

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21020046-B 163 Crossings-Kessler C-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E15385575 thru E15385597

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

February 5,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	<u>, v i i + j</u>							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.06 WB 0.04 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.00 -0.00 -0.00) l/defl 1 n/r 1 n/r 5 n/a	L/d 120 120 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3		BI TC BC	ACING-)P CHORD)T CHORD	Structural woo except end ve Rigid ceiling o	od sheathin erticals. lirectly appl	g directly a ied or 6-0-0	pplied or 4-0-0 oc purlir) oc bracing.	ns,

REACTIONS. (size) 7=4-0-0, 5=4-0-0, 6=4-0-0 Max Horz 7=58(LC 12) Max Uplift 7=-32(LC 11), 5=-1(LC 15), 6=-12(LC 15) Max Grav 7=141(LC 2), 5=63(LC 2), 6=154(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs
- non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7, 5, and 6. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		Γ			4-0-0				1		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI:	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matri	0.22 0.11 0.03 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 -0.00	(loc) 5 4-5 4	l/defl **** >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
BCDL 10.0											
LUMBER-				F	BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

REACTIONS. (size) 5=0-3-8, 4=0-1-8

Max Horz 5=58(LC 12) Max Uplift 5=-35(LC 11), 4=-7(LC 15)

Max Grav 5=218(LC 2), 4=140(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			3-0-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.10 BC 0.06 WB 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 5 4-5 4	l/defl **** >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP						Weight: 17 lb	FT = 20%
LUMBER-		BR	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

REACTIONS. (size) 5=0-3-8, 4=0-1-8

Max Horz 5=50(LC 12) Max Uplift 5=-36(LC 11), 4=-8(LC 12)

Max Grav 5=181(LC 2), 4=97(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10; Min. flat roof snow load governs.
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 3-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[3:0-5-0,0-2-4]	
I OADING (nsf)		

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.10 BC 0.05 WB 0.06 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 6 -0.00 6-7 -0.00 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2		BF	RACING- DP CHORD S	Structural wood	sheathing	directly app	lied or 5-0-0 oc purlin	s,

BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3

REACTIONS. (size) 7=0-3-8, 5=Mechanical Max Horz 7=49(LC 12) Max Uplift 7=-37(LC 11), 5=-9(LC 12)

Max Grav 7=282(LC 35), 5=186(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-258/157

NOTES-

WEBS

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5.
- 9) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	163 Crossings-Kessler C-Roof	-
						E15385579
21020046-B	T5	Roof Special	5	1		
					Job Reference (optional)	
Carter Components (Sanford	l), Sanford, NC - 27332,			8.430 s No	ov 30 2020 MiTek Industries, Inc. Fri Feb 5 12:41:55 2021	Page 2
		ID:Ptk0	CJg6dYK9	kVgNLGO	OYIjzEbO4-RpN3jC8dayUeZr1KyhtXQBjyfY4ig0Y7VG0E8	BezoBGA

LOAD CASE(S) Standard Concentrated Loads (Ib) Vert: 10=-400(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>2-0-0</u> 2-0-0		2-6-0 0-6-0		<u>5-0-0</u> 2-6-0		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.42 BC 0.05 WB 0.03 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 6 -0.00 5-6 -0.00 5	l/defl L/a **** 240 >999 180 n/a n/a	H PLATES MT20	GRIP 244/190 FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

REACTIONS. (size) 5=3-0-0, 7=0-3-8, 6=0-3-8

Max Horz 7=34(LC 12)

Max Uplift 5=-26(LC 12), 7=-59(LC 11) Max Grav 5=190(LC 34), 7=222(LC 2), 6=60(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 4-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs
- non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 7. This connection is for uplift only and does not consider lateral forces.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 5-0-0 oc purlins,

