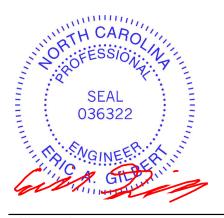


Trenco 818 Soundside Rd Edenton, NC 27932

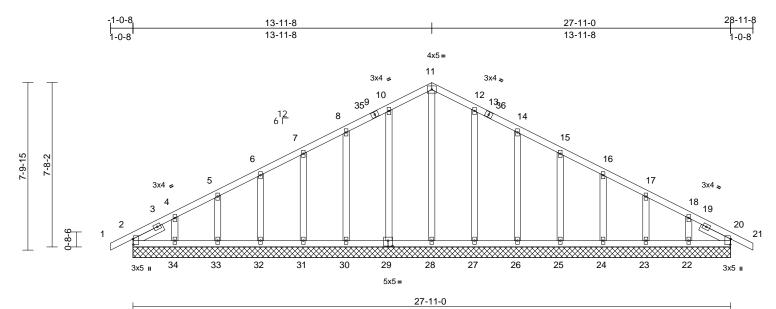

Re: P-6525-1 Bentley 2020-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC.

Pages or sheets covered by this seal: E13984172 thru E13984178

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844


January 22,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
P-6525-1	T1GE	Common Supported Gable	2	1	Job Reference (optional)	E13984172

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:28 ID:epI4ESHO_Pq0II9s6Xp4ACzs6h?-FTkpjwGjCxwuzvnqnJRuNKDnY2vpsomUwqW_d7zsu2H

Scale = 1:53.8

Plate Offsets (X, Y): [2:0-3-3,0-0-4], [20:0-3-3,0-0-4], [29:0-2-8,0-3-0]

