

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P-7005-1 Roman-Roof

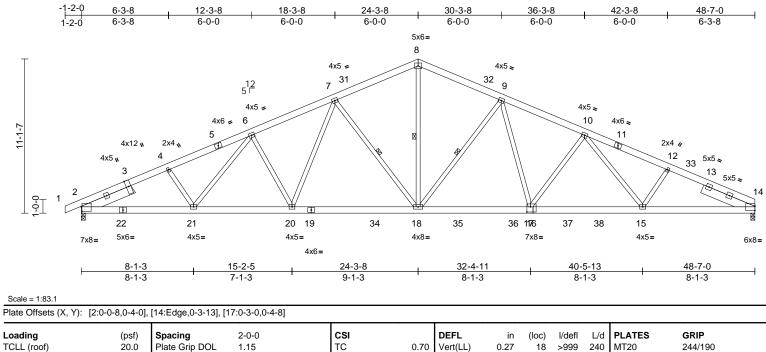
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC.

Pages or sheets covered by this seal: E14707732 thru E14707754

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

August 6,2020


Lassiter, Frank

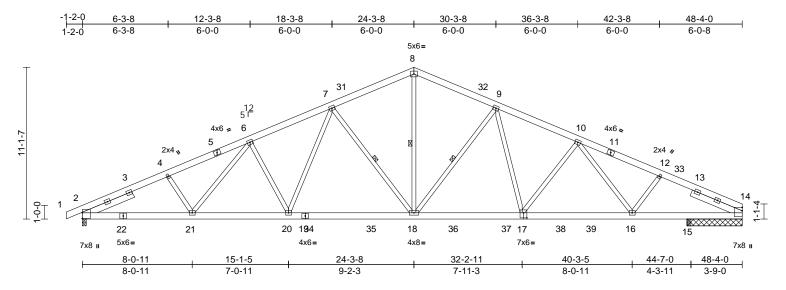
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	ss Type Qty Ply Roman-Roof		Roman-Roof	
P-7005-1	Т1	Common	1	1	Job Reference (optional)	E14707732

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:48 ID:eaOQQMNfGS6Irp64ISZsFYysXsO-eYkLwOPd3vZnDvYb_u0uwDFe3HoDj8vZu80?Xsyqdoi

Page: 1

TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	0.27	18	>999	240	MT20	244/190	r.
TCDL	10.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.47	18-20	>999	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.14	14	n/a	n/a			
BCDL	10.0	Code	IBC2018	5/TPI2014	Matrix-MS							Weight: 382 lb	FT = 20°	%
	(size) 2=0-3-8, 1 Max Horiz 2=244 (LC Max Uplift 2=-774 (L Max Grav 2=2014 (L	athing directly applied applied or 6-9-11 oc 7-18, 8-18, 9-18 4=0-3-8 C 10) C 11), 14=-701 (LC 1 .C 1), 14=1942 (LC 1	DTES Unbalanced this design. Wind: ASCE Vasd=119m B=20ft; L=4 MWFRS (di 3-8-5, Interi 29-1-3, Interi Left and righ exposed;C-1	4-21=-139/181, (6-20=-493/330, 7 7-18=-877/451, { 9-18=-925/445, { 10-17=-531/337, 12-15=-112/175 roof live loads h p; TCDL=6.0ps Pf; eave=6f; Cat rectional) and C-1 or (1) 28-5 to 24 erior (1) 29-1-13 i t exposed ; end v C for members an	7-20=-218/ 3-18=-616/ 3-17=-191/ 10-15=-52 ave been c f; BCDL=6 II; Exp B; C Exterior -3-8, Exter to 48-7-0 z eretical left nd forces 8	739, 1585, 732, 2/267, considered fo ond gust) .0psf; h=30ft Enclosed; (2) -1-2-0 to ior (2) 24-3-8 one; cantilev and right & MWFRS foi	; 8 to ver							
FORCES	(lb) - Maximum Com Tension	pression/Maximum			own; Lumber DC	0L=1.60 pla	ate grip							
TOP CHORD	1-2=0/27, 2-3=-3714 4-5=-3575/1369, 5-6 6-7=-3287/1347, 7-3 8-31=-2463/1117, 8- 9-32=-2520/1092, 9- 10-11=-3558/1398, 1 12-33=-3649/1399, 1 13-14=-1612/589 2-22=-1166/3413, 21 20-21=-1042/3287, 1 19-34=-814/2819, 18 18-35=-811/2758, 35 17-36=-811/2758, 16 16-37=-1050/3184, 1 15-38=-1050/3184, 1	* This truss on the botto 3-06-00 tall chord and a Provide med bearing plat joint 2 and 7 This truss is Internationa	e 4x5 MT20 unle has been design m chord in all are by 2-00-00 wide ny other member chanical connecti e capable of with 01 lb uplift at joir designed in acco I Building Code s standard ANSI/TF Standard	ed for a live eas where a will fit betw rs, with BC on (by othe standing 7 at 14. ordance wi ection 230	e load of 20.0 a rectangle veen the botto DL = 10.0psi ers) of truss t 74 lb uplift at th the 2015	om f. to		. antitution .	The second se	SEA 0306	52 EER	A CONTRACTOR OF THE OF		


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 6,2020

Job	Truss	Truss Type	Qty Ply Roman-Roof			
P-7005-1	T1A	Common	1	1	Job Reference (optional)	E14707733

Run: 8.33 E Jul 22 2020 Print: 8.330 E Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 12:38:01 ID:xwJ3ulS2cc_IAt8QDQBV11ysXsH-1TFG0FNb8lcFAPt0PIZjpmad66MCMd2VVyUgbtyqaYK

Scale = 1:84.4

Plate Offsets (X, Y): [14:0-2-15,Edge], [17:0-2-12,0-4-8]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.79	DEFL Vert(LL)	in 0.26	(loc) 18-20	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.45	18-20	>999	180	WI120	244/190
BCLL	0.0*	Rep Stress Incr	YES	WB	0.60	Horz(CT)	0.14	10 20	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS		- (-)	-				Weight: 375 lb	FT = 20%
LUMBER					BI	RACING						
	2x6 SP No.2					OP CHORD	:	Structura	al wood :	sheath	ing directly applie	ed or 3-3-12 oc
		ept* 17-14:2x6 SP N	lo.1					ourlins.				
WEBS	2x4 SP No.3	•			BC	OT CHORD	i	Rigid cei	ling dire	ctly ap	plied or 6-10-12 of	oc bracing.
SLIDER	Left 2x6 SP No.2 -	- 4-0-0, Right 2x6 S	P No.2 4-0-0		W	EBS		1 Row at	midpt		7-18, 8-1	8, 9-18
REACTIONS (Ib)	size) 2=1959/0	-3-8, 14=1417/4-0-8	3, 15=561/0-3-8									
Ma	x Horiz 2=242 (L0	C 10)										
Ma	x Uplift 2=-756 (L	.C 11), 14=-533 (LC	11), 15=-179 (LC 11)									
Ma	x Grav 2=1959 (l	_C 1), 14=1418 (LC	17), 15=561 (LC 1)									
FORCES	(lb) - Max. Com	p./Max. Ten All fo	rces 250 (lb) or less exc	ept when shown.								
TOP CHORD	2-3=-3601/1325	5, 3-4=-3543/1346, 4	4-5=-3454/1330, 5-6=-33	382/1346,								
	6-7=-3160/1307	7, 7-31=-2381/1047,	8-31=-2324/1072, 8-32	=-2324/1071,								
	9-32=-2380/104	47, 9-10=-2985/122	7, 10-11=-2857/1158, 11	-12=-2917/1141,								
		155, 13-33=-2958/1										
BOT CHORD		. ,	02, 20-21=-1008/3169, 1	,								
		,	6, 18-35=-779/2696, 18-	,								
			3, 17-38=-935/2823, 38-	39=-935/2823,								
WEDO		,), 14-15=-941/2600	4 477								
WEBS	,	,	8=-877/454, 8-18=-580/	,								
OTEO	5-10=-004/405,	5-17=-140/592, 10-	17=-341/259, 10-16=-31	0/113								
NOTES	reaf live leads have	a haan aanaidaradd	arthic decise									
,		e been considered f	or this design.				_					unin.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=48ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-2-0 to 3-8-0, Interior (1) 3-8-0 to 24-3-8, Exterior (2) 24-3-8 to 29-1-8, Interior (1) 29-1-8 to 48-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 4x5 MT20 unless otherwise indicated.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 756 lb uplift at joint 2, 533 lb uplift at joint 14 and 179 lb uplift at joint 15.

6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

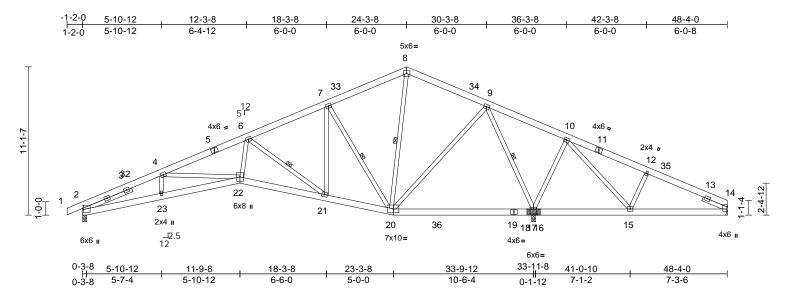
Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T1B	Roof Special	2	1	Job Reference (optional)	E14707734

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:50 ID:phZak7WZgrVBfVSBSFGRBtysXsD-?WXEz6TmuRC3KgRZnSc3dHyVAIXsOKdl2QjmC3yqdod Page: 1

5-10-12 18-3-8 24-3-8 30-3-8 12-3-8 37-4-11 44-5-4 48-4-0 3-10-12 5-10-12 6-4-12 6-0-0 6-0-0 7-1-3 7-0-9 6-0-0 5x6= 8 1 33 34 12 5 Г 7 9 4x8 🚅 4x6 👟 6 4x6 🚅 11-1-7 10 5 11 ar, 5x14 👟 ³⁵12 32 2-4-12 22 13 0-0-6x8 II 23 21 Þ 2x4 II 20 19 18 17 36 1654 _12.5 12 4x8 II ^{3x8} " 48-4-0 6x8= 4x6= 4x8= 7x10 = 0-3-8 44-7-0 5-10-12 11-9-8 18-3-8 23-3-8 30-3-8 37-4-11 44-5-4 7-0-0 0-1-123-9-0 5-7-4 5-10-12 6-6-0 5-0-0 7-1-3 7-0-9 0-3-8

