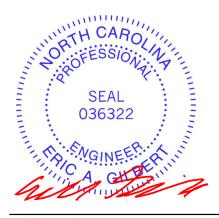


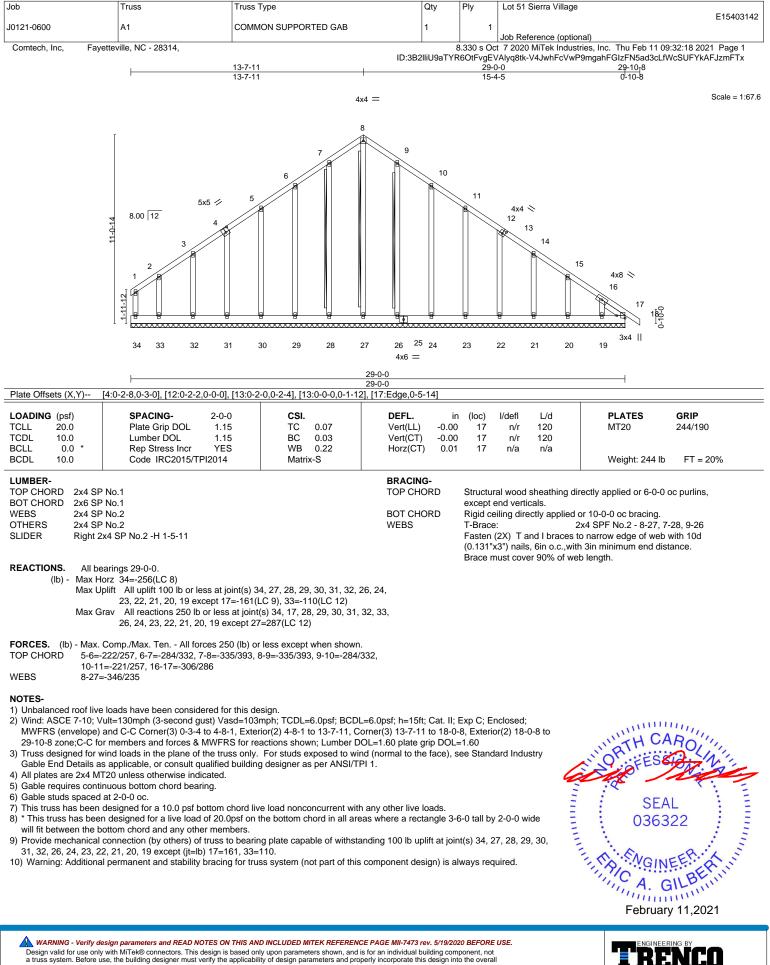
Trenco 818 Soundside Rd Edenton, NC 27932

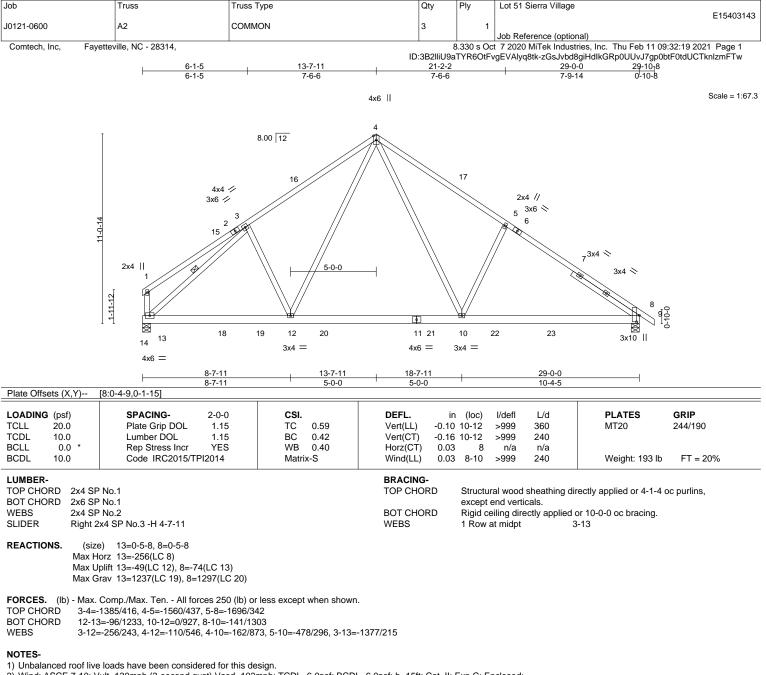

Re: J0121-0600 Lot 51 Sierra Village

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15403142 thru E15403168

My license renewal date for the state of North Carolina is December 31, 2021.


North Carolina COA: C-0844

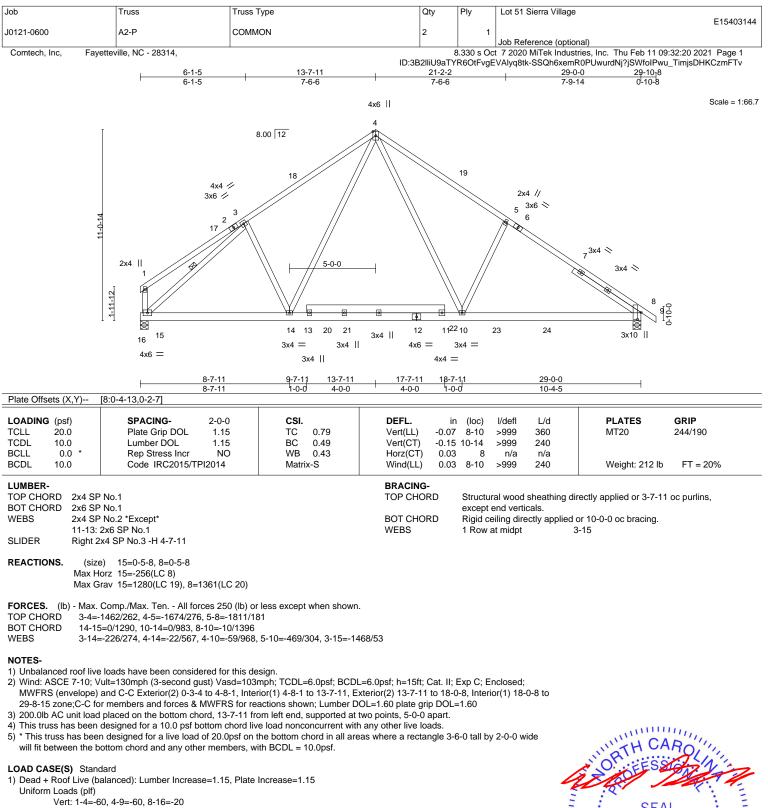

February 11,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

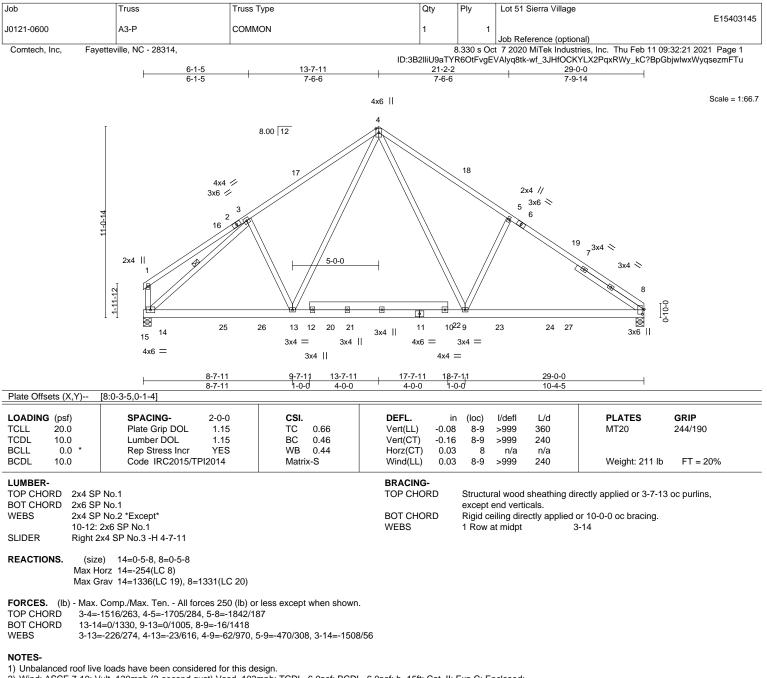
Design valid for use only using the manners and table builts of the applicability of parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 13-7-11, Exterior(2) 13-7-11 to 18-0-8, Interior(1) 18-0-8 to 29-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

