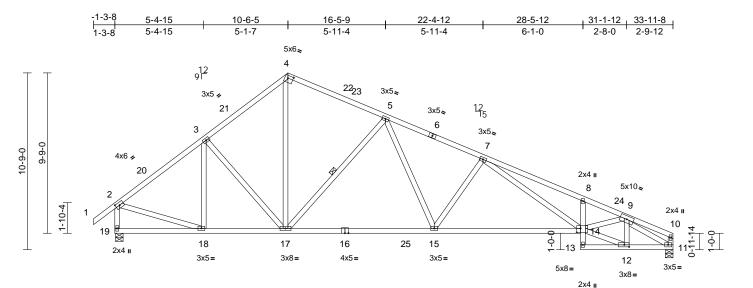
Page: 1



pponent B18 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type   | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B07   | Roof Special | 4   | 1   | Job Reference (optional)    | E15498429 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:29


Page: 1

| Carter Components, Chesapear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e, va - 23323,                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PsB70Hq3NSg                                      |                           |                          |                                 |                             | Page: 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------|--------------------------|---------------------------------|-----------------------------|---------|
| -1-3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -8 <u>5-4-15</u><br>-8 5-4-15                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16-5-9<br>5-11-4                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                          | -4-12<br>·11-4                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28-5                                             |                           | -  <u>31-</u><br>2-      | <u>1-12 33-11</u><br>8-0 2-9-1  | <u>-8</u> 35-3-8<br>2 1-4-0 |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4x6 * 21<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 <sup>12</sup><br>3x5 *<br>22<br>3                                                                                                                                                                                                                                                                                          | 5x6≈<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                               | 5≈<br>5                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2<br>15<br>3x5≈<br>7                             |                           | 2x4 II<br>8              | 5x10 s                          | 2x4 II                      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2x4 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19<br>3x5=                                                                                                                                                                                                                                                                                                                   | 18<br>3x8=                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17<br>4x5=                                                                                                                                                                                                                                                                                                    | 26                                                                                                                                                                                                                                                                                                                                       | 16<br>3x5=                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | 0<br>0<br>0<br>14<br>5x8= |                          | 13<br>3x8=                      | 10<br>11<br>12<br>3x5=      | 0-1-14  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )-0-8 <u>5-4-15</u><br>)-0-8 5-4-7                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10-4-9<br>4-11-1                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>19-5-3</u><br>9-0-9                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>28-4-0</u><br>8-10-13                         |                           |                          | <u>1-12 33-11</u><br>)-12 2-9-1 |                             |         |
| Plate Offsets (X, Y): [2:0-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14,0-2-0], [4:0-3-12                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0-2-0], [13:0-3-8,0                                                                                                                                                                                                                                                                                                        | )-1-8], [15:0-2-8,                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-2-12]                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                           |                          |                                 |                             |         |
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (psf)         Spacing           20.0         Plate Gr           20.0         Lumber           10.0         Rep Stree           0.0*         Code           10.0                                                                                                                                                                                                                                                                                                                 | ip DOL 1.15<br>DOL 1.15<br>ess Incr YES                                                                                                                                                                                                                                                                                      | 15/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                           | 0.61<br>0.76<br>0.71                                                                                                                                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                             | in (loc<br>-0.25 16-18<br>-0.47 15-10<br>0.12 12 | 3 >999<br>5 >861          | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 216   | <b>GRIP</b> 244/190         | 6       |
| 17-15:2x4 S           WEBS         2x4 SP No.<br>2.0E           BRACING         2-6-15 oc p           TOP CHORD         Rigid ceiling<br>bracing.           WEBS         1 Row at m           REACTIONS         (size)           Max Horiz         2<br>Max Uplift           FORCES         (lb) - Maxim<br>Tension           TOP CHORD         1-2=0/52, 2<br>3-22=-1109/<br>5-24=-1184           6-7=-2169/<br>8-9=-3284/4         10-25=-224           BOT CHORD         19-20=-107<br>17-18=-38/<br>16-26=-38/<br>14-15=-067           WEBS         3-19=-235/<br>4-18=-147/5<br>5-16=-9177<br>7-15=-208/<br>9-15=-149/ | 2 *Except* 8-14:2x4<br>P No.1<br>3 *Except* 12-10:2:<br>rood sheathing dire<br>urlins, except end<br>g directly applied or<br>idpt 5-18<br>2=0-5-8, 20=0-5-8<br>0=-321 (LC 12)<br>2=-230 (LC 15), 20<br>2=1436 (LC 1), 20:<br>um Compression/N<br>-21=-1455/203, 3-2<br>(259, 4-22=-1300/2<br>/267, 23-24=-1125,<br>/249, 5-8=-2045/57<br>331, 7-8=-3430/57<br>53, 10-11=0/34, 2-<br>/154<br>/341, 18-19=-79/11<br>636, 17-26=-38/16<br>636, 15-16=-208/2<br>,8-15=-313/165, 13 | 1         4 SP No.3,         x4 SP 2400F         2x4 SP 2400F         ectly applied or verticals.         r 10-0-0 oc         30=-127 (LC 15)         =1433 (LC 1)         Waximum         421=-1362/227, 5         292, /251, 66, 65, -20=-1378/250, 7         158, 336, 2272, 3-14=-54/134, 22, L         10, 245, 245, 14 | <ul> <li>this design.</li> <li>Wind: ASCE<br/>Vasd=103mg<br/>Cat. II; Exp E<br/>zone and C-1<br/>2-1-4 to 7-1-1<br/>13-11-1 to 3"<br/>zone; cantile<br/>and right exp<br/>MWFRS for<br/>grip DOL=1.15 P<br/>Lumber DOL<br/>Fully Exp.; C</li> <li>This truss ha<br/>load of 12.0  <br/>overhangs n</li> <li>This truss ha<br/>chord live load<br/>* This truss for<br/>on the bottor<br/>3-06-00 tall to<br/>chord and ar</li> <li>One RT7A U<br/>truss to bear</li> </ul> | 7-10; Pr=20.0 ps<br>late DOL=1.15); F<br>=1.15 Plate DOL<br>t=1.10<br>snow loads have<br>s been designed<br>psf or 1.00 times<br>on-concurrent with<br>s been designed<br>n chord in all area<br>by 2-00-00 wide w<br>y other members<br>SP connectors re<br>ing walls due to L<br>ion is for uplift on<br>t. | ph (3-sec<br>BCDL=6.<br>FRS (enve<br>3-8 to 2-1-<br>-9 to 13-1<br>(2) 31-10-<br>exposed ;<br>mbers ann-<br>Lumber E<br>sf (roof live<br>2f=20.0 ps<br>=1.15); Ci<br>been con<br>for greate<br>flat roof lo<br>h other liv<br>for a 10.0<br>with any<br>d for a live<br>as where a<br>sill fit betw<br>s, with BC<br>commend<br>JPLIFT at | ond gust)<br>Opsf; h=25ft;<br>Iope) exteric<br>4, Interior (1)<br>1-1, Interior (1)<br>1-1, Interior (1)<br>1-1, Interior (1)<br>1-1, Interior<br>12 to 35-3-8<br>WOL=1.60 pla<br>WOL=1.60 pla<br>e load: Lumb<br>f (flat roof sr<br>ategory II; Ex<br>sidered for th<br>r of min roof<br>ad of 20.0 ps<br>e loads.<br>psf bottom<br>other live loa<br>b load of 20.0<br>a rectangle<br>een the botto<br>DL = 10.0psf<br>ed to conne<br>jt(s) 20 and | ds.<br>opsf<br>opsf<br>opsf<br>opsf<br>112.      |                           |                          | SE<br>ORTHONS<br>SE<br>O36      | 322                         |         |



| Job        | Truss | Truss Type   | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------|-----|-----|-----------------------------|-----------|
| 21030024-A | B08   | Roof Special | 1   | 1   | Job Reference (optional)    | E15498430 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:30 ID:k0Dh7ZuaKAt1lhXV0q0HY5zan7N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

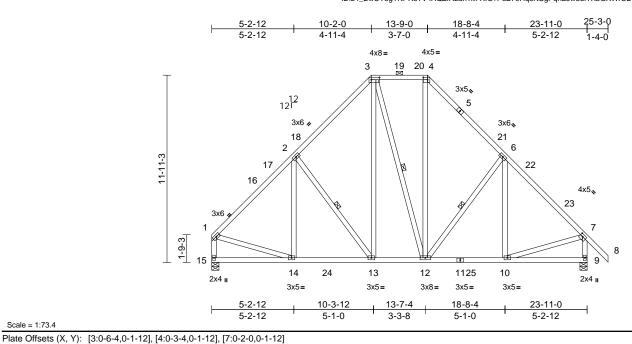


|                |       |        |         |        |         | 2       |         |
|----------------|-------|--------|---------|--------|---------|---------|---------|
|                | 0-0-8 | 5-4-15 | 10-4-9  | 19-5-3 | 28-4-0  | 31-1-12 | 33-11-8 |
| 0              | 0-0-8 | 5-4-7  | 4-11-11 | 9-0-9  | 8-10-13 | 2-9-12  | 2-9-12  |
| Scale = 1:70.1 |       |        |         |        |         |         |         |

## Plate Offsets (X, Y): [2:0-2-14,0-2-0], [4:0-3-12,0-2-0], [12:0-3-8,0-1-8], [14:0-2-12,0-3-0]

|             |                                            |                         |        |                                                                             |                                           |          |                |       |       |        |     |                | · · · · · · · · · · · · · · · · · · · |
|-------------|--------------------------------------------|-------------------------|--------|-----------------------------------------------------------------------------|-------------------------------------------|----------|----------------|-------|-------|--------|-----|----------------|---------------------------------------|
| Loading     | (psf)                                      | Spacing                 | 2-0-0  |                                                                             | CSI                                       |          | DEFL           | in    | (loc) | l/defl | L/d | PLATES         | GRIP                                  |
| TCLL (roof) | 20.0                                       | Plate Grip DOL          | 1.15   |                                                                             | TC                                        | 0.59     | Vert(LL)       | -0.25 | 15-17 | >999   | 240 | MT20           | 244/190                               |
| Snow (Pf)   | 20.0                                       | Lumber DOL              | 1.15   |                                                                             | BC                                        | 0.76     | Vert(CT)       | -0.47 | 14-15 | >859   | 180 |                |                                       |
| TCDL        | 10.0                                       | Rep Stress Incr         | YES    |                                                                             | WB                                        | 0.73     | Horz(CT)       | 0.12  | 11    | n/a    | n/a |                |                                       |
| BCLL        | 0.0*                                       | Code                    | IRC201 | 5/TPI2014                                                                   | Matrix-MSH                                |          |                |       |       |        |     |                |                                       |
| BCDL        | 10.0                                       |                         |        |                                                                             |                                           |          |                |       |       |        |     | Weight: 214 lb | FT = 20%                              |
| LUMBER      |                                            |                         | 1)     | Unbalanced                                                                  | roof live loads have                      | e been   | considered fo  | r     |       |        |     |                |                                       |
| TOP CHORD   | 2x4 SP No.2                                |                         |        | this design.                                                                |                                           |          |                |       |       |        |     |                |                                       |
| BOT CHORD   | 2x4 SP No.2 *Excep<br>8-13:2x4 SP No.3     | ot* 16-14:2x4 SP No.1   | , 2)   |                                                                             | 7-10; Vult=130mpl<br>oh; TCDL=6.0psf; E   |          |                | ;     |       |        |     |                |                                       |
| WEBS        | 2x4 SP No.3                                |                         |        | Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior                         |                                           |          |                |       |       |        |     |                |                                       |
| BRACING     |                                            |                         |        | zone and C-C Exterior (2) -1-3-8 to 2-1-4, Interior (1)                     |                                           |          |                |       |       |        |     |                |                                       |
| TOP CHORD   | Structural wood she                        | athing directly applied | dor    |                                                                             | 9, Exterior (2) 7-1-9                     |          |                |       |       |        |     |                |                                       |
|             | 2-6-10 oc purlins, e                       |                         |        |                                                                             | 0-5-0, Exterior (2) 3                     |          |                |       |       |        |     |                |                                       |
| BOT CHORD   | Rigid ceiling directly<br>bracing.         | applied or 10-0-0 oc    |        | right expose                                                                | t and right exposed<br>d;C-C for members  | and fo   | rces & MWFF    |       |       |        |     |                |                                       |
| WEBS        | U                                          | 5-17                    |        |                                                                             | shown; Lumber DO                          | DL=1.6   | 0 plate grip   |       |       |        |     |                |                                       |
| REACTIONS   |                                            | 19=0-5-8                |        | DOL=1.60                                                                    |                                           |          |                |       |       |        |     |                |                                       |
|             | Max Horiz 19=-309 (                        |                         | 3)     |                                                                             | 7-10; Pr=20.0 psf                         |          |                |       |       |        |     |                |                                       |
|             | Max Uplift 11=-198 (                       |                         | 15)    |                                                                             | late DOL=1.15); Pf                        |          |                |       |       |        |     |                |                                       |
|             | Max Grav 11=1345                           |                         | ,      | Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;<br>Fully Exp.; Ct=1.10 |                                           |          |                |       |       |        |     |                |                                       |
| FORCES      | (lb) - Maximum Com                         |                         | , 4)   |                                                                             | snow loads have b                         | een co   | nsidered for t | nis   |       |        |     |                |                                       |
|             | Tension                                    |                         | •,     | design.                                                                     |                                           | 0011 001 |                |       |       |        |     |                |                                       |
| TOP CHORD   | 1-2=0/52, 2-20=-145                        | 57/208, 3-20=-1364/2    | 32, 5) |                                                                             | is been designed fo                       | or areat | er of min roof | live  |       |        |     |                |                                       |
|             | 3-21=-1401/264, 4-2                        | 21=-1303/298,           | . ,    |                                                                             | psf or 1.00 times fla                     |          |                |       |       |        |     |                |                                       |
|             | 4-22=-1111/272, 22-                        | -23=-1128/256,          |        | overhangs n                                                                 | on-concurrent with                        | other li | ve loads.      |       |       |        |     |                |                                       |
|             | 5-23=-1186/253, 5-6                        |                         | 6)     | This truss ha                                                               | as been designed fo                       | or a 10. | 0 psf bottom   |       |       |        |     | MILLIN         | Unit.                                 |
|             | 6-7=-2176/335, 7-8=                        | ,                       |        |                                                                             | ad nonconcurrent w                        |          |                |       |       |        |     | IN'LY CA       | ROUL                                  |
|             | 8-24=-3298/489, 9-2                        | ,                       | 7)     |                                                                             | nas been designed                         |          |                | Opsf  |       |        | 1   | alling         |                                       |
|             | 9-10=-215/71, 2-19=                        | -1380/254,              |        |                                                                             | n chord in all areas                      |          |                |       |       | /      | SI  | OWEES          | Di Vi                                 |
| BOT CHORD   | 10-11=-175/68                              | 19 00/11/0              |        |                                                                             | by 2-00-00 wide wil                       |          |                |       |       | 2      | 27  |                |                                       |
| BOTCHORD    | 18-19=-117/329, 17-<br>16-17=-61/1640, 16- | ,                       | •      |                                                                             | ny other members,                         |          |                |       |       |        | -   | :0             |                                       |
|             | 15-25=-61/1640, 14                         | ,                       | 8)     |                                                                             | ISP connectors rec<br>ing walls due to UF |          |                |       |       | -      |     | 054            | , <u>1</u> E                          |
|             |                                            | 305/162, 12-13=-56/1    | 37     |                                                                             | tion is for uplift only                   |          |                |       |       |        |     | SEA            | 4 3 8 9                               |
|             | 11-12=-247/1767                            |                         | - ,    | lateral forces                                                              |                                           | anu ut   |                |       |       | 1      |     | 0363           | 22 : =                                |
| WEBS        | 3-18=-233/76, 3-17=                        | -205/185,               |        | DAD CASE(S)                                                                 |                                           |          |                |       |       | -      |     |                | - ; :                                 |
|             | 4-17=-148/907, 5-17                        |                         |        | AD CASE(S)                                                                  | Stanuaru                                  |          |                |       |       |        | -   |                | 1 5                                   |
|             | 5-15=-93/778, 7-15=                        | -612/246,               |        |                                                                             |                                           |          |                |       |       |        | 21  | N.ENO          | -cRix S                               |
|             | 7-14=-219/1060, 9-1                        |                         |        |                                                                             |                                           |          |                |       |       |        |     | S, GIN         | EF. A.N                               |
|             | 9-14=-154/1327, 9-1                        |                         |        |                                                                             |                                           |          |                |       |       |        | 1   | CA C           | II BEIN                               |
|             | 12-14=-209/1762, 2-                        | -18=-62/1079            |        |                                                                             |                                           |          |                |       |       |        |     | 11, A. G       | IL IIII                               |
| NOTES       |                                            |                         |        |                                                                             |                                           |          |                |       |       |        |     | A. C           | 110                                   |




March 15,2021

Page: 1



| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | D06   | Piggyback Base | 4   | 1   | Job Reference (optional)    | E15498431 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:51 ID:z4\_EwCY3gTNPRsTV4AQZfHzan1M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

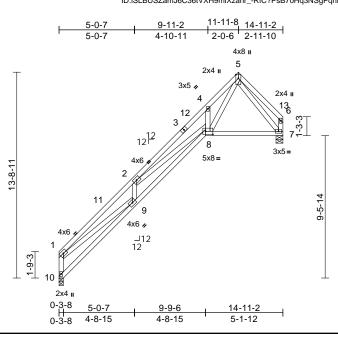


## Scale = 1:73.4

|                                                             |                                                                                                                                                                                                                       | ,, <u>[ </u>                                                                                                        | ,                                      | .=1                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                                                                                             |                                                                                                                                                                                                                |                                                                   |                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                         | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                                                                                                                     | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                        | 0.51<br>0.30<br>0.33                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                       | in<br>-0.04<br>-0.07<br>0.02                                      | (loc)<br>13-14<br>13-14<br>9 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 200 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                             | 2x4 SP No.2<br>2x4 SP No.3 *Excep<br>No.2<br>Structural wood she<br>5-2-5 oc purlins, exi<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                            | applied or 10-0-0 oc<br>2-13, 3-12, 6-12<br>15=0-5-8<br>LC 12)<br>C 15), 15=-79 (LC 14)                             | or<br>1<br>3)<br>4)                    | Vasd=103m<br>Cat. II; Exp I<br>zone and C-<br>3-1-12 to 5-1<br>(1) 17-11-15<br>zone; cantile<br>and right exp<br>MWFRS for<br>grip DOL=1.<br>TCLL: ASCE<br>DOL=1.15 P<br>Lumber DOL<br>Fully Exp.; C<br>Unbalanced<br>design. | E 7-10; Pr=20.0 ps<br>late DOL=1.15); P<br>_=1.15 Plate DOL=                                                                                                                                                      | BCDL=(<br>RS (env<br>12 to 3-<br>-11-1 to<br>r (2) 22-<br>exposed<br>nbers ar<br>Lumber<br>f (roof livi<br>f=20.0 p<br>=1.15); C<br>been co | 6.0psf; h=25ft<br>elope) exteria<br>1-12, Interior<br>17-11-15, Int<br>3-0 to 25-3-0<br>; end vertical<br>dd forces &<br>DOL=1.60 pla<br>ve load: Lumb<br>sf (flat roof si<br>ategory II; E;<br>nsidered for t | or<br>(1)<br>terior<br>left<br>ate<br>oer<br>now:<br>xp B;<br>his |                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |
| FORCES<br>TOP CHORD                                         | (lb) - Maximum Com<br>Tension<br>1-16=-1145/160, 16-<br>2-17=-935/185, 2-18<br>3-18=-816/298, 3-19<br>19-20=-578/276, 4-2<br>4-5=-808/294, 5-21=<br>6-21=-1010/256, 6-2<br>22-23=-1048/169, 7-<br>1-15=-1086/160, 7-9 | -17=-1018/168,<br>]=-1013/260,<br>]=-578/276,<br>:0=-578/276,<br>-812/275,<br>:2=-932/192,<br>-23=-1143/154, 7-8=0/ | 6)<br>7)<br>8)                         | load of 12.0<br>overhangs n<br>Provide ader<br>This truss ha<br>chord live loa<br>* This truss l<br>on the bottor<br>3-06-00 tall l<br>chord and an                                                                           | psf or 1.00 times f<br>on-concurrent with<br>quate drainage to<br>as been designed<br>ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w<br>ny other members.<br>JSP connectors re | lat roof I<br>o other li<br>prevent<br>for a 10.<br>with any<br>d for a liv<br>s where<br>ill fit betv<br>, with BC                         | oad of 20.0 p<br>ve loads.<br>water pondin<br>0 psf bottom<br>other live loa<br>re load of 20.1<br>a rectangle<br>ween the bott<br>CDL = 10.0ps                                                                | sf on<br>g.<br>ads.<br>Opsf<br>om<br>f.                           |                              | 4                             | ALL ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WITH CA                          | ROUNT                              |
| BOT CHORD                                                   | 14-15=-296/348, 14-<br>13-24=-142/856, 12-                                                                                                                                                                            | -24=-142/856,                                                                                                       | -,                                     | truss to bear<br>This connec<br>lateral forces                                                                                                                                                                                | ring walls due to U<br>tion is for uplift onl                                                                                                                                                                     | PLIFT a<br>y and do                                                                                                                         | t jt(s) 15 and<br>bes not consid                                                                                                                                                                               | 9.<br>der                                                         |                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .' <b>?`</b><br>SEA<br>0363      | • •                                |
| WEBS                                                        | 2-14=-106/99, 2-13=<br>3-13=-136/386, 3-12<br>4-12=-112/345, 6-12<br>6-10=-109/98, 1-14=                                                                                                                              | 2=-138/140,<br>2=-363/231,                                                                                          |                                        |                                                                                                                                                                                                                               | ation of the purlin a<br>d.                                                                                                                                                                                       |                                                                                                                                             |                                                                                                                                                                                                                |                                                                   |                              |                               | in the second se | A SMGIN                          | EERHAL                             |
| NOTES<br>1) Unbalance<br>this design                        | ed roof live loads have<br>n.                                                                                                                                                                                         | been considered for                                                                                                 |                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                   |                                                                                                                                             |                                                                                                                                                                                                                |                                                                   |                              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111111                           | 15 2021                            |

#### NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




March 15,2021

| Job        | Truss | Truss Type   | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------|-----|-----|-----------------------------|-----------|
| 21030024-A | F01   | Roof Special | 3   | 1   | Job Reference (optional)    | E15498432 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:53 ID:iSLBUSZamJ6C36tVXH9mIXzanr\_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:76.8

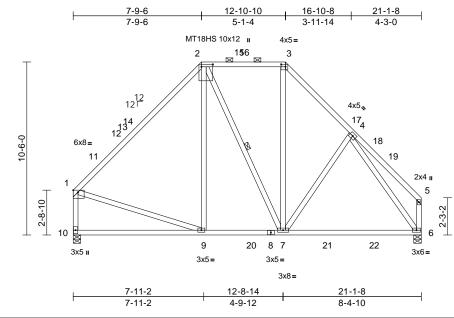
Plate Offsets (X, Y): [8:0-5-12,0-2-8]

|                                                                                                                           | (,, , ): [0:0 0 12,0 2 0                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                            |                                                   |                          |                               |                          |                                 |                                    |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                               | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                  | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PI2014                                                                                                                                                                                                                                                                                         | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                         | 0.41<br>0.52<br>0.70                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                   | in<br>0.20<br>-0.23<br>0.22                       | (loc)<br>8-9<br>8-9<br>7 | l/defl<br>>865<br>>750<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 99 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>3-8-8 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>(size) 7=0-5-8, 1<br>Max Horiz 10=353 (L<br>Max Uplift 7=-234 (L<br>Max Grav 7=631 (LC<br>(lb) - Maximum Com<br>Tension<br>1-10=-703/347, 1-11<br>2-11=-2063/980, 2-3<br>3-12=-1809/815, 4-1<br>4-5=-2005/1052, 5-1<br>6-13=-205/107, 6-7= | cept end verticals.<br>applied or 5-0-10 or<br>10=0-3-8<br>_C 14)<br>C 14)<br>C 30), 10=585 (LC 1<br>pression/Maximum<br>1=-2105/957,<br>3=-1930/809,<br>12=-1787/828,<br>13=-185/128,<br>-203/118<br>-1333/2266,<br>319/271,<br>7=-577/246, | ed or 5) T<br>5 6) *<br>7) E<br>8) C<br>6, 1<br>7) E<br>1<br>6, 1<br>7, 1<br>6, 1<br>7, 1<br>7 | DOL=1.15 Pl<br>Jumber DOL<br>Fully Exp.; C<br>Jnbalanced<br>Jesign.<br>This truss ha<br>thord live loa<br>This truss ha<br>thord live loa<br>This truss ha<br>bon the bottor<br>b-06-00 tall b<br>thord and ar<br>Bearing at jo<br>sising ANSI/J<br>Jesigner sho<br>Dne RT7A U<br>russ to bear | snow loads have I<br>s been designed f<br>ad nonconcurrent to<br>has been designed<br>n chord in all area<br>y 2-00-00 wide wi<br>yo other members.<br>int(s) 10 considers<br>TPI 1 angle to grai<br>uld verify capacity<br>SP connectors re-<br>ing walls due to UI<br>for uplift only and | f=20.0 p<br>1.15); C<br>been cor<br>or a 10.<br>with any<br>I for a liv<br>s where<br>Il fit betw<br>paralle<br>n formul<br>of bear<br>commen<br>PLIFT a | sf (flat roof s<br>ategory II; E:<br>hsidered for t<br>D psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>I to grain valu<br>a. Building<br>ing surface.<br>igt(s) 7. This | now:<br>xp B;<br>his<br>ads.<br>0psf<br>com<br>ue |                          |                               |                          | NITH CA                         | ROLINI                             |
| this design<br>2) Wind: ASC<br>Vasd=103<br>Cat. II; Ex<br>zone and<br>3-1-12 to a<br>cantilever                           | ed roof live loads have<br>n.<br>CE 7-10; Vult=130mph<br>3mph; TCDL=6.0psf; B(<br>p B; Enclosed; MWFR:<br>C-C Exterior (2) 0-1-12<br>8-11-8, Exterior (2) 8-1<br>left and right exposed<br>sed;C-C for members a                                                                                                                                               | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>2 to 3-1-12, Interior (<br>1-8 to 14-9-6 zone;<br>; end vertical left an                                                                                                   | r<br>1)<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                          |                                                                                                                                                                                                            |                                                   |                          |                               |                          | SEA<br>0363                     | • -                                |

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 8-11-8, Exterior (2) 8-11-8 to 14-9-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


G mmm

March 15,2021

| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | G05   | Piggyback Base | 1   | 1   | Job Reference (optional)    | E15498433 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:57 ID:fSdVJ0qqGGDRX5qUc709ySzanpM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

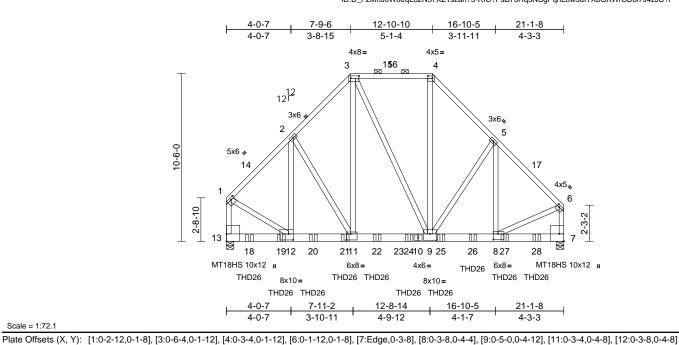


## Plate Offsets (X, Y): [1:Edge,0-1-7], [2:0-1-12,0-8-4], [3:0-3-4,0-1-12]

Scale = 1:69.9

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL                                                | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*                                                                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                             | 2-0-0<br>1.15<br>1.15<br>YES          | 15/TPI2014                                                                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                  | 0.74<br>0.64<br>0.91                                                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                       | in<br>-0.13<br>-0.27<br>0.01                                                       | (loc)<br>6-7<br>6-7<br>6 | l/defl<br>>999<br>>943<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>MT18HS | <b>GRIP</b><br>244/190<br>244/190 |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|-----------------------------------|
| BCDL                                                                                               | 10.0                                                                                                                                                                                                                                                                             | Code                                                                                                                                                                                                           | 11(020)                               | 13/11/2014                                                                                                                                                                                                                                                     | Matrix-WOT                                                                                                                           |                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                    |                          |                               |                          | Weight: 158 lb           | FT = 20%                          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2 *Excep<br>2.0E<br>2x4 SP No.2<br>2x4 SP No.3 *Excep<br>Structural wood she<br>5-9-4 oc purlins, ex<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                                                  | et* 7-2,10-1:2x4 SP N<br>athing directly applie<br>cept end verticals, ar<br>-0 max.): 2-3.<br>applied or 10-0-0 oc<br>2-7<br>10=0-5-8<br>LC 10)<br>2 15), 10=-74 (LC 14)<br>_C 39), 10=1007 (LC               | lo.2<br>d or<br>ld<br>3<br>39) 5<br>6 | Vasd=103m<br>Cat. II; Exp<br>zone and C<br>3-1-12 to 3-<br>16-11-5 to 1<br>zone; cantile<br>and right ex<br>MWFRS for<br>grip DOL=1<br>) TCLL: ASCI<br>DOL=1.15 F<br>Lumber DO<br>Fully Exp.; (<br>) Unbalanced<br>design.<br>) Provide ade<br>) All plates ar | E 7-10; Pr=20.0 ps<br>Plate DOL=1.15); I<br>L=1.15 Plate DOL<br>Ct=1.10<br>snow loads have<br>quate drainage to<br>e MT20 plates uni | BCDL=6<br>FRS (env<br>-12 to 3-<br>-6-7 to 16<br>(2) 17-11<br>exposed<br>mbers ar<br>Lumber 1<br>sf (roof lix<br>Pf=20.0 p<br>=1.15); C<br>been coo<br>prevent<br>ess othe | i.0psf; h=25f<br>elope) exteri<br>I-12, Interior<br>-11-5, Interior<br>-11-5, Interior<br>-12 to 20-11:<br>; end vertical<br>d forces &<br>DOL=1.60 pl<br>e load: Luml<br>sf (flat roof s<br>category II; E<br>msidered for t<br>water pondin<br>wise indicate | or<br>(1)<br>or (1)<br>-12<br>I left<br>ate<br>ber<br>.now:<br>xp B;<br>this<br>g. |                          |                               |                          | rveignit. 190 lb         |                                   |
| BOT CHORD<br>WEBS<br>NOTES                                                                         | 1-11=-919/152, 11-1<br>12-13=-724/167, 13-<br>2-14=-685/204, 2-15<br>15-16=-487/248, 3-1<br>3-17=-820/273, 4-17<br>4-18=-161/144, 18-1<br>5-19=-217/125, 1-10<br>9-10=-271/324, 9-20<br>8-20=-116/538, 7-8=<br>21-22=-31/553, 6-22<br>2-9=0/172, 2-7=-122<br>4-7=-187/216, 1-9=- | -14=-700/170,<br>=-487/248,<br>6=-487/248,<br>'=-844/238,<br>9=-182/129,<br>9=-930/177, 5-6=-217,<br>)=-116/538, -211-6/538,<br>-116/538, 7-21=-31/2<br>2=-31/553,<br>4/32, 37=-94/331,<br>80/416, 4-6=-912/63 | 7/127 1<br>553,<br>1                  | <ul> <li>This truss h<br/>chord live lo</li> <li>* This truss<br/>on the botto<br/>3-06-00 tall<br/>chord and a</li> <li>One RT7A I<br/>truss to bea<br/>This connec<br/>lateral force</li> <li>Graphical p<br/>or the orient<br/>bottom chor</li> </ul>       | urlin representatio<br>ation of the purlin<br>d.                                                                                     | for a 10.<br>with any<br>d for a liv<br>as where<br>vill fit betv<br>s, with BC<br>ecommer<br>JPLIFT a<br>ly and do<br>n does no                                           | D psf bottom<br>other live load<br>e load of 20.<br>a rectangle<br>veen the bott<br>DL = 10.0ps<br>ded to conne<br>i jt(s) 10 and<br>es not consi<br>ot depict the                                                                                             | Opsf<br>tom<br>sf.<br>ect<br>6.<br>der                                             |                          | A                             |                          | ORTEESS<br>SEA<br>0363   | • •                               |
|                                                                                                    | ed roof live loads have<br>n.                                                                                                                                                                                                                                                    | been considered for                                                                                                                                                                                            | L                                     | OAD CASE(S)                                                                                                                                                                                                                                                    | Standard                                                                                                                             |                                                                                                                                                                            |                                                                                                                                                                                                                                                                |                                                                                    |                          |                               |                          |                          | EFR. KINN                         |




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

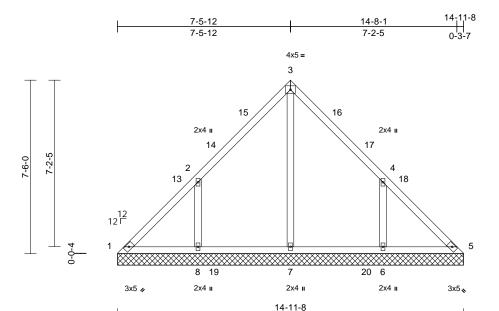
| Job        | Truss | Truss Type            | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|-----------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | G06   | Piggyback Base Girder | 1   | 2   | Job Reference (optional)    | E15498434 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:58 ID:D\_F2MnJ0W0eqL82N37XZ1szan?5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



## Scale = 1:72.1


|                                                                               | , .). [                                                                                                                                                                             | ],[ele e ije i i=],[                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ], [0:0 : .2,                                                                                                                                                                                                                                                                                                                                                           | 0-1-oj, [7.Euge,0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o o], [o.c                                                   | , e e,ej, [                                                                                                                  | [0.0 0 0,                    | ,• · ·=],                                                       | [1.10.0                                                                                     | .,                                                         | ], [12:0 0 0,0 1 0                                                                                                         | ,<br>,                                                        |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                   | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                               | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                               | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.85<br>0.94<br>0.89                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                     | in<br>-0.08<br>-0.15<br>0.02 | 9-11<br>9-11                                                    | l/defl<br>>999<br>>999<br>n/a                                                               | L/d<br>240<br>180<br>n/a                                   | PLATES<br>MT20<br>MT18HS<br>Weight: 386 lb                                                                                 | <b>GRIP</b><br>244/190<br>244/190<br>FT = 20%                 |
| BCDL                                                                          | 10.0                                                                                                                                                                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                                                                                              |                              |                                                                 |                                                                                             |                                                            | weight: 386 ib                                                                                                             | FI = 20%                                                      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x6 SP No.2<br>2x4 SP No.3 *Excep<br>Structural wood she<br>5-2-5 oc purlins, ex<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly                                  | athing directly applie<br>cept end verticals, a<br>I-0 max.): 3-4.                                                      | ed or<br>nd 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.131"x3") n<br>Top chords c<br>oc.<br>Bottom chord<br>staggered at<br>Web connect<br>All loads are<br>except if note                                                                                                                                                                                                                                                  | ted as follows: 2x4<br>considered equal<br>ed as front (F) or b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ws: 2x4 -<br>bllows: 2<br>4 - 1 row<br>ly applie<br>back (B) | <ul> <li>1 row at 0-9</li> <li>x6 - 2 rows</li> <li>at 0-9-0 oc.</li> <li>d to all plies,</li> <li>face in the LO</li> </ul> | DAC                          | or t<br>bott<br>13) Use<br>12-<br>2-0<br>19-<br>cho<br>14) Fill | he orien<br>tom choi<br>e USP TI<br>10d x 1-<br>-0 oc ma<br>5-4 to co<br>ord.<br>all nail h | tation o<br>rd.<br>HD26 (<br>1/2 nai<br>ax. star<br>onnect | f the purlin alon<br>With 18-16d naii<br>Is into Truss) or<br>ting at 1-5-4 fron<br>truss(es) to back<br>here hanger is ir | ls into Girder &<br>equivalent spaced at<br>n the left end to |
|                                                                               | bracing.                                                                                                                                                                            |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         | tion. Ply to ply co<br>listribute only load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                                                                                                              |                              |                                                                 | CASE(S                                                                                      |                                                            |                                                                                                                            | r Incroaco-1 15 Plata                                         |
|                                                                               | (size) 7=0-5-8, 1<br>Max Horiz 13=-279 (L<br>Max Uplift 7=-379 (L<br>Max Grav 7=6564 (L<br>(lb) - Maximum Com<br>Tension<br>1-14=-5369/0, 2-14=                                     | · +)                                                                                                                    | <ul> <li>provided to distribute only loads noted as (F) or (B), unless otherwise indicated.</li> <li>Unbalanced roof live loads have been considered for this design.</li> <li>Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zono continuer of the and right avaged to undustrial left</li> <li>Dead + Snow (balanced): Lumber Increase=1</li> <li>Increase=1.15</li> <li>Uniform Loads (lb/ft) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 7-13=-20</li> <li>Concentrated Loads (lb) Vert: 18=-1175 (B), 19=-1175 (B), 20=-117</li> <li>21=-1355 (B), 22=-1191 (B), 24=-1092 (B),</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                                                                                              |                              |                                                                 |                                                                                             |                                                            | 0, 7-13=-20<br>B), 20=-1175 (B),<br>4=-1092 (B), 25=-1165                                                                  |                                                               |
| BOT CHORD                                                                     | 3-15=-3486/201, 15-<br>4-16=-3486/201, 4-5<br>5-17=-5381/276, 6-1<br>1-13=-6121/0, 6-7=-<br>13-18=-230/302, 18-<br>12-19=-230/302, 12-<br>20-21=0/3738, 11-2<br>22-23=0/3518, 23-24 | 5=-5049/206,<br>17=-5477/257,<br>5682/263<br>-19=-230/302,<br>-20=0/3738,<br>1=0/3738, 11-22=0/3<br>4=0/3518, 10-24=0/3 | 3518, 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>and right exposed; Lumber DOL=1.60 plate grip<br/>DOL=1.60</li> <li>5) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber<br/>DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow:<br/>Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;<br/>Fully Exp.; Ct=1.10</li> <li>6) Unbalanced snow loads have been considered for this<br/>design.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                              |                                                                                                                              |                              |                                                                 |                                                                                             |                                                            |                                                                                                                            | ROUT                                                          |
| WEBS<br>NOTES                                                                 | 3-9=-706/73, 4-9=-76/3250, 5-9=-651/396,<br>5-8=-287/561, 1-12=0/4280, 6-8=-111/4035                                                                                                |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                         | Provide adequate drainage to prevent water ponding.<br>All plates are MT20 plates unless otherwise indicated.<br>This truss has been designed for a 10.0 psf bottom<br>chord live load nonconcurrent with any other live loads.<br>)* This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members, with BCDL = 10.0psf.<br>1) One RT7A USP connectors recommended to connect<br>truss to bearing walls due to UPLIFT at jt(s) 7. This<br>connection is for uplift only and does not consider lateral<br>forces. |                                                              |                                                                                                                              |                              |                                                                 |                                                                                             |                                                            | EER. KIN                                                                                                                   |                                                               |

A. GILBERT March 15,2021



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL05  | Valley     | 1   | 1   | Job Reference (optional)    | E15498435 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:12 ID:\_JPhAzaraKx5u7GJz?6cCYzanlo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:49.8

|             |       |                 |                 |            |      | ·         |      |       |        |     |               |          |
|-------------|-------|-----------------|-----------------|------------|------|-----------|------|-------|--------|-----|---------------|----------|
| Loading     | (psf) | Spacing         | 2-0-0           | csi        |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 20.0  | Plate Grip DOL  | 1.15            | тс         | 0.22 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 244/190  |
| Snow (Pf)   | 20.0  | Lumber DOL      | 1.15            | BC         | 0.18 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| TCDL        | 10.0  | Rep Stress Incr | YES             | WB         | 0.21 | Horiz(TL) | 0.00 | 5     | n/a    | n/a |               |          |
| BCLL        | 0.0*  | Code            | IRC2015/TPI2014 | Matrix-MSH |      |           |      |       |        |     |               |          |
| BCDL        | 10.0  |                 |                 |            |      |           |      |       |        |     | Weight: 71 lb | FT = 20% |

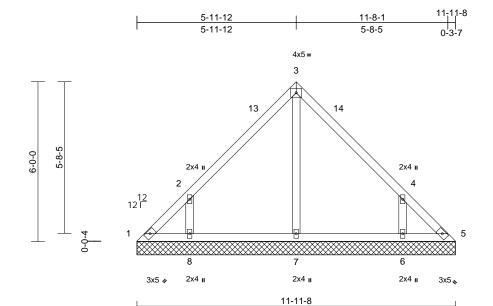
| TOP CHORD | 2x4 SP N                 | 0.2                                                      |
|-----------|--------------------------|----------------------------------------------------------|
| BOT CHORD | 2x4 SP N                 | 0.2                                                      |
| OTHERS    | 2x4 SP N                 | 0.3                                                      |
| BRACING   |                          |                                                          |
| TOP CHORD | Structural<br>6-0-0 oc p | l wood sheathing directly applied or<br>ourlins.         |
| BOT CHORD | Rigid ceili<br>bracing.  | ing directly applied or 6-0-0 oc                         |
| REACTIONS | (size)                   | 1=14-11-8, 5=14-11-8, 6=14-11-8,<br>7=14-11-8, 8=14-11-8 |
|           | Max Horiz                | 1=-180 (LC 10)                                           |
|           | Max Uplift               | 1=-42 (LC 10), 6=-220 (LC 15),                           |
|           |                          | 8=-225 (LC 14)                                           |
|           | Max Grav                 | 1=146 (LC 24), 5=117 (LC 26),                            |
|           |                          | 6=432 (LC 24), 7=406 (LC 23),                            |
|           |                          | 8=437 (LC 23)                                            |
| FORCES    | (lb) - Max<br>Tension    | imum Compression/Maximum                                 |
| TOP CHORD |                          | 5/167, 2-13=-153/173,                                    |
| TOP CHORD |                          | 6/109, 14-15=-76/123,                                    |
|           |                          | (140, 3-16=-73/116, 16-17=-76/101,                       |
|           |                          | 6/86, 4-18=-117/127, 5-18=-139/120                       |
| BOT CHORD |                          | (151, 8-19=-113/151, 7-19=-113/151,                      |
| BOT CHORD |                          | 3/151, 6-20=-113/151, 5-6=-113/151                       |
| WEBS      | 3-7=-217/                | 0, 2-8=-330/261, 4-6=-330/259                            |
| NOTES     |                          |                                                          |
|           | ed roof live l           | oads have been considered for                            |

 Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-6-0, Exterior (2) 4-6-0 to 10-6-0, Interior (1) 10-6-0 to 11-11-12, Exterior (2) 11-11-12 to 14-11-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
   TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
  10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 1, 225 lb uplift at joint 8 and 220 lb uplift at joint 6.