except end verticals, and 2-0-0 oc purlins; 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED MITER KETEKENCE PAGE MIT-14's rev. 5/15/2020 DEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP/1 Quality Criteria</u>, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	163 Crossings-Kessler C-Roof	
21020046-B	T2GR	Common Girder	1	2		E15385581
Carter Components (Sanfor	1) Sanford NC - 27332			8 430 s No	Job Reference (optional) ov 30 2020 MiTek Industries Inc. Fri Feb	5 12:41:50 2021 Page 1
eaner componente (camer	,, eanora, no 2, co2,	ID:TNefWb	Ls0X_ZGV	VsZK6GEZ	izEerr-4saAgV5UIQsMS49M97HMj80?W	XMy?c6OL?ITSQzoBGF
		4-3-1 7-10-0 4-3-1 3-6-15	4-4-2	4-6-	6	
		4×6				Scale = 1:79.2
		3				
			、 、			
		3***6.00 12				
				2.40	N N	
	ç	2		4	/v	
	C-C1					
		4x5 // 1			Λ	
			/		5	
		10^{-13} 14^{-15} 16^{-8} 17^{-10}	18 7	6 19 20		
		5x6 8x10 = 8x10 =	8x1	0 = THD	26 4x8 📉	
		THD26 THD26 THD26 THD26 THD26 THD26	THD26 T	HD26		
		4-3-1 7-10-0 4-3-1 3-6-15	12-2-2 4-4-2	16-8-	8	
Plate Offsets (X,Y) [1:0	-3-8,Edge], [7:0-5-0,0-1-2], [8:0-5-0,0-5-4], [9:0-3-8,0-5-0]				
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in	(loc) I/defl L/d Pl	ATES GRIP
Snow (Pf/Pg) 13.9/20.0	Plate Grip DOL Lumber DOL	1.15 TC 0.65 1.15 BC 0.27	Vert(LL) Vert(CT)	-0.06 -0.12	6-8 >999 240 M 6-8 >999 180	T20 244/190
TCDL 10.0 BCLL 0.0	Rep Stress Incr	NO WB 0.68	Horz(CT) 0.01	5 n/a n/a	
BCDL 10.0		TPI2014 Matrix-MSH			VV	$\frac{\text{eignt: 311 ib}}{\frac{1}{20\%}} = \frac{1}{20\%}$
LUMBER- TOP CHORD 2x4 SP No	.2	BRACII TOP CH	NG- IORD	Structura	al wood sheathing directly applied or 5-	0-8 oc purlins.
BOT CHORD 2x8 SP 24	00F 2.0E			except e	nd verticals.	· · · · · · · · · · · · · · · · · · ·
1-10,1-9: 2	x4 SP No.3	BOTC	IORD	Rigid cei	ling directly applied of 10-0-0 oc bracin	ıg.
REACTIONS. (size)	5=0-3-8, 10=Mechanical					
Max Horz Max Gray	10=-261(LC 5)	3)				
wax Grav	5=5555(LC 5), 10=6579(LC	3)				
FORCES. (lb) - Max. Cor TOP CHORD 1-2=-466	np./Max. Ten All forces 25 0/0, 2-3=-3682/0, 3-4=-3707	0 (lb) or less except when shown. /0, 4-5=-5707/0, 1-10=-4616/0				
BOT CHORD 9-10=-20	2/385, 8-9=0/2741, 6-8=0/33	93, 5-6=0/3393				
WEBS 2-9=0/17	02, 2-0=-123770, 3-0=0/3378	, 4-8=-2040/0, 4-0=0/3042, 1-9=0/2074				
1) 2-ply truss to be connect	ted together with 10d (0.131	'x3") nails as follows:				
Top chords connected a	s follows: 2x4 - 1 row at 0-9-	0 oc.				
Webs connected as follo	bws: $2x4 - 1$ row at 0-9-0 oc.	aggered at 0-0-0 0C.				
 All loads are considered ply connections have be 	equally applied to all plies, e en provided to distribute only	except if noted as front (F) or back (B) face in th / loads noted as (F) or (B), unless otherwise inc	e LOAD C licated.	ASE(S) s	ection. Ply to	
3) Unbalanced roof live loa	ds have been considered for	this design.	Enclosed		(envelope):	111111
cantilever left and right	exposed ; end vertical left an	d right exposed; Lumber DOL=1.60 plate grip D	OL=1.33		(chivelope),	CARO
5) TCLL: ASCE 7-10; Pr=2 roof snow: Lumber DOL	0.0 psf (roof live load: Lumb) =1.15 Plate DOL=1.15); Cate	er DOL=1.15 Plate DOL=1.15); Pg=20.0 pst (gr egory II; Exp B; Fully Exp.; Ct=1.10	ound snov	v); Pt=13.9	psr (flat	SSIGN -
6) * This truss has been de will fit between the botto	signed for a live load of 20.0	psf on the bottom chord in all areas where a re-	ctangle 3-0	6-0 tall by	2-0-0 wide	hu
7) Refer to girder(s) for true	ss to truss connections.			_	E E o	FAL : E
8) Use USP THD26 (With 0-6-12 from the left end	18-16d nails into Girder & 12 to 14-6-12 to connect truss(e	-10d x 1-1/2 nails into Truss) or equivalent spaces s) to front face of bottom chord.	ed at 2-0-	0 oc max.	starting at 03	6322
9) Fill all nail holes where h	nanger is in contact with lum	per.			3	j 3
LOAD CASE(S) Standard					E A SAL	- CRIX S
 Dead + Snow (balanced Uniform Loads (plf)): Lumber Increase=1.15, Pl	ate Increase=1.15			AL AL	INEL PLAN
Vert: 1-3=-48, 3 Concentrated Loads (Ib)	-5=-48, 5-10=-20				11, A.	GILD
Vert: 13=-1068	(F) 14=-1062(F) 15=-1062(F)	16=-1062(F) 17=-1062(F) 18=-1062(F) 19=-10	62(F) 20=	-1062(F)	Feb	ruary 5,2021
						, , , −
WARNING - Verify design	parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473	rev. 5/19/202	20 BEFORE	USE.	NEERING BY
a truss system. Before use, t building design. Bracing indi	he building designer must verify the cated is to prevent buckling of individ	applicability of design parameters and properly incorporate t lual truss web and/or chord members only. Additional temp	his design int prary and per	o the overall		ENLU