	A, T). [2.0-3-3,0-0-4],	[20.0-3-3,0-0-4], [29.0	J-2-8,0-3-0j										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0		2-0-0 1.15 1.15 YES IBC2015/TPI2014	BC 0.	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a		PLATES MT20 Weight: 172 lb	GRIP 244/190 FT = 20%		
	2x4 SP No.3 Left 2x4 SP No.3 1 No.3 1-6-12 Structural wood she: 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=155/27. 22=148/2: 24=159/2: 26=159/2: 30=158/2: 30=158/2: 31=159/2: 34=149/2: Max Horiz 2=-169 (L Max Uplift 2=-19 (LC (LC 7), 24 26=-4 (LC (LC 8), 30 32=-3 (LC (LC 8))	athing directly applied applied or 10-0-0 oc -11-0, 20=156/27-11-(7-11-0, 23=163/27-11 7-11-0, 25=160/27-11 7-11-0, 29=166/27-11 7-11-0, 31=160/27-11 7-11-0, 33=163/27-11 7-11-0, 33=10, 120/27-11 7-11-0, 33=10, 120/27-11 7-11-0, 33=10, 120/27-11 7-11-0, 33=10, 120/27-11 7-11-0, 33=10, 120/27-11 7-11-0, 33=10, 120/27-11 7-11-0,	BOT CHORD), -0, -0, -0, -0, -0, -0, -0, -0, -0, -0	$\begin{array}{l} 4-5=-114/108, 5-6=-106\\ 7-8=-88/170, 8-35=-81/\\ 9-10=-69/227, 10-11=-1\\ 11-12=-100/280, 12-13:\\ 13-36=-72/224, 14-36=-\\ 14-15=-61/172, 15-16=-\\ 16-17=-53/61, 17-18=-6\\ 19-20=-127/51, 20-21=1\\ 2-34=-52/144, 33-34=-5\\ 32-33=-52/144, 33-34=-5\\ 32-33=-52/144, 33-34=-5\\ 32-33=-52/144, 32-22=-\\ 30-31=-52/144, 29-30=-\\ 28-29=-52/143, 25-26=-\\ 24-25=-52/143, 25-26=-\\ 24-25=-52/143, 20-22=-\\ 11-28=-131/9, 10-29=-1\\ 8-30=-123/111, 7-31=-1\\ 6-32=-123/110, 15-25:\\ 16-24=-123/110, 15-25:$	/95, 6-7=-96/115, 222, 9-35=-71/222, 00/279, =-69/229, 81/224, 45/117, 10/39, 18-19=-112/5 0/8 12/144, 52/144, 52/143, 52/144,	4 5 6 57, 7 8 9	 only. see S or co or co All pla Gable Gable Gable Gable This on th 3-06-chore All be capae Provi bearing 2, 2 II joint 1 joint 2 26, 2 at joint 2 at joint 2 	For st Standar nsult q ates ar e requi e studs s truss e botto 00 tall d and a earings city of 4 de med ng plat b uplift 31, 3 lb at joint lb uplift nt 23 ar led pla	uds ex rd Indu ualifiec e 2x4 I res cor s space has be m choioby 2-0 iny oth are as 425 ps chanica: e capa at join o uplift t 34, 1 ft at joi ft ta joi n d 16 I te or sl t truss	sposed to wind (r istry Gable End I d building design MT20 unless oth hitinuous bottom ad at 2-0-0 oc. een designed for rd in all areas wf 0-00 wide will fit er members. ssumed to be SP i. al connection (by able of withstandi t 29, 4 lb uplift at at joint 32, 1 lb u lb uplift at joint 22 him required to p chord at joint(s) :	a live load of 20.0psf here a rectangle between the bottom F No.2 crushing rothers) of truss to ng 19 lb uplift at joint joint 30, 2 lb uplift at plift at joint 33, 22 lb 7, 4 lb uplift at joint at joint 24, 2 lb uplift 2. provide full bearing 2.		
FORCES	24=164 (L 26=164 (L 28=139 (L 30=162 (L	C 17), 23=165 (LC 17), 25=164 (LC 17), 25=164 (LC 17), 25=170 (LC 17), 27=170 (LC 17), 27=170 (LC 16), 29=172 (LC 16), 31=164 (LC 16), 31=164 (LC 16), 33=164 (LC 16), C 16), 33=164 (LC 16), C 16)	7), Vasd=111 7), B=45ft; L= 7), MWFRS (5), 1-11-8, E> 5), to 16-11-8 6), cantilever right expo	Vind: ASCE 7-10; Vult=140mph (3-second gust) (asd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; u=45ft; L=28ft; eave=2ft; Cat. II; Exp B; Enclosed; WWFRS (directional) and C-C Corner (3) -1-0-8 to -11-8, Exterior (2) 1-11-8 to 13-11-8, Corner (3) 13-11-8 to 16-11-8, Exterior (2) 16-11-8 to 28-11-8 zone; antilever left and right exposed ; end vertical left and ght exposed;C-C for members and forces & MWFRS or reactions shown; Lumber DOL=1.60 plate grip VOL=1.60				SEAL 036322					

January 22,2020

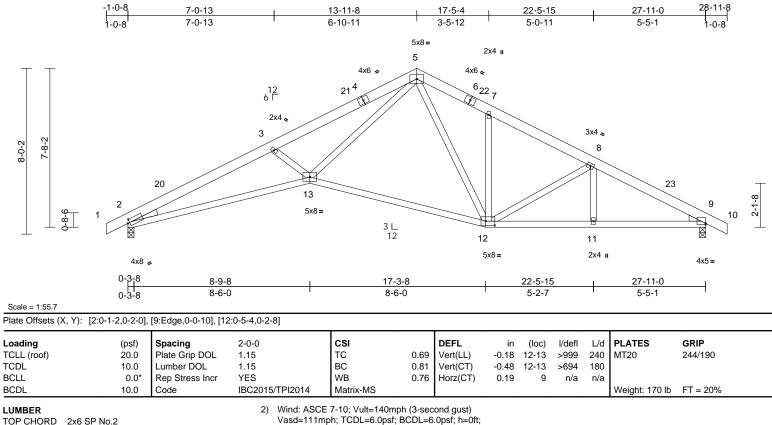
Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek/® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
P-6525-1	T1GE	Common Supported Gable	2	1	Job Reference (optional)	E13984172
Peak Truss Builders, LL	C, New Hill, NC - 27562,	Run: 8.33 S Ja	an 8 2020 Print: 8.	330 S Jan 8	2020 MiTek Industries, Inc. Wed Jan 22 06:28:28	Page: 2

