

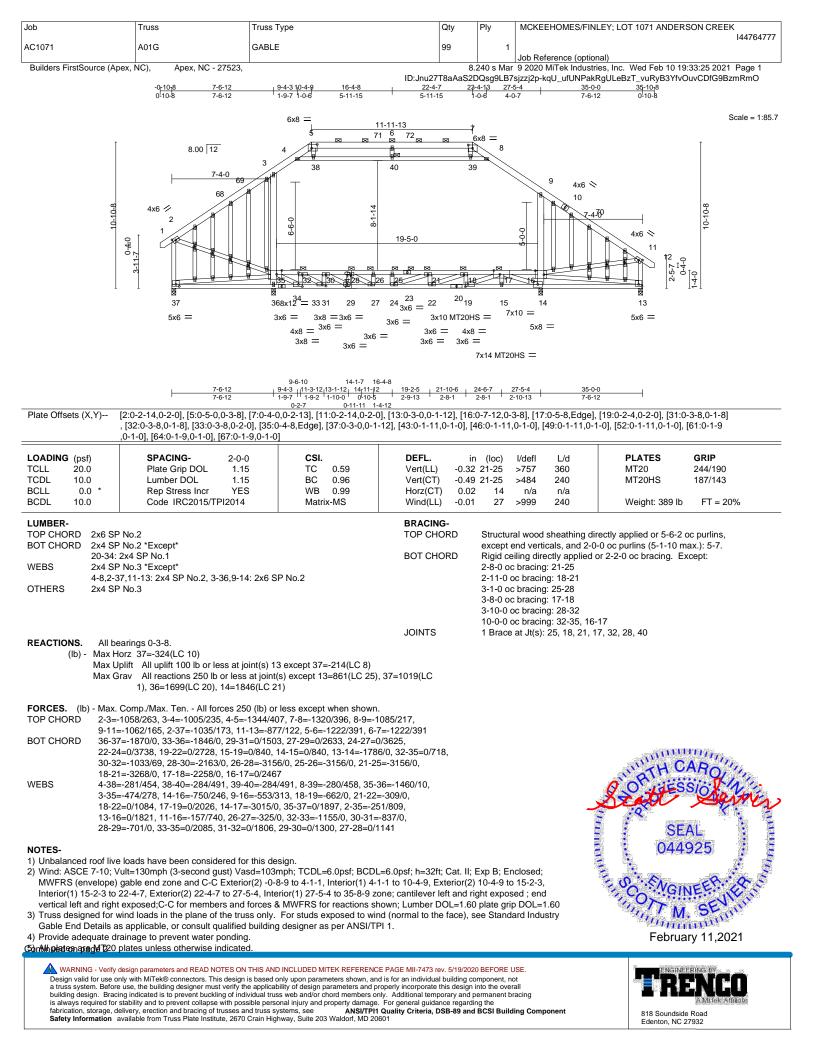
Trenco 818 Soundside Rd Edenton, NC 27932

Re: AC1071 MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I44764777 thru I44764814

My license renewal date for the state of North Carolina is December 31, 2021.


North Carolina COA: C-0844

February 11,2021

Sevier, Scott

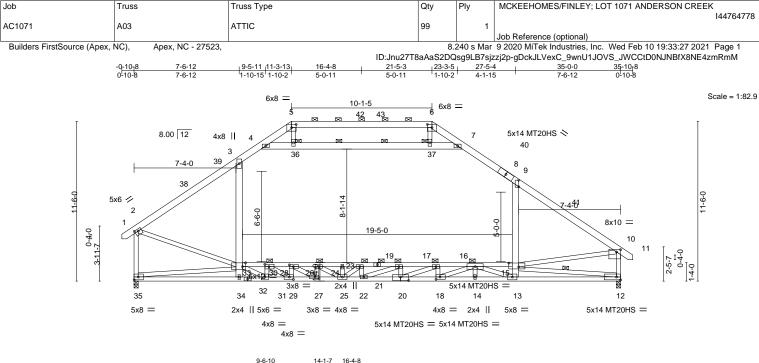
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

[Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK	
						144764777	
	AC1071	A01G	GABLE	99	1		
						Job Reference (optional)	
	Builders FirstSource (Apex, NC), Apex, NC - 27523,		8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:25 2021 Page 2				
			ID:Jnu27T8aAaS2DQsa9LB7sizzi2p-kgU_ufUNPakRaULeBzT_vuRvB3YfvOuvCDfG9BzmRmO				

NOTES-

6) All plates are 2x4 MT20 unless otherwise indicated.

7) Gable studs spaced at 1-4-0 oc.


s) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 3-4, 8-9, 4-38, 38-40, 39-40, 8-39; Wall dead load (5.0 psf) on member(s).3-35, 9-16
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 32-35, 30-32, 28-30, 26-28, 25-26, 21-25, 18-21, 17-18, 16-17
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13 except (jt=lb) 37=214.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[2:0-3-0,0-1-12], [5:0-4-0,0-2-13], [6:0-4-0,0-2-13], [9:0-5-9,0-0-0], [10:0-3-8,0-2-0], [15:0-8-8,0-3-4], [18:0-3-8,0-2-0], [20:0-7-0,0-3-0], [27:0-3-8,0-1-8],
	[28:0-3-8,0-1-8], [29:0-3-8,0-2-0], [30:0-3-8,0-2-0], [33:0-2-12,0-3-4]

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.94 BC 0.96 WB 0.93 Matrix-MS	Vert(LL) -0.50 Vert(CT) -0.87 Horz(CT) 0.07		L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 339 lb	GRIP 244/190 187/143 FT = 20%
LUMBER- TOP CHORD 2x6 SI	P DSS *Except*		BRACING- TOP CHORD	Structural wood	l sheathing di	rectly applied or 2-2-0	oc purlins.
	6 SP No.2					-0 oc purlins (6-0-0 ma	
	P No.2 *Except*		BOT CHORD			or 2-2-0 oc bracing. E	
	2x4 SP No.1, 20-32: 2x4 SP SS		201 0110112	2-11-0 oc braci			noopti
	P No.3 *Except*			3-5-0 oc bracin			
4-7,3-	34,9-13: 2x6 SP No.2, 2-35,31-33: 2x4 S	P No.2		4-5-0 oc bracin			
10-12:	2x4 SP No.1			6-0-0 oc bracing	g: 15-16		
				10-0-0 oc braci	0		
			WEBS	1 Row at midpt		2-15	
			JOINTS	2 Rows at 1/3 p		36-37 6, 36, 37, 30, 26	
Max H Max C FORCES. (Ib) - Max	 i) 12=0-3-8, 35=0-3-8 iorz 35=-339(LC 10) iora 12=2294(LC 2), 35=2303(LC 2) i. Comp./Max. Ten All forces 250 (lb) o -2650/0, 3-4=-2038/61, 4-5=-562/504, 6 		9-10=-2770/0,				
	=-2387/0, 10-12=-2135/0, 5-6=-391/576	,					
22-2 12-1	5=-1560/545, 31-34=-1861/568, 29-31= 5=0/4995, 20-22=0/5146, 18-20=0/4416 3=-554/1398, 30-33=-300/1911, 28-30= 4=-2577/0, 19-23=-3064/0, 17-19=-3222	, 14-18=0/3123, 13-14=0/31 550/883, 26-28=-1649/181,	23, 24-26=-2577/0,				
WEBS 4-36 9-15 13-1 10-1	=_2502(0, 36-37=_2507(0, 7-37=_2532(0) =0/1037, 17-18=-573/0, 19-22=-385/202 6=-2774/0, 6-37=0/270, 33-35=-222/144 5=0/1914, 31-33=0/2335, 30-31=-1236/4 0=0/1950, 27-28=0/1543, 25-26=0/1089	33-34=0/366, 3-33=0/1073 , 17-20=-27/790, 16-18=0/1 6, 2-33=0/2146, 12-15=-123 0, 28-29=-942/0, 26-27=-736	, 13-15=0/1140, 796, 88/547,			Statt	AROLUS
NOTES- 1) Unbalanced roof liv	e loads have been considered for this de	sign. mph: TCDI =6 0psf: BCDI =/				SE 044	AL

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-9 to 4-1-1, Interior(1) 4-1-1 to 11-3-13, Exterior(2) 11-3-13 to 16-1-7, Interior(1) 16-1-7 to 21-5-3, Exterior(2) 21-5-3 to 26-2-12, Interior(1) 26-2-12 to 35-8-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) All plates are 3x6 MT20 unless otherwise indicated.

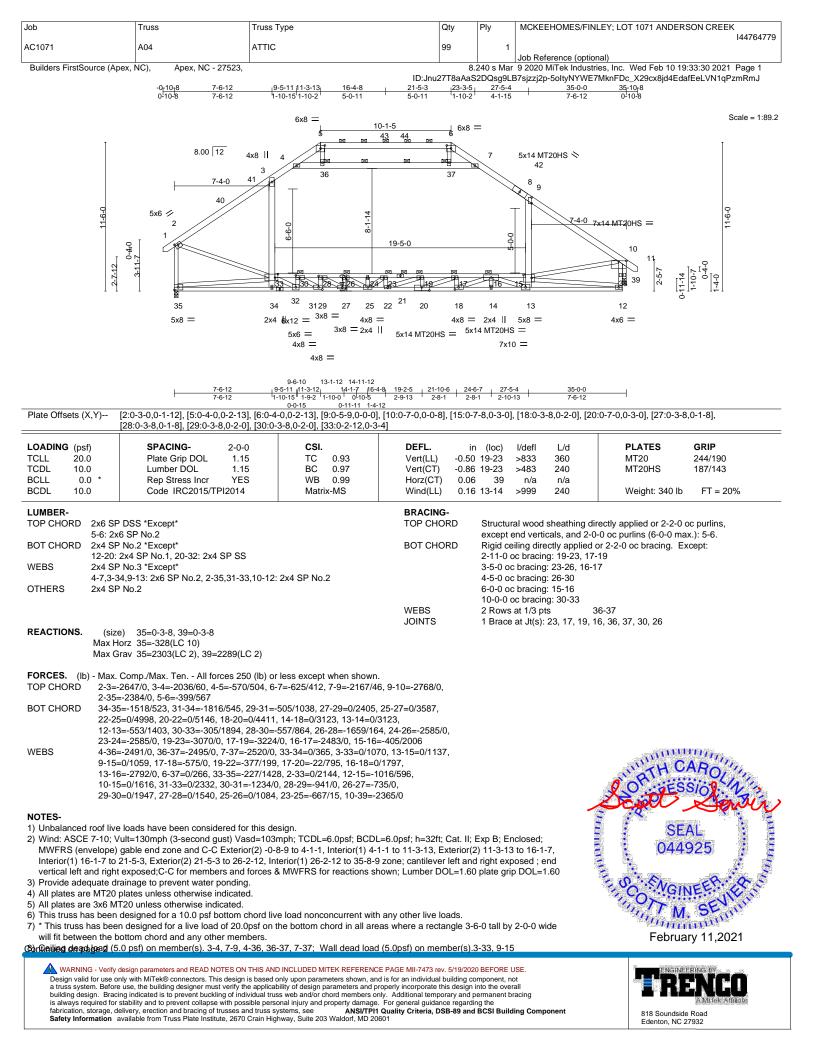
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide Contribute bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

[Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK		
						144764778		
	AC1071	A03	ATTIC	99	1			
						Job Reference (optional)		
	Builders FirstSource (Apex, NC), Apex, NC - 27523,		8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:28 2021 Page 2					
			ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-9PA6XhWGiV60Xx3Ds60hXW3NxHYE6mdLuBuwmWzmRmL					

