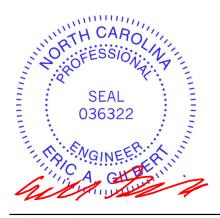


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 21020045-01 162 Crossing-Havenbrooke C-Roof

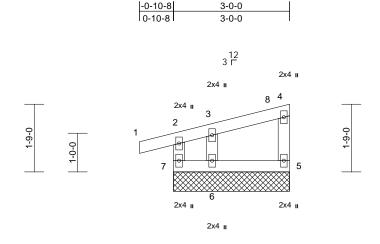
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E15385496 thru E15385523

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

February 5,2021


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M1GE	Monopitch Supported Gable	1	1	Job Reference (optional)	E15385496

Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:28 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-Mock Me

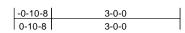
Page: 1

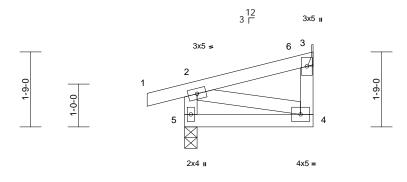
3-0-0

Scale = 1:29.8

Scale = 1.29.0														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		TCLL: ASCE	CSI TC BC WB Matrix-R 7-10; Pr=20.0 p:			in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 3-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=3-0-0, (Max Horiz 7=46 (LC Max Uplift 5=-2 (LC (LC 11) Max Grav 5=66 (LC (LC 21)	cept end verticals. applied or 10-0-0 oc 6=3-0-0, 7=3-0-0 14) 15), 6=-16 (LC 12), 7	4) d or 5) 6) 7) 7=-38 8) 9) 131	DOL=1.15 PI snow); Pf=13 Plate DOL=1 (t=1.10) Unbalanced si design. This truss ha load of 12.0 p overhangs no Gable require Truss to be fu braced again Gable studs si This truss h on the bottom	ate DOL=1.15); 1.9 psf (flat roof s 1.15); Category II snow loads have s been designed osf or 2.00 times on-concurrent wi as continuous bo ully sheathed from stateral movern spaced at 2-0-00 as been designed n chord in all are	Pg=20.0 p now: Lum ; Exp B; F been cor l for great flat roof lo th other lin ttom chor m one fac ient (i.e. d oc. d for a liv as where	osf (ground iber DOL=1.1 iully Exp.; insidered for th er of min roof bad of 13.9 p ve loads. d bearing. te or securely liagonal web) e load of 20.0 a rectangle	15 his f live sf on /).						
Vasd=103 Cat. II; Exp Exterior (2)	(lb) - Maximum Com Tension 2-7=-122/87, 1-2=0/ 3-8=-28/19, 4-8=-21 6-7=-28/28, 5-6=-28 3-6=-75/99 CE 7-10; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR) zone; cantilever left : t and right exposed;C-	19, 2-3=-51/30, /21, 4-5=-50/45 /28 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e	10) 0 1 LOA	chord and an One RT8A U truss to beari		s. ecommen JPLIFT at	ded to conne ; jt(s) 7, 5, an	ect d 6.		Cu.		ORTH CA	RO	-
forces & M DOL=1.60 2) Truss design only. For s see Standa	WFRS for reactions s plate grip DOL=1.33 gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	hown; Lumber the plane of the trus I (normal to the face) d Details as applicab	, lle,							THE DAY	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER RULL	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932


GI A. GIL February 5,2021

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M1	Monopitch	7	1	Job Reference (optional)	E15385497

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:26 ID:8SifbTgoSYKzEDYFjYi9DCzB1hv-Mock Me