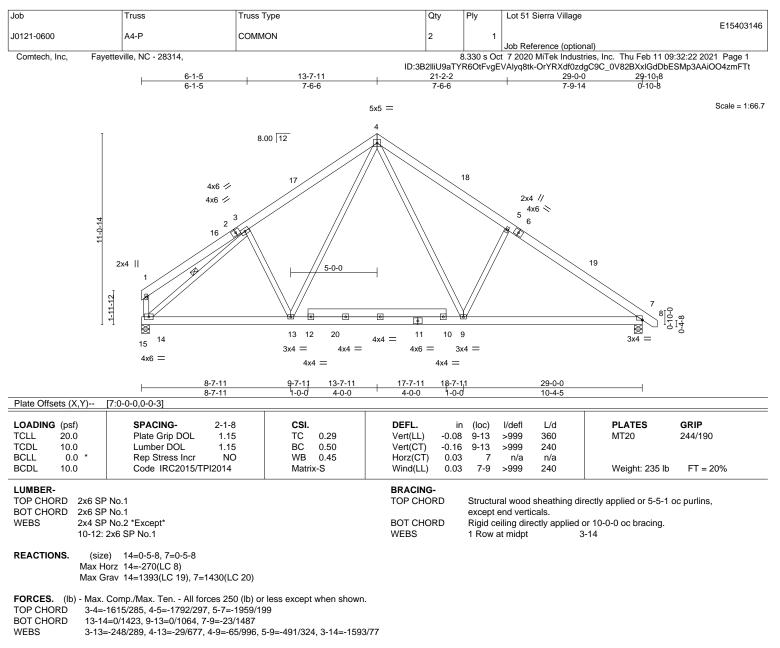
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 8.



- Concentrated Loads (lb)
- Vert: 12=-100 21=-100

818 Soundside Road Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 13-7-11, Exterior(2) 13-7-11 to 18-0-8, Interior(1) 18-0-8 to 29-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) 200.0lb AC unit load placed on the bottom chord, 13-7-11 from left end, supported at two points, 5-0-0 apart.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

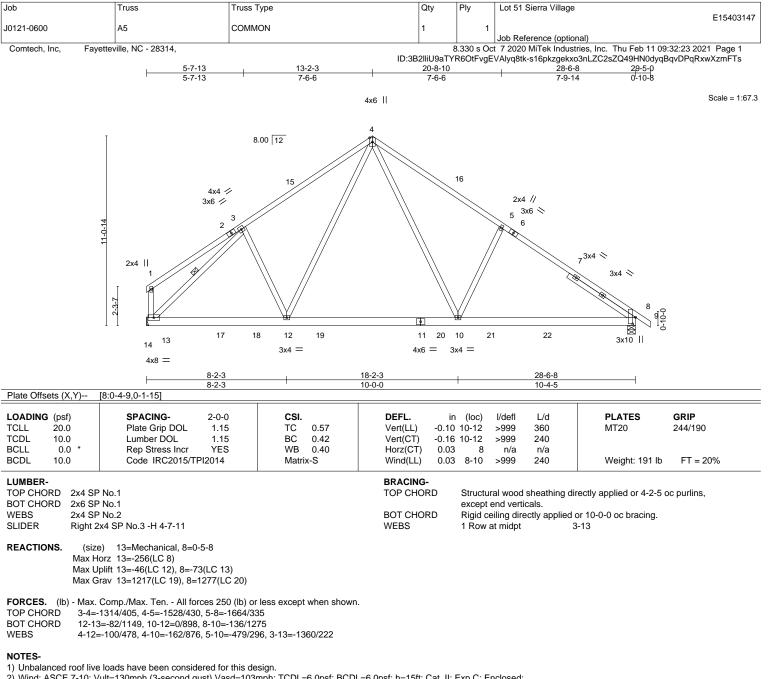
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 13-7-11, Exterior(2) 13-7-11 to 18-0-8, Interior(1) 18-0-8 to 29-8-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) 200.0lb AC unit load placed on the bottom chord, 13-7-11 from left end, supported at two points, 5-0-0 apart.

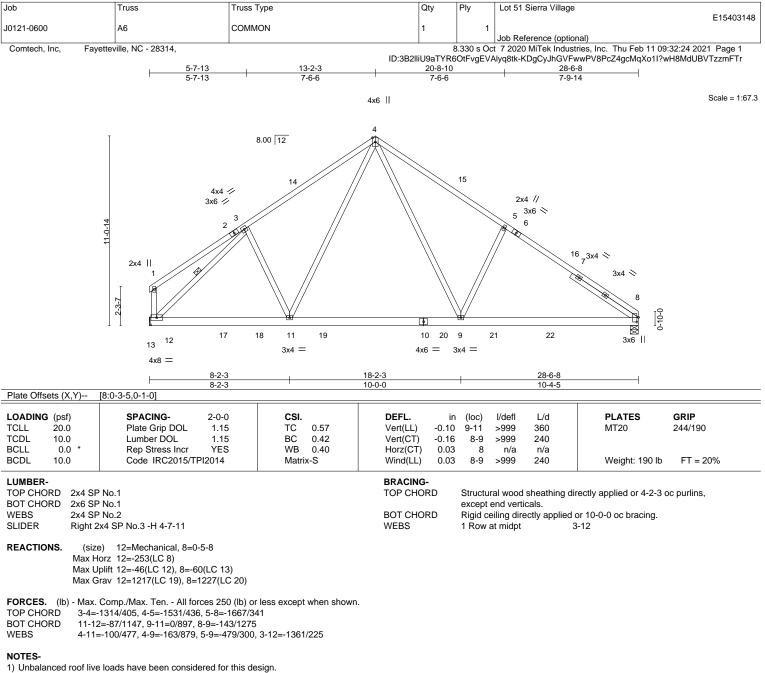
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

818 Soundside Road Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 13-2-3, Exterior(2) 13-2-3 to 17-7-0, Interior(1) 17-7-0 to 29-5-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