NOTES-


8) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-9, 4-36, 36-37, 7-37; Wall dead load (5.0 psf) on member(s).3-33, 9-15

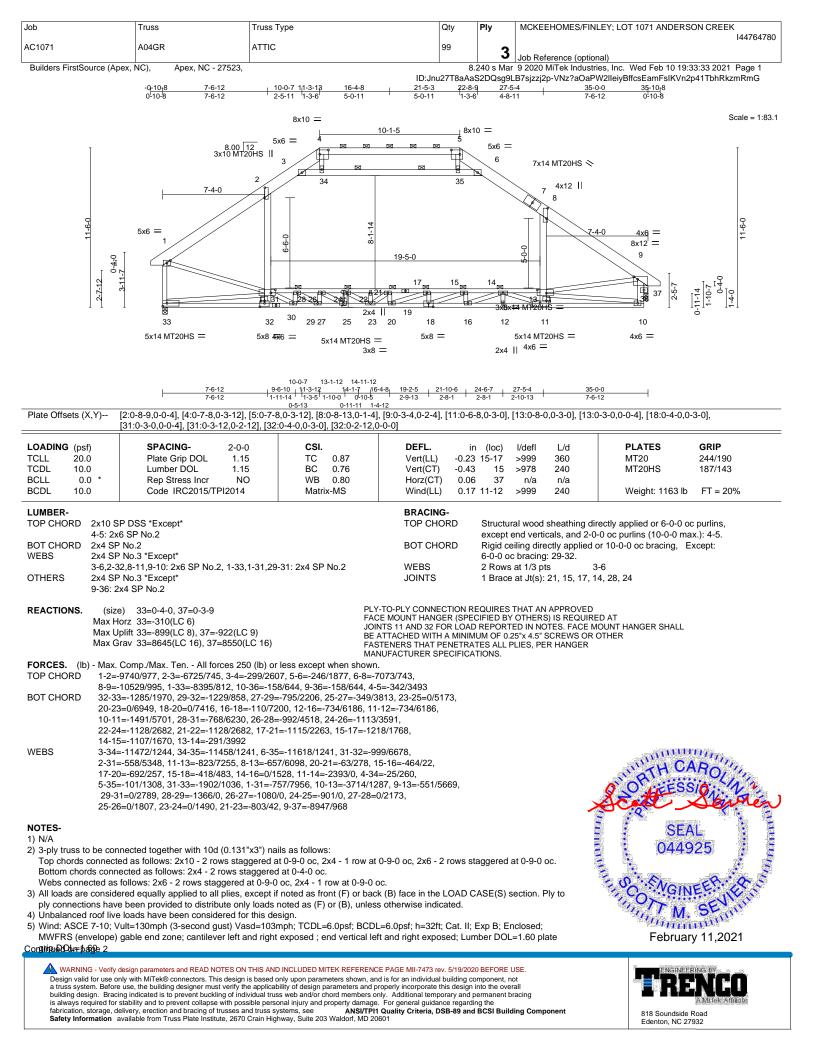
9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 30-33, 28-30, 26-28, 24-26, 23-24, 19-23, 17-19, 16-17, 15-16
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK		
					144764779		
AC1071	A04	ATTIC	99	1			
					Job Reference (optional)		
Builders FirstSource (Apex, I	NC), Apex, NC - 27523,	8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:30 2021 Page 2					
		ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-5oltyNYWE7MknFDc_X29cx8jd4EdafEeLVN1qPzmRmJ					

NOTES-


9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 30-33, 28-30, 26-28, 24-26, 23-24, 19-23, 17-19, 16-17, 15-16

10) Bearing at joint(s) 39 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK
					144764780
AC1071	A04GR	ATTIC	99	2	
				3	Job Reference (optional)
Builders FirstSource (Apex	, NC), Apex, NC - 27523,		8	.240 s Mar	9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:33 2021 Page 2

ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-VNz?aOaPW2lleiyBffcsEamFslKVn2p41TbhRkzmRmG

NOTES-

6) Provide adequate drainage to prevent water ponding.

All plates are MT20 plates unless otherwise indicated.

8) All plates are 3x6 MT20 unless otherwise indicated.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 11) Ceiling dead load (5.0 psf) on member(s). 2-3, 6-8, 3-34, 34-35, 6-35; Wall dead load (5.0 psf) on member(s).2-31, 8-13
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 28-31, 26-28, 24-26, 22-24, 21-22, 17-21, 15-17, 14-15, 13-14
- 13) Bearing at joint(s) 37 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 33=899, 37=922.
- 15) Magnitude of user added load(s) on this truss have been applied uniformly across all gravity load cases with no adjustments.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 6457 lb down and 1096 lb up at 7-9-8, and 6457 lb down and 1096 lb up at 27-2-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

18) Attic room checked for L/360 deflection.

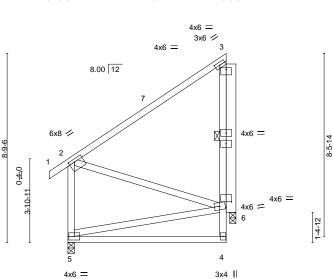
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 10-33=-20, 1-2=-60, 2-3=-70, 3-4=-60, 5-6=-60, 6-8=-70, 8-9=-60, 3-6=-10, 13-31=-30, 4-5=-60 Drag: 2-31=-10, 8-13=-10

Concentrated Loads (lb)


Vert: 32=-5705(F) 11=-5705(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type		Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK	
10/07/	1.05					14	14764781
AC1071	A05	MONO TRUSS		99	1	Job Reference (optional)	
Builders FirstSource, Apex, NC		L.				8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:40:33 2021 Pa	
				ID:Jnu2718aAa	aS2DQsg9L	_B7sjzzj2p-FSSaVewebnbqnMukY8S?se93lbkCB6_ucpLwAOzm	nRfi
		-0-10-8	7-4-0	7-9-8			
		0-10-8	7-4-0	0-5-8			

Scale = 1:53.4

1-		7-9-8										
				1		7-9-8						
Plate Off	Plate Offsets (X,Y) [2:0-3-0,0-1-8], [3:0-3-0,0-0-15], [3:0-2-12,0-1-8], [6:0-3-0,0-3-0]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.09	4-5	>994	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.17	4-5	>505	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.34	Horz(CT)	-0.00	6	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-MS	Wind(LL)	-0.01	4-5	>999	240	Weight: 80 lb	FT = 20%

	2x4 SP No.2	BRACING- TOP CHORD	end verticals.	rectly applied or 6-0-0 oc purlins, except	t
WEBS OTHERS	2x4 SP No.3 2x6 SP No.2	BOT CHORD	Rigid ceiling directly applied of 6-0-0 oc bracing: 3-4	or 10-0-0 oc bracing. Except:	

REACTIONS. (size) 5=0-3-8, 6=0-3-8 Max Horz 5=192(LC 9) Max Uplift 6=-367(LC 12)

Max Grav 5=346(LC 1), 6=1278(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-5=-280/42

BOT CHORD 3-6=-1141/333 WEBS 2-6=-294/315, 5-6=-352/267

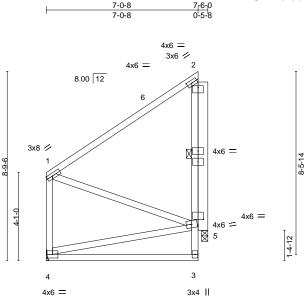
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-6 to 3-11-4, Interior(1) 3-11-4 to 7-2-4 zone; cantilever left and right evenesed i and visited left and right or an advection of the provided and foregoes. MMVERS for reacting above, I update DOL 1.60 plate
- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 367 lb uplift at joint 6.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 934 lb down and 181 lb up at 7-9-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 4-5=-20, 1-2=-60, 2-3=-60

Concentrated Loads (lb) Vert: 3=-825


mponent 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK				
					144764782				
AC1071	A05A	MONO TRUSS	99	1					
					Job Reference (optional)				
Builders FirstSource, Apex,	Builders FirstSource, Apex, NC 8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:40:58 2021 Page 1								
	ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-0GT1IBEKiSIGHCIXWuPtNviLHgHdYR7aMCukZRzmŘtJ								

7-0-8

Scale = 1:53.4

7-6-0 7-6-0

Plate Off	e Offsets (X,Y) [2:0-2-12,0-1-8], [2:0-3-0,0-0-15], [5:0-3-0,0-3-4]											
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.69	Vert(LL)	-0.07	3-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.14	3-4	>565	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.28	Horz(CT)	-0.00	5	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	k-MS	Wind(LL)	-0.01	3-4	>999	240	Weight: 77 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS OTHERS 2x6 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 2-3

REACTIONS. (size) 4=Mechanical, 5=0-3-8

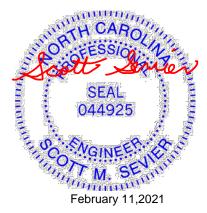
Max Horz 4=181(LC 9)

Max Uplift 5=-356(LC 12) Max Grav 4=270(LC 1), 5=1272(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

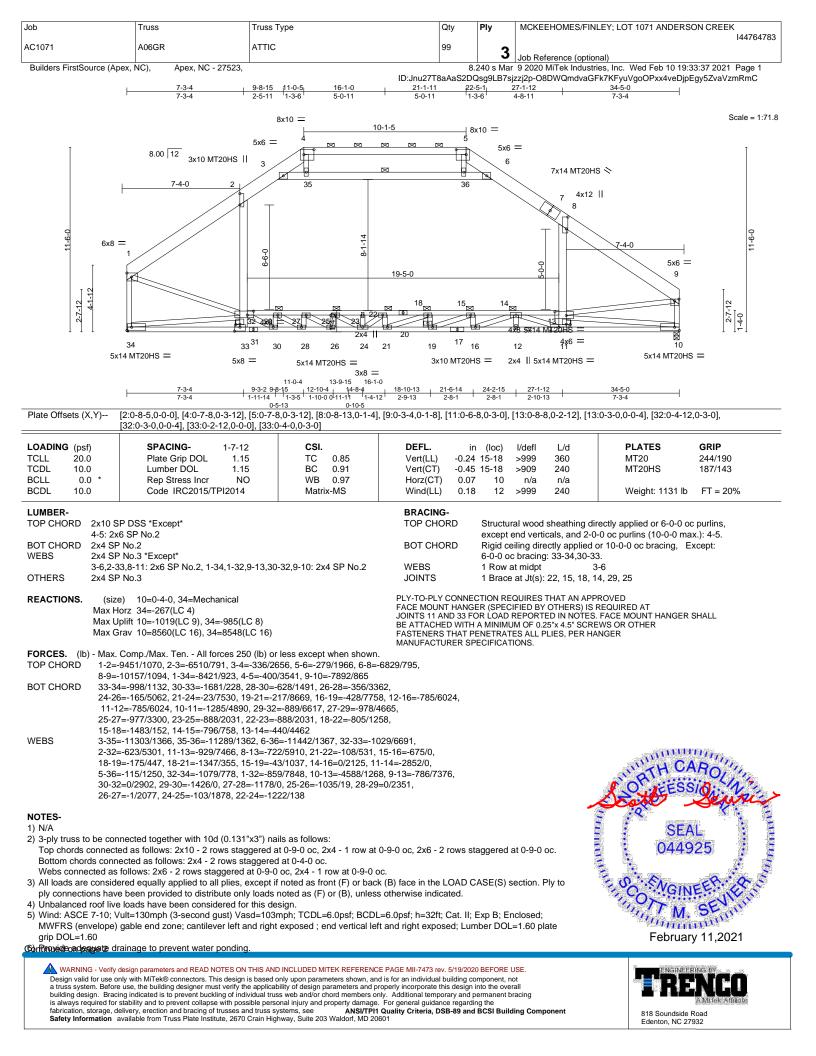
BOT CHORD 2-5=-1144/338

WEBS 1-5=-251/279, 4-5=-314/230


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-4 to 5-2-14, Interior(1) 5-2-14 to 7-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 356 lb uplift at joint 5.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 934 lb down and 183 lb up at 7-9-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 3-4=-20, 1-2=-60 Concentrated Loads (lb) Vert: 2=-825

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITHS KREPERENCE PAGE MIL-74/3 fev. or 19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

[Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK
						144764783
	AC1071	A06GR	ATTIC	99	2	
					3	Job Reference (optional)
	Builders FirstSource (Apex, I	NC), Apex, NC - 27523,		8.	240 s Mar	9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:37 2021 Page 2

ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-O8DWQmdvaGFk7KFyuVgoOPxx4veDjpEgy5ZvaVzmRmC

NOTES-

7) All plates are MT20 plates unless otherwise indicated.