Scale = 1:86.4

Plate Offsets (2	X, Y): [2:0-1-9,0-4-6],	[13:Edge,0-4-13], [17	:0-3-8,0-	2-0], [20:0-5-8	,0-3-8], [22:0-5-0,0	-3-0]							
L oading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.61 0.83 1.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.40 -0.62 0.27	(loc) 22 21-22 15	l/defl >999 >864 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 383 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING	2x6 SP No.2 *Except 2x4 SP No.3 *Except Left 2x6 SP No.2 4 4-1-7	t* 12-17:2x4 SP No.2 I-0-0, Right 2x4 SP N	0.3		4-22=0/302, 6-22= 7-20=-1471/599, 8 9-20=-443/213, 12 7-21=-331/1205, 6 9-19=-125/124, 10 10-17=-815/406, 1 4-23=-107/140	-20=-470 -15=-267 -21=-241 -19=-62/	0/1074, 71/1081, 9/916, 540,		Ínte	rnationa renced	l Buildi standa	ned in accordanc ing Code section rd ANSI/TPI 1. ndard	
TOP CHORD	Structural wood shea 2-6-5 oc purlins.	• • • •			2 bearing block 12" th 3 rows of 10d ((
BOT CHORD	Rigid ceiling directly bracing. 1 Row at midpt	applied or 5-10-8 oc			l fasteners. Bearing								
		C 11), 13=-804 (LC 1 (LC 11) .C 1), 13=293 (LC 11)	3)),	this design. Wind: ASCE Vasd=119m B=20ft; L=44 MWFRS (dii 3-8-0, Interio 29-1-8, Interi	roof live loads hav 7-10; Vult=150mp ph; TCDL=6.0psf; Bft; eave=6ft; Cat. I rectional) and C-C or (1) 3-8-0 to 24-3 ior (1) 29-1-8 to 48 posed ; end vertica	h (3-sec BCDL=6 I; Exp B; Exterior -8, Exter	ond gust) .0psf; h=30ft; Enclosed; (2) -1-2-0 to or (2) 24-3-8 e; cantilever	to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		exposed;C-0	C for members and own; Lumber DOL	forces &	MWFRS for						<u>н</u> и.
TOP CHORD	$\begin{array}{l} 1\mbox{-}2\mbo$	5=-5178/1841, =-2782/1127, 3=-1880/934, 4=-1846/864, 11=-1527/659, 2-35=-1672/630, 2-23=-1597/4597, 20-21=-715/2569, 9-36=-477/1828, 7-48=-428/1461, 5-16=-1263/478,	97, 4) 5) 6) 7) 8)	* This truss on the botto 3-06-00 tall chord and a Refer to girc Bearing at jc using ANSI/ designer she Provide mee bearing plate	e 4x5 MT20 unless has been designed m chord in all area by 2-00-00 wide wi ny other members, ler(s) for truss to tri pint(s) 2 considers TPI 1 angle to grai puld verify capacity shanical connection e capable of withst Ib uplift at joint 13	for a live s where Il fit betw with BC uss conn parallel t of beari of beari a (by othe anding 1	e load of 20.0 a rectangle een the botto DL = 10.0psf ections. o grain value a. Building ng surface. ers) of truss t 078 lb uplift a	o o at			THE FRITT	SEA 0306	52 EER. THILL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 6,2020

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T1C	Roof Special	5	1	Job Reference (optional)	E14707735

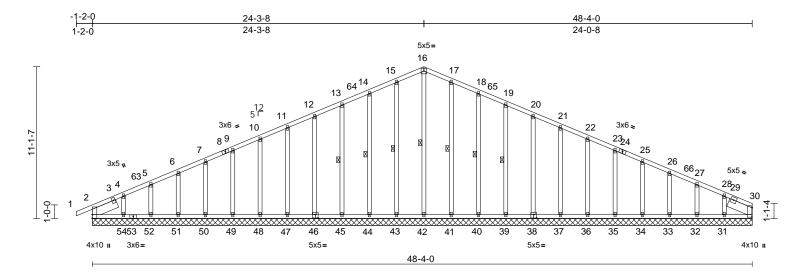
Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:51 ID:P6tR55ThNw6co1jcm7ikaEysXsG-Ti5cASUOflKwxq?IL97I9UVjkis?7o?RG4TJkVyqdoc

Scale = 1:86.4

Plate Offsets (X, Y): [2:0-2-7,0-0-9], [17:0-2-12,0-4-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in		l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC		Vert(LL)		22-23	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.77	Vert(CT)	-0.32		>999	180		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES)15/TPI2014	WB	0.93	Horz(CT)	0.14	17	n/a	n/a	Waisht 200 lb	FT 200/
BCDL	10.0	Code	IBC20	15/1912014	Matrix-MS							Weight: 368 lb	FT = 20%
					4-22=-236/214, 6 7-20=-1126/484,		,		LOAD	CASE(S)	Star	ndard	
TOP CHORD BOT CHORD					9-20=-306/1269,								
WEBS	2x4 SP No.3				10-17=-650/409,								
SLIDER	Left 2x4 SP No.3 4	4-0-0, Right 2x4 SP	No.3		12-15=-412/304,	7-21=-20	7/829,						
	2-0-0	, 0			6-21=-1631/621,	4-23=-24	115						
BRACING				NOTES									
TOP CHORD	Structural wood shea	athing directly applie	ed or		bearing block 12 bearing block 12 bearing block 12 block								
BOT CHORD	4-0-6 oc purlins. Rigid ceiling directly	applied or 6.0.0 co			fasteners. Bearir								
BOT CHORD	bracing.	applied of 6-0-0 00		No.2.	lastonoro. Doann	ig 10 0000							
WEBS	0	1 Row at midpt 7-20, 8-20, 9-17, 6-21 2) Unbalanced roof live loads have been considered for											
REACTIONS	(size) 2=0-3-8, 1	14= Mechanical, 17=		this design.									
	(0-3-8 + b	earing block), (req. (0-4-7)		7-10; Vult=150m								
	Max Horiz 2=242 (LC	,			asd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; =20ft; L=48ft; eave=6ft; Cat. II; Exp B; Enclosed;								
	Max Uplift 2=-464 (L		20),	B=20ft; L=48ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-2-0 to									
	17=-1019 Max Grav 2=1156 (L		1)		or (1) 3-8-0 to 24-								
	17=2823 (1),		ior (1) 29-1-8 to 4 bosed ; end vertic			eft					
FORCES	(lb) - Maximum Com	pression/Maximum			C for members an								
	Tension				own; Lumber DO								
TOP CHORD	1-2=0/27, 2-3=-1191	,	048,	DOL=1.60			0.					minin	11111
	4-32=-2892/1060, 4- 5-6=-2572/945, 6-7=	,			e 4x5 MT20 unles							W'TH CA	Rollin
	7-33=-460/365, 8-33			,	has been designe			osf			Nº.	R	m. Khi
	8-34=-387/384, 9-34	,			m chord in all are by 2-00-00 wide v		0	m			33	9. AEOO	Miller .
	9-10=-368/1514, 10-	11=-103/851,			ny other members						5 7	A VI	Car :-
	11-12=-128/804, 12-				ler(s) for truss to t					- 3			
	13-35=-141/762, 13-				pint(s) 2 considers					=		SEA	L : E
BOT CHORD	2-23=-900/2752, 22- 21-22=-646/2354, 20				TPI 1 angle to gra					=	:	0306	• • -
	20-36=-485/326, 19-			•	ould verify capacit		•			=		0300	52 : 3
	18-19=-485/326, 17-				chanical connection e capable of withs					-		N	10 3
	16-17=-1072/494, 15	5-16=-1072/494,			Ib uplift at joint 1					1	272	S.ENO	-cR: US 3
	14-15=-685/185			2.	apint at joint 1		apint at join			THE DAY	11	ANGIN	Fr. Avi
					designed in acco						1	R.L	AS5.11
					Building Code se		6.1 and					Think L	in the second se
				reterenced s	tandard ANSI/TP	11.							at C 0000

August 6,2020


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type Qty P		Ply	Roman-Roof	
P-7005-1	T1GE	Common Supported Gable	1	1	Job Reference (optional)	E14707736

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:51 ID:TkmhgPSQrlsuZkZEfigGUpysXsI-Ti5cASUOflKwxq?IL97I9UVo4i2E7_URG4TJkVyqdoc

Scale = 1:84.4

	, . , . , . ,		, [30:0-8-3,0-0-4], [38	-				1						
Loading		(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl		PLATES	GRIP
TCLL (roof) TCDL		20.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.09 0.05	Vert(LL) Vert(CT)	n/a	-	n/a	999 999	MT20	244/190
BCLL		0.0*	Rep Stress Incr	YES		WB		Horz(CT)	n/a 0.01	30	n/a n/a	999 n/a		
BCDL		10.0	Code		15/TPI2014	Matrix-MS		11012(01)	0.01	50	n/a	n/a	Weight: 362 lb	FT = 20%
LUMBER			•			Max Grav 2=				BOT CH	IORD	2-54=	-64/175, 53-54=-	64/175,
TOP CHORD							l=198 (LC 17),						=-64/175, 51-52=	,
BOT CHORD	2x4 SP N						3=161 (LC 21),						=-64/175, 49-50=	,
OTHERS	2x4 SP N						5=160 (LC 21), 7=159 (LC 21),						=-64/175, 47-48= =-64/175, 45-46=	
SLIDER	Leπ 2x8 1-11-8		2-0-0, Right 2x8 SP	N0.2)=161 (LC 1), 4						=-64/175, 43-44=	,
BRACING	1 11 0						l=167 (LC 21),						=-64/175, 41-42=	,
TOP CHORD	Structure	al wood she	eathing directly applie	ed or			B=167 (LC 20),						=-64/175, 39-40=	
	6-0-0 oc		an oon y appin				5=159 (LC 1), 4						=-64/175, 37-38=	
BOT CHORD		ling directly	y applied or 10-0-0 or	С			7=161 (LC 1), 4 9=160 (LC 20),						=-64/176, 35-36= =-64/176, 33-34=	
	bracing.						l=160 (LC 20),						=-64/176, 31-32=	
WEBS	1 Row at	t midpt	16-42, 15-43, 14-44				i=207 (LC 16),						=-64/176	,
			13-45, 17-41, 18-40 19-39),		59	9=110 (LC 16)							
REACTIONS	(size)	2-48-4-0), 30=48-4-0, 31=48-4	4-0 I	FORCES		um Compressi	on/Maximum	ı					
REACTIONS	(3126)		0, 33 = 48 - 4 - 0, 34 = 48	-4-0		Tension								
			0, 36=48-4-0, 37=48		TOP CHORD		3=-193/163, 3- 35, 5-63=-157/		,					
			0, 39=48-4-0, 40=48	,			2, 6-7=-145/13		/117					
			0, 42=48-4-0, 43=48	,			5, 9-10=-121/1	,	,					
			·0, 45=48-4-0, 46=48 ·0, 48=48-4-0, 49=48	,			222, 11-12=-9							
			·0, 51=48-4-0, 52=48				324, 13-64=-12	,						• 0410-01
			0, 55=48-4-0, 59=48	,			374, 14-15=-14 472, 16-17=-10						, in the second	1111
			.C 10), 55=242 (LC 1				472, 18-17=-10 433, 18-65=-1	,				2	WTH CA	ROUT
	Max Uplift		C 9), 30=-13 (LC 10)				370, 19-20=-10	,				1	A	T. Lihin
			(LC 11), 32=-61 (LC				76, 21-22=-73/					50	Y. HEOD	N.S.
		(LC 11), 34=-75 (LC 1 LC 11), 36=-76 (LC 1	,,			73, 23-24=-32/	,				EX	K A	Chine .
			LC 11), 38=-76 (LC 1 LC 11), 38=-76 (LC 1				17, 25-26=-65/	,	62/56,					
			LC 11), 40=-84 (LC 1				7, 27-28=-114/ 85, 29-30=-60/				-		SEA	L :
			LC 11), 43=-61 (LC 1			20-29=-100/	00, 29-3000/	101					0306	52
			LC 11), 45=-75 (LC 1									- '		· ·
			LC 11), 47=-76 (LC 1 LC 11), 49=-76 (LC 1									- ~		in
			LC 11), 49=-78 (LC 1 LC 11), 51=-79 (LC 1									24	S. ENCIN	EFR. A.
			LC 11), 54=-137 (LC									11	AVIN	F
			LC 9), 59=-13 (LC 10									1	SEA 0306 WGIN	ASSIN
													11111	in the second
													Augu	ot 6 2020