billioning design: Dicking indicates to be prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	163 Crossings-Kessler C-Roof	
						E15385583
21020046-B	T1AGE	GABLE	1	1		
					Job Reference (optional)	
Carter Components (Sanford	l), Sanford, NC - 27332,			8.430 s No	ov 30 2020 MiTek Industries, Inc. Fri Feb 5 12:41:38 2021	1 Page 2
		ID:eDGOG	YH5RhEP	YbOPzr9q	JRzEerx-QYre9OxyakL30EE3Sc3YEcW40il3BK6da7Oq1	7zoBGR

NOTES-

12) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 61, 47, 48, 49, 53, 54, 55, 56, 57, 58, 59, 60, 44, 43, 42, 41, 40, 39, 38, 37, and 34. This connection is for uplift only and does not consider lateral forces.

13) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 33. This connection is for uplift only and does not consider lateral forces.

14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 61, 36, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 44, 43, 42, 41, 40, 39, 38, 37, 35, 34.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6.00 12

H	8-3-12 16- 8-3-12 8-	10-0 6-4	25-4-4 8-6-4		32-4-8 7-0-4		<u>36-8-0</u> 4-3-8	
Plate Offsets (X,Y) [2:0-2-8,	0-1-12], [5:0-3-12,0-2-0], [6:0-3-12,0-2-0)], [13:0-6-0,0-2-8]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 BCDL 0.0 * BCDL	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.95 BC 0.97 WB 0.78 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.28 14-16 -0.51 14-16 0.27 12	l/defl >999 2 >855 1 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BRACING- 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *Except* 9-13,2-19: 2x4 SP No.3, 10-12: 2x6 SP No.2 BOT CHORD BOT CHORD WEBS BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. 1 Row at midpt REACTIONS. (size) 12=0-3-8, 19=0-3-8								
Max Horz 19=- Max Grav 12=1	-236(LC 9) 1518(LC 2), 19=1513(LC 2)							
FORCES. (lb) - Max. Comp./// TOP CHORD 2-3=-523/244, 9-10=-4089/59	Ax. Ten All forces 250 (lb) or less exc , 3-5=-1942/489, 5-6=-1420/385, 6-8=-2: 99, 2-19=-484/228, 10-12=-1584/326	ept when shown. 330/540, 8-9=-4045/74	2,					
BOT CHORD 18-19=-117/17 WEBS 3-18=-306/244 8-13=-331/18	701, 16-18=0/1367, 14-16=0/1401, 13-1 4, 5-18=-141/546, 5-16=-22/392, 6-14=-: 15, 3-19=-1616/153, 10-13=-377/3174	4=-181/2025, 12-13=-5 209/1045, 8-14=-722/3	6/339 00,					
NOTES- 1) Unbalanced roof live loads ha 2) Wind: ASCE 7-10; Vult=130n and C-C Exterior(2) zone; cai MWFRS for reactions shown	ave been considered for this design. nph Vasd=103mph; TCDL=6.0psf; BCDI ntilever left and right exposed ; end verti : Lumber DOL=1.60 plate grip DOL=1.3;	_=6.0psf; h=25ft; Cat. I cal left and right expos 3	l; Exp B; Enclosed; ed;C-C for member	MWFRS (envelors and forces &	ope)			