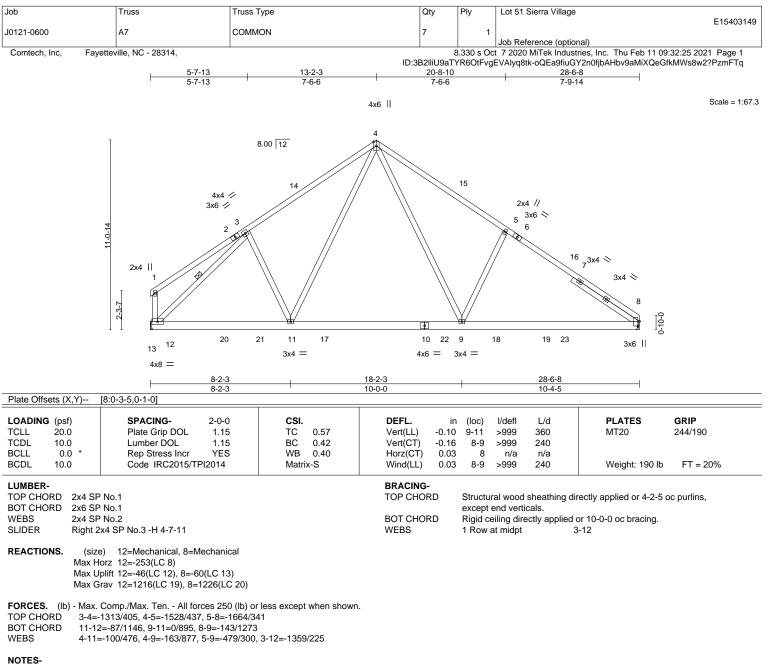

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 8.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 13-2-3, Exterior(2) 13-2-3 to 17-7-0, Interior(1) 17-7-0 to 28-6-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 13-2-3, Exterior(2) 13-2-3 to 17-7-0, Interior(1) 17-7-0 to 28-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

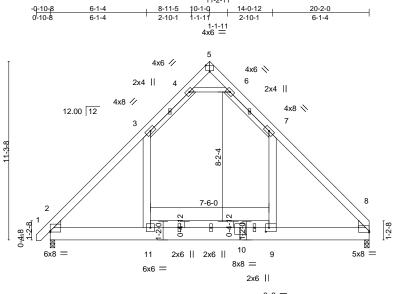
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8.

1-6	T	Tures Trues	0.		
Job J0121-0600	Truss A8	Truss Type GABLE	Qty	Ply Lot 51 Sierra Villag	e E15403150
	vyetteville, NC - 28314,			Job Reference (opti	onal) stries, Inc. Thu Feb 11 09:32:26 2021 Page 1
Connech, Inc, Fa	iyelleville, NC - 20314,	13-2-3	ID:3B2lliU9		iX1sAeepInk_68hnv_vq4aODaf5ogbXrzmFTp
		13-2-3		15-4-5	
			4x4 =		Scale = 1:67.
		8.00 12 7 8	9	. 12	
				4x4 × 13 14 15	
	³⁴ 33 32	31 30 29 28	27 26 25 24	23 22 21 20	3x4 19
			4x6 = 28-6-8		
Plate Offsets (X,Y)	[4.0-0-0 0-1-12] [4.0-2-0 0-2-	4], [5:0-2-2,0-0-0], [13:0-2-2,0-0	28-6-8	0-0 0-1-12] [18:Edge 0-5-14]	—————————
LOADING (psf) TCLL 20.0	SPACING- 2- Plate Grip DOL 1	0-0 CSI. .15 TC 0.08	DEFL. i Vert(LL) n/s	n (loc) l/defl L/d a - n/a 999	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0		.15 BC 0.03 ES WB 0.27 14 Matrix-S	Vert(CT) n/s Horz(CT) -0.03		Weight: 239 lb FT = 20%
BOT CHORD 2x6 S	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins. l or 10-0-0 oc bracing. 2x4 SPF No.2 - 9-27, 8-28, 10-26
	2x4 SP No.2 -H 1-5-11		WEDS	Fasten (2X) T and I braces	to narrow edge of web with 10d th 3in minimum end distance.
(lb) - Max Max	18=-255(LC 11), 27=-102 Grav All reactions 250 lb or le	t joint(s) 1, 28, 29, 30, 31, 32, 3 (LC 10), 19=-165(LC 13) (ss at joint(s) 34, 1, 28, 29, 30, =458(LC 12), 26=252(LC 20)			
TOP CHORD 6-7 11-	=-251/313, 7-8=-315/393, 8-9= 12=-251/394, 12-13=-263/352,	250 (lb) or less except when sh 364/456, 9-10=-364/469, 10-11 13-15=-284/312, 15-16=-302/3	1=-315/442,		
BOT CHORD 33- 28-: 22-:	29=-295/313, 27-28=-295/313, 23=-295/313, 21-22=-295/313,	31-32=-295/313, 30-31=-295/3 26-27=-295/313, 24-26=-295/3 20-21=-295/313, 19-20=-295/3	13, 23-24=-295/313,		
	7=-434/266				
2) Wind: ASCE 7-10; MWFRS (envelope Exterior(2) 17-7-0 DOL=1.60	e) gable end zone and C-C Cor to 28-6-8 zone;C-C for member	Vasd=103mph; TCDL=6.0psf; E ner(3) 0-0-0 to 4-4-13, Exterior(s and forces & MWFRS for rea	2) 4-4-13 to 13-2-3, Corner(ctions shown; Lumber DOL=	3) 13-2-3 to 17-7-0, =1.60 plate grip	NORTH CARO
Gable End Details 4) All plates are 2x4 f 5) Gable requires cor	as applicable, or consult qualif MT20 unless otherwise indicate tinuous bottom chord bearing.	russ only. For studs exposed t ed building designer as per AN d.		see Standard Industry	SEAL 036322
 8) * This truss has be between the bottor 9) Provide mechanica 	n designed for a 10.0 psf botton en designed for a live load of 2 n chord and any other member al connection (by others) of trus	s to bearing plate capable of w	Il areas with a clearance gre	ater than 6-0-0 int(s) 1, 28, 29, 30, 31,	SEAL 036322
	22, 21, 20 except (jt=lb) 18=25 hal permanent and stability brac	5, 27=102, 19=165. ing for truss system (not part o	f this component design) is a		February 11,2021
Design valid for use or a truss system. Before building design. Braci is always required for	nly with MiTek® connectors. This design use, the building designer must verify ng indicated is to prevent buckling of in	ON THIS AND INCLUDED MITEK REFE is based only upon parameters shown he applicability of design parameters ar ividual truss web and/or chord membe ssible personal injury and property dam on truss swetsme. See	 and is for an individual building cor nd properly incorporate this design ir rs only. Additional temporary and per 	nponent, not nto the overall ermanent bracing g the	TRENGINEERING BY A MITEK Affiliate

billioning design: Dicking indicates to be prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



8.330 s Oct 7 2020 MiTek Industries, Inc. Thu Feb 11 09:32:27 2021 Page 1 ID:3B2lliU9aTYR6OtFvgEVAlyq8tk-koLKaKj9oAlVGztzHhdNE?S?EEKI7jhoKSP93IzmFTo 11-2-11

Structural wood sheathing directly applied or 5-4-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:72.8

							6x8	8 =				
			I.	6-1-4	1	14-0-12			20-2-0	1		
			Γ	6-1-4	I	7-11-8	1		6-1-4	1		
Plate Off	sets (X,Y)	[2:0-0-0,0-0-12], [5:0-3-0,	Edge], [8:0-0	-0,0-1-0], [9:0	-2-8,0-3-0], [10:0-4-0,0-5-0]						
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.13	9-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.25	9-11	>971	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-S	Wind(LL)	0.12	9-11	>999	240	Weight: 215 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1

BOT CHORD 2x10 SP No.1

WEBS 2x6 SP No.1 *Except*

4-6: 2x4 SP No.1, 3-4,6-7: 2x4 SP No.2

WEDGE

Left: 2x6 SP No.2 , Right: 2x6 SP No.2

REACTIONS.	(size)	2=0-3-8, 8=0-3-8
	Max Horz	2=322(LC 9)
	Max Grav	2=1218(LC 20), 8=1180(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1505/28, 3-4=-778/167, 4-5=-135/579, 5-6=-128/574, 6-7=-786/173, 7-8=-1482/20
- BOT CHORD 2-11=0/891, 9-11=0/891, 8-9=0/891
- WEBS 4-6=-1600/444, 3-11=-27/645, 7-9=-33/602

NOTES-

1) Unbalanced roof live loads have been considered for this design.