LOAD CASE(S) Standard




Page: 1



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL06  | Valley     | 1   | 1   | Job Reference (optional)    | E15498436 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:12 ID:s5eC?LdLeYRXMkZ4CrAYMOzanlk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

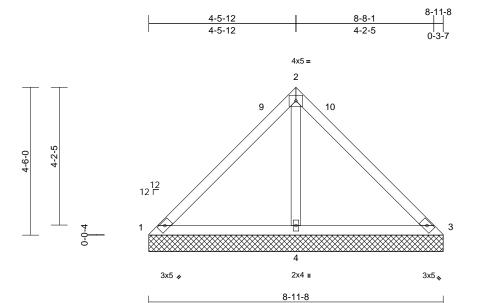
Page: 1



Scale = 1:43.3

| Loading<br>TCLL (roof)<br>Snow (Pf)                                                          | (psf)<br>20.0<br>20.0                                                                                                                                                                                                                                    | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL                                                                                                                                   | 2-0-0<br>1.15<br>1.15                                                                                                                                                                                                                                                          | CSI<br>TC<br>BC                                                                                                                                                                                                                                                                                                                                                      | 0.19<br>0.12                                                                                                                                                                                  | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)                                                                                                                                                                            | in<br>n/a<br>n/a                                                 | (loc)<br>-<br>- | l/defl<br>n/a<br>n/a | L/d<br>999<br>999 | PLATES<br>MT20 | <b>GRIP</b><br>244/190                 |          |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|----------------------|-------------------|----------------|----------------------------------------|----------|
| TCDL                                                                                         | 10.0                                                                                                                                                                                                                                                     | Rep Stress Incr                                                                                                                                                                  | YES                                                                                                                                                                                                                                                                            | WB                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                                                          | Horiz(TL)                                                                                                                                                                                                      | 0.00                                                             | 5               | n/a                  | n/a               |                |                                        |          |
| BCLL<br>BCDL                                                                                 | 0.0*<br>10.0                                                                                                                                                                                                                                             | Code                                                                                                                                                                             | IRC2015/TPI2014                                                                                                                                                                                                                                                                | Matrix-MSH                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                  |                 |                      |                   | Weight: 54 lb  | FT = 20%                               |          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=11-11-5<br>(size) 1=11-11-5<br>Max Horiz 1=143 (LC<br>6=-185 (L<br>Max Grav 1=114 (LC<br>6=-386 (LC<br>8=342 (LC | applied or 10-0-0 oc<br>8, 5=11-11-8, 6=11-1<br>8, 8=11-11-8<br>C 11)<br>C 10), 5=-17 (LC 11),<br>C 15), 8=-191 (LC 1),<br>C 28), 5=92 (LC 26),<br>C 28), 7=224 (LC 1),<br>C 27) | <ul> <li>only. For see Stand or consult</li> <li>4) TCLL: ASC DOL=1.15<br/>Lumber DC Fully Exp.;</li> <li>5) Unbalance design.</li> <li>1-8, 6) Gable requ</li> <li>7) Gable stud</li> <li>8) This truss chord live</li> <li>9) * This truss on the bott 3-06-00 ta</li> </ul> | gned for wind load<br>studs exposed to w<br>ard Industry Gable<br>qualified building d<br>CE 7-10; Pr=20.0 p<br>Plate DOL=1.15;<br>DL=1.15 Plate DOI<br>Ct=1.10<br>d snow loads have<br>irres continuous bo<br>is spaced at 4-0-0<br>has been designed<br>oad nonconcurren<br>is has been designed<br>om chord in all are<br>I by 2-00-00 wide v<br>any other member | vind (norm<br>End Deta<br>esigner as<br>sf (roof liv<br>PF=20.0 p<br>==1.15); C<br>e been cor<br>butom chor<br>oc.<br>d for a 10.0<br>t with any<br>ed for a liv<br>as where<br>will fit bete | al to the face<br>lis as applica<br>is per ANSI/TI<br>e load: Lumb<br>of (flat roof si<br>ategory II; E)<br>isidered for the<br>d bearing.<br>D psf bottom<br>other live load<br>e load of 20.0<br>a rectangle | ),<br>ble,<br>PI 1.<br>er<br>how:<br>cp B;<br>his<br>ds.<br>Dpsf |                 |                      |                   | weight. 34 ib  | FT = 20%                               |          |
| ORCES                                                                                        | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                | echanical connection to the capable of with                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                  |                 |                      |                   |                |                                        |          |
| TOP CHORD                                                                                    | 1-2=-163/131, 2-13=<br>3-13=-105/126, 3-14<br>4-14=-152/102, 4-5=                                                                                                                                                                                        | l=-105/118,                                                                                                                                                                      | 1, 17 lb up<br>uplift at joi<br>LOAD CASE(                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      | o uplift at jo                                                                                                                                                                                | bint 8 and 18                                                                                                                                                                                                  | 5 lb                                                             |                 |                      |                   |                |                                        |          |
| BOT CHORD                                                                                    | ,                                                                                                                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                | ) Standard                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                  |                 |                      |                   | WH CA          | ARO                                    |          |
| WEBS                                                                                         | 3-7=-138/0, 2-8=-31                                                                                                                                                                                                                                      | 5/254, 4-6=-315/252                                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                  |                 |                      | N                 | R              | ······································ |          |
| NOTES                                                                                        |                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                  |                 | /                    | 5.                | OFE            | Para                                   | 11       |
| <ol> <li>Unbalance<br/>this design</li> </ol>                                                | ed roof live loads have<br>n.                                                                                                                                                                                                                            | been considered for                                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                  |                 | -                    | P                 | . QT           | 120                                    | 14       |
| Vasd=103<br>Cat. II; Ex<br>zone and<br>exposed ;<br>members                                  | CE 7-10; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>p; B; Enclosed; MWFR<br>C-C Exterior (2) zone;<br>end vertical left and riç<br>and forces & MWFRS<br>OL=1.60 plate grip DC                                                                               | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rig<br>ght exposed;C-C for<br>for reactions shown;                                                           | ght                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                  |                 |                      |                   | SEA<br>0363    |                                        | annun an |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




G١ mmm March 15,2021

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL07  | Valley     | 1   | 1   | Job Reference (optional)    | E15498437 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:13 ID:HgKLeMgEwTq5DClftzkF\_0zanlh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

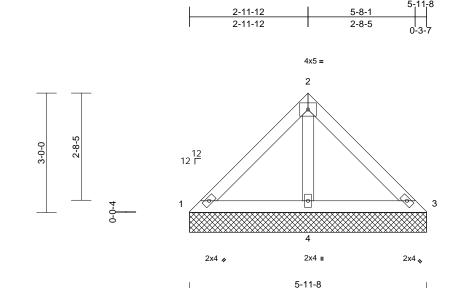


Scale = 1:35.1

|                                                                                              |                                                                                                                      |                                                                         |                                      |                                                                                                                                                                                                                            | -                                                                                                                                                                                                      |                                                                                                                                                            |                                                                                                                                                                             |                                           |                      |                             |                          |                                 |                                    |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                  | (psf<br>20.0<br>20.0<br>10.0<br>0.0<br>10.0                                                                          | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>* Code               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2 | 015/TPI2014                                                                                                                                                                                                                | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                              | 0.28<br>0.25<br>0.18                                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                   | in<br>n/a<br>n/a<br>0.00                  | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 37 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 8-11-8 oc purlins<br>Rigid ceiling dire<br>bracing.<br>(size) 1=8-1<br>Max Horiz 1=-10<br>Max Uplift 1=-29<br>4=-17. | ctly applied or 6-0-0 oc                                                | ed or                                | Lumber DOL<br>Fully Exp.; C<br>Unbalanced<br>design.<br>6) Gable requir<br>7) Gable studs<br>8) This truss ha<br>chord live los<br>9) * This truss I<br>on the bottoo<br>3-06-00 tall I<br>chord and ar<br>10) Provide mec | Plate DOL=1.15);<br>=1.15 Plate DOL<br>:=1.10 snow loads have<br>es continuous bo<br>spaced at 4-0-0<br>as been designed<br>ad nonconcurren<br>has been designed<br>op 2-00-00 wide<br>oy 2-00-00 wide | Pf=20.0 p<br>L=1.15); C<br>e been cor<br>ottom chor<br>oc.<br>d for a 10.<br>t with any<br>ed for a liv<br>eas where<br>will fit betw<br>'s.<br>on (by oth | sf (flat roof si<br>ategory II; E)<br>asidered for th<br>d bearing.<br>0 psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>veen the botti<br>ers) of truss f | now:<br>kp B;<br>his<br>ds.<br>Dpsf<br>om |                      |                             |                          |                                 |                                    |
| TOP CHORD                                                                                    | Tension                                                                                                              | ompression/Maximum<br>9=-104/270, 2-10=-104                             | /264.                                | 1, 29 lb uplif<br>LOAD CASE(S)                                                                                                                                                                                             | t at joint 3 and 17<br>Standard                                                                                                                                                                        | 72 lb uplift                                                                                                                                               | at joint 4.                                                                                                                                                                 |                                           |                      |                             |                          |                                 |                                    |
| BOT CHORD<br>WEBS                                                                            | 3-10=-130/242<br>1-4=-255/187, 3-<br>2-4=-516/248                                                                    |                                                                         | ,                                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                             |                                           |                      |                             |                          |                                 |                                    |
| this design<br>2) Wind: ASC                                                                  | n.<br>CE 7-10; Vult=130r                                                                                             | ave been considered fo<br>nph (3-second gust)<br>; BCDL=6.0psf; h=25ft; |                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                             |                                           |                      |                             | A                        | OR FES                          | ROUT                               |
| Cat. II; Ex                                                                                  | p B; Enclosed; MW                                                                                                    | FRS (envelope) exterio<br>ne; cantilever left and ri                    | r                                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                        |                                                                                                                                                            |                                                                                                                                                                             |                                           |                      | 4                           | U.                       |                                 | Alle                               |

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3)
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Munning - HILLING HILLING SEAL 036322 GI munn March 15,2021




| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL08  | Valley     | 1   | 1   | Job Reference (optional)    | E15498438 |

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Mon Mar 15 12:36:13 ID:dd7Eh4kMI?SOKzAcgXKRh4zanlc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



S

BOT

REA

| (psf)                                                             | Spacing                                                                           | 2-0-0                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSI                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (loc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l/defl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20.0                                                              | Plate Grip DOL                                                                    | 1.15                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | тс                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vert(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20.0                                                              | Lumber DOL                                                                        | 1.15                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BC                                                                                                                                                                                                                                                                                                                                                                                                         | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vert(TL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.0                                                              | Rep Stress Incr                                                                   | YES                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Horiz(TL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.0*                                                              | Code                                                                              | IRC2015                                                                                                                                                | /TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.0                                                              |                                                                                   |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight: 24 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea | athing directly applie                                                            |                                                                                                                                                        | design.<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es continuous bo<br>spaced at 4-0-0<br>s been designed<br>ad nonconcurren                                                                                                                                                                                                                                                                                                                                  | ottom chor<br>oc.<br>d for a 10.0<br>t with any                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d bearing.<br>) psf bottom<br>other live loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 222                                                               | 20.0<br>20.0<br>10.0<br>0.0*<br>10.0<br>2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3 | 20.0<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0<br>22x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood sheathing directly applie | 20.0 Plate Grip DOL 1.15<br>20.0 Lumber DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2015<br>2000 Code 1000<br>2000 Code | 20.0       Plate Grip DOL       1.15         20.0       Lumber DOL       1.15         10.0       Rep Stress Incr       YES         0.0*       Code       IRC2015/TPI2014         10.0       IRC2015/TPI2014       5)         2x4 SP No.2       6)       Gable require         2x4 SP No.2       6)       Gable studs         30       7)       Gable studs         8)       This truss has chord live load | 20.0       Plate Grip DOL       1.15       TC         20.0       Lumber DOL       1.15       BC         10.0       Rep Stress Incr       YES       WB         0.0*       Code       IRC2015/TPI2014       Matrix-MP         5)       Unbalanced snow loads have design.       6)       Gable requires continuous bo         2x4 SP No.2       6)       Gable requires continuous bo       7)         Gable studs spaced at 4-0-0       8)       This truss has been designed chord live load nonconcurrent | 20.0       Plate Grip DOL       1.15       TC       0.10         20.0       Lumber DOL       1.15       BC       0.12         10.0       Rep Stress Incr       YES       WB       0.06         0.0*       Code       IRC2015/TPI2014       Matrix-MP         5)       Unbalanced snow loads have been cor design.         2x4 SP No.2       6)       Gable requires continuous bottom chor chor         2x4 SP No.3       7)       Gable studs spaced at 4-0-0 oc.         8)       This truss has been designed for a 10.0 chord live load nonconcurrent with any | 20.0       Plate Grip DOL       1.15       TC       0.10       Vert(LL)         20.0       Lumber DOL       1.15       BC       0.12       Vert(TL)         10.0       0.0*       Code       IRC2015/TPI2014       WB       0.06       Horiz(TL)         2x4 SP No.2       5)       Unbalanced snow loads have been considered for the design.         2x4 SP No.2       6)       Gable requires continuous bottom chord bearing.         7)       Gable studs spaced at 4-0-0 oc.       8)         Structural wood sheathing directly applied or       This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load | 20.0       Plate Grip DOL       1.15       TC       0.10       Vert(LL)       n/a         20.0       Lumber DOL       1.15       BC       0.12       Vert(TL)       n/a         10.0       Rep Stress Incr       YES       WB       0.06       Vert(TL)       0.00         0.0*       Code       IRC2015/TPI2014       Matrix-MP       Vert(TL)       0.00         2x4 SP No.2       5)       Unbalanced snow loads have been considered for this design.         2x4 SP No.2       6)       Gable requires continuous bottom chord bearing.         7)       Gable studs spaced at 4-0-0 oc.       This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. | 20.0       Plate Grip DOL       1.15       TC       0.10       Vert(LL)       n/a       -         20.0       Lumber DOL       1.15       BC       0.12       Vert(TL)       n/a       -         10.0       0.0*       Code       IRC2015/TPI2014       WB       0.06       Horiz(TL)       0.00       3         2x4 SP No.2       5)       Unbalanced snow loads have been considered for this design.       -       -         2x4 SP No.2       6)       Gable requires continuous bottom chord bearing.       -       -         3x4 SP No.3       7)       Gable studs spaced at 4-0-0 oc.       8)       This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. | 20.0       Plate Grip DOL       1.15       TC       0.10       Vert(LL)       n/a       -       n/a         20.0       Lumber DOL       1.15       BC       0.12       Vert(TL)       n/a       -       n/a         10.0       0.0*       Code       IRC2015/TPI2014       WB       0.06       Matrix-MP       Horiz(TL)       0.00       3       n/a         2x4 SP No.2       5)       Unbalanced snow loads have been considered for this design.       -       -       -       -       -       -       -       -       -       n/a         2x4 SP No.2       6)       Gable requires continuous bottom chord bearing.       -       -       -       -       -       -       -       -       -       n/a         2x4 SP No.3       7)       Gable studs spaced at 4-0-0 oc.       8)       This truss has been designed for a 10.0 psf bottom chord bearing.       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | 20.0<br>20.0<br>20.0<br>10.0<br>0.0*Plate Grip DOL<br>Lumber DOL1.15<br>1.15<br>Rep Stress Incr<br>YES<br>CodeTC<br>BC<br>0.12<br>WB<br>Matrix-MPVert(LL)<br>Vert(TL)<br>N/an/a-<br>n/a999<br>999<br>999<br>Horiz(TL)0.0*<br>10.00.0*<br>10.00.0*<br>Code115<br>TPI2014TC<br>BC<br>Matrix-MP0.10<br>BC<br>Matrix-MPVert(LL)<br>Vert(TL)n/a-<br>n/a999<br>999<br>Horiz(TL)2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.35)Unbalanced snow loads have been considered for this<br>design.5)Unbalanced snow loads have been considered for this<br>design.5)Gable requires continuous bottom chord bearing.<br>7)6)Gable requires continuous bottom chord bearing.<br>This truss has been designed for a 10.0 psf bottom<br>chord live load nonconcurrent with any other live loads. | 20.0       Plate Grip DOL       1.15       TC       0.10       Vert(LL)       n/a       -       n/a       999       MT20         20.0       Lumber DOL       1.15       BC       0.12       Vert(LL)       n/a       -       n/a       999       MT20         10.0       0.0*       Code       IRC2015/TPI2014       MB       0.06       Matrix-MP       Vert(TL)       n/a       -       n/a       999       Weight: 24 lb         2x4 SP No.2       5)       Unbalanced snow loads have been considered for this design.       6)       Gable requires continuous bottom chord bearing.       7)       Gable studies spaced at 4-0-0 oc.       8)       This trues has been designed for a 10.0 psf bottom chord live loads.       8)       This trues has been designed for a 10.0 psf bottom |

| CHORD  | 5-11-8 oc<br>Rigid ceili<br>bracing. | purlins.<br>ng directly applied or 6-0-0 oc   |  |
|--------|--------------------------------------|-----------------------------------------------|--|
| CTIONS | ( )                                  | 1=5-11-8, 3=5-11-8, 4=5-11-8<br>1=69 (I C 11) |  |

|        | in an in the ine |                                   |
|--------|------------------|-----------------------------------|
|        | Max Uplift       | 4=-76 (LC 14)                     |
|        | Max Grav         | 1=67 (LC 31), 3=67 (LC 32), 4=375 |
|        |                  | (LC 1)                            |
| FORCES | (lh) - Max       | imum Compression/Maximum          |

#### FORCES Tension TOP CHORD 1-2=-53/128, 2-3=-45/120

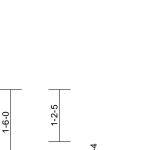
- BOT CHORD 1-4=-122/100, 3-4=-122/100 WFBS 2-4=-247/108NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

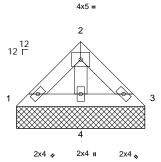
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 4.

### LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932


| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086   |          |
|------------|-------|------------|-----|-----|-------------------------------|----------|
| 21030024-A | VL09  | Valley     | 1   | 1   | E<br>Job Reference (optional) | 15498439 |


## Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:36:14 ID:Yr1aZF6JJrZPFNxsqOw?Fpzanni-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2-8-1

1-2-5

Page: 1





1-5-12

1-5-12



Scale = 1:26.6

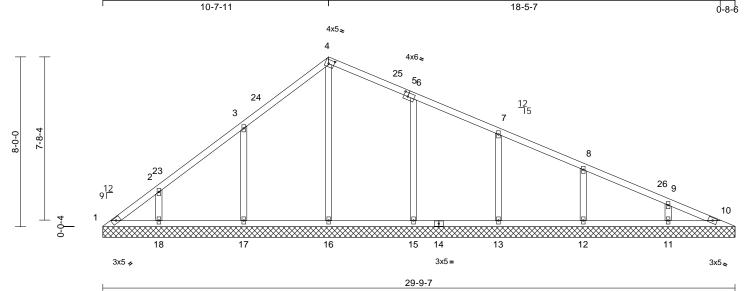
| 00010 = 1.20.0                                              |                                                                                                                                                                                                                                          |                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |                                                                                                                                     |                          |                      |                             |                          |                                 |                                    |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TP                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                   | 0.02<br>0.03<br>0.01                                                                                                                         | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                    | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 11 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                             | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>2-11-8 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 1=2-11-8,<br>Max Horiz 1=-32 (LC<br>Max Uplift 1=-3 (LC<br>(LC 14)<br>Max Grav 1=46 (LC<br>(LC 1) | applied or 6-0-0 oc<br>, 3=2-11-8, 4=2-11-8<br>2 10)<br>15), 3=-6 (LC 15), 4 | de<br>6) Ga<br>7) Ga<br>8) Th<br>ed or<br>9) * T<br>on<br>3-(0)<br>6<br>10) Pr<br>be<br>=-21<br>1,000 | balanced snow loads h<br>sign.<br>able requires continuous<br>able studs spaced at 4-C<br>is truss has been desig<br>ord live load nonconcur<br>'his truss has been desi<br>the bottom chord in all<br>06-00 tall by 2-00-00 wid<br>ord and any other memi<br>ovide mechanical conne<br>aring plate capable of w<br>6 lb uplift at joint 3 and 3<br>CASE(S) Standard | s bottom chor<br>)-0 oc.<br>ned for a 10.1<br>gned for a liv<br>areas where<br>de will fit betv<br>bers.<br>ection (by oth<br>vithstanding 3 | d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>ween the bott<br>ers) of truss t<br>b uplift at jo | ads.<br>Opsf<br>om<br>to |                      |                             |                          |                                 |                                    |
| this design                                                 | (lb) - Maximum Corr<br>Tension<br>1-2=-37/35, 2-3=0/2<br>1-4=-36/34, 3-4=-36<br>2-4=-71/14<br>ed roof live loads have<br>h.<br>CE 7-10; Vult=130mph                                                                                      | 9<br>/34<br>been considered fo                                               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |                                                                                                                                     |                          |                      |                             |                          | NTH CA                          | Rom                                |
| Cat. II; Exp                                                | mph; TCDL=6.0psf; B<br>p B; Enclosed; MWFR                                                                                                                                                                                               | S (envelope) exterio                                                         | or                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                              |                                                                                                                                     |                          |                      | 4                           | i                        | OFESS                           | Dial                               |

- zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10



818 Soundside Road Edenton, NC 27932

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL01  | Valley     | 1   | 1   | Job Reference (optional)    | E15498440 |


10-7-11

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:10 ID:EFnoH6Yy??\_LRyIJzZdXCJzanr?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

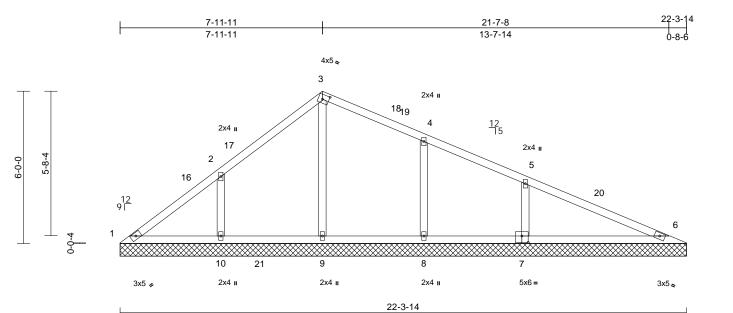
29-1-2

f 29-9-7

818 Soundside Road Edenton, NC 27932 Page: 1



```
Scale = 1:54.3
```


## Plate Offsets (X, Y): [4:0-3-0,0-2-4], [6:0-2-4,0-2-4]

|             |                                           |                        |                            |           |                                                                                                                      | r                      |             | · · · · ·       |      |       |        |     |                |              |
|-------------|-------------------------------------------|------------------------|----------------------------|-----------|----------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-----------------|------|-------|--------|-----|----------------|--------------|
| Loading     |                                           | (psf)                  | Spacing                    | 2-0-0     |                                                                                                                      | csi                    |             | DEFL            | in   | (loc) | l/defl | L/d | PLATES         | GRIP         |
| TCLL (roof) |                                           | 20.0                   | Plate Grip DOL             | 1.15      |                                                                                                                      | тс                     | 0.30        | Vert(LL)        | n/a  | -     | n/a    | 999 | MT20           | 244/190      |
| Snow (Pf)   |                                           | 20.0                   | Lumber DOL                 | 1.15      |                                                                                                                      | BC                     | 0.17        | Vert(TL)        | n/a  | -     | n/a    | 999 |                |              |
| TCDL        |                                           | 10.0                   | Rep Stress Incr            | YES       |                                                                                                                      | WB                     | 0.25        | Horiz(TL)       | 0.01 | 10    | n/a    | n/a |                |              |
| BCLL        |                                           | 0.0*                   | Code                       | IRC2      | 015/TPI2014                                                                                                          | Matrix-MSH             |             |                 |      |       |        |     |                |              |
| BCDL        |                                           | 10.0                   |                            |           |                                                                                                                      |                        |             |                 |      |       |        |     | Weight: 132 lb | FT = 20%     |
| LUMBER      |                                           |                        |                            |           | NOTES                                                                                                                |                        |             |                 |      |       |        |     |                |              |
| TOP CHORD   | 2x4 SP N                                  | lo.2                   |                            |           | 1) Unbalanced                                                                                                        | roof live loads hav    | e been      | considered fo   | r    |       |        |     |                |              |
| BOT CHORD   | 2x4 SP N                                  | 0.2                    |                            |           | this design.                                                                                                         |                        |             |                 |      |       |        |     |                |              |
| OTHERS      | 2x4 SP N                                  | lo.3                   |                            |           | 2) Wind: ASCE                                                                                                        | 7-10; Vult=130mp       | h (3-se     | cond gust)      |      |       |        |     |                |              |
| BRACING     |                                           |                        |                            |           |                                                                                                                      | ph; TCDL=6.0psf;       |             |                 |      |       |        |     |                |              |
| TOP CHORD   | Structura                                 | l wood she             | athing directly applie     | d or      |                                                                                                                      | B; Enclosed; MWF       |             |                 |      |       |        |     |                |              |
|             | 6-0-0 oc                                  | purlins.               | • • • •                    |           |                                                                                                                      | C Exterior (2) 0-0-    |             |                 |      |       |        |     |                |              |
| BOT CHORD   | Rigid ceil                                | ing directly           | applied or 10-0-0 oc       | ;         |                                                                                                                      | 0, Exterior (2) 7-8-   |             |                 |      |       |        |     |                |              |
|             | bracing.                                  |                        |                            |           |                                                                                                                      | -1-10, Exterior (2)    |             |                 |      |       |        |     |                |              |
| REACTIONS   | (size)                                    | 1=29-9-7,              | , 10=29-9-7, 11=29-9       | 9-7,      |                                                                                                                      | d;C-C for members      |             |                 |      |       |        |     |                |              |
|             |                                           |                        | 7, 13=29-9-7, 15=29·       |           |                                                                                                                      | shown; Lumber D        |             |                 | .0   |       |        |     |                |              |
|             |                                           |                        | 7, 17=29-9-7, 18=29-       | -9-7      | DOL=1.60                                                                                                             |                        |             | - p 3. p        |      |       |        |     |                |              |
|             | Max Horiz                                 |                        |                            |           | <ol> <li>Truss design</li> </ol>                                                                                     | ned for wind loads     | in the pl   | ane of the tru  | SS   |       |        |     |                |              |
|             | Max Uplift 1=-59 (LC 10), 11=-76 (LC 15), |                        |                            |           |                                                                                                                      | uds exposed to wir     |             |                 |      |       |        |     |                |              |
|             |                                           |                        | .C 15), 13=-83 (LC 1       |           |                                                                                                                      | d Industry Gable E     |             |                 |      |       |        |     |                |              |
|             |                                           | 15=-93 (L<br>18=-112 ( | .C 15), 17=-167 (LC        | <i>,,</i> | or consult qualified building designer as per ANSI/TPI 1.<br>4) TCLL: ASCE 7-10: Pr=20.0 psf (roof live load: Lumber |                        |             |                 |      |       |        |     |                |              |
|             | Max Grav                                  |                        | C 25), 10=73 (LC 23)       |           |                                                                                                                      |                        |             |                 |      |       |        |     |                |              |
|             |                                           |                        | LC 1), 12=331 (LC 2        |           |                                                                                                                      | late DOL=1.15); P      |             |                 |      |       |        |     |                |              |
|             |                                           |                        | LC 3), 15=455 (LC 6)       |           |                                                                                                                      | =1.15 Plate DOL=       | =1.15); C   | ategory II; Ex  | фВ;  |       |        |     |                |              |
|             |                                           |                        | LC 23), 17=444 (LC 2       |           | Fully Exp.; C<br>5) Unbalanced                                                                                       | snow loads have t      |             | onidered for th | nia  |       |        |     |                | CT C C       |
|             |                                           | 18=300 (l              | LC 27)                     |           | design.                                                                                                              | Show loads have i      | Jeen co     |                 | 115  |       |        |     | 11111 01       | 1111         |
| FORCES      | (lb) - Max                                | imum Com               | pression/Maximum           |           | 0                                                                                                                    | e 2x4 MT20 unless      | otherw      | ise indicated   |      |       |        |     | TH UA          | ROUL         |
|             | Tension                                   |                        |                            |           | / !                                                                                                                  | es continuous bott     |             |                 |      |       |        | N   | ON FRO         | ALA SA       |
| TOP CHORD   | 1-2=-179                                  | /186, 2-23=            | -122/121,                  |           | ,                                                                                                                    | spaced at 4-0-0 of     |             | a boaring.      |      |       | /      | 52  |                | M. alla      |
|             |                                           | ,                      | <b>1=-161/170</b> ,        |           |                                                                                                                      | as been designed f     |             | 0 psf bottom    |      |       | 4      |     |                | Rel          |
|             |                                           | ,                      | -98/168, 5-25=-112/        | 152,      | chord live loa                                                                                                       | ad nonconcurrent       | with any    | other live loa  | ds.  |       |        |     |                | 1 1 1 E      |
|             |                                           |                        | 85/100, 7-8=-72/53,        |           | 10) * This truss I                                                                                                   | nas been designed      | l for a liv | e load of 20.0  | Opsf |       | -      |     | SEA            | L <u>1</u> E |
|             |                                           | ,                      | 90/0, 9-10=-115/23         |           |                                                                                                                      | m chord in all area    |             | 0               |      |       | =      |     | 0262           | • -          |
| BOT CHORD   |                                           | /140, 17-18            | 3=-12/121,<br>16=-12/121,  |           |                                                                                                                      | oy 2-00-00 wide wi     |             |                 |      |       | =      |     | SEA<br>0363    | ZZ ; =       |
|             |                                           |                        | 16=-12/121,<br>14=-12/121, |           |                                                                                                                      | ny other members,      |             |                 |      |       |        | e 8 |                | 1 3          |
|             |                                           |                        | 14=-12/121,<br>12=-12/121, |           |                                                                                                                      | hanical connection     |             |                 |      |       |        | 3   | ·              | airs         |
|             | 10-11=-1                                  |                        | ,                          |           |                                                                                                                      | e capable of withst    |             |                 |      |       |        | 15  | A VGIN         | EFICAN       |
| WEBS        |                                           |                        | 365/216, 2-18=-229/        | 156,      |                                                                                                                      | ift at joint 17, 112 l |             |                 |      |       |        | 11  | 710            | COELIN       |
| -           | 6-15=-303/142, 7-13=-235/131,             |                        |                            | ,         | uplift at joint 15, 83 lb uplift at joint 13, 88 lb uplift at joint 12 and 76 lb uplift at joint 11.                 |                        |             |                 |      |       |        |     | A. G           | ILPIN        |
|             |                                           | ,                      | 1=-212/115                 |           | LOAD CASE(S)                                                                                                         |                        |             |                 |      |       |        |     | A. C           | IIIII.       |
|             |                                           |                        |                            |           | LUAD CASE(S)                                                                                                         | Stanualu               |             |                 |      |       |        |     | March          | 15,2021      |
|             |                                           |                        |                            |           |                                                                                                                      |                        |             |                 |      |       |        |     | inditio        | , 202 .      |

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL02  | Valley     | 1   | 1   | Job Reference (optional)    | E15498441 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:10 ID:EFnoH6Yy??\_LRyIJzZdXCJzanr?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:45.4

| Plate Offsets | (X. Y): | [3:0-3-0,0-2-4], | [7:0-3-0.0-3-0] |
|---------------|---------|------------------|-----------------|
|               |         |                  |                 |

|                                                                                                                |                                                                              |           | 1                    |                                                                                                                                         |                                                                                                                                                                                                                                              | 1                                    |      | · · ·       |       |       |        |             | 1             |          |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|-------------|-------|-------|--------|-------------|---------------|----------|
| Loading                                                                                                        |                                                                              | (psf)     | Spacing              | 2-0-0                                                                                                                                   |                                                                                                                                                                                                                                              | CSI                                  |      | DEFL        | in    | (loc) | l/defl | L/d         | PLATES        | GRIP     |
| TCLL (roof)                                                                                                    |                                                                              | 20.0      | Plate Grip DOL       | 1.15                                                                                                                                    |                                                                                                                                                                                                                                              | тс                                   | 0.48 | Vert(LL)    | n/a   | -     | n/a    | 999         | MT20          | 244/190  |
| Snow (Pf)                                                                                                      |                                                                              | 20.0      | Lumber DOL           | 1.15                                                                                                                                    |                                                                                                                                                                                                                                              | BC                                   | 0.27 | Vert(TL)    | n/a   | -     | n/a    | 999         |               |          |
| TCDL                                                                                                           |                                                                              | 10.0      | Rep Stress Incr      | YES                                                                                                                                     |                                                                                                                                                                                                                                              | WB                                   | 0.47 | Horiz(TL)   | -0.02 | 6     | n/a    | n/a         |               |          |
| BCLL                                                                                                           |                                                                              | 0.0*      | Code                 | IRC20                                                                                                                                   | 15/TPI2014                                                                                                                                                                                                                                   | Matrix-MSH                           |      |             |       |       |        |             |               |          |
| BCDL                                                                                                           |                                                                              | 10.0      |                      |                                                                                                                                         |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        |             | Weight: 90 lb | FT = 20% |
| LUMBER                                                                                                         |                                                                              |           |                      |                                                                                                                                         | 2) Wind: ASCE 7-10; Vult=130mph (3-second gust)                                                                                                                                                                                              |                                      |      |             |       |       |        |             |               |          |
| TOP CHORD                                                                                                      |                                                                              |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              | Vasd=103mph; TCDL=6.0psf; BCDL=6.0ps |      |             |       |       |        |             |               |          |
| BOT CHORD                                                                                                      |                                                                              |           |                      |                                                                                                                                         | Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior                                                                                                                                                                                          |                                      |      |             |       |       |        |             |               |          |
| OTHERS                                                                                                         | 2x4 SP No                                                                    | o.3       |                      |                                                                                                                                         | zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1)                                                                                                                                                                                       |                                      |      |             |       |       |        |             |               |          |
| BRACING                                                                                                        |                                                                              |           |                      |                                                                                                                                         | 3-0-5 to 5-0-0, Exterior (2) 5-0-0 to 11-0-0, Interior (1)<br>11-0-0 to 18-8-1, Exterior (2) 18-8-1 to 21-8-1 zone;                                                                                                                          |                                      |      |             |       |       |        |             |               |          |
| TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins.                                     |                                                                              |           |                      | ed or                                                                                                                                   | cantilever left and right exposed ; end vertical left and                                                                                                                                                                                    |                                      |      |             |       |       |        |             |               |          |
| BOT CHORD                                                                                                      | <ul> <li>Rigid ceiling directly applied or 6-0-0 oc<br/>bracing.</li> </ul>  |           |                      |                                                                                                                                         | right exposed;C-C for members and forces & MWFRS<br>for reactions shown; Lumber DOL=1.60 plate grip                                                                                                                                          |                                      |      |             |       |       |        |             |               |          |
| REACTIONS                                                                                                      | 0                                                                            | 1=22-3-14 | 4, 6=22-3-14, 7=22-3 | 3-14                                                                                                                                    | DOL=1.60                                                                                                                                                                                                                                     |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                | 8=22-3-14, 9=22-3-14, 10=22-3-14,                                            |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              | ned for wind loads                   |      |             |       |       |        |             |               |          |
|                                                                                                                | 15=22-3-14                                                                   |           |                      |                                                                                                                                         | only. For studs exposed to wind (normal to the face),                                                                                                                                                                                        |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                | Max Horiz 1=-163 (LC 12)                                                     |           |                      |                                                                                                                                         | see Standard Industry Gable End Details as applicable,<br>or consult qualified building designer as per ANSI/TPI 1.                                                                                                                          |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                | Max Uplift 1=-231 (LC 32), 7=-120 (LC 15),<br>8=-81 (LC 15), 10=-171 (LC 14) |           |                      |                                                                                                                                         | <ul> <li>4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber</li> </ul>                                                                                                                                                                  |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                |                                                                              |           |                      |                                                                                                                                         | DOL=1.15 Plate DOL=1.15): Pf=20.0 psf (filt roof snow:                                                                                                                                                                                       |                                      |      |             |       |       |        |             |               |          |
| Max Grav 1=29 (LC 14), 6=1 (LC 1), 7=483<br>(LC 1), 8=304 (LC 6), 9=864 (LC<br>3), 10=394 (LC 20), 15=1 (LC 1) |                                                                              |           |                      |                                                                                                                                         | Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;                                                                                                                                                                                         |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                |                                                                              |           |                      |                                                                                                                                         | <ul><li>Fully Exp.; Ct=1.10</li><li>5) Unbalanced snow loads have been considered for this</li></ul>                                                                                                                                         |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                |                                                                              |           |                      | 1) ह                                                                                                                                    |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        |             |               |          |
| FORCES                                                                                                         | FORCES (Ib) - Maximum Compression/Maximum                                    |           |                      |                                                                                                                                         | design.                                                                                                                                                                                                                                      |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                | Tension                                                                      |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              | res continuous bot                   |      | rd bearing. |       |       |        |             |               |          |
| TOP CHORD 1-16=-121/563, 2-16=-101/630, 2-17=0/545,                                                            |                                                                              |           | ,                    | <ul> <li>7) Gable studs spaced at 4-0-0 oc.</li> <li>8) This truss has been designed for a 10.0 psf bottom</li> </ul>                   |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        |             |               |          |
|                                                                                                                | 3-17=0/629, 3-18=0/539, 18-19=0/469,                                         |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        | ROUL        |               |          |
|                                                                                                                |                                                                              |           | 6/525, 5-20=-89/538, |                                                                                                                                         |                                                                                                                                                                                                                                              | ad nonconcurrent                     |      |             |       |       |        | 1           | R             |          |
| 6-20=-99/467                                                                                                   |                                                                              |           | ç                    | <ul> <li>9) * This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle</li> </ul> |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        |             |               |          |
| BOT CHORD 1-10=-450/139, 10-21=-450/139,<br>9-21=-450/139, 8-9=-450/139, 7-8=-450/139,                         |                                                                              |           |                      | 120                                                                                                                                     |                                                                                                                                                                                                                                              |                                      |      |             |       |       | 4      |             |               | No.      |
|                                                                                                                | 9-21=-450<br>6-7=-431/                                                       |           | -400/109,7-0=-400/   | 139,                                                                                                                                    |                                                                                                                                                                                                                                              | by 2-00-00 wide w                    |      |             |       |       | 1      |             | :0            | - K. /-  |
| WEBS 3-9=-749/82, 2-10=-313/205, 4-8=-242/131,                                                                 |                                                                              |           | 31                   | chord and any other members, with BCDL = 10.0psf.<br>10) Provide mechanical connection (by others) of truss to<br>SEAL                  |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        |             |               |          |
| WEBO                                                                                                           | 5-7=-324/                                                                    |           | 010/200, +-0=-242/1  | 01,                                                                                                                                     |                                                                                                                                                                                                                                              | e capable of withs                   |      |             |       |       | =      |             | SEA           | • –      |
| NOTES                                                                                                          | 57-524/                                                                      |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              |                                      |      |             |       |       | =      |             | 0363          | 322 : =  |
| <ol> <li>Unbalanced roof live loads have been considered for<br/>this design.</li> </ol>                       |                                                                              |           |                      |                                                                                                                                         | joint 1, 171 lb uplift at joint 10, 81 lb uplift at joint 8 and 036322 120 lb uplift at joint 7.                                                                                                                                             |                                      |      |             |       |       |        | 1 2         |               |          |
|                                                                                                                |                                                                              |           |                      |                                                                                                                                         | 10) Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 231 lb uplift at<br>joint 1, 171 lb uplift at joint 10, 81 lb uplift at joint 8 and<br>120 lb uplift at joint 7.<br>LOAD CASE(S) Standard |                                      |      |             |       |       |        |             | 1 3           |          |
|                                                                                                                |                                                                              |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        |             | -cRi'L S      |          |
|                                                                                                                |                                                                              |           |                      |                                                                                                                                         | 19 A.                                                                                                                                                                                                    |                                      |      |             |       |       | 1      | NO GINEF ON |               |          |
|                                                                                                                |                                                                              |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        | 1           | CA -          | BEIN     |
|                                                                                                                |                                                                              |           |                      |                                                                                                                                         |                                                                                                                                                                                                                                              |                                      |      |             |       |       |        |             | 11, A. C      | 11-111   |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G A. GIL March 15,2021

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL03  | Valley     | 1   | 1   | Job Reference (optional)    | E15498442 |

Loading

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

NOTES 1)

2)

REACTIONS (size)

10-0-0 oc purlins.