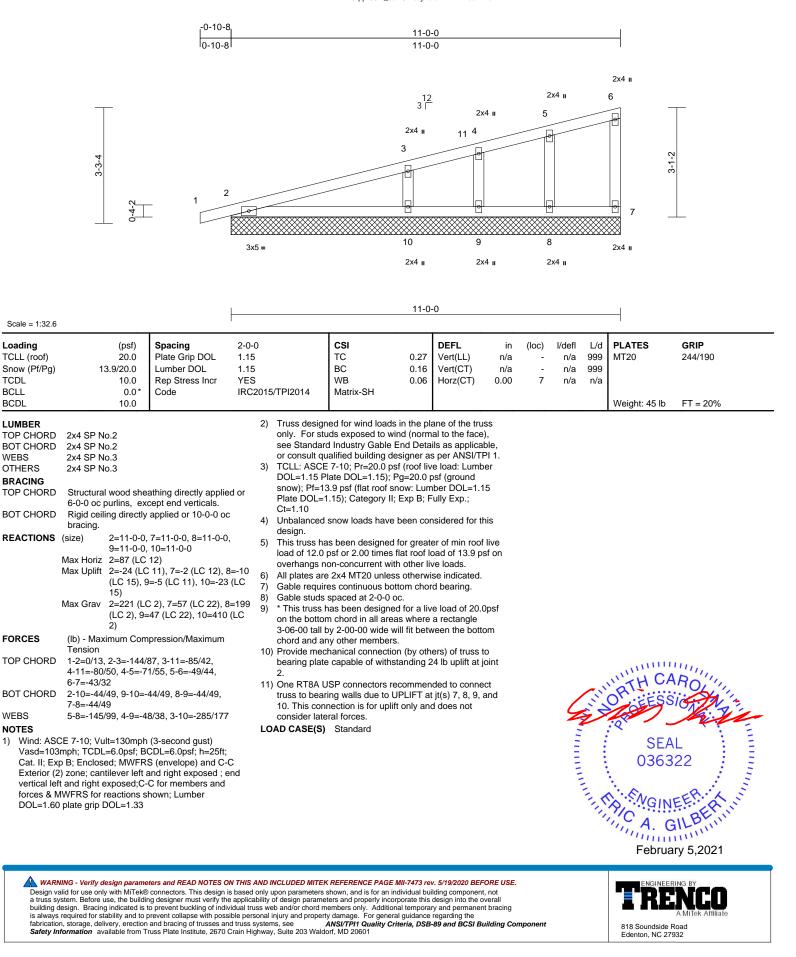
Page: 1

3-0-0

Scale = 1:26.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	15/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.06 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 WEBS 2x4 BRACING Stru TOP CHORD Stru BOT CHORD Rigi BOT CHORD Rigi BOT CHORD Kize Max C Max C FORCES (lb) TOP CHORD 1-2= 2-5= BOT CHORD BOT CHORD 4-5= BOT CHORD 4-5= NOTES 1) 1) Wind: ASCE 7-1 Vasd=103→pr; T Cat. II; Exp B; EI Exterior (2) zone vertical left and r poL=1.60 plate 2) 2) TCLL: ASCE 7-1 DOL=1.15 Plate snow); Pf=13.9 p Plate DOL=1.15 Ct=1.10 3) Unbalanced sno design. 4) This truss has be	0 oc purlins, ex d ceiling directly ing. 3= Mecha doriz 5=46 (LC Jplift 3=-5 (LC Grav 3=97 (LC Maximum Corr sion 0/19, 2-6=-41/2 -154/128 -103/72 -54/89 0; Vult=130mph TCDL=6.0psf; B nclosed; MWFR rclosed; GVFR ight exposed;C- S for reactions s grip DOL=1.33 0; Pr=20.0 psf (DOL=1.15); Pg; bsf (flat roof sno); Category II; E: w loads have be seen designed fo	12), 5=-36 (LC 11) 2), 5=-36 (LC 11) 2), 5=181 (LC 2) pression/Maximum 7, 3-6=-34/32, 3-4=- (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1!	C 8 9 7/41, C er 5 iis	 on the bottor 3-06-00 tall to chord and ar Refer to gird Provide mece bearing plate 3. One RT8A L truss to bear connection is forces. Gap between 	has been designer in chord in all area by 2-00-00 wide w any other members er(s) for truss to tri- hanical connection is capable of withsi SP connectors re- ing walls due to U is for uplift only and in inside of top cho- certical web shall re- Standard	as where rill fit betw russ conr n (by oth tanding 5 commen IPLIFT at d does n ord bearin	a rectangle ween the bott- nections. ers) of truss i b uplift at jo ided to conne t jt(s) 5. This ot consider la	om to int ect				SEA 0363	

- Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 3) Unbalanced snow loads have been considered for this
- design. This truss has been designed for greater of min roof live 4)
- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.


A. GIL February 5,2021

GILB

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M4GE	Monopitch Supported Gable	1	1	Job Reference (optional)	E15385498

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:29 ID:5qqP09i2_9ahUXierykdIdzB1ht-Mock Me Page: 1

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M4	Monopitch	3	1	Job Reference (optional)	E15385499