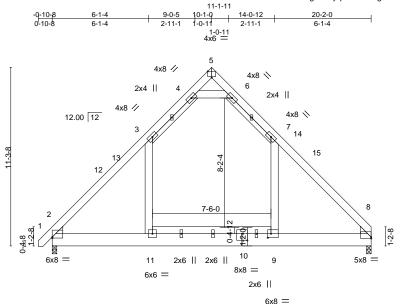
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-14 to 3-7-15, Exterior(2) 3-7-15 to 10-1-0, Corner(3) 10-1-0 to 14-5-13, Exterior(2) 14-5-13 to 20-0-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11 7) Attic room checked for L/360 deflection.



8.330 s Oct 7 2020 MiTek Industries, Inc. Thu Feb 11 09:32:28 2021 Page 1 ID:3B2lliU9aTYR6OtFvgEVAlyq8tk-D?vingknZTQMt7SArP8cnC_9ceeSsA0yY69ickzmFTn

Scale = 1:72.8

								-					
			1	6-1-4	1	14-0-12			20-2-0	1			
			[6-1-4	T	7-11-8	1		6-1-4	1			
Plate Of	fsets (X,Y)	[2:0-0-0,0-0-12], [5:0-3-0	,Edge], [8:0-0-	0,0-1-0], [9:0-2	-8,0-3-0], [10:0-4-0,0-5-0]							
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC (0.77	Vert(LL)	-0.13	9-11	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC (0.45	Vert(CT)	-0.25	9-11	>948	240			
BCLL	0.0 *	Rep Stress Incr	YES	WB (0.08	Horz(CT)	0.01	8	n/a	n/a			

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

0.09 9-11

>999

240

Structural wood sheathing directly applied or 5-6-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 217 lb

FT = 20%

LUMBER-TOP CHORD

10.0

2x6 SP No 1 BOT CHORD 2x10 SP No.1 2x6 SP No.1 *Except* WEBS 3-4,6-7: 2x4 SP No.2

WEDGE

BCDL

Left: 2x6 SP No.2 , Right: 2x6 SP No.2

REACTIONS.	(size)	2=0-3-8, 8=0-3-8
	Max Horz	2=258(LC 9)
	Max Grav	2=1224(LC 20), 8=1184(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

- TOP CHORD 2-3=-1484/0, 3-4=-774/140, 4-5=-127/630, 5-6=-113/624, 6-7=-783/149, 7-8=-1459/0
- BOT CHORD 2-11=0/865, 9-11=0/865, 8-9=0/865
- WEBS 4-6=-1672/365, 3-11=0/620, 7-9=-0/574

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-14 to 3-7-15, Interior(1) 3-7-15 to 10-1-0, Exterior(2) 10-1-0 to 14-5-13, Interior(1) 14-5-13 to 20-0-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

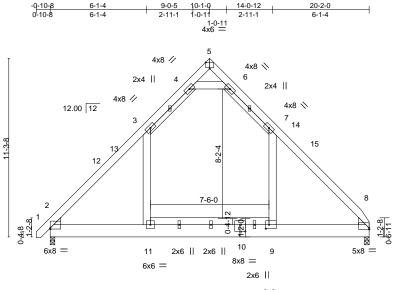
Matrix-S

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

- 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11

7) Attic room checked for L/360 deflection.



11-1-11

ID:3B2lliU9aTYR6OtFvgEVAlyq8tk-hBT5?0IPKnYDVG1MP6grJQXKM2_hbdG5nluF8AzmFTm

				6x8 =		
	1	6-1-4	14-0-12	1	20-2-0	
		6-1-4	7-11-8	1	6-1-4	
Plate Offsets (X,Y)	[2:0-0-0,0-0-12], [5:0-3-0,Edge], [8:0-0-	0,0-1-0], [9:0-2-8,0-3-0], [10:0-4-0,0-5-0]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.77	Vert(LL) -0	0.13 9-11	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.45	Vert(CT) -0	0.25 9-11	>948 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0	0.01 8	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0	0.09 9-11	>999 240	Weight: 217 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x10 SP No.1 2x6 SP No.1 *Except* WEBS

3-4,6-7: 2x4 SP No.2 WEDGE

Left: 2x6 SP No.2 , Right: 2x6 SP No.2

3-8, 8=0-3-8
8(LC 11)
24(LC 20), 8=1184(LC 20)
5

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1484/0, 3-4=-774/140, 4-5=-127/630, 5-6=-113/624, 6-7=-783/149, 7-8=-1459/0
- BOT CHORD 2-11=0/865, 9-11=0/865, 8-9=0/865
- WEBS 4-6=-1672/365, 3-11=0/620, 7-9=-0/574

NOTES-

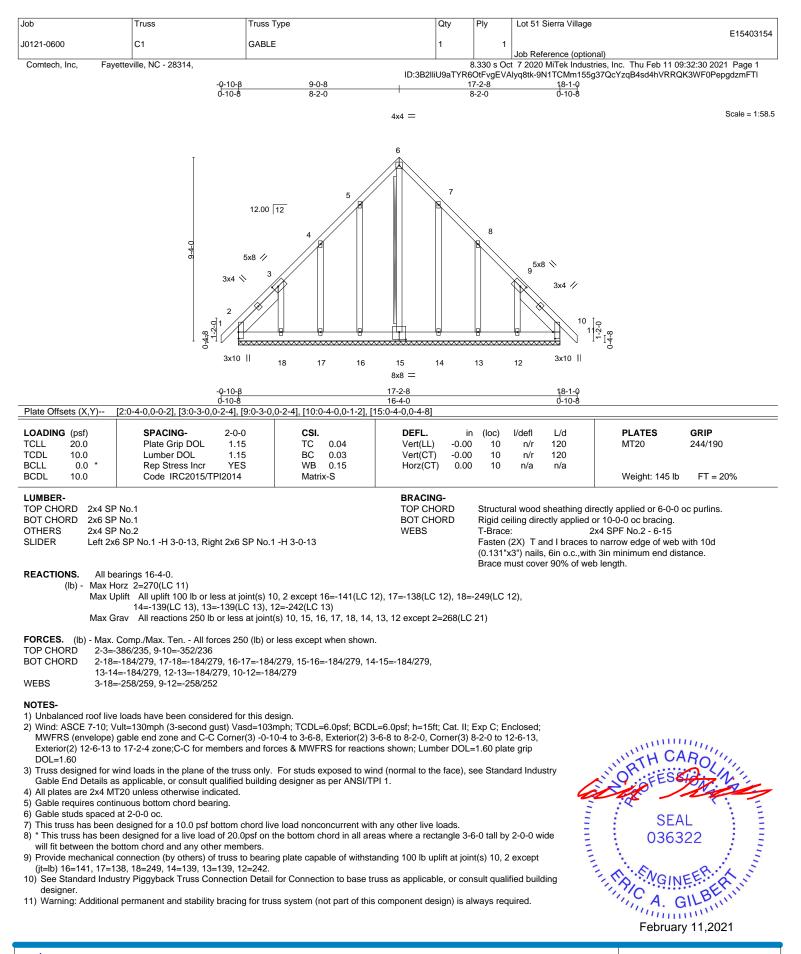
1) Unbalanced roof live loads have been considered for this design.