Max Horiz 1=-107 (LC 12)

1=14-10-4, 4=14-10-4, 5=14-10-4,

1=-155 (LC 32), 5=-117 (LC 15),

1=49 (LC 31), 4=1 (LC 1), 5=441

(LC 32), 6=789 (LC 1), 11=1 (LC 1)

6=14-10-4, 11=14-10-4

6=-49 (LC 14)

(Ib) - Maximum Compression/Maximum

1-12=-70/469, 2-12=-54/552, 2-13=-15/444,

1-6=-375/130, 5-6=-375/130, 4-5=-375/130

2-6=-675/154, 3-5=-314/156

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior

zone and C-C Exterior (2) 0-0-5 to 8-4-0, Interior (1) 8-4-0 to 11-2-7, Exterior (2) 11-2-7 to 14-2-7 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Wind: ASCE 7-10; Vult=130mph (3-second gust)

13-14=-17/406, 3-14=-27/362, 3-15=-83/468,

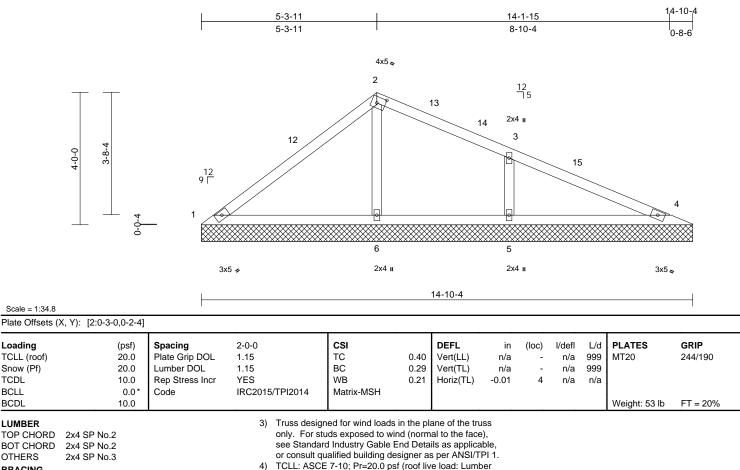
bracing.

Max Uplift

Max Grav

Tension

4-15=-100/406


TCDL

BCLL

BCDL

## Run: 8 43 S Mar, 4 2021 Print: 8 430 S Mar, 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:11 ID:iSLBUSZamJ6C36tVXH9mIXzanr\_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



- 4) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Structural wood sheathing directly applied or Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.: Ct=1.10 Rigid ceiling directly applied or 6-0-0 oc 5) Unbalanced snow loads have been considered for this design.
  - 6) Gable requires continuous bottom chord bearing.
  - 7) Gable studs spaced at 4-0-0 oc.
  - 8) This truss has been designed for a 10.0 psf bottom
  - chord live load nonconcurrent with any other live loads.
  - \* This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
  - 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 155 lb uplift at joint 1, 49 lb uplift at joint 6 and 117 lb uplift at joint 5.
  - LOAD CASE(S) Standard





| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | VL04  | Valley     | 1   | 1   | Job Reference (optional)    | E15498443 |

Scale = 1:24.9

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

2)

NOTES 1)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

TCDL

BCLL

BCDL

Plate Offsets (X, Y): [2:Edge,0-3-8]

2x4 SP No 2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Grav

Tension

2-4=-665/222

7-4-11 oc purlins.

2-0-0

(psf)

20.0

20.0

10.0

0.0

10.0

9=7-4-11

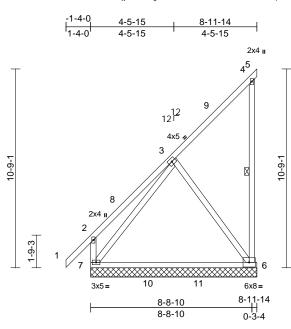
#### Run: 8 43 S Mar, 4 2021 Print: 8 430 S Mar, 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:11 ID:5Y9BKcXKW5RfPWyXkA1g1izanls-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-7-11 6-8-5 7-4-11 2-7-11 0-8-6 4-0-10 5x6 😞 12 7 5 2 10 12 9 Г 1-8-4 3 4 2x4 🥠 2x4 II 3x5 🛼 7-4-11 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 тс 0.40 Vert(LL) n/a 999 MT20 244/190 n/a Lumber DOL 1.15 BC 0.36 Vert(TL) n/a n/a 999 Rep Stress Incr WB Horiz(TL) 3 YES 0.14 -0.01 n/a n/a Code IRC2015/TPI2014 Matrix-MP Weight: 24 lb FT = 20% 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.: Ct=1.10 5) Unbalanced snow loads have been considered for this desian. Structural wood sheathing directly applied or 6) Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 7) Rigid ceiling directly applied or 6-0-0 oc This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads. 1=7-4-11, 3=7-4-11, 4=7-4-11, 9) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle Max Horiz 1=-50 (LC 12) 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Uplift 1=-202 (LC 32), 4=-61 (LC 15) chord and any other members. 1=33 (LC 15), 3=121 (LC 7), 4=735 10) Provide mechanical connection (by others) of truss to (LC 1), 9=121 (LC 7) bearing plate capable of withstanding 202 lb uplift at (lb) - Maximum Compression/Maximum joint 1 and 61 lb uplift at joint 4. LOAD CASE(S) Standard 1-10=-149/534, 2-10=-140/555, 2-3=-144/499 1-4=-426/182. 3-4=-182/426 mining Unbalanced roof live loads have been considered for 0 O Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior VIIIIIIIIIIII zone and C-C Exterior (2) zone; cantilever left and right and a second SEAL exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; 036322

Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

> 818 Soundside Road Edenton, NC 27932


G mmm March 15,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086           |  |
|------------|-------|------------|-----|-----|---------------------------------------|--|
| 21030024-A | 101   | Monopitch  | 2   | 1   | E15498444<br>Job Reference (optional) |  |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:01 ID:MtljyMlxV1zgJxS?Ch0QcbzanxC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

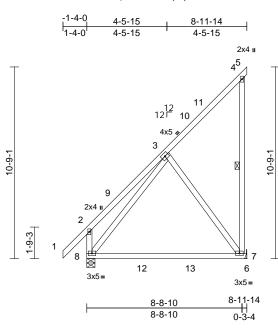


#### Scale = 1:62.3

|                                                                                                                       |                                                                                                                                                                                                                                                                                                                        | i                                                                                                                                                                                          |                                                                                                                                           |                                                                                                                                                                        |           |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       |           |     |               |                   |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|-----------|-----|---------------|-------------------|
| Loading                                                                                                               | (psf)                                                                                                                                                                                                                                                                                                                  | Spacing                                                                                                                                                                                    | 2-0-0                                                                                                                                     |                                                                                                                                                                        | CSI       |                                                                                                                                                              | DEFL                                                                                                                                                                                              | in                                                         | (loc) | l/defl    | L/d | PLATES        | GRIP              |
| TCLL (roof)                                                                                                           | 20.0                                                                                                                                                                                                                                                                                                                   | Plate Grip DOL                                                                                                                                                                             | 1.15                                                                                                                                      |                                                                                                                                                                        | тс        | 0.54                                                                                                                                                         | Vert(LL)                                                                                                                                                                                          | n/a                                                        | -     | n/a       | 999 | MT20          | 244/190           |
| Snow (Pf)                                                                                                             | 20.0                                                                                                                                                                                                                                                                                                                   | Lumber DOL                                                                                                                                                                                 | 1.15                                                                                                                                      |                                                                                                                                                                        | BC        | 0.76                                                                                                                                                         | Vert(CT)                                                                                                                                                                                          | n/a                                                        | -     | n/a       | 999 |               |                   |
| TCDL                                                                                                                  | 10.0                                                                                                                                                                                                                                                                                                                   | Rep Stress Incr                                                                                                                                                                            | YES                                                                                                                                       |                                                                                                                                                                        | WB        | 0.37                                                                                                                                                         | Horz(CT)                                                                                                                                                                                          | -0.01                                                      | 5     | n/a       | n/a |               |                   |
| BCLL                                                                                                                  | 0.0*                                                                                                                                                                                                                                                                                                                   | Code                                                                                                                                                                                       | IRC2015/TPI2                                                                                                                              | 014                                                                                                                                                                    | Matrix-MP |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       |           |     |               |                   |
| BCDL                                                                                                                  | 10.0                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                           |                                                                                                                                                                        |           |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       |           |     | Weight: 73 lb | FT = 20%          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                    | 2x4 SP No.1<br>2x4 SP No.3 *Excep<br>2.0E<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                                                                                                                                       | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc<br>4-6<br>4, 6=8-11-14, 7=8-11<br>C 11)<br>C 21), 6=-436 (LC 1-<br>5 10)                                             | designed<br>4) This<br>Ioad<br>over<br>5) Gab<br>dor<br>6) This<br>chor<br>7) * Thi<br>3-06<br>chor<br>-14<br>8) One<br>4), This<br>Iater | n.<br>truss ha<br>of 12.0<br>hangs n<br>e requir<br>truss ha<br>d live lo<br>s truss l<br>e bottor<br>00 tall l<br>d and a<br>RT7A L<br>to bear<br>connec<br>al forces |           | for great<br>flat roof li<br>h other li<br>tom chor<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>ill fit betw<br>, with BC<br>commen<br>IPLIFT at | er of min roof<br>pad of 20.0 p<br>ve loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>DL = 10.0ps<br>ded to conne<br>; jt(s) 5, 6, an | f live<br>sf on<br>ads.<br>Opsf<br>om<br>f.<br>ect<br>d 7. |       |           |     |               |                   |
| FORCES                                                                                                                | 7=535 (L0<br>(lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                          |                                                                                                                                           | -OL(O)                                                                                                                                                                 | Standard  |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       |           |     |               |                   |
| TOP CHORD                                                                                                             | 1-2=0/63, 2-8=-130/<br>3-9=-259/152, 4-9=-<br>4-6=-453/286, 2-7=-                                                                                                                                                                                                                                                      | 203/170, 4-5=-205/1                                                                                                                                                                        | 73,                                                                                                                                       |                                                                                                                                                                        |           |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       |           |     |               | 11.5              |
| BOT CHORD                                                                                                             | 7-10=-182/181, 10-1<br>6-11=-182/181                                                                                                                                                                                                                                                                                   | 1=-182/181,                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                                                        |           |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       |           |     | NITH CA       | RO                |
| WEBS                                                                                                                  | 3-6=-290/254, 3-7=-                                                                                                                                                                                                                                                                                                    | 388/152                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                        |           |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       |           | 5   | A SECO        | D. Inil           |
| Vasd=103<br>Cat. II; Ex<br>zone and<br>1-8-0 to 8-<br>end vertic<br>forces & M<br>DOL=1.60<br>2) TCLL: AS<br>DOL=1.15 | CE 7-10; Vult=130mph<br>smph; TCDL=6.0psf; B<br>p B; Enclosed; MWFR<br>C-C Exterior (2) -1-4-0<br>-11-14 zone; cantilever<br>al left and right expose<br>WFRS for reactions s<br>VFRS for reactions s<br>v plate grip DOL=1.60<br>CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pf=<br>OL=1.15 Plate DOL=1<br>· Ct=1 10 | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>to 1-8-0, Interior (1)<br>left and right expose<br>d;C-C for members a<br>hown; Lumber<br>roof live load: Lumbe<br>20.0 psf (flat roof sno | ed ;<br>and<br>er<br>ow:                                                                                                                  |                                                                                                                                                                        |           |                                                                                                                                                              |                                                                                                                                                                                                   |                                                            |       | We wanted | Ì   | SEA<br>0363   | L<br>22<br>EER. H |

DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




March 15,2021

minimite

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | 102   | Monopitch  | 1   | 1   | Job Reference (optional)    | E15498445 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:36:02 ID:EN0pEvbnY1KWFxyWyTHNaszanxP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

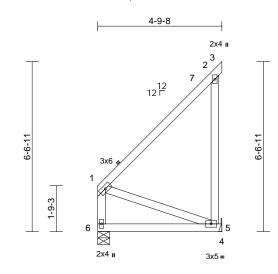


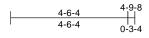
#### Scale = 1:64.7

|                     |                                                         | 1                      |                     |                                                 |               |                 |       |       |        |     |               |          |
|---------------------|---------------------------------------------------------|------------------------|---------------------|-------------------------------------------------|---------------|-----------------|-------|-------|--------|-----|---------------|----------|
| Loading             | (psf)                                                   | Spacing                | 2-0-0               | CSI                                             |               | DEFL            | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)         | 20.0                                                    | Plate Grip DOL         | 1.15                | TC                                              | 0.55          | Vert(LL)        | -0.28 | 7-8   | >364   | 240 | MT20          | 244/190  |
| Snow (Pf)           | 20.0                                                    | Lumber DOL             | 1.15                | BC                                              | 0.76          | Vert(CT)        | -0.57 | 7-8   | >182   | 180 |               |          |
| TCDL                | 10.0                                                    | Rep Stress Incr        | YES                 | WB                                              | 0.38          | Horz(CT)        | 0.00  | 7     | n/a    | n/a |               |          |
| BCLL                | 0.0*                                                    | Code                   | IRC2015/TPI207      | 4 Matrix-MP                                     |               |                 |       |       |        |     |               |          |
| BCDL                | 10.0                                                    |                        |                     |                                                 | -             |                 |       |       |        |     | Weight: 73 lb | FT = 20% |
| LUMBER<br>TOP CHORD | 2x4 SP No.2                                             |                        | 3) Unbala<br>desigr | nced snow loads have                            | e been coi    | nsidered for th | his   |       |        |     |               |          |
| BOT CHORD           |                                                         |                        | 4) This tr          | uss has been designed                           | d for great   | er of min roof  | live  |       |        |     |               |          |
| WEBS                | 2x4 SP No.3 *Excep                                      | ot* 4-7:2x4 SP 2400F   | load o              | 12.0 psf or 1.00 times                          | s flat roof l | oad of 20.0 p   | sf on |       |        |     |               |          |
|                     | 2.0E                                                    |                        |                     | ngs non-concurrent w                            | ith other li  | ve loads.       |       |       |        |     |               |          |
| BRACING             |                                                         |                        |                     | uss has been designed                           |               |                 |       |       |        |     |               |          |
| TOP CHORD           | Structural wood she                                     | athing directly applie | ;u ui               | ive load nonconcurrer                           |               |                 |       |       |        |     |               |          |
|                     | 6-0-0 oc purlins, ex                                    |                        | ,                   | russ has been design                            |               |                 | Opsf  |       |        |     |               |          |
| BOT CHORD           | <ul> <li>Rigid ceiling directly<br/>bracing.</li> </ul> | applied or 10-0-0 oc   | <u> </u>            | bottom chord in all are<br>tall by 2-00-00 wide | will fit bety | veen the botto  |       |       |        |     |               |          |
| WEBS                | 1 Row at midpt                                          | 4-7                    |                     | and any other member                            |               |                 | f.    |       |        |     |               |          |
| REACTIONS           |                                                         | anical, 8=0-5-8        |                     | o girder(s) for truss to                        |               |                 |       |       |        |     |               |          |
|                     | Max Horiz 8=408 (LO                                     | ,                      |                     | e mechanical connecti                           |               |                 |       |       |        |     |               |          |
|                     | Max Uplift 7=-222 (L                                    | .C 11), 8=-24 (LC 10   | ) joint 7           | g plate capable of with                         | istanding 2   | 22 ID uplift at | [     |       |        |     |               |          |
|                     | Max Grav 7=508 (L                                       | C 24), 8=541 (LC 29)   | \ ·                 | T7A USP connectors I                            | recommer      | ded to conne    | ct    |       |        |     |               |          |
| FORCES              | (lb) - Maximum Corr                                     | pression/Maximum       |                     | bearing walls due to                            |               |                 | :01   |       |        |     |               |          |
|                     | Tension                                                 |                        |                     | tion is for uplift only a                       |               |                 | teral |       |        |     |               |          |
| TOP CHORD           |                                                         |                        | forces              |                                                 |               |                 |       |       |        |     |               |          |
|                     | 3-10=-263/159, 10-1                                     |                        | LOAD CA             | SE(S) Standard                                  |               |                 |       |       |        |     |               |          |
|                     | 4-11=-229/178, 4-5=                                     | =-17/0, 4-7=-175/143   | B,                  | ( )                                             |               |                 |       |       |        |     |               |          |
|                     | 2-8=-238/319                                            | 10.404/400             |                     |                                                 |               |                 |       |       |        |     |               |          |
| BOT CHORD           | 8-12=-184/189, 12-1<br>7-13=-184/189, 6-7=              | ,                      |                     |                                                 |               |                 |       |       |        |     | MILLIN        | 11111    |
| WEBS                | 3-7=-304/267, 3-8=-                                     |                        |                     |                                                 |               |                 |       |       |        |     | WH CA         | ROUL     |
| NOTES               | 07-004/207, 0-0=-                                       | 000/142                |                     |                                                 |               |                 |       |       |        | 1   | R             | - Alle   |
|                     | CE 7-10; Vult=130mph                                    | (2 cocond quet)        |                     |                                                 |               |                 |       |       |        | E.  | O' EESS       | Con Vila |
|                     | 3mph; TCDL=6.0psf; B                                    |                        |                     |                                                 |               |                 |       |       | 4      | 27  |               | This Min |
|                     | xp B; Enclosed; MWFR                                    |                        |                     |                                                 |               |                 |       |       | 1      |     | 2             | 104.01-  |
|                     | C-C Exterior (2) -1-4-0                                 |                        |                     |                                                 |               |                 |       |       | -      |     | SEA           | a i i    |
|                     | 5-11-14, Exterior (2) 5-1                               |                        |                     |                                                 |               |                 |       |       | =      | :   | SLF           | • –      |
|                     | r left and right exposed                                |                        |                     |                                                 |               |                 |       |       | =      |     | 0363          | 322 : =  |
|                     | osed;C-C for members                                    |                        | S                   |                                                 |               |                 |       |       |        | i d |               |          |
|                     | ons shown; Lumber DC                                    | L=1.60 plate grip      |                     |                                                 |               |                 |       |       |        | 1   | SEA<br>0363   | 2 1 E    |
| DOL=1.60            |                                                         |                        |                     |                                                 |               |                 |       |       |        | 1.0 | N.SNOIN       | EEP. AN  |
|                     | SCE 7-10; Pr=20.0 psf (                                 |                        |                     |                                                 |               |                 |       |       |        | 1   | PL            | F. ER N  |
|                     | 5 Plate DOL=1.15); Pf=<br>DOL=1.15 Plate DOL=1          |                        |                     |                                                 |               |                 |       |       |        | 1   | 11, A. C      | 211 Brin |
|                     | JOL=1.15 Plate DOL=1                                    | . 15), Category II; EX | μם,                 |                                                 |               |                 |       |       |        |     | 11            |          |

- DOL=1.60 2)
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





March 15,2021

A. GI A. GIL

| Job        | Truss | Truss Type                | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|---------------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | J01   | Monopitch Supported Gable | 5   | 1   | Job Reference (optional)    | E15498446 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:02 ID:Y1SIspUJJA8edYX3LAV2h3zanoV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





#### Scale = 1:44.5

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                            | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2 | 015/TPI2014                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                             | 0.65<br>0.23<br>0.05                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                        | in<br>-0.02<br>-0.04<br>0.00 | (loc)<br>5-6<br>5-6<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 35 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shea<br>4-9-8 oc purlins, exa<br>Rigid ceiling directly<br>bracing.<br>(size) 5= Mecha<br>Max Horiz 6=221 (LC<br>Max Uplift 5=-150 (L<br>Max Grav 5=271 (LC | cept end verticals.<br>applied or 10-0-0 or<br>inical, 6=0-5-8<br>C 11)<br>C 11), 6=-41 (LC 10 | ed or                                | <ul> <li>on the bottor<br/>3-06-00 tall I<br/>chord and ard</li> <li>Refer to gird</li> <li>Provide mec<br/>bearing plate<br/>joint 5.</li> <li>One RT7A L<br/>truss to bear</li> </ul> | has been designe<br>in chord in all are<br>by 2-00-00 wide w<br>y other member<br>er(s) for truss to<br>hanical connection<br>e capable of with<br>ISP connectors r<br>ing walls due to l<br>is for uplift only ar<br>Standard | as where<br>will fit betw<br>s.<br>truss conr<br>on (by oth<br>standing 1<br>ecommen<br>UPLIFT at | a rectangle<br>veen the bott<br>nections.<br>ers) of truss<br>50 lb uplift a<br>ded to conne<br>; jt(s) 6. This | to<br>t<br>t                 |                          |                               |                          |                                 |                                    |
| ,                                                                                          | (lb) - Maximum Com<br>Tension<br>1-6=-209/67, 1-7=-1<br>2-3=-13/0, 2-5=-193/<br>5-6=-216/145, 4-5=0<br>1-5=-115/170<br>CE 7-10; Vult=130mph                                                                              | 77/97, 2-7=-129/126<br>/122<br>//0<br>(3-second gust)                                          | ί,                                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                                   |                                                                                                                 |                              |                          |                               |                          |                                 |                                    |

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



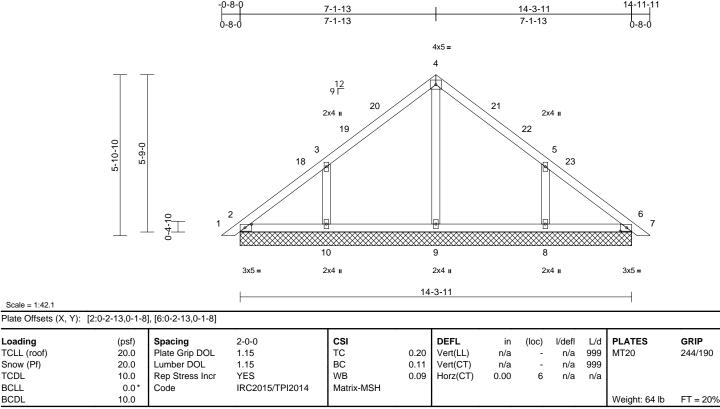
| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | PB03  | Piggyback  | 4   | 1   | Job Reference (optional)    | E15498447 |

Scale = 1:42.1

Loading

TCLL (roof)

Snow (Pf)


TCDL

BCLL

BCDL

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:06 ID:nJYYtW0IBNZYI9KKMin7w7zannq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=14-3-11, 6=14-3-11, 8=14-3-11, 9=14-3-11, 10=14-3-11 11=14-3-11, 15=14-3-11 Max Horiz 2=-141 (LC 12), 11=-141 (LC 12) Max Uplift 2=-15 (LC 15), 8=-161 (LC 15), 10=-162 (LC 14), 11=-15 (LC 15) 2=159 (LC 25), 6=152 (LC 1), Max Grav 8=361 (LC 25), 9=235 (LC 1), 10=362 (LC 24), 11=159 (LC 25), 15=152 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/16, 2-18=-131/91, 3-18=-96/98, 3-19=-144/96, 19-20=-110/107, 4-20=-110/122, 4-21=-110/114, 21-22=-110/101, 5-22=-135/88, 5-23=-53/53, 6-23=-97/46, 6-7=0/16 BOT CHORD 2-10=-38/99, 9-10=-38/99, 8-9=-38/99, 6-8=-38/99 WEBS 4-9=-157/0, 3-10=-277/196, 5-8=-277/196 NOTES 1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-3-1 to 3-3-1, Interior (1) 3-3-1 to 4-10-3, Exterior (2) 4-10-3 to 10-10-3, Interior (1) 10-10-3 to 12-5-4, Exterior (2) 12-5-4 to 15-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWERS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
  - 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
  - 10) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
  - 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 10, and 8. This connection is for uplift only and does not consider lateral forces.
  - 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

ORT CHIMAN CONTRACT 1111111111 SEAL 36322 G mmm March 15,2021

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantieter and property incorporate dust using in the version of the second property incorporate and begin into version of the version of the



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | PB04  | Piggyback  | 1   | 1   | Job Reference (optional)    | E15498448 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:07 Page: 1 ID:Yr1aZF6JJrZPFNxsqOw?Fpzanni-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-8-0 14-11-11 4-2-5 10-1-5 14-3-11 4-2-5 5-11-0 4-2-5 0-8-0 0-8-0 12 9 Г 3x5 = 2x4 II 6x8 = 3 19 4 20 5 0-2-2 3-6-6  $\bowtie$ < 0 2x4 🛛 6 3-4-4 3-4-4 Þ 2 7 0-4-10 ٣ Г Ľ 10 9 11 2x4 II 2x4 II 3x5 = 2x4 II 3x5 = 14-3-11

3-8-0

| Scale = 1:32.7        |                                 |                                     |
|-----------------------|---------------------------------|-------------------------------------|
| Plate Offsets (X, Y): | [2:0-2-13,0-1-8], [3:0-5-3,Edge | ], [5:0-2-8,Edge], [7:0-2-13,0-1-8] |

| Loading     | (psf)                                     | Spacing                           | 2-0-0                                      |                                                                                                                                       | CSI                                                                                                                       |             | DEFL           | in     | (loc) | l/defl   | L/d      | PLATES             | GRIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-------------|-------------------------------------------|-----------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------|-------|----------|----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FCLL (roof) | 20.0                                      | Plate Grip DOL                    | 1.15                                       |                                                                                                                                       | TC                                                                                                                        | 0.31        | Vert(LL)       | n/a    | -     | n/a      | 999      | MT20               | 244/190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Snow (Pf)   | 20.0                                      | Lumber DOL                        | 1.15                                       |                                                                                                                                       | BC                                                                                                                        | 0.30        | Vert(CT)       | n/a    | -     | n/a      | 999      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| TCDL        | 10.0                                      | Rep Stress Incr                   | YES                                        |                                                                                                                                       | WB                                                                                                                        | 0.09        | Horz(CT)       | 0.00   | 15    | n/a      | n/a      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| BCLL        | 0.0*                                      | Code                              | IRC20                                      | 5/TPI2014                                                                                                                             | Matrix-MSH                                                                                                                |             |                |        |       |          |          | Waisht: 50 lb      | FT 00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| BCDL        | 10.0                                      |                                   |                                            |                                                                                                                                       |                                                                                                                           |             |                |        |       |          |          | Weight: 59 lb      | FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| UMBER       |                                           |                                   | 2                                          |                                                                                                                                       | 7-10; Vult=130m                                                                                                           |             |                |        |       |          |          |                    | es not depict the size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| TOP CHORD   | 2x4 SP No.2                               |                                   |                                            |                                                                                                                                       | ph; TCDL=6.0psf;                                                                                                          |             |                |        |       |          |          | of the purlin alon | g the top and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| BOT CHORD   | 2x4 SP No.2                               |                                   |                                            |                                                                                                                                       | B; Enclosed; MWF                                                                                                          |             |                |        |       | tom choi |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| OTHERS      | 2x4 SP No.3                               |                                   |                                            |                                                                                                                                       | C Exterior (2) zon                                                                                                        |             |                |        | LOAD  | CASE(S   | ) Sta    | ndard              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| BRACING     |                                           |                                   |                                            |                                                                                                                                       | nd vertical left and<br>nd forces & MWFR                                                                                  |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| TOP CHORD   |                                           | eathing directly applie           | ed or                                      |                                                                                                                                       | L=1.60 plate grip [                                                                                                       |             |                | ,      |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | 6-0-0 oc purlins, ex                      |                                   | 3                                          |                                                                                                                                       | ned for wind loads                                                                                                        |             |                | 22     |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | 2-0-0 oc purlins (6-0                     |                                   |                                            |                                                                                                                                       | uds exposed to wi                                                                                                         |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| BOT CHORD   | 0 0 ,                                     | applied or 10-0-0 o               | С                                          |                                                                                                                                       | d Industry Gable E                                                                                                        |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | bracing.                                  |                                   |                                            |                                                                                                                                       | ualified building de                                                                                                      |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| REACTIONS   | . ,                                       | 1, 7=14-3-11, 9=14-3              | <sup>3-11,</sup> 4                         | ) TCLL: ASCE                                                                                                                          | E 7-10; Pr=20.0 ps                                                                                                        | f (roof liv | /e load: Lumb  | er     |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                                           | 11, 11=14-3-11,<br>11, 15=14-3-11 |                                            |                                                                                                                                       | Plate DOL=1.15); F                                                                                                        |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | Max Horiz 2=-84 (L0                       |                                   | 2)                                         | Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;<br>Fully Exp.; Ct=1.10<br>5) Unbalanced snow loads have been considered for this |                                                                                                                           |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | Max Uplift 2=-24 (LC                      |                                   | ,<br>, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, |                                                                                                                                       |                                                                                                                           |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                                           | 10=-65 (LC 10), 11=-              |                                            | <ol> <li>Unbalanced snow loads have been considered for this<br/>design.</li> </ol>                                                   |                                                                                                                           |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                                           | 12=-24 (LC 14), 15=·              |                                            |                                                                                                                                       | a haan daalamad                                                                                                           |             |                | live   |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | 15)                                       |                                   | - ( 6                                      | ,                                                                                                                                     | This truss has been designed for greater of min roof live<br>load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on |             |                |        |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | Max Grav 2=344 (L                         | C 40), 7=224 (LC 40               | ),                                         |                                                                                                                                       | ion-concurrent wit                                                                                                        |             |                | 51 011 |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | 9=310 (L                                  | C 40), 10=446 (LC 3               | 9), 7                                      |                                                                                                                                       | quate drainage to                                                                                                         |             |                | ,      |       |          |          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                                           | LC 55), 12=344 (LC                | 40), 8                                     |                                                                                                                                       | res continuous bot                                                                                                        |             |                | J.     |       |          |          |                    | 111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | 15=224 (                                  | ,                                 | g                                          |                                                                                                                                       | spaced at 4-0-0 o                                                                                                         |             | a souring.     |        |       |          |          | M' I CI            | ND 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| FORCES      | ( )                                       | npression/Maximum                 | 1                                          |                                                                                                                                       | as been designed                                                                                                          |             | 0 psf bottom   |        |       |          |          | "ATH UP            | NO III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|             | Tension                                   |                                   |                                            | chord live lo                                                                                                                         | ad nonconcurrent                                                                                                          | with any    | other live loa | ds.    |       |          | N        | OTHESE             | 12. A.L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| TOP CHORD   | 1-2=0/25, 2-3=-254                        |                                   | 1                                          | 1) * This truss                                                                                                                       | has been designe                                                                                                          | d for a liv | e load of 20.0 | )psf   |       |          | E.       | PLOT               | N: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             | ,                                         | =-121/79, 5-20=-121               | /79,                                       |                                                                                                                                       | m chord in all area                                                                                                       |             |                |        |       | 2        |          |                    | and the second s |  |
|             | 5-6=-218/74, 6-7=-1<br>2-11=-26/125, 10-1 | ,                                 | <u>م</u>                                   |                                                                                                                                       | by 2-00-00 wide w                                                                                                         |             | ween the botto | om     |       | -        | 1        |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| BOT CHORD   | 2-11=-26/125, 10-1<br>7-9=-2/125          | 1=-2/125, 9-10=-2/12              | ,                                          |                                                                                                                                       | ny other members                                                                                                          |             |                |        |       | =        | :        | SEA                | \L : =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| WEBS        |                                           | =-369/111, 6-9=-226               | /106                                       |                                                                                                                                       | JSP connectors re                                                                                                         |             |                |        |       | E        |          | 0363               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             | 5-11=-202/54, 4-10                        |                                   | /100                                       |                                                                                                                                       | ring walls due to U                                                                                                       |             |                |        |       |          |          | . 0505             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             | ed roof live loads have                   | been considered to                | -                                          | consider late                                                                                                                         | connection is for u                                                                                                       | pint only   | and upes not   |        |       |          | 5        | N.                 | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| this design |                                           | been considered to                |                                            |                                                                                                                                       |                                                                                                                           | ack Trus    | s Connection   |        |       |          | 2.       | N. En              | Rik S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| uns design  |                                           |                                   |                                            | <ol> <li>See Standard Industry Piggyback Truss Connection<br/>Detail for Connection to base truss as applicable, or</li> </ol>        |                                                                                                                           |             |                |        |       |          | 115      |                    | EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|             |                                           |                                   |                                            | consult qualified building designer.                                                                                                  |                                                                                                                           |             |                |        |       |          | 1        | 1C                 | BEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             |                                           |                                   |                                            |                                                                                                                                       |                                                                                                                           |             |                |        |       |          | 11, A. C | il Luni            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |                                           |                                   |                                            |                                                                                                                                       |                                                                                                                           |             |                |        |       |          |          | 111111             | THUE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             |                                           |                                   |                                            |                                                                                                                                       |                                                                                                                           |             |                |        |       |          |          | Marc               | h 15 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 15,2021

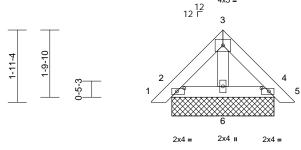
8

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086           |   |
|------------|-------|------------|-----|-----|---------------------------------------|---|
| 21030024-A | PB07  | Piggyback  | 1   | 1   | E15498449<br>Job Reference (optional) | 9 |

0-6-9

1-4-7 1-4-7

Carter Components, Chesapeake, VA - 23323,


Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:36:08 ID:23Wxi5bPck1YSpm7rUj?VfzansE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-14