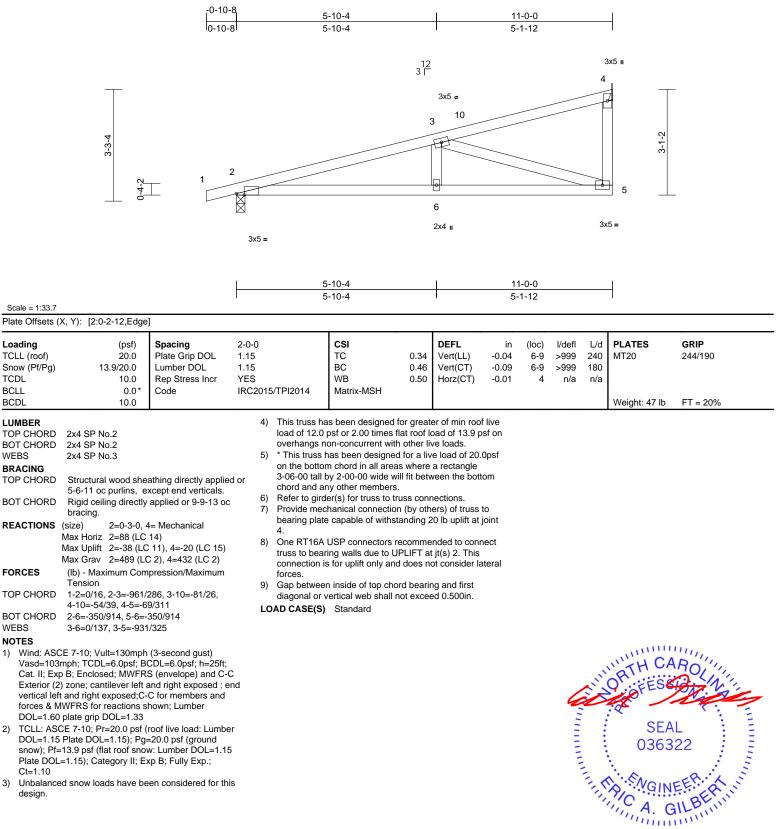
TCDL

BCLL

BCDL

WEBS

WFBS


1)

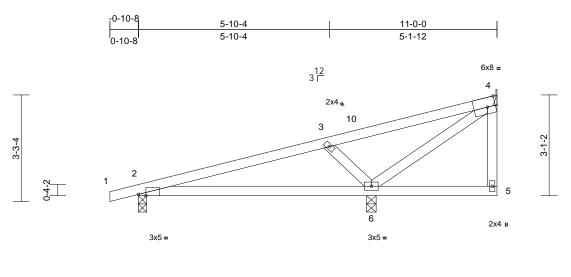
2)

3)

Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:29 ID:5qqP09i2_9ahUXierykdIdzB1ht-Mock Me

Page: 1

February 5,2021



🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M4A	Monopitch	3	1	Job Reference (optional)	E15385500

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:29 ID:5qqP09i2_9ahUXierykdIdzB1ht-Mock Me

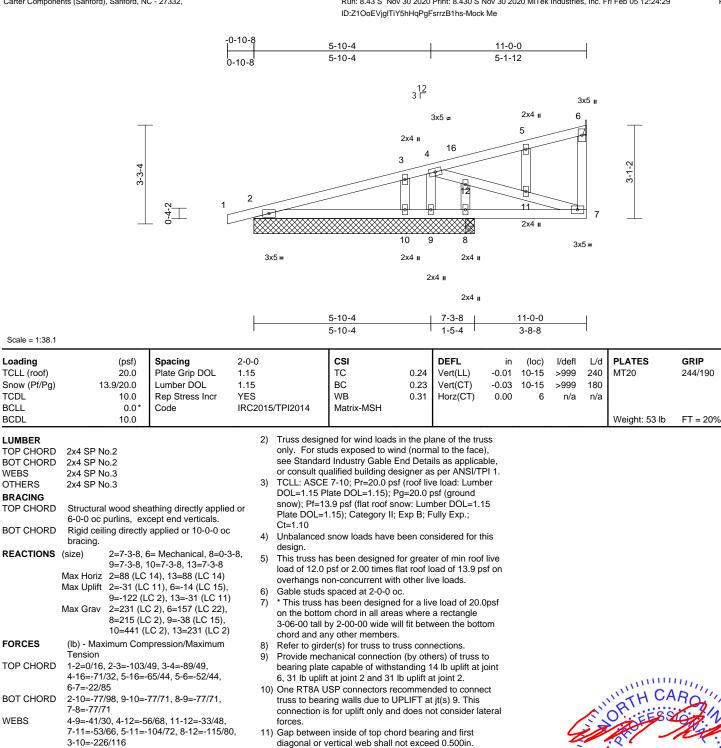
Page: 1

Scale =	1:35.3
---------	--------

Plate Offsets (X, Y): [2:0-2-12.Edge], [4:0-3-0.Edge]

Plate Offsets	(X, Y): [2:0-2-12,Edge], [4:0-3-0,Edge]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.43 0.30 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.09 0.00	(loc) 6-9 6-9 6	l/defl >999 >920 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
Vasd=103 Cat. II; Ex Exterior (2 vertical lei forces & N DOL=1.60 2) TCLL: AS DOL=1.15 snow); Pf Plate DOI Ct=1.10	2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exu Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=88 (LC (LC 15) Max Grav 2=304 (LC (LC 2) (lb) - Maximum Com Tension 1-2=0/16, 2-3=-223/4 4-10=-100/127, 4-5=	applied or 10-0-0 oc = Mechanical, 6=0-3- 14) 11), 4=-7 (LC 12), 6= C 2), 4=88 (LC 22), 6= pression/Maximum 34, 3-10=-108/75, 0/19 41/42 133/80 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; en C for members and hown; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.15 sp B; Fully Exp.;	6) 7) -8 -542 9) LC	load of 12.0 overhangs n * This truss H on the bottor 3-06-00 tall H chord and ar Refer to gird Provide mec bearing plate 6 and 7 lb up One RT16A truss to bear connection ar forces. Gap between	USP connectors re ing walls due to UP s for uplift only and n inside of top chore vertical web shall no	at roof lo other liv for a liv where fit betv ss conr (by oth nding 2 comme LIFT at does no	bad of 13.9 p ve loads. e load of 20.1 a rectangle veen the bott nections. ers) of truss i 22 lb uplift at j nded to conr i jt(s) 2. This of consider la ng and first	sf on Opsf om to joint nect				SEA 0363	22 EER-ALIU