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Tracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 6,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T1GE	Common Supported Gable	1	1	Job Reference (optional)	E14707736
Peak Truss Builders, LLC, New H	lill, NC - 27562,	Run: 8.33 S Jul 22 20)20 Print: 8.3	30 S Jul 22 2	2020 MiTek Industries, Inc. Thu Aug 06 07:55:51	Page: 2

ID:TkmhgPSQrlsuZkZEfigGUpysXsI-Ti5cASUOflKwxq?IL97I9UVo4i2E7_URG4TJkVyqdoc

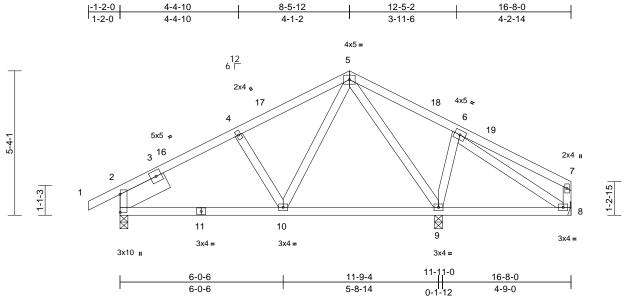
Peak Truss Builders, LLC, New Hill, NC - 27562.

WEBS 16-42=-219/37. 15-43=-127/175. 14-44=-120/183, 13-45=-120/113, 12-46=-120/109. 11-47=-120/109. 10-48=-120/109 9-49=-120/109 7-50=-120/110, 6-51=-120/110, 5-52=-122/122, 4-54=-147/230, 17-41=-127/175, 18-40=-120/183, 19-39=-120/113, 20-38=-120/110, 21-37=-120/110, 22-36=-120/109, 23-35=-120/110, 25-34=-120/109, 26-33=-120/114, 27-32=-119/163, 28-31=-146/270

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=48ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -1-2-0 to 3-8-0, Exterior (2) 3-8-0 to 24-3-8, Corner (3) 24-3-8 to 29-1-8, Exterior (2) 29-1-8 to 48-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2, 61 lb uplift at joint 43, 84 lb uplift at joint 44, 75 lb uplift at joint 45, 76 lb uplift at joint 46, 76 lb uplift at joint 47, 76 lb uplift at joint 48, 76 lb uplift at joint 49, 75 lb uplift at joint 50, 79 lb uplift at joint 51, 65 lb uplift at joint 52, 137 lb uplift at joint 54, 61 lb uplift at joint 41, 84 lb uplift at joint 40, 75 lb uplift at joint 39, 76 lb uplift at joint 38, 77 lb uplift at joint 37, 76 lb uplift at joint 36, 76 lb uplift at joint 35, 75 lb uplift at joint 34, 80 lb uplift at joint 33, 61 lb uplift at joint 32, 163 lb uplift at joint 31, 13 lb uplift at joint 30, 28 lb uplift at joint 2 and 13 lb uplift at joint 30.
- This truss is designed in accordance with the 2015 9) International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 fev. 5/92/20 BEFORE USE. Design valid for use only with MiTeR with MiteR connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty Ply Roman-Roof		Roman-Roof	
P-7005-1	Т2	Common	2	1	Job Reference (optional)	E14707737

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:52 ID:6myodiOI0mEcSyhGs945nmysXsN-xuf_OoU1Q3SnZ_ayuseXii1yZ6MUsOQbVkCtGyyqdob

Page: 1

Scale = 1:42.6 Plate Offsets (X, Y): [2:0-8-0,0-0-2]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.3 Left 2x8 SP No.2 2	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code II 2-0-0 athing directly applied o cept end verticals.	2)	Vasd=119mp B=20ft; L=20 MWFRS (dire 1-10-0, Interi to 11-5-12, Ir left and right exposed;C-C	CSI TC BC WB Matrix-MS 7-10; Vult=150mp oh; TCDL=6.0ps; I ft; eave=4ft; Cat. I ectional) and C-C I or (1) 1-10-0 to 8- terior (1) 11-5-12 exposed ; end ver for members and wn; Lumber DOL	0.18 0.34 h (3-sec BCDL=6 l; Exp B Exterior 5-12, Ex to 16-6- tical left forces {	.0psf; h=30ft; Enclosed; (2) -1-2-0 to terior (2) 8-5- 4 zone; cantil and right & MWFRS for	12 ever	(loc) 10 9-10 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
REACTIONS	bracing.	B= Mechanical, 9=0-3-8 (2 10) C 11), 8=-44 (LC 11), C 11) C 1), 8=143 (LC 21),	3) 4) 5)	on the botton 3-06-00 tall b chord and an Refer to girde Provide med	as been designed n chord in all areas y 2-00-00 wide wi y other members. er(s) for truss to tru nanical connection capable of withsta	s where Il fit betw uss conr ı (by oth	a rectangle veen the botto nections. ers) of truss t	om					
FORCES	(lb) - Maximum Com Tension	,	6)	joint 2, 271 lt	o uplift at joint 9 an	id 44 lb i	uplift at joint 8						
TOP CHORD	1-2=0/31, 2-3=-84/20 4-16=-466/223, 4-17 5-17=-330/233, 5-18		-,	International	Building Code sec andard ANSI/TPI	tion 230							142.
BOT CHORD	,	1=-118/428, 9-10=-4/19	93,									TH CA	ROUT
WEBS	4-10=-199/194, 5-10 5-9=-477/132, 6-9=-2											OFESS	101 North
NOTES	d roof live loods have	haan annaidarad far								-		:2	1.
 Unbalance this design 	ed roof live loads have	been considered for										С Г А	1 I E

this design.

NEER, HANNING FRI 030652

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T2A	Common	1	1	Job Reference (optional)	E14707738

Peak Truss Builders LLC New Hill NC - 27562

Page: 1

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:52 ID:6myodiOI0mEcSyhGs945nmysXsN-xuf_OoU1Q3SnZ_ayuseXii1ya6MbsOYbVkCtGyyqdob 8-5-12 4-4-10 12-5-2 16-8-0 4-4-10 4-1-2 3-11-6 4-2-14 4x5 = 12 6 Г 4 2x4 🔊 4x5 👟 16 17 3 5 18 15 5-4-5x5 🦻 2x4 II 2 6 1-2-15 1-1-3 T of \bigotimes 10 9 8 3x4 = 3x4 = 3x4 = 3x10 u 3x4 = 11-11-0 6-0-6 11-9-4 16-8-0 6-0-6 5-8-14 4-9-0 0-1-12

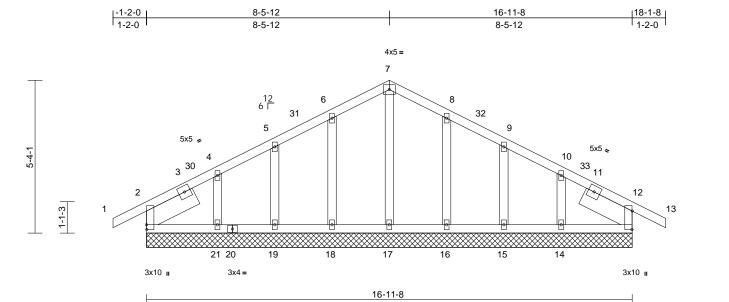
Scale = 1:41.5 Plate Offsets (X, Y): [1:0-2-8,0-0-2]

GRIP	GRI	PLATES	L/d	l/defl	(loc)	in	DEFL		CSI	2-0-0	Spacing	(psf)	Loading
244/190	244	MT20	240	>999	9	0.01	Vert(LL)	0.17	TC	1.15	Plate Grip DOL	20.0	TCLL (roof)
			180	>999	8-9	-0.02	Vert(CT)	0.17	BC	1.15	Lumber DOL	10.0	TCDL
			n/a	n/a	8	0.00	Horz(CT)	0.33	WB	YES	Rep Stress Incr	0.0*	BCLL
FT = 20%	FT =	Weight: 93 lb							Matrix-MS	IBC2015/TPI2014	Code	10.0	BCDL
FT	FT	Weight: 93 lb		BCDL 10.0 Code IBC2015/TPI2014 Matrix-MS LUMBER 2) Wind: ASCE 7-10; Vult=150mph (3-second gust)									

- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS SLIDER Left 2x8 SP No.2 -- 2-0-0 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=0-3-8 7= Mechanical 8=0-3-8 Max Horiz 1=132 (LC 10) Max Uplift 1=-163 (LC 11), 7=-49 (LC 11), 8=-265 (LC 11) Max Grav 1=441 (LC 1), 7=147 (LC 21), 8=764 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-96/0, 2-15=-494/221, 3-15=-427/231, 3-16=-403/225, 4-16=-346/241, 4-17=-14/138, 5-17=-34/113, 5-18=-61/96, 6-18=-101/84, 6-7=-123/108 BOT CHORD 1-10=-120/443, 9-10=-120/443, 8-9=-3/202, 7-8=-45/43 WEBS 3-9=-205/198, 4-9=-111/315, 4-8=-466/130, 5-8=-264/236, 5-7=-68/81
- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 8-5-12, Exterior (2) 8-5-12 to 11-5-12, Interior (1) 11-5-12 to 16-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 163 lb uplift at joint 1, 265 lb uplift at joint 8 and 49 lb uplift at joint 7.
- 6) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Unbalanced roof live loads have been considered for 1) this design.


👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a few of 3/3/2/00 BeFORE DSE. Design valid for use only with MITeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

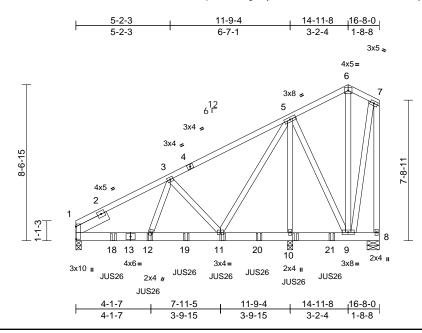
Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T2GE	Common Supported Gable	1	1	Job Reference (optional)	E14707739

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:52 ID:6myodiOI0mEcSyhGs945nmysXsN-xuf_0oU1Q3SnZ_ayuseXii1zo6OjsTrbVkCtGyyqdob Page: 1

Scale = 1:40.2

Plate Offsets (X, Y): [2:0-2-0,0-0-2], [12:0-7-12,0-0-2]

	A, f). [2.0-2-0,0-0-2	2], [12:0-7-12,0-0-2]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0' 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IBC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.09 0.04 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a		GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER	2x4 SP No.1 2x4 SP No.3	2-0-0, Right 2x8 SP I	v	OT CHORD /EBS	2-21=-22/68, 20-21 18-19=-22/68, 17-1 15-16=-22/68, 14-1 7-17=-108/9, 6-18= 4-21=-138/157, 8-1 9-15=-118/121, 10-	8=-22/6 5=-22/6 -129/20 6=-129/	, 8, 16-17=-22/ 8, 12-14=-22/ 0, 5-19=-118/ 200,	68, 68	Ínte	rnationa renced s	l Buildi standa	ned in accordanc ing Code section rd ANSI/TPI 1. ndard		
	6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 2=16-1 14=16- 16=16- 18=16- 21=10- 21=1	LC 10), 22=112 (LC 10 (LC 11), 12=-105 (LC 8 (LC 11), 15=-79 (LC (LC 11), 18=-85 (LC 1 (LC 11), 21=-108 (LC 5 (LC 11), 26=-105 (LC (LC 1), 12=198 (LC 1), (LC 17), 15=155 (LC 1), (LC 21), 17=120 (LC 2) (LC 20), 19=155 (LC 2) (LC 10), 22=198 (LC 2) (LC 1) propression/Maximum	d or 1 2 11), 2 11), 3 11), 3 11), 5 11), 6 1), 7 1), 6 1), 7 69, 45,	this design. Wind: ASC Vasd=119m B=20ft; L=2 MWFRS (d 1-10-0, Ext to 11-5-12, cantilever lk right expos for reaction DCL=1.60 Truss desi only. For s see Standa or consult c) All plates a Gable requ) Gable stud: 3-06-00 tall chord and a) Provide me bearing pla joint 2, 105 lb uplift at jc joint 16, 79	d roof live loads have E 7-10; Vult=150mpl mph; TCDL=6.0psf; E 20ff; eave=2ft; Cat. II lirectional) and C-C (erior (2) 11-0-0 to 8- Exterior (2) 11-5-12 eft and right exposed ed;C-C for members is shown; Lumber DC gned for wind loads tuds exposed to win ard Industry Gable Er qualified building des re 2x4 MT20 unless ires continuous botto is spaced at 2-0-0 oc has been designed om chord in all areas I by 2-00-00 wide wil any other members. schanical connection te capable of withsta Ib uplift at joint 12, 8 oint 19, 108 Ib uplift at joint 19, 108 Ib uplift at joint 2 and 105 Ib	h (3-sec 3CDL=6 3CDL=7 Corner (5-12, Cd to 18-1 1; end v and for DL=1.6C in the pl d (norm nd Detai igner as otherwi- for a liv where I fit betw (by other at joint 2 08 lb upl at joint 2	ond gust) .0psf; h=30ft; Enclosed; 3) -1-2-0 to orner (3) 8-5-7 8 zone; ertical left and ces & MWFR plate grip ane of the tru al to the face) Is as applicat ; per ANSI/TF se indicated. d bearing. e load of 20.0 a rectangle reen the bottos to so f truss to 05 lb uplift at ift at joint 18, 11, 85 lb uplift uplift at joint 14	l2 S ss , le, l 1. psf m o 79 at				SEA 0306	52 EER TU	


August 6,2020

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T2GRD	Common Girder	1	2	Job Reference (optional)	E14707740

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:53 ID:I4hK8oXpCSlvuobaZglvHlysXsB-P5DMb7VfBMaeB898SaAmFva5LVhjbtlkkOyQpOyqdoa Page: 1

Scale = 1:63.3

Plate Offsets (X, Y): [1:0-8-4,0-0-2]

Loading TCLL (roof) TCDL BCLL		(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.29 0.24 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	IBC201	5/TPI2014	Matrix-MS							Weight: 292 lb	FI = 20%
	2x6 SP No.2 2x4 SP No.3 Left 2x6 SP Structural w 6-0-0 cc pur Rigid ceiling bracing. (size) 1= Max Horiz 1= Max Uplift 1=	2 No.2 2 ood shea lins, exc directly =0-3-8, 8 =371 (LC =-525 (L0	athing directly applied cept end verticals. applied or 6-0-0 oc a=0-8-0, 10=0-3-8 C 30) C 7), 8=-185 (LC 4),	3 d or 4	except if note CASE(S) sec provided to d unless other Unbalanced this design.) Wind: ASCE Vasd=119mp B=20ft; L=200 MWFRS (dirr end vertical I plate grip DC	considered equally ed as front (F) or ba ttion. Ply to ply con istribute only loads vise indicated. roof live loads have 7-10; Vult=150mpl bh; TCDL=6.0psf; E ft; eave=4ft; Cat. II ectional); cantileve eft and right expos N=1.60 ias been designed	ack (B) f nection noted a been o n (3-sec 3CDL=6 ; Exp B r left and ed; Lum	ace in the LO s have been as (F) or (B), considered for ond gust) .0psf; h=30ft; Enclosed; d right expose iber DOL=1.60	id ; D					
	Max Grav 1	0=-1911 =883 (LC 0=1317 ((LC 37), 8=167 (LC 37)	,	3-06-00 tall b	n chord in all areas y 2-00-00 wide wil y other members.			m					
FORCES			pression/Maximum	6) Provide mec	nanical connection capable of withsta)					
TOP CHORD		7, 5-6=-1	1005/692, 3-4=-633/3 171/186, 6-7=-171/20		joint 1, 1911 8.	lb uplift at joint 10	and 185	lb uplift at joi	nt					
BOT CHORD	1-18=-701/9 12-13=-701/ 11-19=-598/	41, 13-1 941, 12- 833, 11- 169, 10-	19=-598/833, 20=-235/169, 21=-235/169,		International referenced si Use USP JU nails into Tru	Building Code sec andard ANSI/TPI S26 (With 4-10d na ss) or equivalent s D-12 from the left e	tion 230 I. ails into paced a	6.1 and Girder & 4-10 t 2-0-0 oc ma	х.		•		OP FESS	ROLIN
WEBS	3-12=-462/3 5-11=-751/1	48, 3-11 007, 5-1	=-533/497,	~ .	truss(es) to b	ack face of bottom les where hanger i	chord.					C	SEA	
Top chord oc. Bottom ch staggered) nails as follo s connected a ords connecte at 0-9-0 oc.	ws: s follows d as follo	her with 10d :: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc.	1	Plate Increa Uniform Loa Vert: 1-6 Concentrate Vert: 12=		I=-20 (B), 10=	-433 (B), 18=-			111002	PC-11	0306 NGIN NK R. L	52

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T3GRD	Monopitch Girder	1	1	Job Reference (optional)	E14707741

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:53 ID:phZak7WZgrVBfVSBSFGRBtysXsD-P5DMb7VfBMaeB898SaAmFva1jVbXbw?kkOyQpOyqdoa

NAILED

Page: 1

NAILED

NAILED

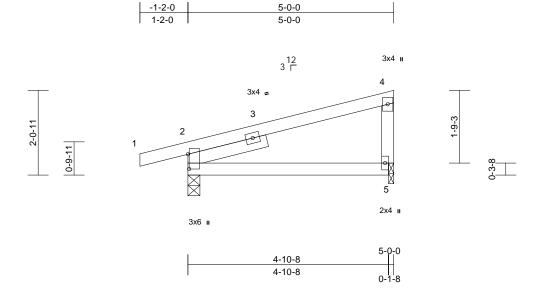
5-4-0

Scale = 1:25.1

Plate Offsets (X, Y): [1:0-2-12,0-0-6]

Fiale Oliseis ((X, 1). [1.0-2-12,0-0-0]]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IBC2015/TPI2014	CSI TC BC WB Matrix-MP	0.52 0.58 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.14 0.04	(loc) 4-7 4-7 1	l/defl >722 >461 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.3 Left 2x4 SP No.3 2 Structural wood shea 5-4-0 oc purlins, exx Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 4=0-3-8 6) C 7), 4=-171 (LC 7)	(0.148"x; 6) In the LC of the tru LOAD CASE 1) Dead + Plate In C Vert: Concen Vert:	indicates 3-10d (0. 225") toe-nails per N AD CASE(S) sections are noted as fron (S) Standard Roof Live (balanced crease=1.15 Loads (lb/ft) 1-3=-60, 4-5=-20 trated Loads (lb) 9=-125 (B), 10=-123	IDS guidli n, loads aj t (F) or ba I): Lumber	nes. oplied to the f ck (B). Increase=1.						
FORCES	(lb) - Maximum Com	, , ,										
TOP CHORD	Tension		1									
BOT CHORD	1-9=-160/130, 9-10=											
NOTES	4-11=-32/29											
Vasd=119 B=20ft; L= MWFRS (end vertic plate grip 2) * This trus on the bot 3-06-00 ta chord and 3) Provide m bearing pl joint 1 and 4) This truss Internation	CE 7-10; Vult=150mph Pmph; TCDL=6.0psf; B(=20ft; eave=4ft; Cat. II; (directional); cantilever al left and right expose DOL=1.60 ss has been designed fi ttom chord in all areas ti all by 2-00-00 wide will any other members. nechanical connection (late capable of withstar 171 lb uplift at joint 4. is designed in accorda nal Building Code secti d standard ANSI/TPI 1.	CDL=6.0psf; h=30ft; Exp B; Enclosed; left and right expose d; Lumber DOL=1.6 or a live load of 20.0 where a rectangle fit between the botto 'by others) of truss t nding 147 lb uplift at ance with the 2015 on 2306.1 and	ed ; 30 Dpsf om o							and the form	SEA 0306	EER HUIL
											Aug	ust 6,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



August 6,2020

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	Τ4	Monopitch	5	1	Job Reference (optional)	E14707742

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:54 ID:eaOQQMNfGS6lrp64ISZsFYysXsO-tHnkpTWHygiVolkK0Hh?n77Etv2mKNFuy1hzLqyqdoZ Page: 1

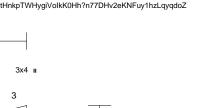
i ag

Scale = 1:28

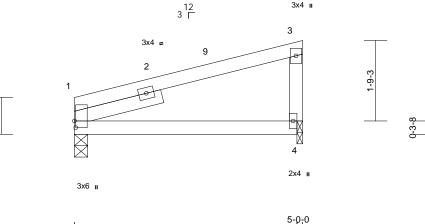
Plate Offsets (X, Y): [2:0-4-5,0-0-6]

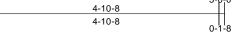
.oading TCLL (roof) TCDL SCLL SCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015/TPI2	CSI TC BC WB 2014 Matrix-MR	0.43 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
BRACING OP CHORD Structur 5-0-0 oc SOT CHORD Rigid ce bracing. REACTIONS (size) Max Horiz	No.1 No.3 SP No.3 2 al wood shea purlins. iling directly 2=0-3-8, 5 z 2=141 (LC	athing directly applie applied or 10-0-0 oc i=0-1-8	bea join 6) This Inte refe d or LOAD (vide mechanical conn ring plate capable of v : 2 and 88 lb uplift at jo truss is designed in a rnational Building Coo renced standard ANS CASE(S) Standard	vithstanding 1 bint 5. accordance wi le section 230	24 lb uplift at th the 2015					ŭ	
Max Grav ORCES (lb) - Ma Tension	2=273 (LC ximum Com 7, 2-3=-116/2)/150	21), 5=186 (LC 1) pression/Maximum 45, 3-4=-112/50,										
IOTES) Wind: ASCE 7-10; V Vasd=119mph; TCD B=20ft; L=20ft; eave MWFRS (directional 1-10-0, Interior (1) 1- and right exposed; e exposed;C-C for me reactions shown; Lui DOL=1.60	ult=150mph L=6.0psf; B0 =4ft; Cat. II;) and C-C Ex 10-0 to 4-10 end vertical le mbers and fo	CDL=6.0psf; h=30ft; Exp B; Enclosed; kterior (2) -1-2-0 to 0-4 zone; cantilever I eft and right prces & MWFRS for	əft							and the second s	SEA 0306	ROLUN
 * This truss has beer on the bottom chord 3-06-00 tall by 2-00 chord and any other Bearing at joint(s) 5- using ANSI/TPI 1 an 	in all areas v 00 wide will f members. considers pa	where a rectangle fit between the botto rrallel to grain value							HIII.	E.	0306	52 EER A
 designer should veri Provide mechanical bearing plate at joint 	fy capacity o connection (f bearing surface.	,								RL	ASS,