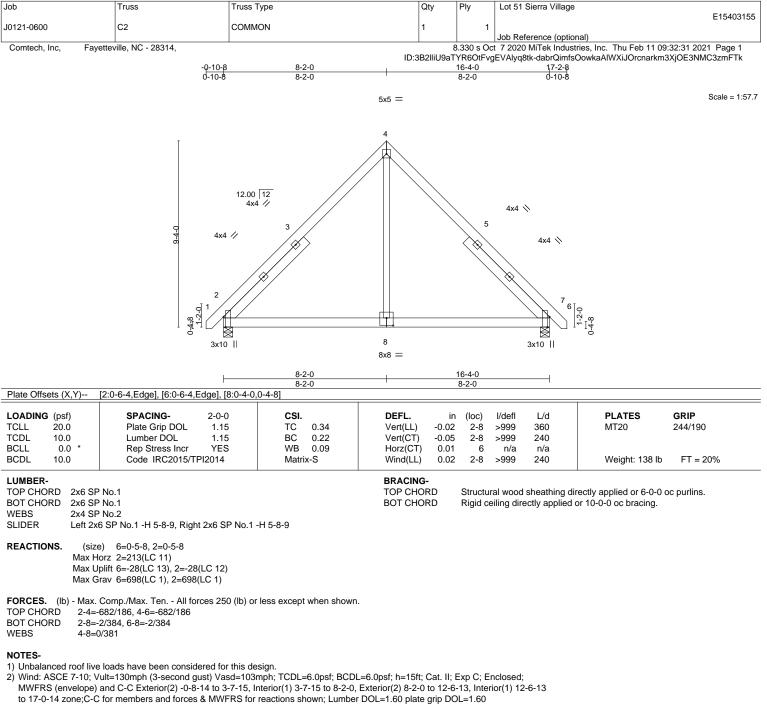
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-14 to 3-7-15, Interior(1) 3-7-15 to 10-1-0, Exterior(2) 10-1-0 to 14-5-13, Interior(1) 14-5-13 to 20-0-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members.

- 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).3-11, 7-9
- 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 9-11


7) Attic room checked for L/360 deflection.

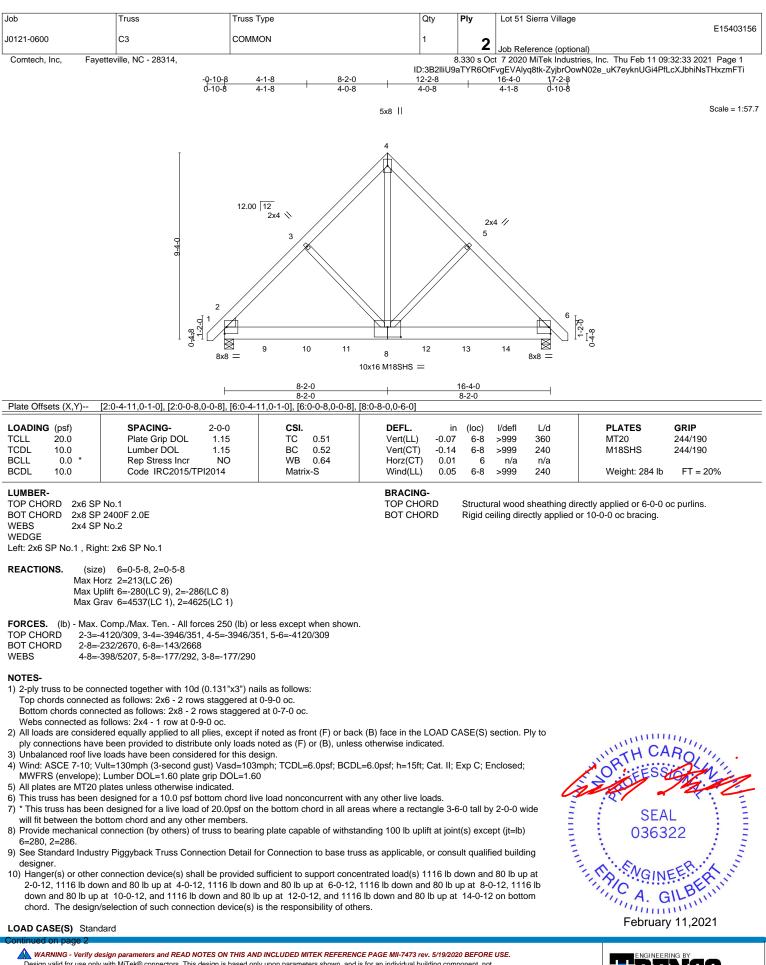

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 5-6-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

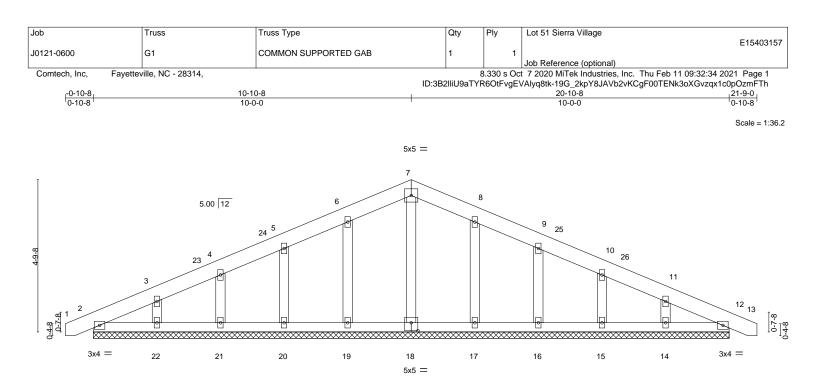
 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

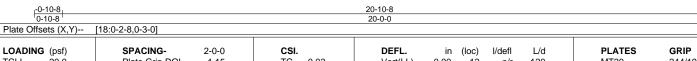
WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLUDED MITER KETEKENCE PAGE MIT-14's rev. 5/15/2020 DEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP/1 Quality Criteria</u>, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 51 Sierra Village
					E15403156
J0121-0600	C3 0	COMMON	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayettevi	lle, NC - 28314,			3.330 s Oc	t 7 2020 MiTek Industries, Inc. Thu Feb 11 09:32:33 2021 Page 2

8.330 s Oct 7 2020 MiTek Industries, Inc. Thu Feb 11 09:32:33 2021 Page 2 ID:3B2lliU9aTYR60tFvgEVAlyq8tk-ZyjbrOowN02e_uK7eyknUGi4PfLcXJbhiNsTHxzmFTi

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 8=-1111(B) 9=-1111(B) 10=-1111(B) 11=-1111(B) 12=-1111(B) 13=-1111(B) 14=-1111(B)

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.02 WB 0.05 Matrix-S	DEFL. ir Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	12 n/r 120 12 n/r 120	PLATES GRIP MT20 244/190 Weight: 115 lb FT = 20%	
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x4 SP			BRACING- TOP CHORD BOT CHORD		ing directly applied or 6-0-0 oc purlins. plied or 10-0-0 oc bracing.	

BOT CHORD 2x4 SP No 1 OTHERS 2x4 SP No.3

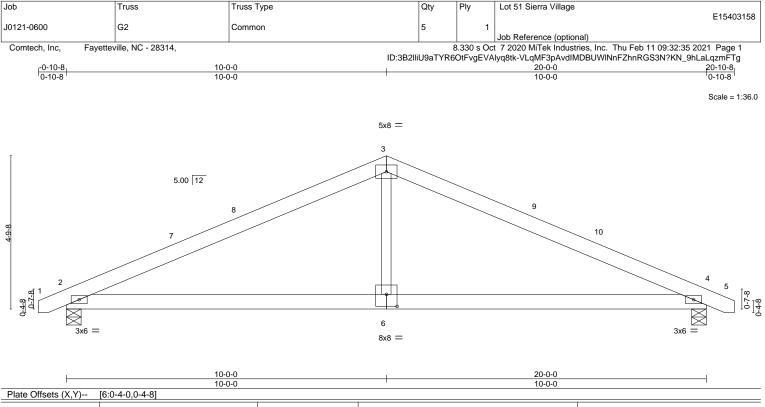
REACTIONS. All bearings 20-0-0.