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs

non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

O Contraction of the second WITTER PARTY SEAL 036322 G (1111111) February 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanenter bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 1-4-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 28, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 39, 37, 36, 35, 34, 33, 32, 31, 30, and 29. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 || 4

1 Row at midpt

610

2x4 ||

0-0-4

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-7

3x5 \\

	0- <u>0-3</u> 0-0-3	<u>13-7-0</u> 13-6-13						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.19 WB 0.11 Matrix-SH	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	in (loc) ′a - ′a - 0 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2		BRACI TOP CI	NG- HORD Struct [,]	ural wood	sheathin	g directly ap	plied or 6-0-0 oc purlin	IS.

BOT CHORD

WEBS

7 2x4 ||

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3 *Except*

3-7: 2x4 SP No.2

REACTIONS. All bearings 13-6-10. (lb) - Max Horz 1=186(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-205(LC 13), 6=-204(LC 14)

-0-1

0-0-4

3x5 //

89

2x4

2x4

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=338(LC 27), 8=437(LC 24), 6=437(LC 25)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 2-8=-417/378, 4-6=-417/378

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 5, 8, and 6. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1, 5, 8, and 6. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=9-6-10, 3=9-6-10, 4=9-6-10

Max Horz 1=-128(LC 9)

Max Uplift 1=-10(LC 14), 3=-2(LC 13)

Max Grav 1=207(LC 2), 3=207(LC 2), 4=306(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. (size) 1=7-6-10, 3=7-6-10, 4=7-6-10

Max Horz 1=-100(LC 9) Max Uplift 1=-26(LC 14), 3=-20(LC 13)

Max Grav 1=181(LC 2), 3=181(LC 2), 4=198(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=5-6-10, 3=5-6-10, 4=5-6-10

Max Horz 1=71(LC 12)

Max Uplift 1=-19(LC 14), 3=-14(LC 13)

Max Grav 1=129(LC 2), 3=129(LC 2), 4=141(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				0-1-0	0-2-0	J /-c	5-0	1-0-0			
Plate Offsets (X,Y) [4:0-2-3,I	Edge], [4:0-2-3,0-0-10], [6:Edge,0-1-10],	[6:0-2-3,Ed	ge], [8:0-1-8,	0-1-12], [25:0-1-9	,0-1-0]				
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 20.0 18.9/20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	1-11-4 1.15 1.15 YES PI2014	CSI. TC BC WB Matri:	0.57 0.35 0.57 x-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.01 11-12 -0.10 11-12 0.02 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 173 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2				B T(RACING- DP CHORD	Structural woo except end ver	d sheathin ticals, and	g directly app 2-0-0 oc pur	blied or 6-0-0 oc purlins lins (6-0-0 max.): 4-6.	
WEBS	2x4 SP No.2 *Ex 8-10,7-11,8-11,2	<pre>kcept* 2-16: 2x4 SP No.3</pre>			B	OT CHORD	Rigid ceiling di 6-0-0 oc bracir	rectly appl ng: 10-11.	ied or 10-0-0	oc bracing, Except:	
OTHERS	2x4 SP No.2 *Ex 13-17,15-19,23-	kcept* 25,24-25: 2x4 SP No.3			W	EBS	1 Row at midp	t	5-12		
REACTIONS. (lb) -	All bearings 8- Max Horz 16=2	3-8 except (jt=length) 10 243(LC 12)	=0-3-8.	12							

Max Opint All upint 100 lb or less at joint(s) 10, 12, 10, 13 Max Grav All reactions 250 lb or less at joint(s) 14, 15 except 10=540(LC 2), 12=414(LC 29), 12=340(LC 1), 16=480(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-400/387, 3-4=-268/221, 8-10=-519/58, 2-16=-450/380, 6-7=-401/182,
- 7-8=-564/110
- BOT CHORD
 11-12=-159/549

 WEBS
 7-12=-540/337, 8-11=-210/602, 3-16=-254/122

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=18.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10, 12, 16, and 13. This connection is for uplift only and does not consider lateral forces.

2) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	163 Crossings-Kessler C-Roof		
04000040 D	TAOD					E15385595	
21020046-B	TAGR	COMMON GIRDER	1	3	Job Reference (optional)		
Carter Components (Sanford	d), Sanford, NC - 27332,			8.430 s No	ov 30 2020 MiTek Industries, Inc. Fri Feb 5 12:41:40 202	1 Page 2	
		ID:eDGOG	YH5RhFF	YhOPzr90	JRzEerx-NwzOa4zD6LbnGXORa160J1bL2V?tfB9w2Rtx6	i?zoBGP	

NOTES-

10) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 22. This connection is for uplift only and does not consider lateral forces.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	7-1	0-0	7-10-0		1-0-8	3'			
Plate Offsets (X,Y) [2:0-3-0,	0-1-8], [3:0-2-13,Edge], [5:0-1-8,0-1-8], [4	8:0-5-4,0-2-8]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 18.9/20.0 TCDL 10.0 BCLL 0.0 * BCDI 10.0	SPACING- 1-11-4 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.81 BC 0.68 WB 0.37 Matrix-MSH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.21 -0.05	(loc) 8-9 8-9 10	l/defl >999 >960 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *E 5-7,4-8,5-8,1-10	xcept*): 2x4 SP No.3	BI TC BC W	RACING- DP CHORD DT CHORD EBS	Structura 2-0-0 oc Rigid ceil 1 Row at	I wood purlins ling dire midpt	sheathin (6-0-0 m ectly appl	g directly app ax.): 2-3. ied or 6-0-0 c 3-8, 2-10	blied, except end vertic	als, and
REACTIONS. (size) 7=0-3-8, 10=Mechanical Max Horz 7=-239(LC 9) Max Grav 7=721(LC 25), 10=697(LC 26)									
FORCES. (lb) - Max. Comp./N TOP CHORD 1-2=-503/435, 1-10=-512/400 BOT CHORD 9-10=-35/333, WEBS 2-9=-58/305, 5	1ax. Ten All forces 250 (lb) or less exca .2-3=-385/226, 3-4=-1364/880, 4-5=-955 2 .8-9=-81/384, 7-8=-319/298 3-8=-748/948, 4-8=-793/662, 5-8=-226/6	ept when shown. /261, 5-7=-876/189, 79, 2-10=-454/114							
 NOTES- 1) Unbalanced roof live loads in 2) Wind: ASCE 7-10; Vult=130n and C-C Exterior(2) zone; ca MWFRS for reactions shown 3) TCLL: ASCE 7-10; Pr=20.0 p roof snow: Lumber DOL=1.19 Rain surcharge applied to all 4) This truss has been designer non-concurrent with other live 5) Provide adequate drainage tr 6) * This truss has been designer will fit between the bottom ch 7) Refer to girder(s) for truss to 8) Bearing at joint(s) 7 consider capacity of bearing surface. 9) Graphical purlin representation 	ave been considered for this design. nph Vasd=103mph; TCDL=6.0psf; BCDL ntilever left and right exposed ; end vertit ; Lumber DOL=1.60 plate grip DOL=1.33 isf (roof live load: Lumber DOL=1.15 Plate 5 Plate DOL=1.15); Category II; Exp B; F exposed surfaces with slopes less than if d for greater of min roof live load of 12.0 p e loads. o prevent water ponding. ed for a live load of 20.0psf on the botton ord and any other members, with BCDL truss connections. s parallel to grain value using ANSI/TPI f on does not depict the size or the orienta	=6.0psf; h=25ft; Cat. II; E cal left and right exposed be DOL=1.15); Pg=20.0 p ully Exp.; Ct=1.10, Lu=5 0.500/12 in accordance to osf or 2.00 times flat roof in chord in all areas where = 10.0psf. I angle to grain formula. tion of the purlin along th	Exp B; Enclosed; ;C-C for member osf (ground snow) 0-0-0; Min. flat ro with IBC 1608.3.4 load of 13.9 psf e a rectangle 3-6- Building designe te top and/or botto	MWFRS s and ford); Pf=18.9 of snow k l. on overha -0 tall by 2 er should v om chord	(envelo ces & psf (fla bad gov angs 2-0-0 w verify	ope) at verns.		SEAL 036322	Annun an

A. G minim

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. (size) 1=3-6-10, 3=3-6-10, 4=3-6-10

Max Horz 1=43(LC 10)

Max Uplift 1=-11(LC 14), 3=-9(LC 13)

Max Grav 1=78(LC 2), 3=78(LC 2), 4=85(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 3-7-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