1-4-7

4x5 =

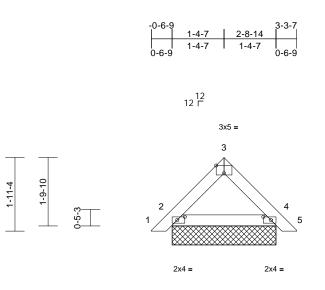
Page: 1



2-8-14

Scale = 1:30.9 Pla

| Plate Offsets                                                                                                                            | (X, Y): [2:0-2-6,0-1-0]                                                                                                                                                                                                                                                                                                                                       | , [4:0-2-6,0-1-0]                                                                                                                                                                                                                                       |                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                                                                                                                     |                                                                 |                      |                             |                          |                                 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                              | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015       | 5/TPI2014                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                              | 0.02<br>0.03<br>0.01                                                                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                            | in<br>n/a<br>n/a<br>0.00                                        | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 14 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>FOP CHORE<br>SOT CHORE<br>DTHERS<br>BRACING<br>FOP CHORE<br>BOT CHORE<br>REACTIONS                                             | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>Structural wood she<br/>3-10-8 oc purlins.</li> <li>Rigid ceiling directly<br/>bracing.</li> <li>(size) 2=2-8-14<br/>7=2-8-14</li> <li>Max Horiz 2=-43 (LC<br/>Max Uplift 2=-14 (LC<br/>(LC 14), 7<br/>15)</li> <li>Max Grav 2=87 (LC<br/>(LC 1), 7<br/>(lb) - Maximum Con</li> </ul> | C 14), 4=-18 (LC 15),<br>7=-14 (LC 14), 10=-1<br>C 1), 4=87 (LC 1), 6=8<br>=87 (LC 1), 10=87 (L                                                                                                                                                         | 6)<br>, 7)<br>8)<br>9)<br>6=-4 10<br>8 (LC 10 | DOL=1.15 P<br>Lumber DOL<br>Fully Exp.; C<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>) * This truss ha<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>) One RT7A U | 7-10; Pr=20.0 p:<br>late DOL=1.15; I<br>=1.15 Plate DOL<br>=1.15 Plate DOL<br>it=1.10<br>snow loads have<br>so been designed<br>psf or 1.00 times<br>on-concurrent wit<br>es continuous bo<br>spaced at 2-0-0<br>us been designed<br>an onconcurrent<br>as been designed<br>n chord in all are<br>by 2-00-00 wide w<br>y other member<br>SP connectors ra<br>ing walls due to U | Pf=20.0 ps<br>=1.15); Ca<br>been con<br>for greate<br>flat roof lc<br>th other liv<br>ttom chore<br>oc.<br>for a 10.0<br>t with any iv<br>d for a live<br>as where a<br>vill fit betw<br>s. | sf (flat roof sr<br>ategory II; Ex<br>sidered for th<br>er of min roof<br>ad of 20.0 ps<br>e loads.<br>d bearing.<br>psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>een the botto<br>ded to conne | now:<br>p B;<br>his<br>live<br>sf on<br>ds.<br>Dpsf<br>cm<br>ct |                      |                             |                          |                                 |                                    |
| this desig<br>2) Wind: AS<br>Vasd=10<br>Cat. II; E<br>zone and<br>exposed<br>members<br>Lumber I<br>3) Truss de<br>only. For<br>see Stan | 2 -6=-12/40, 4-6=-12<br>3-6=-32/0<br>ced roof live loads have                                                                                                                                                                                                                                                                                                 | been considered for<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rig<br>ght exposed;C-C for<br>for reactions shown;<br>DL=1.60<br>the plane of the trust<br>( normal to the face)<br>d Details as applicab | 12<br>r<br>ght<br>ss<br>ole,                  | lateral forces<br>) See Standar<br>Detail for Co                                                                                                                                                                                                                             | d Industry Piggyt<br>nnection to base<br>fied building desi                                                                                                                                                                                                                                                                                                                     | back Truss<br>truss as a                                                                                                                                                                    | Connection                                                                                                                                                                                                          |                                                                 |                      | As a filler                 | A MARINE MARINE          | SEA<br>0363                     | EER ER III                         |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086    |          |
|------------|-------|------------|-----|-----|--------------------------------|----------|
| 21030024-A | PB08  | Piggyback  | 7   | 1   | E1<br>Job Reference (optional) | 15498450 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:36:08 ID:C0ShTM4?2KHHzbi50jzhxIzanuB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



2-8-14

Scale = 1:30.4

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0]

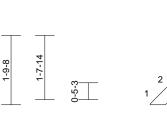
| <b>Loading</b><br>TCLL (roof)<br>Snow (Pf)<br>TCDL                                                                              | (psf)<br>20.0<br>20.0<br>10.0                                                                                                                                                                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB                                        | 0.03<br>0.04<br>0.00                                                                                                                                                           | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                               | in<br>n/a<br>n/a<br>0.00                            | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------|-----------------------------|--------------------------|----------------|------------------------|
| BCLL<br>BCDL                                                                                                                    | 0.0*<br>10.0                                                                                                                                                                                                                                                                                          | Code                                                                                                                                                                                                | IRC20                                         | 15/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Matrix-MP                                                    |                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                     |                      |                             |                          | Weight: 12 lb  | FT = 20%               |
| LUMBER<br>TOP CHORD<br>SOT CHORD<br>BRACING<br>TOP CHORD<br>SOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>SOT CHORD<br>NOTES | 2x4 SP No.2<br>2x4 SP No.2<br>Structural wood she<br>3-10-8 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=2-8-14,<br>9=2-8-14<br>Max Horiz 2=-43 (LC<br>Max Uplift 2=-16 (LC<br>6=-16 (LC<br>Max Grav 2=131 (LC<br>(LC 1), 9=<br>(lb) - Maximum Com<br>Tension<br>1-2=0/15, 2-3=-71/2 | applied or 10-0-0 oc<br>4=2-8-14, 6=2-8-14<br>(12), 6=-43 (LC 12)<br>(14), 4=-16 (LC 15),<br>(14), 9=-16 (LC 15)<br>(21), 4=131 (LC 1), 6<br>(131 (LC 1))<br>(14), 14-131 (LC 1), 6<br>(131 (LC 1)) | 6<br>d or 7<br>; 9<br>; 1<br>;=131 1<br>/15 1 | <ul> <li>design.</li> <li>This truss hat<br/>load of 12.0<br/>overhangs n</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss hat<br/>chord live loa</li> <li>* This truss hat<br/>chord and ar</li> <li>One RT7A L<br/>truss to bear<br/>This connect<br/>lateral forces</li> <li>See Standar<br/>Detail for Co</li> </ul> | d Industry Piggyb<br>nnection to base<br>fied building desig | for great<br>flat roof I<br>h other li<br>tom chor<br>c.<br>for a 10.<br>with any<br>d for a liv<br>as where<br>vill fit betv.<br>commer<br>JPLIFT a<br>ly and do<br>ack Truss | er of min roof<br>oad of 20.0 p<br>ve loads.<br>'d bearing.<br>0 psf bottom<br>other live loa<br>re load of 20.1<br>a rectangle<br>veen the bott<br>ided to conne<br>t jt(s) 2 and 4<br>bes not consid<br>s Connection | f live<br>sf on<br>ads.<br>Opsf<br>om<br>act<br>der |                      |                             |                          | vreight. 12 ib |                        |
| this design<br>2) Wind: AS                                                                                                      | CE 7-10; Vult=130mph                                                                                                                                                                                                                                                                                  | (3-second gust)                                                                                                                                                                                     |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clandard                                                     |                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                     |                      |                             |                          | WHTH CA        | AROLIN                 |
| Cat. II; Ex<br>zone and<br>exposed ;<br>members<br>Lumber D                                                                     | 8mph; TCDL=6.0psf; B0<br>p B; Enclosed; MWFR3<br>C-C Exterior (2) zone;<br>end vertical left and ric<br>and forces & MWFRS<br>IOL=1.60 plate grip DO                                                                                                                                                  | S (envelope) exterio<br>cantilever left and rig<br>ght exposed;C-C for<br>for reactions shown;<br>PL=1.60                                                                                           | ght                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                     |                      |                             | ú                        | SEA<br>0363    | • -                    |
| only. For see Stand                                                                                                             | igned for wind loads in<br>studs exposed to wind<br>lard Industry Gable En-<br>qualified building desig                                                                                                                                                                                               | (normal to the face)<br>d Details as applicat                                                                                                                                                       | ,<br>ole,                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                     |                      |                             |                          |                | - Rik !!               |
| <ol> <li>4) TCLL: AS<br/>DOL=1.15</li> </ol>                                                                                    | CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pf=                                                                                                                                                                                                                                                      | roof live load: Lumbe<br>20.0 psf (flat roof sn                                                                                                                                                     | er<br>ow:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                                                                                                                                                |                                                                                                                                                                                                                        |                                                     |                      |                             |                          | A. C           | EF. PERINI             |

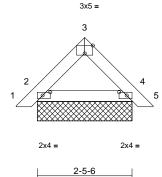
or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



A. GILB


A. GILDIN


| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086           |  |
|------------|-------|------------|-----|-----|---------------------------------------|--|
| 21030024-A | PB10  | Piggyback  | 3   | 1   | E15498451<br>Job Reference (optional) |  |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:09 ID:HOov3YTZxFgWhbVOOvwGoRzanly-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

## 

12 12 Г





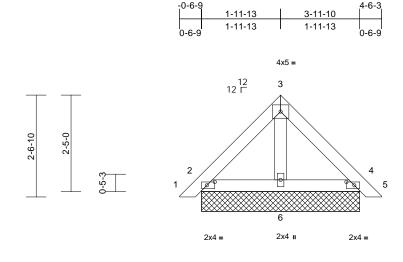
Scale = 1:29.8

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0]

| <b>Loading</b><br>FCLL (roof)<br>Snow (Pf)<br>FCDL<br>BCLL<br>BCDL                                                                                                                                                                   | 2<br>2<br>1                                                                                                                                                                                                                                                                            | osf)<br>0.0<br>0.0<br>0.0<br>0.0*<br>0.0                                                                                               | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015                | 5/TPI2014                                                                                                                                                                                                                       | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                        | 0.03<br>0.03<br>0.00                                                                                                                                               | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                    | in<br>n/a<br>n/a<br>0.00                 | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 11 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------------------------|
|                                                                                                                                                                                                                                      | 2x4 SP No.2<br>Structural woo<br>3-7-0 oc purlin<br>Rigid ceiling d<br>bracing.<br>(size) 2=2<br>Max Horiz 2=-<br>Max Uplift 2=-<br>Max Grav 2=1<br>(LC                                                                                                                                | irectly<br>-5-6, 4<br>39 (LC<br>15 (LC<br>15 (LC<br>19 (LC<br>1), 9=                                                                   | athing directly applie<br>applied or 10-0-0 or<br>=2-5-6, 6=2-5-6, 9=<br>12), 6=-39 (LC 12)<br>14), 4=-15 (LC 15),<br>14), 9=-15 (LC 15)<br>1), 4=119 (LC 1), 6<br>119 (LC 1)<br>oression/Maximum | ed or 7)<br>5 8)<br>9)<br>2-5-6 10                     | design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Gable requir<br>Gable studs<br>This truss ha<br>chord live loa<br>) * This truss h<br>on the bottor<br>3-06-00 tall k<br>chord and ar<br>One RT7A U<br>truss to bear | snow loads have<br>s been designed<br>osf or 1.00 times<br>on-concurrent wit<br>as continuous bo<br>spaced at 4-0-0 o<br>s been designed<br>d nonconcurrent<br>as been designed<br>n chord in all are-<br>y 2-00-00 wide v<br>y other members<br>SP connectors re-<br>ing walls due to U<br>ion is for uplift or | for great<br>flat roof lo<br>th other liv<br>ttom chor<br>oc.<br>for a 10.0<br>with any<br>do for a liv<br>as where<br>vill fit betv<br>s.<br>ecommen<br>JPLIFT at | er of min roof<br>pad of 20.0 ps<br>re loads.<br>d bearing.<br>0 psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>reen the botto<br>ded to conne<br>jt(s) 2 and 4. | live<br>sf on<br>ds.<br>Dpsf<br>om<br>ct |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                                    |
| TOP CHORD<br>BOT CHORD                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                        | -62/23                                                                                                                                 | 8, 3-4=-62/23, 4-5=0                                                                                                                                                                              | /15 12                                                 | Detail for Co                                                                                                                                                                                                                   | d Industry Piggyb<br>nnection to base<br>fied building desi                                                                                                                                                                                                                                                      | truss as a                                                                                                                                                         |                                                                                                                                                                                    |                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                 |                                    |
| <ol> <li>Unbalance<br/>this design<br/>Wind: ASC<br/>Vasd=103i<br/>Cat. II; Exp<br/>zone and (<br/>exposed;<br/>members a<br/>Lumber DC</li> <li>Truss desi<br/>only. For<br/>see Stand.</li> <li>TrCLL: ASC<br/>DOL=1.15</li> </ol> | n.<br>CE 7-10; Vult=13<br>mph; TCDL=6.0<br>p B; Enclosed; N<br>C-C Exterior (2)<br>end vertical left<br>and forces & MV<br>OL=1.60 plate g<br>igned for wind lo<br>studs exposed to<br>ard Industry Gat<br>qualified building<br>CE 7-10; Pr=20.0<br>Plate DOL=1.15<br>OL=1.15 Plate D | 00mph<br>psf; BC<br>IWFRS<br>zone; c<br>and rig<br>VFRS f<br>rip DOI<br>ads in<br>o wind<br>ole End<br>g desig<br>0 psf (r<br>5); Pf=2 | CDL=6.0psf; h=25ft;<br>(envelope) exterio<br>cantilever left and ri<br>ht exposed;C-C for<br>or reactions shown                                                                                   | r<br>ght<br>ss<br>,<br>,<br>ele,<br>il 1.<br>er<br>ow: | AD CASE(S)                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                    |                                                                                                                                                                                    |                                          |                      | 1. Contraction of the second s |                          | SEA<br>0363                     | EER ALL                            |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


| Job        | Truss | Truss Type | Qty Ply 89 Lake Forest-Roof-BB-2086 |   | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-------------------------------------|---|-----------------------------|-----------|
| 21030024-A | PB05  | Piggyback  | 1                                   | 1 | Job Reference (optional)    | E15498452 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:07 ID:3hgV6zqOa4t4iUZkpvYweAzanqe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

March 15,2021

NGINEERING

818 Soundside Road Edenton, NC 27932

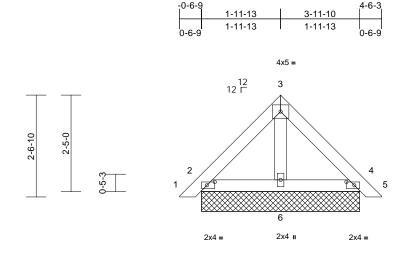


|                                                        | 3-11-10 | 1 |
|--------------------------------------------------------|---------|---|
| Scale = 1:28.9                                         |         |   |
| Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0] |         |   |

| Loading         (psf)           TCLL (roof)         20.0           Snow (Pf)         20.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                                                                                                                                                                                      | Spacing         2-0           Plate Grip DOL         1.1:           Lumber DOL         1.1:           Rep Stress Incr         YEs           Code         IRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                     | 0.04<br>0.05<br>0.01                                                                                                                                                                                                                             | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                    | in<br>n/a<br>n/a<br>0.00                                                                             | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a                                                                                     | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 19 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>OTHERS 2x4 SP No.3<br>BRACING<br>TOP CHORD Structural wood she<br>5-1-4 oc purlins.<br>BOT CHORD Rigid ceiling directly<br>bracing.<br>REACTIONS (size) 2=3-11-10<br>(7=3-11-10<br>Max Horiz 2=-58 (LC)<br>Max Uplift 2=-20 (LC<br>(LC 14), 7<br>15)<br>Max Grav 2=119 (LC<br>(LC 1), 7=<br>1)<br>FORCES (lb) - Maximum Com<br>Tension | <ul> <li>15), 4=-25 (LC 15), 6=-1</li> <li>=-20 (LC 15), 10=-25 (LC 2), 10=-25 (LC 2), 4=119 (LC 1), 10=119 (LC 2), 10=119 (LC 3), 10=119 (LC</li></ul> | <ul> <li>only. For stisee Standar or consult qi</li> <li>TCLL: ASCE DOL=1.15 F</li> <li>Lumber DOI Fully Exp.; C</li> <li>Unbalanced design.</li> <li>This truss ha load of 12.0 overhangs r</li> <li>Gable studs</li> <li>This truss ha chord live lo</li> <li>* This truss is on the botto 3-06-00 tall chord and a</li> <li>One RT7A L truss to bear This connec lateral forces</li> <li>See Standar Detail for Construction</li> </ul> | snow loads have b<br>as been designed for<br>psf or 1.00 times fla<br>on-concurrent with<br>es continuous botto<br>spaced at 2-0-0 oc<br>as been designed for<br>ad nonconcurrent w<br>has been designed<br>m chord in all areas<br>by 2-00-00 wide will<br>by other members.<br>ISP connectors reoc-<br>ting walls due to UP<br>tion is for uplift only<br>s.<br>d Industry Piggybar<br>innection to base fru<br>fied building design | d (norm<br>ad Deta<br>igner as<br>(roof liv<br>=20.0 p<br>=20.0 p<br>=1.15); C<br>een cor<br>or great<br>at roof lo<br>other liv<br>or a 10.0<br>ith any<br>for a liv<br>where<br>fit betw<br>ommen<br>'LIFT at<br>and do<br>ck Trus<br>uss as a | al to the face)<br>Is as applicat<br>s per ANSI/TF<br>e load: Lumbid<br>of (flat roof sn<br>ategory II; Ex-<br>isidered for the<br>er of min roof<br>bad of 20.0 ps-<br>ve loads.<br>d bearing.<br>D psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the bottom<br>det to conner<br>it(s) 2, 4, and<br>es not consid<br>s Connection | ),<br>ole,<br>PI 1.<br>er<br>now:<br>p B;<br>nis<br>live<br>sf on<br>ds.<br>opsf<br>om<br>ct<br>d 6. |                      | Weithin the second s |                          | SEA<br>0363                     | RO<br>RO<br>L<br>22<br>EEER-ER     |



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | PB06  | Piggyback  | 5   | 1   | Job Reference (optional)    | E15498453 |


Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:08 ID:3DkMEbFjaWAFnj9Go29u0Lzanq6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



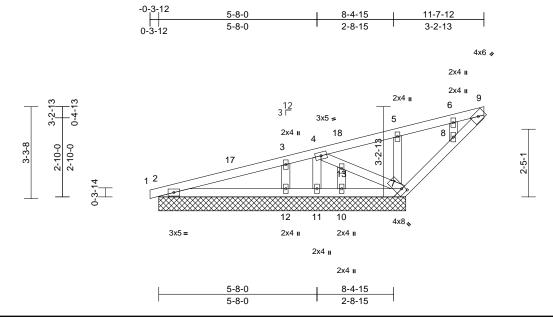
.

March 15,2021

818 Soundside Road Edenton, NC 27932



|                                                        | 3-11-10 |
|--------------------------------------------------------|---------|
| Scale = 1:28.9                                         |         |
| Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0] |         |
|                                                        |         |


| Loading         (psf)           TCLL (roof)         20.0           Snow (Pf)         20.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                                                                                                                                                                                | Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIRC                                                                                                                                                                                                                                                                                                                                                                      | 5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                       | 0.04<br>0.05<br>0.01                                                                                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                             | in<br>n/a<br>n/a<br>0.00                                                                              | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 19 lb        | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LUMBER<br>TOP CHORD 2x4 SP No.2<br>BOT CHORD 2x4 SP No.2<br>OTHERS 2x4 SP No.3<br>BRACING<br>TOP CHORD Structural wood she<br>5-1-4 oc purlins.<br>BOT CHORD Rigid ceiling directly<br>bracing.<br>REACTIONS (size) 2=3-11-1<br>T=3-11-1<br>Max Horiz 2=-58 (LC<br>Max Uplift 2=-20 (LC<br>(LC 14),<br>15)<br>Max Grav 2=119 (LL<br>(LC 1), 7:<br>1)<br>FORCES (lb) - Maximum Con<br>Tension | <ul> <li>2 15), 4=-25 (LC 15), 6=-1</li> <li>2-20 (LC 15), 10=-25 (LC</li> <li>C 1), 4=119 (LC 1), 6=122</li> <li>e-119 (LC 1), 10=119 (LC</li> <li>apression/Maximum</li> <li>7, 3-4=-76/47, 4-5=0/15</li> <li>/46</li> <li>been considered for</li> <li>(3-second gust)</li> <li>CDL=6.0psf; h=25ft;</li> <li>S (envelope) exterior</li> <li>cantilever left and right ght exposed;C-C for</li> <li>for reactions shown;</li> </ul> | <ul> <li>only. For see Stand, or consult</li> <li>4) TCLL: ASC DOL=1.15<br/>Lumber DO Fully Exp.;</li> <li>5) Unbalance design.</li> <li>6) This truss load of 12. overhangs</li> <li>7) Gable requires a construction of the set of the se</li></ul> | d snow loads have<br>o psf or 1.00 times<br>non-concurrent wit<br>irres continuous bol<br>s spaced at 4-0-0 c<br>has been designed<br>oad nonconcurrent<br>is has been designe<br>om chord in all area<br>l by 2-00-00 wide w<br>any other members<br>USP connectors re<br>aring walls due to L<br>ction is for uplift on<br>es.<br>and Industry Piggyb<br>connection to base<br>alified building design | nd (norm<br>End Deta<br>signer as<br>if (roof liv<br>Y=20.0 p ==<br>1.15); C<br>been cor<br>for great<br>flat roof k<br>h other liv<br>tom chor<br>ic.<br>for a 10.0<br>with any<br>d for a liv<br>s where<br>ill fit betv<br>commen<br>IPLIFT at<br>ly and dc<br>ack Trus<br>truss as a | al to the face<br>ils as applical<br>s per ANSI/TF<br>e load: Lumb<br>sf (flat roof sr<br>ategory II; Ex<br>asidered for th<br>er of min roof<br>bad of 20.0 ps<br>re loads.<br>d bearing.<br>D psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>ween the bottor<br>ded to conne<br>jt(s) 2, 4, and<br>es not consid<br>s Connection | ),<br>ble,<br>PI 1.<br>er<br>oow:<br>φ B;<br>his<br>live<br>sf on<br>ds.<br>Dpsf<br>ct<br>d 6.<br>der |                      |                             |                          | NGUNE IS IS<br>OR THESS<br>SEA<br>0363 | ROWNING AND ALL AND AL |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type                    | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|-------------------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | L01   | Roof Special Structural Gable | 2   | 1   | Job Reference (optional)    | E15498454 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:05 ID:xDVt24uODD0II1XMYHEnEdzanyJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1



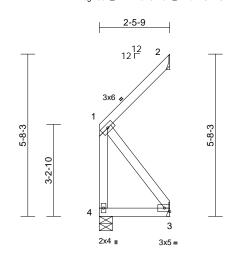
| Scale = | 1:41.3 |  |
|---------|--------|--|
|         |        |  |

#### Plate Offsets (X, Y): [7:0-2-0,0-1-5]

| Loading<br>TCLL (roof) | (psf)<br>20.0                                                                                                                                                                                         | Plate Grip DOL                                                                                                              | 2-0-0<br>1.15             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CSI<br>TC                                                                                                                                                                                                                                                                                                                                                                                | 0.39                                                                                                                                                                                 | · · ·                                                                                                                                                                                                                                                      | in<br>n/a                                                                                        | (loc)<br>-                                                                                  | l/defl<br>n/a                                                                                                                       | L/d<br>999                                                                                             | PLATES<br>MT20                                                                                                                                                                                           | <b>GRIP</b><br>244/190                                          |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Snow (Pf)<br>TCDL      | 20.0<br>10.0                                                                                                                                                                                          |                                                                                                                             | 1.15<br>YES               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                 | 0.20<br>0.08                                                                                                                                                                         | Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                       | n/a<br>0.00                                                                                      | -7                                                                                          | n/a<br>n/a                                                                                                                          | 999<br>n/a                                                                                             |                                                                                                                                                                                                          |                                                                 |  |
| BCLL                   | 0.0*                                                                                                                                                                                                  |                                                                                                                             |                           | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                 | 11012(C1)                                                                                                                                                                                                                                                  | 0.00                                                                                             | '                                                                                           | n/a                                                                                                                                 | n/a                                                                                                    |                                                                                                                                                                                                          |                                                                 |  |
| BCDL                   | 10.0                                                                                                                                                                                                  | oodo                                                                                                                        | 1102010                   | , TT 12011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                             |                                                                                                                                     |                                                                                                        | Weight: 50 lb                                                                                                                                                                                            | FT = 20%                                                        |  |
|                        | 7-8-11 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(size) 2=8-10-2,<br>11=8-10-2<br>Max Horiz 2=249 (LC<br>Max Uplift 2=-18 (LC<br>11=-278 (<br>14=-18 (L<br>Max Grav 2=154 (LC<br>10=118 (L | 7=8-10-2, 10=8-10-2,<br>2, 12=8-10-2, 14=8-10-<br>C 14), 14=249 (LC 14)<br>C 10), 7=-339 (LC 14),<br>LC 21), 12=-91 (LC 14) | 3)<br>2<br>4)<br>),<br>5) | Vasd=103mp<br>Cat. II; Exp E<br>zone and C-0<br>2-0-0 to 10-1<br>cantilever lef<br>right exposed<br>for reactions<br>DOL=1.60<br>Truss design<br>only. For stu<br>see Standarc<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 Pl<br>Lumber DOL<br>Fully Exp.; C<br>Unbalanced<br>design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-10; Vult=130mp<br>b; TCDL=6.0psf;<br>2 Exterior (2) -1-0.<br>1-1, Exterior (2) -1-0.<br>1-1, Exterior (2) -1-0.<br>1-1, Exterior (2)<br>4 and right expose<br>d;C-C for members<br>shown; Lumber D<br>ed for wind loads<br>ds exposed to win<br>d Industry Gable E<br>alified building de:<br>7-10; Pr=20.0 psf<br>ate DOL=1.15); P<br>=1.15 Plate DOL=<br>t=1.10<br>snow loads have t | BCDL=6<br>RS (env.<br>0 to 2-0<br>-0-14 to<br>d ; end v<br>s and foi<br>OL=1.60<br>in the pla<br>d (norm<br>nd Deta<br>signer as<br>f (roof liv<br>f=20.0 p<br>(1.15); C<br>been cor | .0psf; h=25ft;<br>elope) exterio<br>-0, Interior (1)<br>10-11-1 zone;<br>vertical left and<br>cces & MWFR<br>0 plate grip<br>ane of the trus<br>al to the face)<br>ils as applicat<br>s per ANSI/TP<br>e load: Lumbé<br>sf (flat roof sn<br>ategory II; Ex | r<br>d<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | trus<br>con<br>forc<br>14) One<br>trus<br>12.<br>con<br>15) Gra<br>or ti<br>bott<br>16) Gap | s to bea<br>nection<br>es.<br>RT7A<br>s to bea<br>This cor<br>sider lat<br>phical p<br>he orien<br>tom chor<br>o betwee<br>gonal or | ring w<br>is for u<br>USP c<br>tring w<br>nection<br>eral fo<br>urlin re<br>tation<br>rd.<br>ven insi- | ralls due to UPLII<br>uplift only and do<br>onnectors recom<br>ralls due to UPLII<br>on is for uplift only<br>rces.<br>epresentation do<br>of the purlin alon<br>de of top chord b<br>al web shall not e | es not depict the size<br>g the top and/or<br>pearing and first |  |
| FORCES                 | (lb) - Maximum Com<br>Tension                                                                                                                                                                         | pression/Maximum                                                                                                            | -,                        | load of 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | osf or 1.00 times fl                                                                                                                                                                                                                                                                                                                                                                     | at roof le                                                                                                                                                                           | bad of 20.0 ps                                                                                                                                                                                                                                             |                                                                                                  |                                                                                             |                                                                                                                                     |                                                                                                        | 20010                                                                                                                                                                                                    | 11.                                                             |  |
| TOP CHORD              | 1-2=0/5, 2-17=-181/<br>3-4=-146/123, 4-18=                                                                                                                                                            | 239/361,<br>208/396, 6-9=-221/44                                                                                            | , -,                      | All plates are<br>Gable require<br>Gable studs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2x4 MT20 unless<br>es continuous bott<br>spaced at 2-0-0 or                                                                                                                                                                                                                                                                                                                              | otherwi<br>om chor<br>c.                                                                                                                                                             | se indicated.<br>d bearing.                                                                                                                                                                                                                                |                                                                                                  |                                                                                             |                                                                                                                                     | . r.                                                                                                   | OR SS                                                                                                                                                                                                    | RO                                                              |  |
| BOT CHORD              | ,                                                                                                                                                                                                     | 2=-96/15, 10-11=-96/15                                                                                                      | ,                         | chord live loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s been designed f<br>ad nonconcurrent v<br>as been designed                                                                                                                                                                                                                                                                                                                              | with any                                                                                                                                                                             | other live load                                                                                                                                                                                                                                            |                                                                                                  |                                                                                             | 2                                                                                                                                   | 12                                                                                                     | :0                                                                                                                                                                                                       | M.                                                              |  |
| WEBS                   | 4-13=-279/105, 7-13<br>4-11=-77/181, 3-12=<br>5-7=-402/159, 6-8=-                                                                                                                                     | -260/109, 10-13=-1/2,                                                                                                       |                           | <ul> <li>chord live load nonconcurrent with any other live loads.</li> <li>11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.</li> <li>12) Bearing at joint(s) 2, 7, 11, 12, 10, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing automatical statement of the statement of the</li></ul> |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                             |                                                                                                                                     |                                                                                                        | • -                                                                                                                                                                                                      |                                                                 |  |
| NOTES                  |                                                                                                                                                                                                       |                                                                                                                             |                           | 12) Bearing at joint(s) 2, 7, 11, 12, 10, 2 considers parallel to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                             |                                                                                                                                     | 二 キャント アンディー                                                                                           |                                                                                                                                                                                                          |                                                                 |  |
| ,                      | 1) Unbalanced roof live loads have been considered for this design.                                                                                                                                   |                                                                                                                             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | grain value using ANSI/TPI 1 angle to grain formula.<br>Building designer should verify capacity of bearing                                                                                                                                                                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                  |                                                                                             |                                                                                                                                     |                                                                                                        | FERIX                                                                                                                                                                                                    |                                                                 |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

surface.




G Ginnin . March 15,2021

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | CJ11  | Jack-Open  | 1   | 1   | Job Reference (optional)    | E15498455 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:43 ID:cgH30T\_PWLMt9E9Lk5M\_X4zanLS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





#### Scale = 1:40.3

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                            | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                               | 0.18<br>0.06<br>0.08                                                            | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                   | in<br>0.00<br>0.00<br>0.00 | (loc)<br>3-4<br>3-4<br>2 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a              | PLATES<br>MT20<br>Weight: 19 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------------|---------------------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS             | <ul> <li>2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>Structural wood she</li> <li>2-5-9 oc purlins, ex</li> <li>Rigid ceiling directly bracing.</li> </ul>                                 | y applied or 10-0-0 oc<br>anical, 3= Mechanica<br>_C 12)<br>C 14), 3=-90 (LC 11),<br>C 12)<br>: 23), 3=117 (LC 12),                    | on the bott<br>3-06-00 tal<br>chord and<br>6) Refer to gi<br>7) Provide me<br>bearing pla<br>2 and 90 lt<br>8) One RT7A<br>truss to be<br>connection<br>forces. | has been designed<br>om chord in all areas<br>by 2-00-00 wide wi<br>any other members.<br>der(s) for truss to tru-<br>chanical connectior<br>te capable of withsta<br>uplift at joint 3.<br>USP connectors red<br>aring walls due to UI<br>is for uplift only and<br>c) Standard | s where<br>II fit betw<br>uss conr<br>(by oth<br>anding 7<br>commen<br>PLIFT at | a rectangle<br>veen the botto<br>nections.<br>ers) of truss to<br>74 lb uplift at jo<br>ided to connect<br>t jt(s) 4. This | o<br>o<br>oint<br>ct       |                          |                               |                                       |                                 |                                    |
| Vasd=10<br>Cat. II; Ex<br>zone and<br>exposed                                                          | Tension<br>1-4=-216/147, 1-2=<br>3-4=-156/130<br>1-3=-214/256<br>3mph; TCDL=6.0psf; B<br>xp B; Enclosed; MWFR<br>I C-C Exterior (2) zone;<br>; end vertical left and ri                  | n (3-second gust)<br>ICDL=6.0psf; h=25ft;<br>IS (envelope) exterio<br>cantilever left and rig<br>ight exposed;C-C for                  | ght                                                                                                                                                             |                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                                                                            |                            |                          | 4                             |                                       | OR FESS                         | ROUNT                              |
| Lumber E<br>2) TCLL: AS<br>DOL=1.1<br>Lumber E<br>Fully Exp<br>3) Unbalanc<br>design.<br>4) This truss | and forces & MWFRS<br>OCL=1.60 plate grip DC<br>SCE 7-10; Pr=20.0 psf<br>5 Plate DOL=1.15); Pf=<br>OCL=1.15 Plate DOL=1<br>b; Ct=1.10<br>cd snow loads have be<br>a load nonconcurrent w | DL=1.60<br>(roof live load: Lumbe<br>=20.0 psf (flat roof sn<br>.15); Category II; Ex<br>een considered for th<br>or a 10.0 psf bottom | er<br>ow:<br>p B;<br>is                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                 |                                                                                                                            |                            |                          |                               | A A A A A A A A A A A A A A A A A A A | SEA<br>0363                     | EER HUU                            |

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.



A. GILB

March 15,2021

A. GILD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | D02   | Нір        | 1   | 1   | Job Reference (optional)    | E15498456 |

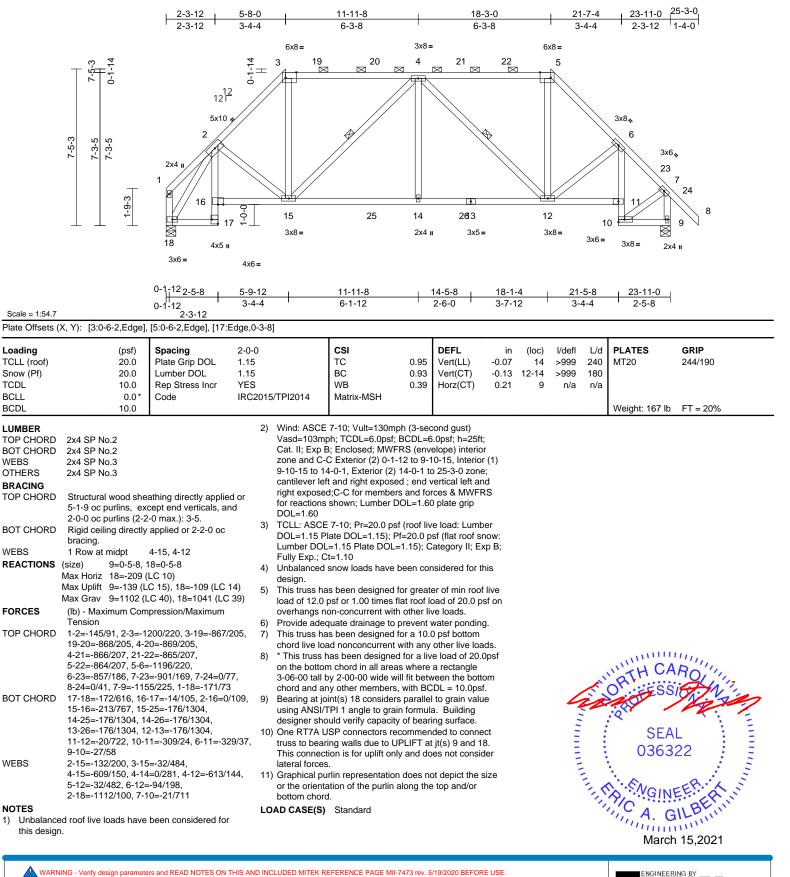
TCDL

BCLL

BCDL

WEBS

WEBS


WEBS

1)

Run: 8 43 S Mar. 4 2021 Print: 8 430 S Mar. 4 2021 MiTek Industries. Inc. Mon. Mar. 15 12:35:46 ID:wDVYiZr7kSqqkq4h9vxoFlzan68-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

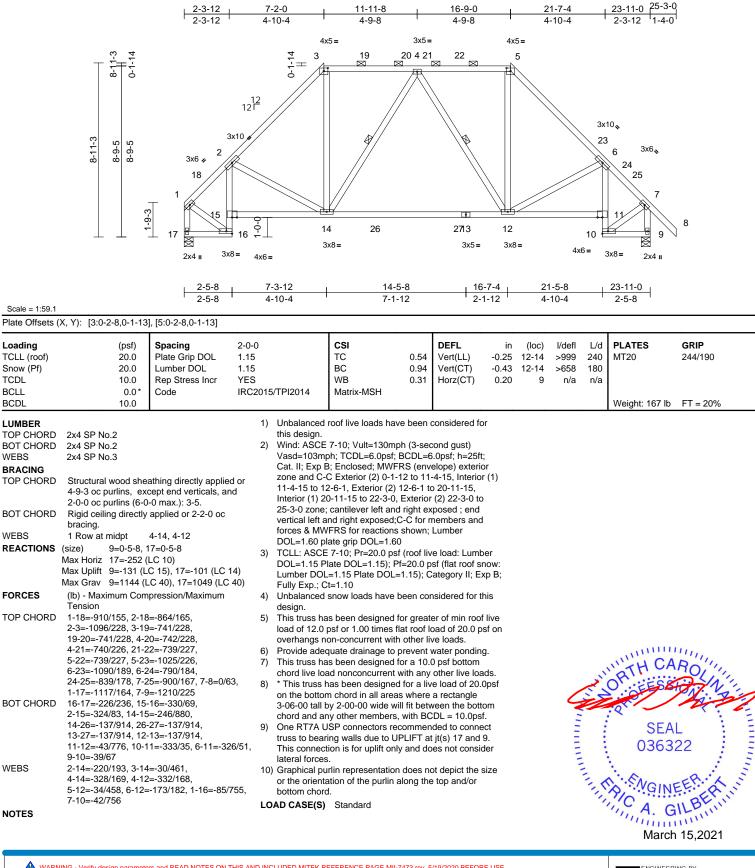
| Job        | Truss | Truss Type Qty Ply |   | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|--------------------|---|-----|-----------------------------|-----------|
| 21030024-A | D03   | Нір                | 1 | 1   | Job Reference (optional)    | E15498457 |

TCDL

BCLL

BCDL

WEBS


WEBS

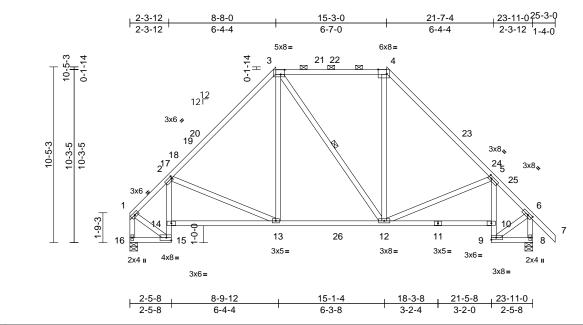
WEBS

NOTES

Run: 8 43 S Mar. 4 2021 Print: 8 430 S Mar. 4 2021 MiTek Industries. Inc. Mon. Mar. 15 12:35:47 ID:BwLerbD3agW0Fy2Md4SmB4zan34-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1




 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | D04   | Нір        | 1   | 1   | Job Reference (optional)    | E15498458 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:48 ID:uO?H4elgCB3mWjQpCJE4\_Mzan2O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