(lb) -Max Horz 2=-90(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12 Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-12 to 3-8-1, Exterior(2) 3-8-1 to 10-0-0, Corner(3) 10-0-0 to 14-4-13, Exterior(2) 14-4-13 to 20-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 19, 20, 21, 22, 17, 16, 15, 14, 12.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

21-9-0

0-10-8

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.49	Vert(LL) -0.05	2-6	>999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.37	Vert(CT) -0.12	2-6	>999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.11	Horz(CT) 0.02	4	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.04	2-6	>999 240	Weight: 108 lb FT = 20%

TOP CHORD

BOT CHORD

2x6 SP No.1
2x6 SP No.1
2x4 SP No.2

REACTIONS. (size) 2=0-5-8, 4=0-5-8 Max Horz 2=54(LC 16) Max Uplift 2=-63(LC 12), 4=-63(LC 13) Max Grav 2=839(LC 1), 4=839(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1233/292. 3-4=-1233/292

BOT CHORD 2-6=-137/1026, 4-6=-137/1026 WFBS 3-6=0/475

NOTES-

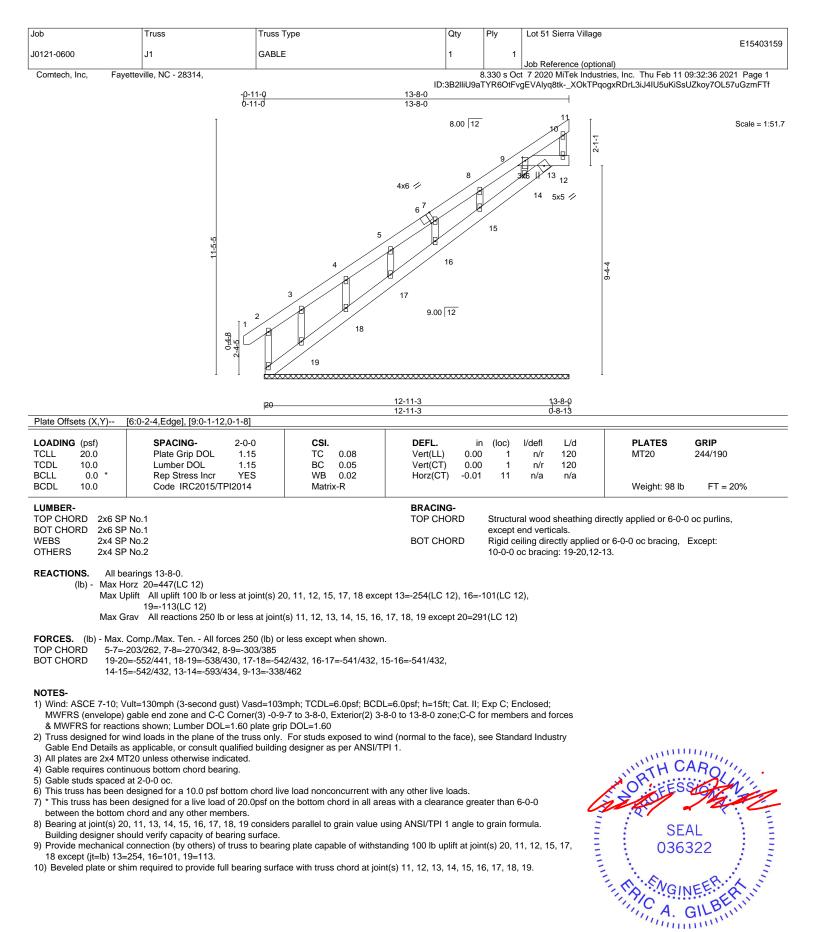
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-12 to 3-8-1, Interior(1) 3-8-1 to 10-0-0, Exterior(2) 10-0-0 to 14-4-13, Interior(1) 14-4-13 to 20-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

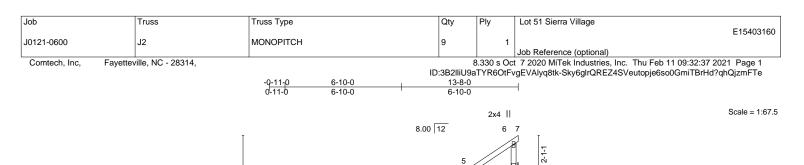
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

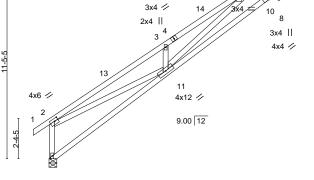
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.


6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 5-11-9 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.



Edenton, NC 27932

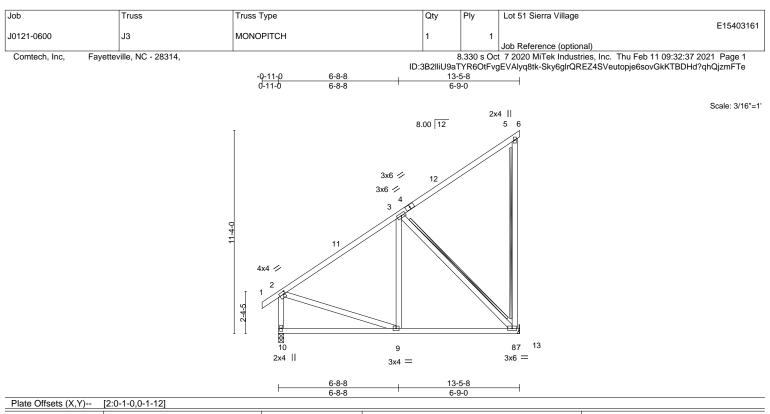
12 2x4 ||

Plate Offsets (X,Y) [2	2:0-2-8.0-1-12], [5:0-2-14.0-1-8]	6-10-0 6-10-0	<u>12-11-3</u> 6-1-3	<u>13-8-</u> 0 0-8-13			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.41		11-12 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.31	· · /	5 11-12 >986	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.30	Horz(CT) 0.03	3 9 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.07	7 11 >999	240	Weight: 81 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP I BOT CHORD 2x4 SP I	No.1	· · · · · ·	BRACING- TOP CHORD	except end vert	icals.	rectly applied or 4-3-1	1 oc purlins,
WEBS 2x4 SP	No.2		BOT CHORD	Rigid ceiling dire	ectly applied o	or 7-11-9 oc bracing.	

Max Horz 12=311(LC 12) Max Uplift 9=-209(LC 12)

Max Grav 12=597(LC 1), 9=595(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


- TOP CHORD 2-12=-671/362, 2-3=-1619/570, 3-5=-1729/713
- BOT CHORD 11-12=-570/616, 10-11=-615/1231, 5-10=-863/427
- WFBS 2-11=-316/1221, 3-11=-408/252, 5-11=-372/827

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 13-8-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=209.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.42 BC 0.40 WB 0.28 Matrix-S	Vert(CT) -0 Horz(CT) 0	in (loc) 11 8-9 15 8-9 01 8 00 9	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 97 lb	GRIP 244/190 FT = 20%
	SP No.1 SP No.1		BRACING- TOP CHORD			ning directly applied or 6-0-	0 oc purlins,
WEBS 2x4	except end verticals. BOT CHORD Rigid ceiling directly applied or 9-6-13 oc bracing. WEBS T-Brace: 2x4 SPF No.2 - 5-8, 3-8 Fasten (2X) T and I braces to narrow edge of web with 1 (0.131"x3") nails. 6in o.cwith 3in minimum end distance.						