ENGINEERING BY EREPACED A Mitek Attiliate 818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T4A	Monopitch	1	1	Job Reference (optional)	E14707743


5-0-0


Peak Truss Builders, LLC, New Hill, NC - 27562,

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:54 ID:eaOQQMNfGS6irp64ISZsFYysXsO-tHnkpTWHygiVolkK0Hh?n77DHv2eKNFuy1hzLqyqdoZ Page: 1

Scale = 1:25.2

Plate Offsets (X, Y): [1:0-1-12,0-0-6]

	K, Y): [1:0-1-12,0-0-6	1					-					
oading	(psf)	Spacing	2-0-0	CSI	a (=	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	0.01	4-7	>999	240	MT20	244/190
FCDL BCLL	10.0	Lumber DOL	1.15 YES	BC WB	0.14	Vert(CT)	-0.02	4-7 1	>999	180		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	IBC2015/TPI20		0.00	Horz(CT)	0.01	'	n/a	n/a	Weight: 20 lb	FT = 20%
	10.0	Code									Weight. 20 lb	11 = 2070
	0.4 OD No 4			de mechanical connecti ng plate capable of with								
	2x4 SP No.1 2x4 SP No.1			95 lb uplift at joint 4.	istanuing 4	o ib upilit at j	John					
DTHERS	2x4 SP No.3			russ is designed in acc	ordance wi	th the 2015						
	Left 2x4 SP No.3 2	2-0-0		ational Building Code s								
BRACING			refere	nced standard ANSI/TI	PI 1.							
OP CHORD	Structural wood she 5-0-0 oc purlins.	athing directly applie	ed or LOAD CA	SE(S) Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 of	с									
REACTIONS ((size) 1=0-3-8, 4	4=0-1-8										
	Max Horiz 1=119 (LO											
	Max Uplift 1=-46 (LC											
	Max Grav 1=194 (L0											
ORCES	(lb) - Maximum Corr Tension	ipression/iviaximum										
OP CHORD	1-2=-116/21, 2-9=-1 3-4=-124/151	12/67, 3-9=-109/74,										
BOT CHORD	1-4=-221/161											
OTES												
	E 7-10; Vult=150mph										TH CA	
	nph; TCDL=6.0psf; B 20ft; eave=4ft; Cat. II;		,								11''' C	A D'I'II
	lirectional) and C-C E									R	"THU	ROM
	ior (1) 3-0-0 to 4-10-4		ť							Y	EFS	So Min
	xposed ; end vertical								1	∕∕₹	OF	14.7.
	-C for members and f		r						4	5		
DOL=1.60	hown; Lumber DOL=	1.60 plate grip									SEA	n 1 E
	s has been designed f	or a live load of 20 (Insf						=	:		
,	om chord in all areas		500						=		0306	52 : =
3-06-00 tall	l by 2-00-00 wide will	fit between the botto	om						-		.	1 2
	any other members.									Fr	·	airi
	joint(s) 4 considers pa I/TPI 1 angle to grain		1							11	NGIN	EELAN
•	nould verify capacity of	•								11	NK	CS N
•	chanical connection	•	0							2	111 R.I.	ASSIN
											11111	1111
bearing plat	ite at joint(5) 4.											ust 6,2020

ENGINEERING BY A MITER Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	Т5	Common	5	1	Job Reference (optional)	E14707744

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:54 ID:eaOQQMNfGS6lrp64ISZsFYysXsO-tHnkpTWHygiVolkK0Hh?n77AnvtBKD0uy1hzLqyqdoZ

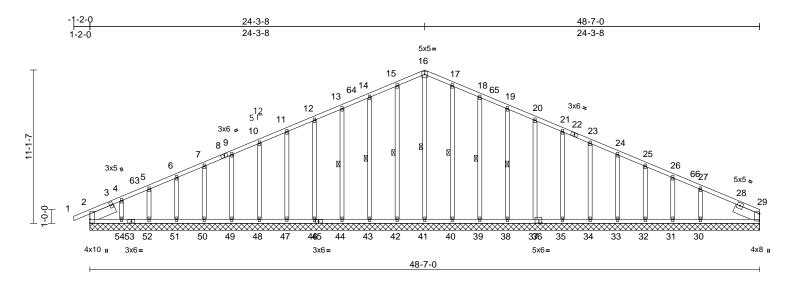
Page: 1

-1-2-0 1-2-0 29-4-7 18-3-8 24-3-8 42-3-8 48-7-0 6-3-8 12-3-8 36-3-8 6-0-0 6-0-0 5-0-15 6-3-8 6-0-0 6-11-1 6-0-0 6-3-8 5x6= 8 Æ 33 9 7 _12 5 Г 4x6 🚅 6 10 4x6 👟 11-1-7 5 11 2x4 🎣 2x4 💊 Ē 4 12 4x12 🐝 34 3 13 14 6 0-0-• • • Ψ T T 24 23 22 21 35 20 19 36 37 1817 16 15 5x6= 4x6= 4x8= 7x6= 7x8= 6x8= 25-4-0 34-4-11 8-1-3 15-2-5 24-3-8 33-3-0 40-5-13 48-7-0 H 8-1-3 7-1-3 9-1-3 1-0-8 7-11-0 1-1-11 6-1-3 8-1-3

Scale = 1:83.1

Plate Offsets (X, Y): [2:0-0-8,0-4-0], [14:Edge,0-3-9]

		1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.70	Vert(LL)	0.27	20-22	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.46	20-22	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.66	Horz(CT)	0.13	14	n/a	n/a		
BCDL	10.0	Code	IBC201	5/TPI2014	Matrix-MS							Weight: 394 lb	FT = 20%
	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Except Left 2x8 SP No.2 - 4 4-0-0 Structural wood shea 3-5-14 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=244 (LC Max Uplift 2=-774 (LI Max Grav 2=2014 (L	I-0-0, Right 2x4 SP N athing directly applied applied or 6-9-12 oc 7-20, 8-20, 9-20 4=0-3-8 C 10) C 11), 14=-701 (LC 1	1) 2 2) lo.3 d or 3) 4) 1)	this design. Wind: ASCE Vasd=119mp B=20ft; L=49 MWFRS (dire 3-8-5, Interior 29-4-7, Interior and right exp exposed;C-C reactions sho DOL=1.60 All plates are * This truss h on the bottom	roof live loads have 7-10; Vult=150mph h; TCDL=6.0psf; B ft; eave=6ft; Cat. II; ectional) and C-C E r (1) 3-8-5 to 24-3-8 or (1) 29-4-7 to 48- osed ; end vertical for members and f wn; Lumber DOL= 4x5 MT20 unless c as been designed fn chord in all areas y 2-00-00 wide will	(3-sec CDL=6 Exp B xterior 3, Exter 7-0 zon left and orces & 1.60 pla otherwise or a liv where	ond gust) .0psf; h=30ft; Enclosed; (2) -1-2-0 to ior (2) 24-3-8 e; cantilever I I right & MWFRS for ate grip se indicated. e load of 20.0 a rectangle	to eft psf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	chord and an	y other members, v	vith BC	DL = 10.0psf.						
TOP CHORD	1-2=0/27, 2-3=-3714 4-5=-3575/1369, 5-6 6-7=-3284/1347, 7-3 8-33=-2443/1116, 8- 9-10=-3375/1408, 10 11-12=-3581/1375, 1 13-34=-3671/1380, 1	=-3504/1385, 3=-2501/1091, 9=-2493/1126, 0-11=-3509/1392, 12-34=-3619/1393,	86, ⁶⁾	bearing plate joint 2 and 70 This truss is o International	capable of withstar 11 lb uplift at joint 14 designed in accorda Building Code secti andard ANSI/TPI 1	nding 7 4. ance wi ion 230	74 lb uplift at	J				WITH CA	ROLIN
BOT CHORD	2-24=-1166/3397, 23 22-23=-1042/3267, 2 21-35=-814/2800, 20 19-20=-783/2645, 19 36-37=-783/2645, 19 17-18=-783/2645, 16 15-16=-1050/3197, 1	8-24=-1166/3397, 21-22=-814/2800, 0-35=-814/2800, 0-36=-783/2645, 3-37=-783/2645, 5-17=-783/2645,								ATTITUS.	Z	SEA 0306	• -
WEBS	4-23=-139/181, 6-23 6-22=-494/329, 7-22 7-20=-876/455, 8-20 9-20=-825/466, 9-16 10-16=-527/361, 10- 12-15=-115/175	=-46/211, =-219/734, =-646/1600, =-300/830,								THUNK.	Frank	Min R.L	ASSITUTION ASSITUTION


August 6,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T5GE	Common Supported Gable	1	1	Job Reference (optional)	E14707745

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:55 ID:m0W9SuEVxMeVVLAA5kzNROysXQA-tHnkpTWHygiVolkK0Hh?n77IAv27KLjuy1hzLqyqdoZ Page: 1