February 5,2021



WARNING - Verify design parameters	and READ NOTES ON THIS AND INCLUDED M	ITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® con	nectors. This design is based only upon paramet	ers shown, and is for an individual building component, not
a truss system. Before use, the building de	signer must verify the applicability of design para	ameters and properly incorporate this design into the overall
building design. Bracing indicated is to pre	event buckling of individual truss web and/or cho	rd members only. Additional temporary and permanent bracing
is always required for stability and to preve	nt collapse with possible personal injury and pro	perty damage. For general guidance regarding the
fabrication, storage, delivery, erection and	bracing of trusses and truss systems, see	ANSI/TPI1 Quality Criteria. DSB-89 and BCSI Building Component
	Plate Institute, 2670 Crain Highway, Suite 203 W	

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M4SE	Monopitch Structural Gable	1	1	Job Reference (optional)	E15385501

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries. Inc. Fri Feb 05 12:24:29

Page: 1

NOTES

WEBS

FORCES

TOP CHORD

BOT CHORD

Scale = 1:38.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD

BOT CHORD

Snow (Pf/Pg)

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

LOAD CASE(S) Standard

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITeR® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantietis and property incorporate dust using in the version of the second property incorporate and begin into version of the version of the

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	E15385502

-0-10-8

0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8 43 S. Nov 30 2020 Print: 8 430 S.Nov 30 2020 MiTek Industries. Inc. Fri Feb 05 16:11:34 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-AHmpnwG3Cwwy?edQCfZ80TZD_eGXEVdc_4qJEFzo93u

4-4-0

4-4-0

4-4-0

Page: 1

3x5 =

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a		MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-P								
BCDL	10.0										Weight: 16 lb	FT = 20%

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
BRACING		
TOP CHORD		wood sheathing directly applied or
	4-4-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=188/4-4-0, 4=137/4-4-0
	Max Horiz	2=36 (LC 12)
	Max Uplift	2=-32 (LC 11), 4=-7 (LC 15)

Max Grav 2=225 (LC 2), 4=162 (LC 2) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown. NOTES

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhands non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.

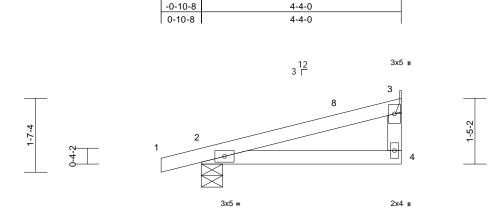
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint
- 10) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	M2	Monopitch	2	1	Job Reference (optional)	E15385503


Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:28 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-Mock Me