Brace must cover 90% of web length.

REACTIONS.	(size)	8=Mechanical, 10=0-3-8
	Max Horz	10=306(LC 12)
	Max Uplift	8=-203(LC 12)
	Max Grav	8=723(LC 19), 10=589(LC 19)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-487/0, 2-10=-544/34

 BOT CHORD
 9-10=-427/430, 8-9=-194/427

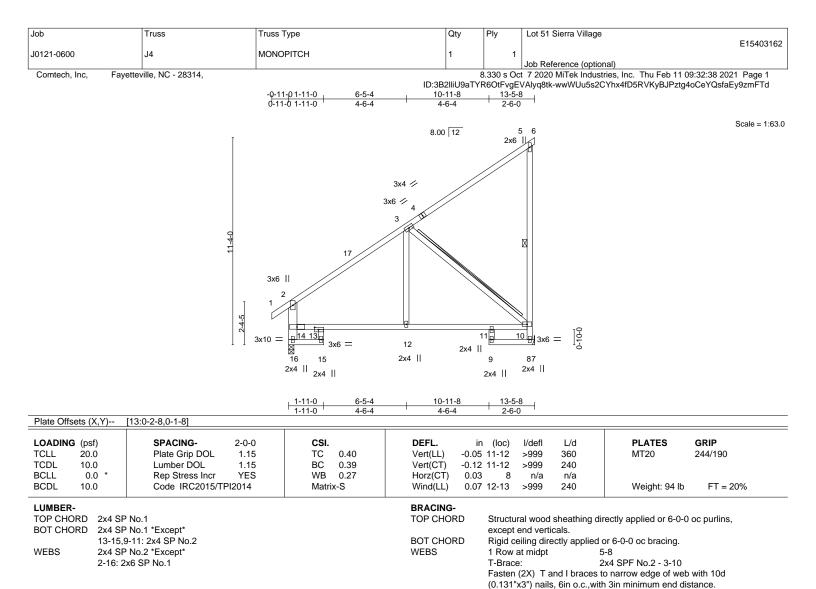
WEBS 3-8=-593/270, 2-9=-3/354

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 13-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.


4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=203.

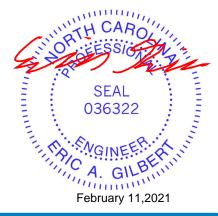
6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

REACTIONS. (size) 8=Mechanical, 16=0-3-8 Max Horz 16=306(LC 12) Max Uplift 8=-204(LC 12) Max Grav 8=583(LC 19), 16=590(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

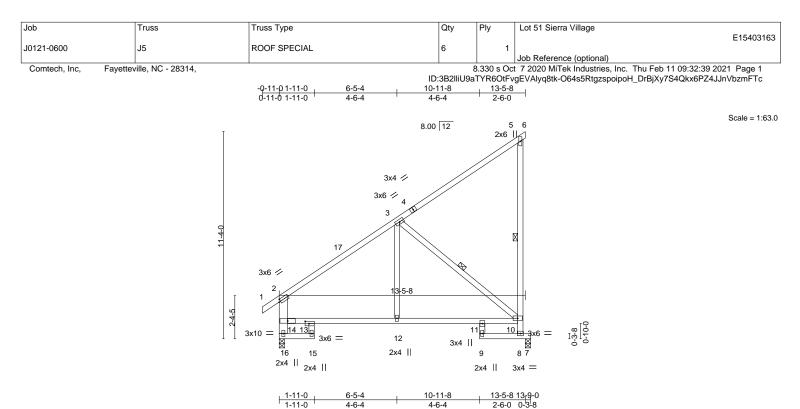
TOP CHORD 2-3=-519/0, 8-10=-653/292, 14-16=-516/119, 2-14=-488/122

BOT CHORD 15-16=-351/148, 13-14=0/533, 12-13=-260/515, 11-12=-260/515, 10-11=-274/514 WEBS 3-10=-648/334


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 13-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=204.

6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Brace must cover 90% of web length.

Plate Offsets (X,Y)	[2:0-1-0,0-1-8], [13:0-2-8,0-1-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.41 BC 0.41 WB 0.23 Matrix-S	Vert(LL) -0.08 Vert(CT) -0.19 Horz(CT) 0.05	n (loc) l/defl L/d 3 11-12 >999 360 3 11-12 >840 240 5 7 n/a n/a 5 12-13 >999 240	MT20	GRIP 244/190 FT = 20%	
13-15,	No.1 No.1 *Except* 3-11: 2x4 SP No.2 No.2 *Except*	BRACING- TOP CHORD BOT CHORD	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.				
2-16: 2 REACTIONS. (siz Max H Max U	x6 SP No.1		WEBS	1 Row at midpt	5-8, 3-10		

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-550/15, 8-10=-719/317, 14-16=-531/127, 2-14=-508/132

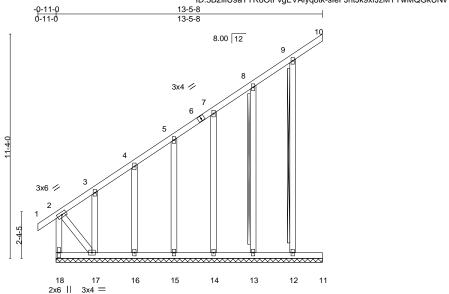
BOT CHORD 15-16=-345/132, 13-14=0/568, 12-13=-272/545, 11-12=-272/545, 10-11=-230/398

WEBS 3-10=-680/346, 3-12=-31/275

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 13-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=196.

÷.

Brace must cover 90% of web length.

(0.131"x3") nails, 6in o.c., with 3in minimum end distance.

						13-5-8				I		
	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 2	20.0	Plate Grip DOL	1.15	тс	0.11	Vert(LL)	0.00	<u></u> 1	n/r	120	MT20	244/190
	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	-0.00	2	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.14	Horz(CT)	-0.02	10	n/a	n/a		
BCDL ·	10.0	Code IRC2015/TF	PI2014	Matri	x-S						Weight: 110 lb	FT = 20%

13-5-8

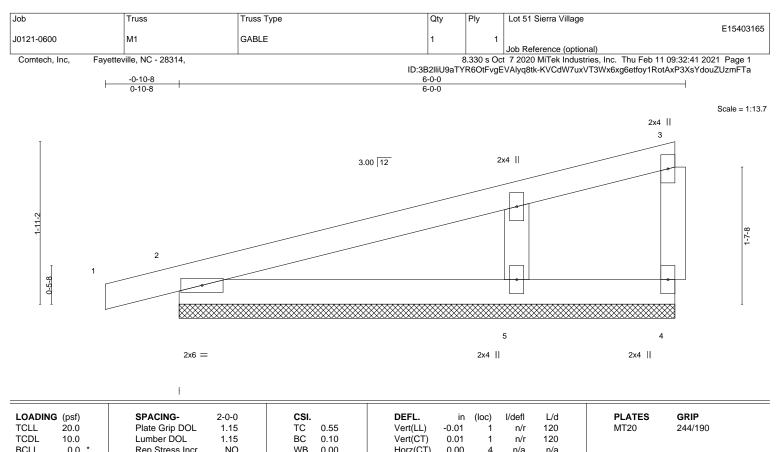
LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.1	TOP CHORD	Structural wood sh	neathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.1		except end vertica	als.
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling direct	tly applied or 10-0-0 oc bracing, Except:
OTHERS	2x4 SP No.2		6-0-0 oc bracing:	17-18.
		WEBS	T-Brace:	2x4 SPF No.2 - 8-13, 9-12
			Fasten (2X) T an	d I braces to narrow edge of web with 10d

REACTIONS. All bearings 13-5-8.