8) All plates are 3x6 MT20 unless otherwise indicated.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Ceiling dead load (5.0 psf) on member(s). 2-3, 6-8, 3-35, 35-36, 6-36; Wall dead load (5.0 psf) on member(s). 2-32, 8-13
- 12) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 29-32, 27-29, 25-27, 23-25, 22-23, 18-22, 15-18, 14-15, 13-14 13) Refer to girder(s) for truss to truss connections.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=1019, 34=985.
- 15) Magnitude of user added load(s) on this truss have been applied uniformly across all gravity load cases with no adjustments.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 6457 lb down and 1096 lb up at 7-9-8, and 6457 lb down and 1096 lb up at 27-2-8, and 687 lb down and 117 lb up at 18-11-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 10-34=-16, 1-2=-49, 2-3=-58, 3-4=-49, 5-6=-49, 6-8=-58, 8-9=-49, 3-6=-8, 13-32=-25, 4-5=-49

Drag: 2-32=-8, 8-13=-8 Concentrated Loads (lb)

Vert: 33=-5705(F) 11=-5705(F) 19=-607(F)

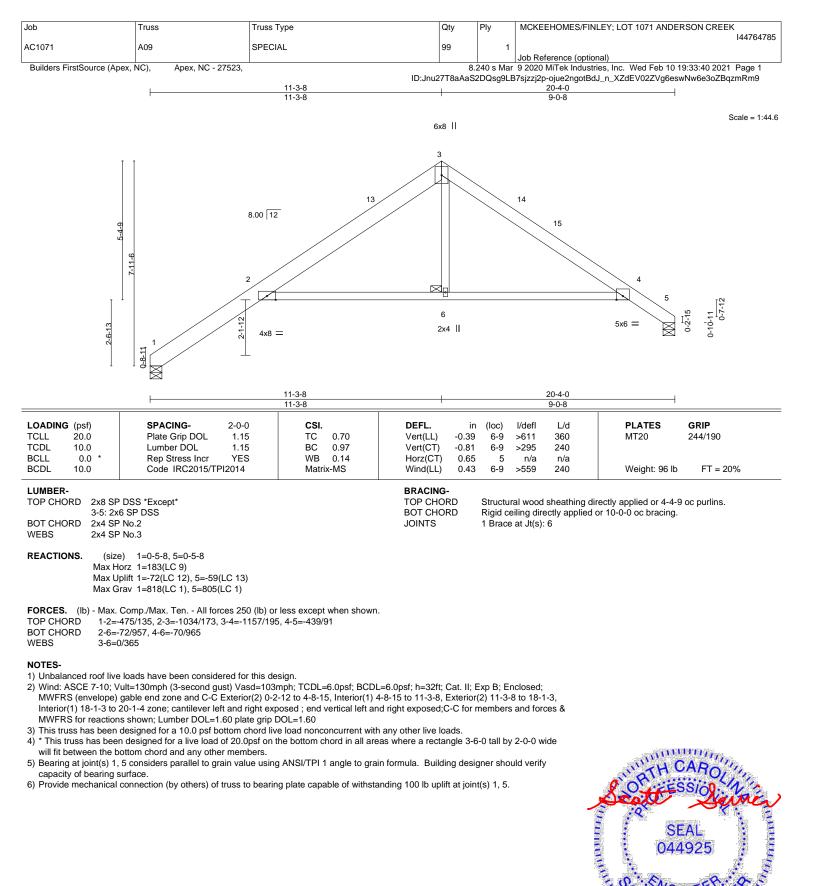
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- Interior(1) 16-1-7 to 21-5-3, Exterior(2) 21-5-3 to 26-2-12, Interior(1) 26-2-12 to 34-6-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 3x6 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Ceiling dead load (5.0 psf) on member(s). 2-3, 6-8, 3-34, 34-35, 6-35; Wall dead load (5.0psf) on member(s).2-30, 8-13
- 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 28-30, 26-28, 24-26, 22-24, 21-22, 18-21, 15-18, 14-15, 13-14

Contineer ton grinder (2) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

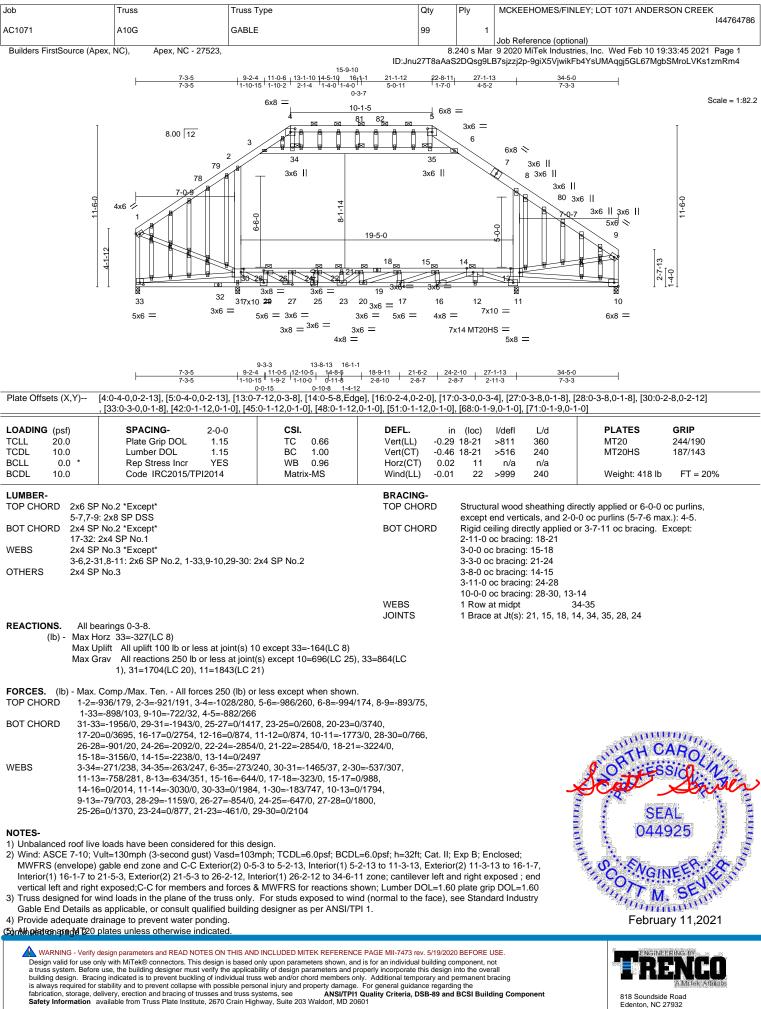
[Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK		
						144764784		
	AC1071	A08	ATTIC	99	1			
						Job Reference (optional)		
	Builders FirstSource (Apex, I	NC), Apex, NC - 27523,	8, 8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:					
			ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-KWKGqRf96uVSMdPL0wjGTq0IVjJaBkMzQP20fNzmRmA					


NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 11,2021

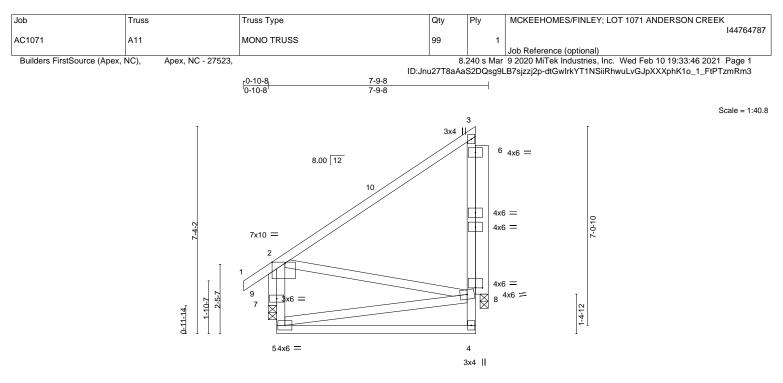
818 Soundside Road Edenton, NC 27932

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK			
					144764786			
AC1071	A10G	GABLE	99	1				
					Job Reference (optional)			
Builders FirstSource (Apex, NC), Apex, NC - 27523,		8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:46 2021 Page 2						
		ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-dtGwlrkYT1NSiiRhwuLvGJpWsXivKvb_1_FtPTzmRm3						

NOTES-

6) All plates are 2x4 MT20 unless otherwise indicated.


7) Gable studs spaced at 1-4-0 oc.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Ceiling dead load (5.0 psf) on member(s). 2-3, 6-8, 3-34, 34-35, 6-35; Wall dead load (5.0 psf) on member(s).2-30, 8-13
- 11) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 28-30, 26-28, 24-26, 22-24, 21-22, 18-21, 15-18, 14-15, 13-14
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 33=164.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

14) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ate Offsets (X,Y)	[2:0-5-8,Edge], [8:0-3-0,0-0-5]							
.OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.62	Vert(LL) -0.	10 4-5	>891	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.56	Vert(CT) -0.1	20 4-5	>444	240		
CLL 0.0 *	Rep Stress Incr NO	WB 0.43	Horz(CT) -0.0	02 8	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) 0.0	01 5	>999	240	Weight: 72 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except*
	2-5: 2x4 SP No.2
OTHERS	2x4 SP No.2 *Except*
	6-8: 2x6 SP No.2

REACTIONS. (size) 8=0-3-8, 9=0-3-8 Max Horz 9=207(LC 12) Max Uplift 8=-302(LC 12)

Max Grav 8=1102(LC 19), 9=379(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 3-8=-995/312

WEBS 2-9=-405/39

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 7-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 8, 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

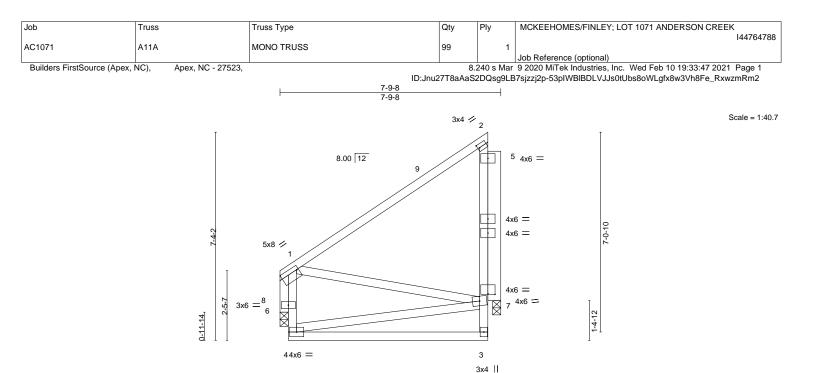
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=302.