Page: 1

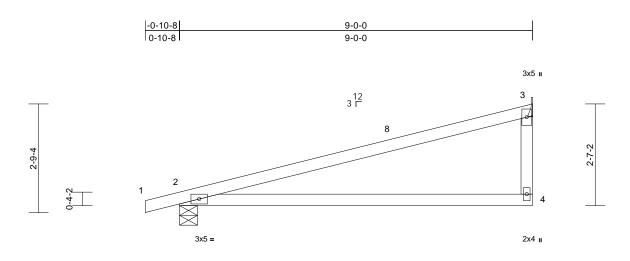
February 5,2021

NGINEERING

818 Soundside Road Edenton, NC 27932

4-4-0

Scale = 1:25

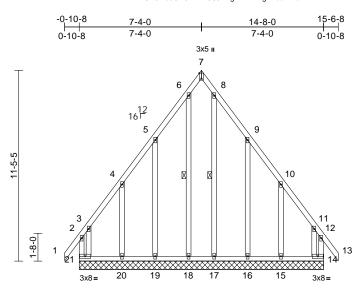

Scale = 1:25												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
WEBS 2x BRACING TOP CHORD St BOT CHORD St BOT CHORD St Max Max Max Max FORCES (lk TOP CHORD 1- BOT CHORD 2- NOTES 1) Wind: ASCE 7 Vasd=103mpf Cat. II; Exp 8; Exterior (2) zo vertical left and forces & MWF DOL=1.60 plat 2) TCLL: ASCE 7 DOL=1.15 Pla snow); Pf=13.3; Plate DOL=1.1 Ct=1.10 3) Unbalanced st design. 4) This truss has load of 12.0 ps	4 SP No.2 4 SP No.3 ructural wood she 4-0 oc purlins, ex gid ceiling directly acing. e) 2=0-5-8, 3 × Horiz 2=36 (LC × Uplift 2=-32 (LC × Grav 2=225 (LC b) - Maximum Com- ension 2=0/16, 2-8=-96/2 4=-50/83 -10; Vult=130mph actions steres of the second to construct the second second second second to construct the second second second second second second second second second second second second second second second second second seco	 c11, 3=-7 (LC 15) c 2), 3=162 (LC 2) apression/Maximum 6, 3-8=-36/33, 3-4=-7 a) (3-second gust) cDL=6.0psf; h=25ft; S (envelope) and C-1 and right exposed; e cC for members and hown; Lumber aroof live load: Lumbe 20.0 psf (ground w: Lumber DOL=1.15 xp B; Fully Exp.; seen considered for the r greater of min roof 1 t roof load of 13.9 ps 	on the bo 3-06-00 i chord an 6) Refer to be d or 7) Provide i bearing p 3. 8) One RT1 truss to b connectii forces. 9) Gap betv diagonal LOAD CASE 1/57 C and bearing p 3. 1/57	ss has been designe itom chord in all are all by 2-00-00 wide w d any other members girder(s) for truss to 1 nechanical connection late capable of withs 6A USP connectors searing walls due to 1 on is for uplift only ar ween inside of top ch or vertical web shall (S) Standard	as where will fit betw s. truss conr on (by oth standing 7 recomme JPLIFT at nd does no ord bearin	a rectangle veen the bott nections. ers) of truss : lb uplift at jo nded to conr jt(s) 2. This ot consider la ng and first	om to vint nect				SEA 0363	EER ALL

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	М3	Monopitch	1	1	Job Reference (optional)	E15385504

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:28 ID:ceG1pphQDsSqsN7RHFDOmQzB1hu-Mock Me

Page: 1

	9-0-0												
Scale = 1:29.4					·								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.73 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.56 0.01	(loc) 4-7 4-7 2	l/defl >433 >189 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (S M FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=103m Cat. II; Exp Exterior (2) : vertical left a forces & MV DOL=1.60 p 2) TCLL: ASCI DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 3) Unbalanced design. 4) This truss h load of 12.0	Aax Horiz 2=72 (LC Aax Uplift 2=-36 (LC Aax Grav 2=409 (LC (Ib) - Maximum Com Tension 1-2=0/16, 2-8=-250/- 3-4=0/117	except end verticals. applied or 10-0-0 oc 3= Mechanical 14) 11), 3=-16 (LC 15) 22), 3=352 (LC 2) pression/Maximum 49, 3-8=-73/65, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-6 and right exposed ; e C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.15 cp B; Fully Exp.; een considered for thi greater of min roof I toof load of 13.9 psl	8) 9) Lu Cind s s ive	on the botton 3-06-00 tall I chord and an Refer to gird Provide mec bearing plate 3. One RT16A truss to bear connection is forces. Gap betwee	has been designed in chord in all areas by 2-00-00 wide will any other members. er(s) for truss to tru- thanical connection a capable of withsta USP connectors re- ing walls due to UF is for uplift only and in inside of top chor vertical web shall in Standard	s where Il fit betv uss conr (by oth anding 1 ecomme PLIFT at I does n rd bearin	a rectangle veen the bott nections. ers) of truss : 6 lb uplift at j nded to conr jt(s) 2. This ot consider la ng and first	om to joint nect				SEA 0363	22 EER. A. I.I.


February 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T4GE	Common Supported Gable	1	1	Job Reference (optional)	E15385505

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:34 ID:CK6KlcsCw9DrYXC86BTgKNzB1hg-Mock Me