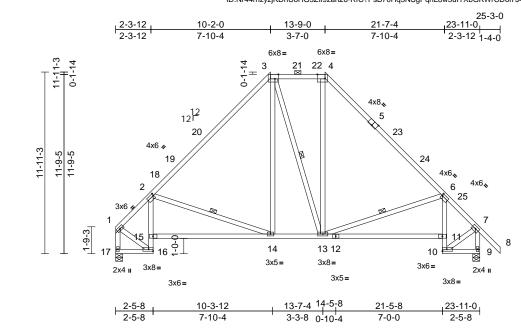


### Plate Offsets (X, Y): [2:0-0-12,0-1-8], [3:0-2-12,0-3-4], [4:0-6-2, Edge], [5:0-2-0,0-1-8], [6:0-3-7,0-1-8]

|             |                                                                                          | 1                       |         |                                                                                                                        | · · · · ·                               |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | -             |
|-------------|------------------------------------------------------------------------------------------|-------------------------|---------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------|------------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|---------------|
| Loading     | (psf)                                                                                    | Spacing                 | 2-0-0   |                                                                                                                        | CSI                                     |             | DEFL             | in    | (loc) | l/defl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L/d        | PLATES         | GRIP          |
| TCLL (roof) | 20.0                                                                                     | Plate Grip DOL          | 1.15    |                                                                                                                        | тс                                      | 0.93        | Vert(LL)         | -0.08 | 12-13 | >999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 240        | MT20           | 244/190       |
| Snow (Pf)   | 20.0                                                                                     | Lumber DOL              | 1.15    |                                                                                                                        | BC                                      | 0.88        | Vert(CT)         | -0.16 | 13-14 | >999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180        |                |               |
| TCDL        | 10.0                                                                                     | Rep Stress Incr         | YES     |                                                                                                                        | WB                                      | 0.36        | Horz(CT)         | 0.21  | 8     | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a        |                |               |
| BCLL        | 0.0*                                                                                     | Code                    | IRC2015 | /TPI2014                                                                                                               | Matrix-MSH                              |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| BCDL        | 10.0                                                                                     | -                       |         |                                                                                                                        |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Weight: 168 lb | FT = 20%      |
| LUMBER      |                                                                                          |                         | 2)      | Wind: ASCE                                                                                                             | 7-10; Vult=130mp                        | oh (3-seo   | cond gust)       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| TOP CHORD   | 2x4 SP No.2 *Excep                                                                       | ot* 3-4:2x4 SP No.1     |         |                                                                                                                        | ph; TCDL=6.0psf;                        |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| BOT CHORD   | 2x4 SP No.2 *Excep                                                                       | ot* 15-2,5-9:2x4 SP No  | .1      |                                                                                                                        | 3; Enclosed; MWF                        |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| WEBS        | 2x4 SP No.3 *Excep                                                                       | ot* 12-3:2x4 SP No.2    |         | zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1)                                                               |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| BRACING     |                                                                                          |                         |         | 3-1-12 to 4-5-1, Exterior (2) 4-5-1 to 19-5-15, Interior (1)<br>19-5-15 to 22-3-0, Exterior (2) 22-3-0 to 25-3-0 zone; |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| TOP CHORD   | Structural wood she                                                                      | athing directly applied | or      |                                                                                                                        |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             |                                                                                          | cept end verticals, and |         |                                                                                                                        | t and right expose<br>d;C-C for member  |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             | 2-0-0 oc purlins (2-2                                                                    |                         |         |                                                                                                                        | shown; Lumber D                         |             |                  | .0    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| BOT CHORD   | Rigid ceiling directly                                                                   | applied or 6-0-0 oc     |         | DOL=1.60                                                                                                               | onown, Eambor E                         | 02-1.0      | plate grip       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             | bracing.                                                                                 | 0.40                    | 3)      |                                                                                                                        | 7-10; Pr=20.0 ps                        | f (roof liv | e load: Lumb     | ber   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| WEBS        | 1 Row at midpt                                                                           | 3-12                    | - /     |                                                                                                                        | late DOL=1.15); P                       |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| REACTIONS   | ( )                                                                                      |                         |         |                                                                                                                        | =1.15 Plate DOL=                        | =1.15); Ċ   | ategory II; Ex   | кр B; |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             | Max Horiz 16=-289 (                                                                      |                         |         | Fully Exp.; C                                                                                                          |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             |                                                                                          | .C 15), 16=-93 (LC 14)  |         |                                                                                                                        | snow loads have                         | been coi    | nsidered for the | his   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             | ·                                                                                        | LC 40), 16=1091 (LC 4   | '       | design.                                                                                                                |                                         | _           |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| FORCES      | (lb) - Maximum Com                                                                       | pression/Maximum        | 5)      |                                                                                                                        | is been designed                        |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| TOP CHORD   | Tension<br>1-2=-939/155, 2-17=                                                           | 1155/170                |         |                                                                                                                        | psf or 1.00 times f                     |             |                  | st on |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
| IOF CHORD   | 17-18=-1141/184, 1                                                                       |                         | 6)      |                                                                                                                        | on-concurrent with<br>quate drainage to |             |                  | ~     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             | 19-20=-1016/196, 3                                                                       |                         |         |                                                                                                                        | as been designed                        |             |                  | y.    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |               |
|             | 3-21=-654/248, 21-2                                                                      |                         | ()      |                                                                                                                        | ad nonconcurrent                        |             |                  | ade   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | 11            |
|             | 4-22=-654/248, 4-23                                                                      |                         | 8)      |                                                                                                                        | has been designed                       |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 11''' CA       | D'III         |
|             | 23-24=-1138/182, 5                                                                       | ,                       | 0)      |                                                                                                                        | n chord in all area                     |             |                  | 0001  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | TH UP          | ROM           |
|             | 5-25=-852/172, 6-25                                                                      | 5=-935/167, 6-7=0/63,   |         |                                                                                                                        | y 2-00-00 wide w                        |             |                  | om    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | ON VESS        | i Ani         |
|             | 1-16=-1164/153, 6-8                                                                      |                         |         |                                                                                                                        | y other members                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in         | in             | Nin           |
| BOT CHORD   | 15-16=-263/270, 14                                                                       |                         | 9)      | One RT7A L                                                                                                             | SP connectors re                        | commer      | ded to conne     | ect   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | :07            | 1.1           |
|             | 2-14=-326/114, 13-1                                                                      |                         |         | truss to bear                                                                                                          | ing walls due to U                      | PLIFT a     | t jt(s) 16 and   | 8.    |       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | с <u>р</u> | . *            |               |
|             | 13-26=-113/710, 12                                                                       | ,                       |         |                                                                                                                        | tion is for uplift onl                  | y and do    | es not consid    | der   |       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | SEA            | L : E         |
|             | 11-12=-67/900, 10-1                                                                      |                         |         | lateral forces                                                                                                         |                                         |             |                  |       |       | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :          | 0363           | • –           |
| WEBS        |                                                                                          | =-332/87, 8-9=-57/75    | 10)     |                                                                                                                        | Irlin representation                    |             |                  | size  |       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 0303           | 44 <u>;</u> ; |
| VVEDO       | 2-13=-381/262, 3-13<br>3-12=-125/124, 4-12                                               |                         |         | or the orienta                                                                                                         | ation of the purlin a                   | along the   | e top and/or     |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8          |                | 1 - E         |
|             |                                                                                          | 5=-103/837, 6-9=-67/8   | 45      |                                                                                                                        |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          | · · · ·        | Airs          |
| NOTES       |                                                                                          |                         | - LO    | AD CASE(S)                                                                                                             | Standard                                |             |                  |       |       | THE PARTY OF THE P | 25         | S. GIN         | EFICAN        |
|             | ad roof live loads have                                                                  | been considered for     |         |                                                                                                                        |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11         | 10             | BEN           |
| ,           | <ol> <li>Unbalanced roof live loads have been considered for<br/>this design.</li> </ol> |                         |         |                                                                                                                        |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 11, A. G       | ILLIN         |
| uns desigi  |                                                                                          |                         |         |                                                                                                                        |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | in A. C        | mm            |
|             |                                                                                          |                         |         |                                                                                                                        |                                         |             |                  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | March          | 15 2021       |

Scale = 1:68.4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




| Job        | Truss | Truss Type Qty Ply 89 Lake Forest-Roof-BB-2086 |   | 89 Lake Forest-Roof-BB-2086 |                          |           |
|------------|-------|------------------------------------------------|---|-----------------------------|--------------------------|-----------|
| 21030024-A | D05   | Нір                                            | 1 | 1                           | Job Reference (optional) | E15498459 |

Scale = 1:75.7

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:49 ID:Nr44rnzyzjKDhUoHG5ZIi9zan26-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Plate Offsets (X, Y): |  |  |  |
|-----------------------|--|--|--|
|                       |  |  |  |
|                       |  |  |  |
|                       |  |  |  |

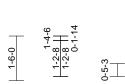
| Loading     | (psf)                            |                          | 2-0-0  |               | CSI                                          |             | DEFL           | in     | (loc) | l/defl               | L/d      | PLATES         | GRIP     |
|-------------|----------------------------------|--------------------------|--------|---------------|----------------------------------------------|-------------|----------------|--------|-------|----------------------|----------|----------------|----------|
| TCLL (roof) | 20.0                             | 1 1                      | 1.15   |               | TC                                           | 0.96        | Vert(LL)       |        | 14-15 |                      | 240      | MT20           | 244/190  |
| Snow (Pf)   | 20.0                             |                          | 1.15   |               | BC                                           | 0.67        | Vert(CT)       |        | 14-15 | >943                 | 180      |                |          |
| TCDL        | 10.0                             |                          | YES    |               | WB                                           | 0.37        | Horz(CT)       | 0.20   | 9     | n/a                  | n/a      |                |          |
| BCLL        | 0.0*                             | Code                     | IRC201 | 5/TPI2014     | Matrix-MSH                                   |             |                |        |       |                      |          |                |          |
| BCDL        | 10.0                             |                          |        |               |                                              |             |                |        |       |                      |          | Weight: 179 lb | FT = 20% |
| LUMBER      |                                  |                          | 1)     | Unbalanced    | roof live loads have                         | ve been     | considered fo  | or     |       |                      |          |                |          |
| TOP CHORD   | 2x4 SP No.1 *Excep               |                          |        | this design.  |                                              |             |                |        |       |                      |          |                |          |
| BOT CHORD   | 2x4 SP No.2 *Excep<br>2400F 2.0E | ot* 16-2,6-10:2x4 SP     | 2)     |               | 7-10; Vult=130m<br>ph; TCDL=6.0psf;          |             |                |        |       |                      |          |                |          |
| WEBS        | 2x4 SP No.3 *Excep<br>No.2       | ot* 14-3,13-3,13-4:2x4   | SP     |               | B; Enclosed; MWF<br>C Exterior (2) 0-1       |             |                |        |       |                      |          |                |          |
| BRACING     | 110.2                            |                          |        |               | 11-1, Exterior (2) 5                         |             |                |        |       |                      |          |                |          |
| TOP CHORD   | Structural wood she              | athing directly applied. |        | (1) 17-11-15  | to 22-3-0, Exterio                           | or (2) 22-  | 3-0 to 25-3-0  |        |       |                      |          |                |          |
|             |                                  | , and 2-0-0 oc purlins   |        |               | ever left and right e                        |             |                | left   |       |                      |          |                |          |
|             | (6-0-0 max.): 3-4.               | ,                        |        |               | posed;C-C for me                             |             |                |        |       |                      |          |                |          |
| BOT CHORD   | Rigid ceiling directly           | applied or 6-0-0 oc      |        |               | reactions shown;                             | Lumber      | DOL=1.60 pla   | ate    |       |                      |          |                |          |
|             | bracing.                         |                          | 2)     | grip DOL=1.   |                                              | f (reaf lin | ماموما بابسما  |        |       |                      |          |                |          |
| NEBS        | 1 Row at midpt                   | 2-14, 3-13, 6-13         | 3)     |               | E 7-10; Pr=20.0 ps<br>Plate DOL=1.15); F     |             |                |        |       |                      |          |                |          |
| REACTIONS   | (size) 9=0-5-8, *                | 17=0-5-8                 |        |               | L=1.15 Plate DOL:                            |             |                |        |       |                      |          |                |          |
|             | Max Horiz 17=-320 (              | (LC 10)                  |        | Fully Exp.; 0 |                                              | =1.10), C   |                | хр D,  |       |                      |          |                |          |
|             | Max Uplift 9=-110 (L             | .C 15), 17=-80 (LC 14)   | 4)     |               | snow loads have                              | been co     | nsidered for t | his    |       |                      |          |                |          |
|             | Max Grav 9=1228 (I               | _C 40), 17=1133 (LC 4    | 0) ′   | design.       |                                              |             |                |        |       |                      |          |                |          |
| FORCES      | (lb) - Maximum Corr              | pression/Maximum         | 5)     | This truss h  | as been designed                             | for great   | er of min root | f live |       |                      |          |                |          |
|             | Tension                          |                          |        | load of 12.0  | psf or 1.00 times                            | flat roof l | oad of 20.0 p  | sf on  |       |                      |          |                |          |
| TOP CHORD   | 1-2=-979/142, 2-18=              |                          |        |               | on-concurrent wit                            |             |                |        |       |                      |          |                |          |
|             | 18-19=-1148/162, 1               |                          | 6)     |               | quate drainage to                            |             |                | g.     |       |                      |          | minin          | 1111     |
|             | 3-20=-920/222, 3-21              |                          | 7)     |               | as been designed                             |             |                |        |       |                      |          | IN'TH CA       | ROUL     |
|             | 21-22=-657/257, 4-2              |                          |        |               | ad nonconcurrent                             |             |                |        |       |                      | 1        | A              | Uller.   |
|             | 4-5=-903/222, 5-23=              |                          | 8)     |               | has been designe                             |             |                | 0psf   |       |                      | <u>.</u> | O`.:ES8        | A Vil    |
|             | 23-24=-978/186, 6-2              | ,                        |        |               | m chord in all area                          |             |                |        |       | 4                    |          |                | and a    |
|             | 1-17=-1203/137, 7-9              | 5=-957/154, 7-8=0/63,    |        |               | by 2-00-00 wide w                            |             | veen the bott  | om     |       |                      |          | :2             | K : 3    |
| BOT CHORD   | 16-17=-296/303, 15               |                          | 0      |               | ny other members                             |             |                |        |       |                      |          | 054            |          |
|             | 2-15=-344/137, 14-1              |                          | 9)     |               | JSP connectors re                            |             |                |        |       |                      |          | SEA            | L :      |
|             | 13-14=-80/679, 12-1              |                          |        |               | ring walls due to U<br>tion is for uplift on |             |                |        |       |                      |          | 0363           | 22 :     |
|             | 11-12=-105/1008, 1               | ,                        |        | lateral force |                                              | iy anu ut   |                | Jei    |       | -                    |          |                | : .      |
|             | 6-11=-349/117, 9-10              |                          | 1(     |               | Jrlin representation                         | n does n    | ot depict the  | size   |       |                      | -        |                | 1.1.2    |
| WEBS        | 2-14=-528/356, 3-14              |                          |        |               | ation of the purlin                          |             |                | 0.20   |       | CONTRACT OF CONTRACT | 2.1      | N. ENG         | CRIL S   |
|             | 3-13=-162/161, 4-13              | ,                        |        | bottom chor   |                                              |             |                |        |       |                      | 30       | A, GIN         | EF AN    |
|             | 6-13=-446/323, 1-16              | 6=-124/900, 7-10=-97/9   | 906    | DAD CASE(S)   |                                              |             |                |        |       |                      | 1        | C              | IL BE IN |
| NOTES       |                                  |                          | -      |               | Clandara                                     |             |                |        |       |                      |          | A. G           | ILLIN    |
|             |                                  |                          |        |               |                                              |             |                |        |       |                      |          | 100000         | nn.      |
|             |                                  |                          |        |               |                                              |             |                |        |       |                      |          | Marah          | 15 2021  |

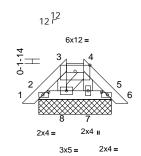
March 15,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | PB09  | Piggyback  | 1   | 1   | Job Reference (optional)    | E15498460 |


Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:09 ID:JOWbE\_CKQIaGCcYOI33taVzanna-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2-11-15

1-6-3 2-1 2-5-6

9 0-7-0 0-6-9 0-11-3 0-11-3

Page: 1







Scale = 1:38.9

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-6-0,0-2-7], [5:0-2-6,0-1-0]

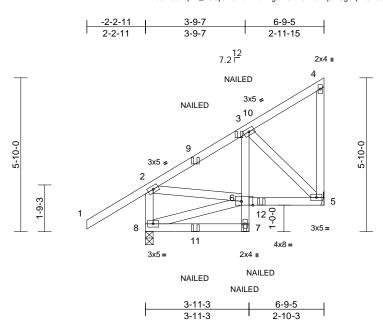
|                                                                                                                                                 | 5 (A, T). [2.0-2-0,0-1-0],                                                                                                                                                                                                                                                                                                                                                                                                                 | , [3.0-6-0,0-2-7], [3.0-2                                                                                                                                                                                                                                                   | 2-6,0-1-0]                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |                      |                             |                                       |                                 |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------|-----------------------------|---------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                     | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                              | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                            | 0.02<br>0.01<br>0.01                                                                                                                                                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                | in<br>n/a<br>n/a<br>0.00                                                                        | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a              | PLATES<br>MT20<br>Weight: 14 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORI<br>BOT CHORI<br>WEBS<br>BRACING<br>TOP CHORI<br>BOT CHORI<br>REACTIONS<br>FORCES<br>TOP CHORI<br>BOT CHORI<br>WEBS<br>NOTES | <ul> <li>D 2x4 SP No.2<br/>2x4 SP No.3</li> <li>D Structural wood she<br/>3-7-0 oc purlins; ext<br/>2-0-0 oc purlins; 3-4</li> <li>D Rigid ceiling directly<br/>bracing.</li> <li>S (size) 2=2-5-6, 5<br/>8=2-5-6, 5</li> <li>Max Horiz 2=-30 (LC<br/>(LC 11), 5<br/>15)</li> <li>Max Grav 2=97 (LC<br/>(LC 37), 8<br/>37), 12=1</li> <li>(lb) - Maximum Com<br/>Tension</li> <li>D 1-2=0/25, 2-3=-31/2<br/>4-5=-39/28, 5-6=0/2</li> </ul> | 2<br>applied or 10-0-0 oc<br>5=2-5-6, 7=2-5-6,<br>9=2-5-6, 12=2-5-6<br>2 12), 9=-30 (LC 12)<br>2 14), 5=-19 (LC 15), 8<br>9=-13 (LC 14), 12=-19<br>37), 5=103 (LC 37), 7<br>3=71 (LC 37), 9=97 (L<br>03 (LC 37)<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | <ul> <li>DOL=1.<br/>Lumber<br/>Fully Ex</li> <li>4) Unbalan<br/>design.</li> <li>5) This trus<br/>load of 1<br/>overhan</li> <li>6) Provide</li> <li>7) Gable re</li> <li>8) This trus<br/>chord liv</li> <li>9) * This trus<br/>chord liv</li> <li>3=-5<br/>(LC</li> <li>9) * This trus<br/>on the b</li> <li>3-06-00<br/>chord ar</li> <li>7) Gne RT<br/>truss to l</li> <li>7) See Stan<br/>Detail fo<br/>consult</li> <li>12) Graphica</li> </ul> | ndard Industry Piggyt<br>Connection to base<br>Jualified building desi<br>al purlin representation<br>ientation of the purlin | Pf=20.0 p<br>=1.15); C<br>been cool<br>for great<br>flat roof I<br>th other li<br>prevent<br>ttom choo<br>for a 10.<br>with any<br>ed for a liv<br>as where<br>vill fit betw<br>s.<br>ecommer<br>JPLIFT a<br>JPLIFT a<br>lyPLIFT a<br>lyPLIFT a<br>sagner.<br>n does n | es (flat roof s<br>category II; E:<br>nsidered for t<br>er of min roo<br>oad of 20.0 p<br>ve loads.<br>water pondin<br>rd bearing.<br>0 psf bottom<br>other live loa<br>ve load of 20.0<br>0 psf bottom<br>other live loa<br>ve load of 20.0<br>a rectangle<br>ween the bott<br>nded to conne<br>t jt(s) 2, 5, an<br>pes not consis<br>as Connectior<br>applicable, or<br>ot depict the | now:<br>xp B;<br>f live<br>osf on<br>g.<br>ads.<br>0psf<br>tom<br>ect<br>ad 8.<br>der<br>n<br>r |                      | <u> </u>                    |                                       | RTH CA                          | ROLIN                              |
| this desi<br>2) Wind: AS<br>Vasd=10<br>Cat. II; E<br>zone and<br>exposed<br>member                                                              | ced roof live loads have<br>gn.<br>SCE 7-10; Vult=130mph<br>J3mph; TCDL=6.0psf; B<br>Exp B; Enclosed; MWFR<br>d C-C Exterior (2) zone;<br>I; end vertical left and ri<br>s and forces & MWFRS<br>DOL=1.60 plate grip DC                                                                                                                                                                                                                    | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rigf<br>ght exposed;C-C for<br>for reactions shown;                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i <b>(S)</b> Standard                                                                                                         |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |                      |                             | A A A A A A A A A A A A A A A A A A A | SEA<br>0363                     | • -                                |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI minim

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | D01   | Hip Girder | 1   | 1   | Job Reference (optional)    | E15498461 |


| 21030024-A                                                  | DUI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rip Gildei                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ' J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ob Reference (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carter Compone                                              | nts, Chesapeake, VA - 23323,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 MiTek Industries, Inc. Mo<br>0Hq3NSgPqnL8w3uITXbG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                      | Page: 1                                                                                                                                                                                     |
|                                                             | E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E-LL-C<br>E- | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                | 12 5-3<br>0 NAILED NAILED NAIL<br>3x8=<br>25 5 26 2<br>25 5 26 2<br>10 10 10<br>10 10<br>33 17 34 3<br>2x4 II                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B-8<br>LED NAILED NAILED<br>3x5=<br>7 28 6 29<br>7 2 | NAILED     NAILED       Sx10=     3031       3031     7       3031     7       3031     7       3031     7       3031     7       3031     7       3031     7       3031     7       3031     7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                          |
|                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8x6=<br>NAILED                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4x6=<br>NAILED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x4 ။<br>2-5-8                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
|                                                             | 1-2-1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4-0-4 9-3-                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>19-10-12</u><br>5-3-8<br><u>1-6-1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 23-11-0<br>2 2-5-8                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |
| Scale = 1:58.4                                              | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-2-12                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
| Plate Offsets (X                                            | X, Y): [2:0-2-15,0-2-0], [4:0-7-9,0-2-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ], [7:0-7-9,0-2-8], [9:0-3-7,0-1                                                                                                                                                                                                                     | -8], [13:0-5-8,0-1-12], [19:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-5-12,0-3-8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |
| Loading<br>FCLL (roof)<br>Snow (Pf)<br>FCDL<br>BCLL<br>BCDL | (psf)Spacing20.0Plate Grip DO20.0Lumber DOL10.0Rep Stress In0.0*Code10.0Rep Stress In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.15<br>cr NO<br>IRC2015/TPI2014                                                                                                                                                                                                                     | CSI<br>TC 0.67<br>BC 0.75<br>WB 0.57<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vert(CT) -0.21<br>Horz(CT) 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15-17 >999 240<br>15-17 >999 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight: 173 lb FT                                                                                                                                                                                                                                                    | 4/190<br>= 20%                                                                                                                                                                              |
|                                                             | Max Horiz 22=-191 (LC 10)<br>Max Uplift 11=-724 (LC 13), 22=-72:<br>Max Grav 11=1882 (LC 35), 22=186<br>(lb) - Maximum Compression/Maxim<br>Tension<br>1-2=0/105, 2-3=-2047/879, 3-4=-203<br>4-23=-1468/681, 23-24=-1468/681,<br>24-25=-1468/681, 5-25=-1470/681,<br>5-26=-2611/1145, 6-28=-2611/114<br>6-29=-1445/672, 29-30=-1444/672,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 SP<br>pplied or<br>icals, and<br>5 oc<br>4 (LC 12)<br>32 (LC 35)<br>10 Unbalanced<br>this design.<br>2) Wind: ASCE<br>Vasd=103m;<br>Cat. II; Exp E<br>DOL=1.60<br>3) TCLL: ASCE<br>DOL=1.15 P<br>Lumber DOL<br>5, 5) This truss ha<br>load of 12.0 | 5-18=-1532/709, 5-17=-1:<br>5-15=-50/51, 6-15=-170/4<br>6-14=-1534/708, 7-14=-4:<br>8-14=-171/325, 2-19=-60;<br>19-21=-177/157, 2-21=-9'<br>9-13=-520/1356, 11-13=-5<br>roof live loads have been<br>7-10; Vult=130mph (3-se<br>b); TCDL=6.0psf; BCDL=<br>3; Enclosed; MWFRS (env<br>ver left and right exposed<br>bosed; Lumber DOL=1.60<br>E 7-10; Pr=20.0 psf (roof li<br>late DOL=1.15); Pf=20.0 p<br>=1.15 Plate DOL=1.15); 0<br>t=1.10<br>snow loads have been cc<br>as been designed for grea<br>psf or 1.00 times flat roof<br>on-concurrent with other l | 99,<br>30/1043,<br>5/1420,<br>1/130,<br>11/35<br>considered for<br>cond gust)<br>6.0psf; h=25ft;<br>velope) exterior<br>; end vertical left<br>plate grip<br>ve load: Lumber<br>psf (flat roof snow:<br>Category II; Exp B;<br>unsidered for this<br>ter of min roof live<br>load of 20.0 psf on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bottom chord.<br>11) "NAILED" indicate<br>(0.148"x3.25") toe<br>12) In the LOAD CASS<br>of the truss are no<br>LOAD CASE(S) Sta<br>1) Dead + Snow (b<br>Increase=1.15<br>Uniform Loads (I<br>Vert: 1-2=-60,<br>20-22=-20, 13<br>Concentrated LC<br>Vert: 4=-59 (B)<br>24=-59 (B), 25<br>28=-59 (B), 25                                                                                                                                                                                                                                                                                                                                                                                              | -nails per NDS guidlin<br>E(S) section, loads ap<br>ted as front (F) or bac<br>ndard<br>alanced): Lumber Incre<br>b/ft)<br>2-4=-60, 4-7=-60, 7-9:<br>-19=-20, 11-12=-20<br>ads (Ib)<br>), 7=-59 (B), 18=-108 (<br>j=-59 (B), 30=-59 (B), j<br>44=-108 (B), 35=-108 ( | <ul> <li>3-12d<br/>es.<br/>plied to the face<br/>k (B).</li> <li>ease=1.15, Plate</li> <li>=-60, 9-10=-60,</li> <li>(B), 14=-108 (B),</li> <li>27=-59 (B),</li> <li>32=-108 (B),</li> </ul> |
| OT CHORD                                                    | 30-31=-1444/672, 7-31=-1443/672,<br>7-8=-2006/892, 8-9=-1933/800, 9-1(<br>2-22=-1845/717, 9-11=-1826/729<br>21-22=-164/171, 20-21=-29/66, 19-2<br>3-19=-241/174, 18-19=-694/1505,<br>18-32=-1166/2657, 32-33=-1166/26<br>17-33=-1166/2657, 17-34=-1166/26<br>34-35=-1166/2657, 16-35=-1166/26<br>15-37=-1139/2629, 37-38=-1139/26<br>14-38=-1139/2629, 13-14=-521/134<br>12-13=0/43, 8-13=-270/126, 11-12=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0=0/105, 6) Provide adec<br>7) This truss ha<br>chord live loc<br>8) * This truss h<br>chord live loc<br>8) * This truss h<br>57, 3-06-00 tall b<br>57, chord and ar<br>57, 9) One RT8A U<br>29, This connect<br>7, lateral forces                   | quate drainage to prevent<br>is been designed for a 10<br>ad nonconcurrent with any<br>has been designed for a li<br>in chord in all areas where<br>by 2-00-00 wide will fit bet<br>by other members.<br>ISP connectors recommen-<br>ing walls due to UPLIFT a<br>tion is for uplift only and d                                                                                                                                                                                                                                                                   | water ponding.<br>.0 psf bottom<br>y other live loads.<br>ve load of 20.0psf<br>e a rectangle<br>ween the bottom<br>nded to connect<br>at jt(s) 22 and 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | With the second s | SEAL<br>036322                                                                                                                                                                                                                                                       | 2021                                                                                                                                                                                        |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type          | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|---------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | HJ02  | Diagonal Hip Girder | 2   | 1   | Job Reference (optional)    | E15498462 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:00 ID:osW3b7spEf\_4OSjGPsMu12zan?g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

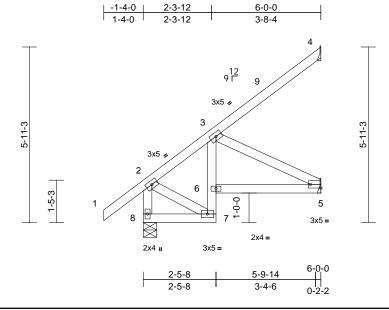


Scale = 1:43.7

Plate Offsets (X, Y): [6:0-5-4,Edge]

| - 1010 0110010 (                                                                                                                                                                            | , i). [0.0 0 4,⊑uge]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                         |                          |                               |                          |             |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------|-------------------------------|--------------------------|-------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC201                                         | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                      | CSI<br>TC<br>BC<br>WB<br>Matrix-MP | 0.47<br>0.18<br>0.10                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                | in<br>0.03<br>-0.03<br>0.00                             | (loc)<br>7-8<br>7-8<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a |             | <b>GRIP</b><br>244/190<br>FT = 20% |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=103<br>Cat. II; Ex<br>zone; cant<br>and right e<br>DOL=1.60<br>2) TCLL: ASC<br>DOL=1.15<br>Lumber D<br>Fully Exp. | 2x4 SP No.2 *Excep<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 5= Mecha<br>Max Horiz 8=210 (LC<br>Max Uplift 5=-253 (L<br>Max Grav 5=253 (LC<br>(lb) - Maximum Com<br>(lb) - Maximum Com<br>2-8=-410/226, 1-2=0<br>3-9=-274/197, 3-10=<br>4-5=-114/47<br>8-11=-6/6, 7-11=-6/6<br>3-6=-237/212, 6-12=<br>6-8=-204/128, 2-6=-<br>CE 7-10; Vult=130mph<br>mph; TCDL=6.0psf; Bi<br>p B; Enclosed; MWFR<br>tilever left and right exp<br>exposed; Lumber DOL-<br>CE 7-10; Pr=20.0 psf (<br>Plate DOL=1.15); Pf=<br>OL=1.15 Plate DOL=1 | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>unical, 8=0-3-8<br>C 9)<br>C 9), 8=-234 (LC 12)<br>C 22), 8=465 (LC 23)<br>upression/Maximum<br>0/73, 2-9=-335/197,<br>i=102/47, 4-10=-94/6<br>S, 6-7=-79/85,<br>i=262/265, 5-12=-257<br>160/270, 3-5=-339/3<br>(3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>posed ; end vertical le<br>=1.60 plate grip<br>roof live load: Lumbe<br>:20.0 psf (flat roof sno<br>.15); Category II; Exp | 7)<br>8)<br>9)<br>1, 10<br>//261<br>10<br>10<br>1)<br><br>eft<br>sow:<br>> B; | load of 12.0<br>overhangs n<br>This truss ha<br>chord live lo.<br>* This truss lo<br>on the botton<br>3-06-00 tall 11<br>chord and al<br>Refer to gird<br>Provide meet<br>bearing plate<br>joint 5.<br>One RT7A L<br>truss to bear<br>connection is<br>forces.<br>0) "NAILED" in<br>(0.148"x3.25<br>) In the LOAD<br>of the truss a<br><b>DAD CASE(S)</b><br>Dead + Sm.<br>Increase=1<br>Uniform Lo<br>Vert: 1-2<br>Concentrat | ow (balanced): Lui<br>.15          | lat roof I<br>o other Ii<br>for a 10.<br>with any<br>d for a Ii's<br>swhere<br>ill fit betv.<br>uss conn<br>n (by oth<br>commer<br>PLIFT a<br>d does n<br>48"x3") (c)<br>DS guidli<br>, loads a<br>(F) or ba<br>mber Inc | bad of 20.0 p<br>ve loads.<br>O psf bottom<br>other live load<br>of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss<br>253 lb uplift a<br>ided to connet<br>t jt(s) 8. This<br>to consider la<br>or 2-12d<br>nes.<br>pplied to the<br>ck (B).<br>rease=1.15,<br>6=-20 | ads.<br>Opsf<br>com<br>to<br>t<br>ect<br>ateral<br>face |                          |                               |                          | SEA<br>0363 | EER A                              |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | EJ01  | Jack-Open  | 9   | 1   | Job Reference (optional)    | E15498463 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:52 ID:ltoNQh62kc5KtRgFViEHF\_zan\_2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:38.9

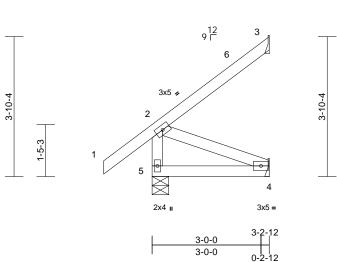
Plate Offsets (X, Y): [5:Edge,0-1-8]

|                                                                                            | (X, 1): [5:Edge;6 1 6]                                                                                                                                                              |                                                                                                                                                      |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        |                               |                          |                                 |                                    |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/ | TPI2014                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                              | 0.23<br>0.60<br>0.12                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                    | in<br>0.02<br>-0.03<br>0.03       | (loc)<br>7<br>5-6<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 37 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORE<br>BOT CHORE<br>WEBS<br>BRACING<br>TOP CHORE<br>BOT CHORE<br>REACTIONS | <ul> <li>2x4 SP No.2 *Excep<br/>2x4 SP No.3</li> <li>Structural wood she<br/>6-0-0 oc purlins, existence<br/>Rigid ceiling directly<br/>bracing.</li> </ul>                         | athing directly applie<br>cept end verticals.<br>applied or 6-0-0 oc<br>unical, 5= Mechanica<br>C 14)<br>C 14), 5=-59 (LC 14)<br>C 21), 5=144 (LC 24 | 5)<br>ed or 6)<br>al, 7)<br>8)           | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate | is been designed<br>psf or 1.00 times i<br>on-concurrent with<br>is been designed<br>ad nonconcurrent<br>nas been designe<br>n chord in all area<br>y 2-00-00 wide w<br>ny other members<br>er(s) for truss to th<br>hanical connectio<br>e capable of withs<br>ipplift at joint 5.<br>Standard | flat roof li<br>h other li<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>vill fit betw<br>russ conr<br>n (by oth | bad of 20.0 p<br>ve loads.<br>D psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>ween the bott<br>nections.<br>ers) of truss | sf on<br>ads.<br>Opsf<br>om<br>to |                        |                               |                          |                                 |                                    |
| FORCES                                                                                     | (lb) - Maximum Com<br>Tension                                                                                                                                                       | pression/Maximum                                                                                                                                     |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        |                               |                          |                                 |                                    |
| TOP CHORD                                                                                  |                                                                                                                                                                                     |                                                                                                                                                      |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        |                               |                          |                                 |                                    |
| BOT CHORD                                                                                  | ,                                                                                                                                                                                   |                                                                                                                                                      |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        |                               |                          | TH CA                           | un.                                |
| WEBS                                                                                       | 2-7=0/175, 3-5=-331                                                                                                                                                                 | /211                                                                                                                                                 |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        |                               |                          | WH CA                           | ROUL                               |
| NOTES                                                                                      |                                                                                                                                                                                     |                                                                                                                                                      |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        |                               | - N                      | R                               | - City                             |
| Vasd=10<br>Cat. II; E<br>zone and<br>exposed<br>members                                    | SCE 7-10; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>xp B; Enclosed; MWFR;<br>d C-C Exterior (2) zone;<br>; end vertical left and rig<br>s and forces & MWFRS<br>DOL=1.60 plate grip DO | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown                                  | r<br>ght                                 |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        | An and a second               | È                        | PFES                            | L                                  |
| 2) TCLL: AS<br>DOL=1.1<br>Lumber I<br>Fully Exp                                            | SCE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pf=<br>DOL=1.15 Plate DOL=1<br>b.; Ct=1.10<br>ced snow loads have be                                                                  | roof live load: Lumb<br>20.0 psf (flat roof sn<br>.15); Category II; Ex                                                                              | iow:<br>p B;                             |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |                                                                                                                            |                                                                                                                                             |                                   |                        | 1111                          |                          |                                 | EEREX                              |

3) Unbalanced snow loads have been considered for this design.