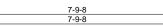
6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 831 lb down and 181 lb up at 7-9-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 4-5=-20, 1-3=-60 Concentrated Loads (lb)


MALLER


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Off	sets (X,Y)	[1:Edge,0-1-12], [2:0-0-1	3,0-1-8], [7:0-3	3-0,0-0-5]		1					1	
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	-0.10	3-4	>891	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.20	3-4	>444	240		
SCLL	0.0 *	Rep Stress Incr	NO	WB	0.33	Horz(CT)	-0.02	7	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	k-MS	Wind(LL)	0.01	4	>999	240	Weight: 71 lb	FT = 20%
		P No.2				BRACING- TOP CHOF		Structu	Iral wood	sheathing di	rectly applied or 6-0-0	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 1-4: 2x4 SP No.2 OTHERS

2x4 SP No.2 *Except* 5-7: 2x6 SP No.2 REACTIONS. (size) 7=0-3-8, 8=0-3-8

Max Horz 8=177(LC 12) Max Uplift 7=-299(LC 12) Max Grav 7=1105(LC 19), 8=297(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-7=-1009/321

BOT CHORD WEBS 1-8=-317/0

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-4 to 5-2-14, Interior(1) 5-2-14 to 7-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

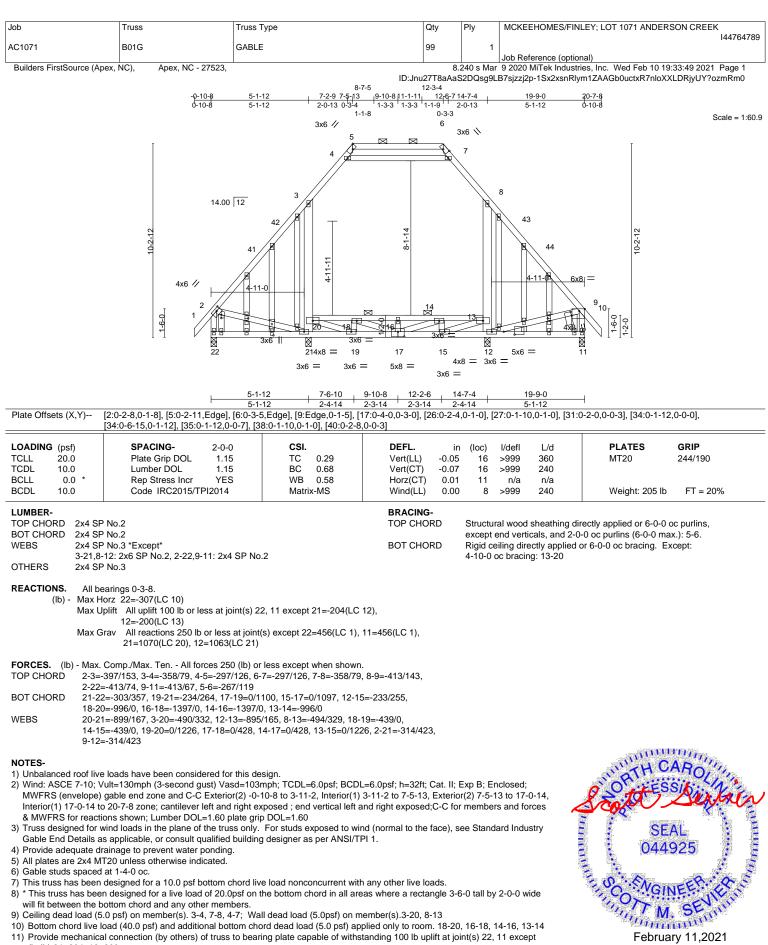
3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 7, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=299

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 831 lb down and 181 lb up at 7-9-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 3-4=-20, 1-2=-60 Concentrated Loads (lb) Vert: 2=-825

818 Soundside Road Edenton, NC 27932

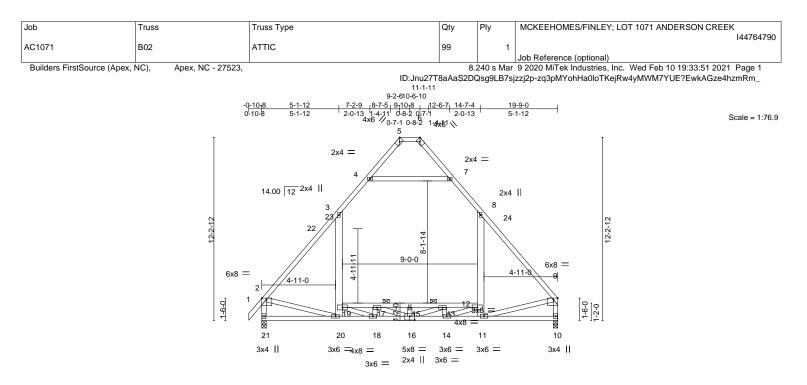
🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITHS KREPERENCE PAGE MIL-74/3 fev. or 19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Contilitude) 21 p200, 2 2=200.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK			
					144764789			
AC1071	B01G	GABLE	99	1				
					Job Reference (optional)			
Builders FirstSource (Apex, NC), Apex, NC - 275		8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:33:49 2021 Page 2						
		ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-1Sx2xsnRlym1ZAAGb0uctxR7nloXXLDRjyUY?ozmRm0						


NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	5-1-12	7-6-10	9-10-8	12-2-6	14-7-4	19-9-0
	5-1-12	2-4-14	2-3-14	2-3-14	2-4-14	5-1-12
den 1 10			140.0.4	0 0 0 01		

Plate Offsets (X,Y)	[2:Edge,0-1-5], [5:0-2-11,Edg	ge], [6:0-2-11,Edge], [Edge,0-1-5]	[16:0-4-0,0-3-0]						
LOADING (psf)	SPACING- 2	-0-0 CSI		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15 TC	0.75	Vert(LL)	-0.19	1 5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15 BC	0.67	Vert(CT)	-0.38	15	>617	240		
BCLL 0.0 *	Rep Stress Incr	YES WB	0.63	Horz(CT)	0.03	10	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI20	014 Mat	rix-MS	Wind(LL)	0.20	11	>999	240	Weight: 164 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP SS *Except*	TOP CHORD	Structural wood sheathing directly applied or 4-5-9 oc purlins,
	5-6: 2x4 SP No.2		except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 5-6.
BOT CHORD	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 9-3-0 oc bracing. Except:
WEBS	2x4 SP No.3 *Except*		4-1-0 oc bracing: 12-19
	4-7,2-21,9-10: 2x4 SP No.2, 3-20,8-11: 2x6 SP No.2		-

REACTIONS. (size) 21=0-3-8, 10=0-3-8 Max Horz 21=348(LC 9) Max Grav 21=1283(LC 21), 10=1242(LC 20)

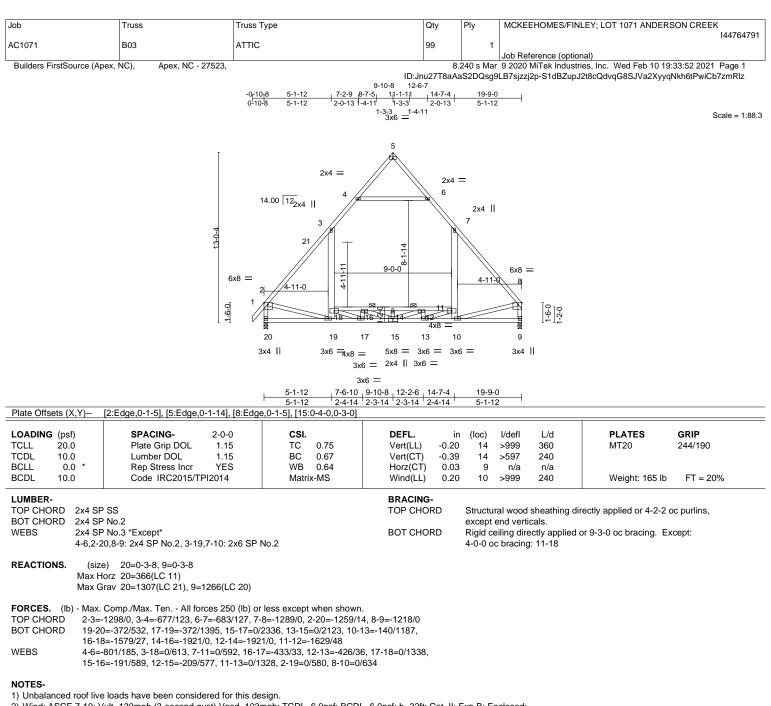
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1273/0, 3-4=-651/126, 7-8=-656/130, 8-9=-1264/0, 2-21=-1235/17, 9-10=-1195/0
- BOT CHORD 20-21=-354/514, 18-20=-372/1359, 16-18=0/2299, 14-16=0/2099, 11-14=-140/1164, 17-19=-1556/30, 15-17=-1896/0, 13-15=-1896/0, 12-13=-1604/49
- WEBS 4-7=-844/180, 3-19=0/612, 8-12=0/592, 17-18=-433/31, 13-14=-425/34, 18-19=0/1333, 16-17=-187/586, 13-16=-204/574, 12-14=0/1323, 2-20=0/586, 9-11=0/621


NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-6, Exterior(2) 9-2-6 to 15-4-4, Interior(1) 15-4-4 to 19-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-7; Wall dead load (5.0 psf) on member(s).3-19, 8-12
- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 17-19, 15-17, 13-15, 12-13

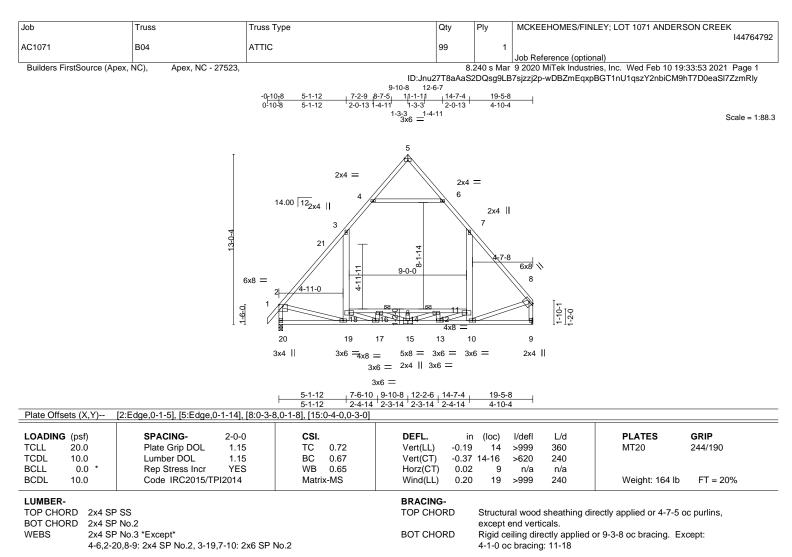
8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) Attic room checked for L/360 deflection.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITHS KREPERENCE PAGE MIL-74/3 fev. or 19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-10-8, Exterior(2) 9-10-8 to 14-7-4, Interior(1) 14-7-4 to 19-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Ceiling dead load (5.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0 psf) on member(s).3-18, 7-11

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-18, 14-16, 12-14, 11-12 7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 20=0-3-8, 9=Mechanical Max Horz 20=371(LC 11)

Max Grav 20=1289(LC 21), 9=1267(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1277/0, 3-4=-665/126, 6-7=-670/127, 7-8=-1229/0, 2-20=-1238/16, 8-9=-1228/0
- BOT CHORD 19-20=-377/530, 17-19=-367/1432, 15-17=0/2337, 13-15=0/2024, 10-13=-149/1053,
 - 16-18=-1600/22, 14-16=-1898/0, 12-14=-1898/0, 11-12=-1551/38
- WEBS 4-6=-776/184, 3-18=0/564, 16-17=-414/38, 12-13=-447/32, 17-18=0/1307, 15-16=-204/536, 12-15=-199/631, 11-13=0/1357, 2-19=0/571, 8-10=0/659

NOTES-

1) Unbalanced roof live loads have been considered for this design.