14-8-0

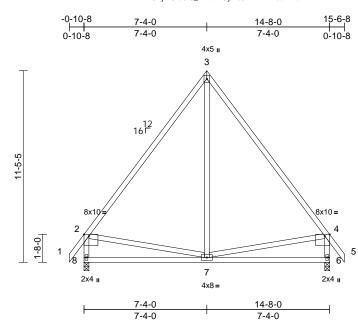
Scale = 1:69.1

Plate Offsets (X, Y): [7:Edge,0-1-8]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.36	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.30	Vert(LL)	n/a	-	n/a	999 999	101120	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.25	Horz(CT)	0.00	14	n/a	n/a	1	
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-R								
BCDL	10.0		;		-						Weight: 137 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	(size) 14=14-8-(17=14-8-(20=14-8-(20=14-8-(Max Horiz 21=-277 (14=-184 (16=-115 (18=-22 (L 20=-232 (Max Grav 14=292 (L 16=175 (L 18=239 (L	11:2x4 SP No.3 athing directly applie cept end verticals. applied or 6-0-0 oc 6-18, 8-17 0, 15=14-8-0, 16=14- 0, 18=14-8-0, 19=14- 0, 21=14-8-0 LC 10, 15=-227 (LC LC 14), 15=-227 (LC LC 14), 15=-114 (LC C 25), 15=329 (LC 1 C 26), 17=237 (LC 1 C 26), 17=237 (LC 1 C 14), 19=173 (LC 2	this desig tor 2) Wind: AS Vasd=100 Cat. II; Ex Exterior (1 3-0, 3) Truss des only. For 9), or consult 3), TCLL: AS 9) Snow); Pf 2), Plate DOI 5), Ct=1.10	6-18=-337/210, 8 5-19=-272/263, 4 3-21=-366/320, 9 10-15=-284/271, ed roof live loads han CE 7-10; Vult=130m Smph; TCDL=6.0psf p B; Enclosed; MW 2) zone; cantilever la ft and right exposed MWFRS for reaction 0 plate grip DOL=1.3 igned for wind load: studs exposed to wa lard Industry Gable qualified building d CE 7-10; Pr=20.0 p 5 Plate DOL=1.15); =13.9 psf (flat roof s =-1.15); Category II has been designed	-20=-286 -16=-271 11-14=-3 we been aph (3-sec ; BCDL=6 FRS (env ; BCDL=6 FRS (env ; BCDL=6 FRS (env ; C-C for r s shown; 33 s in the pl ind (norm End Deta seigner a sf (roof lix Pg=20.0 now: Lun ; Exp B; F	/272, /262, 53/307 considered for cond gust) i.0psf; h=25ft; elope) and C- ht exposed; ie nembers and Lumber ane of the trus al to the face) iis as applicat s per ANSI/TF e load: Lumbor sof (ground heber DOL=1.1: 'ully Exp.;	C end ss), ole, Pl 1. er 5	bea join 12) One trus 20,	t 21 and t 21 and RT8A s to bea 16, and s not co	te capa 184 lb USP co tring wa 15. Th nsider	able of withstandi o uplift at joint 14. onnectors recom alls due to UPLIF his connection is f lateral forces.	rothers) of truss to ng 193 lb uplift at mended to connect T at jt(s) 18, 17, 19, for uplift only and
FORCES	20=335 (L (lb) - Maximum Com Tension	C 11), 21=299 (LC 2 pression/Maximum	load of 12 overhang	are 2x4 MT20 unles	flat roof l th other li	oad of 13.9 ps ve loads.			4	i	OFESS	Mar 1
TOP CHORD	2-21=-241/242, 1-2= 3-4=-224/218, 4-5=- 6-7=-168/198, 7-8=- 9-10=-187/235, 10-1 11-12=-129/154, 12- 12-14=-238/243 20-21=-147/152, 19- 18-19=-147/152, 15- 16-17=-147/152	7) Gable rec 8, 8) Truss to b 57, 8) Truss to b 57, 9) Gable stu 9) Gable stu 10) * This trus on the bo 3-06-00 ta	the scattering of the second s	ttom choi m one fac lent (i.e. c oc. ed for a liv as where vill fit betv	d bearing. e or securely liagonal web). e load of 20.0 a rectangle	lpsf				SEA 0363	22 EER AU	

February 5,2021

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collepse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	Τ4	Common	1	1	Job Reference (optional)	E15385506

Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:34 ID:k8YyXGra9r5_wNdxYUyRo9zB1hh-Mock Me

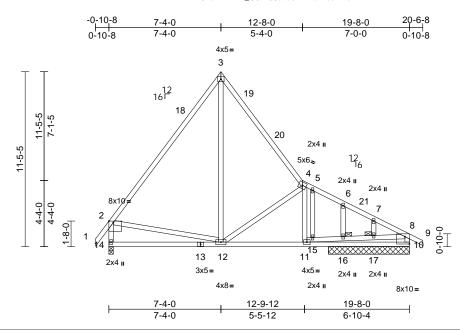
Page: 1

Scale = 1:68.8

Plate Offsets ((X, Y): [2:Edge,0-1-3],	[4:Edge,0-1-3]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.32 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.06 0.01	(loc) 7-8 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-8-6 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 9-9-11 or 8=0-3-8 C 11) 13), 8=-7 (LC 14)	с 6)	load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall b chord and ar One RT8A U truss to bear		lat roof k n other liv d for a liv s where ill fit betv commen PLIFT at	bad of 13.9 p ve loads. e load of 20. a rectangle veen the bott ded to conne t jt(s) 8 and 6	osf on Opsf com ect					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/62, 2-3=-530/ 4-5=0/62, 2-8=-572/	npression/Maximum 189, 3-4=-530/189, 194, 4-6=-572/194 251/386											
NOTES 1) Unbalance this design 2) Wind: ASS Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.60 3) TCLL: AS DOL=1.15 snow); Pf=	ed roof live loads have	been considered fo (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed; ; C for members and hown; Lumber roof live load: Lumb =20.0 psf (ground w: Lumber DOL=1.1	or ; -C end er									SEA ORTH CA SEA O363	ER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI A. GIL February 5,2021