### A. GIL March 15,2021

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | CJ10  | Jack-Open  | 2   | 1   | Job Reference (optional)    | E15498464 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:42 ID:ObTeCTEmV5Xwk9F4DP24DCzan6w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





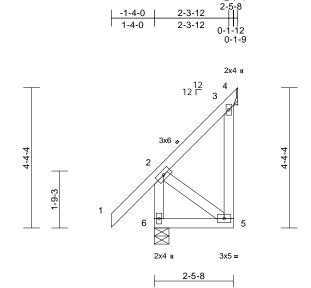


#### Scale = 1:31.8

| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                         | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                       | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/TPI2014                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                              | 0.18<br>0.11<br>0.06                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                       | in<br>-0.01<br>-0.01<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 20 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                          | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>3-2-12 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>5=0-5-8<br>Max Horiz 5=108 (LC<br>Max Uplift 3=-59 (LC<br>Max Grav 3=78 (LC                                   | xcept end verticals.<br>applied or 10-0-0 oc<br>anical, 4= Mechanica<br>C 14)<br>C 14), 4=-27 (LC 14)                                                                                                                                                                                         | chord live<br>6) * This truss<br>on the bott<br>3-06-00 ta<br>chord and<br>7) Refer to gi<br>8) Provide mu<br>bearing pla<br>1, LOAD CASE( | has been designed<br>oad nonconcurrent<br>is has been designer<br>om chord in all area<br>by 2-00-00 wide w<br>any other members<br>ider(s) for truss to tr<br>echanical connectio<br>te capable of withs<br>uplift at joint 4. | with any<br>d for a liv<br>as where<br>vill fit betv<br>s.<br>russ conr<br>n (by oth | other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss | Opsf<br>com<br>to            |                          |                               |                          |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                            | (LC 21)<br>(lb) - Maximum Com<br>Tension<br>2-5=-202/40, 1-2=0/<br>3-6=-41/67<br>4-5=-189/67<br>2-4=-72/203                                                                                                                                         |                                                                                                                                                                                                                                                                                               |                                                                                                                                            |                                                                                                                                                                                                                                 |                                                                                      |                                                                                                |                              |                          |                               |                          |                                 |                                    |
| NOTES 1) Wind: AS(<br>Vasd=103)<br>Cat. II; Ex<br>zone and<br>exposed;<br>members<br>Lumber D 2) TCLL: AS<br>DOL=1.15<br>Lumber D<br>Fully Exp. 3) Unbalance<br>design. 4) This truss<br>load of 12 | CE 7-10; Vult=130mph<br>mph; TCDL=6.0psf; B<br>p B; Enclosed; MWFR<br>C-C Exterior (2) zone;<br>end vertical left and ri,<br>and forces & MWFRS<br>OL=1.60 plate grip DC<br>CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pf=<br>OL=1.15 Plate DOL=1 | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rig<br>ght exposed;C-C for<br>for reactions shown;<br>Ju=1.60<br>roof live load: Lumbe<br>20.0 psf (flat roof sm.<br>.15); Category II; Exp<br>een considered for th<br>r greater of min roof I<br>t roof load of 20.0 ps | ght<br>ow:<br>o B;<br>is                                                                                                                   |                                                                                                                                                                                                                                 |                                                                                      |                                                                                                |                              |                          | M. Contraction                |                          | SEA<br>0363                     | 22<br>EER & Jun                    |

ENGINEERING BY EREENCED A MITEk Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | CJ09  | Jack-Open  | 2   | 1   | Job Reference (optional)    | E15498465 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:42 ID:1egm9mBdhYuddNM7QsSvW8zan7?-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2-7-1

Page: 1

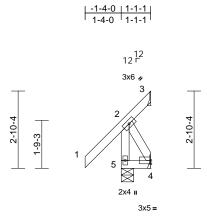
i7J4zJC?f



#### Scale = 1:35.7

| -                                                                             |                                                                                                                                       |                                            |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               |          |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|----------|-------|--------|-----|---------------|----------|
| Loading                                                                       | (psf)                                                                                                                                 | Spacing                                    | 2-0-0  |                                                                                  | csi                                                                                                                                                                          |                                               | DEFL                                                       | in       | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                                   | 20.0                                                                                                                                  | Plate Grip DOL                             | 1.15   |                                                                                  | TC                                                                                                                                                                           | 0.21                                          | Vert(LL)                                                   | -0.01    | 5     | >999   | 240 | MT20          | 244/190  |
| Snow (Pf)                                                                     | 20.0                                                                                                                                  | Lumber DOL                                 | 1.15   |                                                                                  | BC                                                                                                                                                                           | 0.05                                          | Vert(CT)                                                   | -0.01    | 5     | >999   | 180 |               |          |
| TCDL                                                                          | 10.0                                                                                                                                  | Rep Stress Incr                            | YES    |                                                                                  | WB                                                                                                                                                                           | 0.08                                          | Horz(CT)                                                   | 0.01     | 4     | n/a    | n/a |               |          |
| BCLL                                                                          | 0.0*                                                                                                                                  | Code                                       | IRC201 | 5/TPI2014                                                                        | Matrix-MP                                                                                                                                                                    |                                               |                                                            |          |       |        |     |               |          |
| BCDL                                                                          | 10.0                                                                                                                                  | -                                          |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     | Weight: 23 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.2 *Excep<br>2x4 SP No.3<br>Structural wood she<br>2-7-1 oc purlins, ex<br>Rigid ceiling directly<br>bracing. | athing directly applie cept end verticals. | ;      | on the bottor<br>3-06-00 tall to<br>chord and ar<br>Refer to gird<br>Provide mec | has been designed<br>in chord in all areas<br>by 2-00-00 wide wil<br>by other members.<br>er(s) for truss to tru-<br>hanical connection<br>e capable of withstar<br>Standard | s where<br>Il fit betv<br>uss conr<br>(by oth | a rectangle<br>veen the bott<br>nections.<br>ers) of truss | om<br>to |       |        |     |               |          |
| REACTIONS                                                                     | (size) 4= Mecha<br>Max Horiz 6=120 (LC<br>Max Uplift 4=-127 (L<br>Max Grav 4=108 (LC                                                  | C 14)                                      | 1      |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               |          |
| FORCES                                                                        | (lb) - Maximum Corr<br>Tension                                                                                                        | pression/Maximum                           |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               |          |
| TOP CHORD                                                                     | 2-6=-190/46, 1-2=0/<br>3-4=-123/129                                                                                                   | 63, 2-3=-71/73,                            |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               |          |
| BOT CHORD<br>WEBS                                                             | 5-6=-224/67, 3-5=-1<br>2-5=-85/281                                                                                                    | 51/71                                      |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               |          |
| NOTES                                                                         |                                                                                                                                       |                                            |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               |          |
| 1) Wind: ASC                                                                  | CE 7-10; Vult=130mph                                                                                                                  | (3-second gust)                            |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               |          |
|                                                                               | mph; TCDL=6.0psf; B                                                                                                                   |                                            |        |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     |               | UIII.    |
| Cat. II; Exp                                                                  | p B; Enclosed; MWFR                                                                                                                   | S (envelope) exterio                       | r      |                                                                                  |                                                                                                                                                                              |                                               |                                                            |          |       |        |     | IN CA         | DUL      |

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
  2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 SEAL 036322 March 15,2021



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | CJ08  | Jack-Open  | 2   | 1   | Job Reference (optional)    | E15498466 |

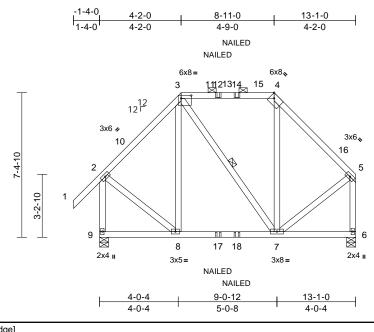
Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:42 ID:1M8KbyzzhKI15mZsxoewKZzan7G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





| Loading                 |                             | (psf)                   | Spacing                                                                 | 2-0-0  |                          | CSI                                               |          | DEFL            | in   | (loc)    | l/defl | L/d | PLATES        | GRIP      |
|-------------------------|-----------------------------|-------------------------|-------------------------------------------------------------------------|--------|--------------------------|---------------------------------------------------|----------|-----------------|------|----------|--------|-----|---------------|-----------|
| TCLL (roof)             |                             | 20.0                    | Plate Grip DOL                                                          | 1.15   |                          | тс                                                | 0.20     | Vert(LL)        | 0.00 | <b>5</b> | >999   | 240 | MT20          | 244/190   |
| Snow (Pf)               |                             | 20.0                    | Lumber DOL                                                              | 1.15   |                          | BC                                                | 0.01     | Vert(CT)        | 0.00 | 5        | >999   | 180 |               |           |
| CDL                     |                             | 10.0                    | Rep Stress Incr                                                         | YES    |                          | WB                                                | 0.06     | Horz(CT)        | 0.00 | 3        | n/a    | n/a |               |           |
| BCLL                    |                             | 0.0*                    | Code                                                                    | IRC201 | 15/TPI2014               | Matrix-MP                                         |          |                 |      |          |        |     |               |           |
| SCDL                    | -                           | 10.0                    |                                                                         |        |                          |                                                   |          |                 |      |          |        |     | Weight: 12 lb | FT = 20%  |
| UMBER<br>OP CHORD       | 2x4 SP No                   | 0.2                     |                                                                         | 5      |                          | s been designed<br>ad nonconcurrent               |          |                 | ds.  |          |        |     |               |           |
| OT CHORD                |                             |                         |                                                                         | 6      |                          | as been designe                                   |          |                 | psf  |          |        |     |               |           |
| /EBS                    | 2x4 SP No                   | .3                      |                                                                         |        |                          | n chord in all area                               |          | 0               |      |          |        |     |               |           |
| RACING                  |                             |                         |                                                                         |        |                          | y 2-00-00 wide w                                  |          | veen the botto  | m    |          |        |     |               |           |
| OP CHORD                |                             |                         | athing directly applie                                                  | d or 7 |                          | <pre>iy other members er(s) for truss to to</pre> |          | ections         |      |          |        |     |               |           |
|                         |                             | ,                       | cept end verticals.                                                     | 0      |                          | hanical connectio                                 |          |                 | C    |          |        |     |               |           |
| OT CHORD                | bracing.                    | ng directly             | applied or 10-0-0 oc                                                    |        | bearing plate            | capable of withs                                  |          |                 |      |          |        |     |               |           |
| EACTIONS                | (size)                      | 3= Mecha<br>5=0-5-8     | nical, 4= Mechanica                                                     | l, 9   |                          | plift at joint 3.<br>SP connectors re             | commen   | ded to conne    | ct   |          |        |     |               |           |
|                         | Max Horiz                   |                         | 13)                                                                     |        |                          | ing walls due to L                                |          |                 |      |          |        |     |               |           |
|                         |                             |                         | 20), 4=-110 (LC 14                                                      | ),     | connection is<br>forces. | for uplift only an                                | d does n | ot consider lat | eral |          |        |     |               |           |
|                         | •                           | 5=-1 (LC 1              | 10)                                                                     | · .    | OAD CASE(S)              | Standard                                          |          |                 |      |          |        |     |               |           |
|                         |                             | 3=38 (LC<br>(LC 1)      | 18), 4=63 (LC 12), 5                                                    | =197   | OAD CASE(S)              | Stanuaru                                          |          |                 |      |          |        |     |               |           |
| ORCES                   | Tension                     |                         | pression/Maximum                                                        |        |                          |                                                   |          |                 |      |          |        |     |               |           |
| OP CHORD                |                             |                         | 63, 2-3=-70/68                                                          |        |                          |                                                   |          |                 |      |          |        |     |               |           |
| SOT CHORD               |                             |                         |                                                                         |        |                          |                                                   |          |                 |      |          |        |     |               |           |
| VEBS                    | 2-4=-63/19                  | 94                      |                                                                         |        |                          |                                                   |          |                 |      |          |        |     |               |           |
| IOTES                   |                             | -120mph                 | (3-second gust)                                                         |        |                          |                                                   |          |                 |      |          |        |     | , united      | 11111     |
| Vasd=103<br>Cat. II; Ex | Bmph; TCDL=<br>p B; Enclose | =6.0psf; B0<br>d; MWFR8 | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rig |        |                          |                                                   |          |                 |      |          |        | A   | ORTH CA       | ROW       |
|                         |                             |                         | ght exposed;C-C for                                                     |        |                          |                                                   |          |                 |      |          | 4      | D   |               | 1 Sille   |
|                         |                             |                         | for reactions shown;                                                    |        |                          |                                                   |          |                 |      |          | -      |     |               |           |
|                         | OL=1.60 pla                 | •                       | roof live load: Lumbe                                                   |        |                          |                                                   |          |                 |      |          | =      | :   | SEA           | L :       |
|                         |                             |                         | 20.0 psf (flat roof sn                                                  |        |                          |                                                   |          |                 |      |          |        |     | 0363          | 22        |
|                         |                             |                         | .15); Category II; Ex                                                   |        |                          |                                                   |          |                 |      |          | -      |     |               |           |
| Fully Exp.              | ; Ct=1.10                   |                         |                                                                         |        |                          |                                                   |          |                 |      |          |        | -   | 1. A.         | - 1 - E   |
|                         | ed snow load                | ls have be              | en considered for th                                                    | is     |                          |                                                   |          |                 |      |          |        | 2.0 | NOIN          | FERIX     |
| design.                 | haa haar da                 | aigned for              | arootor of min roof                                                     | i. co  |                          |                                                   |          |                 |      |          | COLUMN | 11  | AU            | F. F. M.  |
|                         |                             |                         | greater of min roof troof load of 20.0 ps                               |        |                          |                                                   |          |                 |      |          |        |     | 11. A. C.     | ILBUTT    |
|                         |                             |                         | other live loads.                                                       |        |                          |                                                   |          |                 |      |          |        |     | A. C          | 11111     |
| 5                       |                             |                         |                                                                         |        |                          |                                                   |          |                 |      |          |        |     |               | n 15,2021 |


818 Soundside Road Edenton, NC 27932

# WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | K01   | Hip Girder | 1   | 1   | Job Reference (optional)    | E15498467 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:36:03 ID:wZFZdVU7sxW2aXnDeCbchkzanKp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scale = 1:58.9       |                                 |
|----------------------|---------------------------------|
| Plate Offsets (X Y): | [3:0-6-4 0-1-12] [4:0-2-8 Edge] |

| Plate Offsets (                                                       | X, Y): [3:0-6-4,0-1-12                                                                                                                                                                                                                                                    | ], [4:0-2-8,Edge]                                                                                                                                                   |                                                 |                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                          |                          |                               |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|-------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL           | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                  | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC201           | 5/TPI2014                                                                                                                                                                                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                       | 0.77<br>0.45<br>0.17                                                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                             | in<br>0.06<br>-0.07<br>0.00                                              | (loc)<br>7-8<br>7-8<br>6 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a              | PLATES<br>MT20<br>Weight: 102 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                                       | 2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                                                                                               | athing directly applie<br>cept end verticals, ar<br>-0 max.): 3-4.<br>applied or 6-0-0 oc<br>3-7<br>9=0-5-8<br>2 9)<br>C 13), 9=-252 (LC 1:<br>C 35), 9=959 (LC 35) | 4)<br>ed or 5)<br>nd 5)<br>6)<br>7)<br>8)<br>2) | DOL=1.15 P<br>Lumber DOL<br>Fully Exp.; C<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Provide aded<br>This truss ha<br>chord live loa<br>* This truss to<br>on the bottor<br>3-06-00 tall b<br>chord and ar | snow loads have loss been designed to<br>psf or 1.00 times for<br>on-concurrent with<br>quate drainage to<br>us been designed to<br>ad nonconcurrent<br>has been designed<br>n chord in all area<br>by 2-00-00 wide w<br>y other members. | If=20.0 p<br>=1.15); C<br>been con-<br>for great<br>lat roof I<br>n other li<br>prevent<br>for a 10.<br>with any<br>d for a li<br>d for a li<br>s where<br>ill fit betty,<br>with BC | sf (flat roof s<br>ategory II; E<br>nsidered for t<br>er of min roo<br>bad of 20.0 p<br>ve loads.<br>water pondin<br>0 psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>CDL = 10.0ps | now:<br>xp B;<br>f live<br>f live<br>ssf on<br>g.<br>ads.<br>0psf<br>tom |                          |                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |
| TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES                               | Tension<br>1-2=0/105, 2-10=-62<br>3-11=-372/234, 11-1<br>12-13=-372/234, 13-1<br>14-15=-372/234, 4-1<br>4-16=-503/244, 5-16<br>2-9=-936/283, 5-6=-<br>8-9=-223/188, 8-17=<br>17-18=-228/430, 7-1<br>3-8=-105/111, 3-7=-<br>2-8=-193/498, 5-7=-<br>ed roof live loads have | 23/226, 3-10=-507/24<br>2=-372/234,<br>5=-372/234,<br>5=-609/217,<br>769/261<br>228/430,<br>8=-228/430, 6-7=-50<br>89/96, 4-7=-118/109<br>204/466                   | 10<br>11<br>0/31 12<br>,<br>LC<br>1)            | truss to bear<br>This connect<br>lateral forces<br>0) Graphical pu<br>or the orient<br>bottom choro<br>1) "NAILED" int<br>(0.148"x3.25<br>2) In the LOAD<br>of the truss a<br>DAD CASE(S)<br>Dead + Sno                                     | rlin representation<br>ation of the purlin a<br>dicates 3-10d (0.1-<br>") toe-nails per NE<br>CASE(S) section,<br>are noted as front<br>Standard<br>ow (balanced): Lui                                                                    | PLIFT a<br>y and do<br>n does no<br>along the<br>48"x3") o<br>OS guidli<br>loads a<br>(F) or ba                                                                                      | t jt(s) 9 and 6<br>bes not consider<br>t depict the<br>e top and/or<br>or 3-12d<br>nes.<br>pplied to the<br>ck (B).                                                                                                  | 5.<br>der<br>size<br>face                                                |                          | <u> </u>                      |                                       | OR TH CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |
| this design<br>2) Wind: ASC<br>Vasd=103<br>Cat. II; Exp<br>zone; cant | n.<br>CE 7-10; Vult=130mph<br>imph; TCDL=6.0psf; Bi<br>p B; Enclosed; MWFR<br>tilever left and right exp<br>exposed; Lumber DOL                                                                                                                                           | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>bosed ; end vertical I                                                                           | r                                               | Concentrate                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                          |                          | THWA.                         | A A A A A A A A A A A A A A A A A A A | in the second se | EREALIN                            |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | K02   | Hip        | 1   | 1   | Job Reference (optional)    | E15498468 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:03 ID:R4DEG?IVNdnffme534Nz1UzanoA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





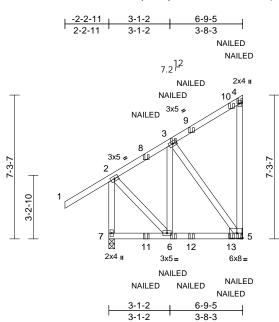
Scale = 1:57.6

#### Plate Offsets (X, Y): [2:0-2-12,0-1-8], [3:0-6-4,0-1-12], [4:0-4-4,0-1-12], [5:0-1-12,0-1-8]

|                                                                                                    |                                                                                                                                                              |                                                                                                  | ,             |                                                                                                                                                                                        | -                                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                        |                                                         |              |                |            |                |                        |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------|----------------|------------|----------------|------------------------|
| Loading<br>TCLL (roof)                                                                             | (psf)<br>20.0                                                                                                                                                | Spacing<br>Plate Grip DOL                                                                        | 2-0-0<br>1.15 |                                                                                                                                                                                        | CSI<br>TC                                                                                                                                                                          | 0.74                                                                                                                        | <b>DEFL</b><br>Vert(LL)                                                                                                                                                | in<br>-0.03                                             | (loc)<br>8-9 | l/defl<br>>999 | L/d<br>240 | PLATES<br>MT20 | <b>GRIP</b><br>244/190 |
| Snow (Pf)                                                                                          | 20.0                                                                                                                                                         | Lumber DOL                                                                                       | 1.15          |                                                                                                                                                                                        | BC                                                                                                                                                                                 | 0.26                                                                                                                        | Vert(CT)                                                                                                                                                               | -0.06                                                   | 8-9          | >999           | 180        |                |                        |
| TCDL                                                                                               | 10.0                                                                                                                                                         | Rep Stress Incr                                                                                  | YES           |                                                                                                                                                                                        | WB                                                                                                                                                                                 | 0.10                                                                                                                        | Horz(CT)                                                                                                                                                               | 0.00                                                    | 6            | n/a            | n/a        |                |                        |
| BCLL                                                                                               | 0.0*                                                                                                                                                         | Code                                                                                             | IRC201        | 5/TPI2014                                                                                                                                                                              | Matrix-MSH                                                                                                                                                                         |                                                                                                                             |                                                                                                                                                                        |                                                         |              |                |            |                | FT 000/                |
| BCDL                                                                                               | 10.0                                                                                                                                                         |                                                                                                  |               |                                                                                                                                                                                        |                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                        |                                                         |              |                |            | Weight: 113 lb | FI = 20%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood shee<br>4-2-11 oc purlins, et<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt | xcept end verticals, a<br>-0 max.): 3-4.<br>applied or 10-0-0 oc<br>3-8, 3-7, 4-7<br>9=0-5-8     | and 5)        | DOL=1.15 P<br>Lumber DOU<br>Fully Exp.; C<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n<br>Provide ade<br>This truss ha<br>chord live lo.<br>* This truss l | snow loads have b<br>as been designed for<br>psf or 1.00 times fla<br>on-concurrent with<br>quate drainage to p<br>as been designed for<br>ad nonconcurrent w<br>nas been designed | =20.0 p<br>1.15); C<br>een cor<br>or great<br>at roof le<br>other lin<br>revent<br>or a 10.<br><i>i</i> th any<br>for a liv | sf (flat roof s<br>ategory II; E:<br>nsidered for t<br>er of min roof<br>bad of 20.0 p<br>ve loads.<br>water pondin<br>0 psf bottom<br>other live loa<br>e load of 20. | now:<br>xp B;<br>this<br>f live<br>osf on<br>g.<br>ads. |              |                |            |                |                        |
|                                                                                                    | Max Uplift 6=-51 (LC<br>Max Grav 6=703 (LC                                                                                                                   | (LC 14), 9=-60 (LC 14)                                                                           |               | 3-06-00 tall I                                                                                                                                                                         | m chord in all areas<br>by 2-00-00 wide will                                                                                                                                       |                                                                                                                             |                                                                                                                                                                        | tom                                                     |              |                |            |                |                        |
| FORCES                                                                                             | (lb) - Maximum Com<br>Tension                                                                                                                                |                                                                                                  | 9)            | One RT7A L                                                                                                                                                                             | ny other members.<br>JSP connectors rec<br>ing walls due to UP                                                                                                                     |                                                                                                                             |                                                                                                                                                                        |                                                         |              |                |            |                |                        |
| TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES                                                            | 3-11=-338/187, 3-12<br>4-12=-305/213, 4-13<br>13-14=-364/172, 5-1<br>2-9=-767/182, 5-6=-                                                                     | 2=-305/213,<br>=-269/174,<br>4=-566/151,<br>647/137<br>98/294, 6-7=-47/55<br>0/151, 4-7=-96/135, |               | This connec<br>lateral forces<br>) Graphical pu                                                                                                                                        | tion is for uplift only<br>s.<br>Irlin representation<br>ation of the purlin al<br>d.                                                                                              | and do                                                                                                                      | ot depict the                                                                                                                                                          | der                                                     |              | 4              | NI III     | ORTEESS        | ROUT                   |
|                                                                                                    |                                                                                                                                                              |                                                                                                  |               |                                                                                                                                                                                        |                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                        |                                                         |              |                | 2          |                |                        |

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 036322 MGINEEPHHILIN March 15,2021


> 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type          | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|---------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | HJ01  | Diagonal Hip Girder | 2   | 1   | Job Reference (optional)    | E15498469 |

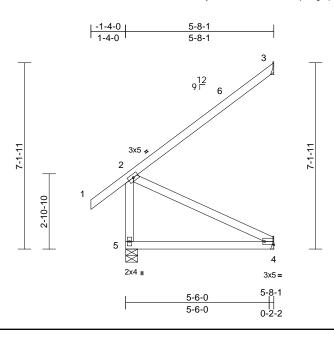
#### Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:59 ID:vlk83hHStjNT1w\_y88ncV8zanL4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:58.4

| Scale = 1:58.4                                                                              |                                                                                                                                                                                                                        |                                                                                                |                                                                                                                                                       |                                                                                      |                                                                                                                                                       |                                                                                                                                                                           |                                                                                             |                          |                               |                          |                                 |                                    |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                 | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                          | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                      | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2015/TPI201                                                                                                         | 4 CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                 | 0.64<br>0.25<br>0.26                                                                                                                                  | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                  | in<br>0.02<br>-0.02<br>0.00                                                                 | (loc)<br>6-7<br>6-7<br>5 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 61 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS  | 2x4 SP No.2<br>2x4 SP No.2<br>2x4 SP No.3<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 5= Mecha<br>Max Horiz 7=278 (LC<br>Max Uplift 5=-720 (L<br>Max Grav 5=780 (LC | applied or 10-0-0 or<br>anical, 7=0-3-8<br>C 9)<br>C 9), 7=-377 (LC 8)<br>C 22), 7=640 (LC 23) | chord<br>6) * This<br>on the<br>3-06-0<br>chord<br>7) Refer<br>7) Refer<br>8) Provid<br>bearin<br>joint 5.<br>9) One R<br>truss tr<br>conne<br>forces | T7A USP connectors<br>bearing walls due to<br>ction is for uplift only a             | nt with any<br>ned for a liv<br>eas where<br>will fit betw<br>rs.<br>b truss con<br>cion (by oth<br>nstanding f<br>recommer<br>UPLIFT a<br>and does n | other live load<br>re load of 20.<br>a rectangle<br>ween the bott<br>nections.<br>ners) of truss<br>720 lb uplift a<br>uded to conne<br>t jt(s) 7. This<br>ot consider la | Opsf<br>tom<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t<br>t |                          |                               |                          | Weight. Of ho                   | 11 - 2078                          |
| FORCES<br>TOP CHORD                                                                         |                                                                                                                                                                                                                        | '<br>)/73, 2-8=-316/242,<br>166/126, 9-10=-113/                                                | NDS g<br>11) In the                                                                                                                                   | ED" indicates 2-12d (0<br>uidlines.<br>_OAD CASE(S) sectio<br>russ are noted as fror | on, loads a                                                                                                                                           | pplied to the                                                                                                                                                             |                                                                                             |                          |                               |                          |                                 |                                    |
| BOT CHORD                                                                                   | 4-10=-131/125, 4-5=<br>7-11=-264/170, 6-11<br>6-12=-291/289, 12-1<br>5-13=-291/289                                                                                                                                     | I=-264/170,                                                                                    | 1) Dead<br>Incre                                                                                                                                      | SE(S) Standard<br>+ Snow (balanced): L<br>ase=1.15                                   | _umber Inc                                                                                                                                            | rease=1.15,                                                                                                                                                               | Plate                                                                                       |                          |                               |                          |                                 |                                    |
| WEBS                                                                                        |                                                                                                                                                                                                                        | 287/308, 3-5=-395/3                                                                            | 07                                                                                                                                                    | rm Loads (lb/ft)<br>rt: 1-2=-60, 2-4=-60, 5                                          | 5-7=-20                                                                                                                                               |                                                                                                                                                                           |                                                                                             |                          |                               |                          |                                 | 111.                               |
| NOTES                                                                                       |                                                                                                                                                                                                                        |                                                                                                |                                                                                                                                                       | entrated Loads (lb)                                                                  |                                                                                                                                                       |                                                                                                                                                                           |                                                                                             |                          |                               |                          | TH CA                           | AD "'IL                            |
| Vasd=103r<br>Cat. II; Exp<br>zone; canti                                                    | CE 7-10; Vult=130mph<br>mph; TCDL=6.0psf; B<br>o B; Enclosed; MWFR<br>ilever left and right ex<br>exposed; Lumber DOL                                                                                                  | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>posed ; end vertical                            | 11<br>r                                                                                                                                               | rt: 4=-125 (F), 5=-38 (<br>1 (B), 13=-19 (B)                                         | (F), 8=39 (                                                                                                                                           | B), 10=-56 (B                                                                                                                                                             | 3),                                                                                         |                          | 4                             | à                        | O FESS                          |                                    |
| <ol> <li>TCLL: ASC<br/>DOL=1.15<br/>Lumber DC<br/>Fully Exp.;</li> <li>Unbalance</li> </ol> | CE 7-10; Pr=20.0 psf (<br>Plate DOL=1.15); Pf=<br>OL=1.15 Plate DOL=1                                                                                                                                                  | 20.0 psf (flat roof sn<br>.15); Category II; Ex                                                | ow:<br>p B;                                                                                                                                           |                                                                                      |                                                                                                                                                       |                                                                                                                                                                           |                                                                                             |                          |                               |                          | SEA<br>0363                     | • -                                |
| load of 12.                                                                                 | has been designed fo<br>0 psf or 1.00 times fla<br>non-concurrent with o                                                                                                                                               | t roof load of 20.0 ps                                                                         |                                                                                                                                                       |                                                                                      |                                                                                                                                                       |                                                                                                                                                                           |                                                                                             |                          |                               | in.                      |                                 | HLBERTIN                           |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | CJ05  | Jack-Open  | 3   | 1   | Job Reference (optional)    | E15498470 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:40 ID:Tf8cvS9ddSt44GGN1y962kzanP6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:44.1

| Plate Offsets (X, Y): | [4:Edge,0-1-8] |
|-----------------------|----------------|
|                       |                |

|                                                                                                                                          | e (, i, i ): [:i⊇age;e : e]                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |                                                                                                                                             |                               |                          |                               |                          |                                 |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                              | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/ | TPI2014                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.57<br>0.39<br>0.13                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                    | in<br>-0.06<br>-0.11<br>-0.01 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>592<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 34 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORI<br>BOT CHORI<br>WEBS<br>BRACING<br>TOP CHORI<br>BOT CHORI<br>REACTIONS                                               | <ul> <li>D 2x4 SP No.2<br/>2x4 SP No.3</li> <li>D Structural wood she<br/>5-8-1 oc purlins, existence</li> <li>D Rigid ceiling directly<br/>bracing.</li> </ul>                                                                                                                                                  | cept end verticals.<br>applied or 10-0-0 or<br>anical, 4= Mechanica<br>C 11)<br>C 14), 4=-52 (LC 14<br>C 21), 4=111 (LC 7),                                                                                | 5)<br>ed or 6)<br>c<br>al, 7)<br>8)      | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss f<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate | s been designed f<br>port of the second | lat roof lo<br>n other liv<br>for a 10.0<br>with any<br>d for a liv<br>s where<br>ill fit betv<br>uss conr<br>n (by oth<br>anding 1 | bad of 20.0 p<br>ve loads.<br>D psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>ween the bott<br>nections.<br>ers) of truss | ads.<br>Opsf<br>com<br>to     |                          |                               |                          |                                 |                                    |
| FORCES                                                                                                                                   | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                                                    | pression/Maximum                                                                                                                                                                                           |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |                                                                                                                                             |                               |                          |                               |                          |                                 |                                    |
| TOP CHORE                                                                                                                                | D 2-5=-269/0, 1-2=0/5<br>3-6=-91/114                                                                                                                                                                                                                                                                             | 3, 2-6=-120/87,                                                                                                                                                                                            |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |                                                                                                                                             |                               |                          |                               |                          |                                 |                                    |
| BOT CHORE<br>WEBS                                                                                                                        | D 4-5=-294/154<br>2-4=-171/327                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |                                                                                                                                             |                               |                          |                               |                          |                                 |                                    |
| NOTES<br>1) Wind: A3<br>Vasd=10<br>Cat. II; E<br>zone and<br>exposed<br>member<br>Lumber<br>2) TCLL: A<br>DOL=1.7<br>Lumber<br>Fully Exp | SCE 7-10; Vult=130mph<br>03mph; TCDL=6.0psf; Bi<br>Exp B; Enclosed; MWFR:<br>d C-C Exterior (2) zone;<br>d; end vertical left and rig<br>s and forces & MWFRS<br>DOL=1.60 plate grip DO<br>SCE 7-10; Pr=20.0 psf (<br>15 Plate DOL=1.15); Pf=<br>DOL=1.15 Plate DOL=1<br>p.; Ct=1.10<br>icced snow loads have be | CDL=6.0psf; h=25ft;<br>S (envelope) exteric<br>cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown<br>PL=1.60<br>roof live load: Lumb<br>:20.0 psf (flat roof sr<br>.15); Category II; Ex | r<br>ght<br>;<br>er<br>iow:<br>p B;      |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     |                                                                                                                                             |                               |                          | W. Children                   |                          | SEA<br>0363                     | • –                                |

- Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; 2) Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

GI 11111111 March 15,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | EJ02  | Jack-Open  | 2   | 1   | Job Reference (optional)    | E15498471 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:35:52 ID:TSnM1ZFHuKqux6uV?phfh2zanrO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

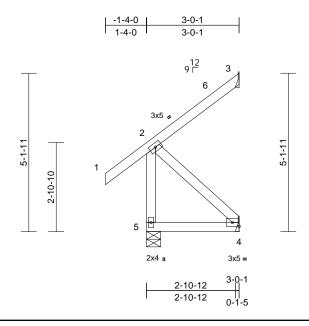
Page: 1



Scale = 1:45.2

| Plate Offsets (X,                                                                                                                                   | Y): [4:Edge,0-1-8]                                                                                                                                                                             |                                                                                                                    |                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                             |                               |                          |                               |                          |                                 |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                         | (psf)<br>20.0<br>20.0<br>10.0<br>0.0 *<br>10.0                                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 5/TPI2014                                                                                                                                                                            | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                           | 0.65<br>0.44<br>0.14                                                                                                                                  | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                    | in<br>-0.07<br>-0.14<br>-0.01 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>997<br>>499<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 36 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| BOT CHORD 2<br>WEBS 2<br>BRACING<br>TOP CHORD 5<br>BOT CHORD 7<br>REACTIONS (s                                                                      | 6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>ize) 3= Mecha<br>5=0-5-8<br>lax Horiz 5=169 (LC<br>lax Uplift 3=-133 (L                                                          | applied or 10-0-0 or<br>inical, 4= Mechanica<br>C 14)<br>C 14), 4=-50 (LC 14<br>C 21), 4=117 (LC 7),               | c<br>II, 7)<br>8)                      | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate | is been designed<br>performation of the second<br>on-concurrent with<br>the been designed<br>and nonconcurrent<br>has been designed<br>nor chord in all are<br>by 2-00-00 wide v<br>yo other members<br>er(s) for truss to the<br>hanical connective<br>capable of withs<br>0 bl uplift at joint<br>Standard | flat roof lo<br>th other liv<br>for a 10.0<br>t with any<br>ed for a liv<br>as where<br>will fit betw<br>s.<br>truss conr<br>on (by oth<br>standing 1 | bad of 20.0 p<br>ve loads.<br>D psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss | ads.<br>Opsf<br>om<br>to      |                          |                               |                          |                                 |                                    |
| -                                                                                                                                                   | (lb) - Maximum Com<br>Tension                                                                                                                                                                  | pression/Maximum                                                                                                   |                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                             |                               |                          |                               |                          |                                 |                                    |
| :                                                                                                                                                   | 2-5=-279/0, 1-2=0/5<br>3-6=-97/120<br>4-5=-303/161                                                                                                                                             | 3, 2-0=-127/92,                                                                                                    |                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                             |                               |                          |                               |                          |                                 |                                    |
|                                                                                                                                                     | 2-4=-177/333                                                                                                                                                                                   |                                                                                                                    |                                        |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                             |                               |                          |                               |                          | mm                              | Um.                                |
| Vasd=103mj<br>Cat. II; Exp E<br>zone and C<br>exposed; er<br>members an<br>Lumber DOL<br>2) TCLL: ASCE<br>DOL=1.15 P<br>Lumber DOL<br>Fully Exp.; C | 3; Enclosed; MWFR<br>C Exterior (2) zone;<br>Id vertical left and rig<br>d forces & MWFRS<br>=1.60 plate grip DC<br>7-10; Pr=20.0 psf (<br>late DDL=1.15); Pf=<br>==1.15 Plate DOL=1<br>t=1.10 | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>cantilever left and right<br>exposed;C-C for<br>for reactions shown | r<br>ght<br>;<br>er<br>ow:<br>p B;     |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                             |                               |                          |                               |                          | SEA<br>0363                     | L                                  |

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15) Plate DOL=1.15); Category II; Exp B; 2)
- Fully Exp.; Ct=1.10 3)
- Unbalanced snow loads have been considered for this design.