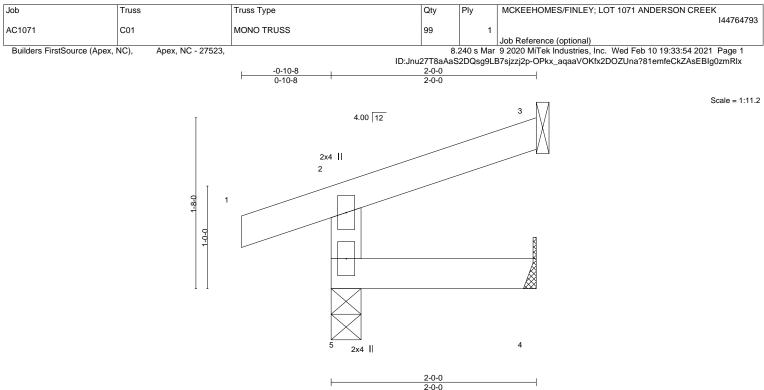
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-10-8, Exterior(2) 9-10-8 to 14-7-4, Interior(1) 14-7-4 to 19-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (5.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0 psf) on member(s).3-18, 7-11

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 16-18, 14-16, 12-14, 11-12 7) Refer to girder(s) for truss to truss connections.


Attice recent characteristic for the second connect
 Attice recent characteristic for the second connect

8) Attic room checked for L/360 deflection.

TRENCO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				2-0-0		
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc)	:) I/defl L/d	PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.10	Vert(LL) -0.00 5	5 >999 360	MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.00 4-5	5 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3	3 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-R	Wind(LL) 0.00 5	5 >999 240	Weight: 8 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 4=Mechanical, 3=Mechanical

Max Horz 5=39(LC 9)

Max Uplift 5=-50(LC 8), 3=-27(LC 12) Max Grav 5=152(LC 1), 4=34(LC 3), 3=41(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

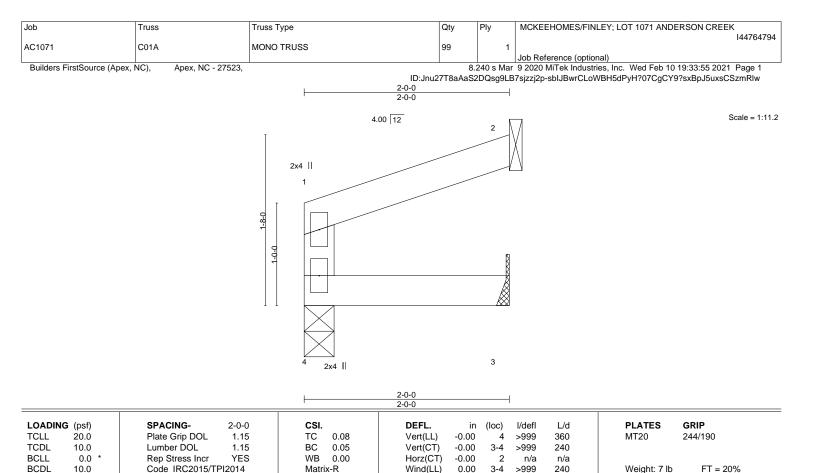
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

WEBS

TOP CHORD

BOT CHORD

REACTIONS.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

4=0-3-8, 3=Mechanical, 2=Mechanical

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Refer to girder(s) for truss to truss connections.

2x4 SP No.2

2x4 SP No.2

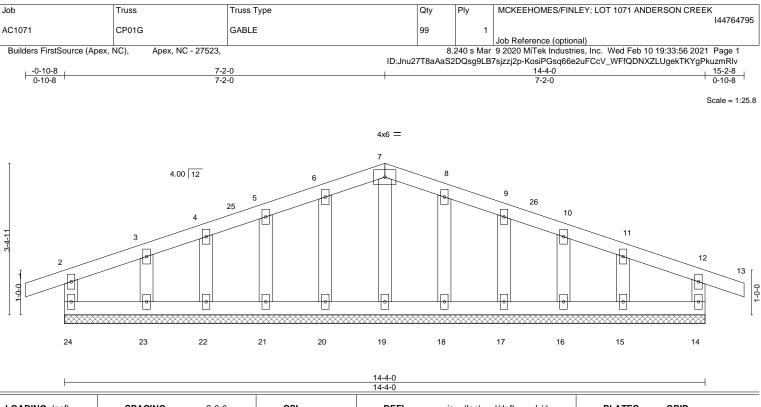
2x4 SP No.3

(size)

Max Horz 4=32(LC 9)

Max Uplift 4=-3(LC 8), 2=-30(LC 12) Max Grav 4=74(LC 1), 3=36(LC 3), 2=52(LC 1)

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.


Structural wood sheathing directly applied or 2-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	-0.00	13	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	13	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-R						Weight: 73 lb	FT = 20%

```
LUMBER-
```

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 14-4-0.

Max Uplift All uplift 100 lb or less at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 24, 14, 19, 20, 21, 22, 23, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

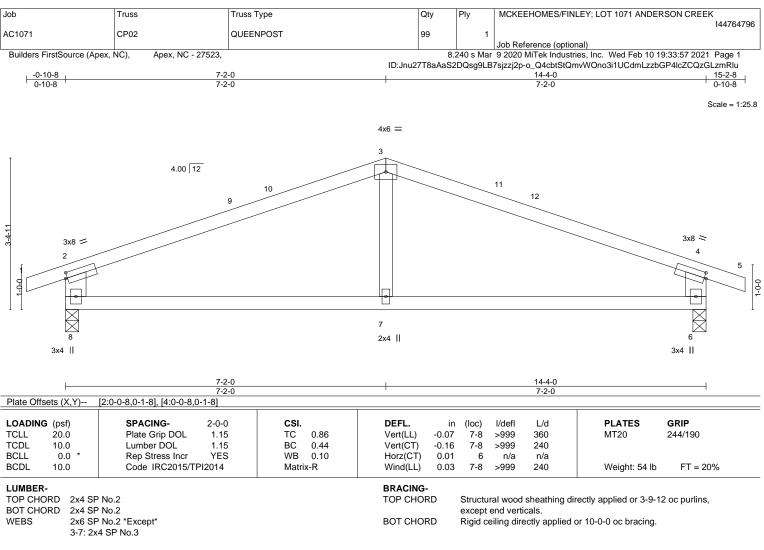
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 7-2-0, Exterior(2) 7-2-0 to 14-2-4, Interior(1) 14-2-4 to 15-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 14, 20, 21, 22, 23, 18, 17, 16, 15.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⁽lb) - Max Horz 24=33(LC 12)

REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=33(LC 12) Max Uplift 8=-127(LC 8), 6=-127(LC 9) Max Grav 8=621(LC 1), 6=621(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-757/185, 3-4=-757/185, 2-8=-537/232, 4-6=-537/232

BOT CHORD 7-8=-102/641, 6-7=-102/641

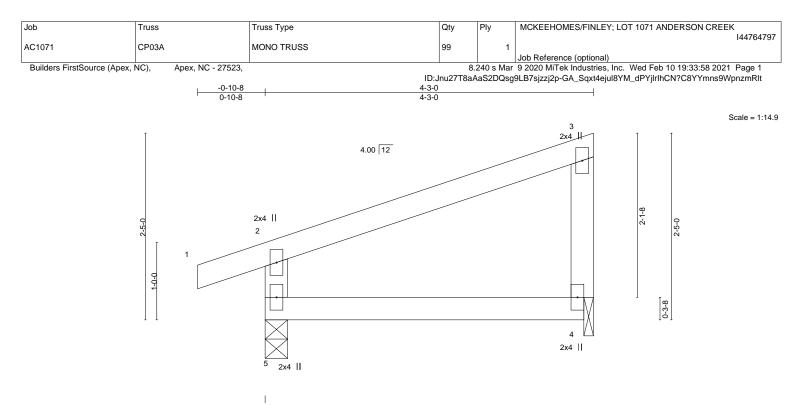
```
WEBS 3-7=0/264
```

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 7-2-0, Exterior(2) 7-2-0 to 14-1-4, Interior(1) 14-1-4 to 15-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=127, 6=127.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL) -0.01	4-5	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.13	Vert(CT) -0.02	4-5	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MR	Wind(LL) 0.00	4-5	>999	240	Weight: 18 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3 **REACTIONS.** (size) 5=0-3-8, 4=1

(size) 5=0-3-8, 4=0-1-8
 Max Horz 5=91(LC 9)
 Max Uplift 5=-68(LC 8), 4=-36(LC 12)
 Max Grav 5=227(LC 1), 4=150(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

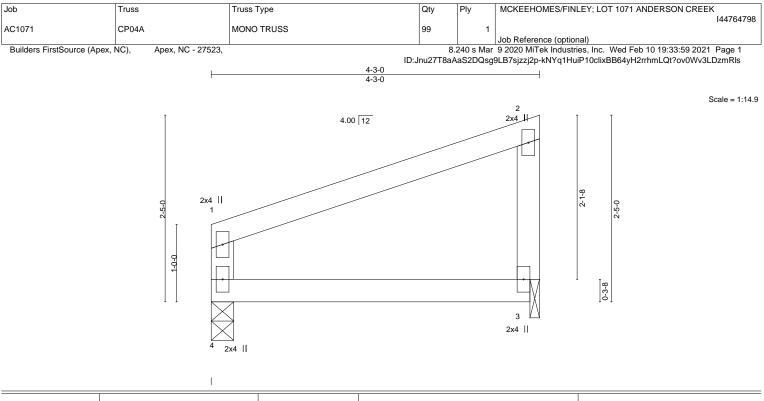
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.