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:28 ID:epI4ESHO_Pq0II9s6Xp4ACzs6h?-FTkpjwGjCxwuzvnqnJRuNKDnY2vpsomUwqW_d7zsu2H

11) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
P-6525-1	T6A	Roof Special	8	1	Job Reference (optional)	E13984173

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:30 ID:71mH_JBeSi55fJG?MT0I0vynyoL-jfIBwGHLzF2la2M0L0y7vXmoNS2fb6Fd9UGXAazsu2G

LUMBER		Z)	Wind. ASCE 7-10, Vall=140mph (S-second gast)
TOP CHORD	2x6 SP No.2		Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft;
BOT CHORD	2x4 SP No.1		B=45ft; L=28ft; eave=4ft; Cat. II; Exp B; Enclosed;
WEBS	2x4 SP No.3		MWFRS (directional) and C-C Exterior (2) -1-0-8 to
WEDGE	Left: 2x4 SP No.3		1-11-8, Interior (1) 1-11-8 to 13-11-8, Exterior (2) 13-11-8
	Right: 2x4 SP No.3		to 16-11-8, Interior (1) 16-11-8 to 28-11-8 zone;
BRACING	0		cantilever left and right exposed ; end vertical left and
TOP CHORD	Structural wood sheathing directly applied or 3-3-1 oc purlins.		right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
BOT CHORD	Rigid ceiling directly applied or 9-11-7 oc bracing.	3)	DOL=1.60 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
REACTIONS	(lb/size) 2=1179/0-3-8, 9=1179/0-3-8 Max Horiz 2=-169 (LC 9)		3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
FORCES	(lb) - Maximum Compression/Maximum Tension	4)	All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
TOP CHORD	1-2=0/28, 2-20=-3180/504, 3-20=-3132/536, 3-21=-2873/473, 4-21=-2783/475, 4-5=-2771/491, 5-6=-1440/401,	5)	Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
	6-22=-1511/385, 7-22=-1524/385,		designer should verify capacity of bearing surface.
	7-8=-1544/331, 8-23=-1812/338,	6)	This truss is designed in accordance with the 2015
	9-23=-1907/313, 9-10=0/28		International Building Code section 2306.1 and
BOT CHORD			referenced standard ANSI/TPI 1.
BOT CHURD	2-13=-303/2010, 12-13=-01/1270, 11-12=-211/1620, 9-11=-211/1620	LC	DAD CASE(S) Standard
WEBS	3-13=-307/217, 5-13=-190/1835,		
VVEDS	5-12=-113/403, 7-12=-264/148,		
	8-12=-357/113, 8-11=0/84		
	0-12-007/110, 0-11-0/04		
NOTES			
	ad roof live loade have been considered for		

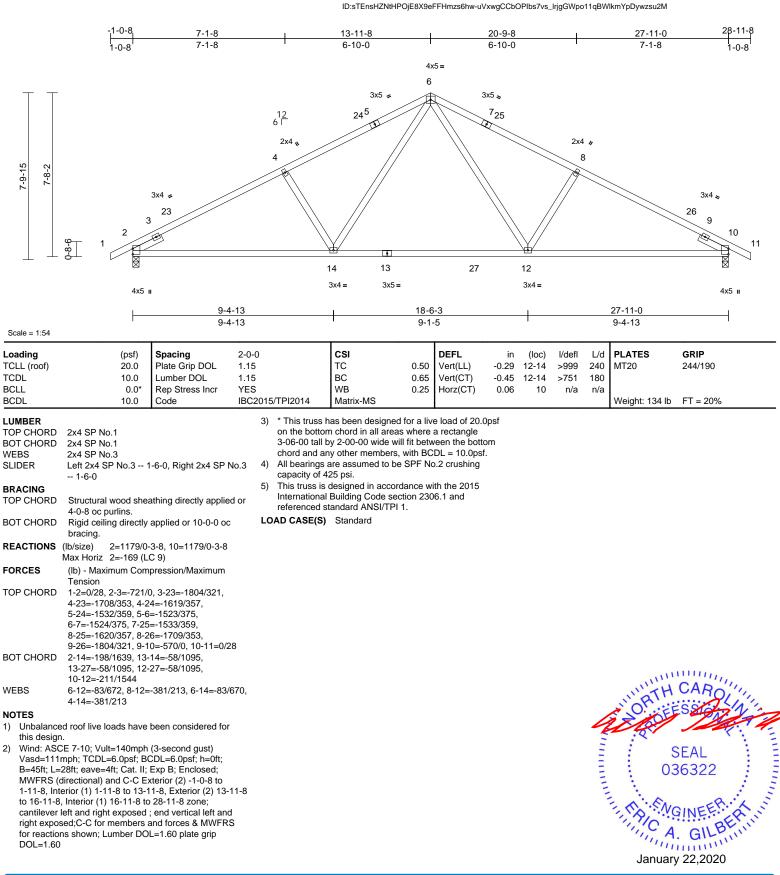
 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