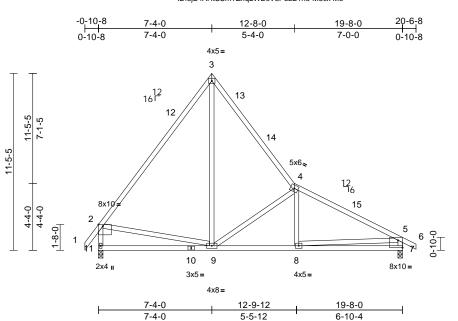

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T5SE	Roof Special Structural Gable	1	1	Job Reference (optional)	E15385507

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:35 ID:1UTb?fxzW?z_GSfHSSa4aezB1ha-Mock Me

Page: 1

G minim February 5,2021

818 Soundside Road Edenton, NC 27932


Plate Offsets ((X, Y): [2:Edge,0-1-3],	[10:Edge,0-5-13]										-	
L oading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.36 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%
JUMBER FOP CHORD SOT CHORD SOT CHORD STRACING FOP CHORD SOT CHORD SOT CHORD SOT CHORD SOT CHORD SOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 16, 17	athing directly applie cept end verticals. applied or 10-0-0 oc 14=0-3-8 LC 13) _C 2), 14=836 (LC 2) pression/Maximum 2/187, 3-18=-519/218 20=-579/229, =913/218, 5-6=-992/ =-1013/195, =0/34, 2-14=-766/217 -13=-300/465, 11=-130/520 2=-687/309,	d or 3) 4) 5) 236, 7) , 8) 9)	Vasd=103mj Cat. II; Exp B Exterior (2) z vertical left af forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be f braced agair Gable studs * This truss f on the bottor 3-06-00 tall f	7-10; Vult=130mp bh; TCDL=6.0psf; I 3; Enclosed; MWFI cone; cantilever left nd right exposed; C (FRS for reactions ate grip DOL=1.33 ted for wind loads ids exposed to wind d Industry Gable E tailified building des 7-10; Pr=20.0 psf late DOL=1.15); P 3.9 psf (flat roof sn .15); Category II; I snow loads have t as been designed f pon-concurrent with ully sheathed from 1st lateral moveme spaced at 2-0-0 oc has been designed n chord in all areas by 2-00-00 wide wi y other members.	BCDL=6 RS (env, t and rig C-C for n shown; in the pla d (norm nd Deta signer at i (roof liv g=20.0 p ow: Lurr Exp B; F peen cor or great at roof lo o ther liv o other liv o other liv o ther la s where ll fit betw	.0psf; h=25ft elope) and C ht exposed ; hembers and Lumber ane of the tru al to the face is as applica s per ANS//TI e load: Lumb ber DOL=1.1 ully Exp.; isidered for ti er of min roof bad of 13.9 p ve loads. e or securely iagonal web) e load of 20.0 a rectangle	-C end ss), ble, PI 1. er 15 five sf on , Dpsf		4	ès	WH CA	FT = 20%
NOTES 1) Unbalance this design	15-16=0/393, 16-17: 5-15=-49/152, 6-16= ed roof live loads have n.	-80/53, 7-17=-4/29		DAD CASE(S)							A A A A A A A A A A A A A A A A A A A	SEA 0363	ER RAIL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	Т5	Roof Special	3	1	Job Reference (optional)	E15385508

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:34 ID:8jE4AHtSSmTZnqLWDcV8PozB1he-Mock Me