Scale = 1:83.6

Plate Offsets (2	X, Y): [2:E	dge,0-0-0],	[29:0-6-3,0-0-4], [37	7:0-2-8,	0-0-4], [45:0-2-	8,0-′	1-8]									
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2	015/TPI2014		CSI TC BC WB Matrix-I	MS	0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.02	(loc) - - 29	l/defl n/a n/a n/a	999	PLATES MT20 Weight: 361 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x4 SP N 2x4 SP N Left 2x8 S 2-0-0 Structura 6-0-0 oc p	o.1 lo.3 SP No.2 2 I wood shea purlins.	2-0-0, Right 2x8 SP athing directly applie	ed or		Ma	x Grav	30=341 32=178 34=161 37=160 39=161 41=257 43=160 46=160	(LC 17), (LC 21), (LC 21), (LC 21), (LC 21), (LC 11), (LC 1), 4 (LC 20),	29=176 (LC 31=85 (LC 33=156 (LC 35=160 (LC 38=160 (LC 40=164 (LC 42=166 (LC 44=160 (LC 47=160 (LC	1), ; 1), ; 1), ; 1), ; 21), ; 20), ; 20), ; 20),	BOT CH	IORD	52-53= 50-51= 48-49= 46-47= 44-45= 42-43= 40-41= 38-39=	31/133, 53-54=- -31/133, 51-52= -31/133, 49-50= -31/133, 45-46= -31/133, 45-46= -31/133, 45-44= -31/133, 43-44= -31/133, 31-44= -31/133, 37-38= -31/133, 35-36=	-31/133, -31/133, -31/133, -31/133, -31/133, -31/133, -31/133, -31/133, -31/133,
BOT CHORD	bracing.	• •	applied or 10-0-0 of					50=160	(LC 1), క	51=159 (LC 2 54=197 (LC 2	20),			34-35=	=-31/133, 33-36= =-31/133, 33-34= =-31/133, 31-32=	-31/133,
WEBS	1 Row at		16-41, 15-42, 14-43 13-44, 17-40, 18-39 19-38		FORCES	(It	o) - Max	55=249	(LC 17),	59=176 (LC on/Maximum	; 1)				=-31/133, 29-30=	
	Max Horiz	31=48-7-0 34=48-7-0 41=48-7-0 44=48-7-0 51=48-7-0 51=48-7-0 2=244 (L0 2=-37 (L0 31=-18 (L 33=-73 (L 33=-73 (L 33=-76 (L 38=-75 (L 40=-58 (L 43=-84 (L 46=-76 (L 50=-76 (L 50=-76 (L 52=-69 (L	19-38 FORCES $=48-7-0, 29=48-7-0, 30=48-7-0, 1=48-7-0, 32=48-7-0, 33=48-7-0, 4=48-7-0, 33=48-7-0, 4=48-7-0, 35=48-7-0, 37=48-7-0, 1=48-7-0, 49=48-7-0, 40=48-7-0, 40=48-7-0, 40=48-7-0, 50=48-7-0, 58=48-7-0, 59=48-7-0, 50=48-7, 50=48, 10, 10, 10=58, 10, 10, 10=58, 10, 10, 10=58, 10, 10, 10=58, 10, $				63=-20 6=-195/ 9=-156/ 0-11=-11 2-13=-11 4-64=-11 5-16=-20 7-18=-11 9-65=-11 0-21=-12 2-23=-11 4-25=-86 6-66=-98	4/133, 5-6	33=-194/ 183/13)=-164/2 1-12=-14 3-64=-1 4-15=-19 6-17=-20 8-65=-19 9-20=-19 1-22=-10 3-24=-90 -66=-10	1, 7 ⁻⁸ =-174/ 22, 46/325, 71/418, 90/481, 05/555, 57/457, 53/407, 09/304, 9/253, 145, 9/114,				The second se	SEA 0306	52 EER TUIN

August 6,2020

ENGINEERING BY EREPACED A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Tracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	T5GE	Common Supported Gable	1	1	Job Reference (optional)	E14707745
Peak Truss Builders, LLC, New Hi	III. NC - 27562.	Run: 8.33 S Jul 22 20	020 MiTek Industries, Inc. Thu Aug 06 07:55:55	Page: 2		

ID:m0W9SuEVxMeVVLAA5kzNROysXQA-tHnkpTWHygiVolkK0Hh?n77IAv27KLjuy1hzLqyqdoZ

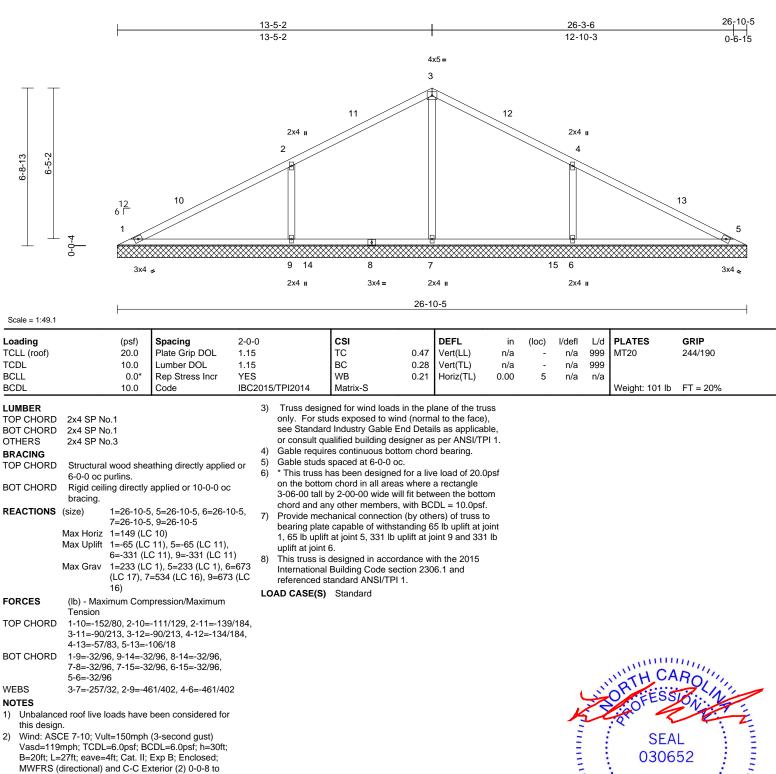
Peak Truss Builders, LLC, New Hill, NC - 27562.

WEBS 16-41=-275/67. 15-42=-126/171. 14-43=-120/185, 13-44=-120/113, 12-46=-120/109. 11-47=-120/110. 10-48=-120/109, 9-49=-120/109, 7-50=-120/110, 6-51=-119/110, 5-52=-124/125, 4-54=-141/218, 17-40=-124/172. 18-39=-121/185. 19-38=-120/113, 20-37=-120/110, 21-35=-120/110, 23-34=-120/110, 24-33=-118/107. 25-32=-130/126. 26-31=-77/61, 27-30=-231/347

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=49ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -1-2-0 to 3-8-5, Exterior (2) 3-8-5 to 24-3-8, Corner (3) 24-3-8 to 29-1-13, Exterior (2) 29-1-13 to 48-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 2-0-0 oc. 6)
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 2, 58 lb uplift at joint 42, 84 lb uplift at joint 43, 75 lb uplift at joint 44, 76 lb uplift at joint 46, 76 lb uplift at joint 47, 76 lb uplift at joint 48, 76 lb uplift at joint 49, 76 lb uplift at joint 50, 78 lb uplift at joint 51, 69 lb uplift at joint 52, 120 lb uplift at joint 54, 58 lb uplift at joint 40, 85 lb uplift at joint 39, 75 lb uplift at joint 38, 76 lb uplift at joint 37, 76 lb uplift at joint 35, 77 lb uplift at joint 34, 73 lb uplift at joint 33, 90 lb uplift at joint 32, 18 lb uplift at joint 31, 206 lb uplift at joint 30 and 37 lb uplift at joint 2.
- This truss is designed in accordance with the 2015 9) International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 fev. 5/92/20 BEFORE USE. Design valid for use only with MiTeR with MiteR connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V1	Valley	1	1	Job Reference (optional)	E14707746

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries. Inc. Thu Aug 06 07:55:55 ID:fawBnYcKIOGCYERwmx2eGeyraVq-MTL70pXvj_qMQSJWa?CEKKfO2JMZ3nH1BhRXtHyqdoY

this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) 2) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=27ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 13-5-10, Exterior (2) 13-5-10 to 16-5-10, Interior (1) 16-5-10 to 26-10-13 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

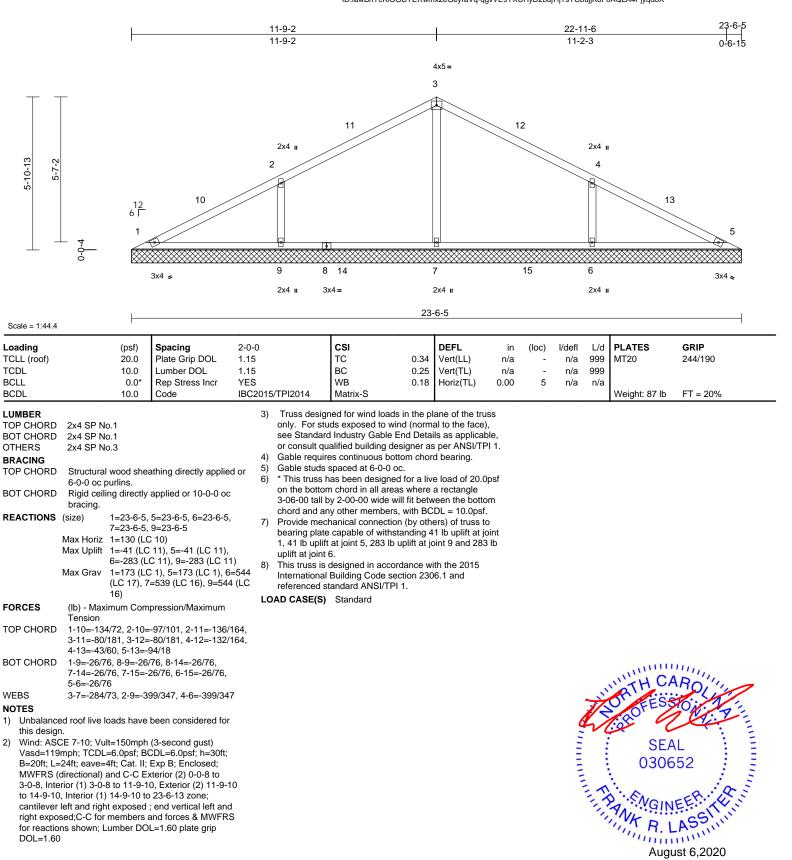
mumm August 6,2020 818 Soundside Road

Edenton, NC 27932

SEAL

030652

and a starter

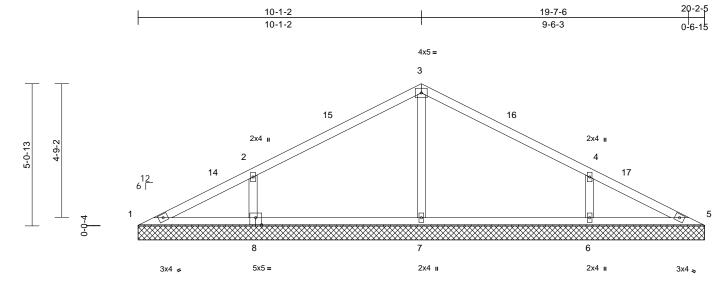

Page: 1

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be doiny with react outractions into besign is based only doin parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and trus systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V2	Valley	1	1	Job Reference (optional)	E14707747

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:56 ID:fawBnYcKIOGCYERwmx2eGeyraVq-qgvVE9YXUHyD2buj7ijTsYCbujjKoF0AQLA4PjyqdoX

Page: 1



🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be doiny with react outractions into besign is based only doin parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and trus systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V3	Valley	1	1	Job Reference (optional)	E14707748

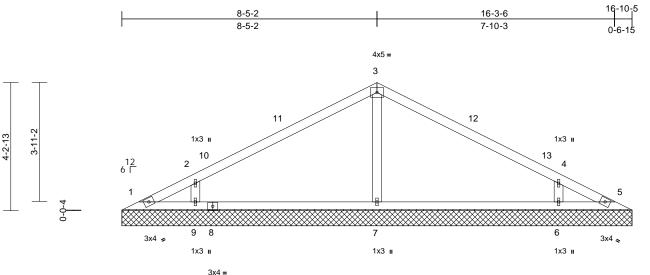
Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:56 ID:fawBnYcKlOGCYERwmx2eGeyraVq-qgvVE9YXUHyD2buj7ijTsYCbgjkEoDiAQLA4PjyqdoX