818 Soundside Road Edenton, NC 27932

GI mmm March 15,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |  |
|------------|-------|------------|-----|-----|-----------------------------|-----------|--|
| 21030024-A | CJ04  | Jack-Open  | 3   | 1   | Job Reference (optional)    | E15498472 |  |

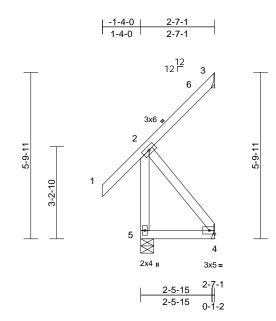
Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:40 ID:EkgUjqfzkMA67jTRVmvzlbzanOS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:37.4

| Plate Offsets (X, Y | r): [4:Edge,0-1-8] |
|---------------------|--------------------|
|---------------------|--------------------|

|                                                                                                                                                                                      | (A, T). [4.Edge,0-1-8]                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                       |                             |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                          | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015/ | /TPI2014                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                      | 0.16<br>0.09<br>0.09                                                                                                      | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                              | in<br>0.00<br>-0.01<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 22 lb | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                           | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood sheat<br>3-0-1 oc purlins, exa<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>5=0-5-8<br>Max Horiz 5=119 (LC<br>Max Uplift 3=-52 (LC<br>Max Grav 3=69 (LC                                                                          | cept end verticals.<br>applied or 10-0-0 or<br>nical, 4= Mechanica<br>C 11)<br>: 14), 4=-76 (LC 14)                                                                                                          | 5)<br>ed or 6)<br>c<br>II, 7)<br>8)      | load of 12.0<br>overhangs n<br>This truss ha<br>chord live loa<br>* This truss h<br>on the bottor<br>3-06-00 tall h<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate | Is been designed<br>opsf or 1.00 times for<br>on-concurrent with<br>s been designed<br>ad nonconcurrent<br>has been designed<br>n chord in all area<br>by 2-00-00 wide w<br>by 2-00-00 wide w<br>by other members<br>er(s) for truss to tr<br>hanical connection<br>capable of withst<br>uplift at joint 4.<br>Standard | ilat roof le<br>n other li<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>ill fit betw<br>russ conr<br>n (by oth | bad of 20.0 p<br>ve loads.<br>D psf bottom<br>other live load<br>of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss | ads.<br>Opsf<br>com<br>to   |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FORCES                                                                                                                                                                               | (LC 21)<br>(lb) - Maximum Com                                                                                                                                                                                                                                                                 | pression/Maximum                                                                                                                                                                                             |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                       |                             |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOP CHORD                                                                                                                                                                            | Tension                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                       |                             |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BOT CHORD                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                       |                             |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WEBS<br>NOTES                                                                                                                                                                        | 2-4=-120/288                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                       |                             |                          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | in the second se |
| <ol> <li>Wind: AS(<br/>Vasd=103)<br/>Cat. II; Ex<br/>zone and<br/>exposed ;<br/>members<br/>Lumber D</li> <li>TCLL: AS</li> <li>DOL=1.15<br/>Lumber D</li> <li>Fully Exp.</li> </ol> | CE 7-10; Vult=130mph<br>3mph; TCDL=6.0psf; B(<br>p B; Enclosed; MWFR3<br>C-C Exterior (2) zone;<br>end vertical left and rig<br>and forces & MWFR3<br>OL=1.60 plate grip DO<br>CE 7-10; Pr=20.0 psf (<br>5 Plate DOL=1.15); Pf=<br>OL=1.15 Plate DOL=1.<br>; Ct=1.10<br>ed snow loads have be | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>cantilever left and right<br>pht exposed;C-C for<br>for reactions shown<br>L=1.60<br>roof live load: Lumbi<br>20.0 psf (flat roof sn<br>.15); Category II; Ex | r<br>ght<br>;<br>er<br>ow:<br>p B;       |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                       |                             |                          | Marine .                      | A MARINE AND A MAR | SEA<br>0363                     | EER. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss Truss Type Qty Ply 89 Lake Forest-Roof-BE |           | 89 Lake Forest-Roof-BB-2086 |   |                          |           |
|------------|-------------------------------------------------|-----------|-----------------------------|---|--------------------------|-----------|
| 21030024-A | CJ02                                            | Jack-Open | 2                           | 1 | Job Reference (optional) | E15498473 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:39 ID:mHbhygSh\_qvgzy5\_R\_bl0ozanOk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:40.2

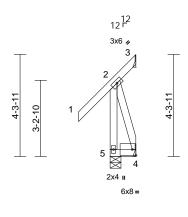
| Loading     | (psf)                             | Spacing               | 2-0-0           | CSI                                          |             | DEFL           | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
|-------------|-----------------------------------|-----------------------|-----------------|----------------------------------------------|-------------|----------------|-------|-------|--------|-----|----------------|----------|
| TCLL (roof) | 20.0                              | Plate Grip DOL        | 1.15            | TC                                           | 0.20        | Vert(LL)       | 0.00  | 4-5   | >999   | 240 | MT20           | 244/190  |
| Snow (Pf)   | 20.0                              | Lumber DOL            | 1.15            | BC                                           | 0.07        | Vert(CT)       | 0.00  | 4-5   | >999   | 180 |                |          |
| TCDL        | 10.0                              | Rep Stress Incr       | YES             | WB                                           | 0.12        | Horz(CT)       | -0.01 | 3     | n/a    | n/a |                |          |
| BCLL        | 0.0*                              | Code                  | IRC2015/TPI2014 | Matrix-MP                                    |             |                |       |       |        |     |                |          |
| BCDL        | 10.0                              |                       |                 |                                              |             |                |       |       |        |     | Weight: 22 lb  | FT = 20% |
| LUMBER      |                                   |                       | 5) This true    | ss has been designe                          | d for a 10. | 0 psf bottom   |       |       |        |     |                |          |
| TOP CHORD   | 2x4 SP No.2                       |                       | chord liv       | e load nonconcurrer                          | nt with any | other live loa | ıds.  |       |        |     |                |          |
| BOT CHORD   | 2x4 SP No.2                       |                       |                 | uss has been design                          |             |                | 0psf  |       |        |     |                |          |
| WEBS        | 2x4 SP No.3                       |                       |                 | ottom chord in all are                       |             |                |       |       |        |     |                |          |
| BRACING     |                                   |                       |                 | tall by 2-00-00 wide                         |             | ween the bott  | om    |       |        |     |                |          |
| TOP CHORD   |                                   | eathing directly appl |                 | nd any other member                          |             |                |       |       |        |     |                |          |
|             |                                   | xcept end verticals.  |                 | girder(s) for truss to<br>mechanical connect |             |                | to    |       |        |     |                |          |
| BOT CHORD   | Rigid ceiling direct<br>bracing.  | y applied or 10-0-0 o |                 | plate capable of with                        |             |                |       |       |        |     |                |          |
| REACTIONS   | 0                                 | anical, 4= Mechanic   | al              | 34 lb uplift at joint 4.                     |             |                |       |       |        |     |                |          |
|             | 5=0-5-8                           | ,                     | LOAD CAS        | E(S) Standard                                |             |                |       |       |        |     |                |          |
|             | Max Horiz 5=138 (I                |                       |                 |                                              |             |                |       |       |        |     |                |          |
|             | Max Uplift 3=-53 (L               |                       |                 |                                              |             |                |       |       |        |     |                |          |
|             | Max Grav 3=56 (L0                 |                       | ),              |                                              |             |                |       |       |        |     |                |          |
|             | 5=212 (I                          | ,                     |                 |                                              |             |                |       |       |        |     |                |          |
| FORCES      |                                   | mpression/Maximum     | 1               |                                              |             |                |       |       |        |     |                |          |
|             | Tension                           | 0/62 2 6 70/65        |                 |                                              |             |                |       |       |        |     |                |          |
| TOP CHORD   | 2-5=-201/119, 1-2=<br>3-6=-42/81  | =0/63, 2-6=-70/65,    |                 |                                              |             |                |       |       |        |     |                |          |
| BOT CHORD   | 4-5=-253/93                       |                       |                 |                                              |             |                |       |       |        |     |                |          |
| WEBS        | 2-4=-148/401                      |                       |                 |                                              |             |                |       |       |        |     |                |          |
| NOTES       | 2 1- 110/101                      |                       |                 |                                              |             |                |       |       |        |     |                |          |
|             | CE 7-10; Vult=130mp               | h (2 cocond quet)     |                 |                                              |             |                |       |       |        |     |                | in the   |
|             | mph; TCDL=6.0psf; l               |                       | t.              |                                              |             |                |       |       |        | 13  | IN TH CA       | ROUL     |
|             | p B; Enclosed; MWF                |                       |                 |                                              |             |                |       |       |        | 15  | R              | De later |
|             | C-C Exterior (2) zone             |                       |                 |                                              |             |                |       |       |        | 27  |                | Pit      |
| exposed ;   | end vertical left and             | right exposed;C-C fo  | or              |                                              |             |                |       |       | 1      |     | 19 10          | 19.9.1   |
|             | and forces & MWFR                 |                       | n;              |                                              |             |                |       |       |        | 2   | : <del>*</del> | N : 1 -  |
|             | OL=1.60 plate grip D              |                       |                 |                                              |             |                |       |       | -      |     | SEA            | AL E     |
|             | CE 7-10; Pr=20.0 psf              |                       |                 |                                              |             |                |       |       | =      |     |                | • –      |
|             | Plate DOL=1.15); P                |                       |                 |                                              |             |                |       |       | =      |     | 0363           | 522 : :  |
|             | OL=1.15 Plate DOL=                | 1.15); Category II; E | xp B;           |                                              |             |                |       |       |        | 0   |                | 1        |
| Fully Exp.; | ; Ct=1.10<br>ed snow loads have b | oon oppoidored for t  | thio            |                                              |             |                |       |       |        | 2   | ·              | all S    |
| design.     | eu show loads have t              |                       | 1115            |                                              |             |                |       |       |        | 25  | A C A          | EELO     |
| 0           | has been designed f               | or areater of min roo | f live          |                                              |             |                |       |       |        | 11  | 710            | allin    |
|             | .0 psf or 1.00 times fl           |                       |                 |                                              |             |                |       |       |        |     | A. C           | ALPIN    |

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

A. GILUN March 15,2021

A. GILE




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type |   | Ply | 89 Lake Forest-Roof-BB-2086 |           |  |
|------------|-------|------------|---|-----|-----------------------------|-----------|--|
| 21030024-A | CJ03  | Jack-Open  | 3 | 1   | Job Reference (optional)    | E15498474 |  |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:39 ID:?0e4qIYKsb1OYLHjTNFsuizanOb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1







| Scale = 1:48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                                                                                                                      |                             |                      |                               |                          |                                 |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading         (psf)           TCLL (roof)         20.0           Snow (Pf)         20.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spacing2-0Plate Grip DOL1.11Lumber DOL1.11Rep Stress IncrYESCodeIRC                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                     | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                           | 0.20<br>0.01<br>0.19                                                                                  | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                             | in<br>0.00<br>0.00<br>-0.02 | (loc)<br>5<br>5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 16 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| 1-1-1 oc purlins, exe<br>BOT CHORD Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | applied or 10-0-0 oc<br>nical, 4= Mechanical,<br>C 12)<br>: 20), 4=-235 (LC 11),<br>C 12)<br>18), 4=220 (LC 12),                                                                                                                                                                                                                 | <ul> <li>chord live loa</li> <li>* This truss h<br/>on the botton<br/>3-06-00 tall b<br/>chord and an</li> <li>7) Refer to girde</li> <li>8) Provide mech<br/>bearing plate<br/>joint 4 and 61</li> <li>9) One RT7A U<br/>truss to bearing</li> </ul> | s been designed for<br>d nonconcurrent w<br>as been designed<br>n chord in all areas<br>y 2-00-00 wide wil<br>y other members.<br>er(s) for truss to tru-<br>nanical connection<br>capable of withsta<br>Ib uplift at joint 3.<br>SP connectors rec<br>ng walls due to UF<br>for uplift only and<br>Standard | vith any<br>for a liv<br>where<br>I fit betw<br>uss conr<br>(by oth<br>anding 2<br>commen<br>PLIFT at | other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ections.<br>ers) of truss t<br>35 lb uplift at<br>ded to conne<br>jt(s) 5. This | 0psf<br>om<br>o<br>ct       |                      |                               |                          |                                 |                                    |
| <ul> <li>FORCES (Ib) - Maximum Com<br/>Tension</li> <li>TOP CHORD 2-5=-410/188, 1-2=0</li> <li>BOT CHORD 4-5=-191/66</li> <li>WEBS 2-4=-220/639</li> <li>NOTES</li> <li>1) Wind: ASCE 7-10; Vult=130mph<br/>Vasd=103mph; TCDL=6.0psf; BC<br/>Cat. II; Exp B; Enclosed; MWFRS<br/>zone and C-C Exterior (2) zone;<br/>exposed ; end vertical left and rig<br/>members and forces &amp; MWFRS<br/>Lumber DOL=1.60 plate grip DO</li> <li>2) TCLL: ASCE 7-10; Pr=20.0 psf (I<br/>DOL=1.15 Plate DOL=1.15); Pf=<br/>Lumber DOL=1.15 Plate DOL=1.<br/>Fully Exp.; Ct=1.10</li> <li>3) Unbalanced snow loads have be<br/>design.</li> <li>4) This truss has been designed for<br/>load of 12.0 psf or 1.00 times flat<br/>overhangs non-concurrent with or</li> </ul> | (3-second gust)<br>CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and right<br>pht exposed;C-C for<br>for reactions shown;<br>L=1.60<br>roof live load: Lumber<br>20.0 psf (flat roof snow:<br>.15); Category II; Exp B;<br>een considered for this<br>r greater of min roof live<br>t roof load of 20.0 psf on |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                       |                                                                                                                                                      |                             |                      | With the                      | A'                       | SEA<br>0363                     | EER. K                             |



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086    |          |
|------------|-------|------------|-----|-----|--------------------------------|----------|
| 21030024-A | CJ07  | Jack-Open  | 1   | 1   | E1<br>Job Reference (optional) | 15498475 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:41

ID:BOKgjJuuGBZQveQ56GIQ0czanO9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Carter Components, Chesapeake, VA - 23323,

3-8-3 2 12 12 ⊏ 5 3x6 6-10-13 6-10-13 1 3-2-10 4  $\boxtimes$ 3 2x4 II 3x5 =

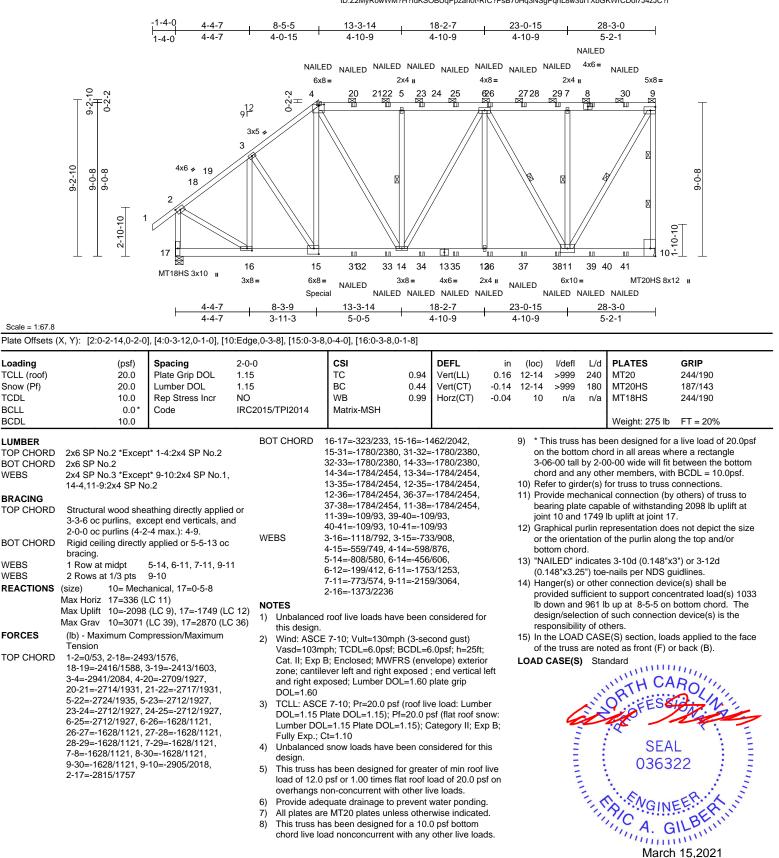


Scale = 1:43.3

| Plate Offsets (X, Y): | [3:Edge,0-1-8] |
|-----------------------|----------------|
|-----------------------|----------------|

|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                              | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.26<br>0.15<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in<br>-0.01<br>-0.02<br>-0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (loc)<br>3-4<br>3-4<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l/defl<br>>999<br>>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L/d<br>240<br>180<br>n/a                                                                                                                                                                                                                                                                                                                                          | PLATES<br>MT20<br>Weight: 24 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>GRIP</b><br>244/190<br>FT = 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I-3 oc purlins, ex<br>jid ceiling directly<br>icing.<br>2 = Mecha<br>4=0-5-8<br>Horiz 4=127 (LC<br>Uplift 2=-113 (LC<br>Grav 2=123 (LC<br>4=160 (LC                                        | cept end verticals.<br>/ applied or 10-0-0 or<br>anical, 3= Mechanica<br>C 11)<br>.C 14), 3=-76 (LC 14<br>C 23), 3=106 (LC 12<br>C 29)                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed or 7)<br>c 8)<br>al,<br>L <b>O</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on the bottor<br>3-06-00 tall b<br>chord and ar<br>Refer to gird<br>Provide mec<br>bearing plate<br>2 and 76 lb u<br>One RT7A U<br>truss to bear<br>connection is<br>forces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n chord in all area<br>y 2-00-00 wide w<br>y other members<br>or(s) for truss to t<br>nanical connectio<br>capable of withs<br>plift at joint 3.<br>SP connectors re<br>ng walls due to L<br>for uplift only an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as where<br>vill fit betw<br>s.<br>russ conr<br>on (by oth<br>tanding 1<br>ecommen<br>JPLIFT at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a rectangle<br>veen the botto<br>nections.<br>ers) of truss t<br>13 lb uplift at<br>ded to conne<br>jt(s) 4. This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | om<br>to<br>t joint<br>ect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nsion                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TCDL=6.0pst; B<br>Enclosed; MWFR<br>Exterior (2) zone;<br>vertical left and rig<br>proces & MWFRS<br>.60 plate grip DC<br>10; Pr=20.0 psf (<br>e DOL=1.15); Pf=<br>.15 Plate DOL=1<br>1.10 | CDL=6.0psf; h=25ft;<br>S (envelope) interior<br>cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown<br>DL=1.60<br>(roof live load: Lumb)<br>=20.0 psf (flat roof sn<br>.15); Category II; Ex                                                                                                                                                                                                                                                                                                                                                                 | r<br>ght<br>;<br>er<br>now:<br>xp B;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M. million                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                   | i and the second s | • –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                            | 20.0<br>20.0<br>10.0<br>0.0*<br>10.0<br>.0.*<br>10.0<br>.0.*<br>2 SP No.2<br>. SP No.2<br>. SP No.2<br>. SP No.3<br>uctural wood she<br>-3 oc purlins, ex<br>jid ceiling directly<br>cing.<br>) 2= Mecha<br>4=0-5-8<br>Horiz 4=127 (L<br>Uplift 2=-113 (L<br>Grav 2=123 (L<br>4=160 (L)<br>- Maximum Con<br>sion<br>=-198/111, 1-5=<br>=-208/171<br>=-225/273<br>10; Vult=130mph<br>TCDL=6.0psf; B<br>Enclosed; MWFRS<br>Xetoric (2) zone;<br>vertical left and ri<br>proces & MWFRS<br>.60 plate grip DC<br>10; Pr=20.0 psf i<br>= DOL=1.15); Pf=<br>.15 Plate DOL=1<br>1.10 | 20.0<br>20.0<br>20.0<br>20.0<br>10.0<br>Rep Stress Incr<br>Code<br>20.0<br>Rep Stress Incr<br>Code<br>20.0<br>20.0<br>Rep Stress Incr<br>Code<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20. | $\begin{array}{c cccc} 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0 \\ 20.0$ | 20.0       Plate Grip DOL       1.15         20.0       Lumber DOL       1.15         10.0       Rep Stress Incr       YES         0.0*       Code       IRC2015/TPI2014         0.0       IRC2015/TPI2014       5) * This truss h         0.0       SP No.2       5) * This truss h         SP No.2       SP No.3       5) * This truss h         uctural wood sheathing directly applied or       a-3 cc purlins, except end verticals.       ad 6) Refer to girde         10       2 Mechanical, 3= Mechanical, 4=0-5-8       Moriz 4=127 (LC 11)       8) One RT7A U         Uplift 2=-113 (LC 23), 3=106 (LC 12), 4=160 (LC 29)       - Maximum Compression/Maximum       8) One RT7A U         -Maximum Compression/Maximum       100       CASE(S)       LOAD CASE(S)         10; Vult=130mph (3-second gust)       TCDL=6.0psf; BCDL=6.0psf; h=25ft;       Enclosed; MWFRS (envelope) interior         2xterior (2) zone; cantilever left and right vertical left and right exposed;C-C for       Sorces & MWFRS for reactions shown;         60 plate grip DOL=1.60       10; Pr=20.0 psf (roof live load: Lumber       9 DOL=1.15); Category II; Exp B;         10       10 = 1.15); Category II; Exp B;       10 | 20.0<br>20.0<br>20.0Plate Grip DOL<br>Lumber DOL<br>1.15TC<br>BC<br>BC<br>WB<br>Matrix-MP10.0Rep Stress Incr<br>CodeYESWB<br>Matrix-MP0.0*<br>10.0CodeIRC2015/TPI2014Matrix-MP10.0CodeIRC2015/TPI2014Matrix-MP10.0SP No.2SP No.2SP No.3S) * This truss has been designed<br>on the bottom chord in all area<br>3-06-00 tall by 2-00-00 wide w<br>chord and any other membersSP No.3SP No.3S)* This truss has been designed<br>on the bottom chord in all area<br>3-06-00 tall by 2-00-00 wide w<br>chord and any other membersid ceiling directly applied or 10-0-0 oc<br>cing.SProvide mechanical connectio<br>bearing plate capable of withs<br>2 and 76 lb uplift at joint 3.02 = Mechanical, 3= Mechanical,<br>4=0-5-8Moriz 4=127 (LC 11)<br>Uplift 2=-113 (LC 14), 3=-76 (LC 14)<br>Grav 2=123 (LC 23), 3=106 (LC 12),<br>4=160 (LC 29)Standard- Maximum Compression/Maximum<br>nsion<br>=-198/111, 1-5=-117/102, 2-5=-93/102<br>=-208/171<br>=-225/273Standard10; Vult=130mph (3-second gust)<br>TCDL=6.0psf; BCDL=6.0psf; h=25ft;<br>Enclosed; MWFRS (envelope) interior<br>Exterior (2) zone; cantilever left and right<br>vertical left and right exposed; C-C for<br>proces & MWFRS for reactions shown;<br>.60 plate grip DOL=1.60<br>10; Pr=20.0 psf (roof live load: Lumber<br>e DOL=1.15); Pf=20.0 psf (flat roof snow:<br>.15 Plate DOL=1.15); Category II; Exp B;<br>.10 | 20.0<br>20.0<br>Lumber DOL<br>1.15TC<br>BC<br>BC0.26<br>BC<br>BC0.0*<br>10.0CodeIRC2015/TPI2014Matrix-MP10.0CodeIRC2015/TPI2014Matrix-MP10.0SP No.2SP No.2SP No.2SP No.2SP No.3SP No.2SP No.3uctural wood sheathing directly applied or<br>-3 oc purlins, except end verticals.<br>id ceiling directly applied or 10-0-0 oc<br>cring.SP Mechanical, 3= Mechanical,<br>4=0-5-8SP No.2Horiz 4=127 (LC 11)<br>Uplift 2=-113 (LC 14), 3=-76 (LC 14)<br>Grav 2=123 (LC 23), 3=106 (LC 12),<br>4=160 (LC 29)Standard- Maximum Compression/Maximum<br>ision<br>=-198/111, 1-5=-117/102, 2-5=-93/102<br>=-225/273Standard10; Vult=130mph (3-second gust)<br>TCL=6.0psf; BCDL=6.0psf; h=25ft;<br>Enclosed; MWFRS for reactions shown;<br>6.0 plate grip DOL=1.60Code<br>It is plate DOL=1.60<br>It is plate DOL=1.6010; Pr=20.0 psf (roof live load: Lumber<br>a DOL=1.15); Category II; Exp B;<br>L10Lumber<br>Lumber | 20.0       Plate Grip DOL       1.15       TC       0.26       Vert(LL)         20.0       Lumber DOL       1.15       BC       0.15       Vert(CT)         10.0       Rep Stress Incr       YES       WB       0.10       Horz(CT)       Horz(CT)         10.0       Code       IRC2015/TPI2014       Matrix-MP       Matrix-MP       Horz(CT)       Horz(CT)         SP No.2       SP No.3       So purins, except end verticals.       So purins, except end verticals.       So feer to girder(s) for truss to truss connections.       Provide mechanical connection (by others) of truss 1         4 =0-5-8       Horiz 4=127 (LC 11)       Provide mechanical sdue to UPLIFT at it(s) 4. This connection is for uplift only and does not consider la forces.       One RT7A USP connectors recommended to conne truss to bearing walls due to UPLIFT at it(s) 4. This connection is for uplift only and does not consider la forces.         100       Vult=130mph (3-second gust)       TCL=6.0psf; BCDL=6.0psf; h=25ft; inclosed; MWFRS (envelope) interior increas shows; 6.00 pate grip DOL=1.60       To prece a MWFRS for reactions shown; 6.00 pate grip DOL=1.60       NWFRS for reactions shown; 6.01 pate grip DOL=1.15); Pf=20.0 psf (flat roof snow; 15 Plate DOL=1.15); Category II; Exp B; 100 | 20.0       Plate Grip DOL       1.15       TC       0.26       Vert(LL)       -0.01         10.0       Rep Stress Incr       YES       WB       0.10       Vert(CT)       -0.02         0.0*       Code       IRC2015/TPI2014       Matrix-MP       Horz(CT)       -0.01         10.0       Code       IRC2015/TPI2014       Matrix-MP       Horz(CT)       -0.01         10.0       SP No.2       SP No.3       SP No.3       SP No.3       So purlins, except end verticals.       So Refer to girder(s) for truss to truss connections.       7         10       2       Mechanical, 3= Mechanical, 4=0-5-8       Gone RT7A USP connectors recommended to connect truss to bearing path agains due to UPLIFT at jt(s) 4. This connection is for uplift at joint 3.       80 One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.         LOAD CASE(S)       Standard         4=0-5-8       Matrix-MP       Connection is for uplift only and does not consider lateral forces.         Horiz 4=127 (LC 11)       One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.         LOAD CASE(S)       Standard         10; Vult=130mph (3-second gust)       TCOL=6.0psf; BCDL=6.0psf; h=25ft; inclosed; MWFRS for rea | 20.0       Plate Grip DOL       1.15       TC       0.26       Vert(L1)       -0.01       3-4         10.0       Rep Stress Incr       YES       BC       0.15       Vert(CT)       -0.02       3-4         0.0*       Code       IRC2015/TPI2014       Matrix-MP       Matrix-MP       Horz(CT)       -0.01       2         SP No.2       SP No.3       *       *       This truss has been designed for a live load of 20.0psf       on the bottom chord in all areas where a rectangle       3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.       6)       Refer to gird(r)s for truss to truss connections.         .3 op purlins, except end verticals.       fefr to gird(r)s for truss to truss connections.       Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 ib uplift at joint 2.       and 76 ib uplift at joint 3.         10 zand 76 ib uplift are zonaction is for uplift only and does not consider lateral forces.       IOA CASE(S)       Standard         10 zand 76 ib uplift are zonaction is for uplift only and does not consider lateral forces.       IOAD CASE(S)       Standard         10 zand 76 ib uplift are zonaction is for uplift only and does not consider lateral forces.       IOAD CASE(S)       Standard         10 zandaria dright expendence of the object on the dot for uplift and right vertical let and right vertical let and right vertical let and right vertical let and righ | 20.0       Plate Grip DOL       1.15       TC       0.26       Vert(LL)       -0.01       3-4       >999         0.0       Rep Stress Incr       YES       BC       0.15       Vert(CT)       -0.02       3-4       >999         0.0*       Code       IRC2015/TPI2014       Matrix-MP       Vert(CT)       -0.01       2       n/a         SP No.2       SP No.3 | 20.0         Plate Grip DOL         1.15         TC         0.26         Vert(LL)         -0.01         3-4         >999         240           10.0         Rep Stress Incr         Code         IRC2015/TPI2014         Matrix-MP         Vert(LL)         -0.01         3-4         >999         240           0.0*         Code         IRC2015/TPI2014         Matrix-MP         Vert(CT)         -0.02         3-4         >999         240           .00*         Code         IRC2015/TPI2014         Matrix-MP         Vert(CT)         -0.01         2         n/a         n/a           .90         Phoz         SP No.2                                                                   | 20.0<br>20.0<br>10.0<br>0.0*       Plate Gip DOL<br>Exp Stress Incr<br>0.0*       1.15<br>Rep Stress Incr<br>10.0       TC<br>1.15<br>Rep Stress Incr<br>10:0       TC<br>10:0       0.26<br>BC<br>0.15       Vert(LL)<br>Vert(CT)       -0.01<br>0:0:3:4:3:>999       240<br>Vert(CT)       MT20         3.0:0       Rep Stress Incr<br>10:0       YES<br>Code       IRC2015/TPI2014       Matrix-MP       Horz(CT)       -0.01       2:4:4:>999       240<br>Vert(LL)       -0.01       2:4:4:>999       240<br>Vert(CT)       Weight: 24 Ib         SP No.2       SP No.2 <td< td=""></td<> |




March 15,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type      | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|-----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | C01   | Half Hip Girder | 1   | 1   | Job Reference (optional)    | E15498476 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:34 ID:Z2MyRowWM?H?fdKSOBUqPpzan0t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932



#### Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type      | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|-----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | C01   | Half Hip Girder | 1   | 1   | Job Reference (optional)    | E15498476 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:34 ID:Z2MyRowWM?H?fdKSOBUqPpzan0t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

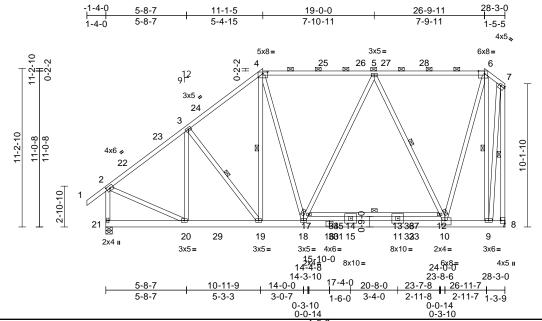
Page: 2

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-4=-60, 4-9=-60, 10-17=-20 Concentrated Loads (lb)

Vert: 4=-130 (B), 8=-130 (B), 15=-645 (B), 20=-130 (B), 22=-130 (B), 23=-130 (B), 13=-645 (D), 20=-130 (B), 22=-130 (B), 23=-130 (B), 25=-130 (B), 26=-130 (B), 27=-130 (B), 29=-130 (B), 30=-130 (B), 31=-39 (B), 33=-39 (B), 34=-39 (B), 35=-39 (B), 36=-39 (B), 37=-39 (B), 38=-39 (B), 39=-39 (B), 41=-39 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | C02   | Нір        | 1   | 1   | Job Reference (optional)    | E15498477 |

#### Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries. Inc. Mon Mar 15 12:35:35 ID:pYqohwO6T5x01byGrDXL?SzanQ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

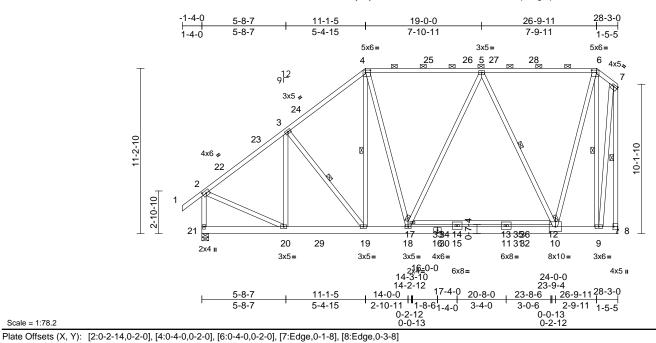
Page: 1



#### Scale = 1:81.5 Plate Offsets (X, Y): [2:0-2-14,0-2-0], [4:0-4-0,0-1-6], [6:0-5-3,Edge], [7:Edge,0-1-8], [8:Edge,0-3-8], [10:0-2-572,0-3-12]

|             | . , , , ,                                  | 1, [ · · · · · · · ], [ · · ·         |         | -1/1 - 5-/-                       | -1, [                                       |            | ,               |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|-------------|--------------------------------------------|---------------------------------------|---------|-----------------------------------|---------------------------------------------|------------|-----------------|-------|-------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Loading     | (psf)                                      | Spacing                               | 2-0-0   |                                   | csi                                         |            | DEFL            | in    | (loc) | l/defl   | L/d   | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GRIP                                           |
| TCLL (roof) | 20.0                                       | Plate Grip DOL                        | 1.15    |                                   | TC                                          | 0.89       | Vert(LL)        |       | 11-15 | >999     | 240   | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244/190                                        |
| Snow (Pf)   | 20.0                                       | Lumber DOL                            | 1.15    |                                   | BC                                          | 0.83       | Vert(CT)        |       | 11-15 | >877     | 180   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0.100                                       |
| TCDL        | 10.0                                       | Rep Stress Incr                       | YES     |                                   | WB                                          | 0.99       | Horz(CT)        | 0.02  | 8     | n/a      | n/a   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| BCLL        | 0.0*                                       | Code                                  |         | 5/TPI2014                         | Matrix-MSH                                  | 0.00       | 11012(01)       | 0.02  | Ũ     | n/a      | n/a   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| BCDL        | 10.0                                       |                                       | 11(0201 | 5/11/2014                         |                                             |            |                 |       |       |          |       | Weight: 290 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FT = 20%                                       |
| LUMBER      |                                            |                                       | W       | 'EBS                              | 3-20=-276/56, 3-1                           | 9=-268/1   | 84, 4-19=-28    | 9/80, |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mended to connect                              |
| TOP CHORD   | 2x4 SP No.2 *Excep<br>2.0E                 | ot* 4-6:2x4 SP 2400F                  |         |                                   | 17-18=0/429, 5-17<br>10-12=-1003/158,       | 6-9=-19    | 07/43,          | ,     | cor   | nnection |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T at jt(s) 21. This<br>as not consider lateral |
| BOT CHORD   | 2x6 SP No.2 *Excep                         | ot* 17-12:2x4 SP No.2                 | 2       |                                   | 7-9=-115/1198, 2-                           |            | ,               | '     |       | ces.     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| WEBS        | 2x4 SP No.3 *Excep                         | ot*                                   |         |                                   | 6-10=0/1734, 14-1                           | 5=-148/    | 0, 11-13=-140   | 0/0   |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es not depict the size                         |
|             | 19-4,18-5,10-5,9-6,8                       | 8-7,4-18,10-6:2x4 SP                  | N       | OTES                              |                                             |            |                 |       |       |          |       | of the purlin along                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | j the top and/or                               |
|             | No.2                                       |                                       | 1)      | Unbalanced                        | roof live loads have                        | ve been    | considered for  | r     |       | tom cho  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| BRACING     |                                            |                                       |         | this design.                      |                                             |            |                 |       | LOAD  | CASE(S   | ) Sta | ndard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |
| TOP CHORD   | Structural wood she                        | athing directly applied               | dor 2)  |                                   | 7-10; Vult=130m                             |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|             |                                            | except end verticals,                 | and     |                                   | ph; TCDL=6.0psf;                            |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|             | 2-0-0 oc purlins (6-0                      |                                       |         |                                   | B; Enclosed; MWF                            |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| BOT CHORD   |                                            | applied or 10-0-0 oc                  |         |                                   | C Exterior (2) -1-4                         |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|             | bracing. Except:                           |                                       |         |                                   | 0-7, Exterior (2) 6-<br>-6-12, Exterior (2) |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|             | 6-0-0 oc bracing: 12                       |                                       | 7.0     |                                   | ft and right expose                         |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| WEBS        |                                            | 3-19, 4-19, 5-12, 6-9                 | , 7-8   |                                   | d;C-C for member                            |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| REACTIONS   | ()                                         | anical, 21=0-5-8                      |         |                                   | shown; Lumber D                             |            |                 | -     |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|             | Max Horiz 21=407 (I                        |                                       |         | DOL=1.60                          | ,                                           |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|             | Max Uplift 21=-74 (L<br>Max Grav 8=1660 (L |                                       | 37) 3)  |                                   | E 7-10; Pr=20.0 ps<br>Plate DOL=1.15); F    |            |                 |       |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
| FORCES      | (lb) - Maximum Com<br>Tension              | pression/Maximum                      |         |                                   | L=1.15 Plate DOL:                           |            |                 |       |       |          |       | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 911.<br>                                       |
| TOP CHORD   | 1-2=0/53, 2-22=-124<br>3-23=-1097/112, 3-2 | 14/76, 22-23=-1168/9<br>24=-1195/136, | 1, 4)   |                                   | snow loads have                             | been cor   | nsidered for th | nis   |       |          | 10    | TH CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROUT                                           |
|             | 4-24=-1112/170, 4-2<br>25-26=-1086/122, 5  | ,                                     | 5)      | This truss h                      | as been designed<br>psf or 1.00 times f     |            |                 |       |       | 6        | Ž     | and the second s | This                                           |
|             | 5-27=-624/114, 27-2                        |                                       |         | overhangs r                       | ion-concurrent with                         | h other li | /e loads.       |       |       | -        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the                                        |
|             | 6-28=-621/115, 6-7=<br>2-21=-1324/132, 7-8 | 3=-1216/184                           | 6)      |                                   | unit load placed or<br>d, supported at two  |            |                 | -0-0  |       |          |       | SEA<br>0363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                              |
| BOT CHORD   |                                            |                                       | 7)      |                                   | quate drainage to                           |            |                 | 1.    |       | =        | :     | 0202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • -                                            |
|             | 19-29=-230/1035, 1                         | ,                                     | 8)      |                                   | as been designed                            |            |                 | ,     |       | 1        |       | 0363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 : :                                         |
|             | 16-18=-100/966, 16                         | ,                                     | ,       | chord live lo                     | ad nonconcurrent                            | with any   | other live load | ds.   |       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2                                            |
|             | 30-31=-100/966, 15                         |                                       | 9)      |                                   | has been designed                           |            |                 | )psf  |       |          | 3     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | airi                                           |
|             | 11-15=-100/966, 11-<br>32-33=-100/966, 10- |                                       |         |                                   | m chord in all area                         |            | •               |       |       |          | 25    | A VGIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EELAN                                          |
|             | ,                                          | =-139/159, 17-34=-29                  | /62     |                                   | by 2-00-00 wide w                           |            |                 |       |       |          | 11    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OF N                                           |
|             |                                            | 5=-29/62, 13-14=-29/6                 | 20      |                                   | ny other members                            |            |                 | -     |       |          |       | 11, A. G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ILDIN                                          |
|             | ,                                          | 7=-29/62, 12-37=-29/6                 | · 11    | <ol> <li>Keter to gird</li> </ol> | ler(s) for truss to tr                      | uss conr   | lections.       |       |       |          |       | A. G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mm                                             |
|             |                                            |                                       |         |                                   |                                             |            |                 |       |       |          |       | March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n 15,2021                                      |
|             |                                            |                                       |         |                                   |                                             |            |                 |       |       |          |       | maror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | C03   | Piggyback Base | 1   | 1   | Job Reference (optional)    | E15498478 |

#### Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:36 ID:oynXybNI3usJRScosP7KU8zanZ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



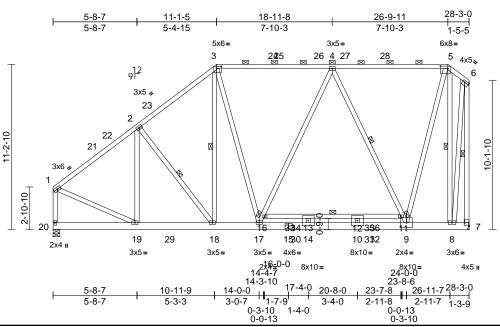
Page: 1



Scale = 1:78.2

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :Euge,u-1-8], [8:Euge,u-3-8]                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Loading         (psf)         Spacing         2-0-0           TCLL (roof)         20.0         Plate Grip DOL         1.15           Snow (Pf)         20.0         Lumber DOL         1.15           TCDL         10.0         Rep Stress Incr         YES           BCLL         0.0*         Code         IRC2015/TPI:           BCDL         10.0         Herce Stress Incr         IRC2015/TPI:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CSI         DEFL         in         (loc)         !/defl         L/d         PLATES         GRIP           TC         0.66         Vert(LL)         -0.19         11-15         >999         240         MT20         244/190           BC         0.84         Vert(CT)         -0.38         11-15         >872         180         MT20         244/190           I2014         Matrix-MSH         Horz(CT)         0.02         8         n/a         n/a         n/a |     |
| BRACINGthisTOP CHORDStructural wood sheathing directly applied or<br>$4-11-11$ oc purlins, except end verticals, and<br>$2-0-0$ oc purlins (6-0-0 max.): 4-6.2) Wir<br>Vas<br>CatBOT CHORDRigid ceiling directly applied or 9-9-11 oc<br>bracing.22WEBS1 Row at midpt $3-19, 4-19, 5-12, 6-9, 7-8$ Cat<br>CatREACTIONS(size)8 = Mechanical, 21=0-5-8<br>Max Horiz 21=410 (LC 11)<br>Max Grav 8=1672 (LC 45), 21=1377 (LC 46)15-FORCES(lb) - Maximum Compression/Maximum<br>TensionDO<br>Lun<br>TCITOP CHORD $1-2=0/53, 2-22=-1251/75, 22-23=-1176/90,$<br>$3-23=-1104/111, 3-24=-1204/135,$ 44-24=-1119/170, 4-25=-1081/125,<br>$5-27=-619/117, 27-28=-619/117,$<br>$6-28=-619/117, 27-28=-619/117,$<br>$6-28=-619/117, 27-28=-619/117,$<br>$10-23=-97/934, 16-30=-97/934,$<br>$11-31=-97/934, 16-30=-97/934,$<br>$11-31=-97/934, 31-32=-97/934,$<br>$11-31=-97/934, 9-10=-107/198,$<br>$8-9=-139/161, 17-33=-33/86, 33-34=-33/86, 3-34=-33/86, 14-34=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35=-33/86, 13-35$ | 17-18=0/438, 5-17=0/500, 5-12=-980/198,       truss to bearing walls due to UPLIFT at jt(s) 21. This connection is for uplift only and does not consider lat forces.         10-12=-989/158, 6-9=-1867/40,       connection is for uplift only and does not consider lat forces.         7-9=-115/1286, 2-20=0/1010, 4-18=0/656,       6-10=0/1728, 14-15=-152/0, 11-13=-146/0         12) Graphical purlin representation does not depict the s                          | ize |

March 15,2021




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type     | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|----------------|-----|-----|-----------------------------|-----------|
| 21030024-A | C04   | Piggyback Base | 1   | 1   | Job Reference (optional)    | E15498479 |

#### Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:37 ID:0UVDdcdTOk5V20xFwdweD9zanTg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