Structural wood sheathing directly applied or 4-3-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL)	-0.01	3-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.14	Vert(CT)	-0.02	3-4	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-MR	Wind(LL)	0.00	3-4	>999	240	Weight: 16 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

WEBS 2x4 SP No.3 REACTIONS. (size) 4=0-3

IONS. (size) 4=0-3-8, 3=0-1-8 Max Horz 4=84(LC 9) Max Uplift 4=-24(LC 8), 3=-38(LC 12) Max Grav 4=158(LC 1), 3=158(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

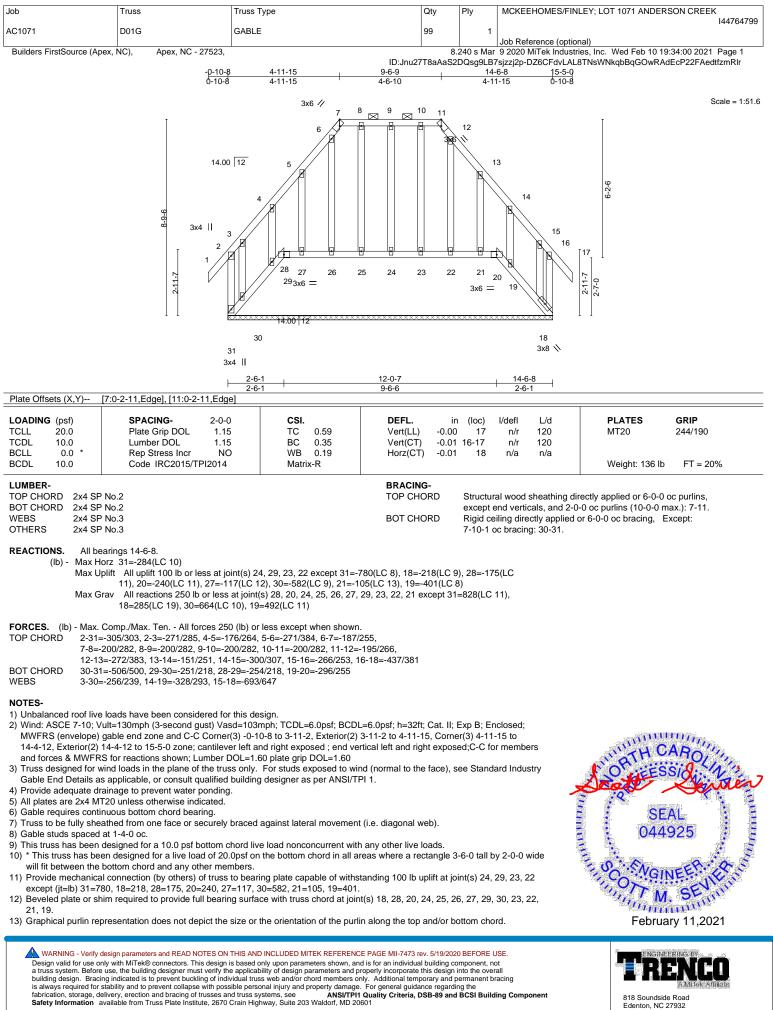
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

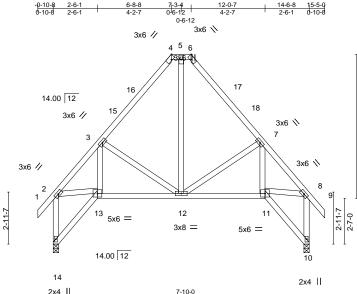
- 4) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.

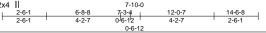

Structural wood sheathing directly applied or 4-3-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





Edenton, NC 27932

8.240 s Mar 9 2020 MiTek Industries, Inc. Wed Feb 10 19:34:02 2021 Page 1 ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-9yDzfJxbhyOBdAgIsFdfvhTMo_KE4J0LiU7kyYzmRIp 7-10-0 7-10-0 2-6-1 6-8-8 7-3-4 12-0-7 14-6-8 15-5-9 2-6-1 4-2-7 046-12 2-6-1 0-10-8 0-6-12 3x6 \> Scale = 1:65.5

Plate Offsets (X,Y)	4:0-2-11,Edge], [6:0-2-11,Edge]		1					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.21	Vert(LL)	-0.02 11-12	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.26	Vert(CT)	-0.04 11-12	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.23	Horz(CT)	0.05 10	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL)	0.01 13	>999	240	Weight: 113 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

	18/	DE	•
L.(ואוכ	BE	R-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3

- REACTIONS. (size) 14=0-3-8, 10=0-3-8 Max Horz 14=-340(LC 10) Max Uplift 14=-62(LC 13), 10=-62(LC 12) Max Grav 14=631(LC 1), 10=631(LC 1)
- FORCES.
 (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-14=-739/226, 2-3=-816/253, 3-4=-512/213, 4-5=-384/216, 5-6=-384/216, 6-7=-514/225, 7-8=-650/190, 8-10=-607/211

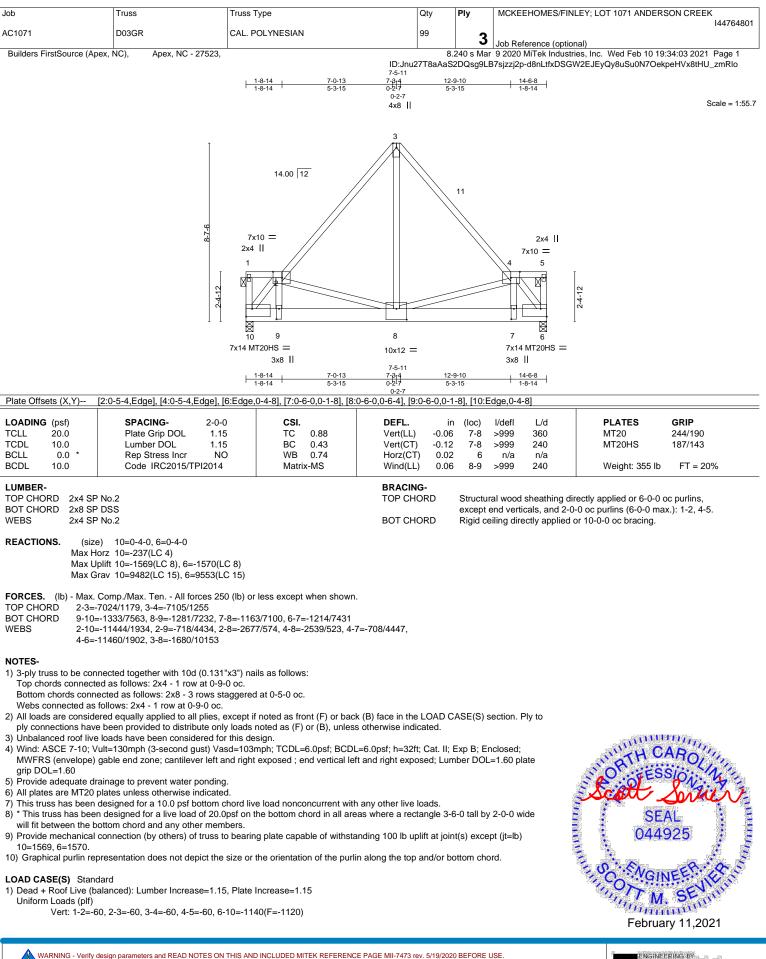
 BOT CHORD
 13-14=-500/470, 12-13=-355/674, 11-12=-61/485

 WEBS
 2-13=-85/467, 3-13=-295/378, 8-11=-39/449, 5-12=-173/496, 3-12=-389/288, 7-12=-303/204

10-9-6

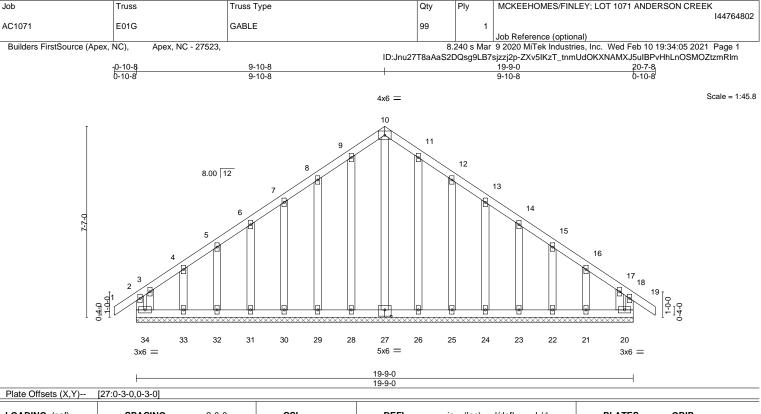
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 6-8-8, Exterior(2) 6-8-8 to 14-4-12, Interior(1) 14-4-12 to 15-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 14, 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 10.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-6.

Rigid ceiling directly applied or 6-0-0 oc bracing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTeRK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.13 BC 0.07 WB 0.19 Matrix-R	DEFL. ir Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	19 n/i 19 n/i	120 120	PLATES MT20 Weight: 153 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2			BRACING- TOP CHORD	Structural wo		rectly applied or 10-0-0	oc purlins,

except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 19-9-0.

2x4 SP No.3

2x4 SP No.3

(lb) - Max Horz 34=209(LC 11)

 Max Uplift
 All uplift 100 lb or less at joint(s) 20, 28, 29, 30, 31, 32, 26, 25, 24, 23, 22 except 34=-103(LC 8), 33=-129(LC 12), 21=-117(LC 13)

 Max Grav
 All reactions 250 lb or less at joint(s) 34, 20, 27, 28, 29, 30, 31, 32, 33, 26, 25, 24, 23, 22, 21

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS

OTHERS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-6 to 3-11-4, Exterior(2) 3-11-4 to 9-10-8, Corner(3) 9-10-8 to 14-8-2, Exterior(2) 14-8-2 to 20-7-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

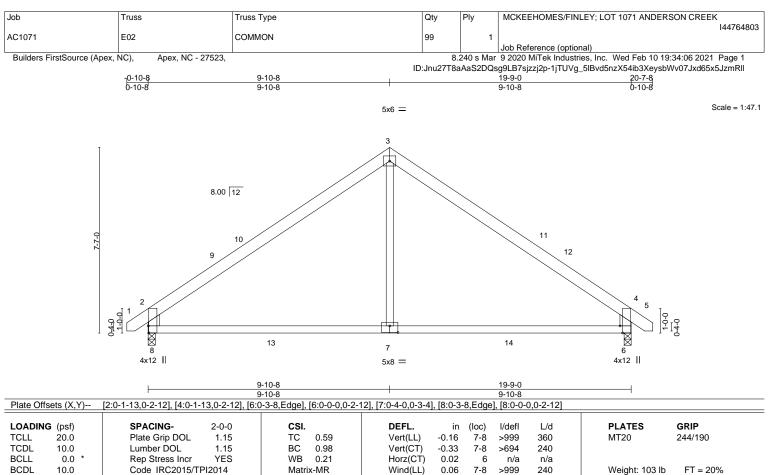
4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 1-4-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 28, 29, 30, 31, 32, 26, 25, 24, 23, 22 except (jt=lb) 34=103, 33=129, 21=117.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MElek Aff 818 Soundside Road Edenton, NC 27932

 LUMBER BRACING

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x6 SP No.2*Except*

 3-7: 2x4 SP No.3
 BOT CHORD

REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=205(LC 11) Max Uplift 8=-87(LC 12), 6=-87(LC 13) Max Grav 8=906(LC 19), 6=906(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

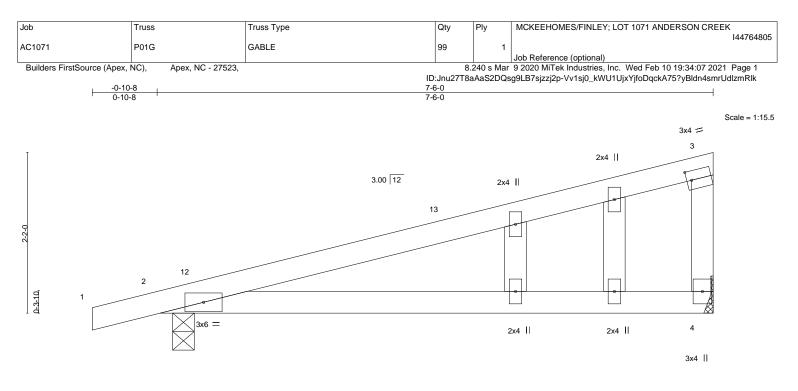
- TOP CHORD 2-8=-803/209, 2-3=-1011/152, 3-4=-1011/152, 4-6=-803/209
- BOT CHORD 7-8=-13/760, 6-7=-13/760
- WEBS 3-7=0/541