20-2-5

Scale = 1:41.1

Plate Offsets (X, Y): [8:0-2-8,0-3-0]

												-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13		n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.26	Horiz(TL)	-0.01	5	n/a	n/a		
BCDL	10.0	Code	IBC201	15/TPI2014	Matrix-MS							Weight: 73 lb	FT = 20%
	2x4 SP No.1 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=20-2-5, 7=20-2-5, Max Horiz 1=-114 (LC Max Uplift 1=-34 (LC 7=-85 (LC Max Grav 1=62 (LC	applied or 6-0-0 oc 5=20-2-5, 6=20-2-5 8=20-2-5, 13=20-2- C 9) : 21), 6=-250 (LC 11) : 11), 8=-240 (LC 11) : 20), 6=477 (LC 21), C 1), 8=462 (LC 20)	6 5 7 1, 8	 only. For stu see Standarc or consult qu Gable requird Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar Provide meci bearing plate 1, 85 lb uplift uplift at joint This truss is International 	designed in accor Building Code se tandard ANSI/TPI	nd (norm nd Detai signer as tom chorn c. d for a live s where ill fit betw n (by othe anding 3 uplift at jo dance wi ction 230	al to the face Is as applica a per ANSI/TI d bearing. e load of 20.0 a rectangle veen the botti ers) of truss t 4 lb uplift at j pint 8 and 250 th the 2015	i), ble, PI 1. Opsf om to					
TOP CHORD	Tension 1-14=-130/294, 2-14 2-15=-22/254, 3-15=	-4/335, 3-16=0/334,			otandard								
BOT CHORD	4-16=-2/253, 4-17=- 1-8=-222/137, 7-8=- 5-6=-232/150	,										TH CA	in the second se
WEBS	3-7=-566/192, 2-8=-	355/300, 4-6=-364/3	09									"TH CA	NOIL
NOTES											5	ONFER	Z. IN
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 10-1-10, Exterior (2) 10-1-10 to 13-1-10, Interior (1) 13-1-10 to 20-2-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 										<	C Frank	KR.L	52 EER TUI


August 6,2020

ENGINEERING BY ERENCO A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V4	Valley	1	1	Job Reference (optional)	E14707749

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:56 ID:7mUZ_udyWiO3AN07JeZtpryraVp-qgvVE9YXUHyD2buj7ijTsYCcGjk3oGCAQLA4PjyqdoX

Page: 1

16-10-5

Scale = 1:38.	1												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015/	TPI2014	CSI TC BC WB Matrix-S	0.31 0.14 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORI BOT CHORI OTHERS BRACING TOP CHORI BOT CHORI REACTIONS	D 2x4 SP No.1 2x4 SP No.3 D Structural wood shea 6-0-0 oc purlins. D Rigid ceiling directly bracing. S (size) 1=16-10-5 7=16-10-5 Max Horiz 1=-91 (LC Max Uplift 1=-55 (LC 6=-247 (LC Max Grav 1=50 (LC	applied or 10-0-0 oc 5, 5=16-10-5, 6=16-1 5, 9=16-10-5 9) 9), 5=-41 (LC 17), C 11), 7=-61 (LC 11) C 11)	ed or 5) 6) ; 0-5, 7)), 8) ;=454	only. For stu see Standard or consult qu Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate 1, 41 lb uplift at joint 9 and This truss is c International	ted for wind loads i ds exposed to wind I Industry Gable Er alified building desi as continuous botto spaced at 6-0-0 oc. as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta at joint 5, 61 lb upl 247 lb uplift at join designed in accord Building Code sect andard ANSI/TPI 1 Standard	d (norm nd Detai igner as om chor for a liv where I fit betw (by oth- unding 5 lift at joi t 6. ance wi tion 230	al to the face) Is as applicat a per ANSI/TF d bearing. e load of 20.0 a rectangle veen the bottc ers) of truss to 5 lb uplift at jo nt 7, 247 lb up th the 2015), ble, PI 1. Opsf om o					
	(lb) - Maximum Com Tension	•	04										
TOP CHORI	D 1-2=-89/83, 2-10=-13 3-11=-64/120, 3-12= 12-13=-117/104, 4-1	-58/120,											B 2.
BOT CHORI	D 1-9=-14/57, 8-9=-14/ 6-7=-14/57, 5-6=-14/ 3-7=-295/136, 2-9=-3	57	18									WHTH CA	ROUT
NOTES 1) Unbalan this desi 2) Wind: A: Vasd=1' B=20ft; I MWFRS 3-0-8, In 11-5-10, left and exposed	sced roof live loads have ign. SCE 7-10; Vult=150mph 19mph; TCDL=6.0psf; BG L=20ft; eave=4ft; Cat. II; directional) and C-C Ex- iterior (1) 3-0-8 to 8-5-10, Interior (1) 11-5-10 to 16 right exposed; end vertid is c-C for members and for s shown; Lumber DOL=1	been considered for (3-second gust) CDL=6.0psf; h=30ft; Exp B; Enclosed; (terior (2) 0-0-8 to , Exterior (2) 8-5-10 6-10-13 zone; cantile cal left and right prces & MWFRS for	to								A A A A A A A A A A A A A A A A A A A	SEA 0306	EER HUIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 6,2020

J	Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
F	P-7005-1	V5	Valley	1	1	Job Reference (optional)	E14707750

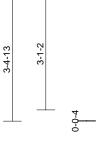
6-9-2

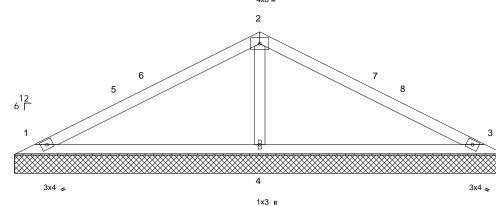
6-9-2

Peak Truss Builders, LLC, New Hill, NC - 27562,

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:56 ID:7mUZ_udyWiO3AN07JeZtpryraVp-qgvVE9YXUHyD2buj7ijTsYCagjj1oGLAQLA4PjyqdoX

12-11-6


6-2-3



1.3-6-5

0-6-15

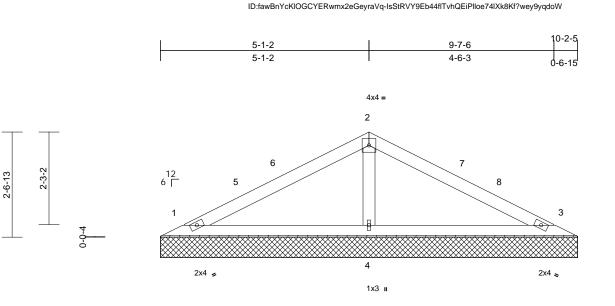
4x6 = 2

13-6-5

Scale = 1:31.8

Scale = 1:31.8														
Loading	(p:	sf) S	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)			Plate Grip DOL	1.15		тс	0.42	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10	.0 L	Lumber DOL	1.15		BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL	C	.0* F	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10	.0 0	Code	IBC20	15/TPI2014	Matrix-S							Weight: 45 lb	FT = 20%
LUMBER				5) Gable studs	spaced at 6-0-0	oc.							
TOP CHORD	2x4 SP No.1			6		as been designe			psf					
BOT CHORD						n chord in all are								
OTHERS	2x4 SP No.3					y 2-00-00 wide v		een the botto	m					
BRACING				-		y other member								
TOP CHORD	Structural wood 6-0-0 oc purlins		hing directly applied	dor /	bearing plate	hanical connection capable of with	standing 1	04 Ib uplift at						
BOT CHORD	Rigid ceiling dir bracing.	ectly ap	pplied or 10-0-0 oc	8) This truss is	o uplift at joint 3 a designed in acco	ordance wi	th the 2015	4.					
REACTIONS			=13-6-5, 4=13-6-5			Building Code se tandard ANSI/TF		0.1 200						
	Max Horiz 1=-72	· ·	,		OAD CASE(S)									
			11), 3=-104 (LC 11), Ľ		Standard								
		19 (LC	,											
		9 (LC 2 3 (LC 1	20), 3=229 (LC 21), 1)											
FORCES			ession/Maximum											
	Tension													
TOP CHORD	1-5=-131/70, 5-	6=-72/7	71, 2-6=-61/90,											
	2-7=-46/88, 7-8	=-55/68	8, 3-8=-131/67											
BOT CHORD	1-4=-5/58, 3-4=	-5/58												
WEBS	2-4=-351/207													
NOTES														
 Unbalance this design 		nave be	een considered for										OR. ESS	11111
0	n. CE 7-10; Vult=150	mnh (2	cocond quet)										WAH CA	Route
			DL=6.0psf; h=30ft;									1	R	in the
	=20ft; eave=4ft; Ca											SP	9.550	Dillo
	directional) and C											SZ	:11/ A	
3-0-8, Inte	erior (1) 3-0-8 to 6-	9-10, E	Exterior (2) 6-9-10 t	0									····	
			13 zone; cantilever	left							-		SEA	AL : E
	exposed ; end ver											è - 1	0000	• -
			ces & MWFRS for								-		0306	52 : :
DOL=1.60	shown; Lumber D	JL=1.6	50 plate grip								-		1	1
		de in th	he plane of the trus	c .							111111	いう	A	airi
			normal to the face),	3								11	VGIN	EELXVIN
			Details as applicabl	e.								11	NL	"CGI III
			er as per ANSI/TPI										111 R.L	ASUN
4) Gable req	uires continuous t	ottom o	chord bearing.										COLUMN R. L	mm
													•	1 0 0000

August 6,2020


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V6	Valley	1	1	Job Reference (optional)	E14707751

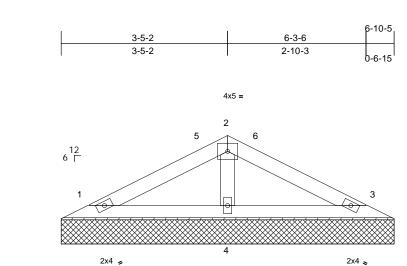
Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:57

Page: 1

Peak Truss Builders, LLC, New Hill, NC - 27562,

10-2-5

TCLL (roof) TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015/7	TPI2014	CSI TC BC WB Matrix-S	0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
6-0-0 BOT CHORD Rigid bracin REACTIONS (size) Max Ho Max Up	 No.1 No.3 ural wood she co purlins. ceiling directly g. 1=10-2-5 riz 1=52 (LC Lift 1=-76 (LC 4=-109 (L 	C 11), 3=-76 (LC 11), LC 11) C 20), 3=167 (LC 21)	6) d or 7) 8) LOA	* This truss has on the bottom 3-06-00 tall by chord and any Provide mech bearing plate 1, 76 lb uplift This truss is content International	spaced at 6-0-0 oc. as been designed 1 o chord in all areas y 2-00-00 wide will y other members. tanical connection capable of withsta at joint 3 and 109 I designed in accord Building Code sect andard ANSI/TPI 1 Standard	for a live where fit betw (by othe nding 7 b uplift ance wi ion 230	a rectangle veen the botto ers) of truss to 6 lb uplift at jo at joint 4. th the 2015	om o					
FORCES (Ib) - M Tensio	1aximum Con	npression/Maximum											
TOP CHORD 1-5=-5 2-7=-3 BOT CHORD 1-4=-4	6/59, 5-6=-52	2/61, 2-6=-42/75,)/58, 3-8=-96/56 2											
NOTES													
 Unbalanced roof li this design. 	ve loads have	been considered for											
 Wind: ASCE 7-10; Vasd=119mph; TC B=20ft; L=20ft; ear MWFRS (direction 3-0-8, Interior (1) 8-1-10, Interior (1) and right exposed exposed;C-C for m reactions shown; I 	DL=6.0psf; B /e=4ft; Cat. II; al) and C-C E -0-8 to 5-1-10 8-1-10 to 10- ; end vertical sembers and	CDL=6.0psf; h=30ft; Exp B; Enclosed; Exterior (2) 0-0-8 to 0, Exterior (2) 5-1-10 2-13 zone; cantilever left and right forces & MWFRS for									X	SEA 0306	
only. For studs ex see Standard Indu	posed to wind stry Gable Er I building desi	n the plane of the tru: d (normal to the face) id Details as applicab igner as per ANSI/TP im chord bearing.	le,								1	KR.L	ASSITUTION