- (lb) Max Horz 18=444(LC 12) Max Uplift All uplift 100 lb or less at joint(s) 10, 16, 15, 14, 13, 12 except
 - 18=-194(LC 10), 17=-595(LC 12) Max Grav All reactions 250 lb or less at joint(s) 10, 11, 16, 15, 14, 13, 12 except 18=722(LC 12), 17=306(LC 10)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-18=-706/552, 2-3=-470/392, 3-4=-403/329, 4-5=-325/267, 5-7=-251/207
- BOT CHORD 17-18=-442/347
- WEBS 2-17=-537/683

VVEDS 2-17=-55

NOTES-


- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 13-6-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 16, 15, 14, 13, 12 except (jt=lb) 18=194, 17=595.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

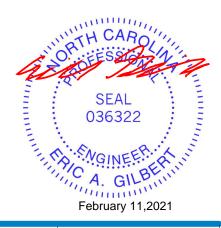
Scale = 1:58.2

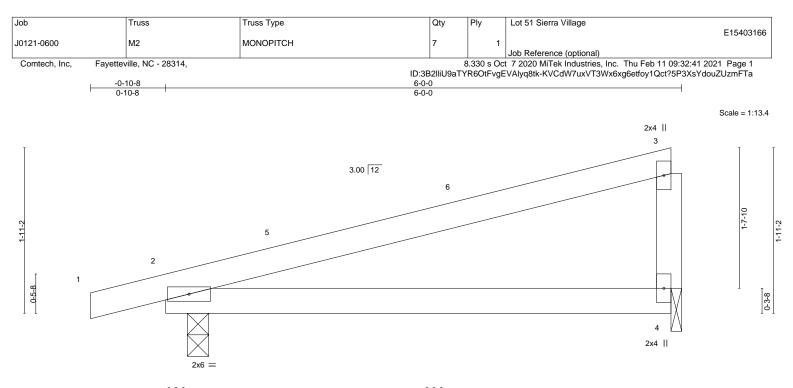
BCDL 10	.0 Code IRC2015/TPI2014	Matrix-P	11012(01) 0.0		Weight: 23 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	, ,,,	c purlins,

REACTIONS. (size) 4=5-10-8, 2=5-10-8, 5=5-10-8

Max Horz 2=80(LC 4)

Max Uplift 4=-109(LC 8), 2=-119(LC 4)


Max Grav 4=173(LC 1), 2=265(LC 1), 5=165(LC 3)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone; porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable End Details as applicable, or consult qualified building di
 Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=109, 2=119.

		0-3-0 0-3-0			6-0-0 5-9-0								
OADING (SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL 2	20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.06	2-4	>999	360	MT20	244/190	
CDL 1	10.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.11	2-4	>608	240			
SCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL 1	10.0	Code IRC2015/T	PI2014	Matrix	κ-P	Wind(LL)	0.13	2-4	>548	240	Weight: 21 lb	FT = 20%	

BRACING-

TOP CHORD

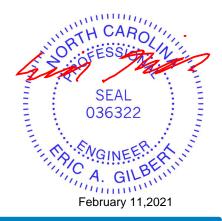
BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=56(LC 8)

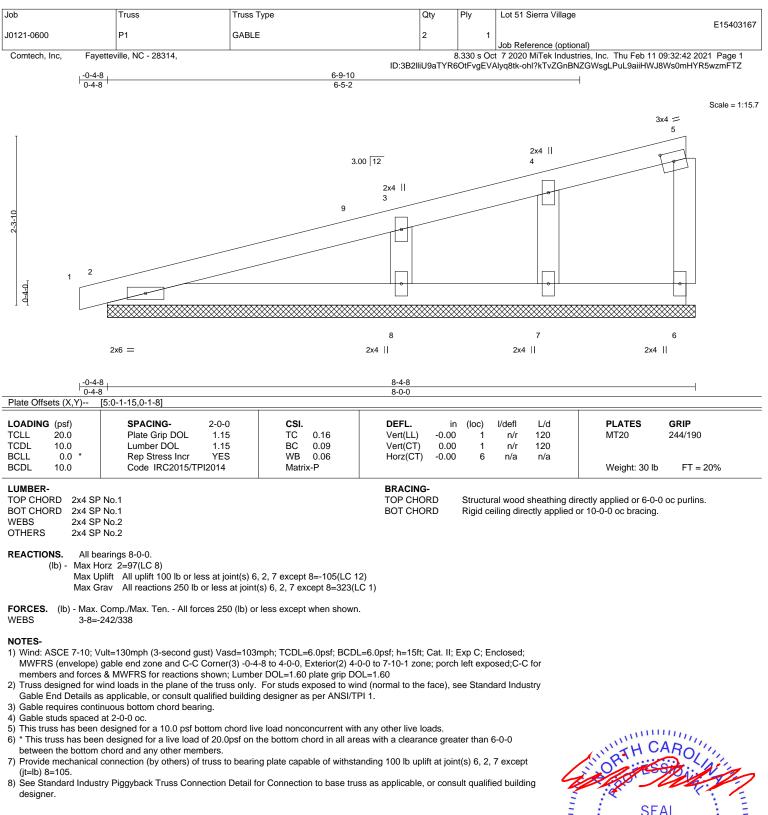

Max Uplift 2=-120(LC 8), 4=-92(LC 8)

Max Grav 2=294(LC 1), 4=223(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

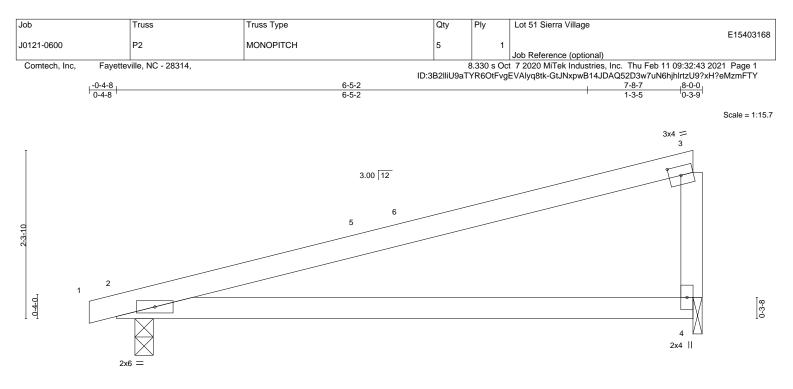
NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-10-1 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=120.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		ρ-3-0 ₁			8-0-0						
		0-3-0			7-9-0						1
Plate Offse	ets (X,Y)	[3:0-1-15,0-1-8]									
LOADING	(psf)	SPACING- 2-0	D-0 CS	SI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.	.15 TC	0.91	Vert(LL)	-0.15	2-4	>619	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.	15 BC	0.52	Vert(CT)	-0.30	2-4	>310	240		
BCLL	0.0 *	Rep Stress Incr YI	ES W	B 0.04	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI201	4 M	atrix-P	Wind(LL)	0.33	2-4	>283	240	Weight: 27 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.1

 BOT CHORD
 2x4 SP 2400F 2.0E

 WEBS
 2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=68(LC 8) Max Uplift 2=-130(LC 8), 4=-127(LC 8) Max Grav 2=340(LC 1), 4=307(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-4-8 to 4-0-5, Interior(1) 4-0-5 to 7-10-1 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=130, 4=127.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 2-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