January 22,2020

VIIIIIIIIIII

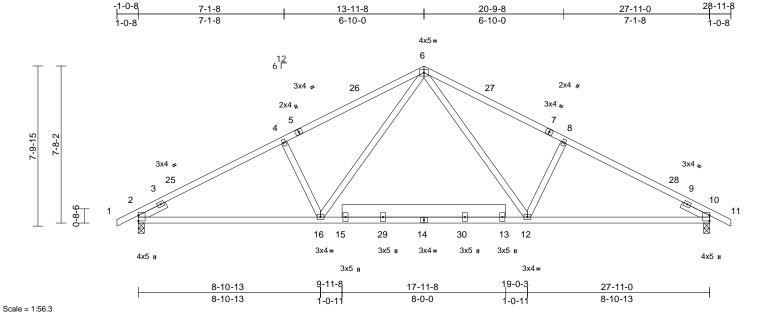

Page: 1

[Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
	P-6525-1	T1	Common	2	1	Job Reference (optional)	E13984174

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:25

Page: 1

818 Soundside Road Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
P-6525-1	T1A	Common	3	1	Job Reference (optional)	E13984175

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:28 ID:n84GbqX?RfEEZQIEJMFsTKzs6kY-FTkpjwGjCxwuzvnqnJRuNKDgZ2oGsmoUwqW_d7zsu2H

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.10	12-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.18	12-16	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.26	Horz(CT)	0.05	10	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 159 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 *Except* 15-13:2x8 SP No.2 Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3
	1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-2-1 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 2=1179/0-3-8, 10=1179/0-3-8 Max Horiz 2=-169 (LC 9)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/28, 2-3=-730/0, 3-25=-1801/319, 4-25=-1659/351, 4-5=-1650/360, 5-26=-1553/375, 6-26=-1547/393, 6-27=-1547/393, 7-27=-1553/375, 7-8=-1650/360, 8-28=-1659/351, 9-28=-1801/319, 9-10=-580/0, 10-11=0/28
BOT CHORD	2-16=-196/1621, 15-16=-64/1063, 15-29=-64/1063, 14-29=-64/1063, 14-30=-64/1063, 13-30=-64/1063, 12-13=-64/1063, 10-12=-209/1542 6-12=-97/702, 8-12=-380/213, 6-16=-97/702,
	0 · · · · · · · · · · · · · · · · · · ·

2) Wind: ASCE 7-10; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=28ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-0-8 to 1-11-8, Interior (1) 1-11-8 to 13-11-8, Exterior (2) 13-11-8 to 16-11-8, Interior (1) 16-11-8 to 28-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 4) All bearings are assumed to be SP No.1 crushing

capacity of 565 psi. 5) This truss is designed in accordance with the 2015

International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

NOTES

Unbalanced roof live loads have been considered for 1) this design.