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-9 to 4-1-1, Interior(1) 4-1-1 to 9-10-8, Exterior(2) 9-10-8 to 16-7-15, Interior(1) 16-7-15 to 20-5-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0-2-8 0-2-8				7-6	-					
Plate Offsets (X,Y					7-3	.8					
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.		(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.62 0.59	Vert(LL) Vert(CT)	-0.09 -0.21	4-11 4-11	>946 >421	360 240	MT20	244/190
BCLL 0.0 BCDL 10.0	* Rep Stress Incr Code IRC2015/T	YES FPI2014	WB Matrix	0.00 <-MS	Horz(CT) Wind(LL)	0.00 0.13	4 4-11	n/a >673	n/a 240	Weight: 30 lb	FT = 20%
LUMBER-					BRACING-						
TOP CHORD 2>	(4 SP No.2				TOP CHOR			ral wood	•	rectly applied or 6-0-0	oc purlins,

TOP CHORD2x4 SP No.2TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc p
except end verticals.BOT CHORD2x4 SP No.2BOT CHORDExcept end verticals.WEBS2x4 SP No.3BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.OTHERS2x4 SP No.3Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8 Max Horz 2=107(LC 11)

Max Uplift 4=-108(LC 12), 2=-155(LC 8) Max Grav 4=289(LC 1), 2=351(LC 1)

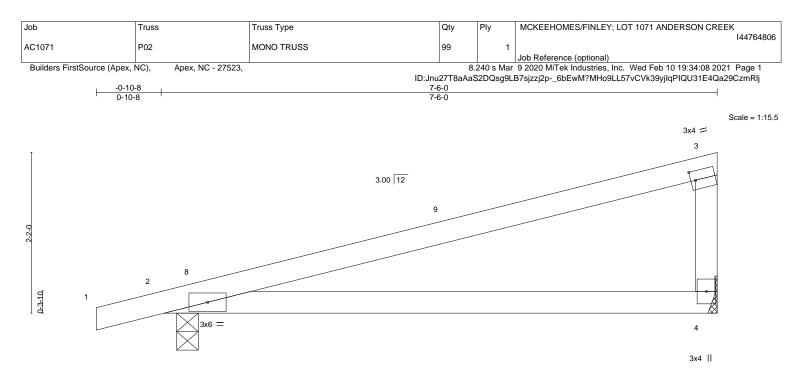
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 7-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 1-4-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=108, 2=155.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

0-2-8 0-2-8			7-6-0 7-3-8					
Plate Offsets (X,Y) [3:0-0-12,0-1-8]	TT					1	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.62	Vert(LL) -0	0.09 4-	, 7 >946	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.59	Vert(CT) -0	0.21 4-	7 >421	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) (0.00	4 n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-MS	Wind(LL) (0.10 4-	7 >897	240	Weight: 26 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2	· · · · ·	BRACING- TOP CHORD	Stru	ctural wood	sheathing di	irectly applied or 6-0-0) oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

REACTIONS. (size) 4=Mechanical, 2=0-3-8

Max Horz 2=80(LC 11) Max Uplift 4=-59(LC 12), 2=-91(LC 8)

Max Grav 4=289(LC 1), 2=351(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

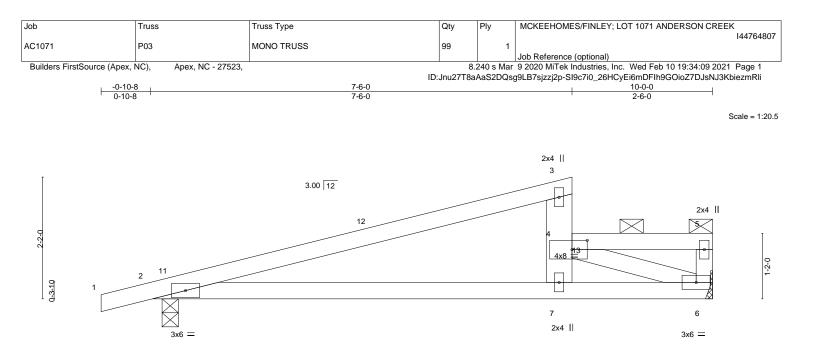
NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 7-4-4 zone; cantilever left and right

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

AMERICA AND A MULEIR AND A MULE

Plate Offsets (X,Y)	0-2-8 0-2-8 [4:0-3-4,0-2-0]		7-6-0 7-3-8					7-7-12 0-1-12	10-0-0 2-4-4	I
LOADING (psf)	SPACING- 2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.1		0.94	Vert(LL)	-0.13	7-10	>913	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.1	BC	0.94	Vert(CT)	-0.27	7-10	>436	240		
BCLL 0.0 *	Rep Stress Incr NO	WB	0.86	Horz(CT)	0.02	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix	-MS	Wind(LL)	0.13	7-10	>889	240	Weight: 39 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 3-1-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied or 9-5-3 oc bracing.
	3-7: 2x6 SP No.2		

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=66(LC 12) Max Uplift 6=-102(LC 9), 2=-120(LC 8) Max Grav 6=701(LC 1), 2=539(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-892/186

BOT CHORD 2-7=-200/831, 6-7=-393/1720

WEBS 4-7=0/261, 4-6=-1718/387

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

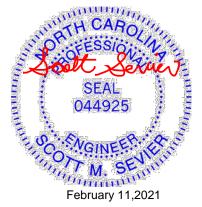
6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=102, 2=120.

8) N/A

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 428 lb down and 135 lb up at 7-8-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

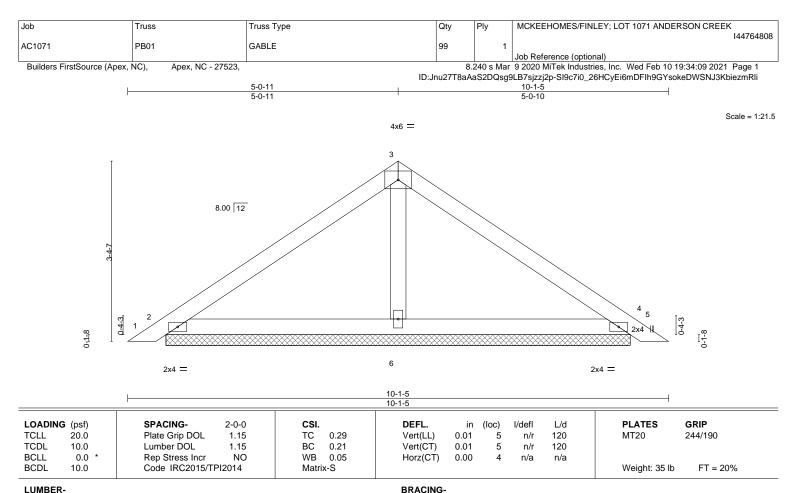

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 6-8=-20, 4-5=-60

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON	
AC1071	P03	MONO TRUSS	99	1		144764807
					Job Reference (optional)	
Builders FirstSource (Ap	ex, NC), Apex, N	C - 27523,	ID:Jnu271		r 9 2020 MiTek Industries, Inc. Wed Feb 10 19:34:0 sg9LB7sjzzj2p-Sl9c7i0_26HCyEi6mDFIh9GOioZ7DJ	
LOAD CASE(S) Stand	lard					
Concentrated Loads Vert: 13=-4	(lb)					
		Attic Floor: Lumber Increase=1.15, Plate Incre	ease=1.15			
Uniform Loads (plf)	,					
	0, 6-8=-20, 4-5=-80					
Concentrated Loads Vert: 13=-3	· /					
		ease=0.90 Plt. metal=0.90				
Uniform Loads (plf)						
u /	20, 6-8=-20, 4-5=-60					
Concentrated Load	()					
Vert: 13=-2						
19) Dead + 0.75 Roof L Uniform Loads (plf)	()	Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Lef	t): Lumber Increase	=1.60, Plate	Increase=1.60	
	25, 2-3=-29, 6-8=-20,	4-5=-72				
	-25, 2-3=-21, 5-6=7	, 10-72				
Concentrated Load	s (lb)					
Vert: 13=-4						
	ive (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Rig	ht): Lumber Increas	e=1.60, Pla	te Increase=1.60	
Uniform Loads (plf)	35, 2-3=-39, 6-8=-20,	4-559				
	-15, 2-3=-11, 5-6=-21					
Concentrated Load	, ,					
Vert: 13=-3						
	ive (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st	Parallel): Lumber Ir	crease=1.6	0, Plate Increase=1.60	
Uniform Loads (plf)		4 5 70				
	25, 2-3=-29, 6-8=-20, -25, 2-3=-21, 5-6=3	, 4-5=-72				
Concentrated Load	, ,					
Vert: 13=-4	106					
	ive (bal.) + 0.75 Attic	Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd	d Parallel): Lumber I	ncrease=1.6	60, Plate Increase=1.60	
Uniform Loads (plf)	44 0 44 40 0 44	12 6 9 20 4 5 50				
	41, 2-11=-46, 3-11=-4 -9, 2-11=-4, 3-11=-8,					
Concentrated Load		5 6- 15				
Vert: 13=-3						
		+ 0.75 Attic Floor: Lumber Increase=1.15, Pla	ate Increase=1.15			
Uniform Loads (plf)						
Concentrated Load	50, 6-8=-20, 4-5=-50					
Vert: 13=-3	()					
26) 4th Dead + 0.75 Ro	of Live (unbalanced)	+ 0.75 Attic Floor: Lumber Increase=1.15, Pla	ate Increase=1.15			
Uniform Loads (plf)						
Vert: 1-3=- Concentrated Load	20, 6-8=-20, 4-5=-80					
Vert: 13=-	()					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of trusses and truss systems. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD BOT CHORD

2x4 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. (size) 2=8-8-3, 4=8-8-3, 6=8-8-3 Max Horz 2=-80(LC 10) Max Uplift 2=-43(LC 12), 4=-54(LC 13), 6=-13(LC 12) Max Grav 2=198(LC 1), 4=198(LC 1), 6=352(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

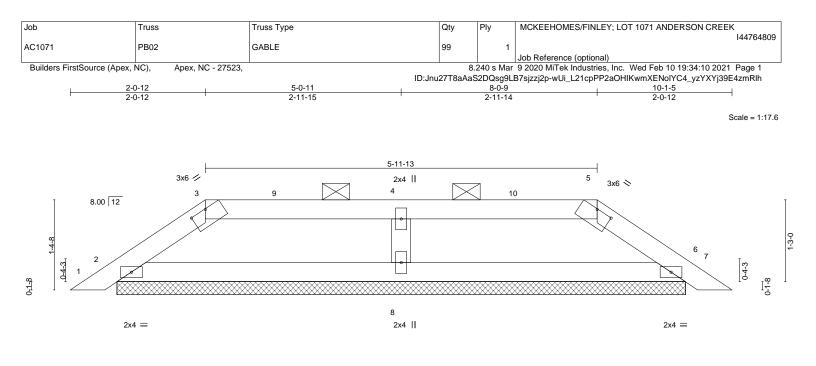
5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITHS KREPERENCE PAGE MIL-74/3 fev. or 19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>10-1-5</u> 10-1-5					
Plate Offsets (X,Y)	[3:0-3-0,0-0-2], [5:0-3-0,0-0-2]							
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) (0.00 7	n/r	120	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.20	Vert(CT) (0.00 7	n/r	120		
CLL 0.0 *	Rep Stress Incr NO	WB 0.06	Horz(CT) (0.00 6	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 30 lb	FT = 20%
UMBER-			BRACING-					
TOP CHORD 2x4 SF	P No.2		TOP CHORD	Structu	ral wood sh	eathing dir	ectly applied or 6-0-0) oc purlins, excep
BOT CHORD 2x4 SF	P No.2			2-0-0 o	c purlins (6	-0-0 max.):	3-5.	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3