August 6,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V7	Valley	1	1	Job Reference (optional)	E14707752

Run: 8.33 E Jul 22 2020 Print: 8.330 E Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 12:35:03 ID:wTB?D7MHcxXdRW1olu9eeDyraTZ-FEV_fODx3cBWp3GBzwM_bEDOgLpNfFrIZGMFMCyqab6

WB

Matrix-P

Scale = 1:23.7

Loading TCLL (roof) TCDI BCLL

				6-10	-5						
(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	DEFL Vert(LL)	in	(loc)	l/defl		PLATES MT20	GRIP 244/190	
	Lumber DOL	1.15	BC	Vert(TL)	n/a n/a	-	n/a n/a	999 999	WI120	244/190	

0.04 Horiz(TL)

BRACING

TOP CHORD

BOT CHORD

2x4 🛛

0.00

3

n/a n/a

Weight: 21 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

LUMBER

BCDL

TOP CHORD 2x4 SP No.1

2x4 SP No.1 BOT CHORD

OTHERS 2x4 SP No.3

REACTIONS 1=116/6-10-5, 3=116/6-10-5, 4=222/6-10-5 (lb/size)

0.0*

10.0

1-8-13

Ϋ́

Max Horiz 1=-33 (LC 9)

Max Uplift 1=-59 (LC 11), 3=-59 (LC 11), 4=-46 (LC 11)

Rep Stress Incr

Code

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

YES

IBC2015/TPI2014

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. 2) II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 3-5-10, Exterior (2) 3-5-10 to 6-5-10, Interior (1) 6-5-10 to 6-10-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry 3) Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 6-0-0 oc.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 6) wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 1, 59 lb uplift at joint 3 and 46 lb uplift at joint 4.

This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 8) LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 1) Uniform Loads (lb/ft)

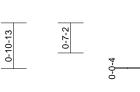
Vert: 1-2=-60, 2-3=-60, 1-3=-20

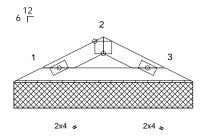
Page: 1

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a few of 3/3/2/00 BeFORE DSE. Design valid for use only with MITeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI1 Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V8	Valley	1	1	Job Reference (optional)	E14707753


Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:57 ID:OfINQTNvNFfU3gb_JbgtBQyraTY-IsStRVY9Eb44fITvhQEiPIIrW75wXk?Kf?wey9yqdoW


Page: 1

818 Soundside Road Edenton, NC 27932

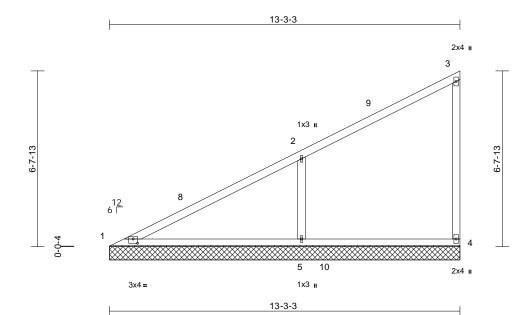
3x4 =

3-6-5

Scale = 1:22.7

Plate Offsets (X, Y): [2:0-2-0.Edge]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IBC2015/TPI2014	CSI TC BC WB Matrix-P	0.03 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BRACING TOP CHORD Structural wood shea 3-6-5 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=3-6-5, 3 Max Horiz 1=-14 (LC Max Uplift 1=-34 (LC Max Grav 1=94 (LC	applied or 10-0-0 oc =3-6-5 9) 11), 3=-34 (LC 11) 1), 3=94 (LC 1)	bearing 1 and 34 8) This trus 1 or Internati reference	nechanical connect late capable of with lb uplift at joint 3. s is designed in acc onal Building Code s ad standard ANSI/Ti (S) Standard	standing 3 ordance wi ection 230	4 lb uplift at jo ith the 2015						
Tension TOP CHORD 1-2=-91/88, 2-3=-91/ BOT CHORD 1-3=-53/70											
 NOTES 1) Unbalanced roof live loads have I this design. 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BC B=20ft; L=20ft; eave=4ft; Cat. II; I MWFRS (directional) and C-C Ex cantilever left and right exposed; right exposed; C-C for members a for reactions shown; Lumber DOI DOL=1.60 3) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Enc or consult qualified building desig 4) Gable requires continuous bottom 5) Gable studs spaced at 6-0-0 oc. * This truss has been designed for on the bottom chord in all areas v 3-06-00 tall by 2-00-00 wide will f chord and any other members. 	(3-second gust) DD=6.0psf; h=30ft; Exp B; Enclosed; terior (2) zone; end vertical left and and forces & MWFRS _=1.60 plate grip the plane of the trus (normal to the face), d Details as applicabl pre as per ANSI/TPI n chord bearing. or a live load of 20.0p where a rectangle	s e, 1. sf								KR.	EER HUIL

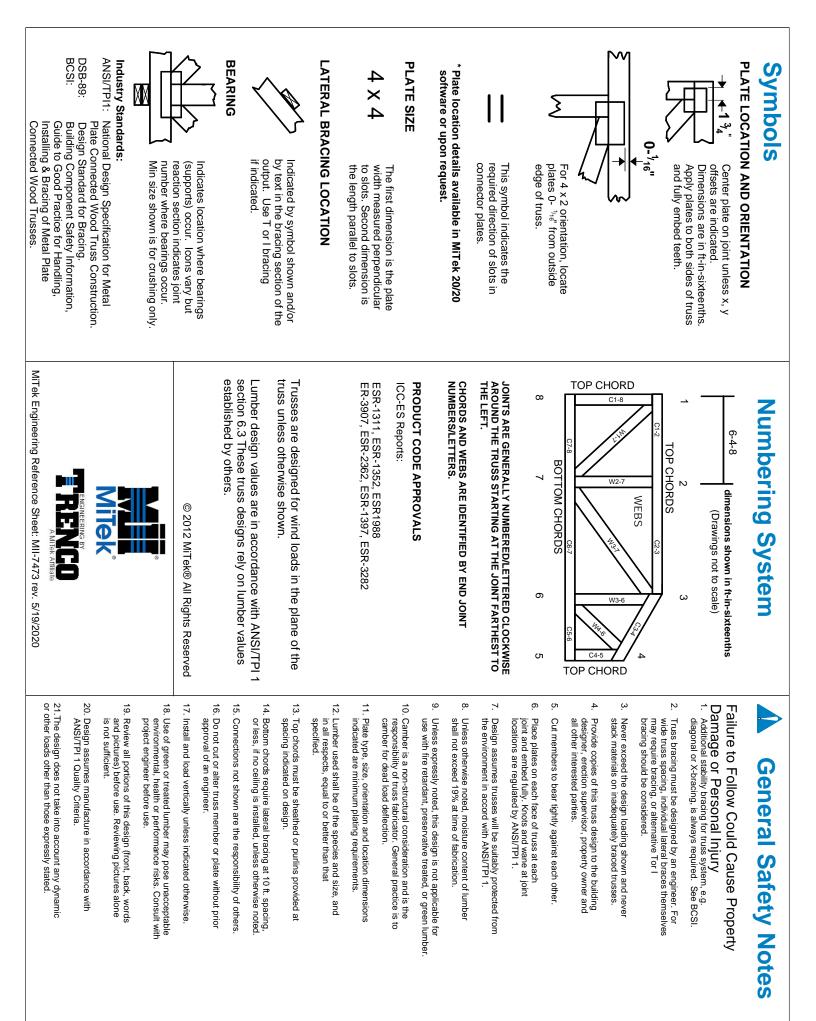

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roman-Roof	
P-7005-1	V9	Valley	1	1	Job Reference (optional)	E14707754

Run: 8.33 S Jul 22 2020 Print: 8.330 S Jul 22 2020 MiTek Industries, Inc. Thu Aug 06 07:55:57 ID:N?_f8i1ecORaeXdddvaFiayqxFv-IsStRVY9Eb44fITvhQEiPllir70oXj2Kf?wey9yqdoW

Page: 1

818 Soundside Road Edenton, NC 27932



Scale = 1:43.6

Plate Offsets (X, Y): [1:0-2-0,0-1-14]

L oading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0	Lumber DOL	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.58 0.36 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		IBC2015/TPI201		0.10		0.01			1.0	Weight: 54 lb	FT = 20%
	6-0-0 oc purlins, Rigid ceiling direc bracing. (size) 1=13-3 Max Horiz 1=311 Max Uplift 1=-8 (L (LC 11) Max Grav 1=236	C 11), 4=-57 (LC 8), 5 (LC 17), 4=253 (LC 16	on the 3-06-00 chord a 6) Provide bearing 4, 8 lb 7) This tru Interna referen LOAD CAS	russ has been design bottom chord in all are tall by 2-00-00 wide nd any other member plate capable of with uplift at joint 1 and 333 ss is designed in accu- ional Building Code s ced standard ANSI/TF	eas where will fit betw s, with BC on (by othe standing 5 3 lb uplift a ordance wi ection 230	a rectangle reen the botto DL = 10.0psf ers) of truss to 7 lb uplift at ju t joint 5. th the 2015	im					
F ORCES TOP CHORD	Tension	mpression/Maximum =-330/263, 2-9=-193/1	02,									
BOT CHORD	1-5=-233/415, 5-1 2-5=-456/372	0=-131/147, 4-10=-13	1/147									10.
NOTES 1) Wind: ASC Vasd=119 B=20ft; L= MWFRS ((3-0-8, Inte and right e exposed;C	CE 7-10; Vult=150m mph; TCDL=6.0psf; 20ft; eave=4ft; Cat. directional) and C-C rior (1) 3-0-8 to 13- xposed ; end vertic xposed ; end vertic -C for members an shown; Lumber DOI	BCDL=6.0psf; h=30ft; II; Exp B; Enclosed; Exterior (2) 0-0-8 to -15 zone; cantilever le al left and right d forces & MWFRS for	ft						N IIIIII	J.	SEA 0306	
only. For see Stands or consult	studs exposed to wi ard Industry Gable I qualified building de	s in the plane of the tru nd (normal to the face) End Details as applicat signer as per ANSI/TF	, ble,							Example 1		EEP. HALL
, i	uires continuous bo Is spaced at 6-0-0 c	0									Augu	AS2,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