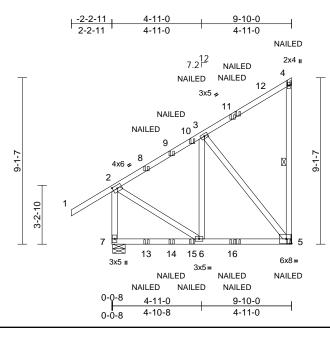
Page: 1



Scale = 1:78.2

#### Plate Offsets (X, Y): [3:0-3-12,0-1-12], [5:0-6-0,0-2-0], [6:Edge,0-1-8], [7:Edge,0-3-8]

| ·`                                                          | , , , , , , , , , , , , , , , , , , , ,       | z], [0.0 0 0,0 z 0], [0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      | o]; [: :=====;=                                                                                                                                                                                                                                                                                                                                                                                                                     | c c]                                                         |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                      |                                                                             |                                                          |                                                                                      |                                    |
|-------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                               | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                           | CSI<br>TC<br>BC<br>WB<br>Matrix-MSH                          | 0.90<br>0.83<br>0.99                                                                                                                                                                                                                                                                                                       | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        | (loc)<br>10-14<br>10-14<br>7                         | l/defl<br>>999<br>>871<br>n/a                                               | L/d<br>240<br>180<br>n/a                                 | PLATES<br>MT20<br>Weight: 288 lb                                                     | <b>GRIP</b><br>244/190<br>FT = 20% |
|                                                             |                                               | tt 16-11:2x4 SP No.<br>tt 6,3-17,9-5:2x4 SP N<br>athing directly applie<br>except end verticals,<br>-0 max.): 3-5.<br>applied or 9-11-1 oc<br>-16<br>2-18, 3-18, 4-11, 5-8<br>inical, 20=0-5-8<br>.C 11)<br>.C 14)<br>.C 44), 20=1297 (LC<br>ipression/Maximum<br>22=-1161/82,<br>23=-1202/138,<br>24=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-26=-1077/124,<br>5-20=-107/156,<br>-108/195,<br>7-8=-139/<br>13-29/61, 13-34=-29/ | 2<br>o.2<br>1)<br>d or<br>and<br>2)<br>5<br>3, 6-7<br>45)<br>3)<br>4)<br>5)<br>3/184<br>6)<br>7)<br>8)<br>160,<br>9) | OTES<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=103m<br>Cat. II; Exp I<br>zone and C-<br>3-1-12 to 6-<br>(1) 15-4-4 to<br>zone; cantilé<br>and right exj<br>MWFRS for<br>grip DOL=1.<br>TCLL: ASCE<br>DOL=1.15 F<br>Lumber DOI<br>Fully Exp.; C<br>Unbalanced<br>design.<br>200.0lb AC of<br>from left end<br>Provide ade<br>This truss ha<br>chord live lo<br>* This truss<br>on the botto<br>3-06-00 tall<br>chord and a | E 7-10; Pr=20.0 ps<br>late DOL=1.15); P<br>_=1.15 Plate DOL= | =0/499,<br>B=-1901;<br>19=0/10<br>=-149/0<br>we been with<br>BCDL=6<br>RS (env<br>12 to 32<br>-10-7 to<br>(2) 22-6<br>exposed<br>nbers ar<br>_umber l<br>f (roof liv<br>f=20.0 p<br>=1.15); C<br>been con<br>the bott<br>points, s<br>prevent i<br>for a 10<br>with any<br>f or a liv<br>s where<br>ll fil betw<br>with BC | 4-11=-979/19<br>(48,<br>11, 3-17=0/64<br>10-12=-140/<br>considered for<br>considered for<br>considered for<br>considered for<br>considered for<br>considered for<br>12, Interior<br>12 to 28-1-4,<br>considered for<br>12 to 28-1-4,<br>considered for<br>13 to 28-1-4,<br>considered for<br>14 to 28-1-4,<br>considered for<br>15 to 28-1-4,<br>considered for<br>15 to 28-1-4,<br>considered for<br>15 to 28-1-4,<br>16 to 28-1-4,<br>17 to 28-1-4,<br>18 to 28-1-4,<br>19 to 28-1-4,<br>19 to 28-1-4,<br>19 to 28-1-4,<br>19 to 28-1-4,<br>19 to 28-1-4,<br>10 | 96,<br>42,<br>70<br>or<br>(1)<br>or<br>1eft<br>his<br>θ-0-0<br>g.<br>ds.<br>Opsf<br>om | trus<br>cor<br>for<br>11) Gra<br>or t<br>bot<br>LOAD | ss to bea<br>nection<br>ces.<br>aphical p<br>the orien<br>tom cho<br>CASE(S | aring w.<br>is for u<br>urlin retation o<br>rd.<br>) Sta | alls due to UPLIF<br>iplift only and doe<br>opresentation doe<br>of the purlin along | ROUNT INTERNET                     |






| Job        | Truss | Truss Type          | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|---------------------|-----|-----|-----------------------------|-----------|
| 21030024-A | HJ03  | Diagonal Hip Girder | 1   | 1   | Job Reference (optional)    | E15498480 |

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:01 ID:9rMqfC?5k9xyE8aUfkshxozanK8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

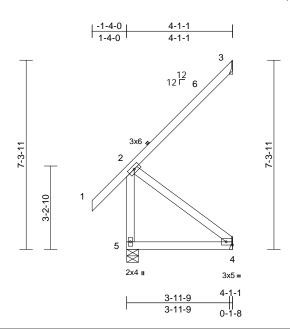


Scale = 1:63.1

| Plate Offsets                                                                                      | (X, Y): [2:0-2-14,0-2-0                                                                                                                                                                                                   | )]                                                                                                                                           |                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                         |                                   |       |        |     |               |          |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|--------|-----|---------------|----------|
| Loading                                                                                            | (psf)                                                                                                                                                                                                                     | Spacing                                                                                                                                      | 2-0-0                   |                                                                                                                                                                                                                                                                          | CSI                                                                                                                                                                                                                                                                                                              |                                                                                                                                    | DEFL                                                                                                                                                                                    | in                                | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                                                        | 20.0                                                                                                                                                                                                                      | Plate Grip DOL                                                                                                                               | 1.15                    |                                                                                                                                                                                                                                                                          | TC                                                                                                                                                                                                                                                                                                               | 0.62                                                                                                                               |                                                                                                                                                                                         | 0.09                              | 6-7   | >999   | 240 | MT20          | 244/190  |
| Snow (Pf)                                                                                          | 20.0                                                                                                                                                                                                                      | Lumber DOL                                                                                                                                   | 1.15                    |                                                                                                                                                                                                                                                                          | BC                                                                                                                                                                                                                                                                                                               | 0.50                                                                                                                               | · · ·                                                                                                                                                                                   | -0.09                             | 6-7   | >999   | 180 |               | 210.00   |
| TCDL                                                                                               | 10.0                                                                                                                                                                                                                      | Rep Stress Incr                                                                                                                              | NO                      |                                                                                                                                                                                                                                                                          | WB                                                                                                                                                                                                                                                                                                               | 0.66                                                                                                                               | · · ·                                                                                                                                                                                   | -0.01                             | 5     | n/a    | n/a |               |          |
| BCLL                                                                                               | 0.0*                                                                                                                                                                                                                      | Code                                                                                                                                         | IRC20                   | 15/TPI2014                                                                                                                                                                                                                                                               | Matrix-MSH                                                                                                                                                                                                                                                                                                       |                                                                                                                                    | - (- )                                                                                                                                                                                  |                                   |       |        |     |               |          |
| BCDL                                                                                               | 10.0                                                                                                                                                                                                                      |                                                                                                                                              |                         |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                         |                                   |       |        |     | Weight: 79 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | <ul> <li>2x4 SP No.2<br/>2x4 SP No.3</li> <li>Structural wood she<br/>6-0-0 oc purlins, ex</li> <li>Rigid ceiling directly<br/>bracing.</li> <li>1 Row at midpt</li> </ul>                                                | cept end verticals.<br>applied or 6-0-0 oc<br>4-5<br>anical, 7=0-8-3<br>C 9)<br>.C 9), 7=-560 (LC 8)                                         | 7<br>8<br>9             | <ul> <li>load of 12.0<br/>overhangs n</li> <li>This truss ha<br/>chord live loa</li> <li>* This truss la<br/>on the botton<br/>3-06-00 tall l<br/>chord and an</li> <li>Refer to gird</li> <li>Provide mec<br/>bearing plate<br/>joint 5.</li> <li>One RT7A L</li> </ul> | as been designed i<br>psf or 1.00 times f<br>on-concurrent with<br>as been designed<br>ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w<br>ny other members.<br>ler(s) for truss to tr<br>chanical connection<br>e capable of withst<br>JSP connectors re<br>ing walls due to U | lat roof lin<br>o other lin<br>for a 10.1<br>with any<br>d for a liv<br>s where<br>ill fit betw<br>uss conr<br>n (by oth<br>commen | oad of 20.0 p:<br>ve loads.<br>0 psf bottom<br>other live load<br>re load of 20.1<br>a rectangle<br>veen the botto<br>nections.<br>ers) of truss t<br>333 lb uplift at<br>ided to conne | sf on<br>ads.<br>Opsf<br>om<br>to |       |        |     |               |          |
| FORCES                                                                                             | (lb) - Maximum Com<br>Tension                                                                                                                                                                                             | npression/Maximum                                                                                                                            |                         |                                                                                                                                                                                                                                                                          | s for uplift only and                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                                                                                                                                                         | iteral                            |       |        |     |               |          |
| TOP CHORD                                                                                          |                                                                                                                                                                                                                           | =-447/381,<br>1=-247/187,                                                                                                                    | 1                       | <ol> <li>"NAILED" in<br/>NDS guidline</li> <li>In the LOAD</li> </ol>                                                                                                                                                                                                    | dicates 2-12d (0.1<br>es.<br>CASE(S) section,<br>are noted as front                                                                                                                                                                                                                                              | , loads a                                                                                                                          | pplied to the f                                                                                                                                                                         |                                   |       |        |     |               |          |
| BOT CHORD                                                                                          | 14-15=-303/206, 6-<br>6-16=-422/430, 5-16                                                                                                                                                                                 | 15=-303/206,<br>6=-422/430                                                                                                                   | 1                       | OAD CASE(S)                                                                                                                                                                                                                                                              | Standard<br>ow (balanced): Lui                                                                                                                                                                                                                                                                                   | . ,                                                                                                                                |                                                                                                                                                                                         | Plate                             |       |        |     | OR FESS       | RO       |
| WEBS                                                                                               | 2-6=-400/531, 3-6=-                                                                                                                                                                                                       | -335/368, 3-5=-617/5                                                                                                                         | 580                     | Uniform Lo                                                                                                                                                                                                                                                               | ads (lb/ft)                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                         |                                   |       |        | E   | O' FES        | Print 1  |
| NOTES                                                                                              |                                                                                                                                                                                                                           |                                                                                                                                              |                         |                                                                                                                                                                                                                                                                          | =-60, 2-4=-60, 5-7                                                                                                                                                                                                                                                                                               | /=-20                                                                                                                              |                                                                                                                                                                                         |                                   |       |        | 110 |               | Na Sil   |
| Vasd=10<br>Cat. II; E:<br>zone; car<br>and right<br>DOL=1.6<br>2) TCLL: AS<br>DOL=1.1<br>Lumber E  | SCE 7-10; Vult=130mph<br>(3mph; TCDL=6.0psf; B<br>xp B; Enclosed; MWFR<br>itilever left and right ex<br>exposed; Lumber DOL<br>00<br>SCE 7-10; Pr=20.0 psf<br>5 Plate DOL=1.15); Pf=<br>DOL=1.15 Plate DOL=1<br>0 Ct=1 10 | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>posed ; end vertical<br>=1.60 plate grip<br>(roof live load: Lumbi<br>=20.0 psf (flat roof sn | r<br>left<br>er<br>iow: | Vert: 4=-                                                                                                                                                                                                                                                                | ed Loads (lb)<br>127 (B), 5=-39 (B)<br>3=-36), 13=-1 (B),                                                                                                                                                                                                                                                        |                                                                                                                                    | <i>, , , , , , , , , ,</i>                                                                                                                                                              | 4)                                |       |        |     | SEA<br>0363   |          |

DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

3) Unbalanced snow loads have been considered for this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G١ A. GIL

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086   |          |
|------------|-------|------------|-----|-----|-------------------------------|----------|
| 21030024-A | CJ01  | Jack-Open  | 1   | 1   | E<br>Job Reference (optional) | 15498481 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:38 ID:3M\_vrFKPKle5mQK3suPOchzanOu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

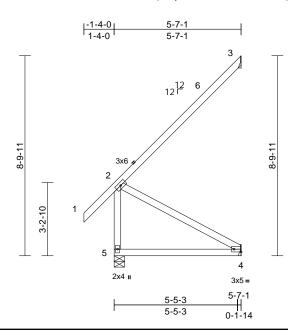


#### Scale = 1:44.5

| Plate Offsets (X, | Y): | [4:Edge,0-1-8] |
|-------------------|-----|----------------|
|-------------------|-----|----------------|

| Loading                                                                                                                                      | (psf)                                                                                                                                                                    | Spacing                                                                                                             | 2-0-0      |                                                   | CSI                                                                                                    |            | DEFL          | in    | (loc) | l/defl | L/d                                     | PLATES        | GRIP     |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|---------------|-------|-------|--------|-----------------------------------------|---------------|----------|
| TCLL (roof)                                                                                                                                  | 20.0                                                                                                                                                                     | Plate Grip DOL                                                                                                      | 1.15       |                                                   | TC                                                                                                     | 0.36       | Vert(LL)      | -0.01 | 4-5   | >999   | 240                                     | MT20          | 244/190  |
| Snow (Pf)                                                                                                                                    | 20.0                                                                                                                                                                     | Lumber DOL                                                                                                          | 1.15       |                                                   | BC                                                                                                     | 0.19       | Vert(CT)      | -0.03 | 4-5   | >999   | 180                                     |               |          |
| TCDL                                                                                                                                         | 10.0                                                                                                                                                                     | Rep Stress Incr                                                                                                     | YES        |                                                   | WB                                                                                                     | 0.12       | Horz(CT)      | -0.01 | 3     | n/a    | n/a                                     |               |          |
| BCLL                                                                                                                                         | 0.0*                                                                                                                                                                     | Code                                                                                                                | IRC2       | )15/TPI2014                                       | Matrix-MP                                                                                              |            |               |       |       |        |                                         |               |          |
| BCDL                                                                                                                                         | 10.0                                                                                                                                                                     |                                                                                                                     |            |                                                   |                                                                                                        |            |               |       |       |        |                                         | Weight: 29 lb | FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD                                                                                                             | 2x4 SP No.2<br>2x4 SP No.2                                                                                                                                               |                                                                                                                     |            | load of 12.0                                      | as been designed<br>psf or 1.00 times f<br>on-concurrent with                                          | lat roof l | oad of 20.0 p |       |       |        |                                         |               |          |
| WEBS                                                                                                                                         | 2x4 SP No.2<br>2x4 SP No.3                                                                                                                                               |                                                                                                                     |            |                                                   | as been designed                                                                                       |            |               |       |       |        |                                         |               |          |
|                                                                                                                                              | 2X4 SP N0.3                                                                                                                                                              |                                                                                                                     |            |                                                   | ad nonconcurrent                                                                                       |            |               | ade   |       |        |                                         |               |          |
| BRACING                                                                                                                                      | Other strengt was a disk a                                                                                                                                               | - 46 (                                                                                                              |            |                                                   | has been designed                                                                                      |            |               |       |       |        |                                         |               |          |
| TOP CHORD                                                                                                                                    | Structural wood she<br>4-1-1 oc purlins, ex                                                                                                                              | cept end verticals.                                                                                                 |            | on the botto                                      | m chord in all area                                                                                    | s where    | a rectangle   | -     |       |        |                                         |               |          |
| BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 3-06-00 tall by 2-00-00 wide will fit between th chord and any other members. |                                                                                                                                                                          |                                                                                                                     |            |                                                   |                                                                                                        |            |               |       |       |        |                                         |               |          |
|                                                                                                                                              | (size) 3= Mecha<br>5=0-5-8<br>Max Horiz 5=171 (LC<br>Max Uplift 3=-111 (L<br>Max Grav 3=120 (LC<br>5=263 (LC                                                             | .C 14), 4=-113 (LC 1<br>C 24), 4=121 (LC 12                                                                         | aı,<br>14) | <ol> <li>Provide med<br/>bearing plate</li> </ol> | ler(s) for truss to tr<br>chanical connection<br>e capable of withst<br>uplift at joint 4.<br>Standard | n (by oth  | ers) of truss |       |       |        |                                         |               |          |
| FORCES                                                                                                                                       | (lb) - Maximum Corr                                                                                                                                                      | ,                                                                                                                   |            |                                                   |                                                                                                        |            |               |       |       |        |                                         |               |          |
| TOP CHORD                                                                                                                                    | Tension<br>2-5=-224/92, 1-2=0/<br>3-6=-87/121                                                                                                                            | 63, 2-6=-112/97,                                                                                                    |            |                                                   |                                                                                                        |            |               |       |       |        |                                         |               |          |
| BOT CHORD                                                                                                                                    | 4-5=-317/143                                                                                                                                                             |                                                                                                                     |            |                                                   |                                                                                                        |            |               |       |       |        |                                         |               |          |
| WEBS                                                                                                                                         | 2-4=-180/398                                                                                                                                                             |                                                                                                                     |            |                                                   |                                                                                                        |            |               |       |       |        |                                         | mini          | 1111     |
| NOTES                                                                                                                                        |                                                                                                                                                                          |                                                                                                                     |            |                                                   |                                                                                                        |            |               |       |       |        |                                         | IN'LY CA      | Rall     |
| <ol> <li>Wind: ASC<br/>Vasd=103i<br/>Cat. II; Exp<br/>zone and C<br/>exposed ;<br/>members a</li> </ol>                                      | CE 7-10; Vult=130mph<br>mph; TCDL=6.0psf; B<br>b B; Enclosed; MWFR<br>C-C Exterior (2) zone;<br>end vertical left and ri,<br>and forces & MWFRS<br>DL=1.60 plate grip DC | CDL=6.0psf; h=25ft;<br>S (envelope) exterio<br>cantilever left and ri<br>ght exposed;C-C for<br>for reactions shown | or<br>ight |                                                   |                                                                                                        |            |               |       |       | 4      | AND | SEA<br>0363   | • —      |

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.


SEAL 036322 March 15,2021



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | CJ06  | Jack-Open  | 1   | 1   | Job Reference (optional)    | E15498482 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:41 ID:?H9WPZm\_spA\_4y4\_zS2r4HzanOK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



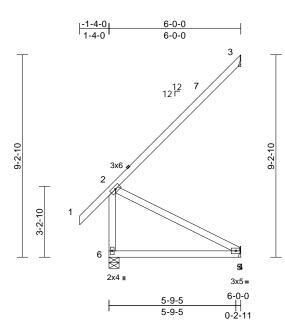
Scale = 1:50.7

| Plate Offsets (X, Y) | ): [4:Edge,0-1-8] |
|----------------------|-------------------|
|----------------------|-------------------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (X, T): [4:Edge,0 T 0]                                                                                                                             |                                                                           |                                         |           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                                                              |                               |                          |                               |                          |                                 |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-------------------------------|--------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2015 | 5/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-MP                                                                                                                                                                                                                                                                                          | 0.68<br>0.37<br>0.17                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                     | in<br>-0.05<br>-0.11<br>-0.01 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>620<br>n/a | L/d<br>240<br>180<br>n/a | PLATES<br>MT20<br>Weight: 36 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| TOP CHORD       2x4 SP No.2       load of 12         BOT CHORD       2x4 SP No.2       overhang:         WEBS       2x4 SP No.3       5)         BRACING       TOP CHORD       Structural wood sheathing directly applied or 5-7-1 oc purlins, except end verticals.       6)       * This trus on the bot 3-06-00 te chord and the bot 3-06-00 te chord and 3-06-00 |                                                                                                                                                    |                                                                           |                                         |           | as been designed fr<br>psf or 1.00 times fli<br>ion-concurrent with<br>as been designed fr<br>ad nonconcurrent v<br>has been designed<br>m chord in all areas<br>by 2-00-00 wide wil<br>ny other members.<br>ler(s) for truss to tru-<br>shanical connection<br>e capable of withsts<br>8 lb uplift at joint 4.<br>Standard | at roof I<br>other Ii<br>or a 10.<br>vith any<br>for a Iiv<br>s where<br>I fit betw<br>iss coni<br>(by oth<br>anding 1 | bad of 20.0 p<br>ve loads.<br>0 psf bottom<br>other live loa<br>re load of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss | ads.<br>Opsf<br>tom           |                          |                               |                          |                                 |                                    |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (lb) - Maximum Com<br>Tension                                                                                                                      | npression/Maximum                                                         |                                         |           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                                                              |                               |                          |                               |                          |                                 |                                    |
| TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-5=-266/71, 1-2=0/<br>3-6=-135/162                                                                                                                | /63, 2-6=-168/130,                                                        |                                         |           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                                                              |                               |                          |                               |                          |                                 |                                    |
| BOT CHORD<br>WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-5=-378/192<br>2-4=-220/432                                                                                                                       |                                                                           |                                         |           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                                                              |                               |                          |                               |                          | min                             | 1111                               |
| Vasd=10<br>Cat. II; Ex<br>zone and<br>exposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CE 7-10; Vult=130mph<br>3mph; TCDL=6.0psf; B<br>xp B; Enclosed; MWFR<br>C-C Exterior (2) zone;<br>; end vertical left and ri<br>and forces & MWFRS |                                                                           |                                         |           |                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |                                                                                                                                              |                               |                          | ORTH CA                       |                          |                                 |                                    |

- Lumber DOL=1.60 plate grip DOL=1.60
  2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

SEAL 036322 MGINEER March 15,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



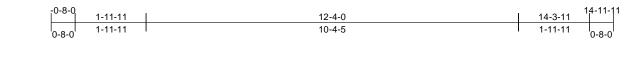
| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | EJ03  | Jack-Open  | 10  | 1   | Job Reference (optional)    | E15498483 |

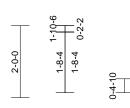
Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:35:53 ID:ANN87\_NYXO5T8efQbws059zanrE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

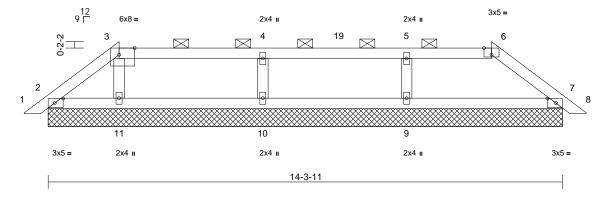
Page: 1



#### Scale = 1:52.4


|                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                | i                                                                                                                                                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------|-------|-------------|-----|---------------|----------|
| Loading                                                                                                                                                                                                                                            | (psf)                                                                                                                                                                                                                                                                                                                                                          | Spacing                                                                                                                                                                                                                                                                                    | 2-0-0                                                                                                                                              | CSI                                                                                                                                                                                                                                                       |                                                                                            | DEFL                                                                                          | in                | (loc) | l/defl      | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                                                                           | Plate Grip DOL                                                                                                                                                                                                                                                                             | 1.15                                                                                                                                               | TC                                                                                                                                                                                                                                                        | 0.79                                                                                       | Vert(LL)                                                                                      | -0.07             | 5-6   | >999        | 240 | MT20          | 244/190  |
| Snow (Pf)                                                                                                                                                                                                                                          | 20.0                                                                                                                                                                                                                                                                                                                                                           | Lumber DOL                                                                                                                                                                                                                                                                                 | 1.15                                                                                                                                               | BC                                                                                                                                                                                                                                                        | 0.43                                                                                       | Vert(CT)                                                                                      | -0.13             | 5-6   | >515        | 180 |               |          |
| TCDL                                                                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                                                                                                                                                           | Rep Stress Incr                                                                                                                                                                                                                                                                            | YES                                                                                                                                                | WB                                                                                                                                                                                                                                                        | 0.19                                                                                       | Horz(CT)                                                                                      | -0.01             | 3     | n/a         | n/a |               |          |
| BCLL                                                                                                                                                                                                                                               | 0.0*                                                                                                                                                                                                                                                                                                                                                           | Code                                                                                                                                                                                                                                                                                       | IRC2015/TPI2014                                                                                                                                    | Matrix-MP                                                                                                                                                                                                                                                 |                                                                                            |                                                                                               |                   |       |             |     |               |          |
| BCDL                                                                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       | -           |     | Weight: 38 lb | FT = 20% |
|                                                                                                                                                                                                                                                    | 2-2-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(size) 3= Mecha<br>6=0-5-8<br>Max Horiz 6=233 (L0<br>Max Uplift 3=-179 (L                                                                                                                                                                                                                        | applied or 9-1-12 oc<br>anical, 5= Mechanica<br>C 14)<br>C 14), 5=-96 (LC 14                                                                                                                                                                                                               | chord live<br>6) * This trus<br>on the bot<br>3-06-00 ta<br>chord and<br>7) Refer to g<br>8) Provide m<br>bearing pl<br>joint 3 and<br>I.OAD CASE( | has been designed<br>load nonconcurrent<br>s has been designed<br>om chord in all area<br>Il by 2-00-00 wide w<br>any other members<br>rder(s) for truss to tr<br>echanical connection<br>ate capable of withst<br>96 lb uplift at joint 5<br>5) Standard | with any<br>d for a liv<br>is where<br>ill fit betv<br>tuss conr<br>n (by oth<br>tanding 1 | other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>nections.<br>ers) of truss | 0psf<br>com<br>to |       |             |     |               |          |
|                                                                                                                                                                                                                                                    | Max Grav 3=193 (L0<br>6=336 (L0                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            | ),                                                                                                                                                 |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               |          |
| FORCES                                                                                                                                                                                                                                             | (lb) - Maximum Com                                                                                                                                                                                                                                                                                                                                             | pression/Maximum                                                                                                                                                                                                                                                                           |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               |          |
|                                                                                                                                                                                                                                                    | Tension                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               |          |
| TOP CHORD                                                                                                                                                                                                                                          | 2-6=-278/67, 1-2=0/<br>3-7=-146/173                                                                                                                                                                                                                                                                                                                            | 63, 2-7=-183/139,                                                                                                                                                                                                                                                                          |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               |          |
| BOT CHORD                                                                                                                                                                                                                                          | 5-6=-394/205, 4-5=0                                                                                                                                                                                                                                                                                                                                            | 0/0                                                                                                                                                                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               |          |
| WEBS                                                                                                                                                                                                                                               | 2-5=-232/444                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               |          |
| NOTES                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                                                                                                                                                    |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       |             |     |               | 1111     |
| <ul> <li>Vasd=103i<br/>Cat. II; Exp<br/>zone and C</li> <li>exposed ;<br/>members a<br/>Lumber DC</li> <li>TCLL: ASC<br/>DOL=1.15<br/>Lumber DC</li> <li>Fully Exp.;</li> <li>Unbalance<br/>design.</li> <li>This truss<br/>load of 12.</li> </ul> | E 7-10; Vult=130mph<br>mph; TCDL=6.0psf; B<br>o B; Enclosed; MWFR<br>C-C Exterior (2) zone;<br>end vertical left and ri<br>and forces & MWFRS<br>DL=1.60 plate grip DC<br>CE 7-10; Pr=20.0 psf (<br>Plate DOL=1.15); Pf=<br>DL=1.15 Plate DOL=1<br>Ct=1.10<br>d snow loads have be<br>has been designed fo<br>0 psf or 1.00 times fla<br>non-concurrent with o | CDL=6.0psf; h=25ft;<br>S (envelope) exterior<br>cantilever left and rig<br>ght exposed;C-C for<br>for reactions shown;<br>Ju=1.60<br>roof live load: Lumbe<br>20.0 psf (flat roof sn<br>.15); Category II; Exp<br>een considered for th<br>r greater of min roof<br>t roof load of 20.0 ps | r<br>ght<br>er<br>ow:<br>p B;<br>is<br>live                                                                                                        |                                                                                                                                                                                                                                                           |                                                                                            |                                                                                               |                   |       | N. COLLINS. |     | SEA<br>0363   | 22       |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | PB01  | Piggyback  | 1   | 1   | Job Reference (optional)    | E15498484 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:05 ID:40ymn5u0YJIy5cZPmcbnX0zano\_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

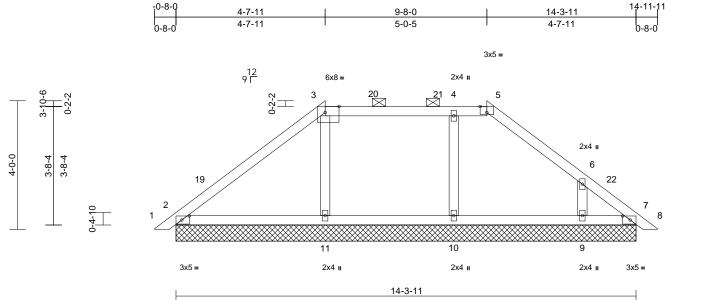






Scale = 1:32

| Plate Offsets                                                                                | (X, Y): [2:0-2-13,0-1-                                                                                                                                                                                                                                                                                                                           | 8], [3:0-5-3,Edge], [6:                                                                                                                                                                                                                                                                      | 0-2-8,Edg                                                                                                                             | e], [7:0-2-13,0-                                                                                                                                                                                                                                                                                                      | 1-8]                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |                                          |                          |                       |                             |                                         |                                 |                                    |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------|--------------------------|-----------------------|-----------------------------|-----------------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>Snow (Pf)<br>TCDL<br>BCLL<br>BCDL                                  | (psf)<br>20.0<br>20.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                    | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                    | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                                | 5/TPI2014                                                                                                                                                                                                                                                                                                             | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-MSH                                                                                                                                                                                                                                                                                                                                         | 0.33<br>0.14<br>0.08                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>16 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a                | PLATES<br>MT20<br>Weight: 51 lb | <b>GRIP</b><br>244/190<br>FT = 20% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | <ul> <li>2x4 SP No.2<br/>2x4 SP No.3</li> <li>Structural wood sh<br/>6-0-0 oc purlins, e)<br/>2-0-0 oc purlins (6-<br/>Rigid ceiling directl<br/>bracing.</li> <li>(size) 2=14-3-<br/>10=14-3<br/>12=14-3<br/>Max Horiz 2=-43 (L<br/>Max Uplift 2=-30 (L<br/>9=-46 (L<br/>11=-36 (<br/>16=-39 (L<br/>9=428 (L<br/>9=428 (L<br/>11=182</li> </ul> | 0-0 max.): 3-6.<br>y applied or 10-0-0 or<br>11, 7=14-3-11, 9=14-3<br>-11, 11=14-3-11,<br>-11, 16=14-3-11<br>C 12), 12=-43 (LC 12)<br>C 15), 7=-39 (LC 15),<br>C 10), 10=-71 (LC 10<br>LC 11), 12=-30 (LC 1<br>LC 15)<br>.C 37), 7=279 (LC 37<br>.C 36), 10=500 (LC 3<br>(LC 36), 12=241 (LC | ed or<br>3)<br>3-11,<br>),<br>5), 5)<br>), 6)<br>37),                                                                                 | Cat. II; Exp E<br>zone and C-1<br>6-8-0 to 8-9-<br>cantilever lef<br>right exposer<br>for reactions<br>DOL=1.60<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>TCLL: ASCE<br>DOL=1.15 P<br>Lumber DOL<br>Fully Exp.; C<br>Unbalanced<br>design.<br>This truss ha<br>load of 12.0<br>overhangs n | .0psf; h=25ft;<br>elope) exterio<br>0, Interior (1)<br>5-4 zone;<br>vertical left an<br>rces & MWFR<br>) plate grip<br>ane of the tru:<br>al to the face;<br>ils as applical<br>s per ANSI/TF<br>e load; Lumb<br>sf (flat roof sn<br>ategory II; Ex<br>nsidered for th<br>er of min roof<br>pad of 20.0 ps<br>ve loads.                                                            | r<br>S<br>S<br>ble,<br>ble,<br>ble,<br>ble,<br>ble,<br>ble,<br>ble,<br>ble,       | or th                                    | ne orien<br>om choi      | tation o<br>rd.       | of the purlin alon          | es not depict the s<br>g the top and/or |                                 |                                    |
| FORCES                                                                                       | Tension                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                       | <ul> <li>7) Provide adequate drainage to prevent water ponding.</li> <li>8) Gable requires continuous bottom chord bearing.</li> <li>9) Gable studs spaced at 4-0-0 oc.</li> <li>10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>11) * This truss has been designed for a live load of 20.0psf</li> </ul> |                                                                                   |                                          |                          |                       |                             |                                         |                                 |                                    |
| BOT CHORD<br>WEBS<br><b>NOTES</b><br>1) Unbalanc<br>this desig                               | 7-9=-1/141<br>3-11=-121/76, 4-10<br>sed roof live loads hav                                                                                                                                                                                                                                                                                      | /104<br>12                                                                                                                                                                                                                                                                                   | 3-06-00 tall b<br>chord and ar<br>2) One RT7A U<br>truss to bear<br>and 9. This c<br>consider late<br>8) See Standar<br>Detail for Co | n chord in all area<br>by 2-00-00 wide w<br>y other members<br>ISP connectors re<br>ing walls due to L<br>connection is for u<br>ral forces.<br>d Industry Piggyb<br>nnection to base<br>fied building desig                                                                                                          | vill fit betw<br>comment<br>IPLIFT at<br>plift only<br>ack Trus<br>truss as a                                                                                                                                                                                                                                                                                                      | veen the botto<br>ded to conne<br>jt(s) 2, 7, 11,<br>and does not<br>s Connection | ct<br>10,                                |                          | THUNNY.               |                             | SEA<br>0363                             | EER A                           |                                    |


March 15,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job        | Truss | Truss Type | Qty | Ply | 89 Lake Forest-Roof-BB-2086 |           |
|------------|-------|------------|-----|-----|-----------------------------|-----------|
| 21030024-A | PB02  | Piggyback  | 1   | 1   | Job Reference (optional)    | E15498485 |

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Mon Mar 15 12:36:06 ID:vYJ129zn8936pX0Y7siBmHzannu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



#### Scale = 1:35.8

| Ocale = 1.55.0                                                                  |                                                                                                                                                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                                                                  |                                                                                                                                  |                              |       |        |               |                     |                                            |  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|--------|---------------|---------------------|--------------------------------------------|--|
| Plate Offsets (                                                                 | (X, Y): [2:0-2-13,0-1-                                                                                                                                   | 8], [3:0-5-3,Edge], [5:0 | -2-8,Edg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e], [7:0-2-13,0-                                                                                                                                                                                                                                                                                                                                                                                                  | 1-8]                                                                                                                                                                                        |                                                                                  |                                                                                                                                  |                              |       |        |               |                     |                                            |  |
| Loading                                                                         | (psf)                                                                                                                                                    | Spacing                  | 2-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                   | CSI                                                                                                                                                                                         |                                                                                  | DEFL                                                                                                                             | in                           | (loc) | l/defl | L/d           | PLATES              | GRIP                                       |  |
| TCLL (roof)                                                                     | 20.0                                                                                                                                                     | Plate Grip DOL           | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   | TC                                                                                                                                                                                          | 0.39                                                                             | Vert(LL)                                                                                                                         | n/a                          | -     | n/a    | 999           | MT20                | 244/190                                    |  |
| Snow (Pf)                                                                       | 20.0                                                                                                                                                     | Lumber DOL               | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   | BC                                                                                                                                                                                          | 0.37                                                                             | Vert(CT)                                                                                                                         | n/a                          |       | n/a    | 999           |                     |                                            |  |
| TCDL                                                                            | 10.0                                                                                                                                                     | Rep Stress Incr          | YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   | WB                                                                                                                                                                                          | 0.10                                                                             | Horz(CT)                                                                                                                         | 0.00                         | 7     | n/a    | n/a           |                     |                                            |  |
| BCLL                                                                            | 0.0*                                                                                                                                                     | Code                     | IRC201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                         | Matrix-MSH                                                                                                                                                                                  |                                                                                  |                                                                                                                                  |                              |       |        |               |                     |                                            |  |
| BCDL                                                                            | 10.0                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                                                                  |                                                                                                                                  |                              |       |        |               | Weight: 59 lb       | FT = 20%                                   |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SP No.2<br>2x4 SP No.3<br>Structural wood sh<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins (6-                                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vasd=103m<br>Cat. II; Exp E<br>zone and C-<br>exposed ; er<br>members an<br>Lumber DOL<br>Truss desigr<br>only. For stu                                                                                                                                                                                                                                                                                           | 7-10; Vult=130m<br>ph; TCDL=6.0pst;<br>3; Enclosed; MWF<br>C Exterior (2) zon-<br>nd vertical left and<br>d forces & MWFR<br>_=1.60 plate grip D<br>ed for wind loads<br>uds exposed to win | BCDL=6<br>RS (env<br>right exp<br>S for rea<br>DOL=1.60<br>in the pl<br>nd (norm | S.Opsf; h=25ft<br>elope) exteric<br>ever left and ri<br>posed;C-C for<br>actions shown<br>0<br>ane of the tru<br>nal to the face | or<br>ight<br>r;<br>ss<br>), | or t  |        | tation<br>rd. | of the purlin along | es not depict the size<br>g the top and/or |  |
| BOT CHOILD                                                                      | bracing.                                                                                                                                                 | y applied of 0-0-0 oc    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | see Standard Industry Gable End Details as applicable,                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                             |                                                                                  |                                                                                                                                  |                              |       |        |               |                     |                                            |  |
| REACTIONS                                                                       | (size) 2=14-3-1<br>10=14-3<br>12=14-3<br>12=14-3<br>Max Horiz 2=-93 (L<br>Max Uplift 2=-38 (L<br>10=-67 (<br>12=-38 (L<br>9=345 (L<br>11=370 )<br>15=199 | ), 5)<br>), 6)           | <ul> <li>a) TOLE. ASCE 7-10, FI=20.0 psf (1001 live 10ac. Lumber DDL=1.15 Plate DDL=1.15); Pf=20.0 psf (flat roof snow: Lumber DDL=1.15); Pf=20.0 psf (flat roof snow: Lumber DDL=1.15 Plate DDL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10</li> <li>5) Unbalanced snow loads have been considered for this design.</li> <li>6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                                                                  |                                                                                                                                  |                              |       |        |               |                     |                                            |  |
| FORCES                                                                          | (lb) - Maximum Cor<br>Tension                                                                                                                            | mpression/Maximum        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Gable studs                                                                                                                                                                                                                                                                                                                                                                                                       | es continuous bot<br>spaced at 4-0-0 o<br>as been designed                                                                                                                                  | с.                                                                               | 0                                                                                                                                |                              |       |        |               | NITH CA             | RO                                         |  |
| TOP CHORD                                                                       |                                                                                                                                                          | 200                      | chord live loa<br>1) * This truss h<br>on the bottor                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w                                                                                                                                                                                                                                                                                                                                 | with any<br>d for a liv<br>is where                                                                                                                                                         | other live loa<br>ve load of 20.0<br>a rectangle                                 | Opsf                                                                                                                             |                              | 4     | 0      | HP 1          |                     |                                            |  |
| BOT CHORD                                                                       |                                                                                                                                                          | 1=-3/150, 9-10=-3/150    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chord and ar                                                                                                                                                                                                                                                                                                                                                                                                      | ny other members                                                                                                                                                                            |                                                                                  |                                                                                                                                  |                              |       |        |               | SEA                 | • –                                        |  |
| WEBS                                                                            |                                                                                                                                                          | 0=-350/110, 6-9=-278     | 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   | ring walls due to U                                                                                                                                                                         |                                                                                  |                                                                                                                                  |                              |       | =      |               | 0363                | 22 : =                                     |  |
| NOTES                                                                           | ,                                                                                                                                                        | ,                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                   | connection is for u                                                                                                                                                                         |                                                                                  |                                                                                                                                  |                              |       | 1      |               |                     | - 1 2                                      |  |
|                                                                                 | ed roof live loads have                                                                                                                                  | e been considered for    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | consider late                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                             |                                                                                  |                                                                                                                                  | -                            |       |        | 2             | Sec. 1              | 1. 5                                       |  |
| this design                                                                     |                                                                                                                                                          |                          | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.<br>12) One RT7A USP connectors recommended to connect<br>truss to bearing walls due to UPLIFT at jt(s) 2, 11, 10,<br>and 9. This connection is for uplift only and does not<br>consider lateral forces.<br>13) See Standard Industry Piggyback Truss Connection<br>Detail for Connection to have turne on applicable, or |                                                                                                                                                                                             |                                                                                  |                                                                                                                                  |                              |       |        |               | EERIA               |                                            |  |

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



A. GILP.... March 15,2021