REACTIONS. (size) 2=8-8-3, 6=8-8-3, 8=8-8-3 Max Horz 2=-31(LC 10)

Max Tiol 2 2=31(LC 10) Max Uplift 2=-34(LC 12), 6=-34(LC 13), 8=-40(LC 9) Max Grav 2=214(LC 1), 6=214(LC 1), 8=321(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-3-2 to 6-10-6, Exterior(2) 6-10-6 to 8-0-9, Corner(3) 8-0-9 to 9-10-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

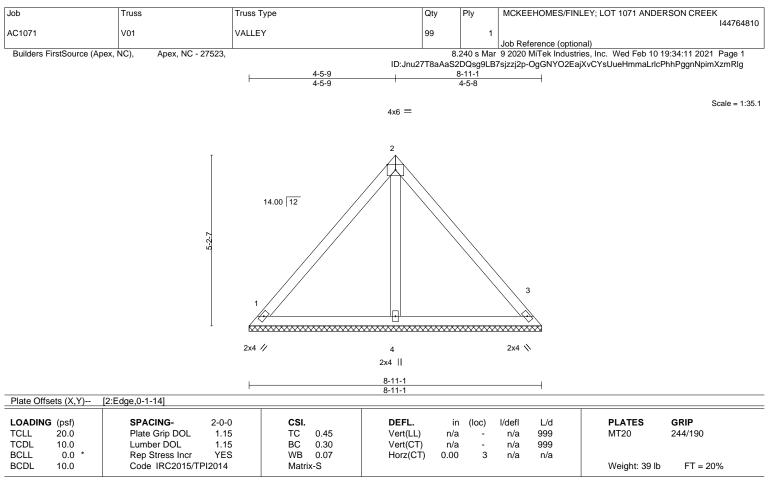
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 8.
 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ent 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3OTHERS2x4 SP No.3

I SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=8-11-1, 3=8-11-1, 4=8-11-1

Max Horz 1=-127(LC 8) Max Uplift 1=-44(LC 13), 3=-32(LC 12), 4=-6(LC 12) Max Grav 1=192(LC 1), 3=192(LC 1), 4=278(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

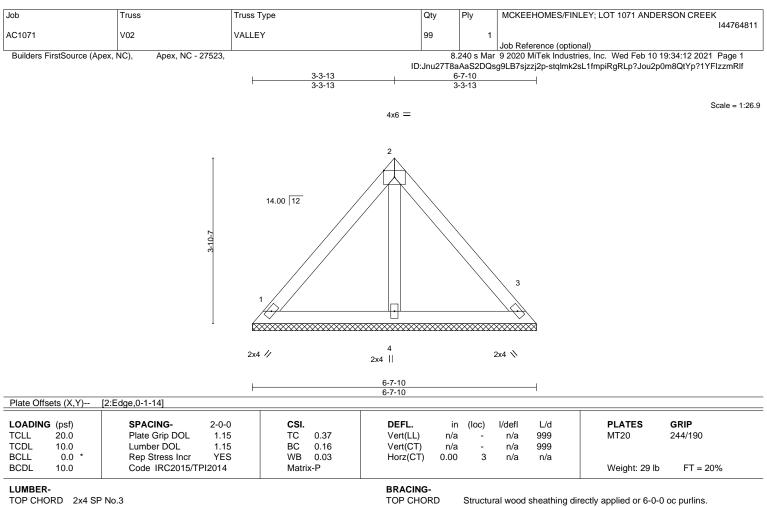
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3OTHERS2x4 SP No.3

REACTIONS. (size) 1=6-7-10, 3=6-7-10, 4=6-7-10

Max Horz 1=-92(LC 8) Max Uplift 1=-43(LC 13), 3=-35(LC 12)

Max Grav 1=149(LC 1), 3=149(LC 1), 4=186(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

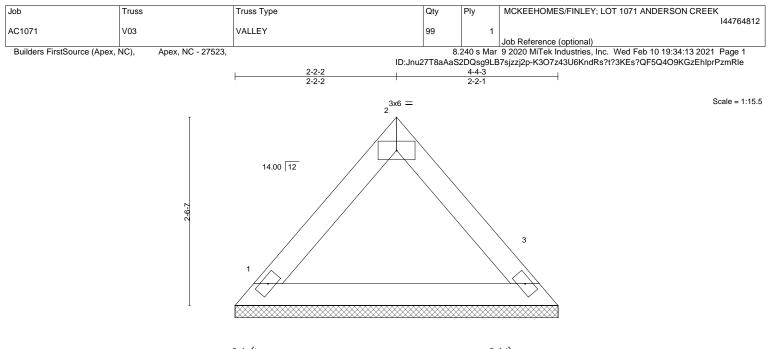
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 //

2x4 📏

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.28 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-4-3 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=4-4-3, 3=4-4-3 Max Horz 1=-57(LC 8) Max Uplift 1=-16(LC 13), 3=-16(LC 12)

Max Grav 1=149(LC 1), 3=149(LC 1)

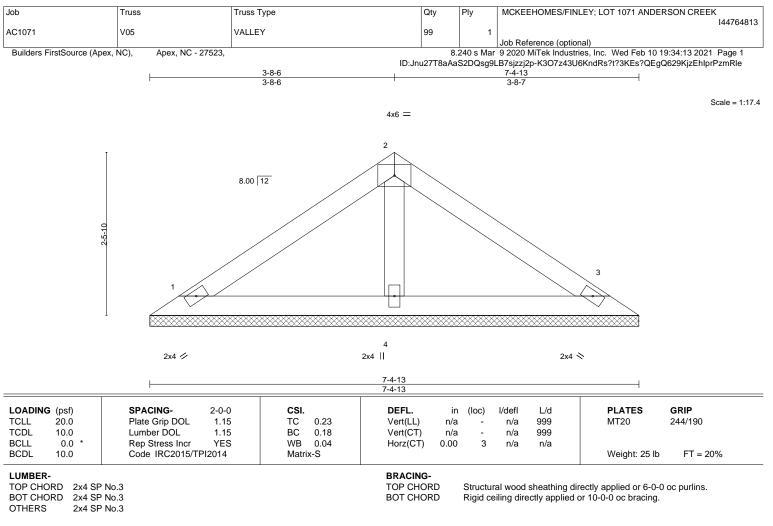
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. 1=7-4-13, 3=7-4-13, 4=7-4-13 (size) Max Horz 1=54(LC 9) Max Uplift 1=-24(LC 12), 3=-32(LC 13), 4=-11(LC 12) Max Grav 1=126(LC 1), 3=126(LC 1), 4=264(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

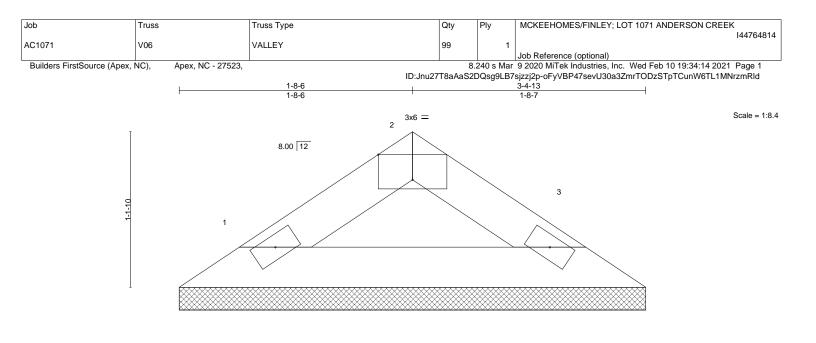
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed;

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED WITHS KREPERENCE PAGE MIL-74/3 fev. or 19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 🥢

2x4 🚿

Structural wood sheathing directly applied or 3-4-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

			<u>3-4-13</u> 3-4-13	
Plate Offsets (X,Y)	[2:0-3-0,Edge]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L	/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.04	Vert(LL) n/a - n/a 99	99 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.12	Vert(CT) n/a - n/a 99	99
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a n	/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P		Weight: 10 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. 1=3-4-13, 3=3-4-13 (size) Max Horz 1=20(LC 11) Max Uplift 1=-11(LC 12), 3=-11(LC 13) Max Grav 1=98(LC 1), 3=98(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

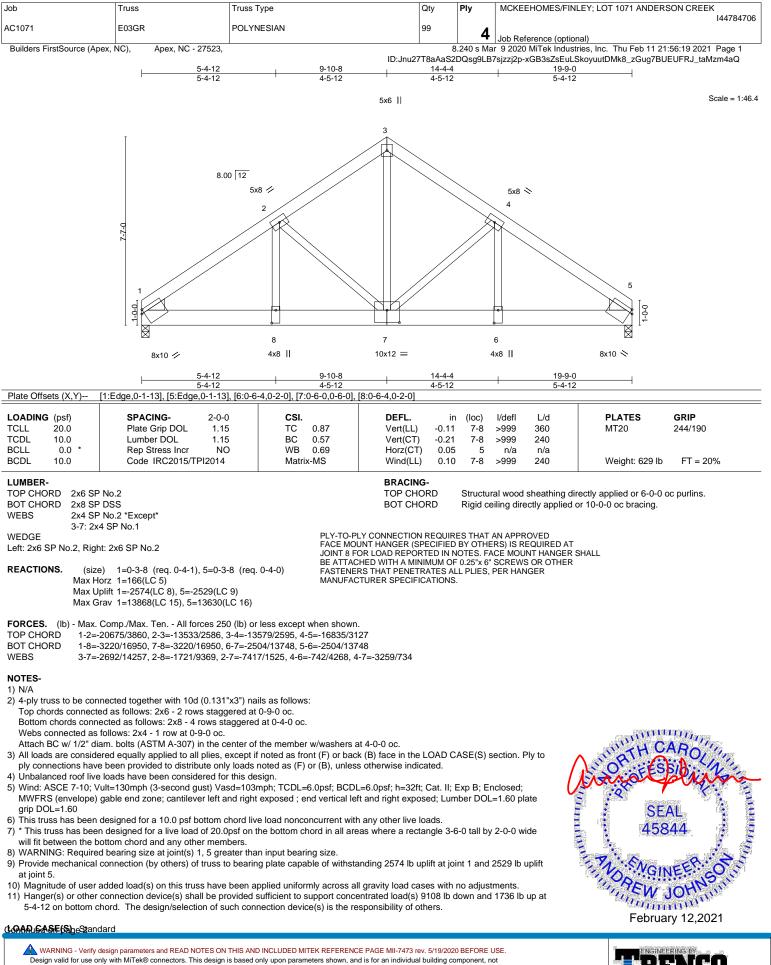
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MTReK on CARD NOTES ON THIS AND INCLUDED WITH REKEPERENCE PAGE WITH 473 (9, 519/2020 BEPORE USE. Design valid for use only with MTReK onnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	MCKEEHOMES/FINLEY; LOT 1071 ANDERSON CREEK
					144784706
AC1071	E03GR	POLYNESIAN	99		
				4	Job Reference (optional)
Builders FirstSource (Apex,	NC), Apex, NC - 27523,			8.240 s Ma	9 2020 MiTek Industries, Inc. Thu Feb 11 21:56:19 2021 Page 2

ID:Jnu27T8aAaS2DQsg9LB7sjzzj2p-xGB3sZsEuLSkoyuutDMk8_zGug7BUEUFRJ_taMzm4aQ

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 8-9=-155(F=-135), 8-12=-1140(F=-1120) Concentrated Loads (Ib)

Vert: 8=-9037(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