4-16=-380/213

818 Soundside Road Edenton, NC 27932

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
P-6525-1	T1B	Common	6	1	Job Reference (optional)	E13984176

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:28 ID:9Yd?msR6EC8pXiNcaY4vtfzs6i4-FTkpjwGjCxwuzvnqnJRuNKDgZ2oGsmoUwqW_d7zsu2H

Scolo	_	1:56.3
Scale	=	1:50.3

Scale = 1:56.3				1-0-11	00		1-0)-11				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.50	Vert(LL)	-0.10	12-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.18	12-16	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.26	Horz(CT)	0.05	10	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI2014	Matrix-MS							Weight: 159 lb	FT = 20%

LIMBER

LUMBER	
TOP CHORD	
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.3 *Except* 15-13:2x8 SP No.2
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-2-1 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 2=1179/0-3-8, 10=1179/0-3-8
	Max Horiz 2=-169 (LC 9)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/28, 2-3=-730/0, 3-25=-1801/319,
	4-25=-1659/351, 4-5=-1650/360,
	5-26=-1553/375, 6-26=-1547/393,
	6-27=-1547/393, 7-27=-1553/375,
	7-8=-1650/360, 8-28=-1659/351,
	9-28=-1801/319, 9-10=-580/0, 10-11=0/28
BOT CHORD	2-16=-196/1621, 15-16=-64/1063,
	15-29=-64/1063, 14-29=-64/1063,
	14-30=-64/1063, 13-30=-64/1063,
	12-13=-64/1063, 10-12=-209/1542
WEBS	6-12=-97/702, 8-12=-380/213, 6-16=-97/702,
	4-16=-380/213

2) Wind: ASCE 7-10; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=0ft; B=45ft; L=28ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -1-0-8 to 1-11-8, Interior (1) 1-11-8 to 13-11-8, Exterior (2) 13-11-8 to 16-11-8, Interior (1) 16-11-8 to 28-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 4) All bearings are assumed to be SP No.1 crushing

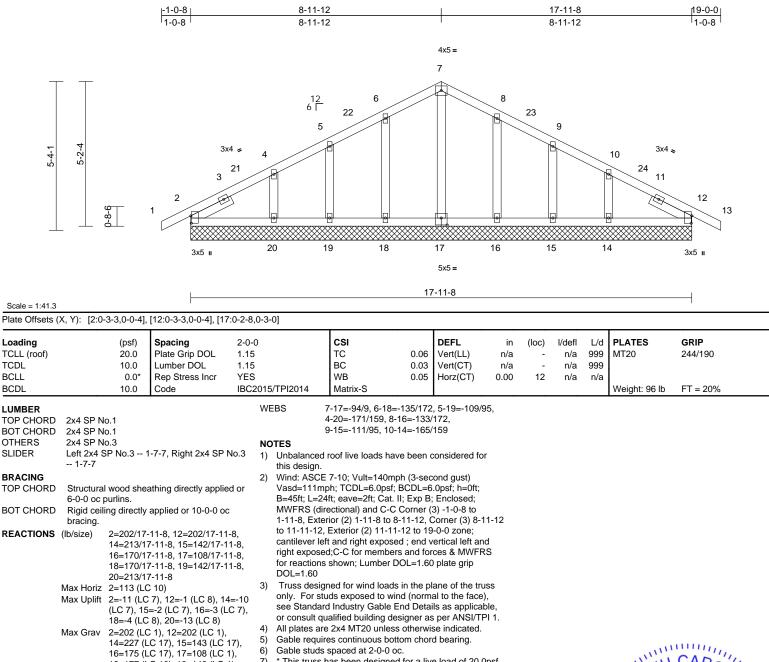
capacity of 565 psi. 5) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and

referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

NOTES

1) Unbalanced roof live loads have been considered for this design.

818 Soundside Road Edenton, NC 27932


🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

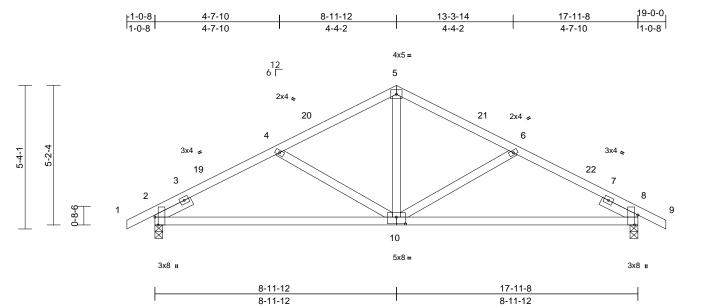
Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
P-6525-1	T2AGE	Common Supported Gable	1	1	Job Reference (optional)	E13984177

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:29 ID:Si7wxh8Ua1SaUcplzj7VEtzs6hA-jfIBwGHLzF2la2M0L0y7vXmyHSEtbHKd9UGXAazsu2G

Page:

- 18=177 (LC 16), 19=142 (LC 1), 20=233 (LC 16) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/8, 2-3=-141/53, 3-21=-92/53, 4-21=-87/68, 4-5=-104/126, 5-22=-94/169, 6-22=-72/175, 6-7=-98/230, 7-8=-98/231, 8-23=-68/176, 9-23=-77/170, 9-10=-76/127, 10-24=-51/45, 11-24=-58/37, 11-12=-107/37, 12-13=0/8 BOT CHORD 2-20=-22/65, 19-20=-22/65, 18-19=-22/65, 17-18=-22/65, 16-17=-22/65, 15-16=-22/65, 14-15=-22/65, 12-14=-22/65
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 2, 1 lb uplift at joint 12, 4 lb uplift at joint 18, 13 lb uplift at joint 20, 3 lb uplift at joint 16, 2 lb uplift at joint 15 and 10 lb uplift at joint 14.
- 10) This truss is designed in accordance with the 2015 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	Bentley 2020-Roof	
P-6525-1	Т2	Common	2	1	Job Reference (optional)	E13984178

Run: 8.33 S Jan 8 2020 Print: 8.330 S Jan 8 2020 MiTek Industries, Inc. Wed Jan 22 06:28:29 ID:awuP5K5_Wox9??V_ku2Z31zs6hE-jflBwGHLzF2la2M0L0y7vXmwQS90bFPd9UGXAazsu2G

Scale = 1:42.8

Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-4-7,Edge], [10:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	-0.03	10	>999		MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)		10-13	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.02	8	n/a	n/a		
BCDL	10.0	Code	IBC2015/TPI20	14 Matrix-MS							Weight: 86 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.1			truss has been designe bottom chord in all are			Opsf					
BOT CHORD	2x4 SP No.1			00 tall by 2-00-00 wide		veen the bott	om					
WEBS	2x4 SP No.3			and any other member								
SLIDER	Left 2x4 SP No.3 7 1-6-0	1-6-0, Right 2x4 SP	capad	arings are assumed to l ity of 565 psi.								
BRACING			Intorn	russ is designed in acco ational Building Code s								
TOP CHORD	 Structural wood she 5-11-11 oc purlins. 	athing directly appli	refere	nced standard ANSI/TF		0.1 anu						
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	DC LOAD CA	SE(S) Standard								
REACTIONS	(lb/size) 2=781/0-3 Max Horiz 2=113 (L0	3-8, 8=781/0-3-8 C 10)										
FORCES	(lb) - Maximum Com Tension											
TOP CHORD	1-2=0/28, 2-3=-543/ 4-19=-982/248, 4-20											
	5-20=-772/202, 5-21	,										
	6-21=-832/186, 6-22											
BOT CHORD	7-22=-1062/230, 7-8 2-10=-128/910, 8-10											
WEBS	5-10=-128/910, 8-10 5-10=-29/422, 6-10=		81/151									11110
NOTES	5-10-23/422, 0-10-	201/131, +-10=-20	51/151								, un	0001111
	ed roof live loads have	been considered fo)r								"TH	UARO
this desig		been considered to	,								NON	ISA AND
	CE 7-10; Vult=140mph	(3-second gust)								1	S JOY	- Hini
	1mph; TCDL=6.0psf; B									Z	and the	Inter
	=24ft; eave=4ft; Cat. II;									-	100	
	(directional) and C-C E									-		SEAL
	nterior (1) 1-11-8 to 8-1 12, Interior (1) 11-11-12		11-12								0	36322
	r left and right exposed		hd							=	:	:
	osed;C-C for members									-		
	ons shown; Lumber DO									2	- A. EN	CHERICA S
DOL=1.6	0											GINE R
											IL CA	GILBE
											1111	. Girin
											lanuar	v 22 2020

January 22,2020

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