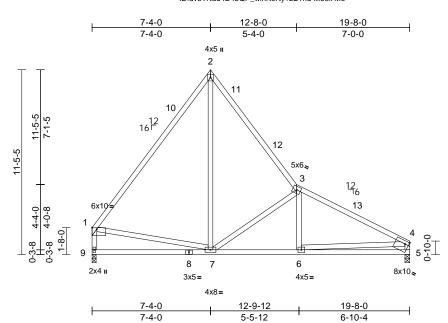
Page: 1

-		
Offsets (X Y)	[2·Edge 0-1-3]	[7:Edge 0-5-13

forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.33

Plate Offsets (X, Y): [2:Edge,0-1-3],	[7:Edge,0-5-13]											
L oading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.36 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.09 0.02	(loc) 8-9 9-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 130 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. (size) 7=0-3-8, * Max Horiz 11=-270 (Max Grav 7=836 (LC (lb) - Maximum Com Tension 1-2=0/62, 2-12=-742 3-13=-538/253, 13-1 4-14=-683/222, 4-15 5-15=-1092/203, 5-6 5-7=-770/252	athing directly applie cept end verticals. applied or 10-0-0 o 11=0-3-8 (LC 13) C 2), 11=836 (LC 2) apression/Maximum 2/187, 3-12=-519/21 14=-576/226, 5=-989/223,	ed or ⁴ c 5 6 8, L	DOL=1.15 P snow); Pf=1: Plate DOL= ⁻ Ct=1.10) Unbalanced design.)) This truss ha load of 12.0 overhangs n) * This truss I on the botton 3-06-00 tall I	7-10; Pr=20.0 ps late DOL=1.15); I 3.9 psf (flat roof s I.15); Category II; snow loads have as been designed psf or 2.00 times on-concurrent wit nas been designe m chord in all are: by 2-00-00 wide v ny other members Standard	Pg=20.0 p now: Lum Exp B; F been cor for great flat roof lu h other li d for a liv as where vill fit betw	osf (ground ber DOL=1. ully Exp.; asidered for t er of min roo bad of 13.9 p re loads. e load of 20. a rectangle	15 this f live osf on 0psf					
BOT CHORD WEBS	10-11=-300/465, 9-1 8-9=-86/882, 7-8=-1 3-9=-179/581, 4-9=- 2-9=-226/393, 5-8=0	78/476 688/305, 4-8=0/105	,									ORTH CA	ROUT
this desigr 2) Wind: ASC Vasd=103 Cat. II; Exp Exterior (2	ed roof live loads have CE 7-10; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR 2) zone; cantilever left t and right exposed;C-	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ;	; -C								D	SEA 0363	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T5A	Roof Special	1	1	Job Reference (optional)	E15385509

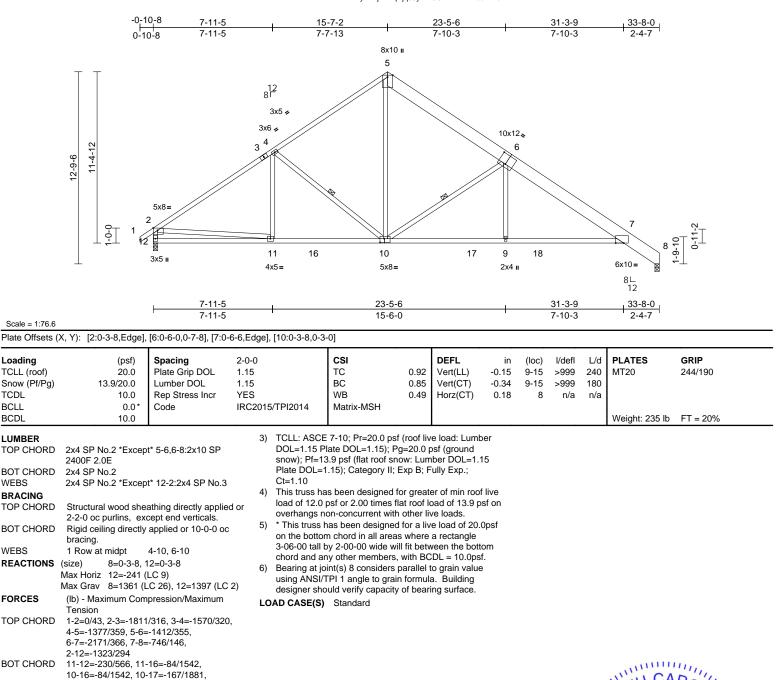
Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:35 ID:dvoTNdu4D4bQP_winK0Ny?zB1hd-Mock Me

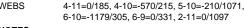
Page: 1

Scale =	1:71.3
---------	--------

Plate Offsets (X, Y):	[1:Edge,0-1-3], [5:Edge,0-2-4]

	∧, i). [i.∟uge,0-i-5],	[J.Luge,0-2-4]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.37 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.09 0.01	(loc) 6-7 7-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2.0E 2x4 SP No.2 2x4 SP No.2 *Excep No.3 Structural wood she 2-11-15 oc purlins, Rigid ceiling directly bracing.	t* 6-3,9-1,5-4:2x4 Sl athing directly applie except end verticals.	= 4) ed or 5)	DOL=1.15 P snow); Pf=1: Plate DOL=' Ct=1.10 Unbalanced design. * This truss I on the bottoo 3-06-00 tall I chord and ai	57-10; Pr=20.0 psi late DOL=1.15); P 3.9 psf (flat roof sn 1.15); Category II; I snow loads have t has been designed m chord in all areas by 2-00-00 wide wi hy other members.	g=20.0 µ ow: Lum Exp B; F been cor for a liv s where Il fit betv	osf (ground uber DOL=1.7 ully Exp.; nsidered for t e load of 20.1 a rectangle veen the bott	15 his Opsf com					
	(size) 5=0-3-8, 9 Max Horiz 9=-252 (L Max Uplift 9=-1 (LC Max Grav 5=775 (LC	C 11) 16)	-,	 One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9. This connection is for uplift only and does not consider lateral forces. 									
FORCES	(lb) - Maximum Com Tension		L	DAD CASE(S)	Standard								
TOP CHORD	1-10=-734/164, 2-10 2-11=-539/253, 11-1 3-12=-690/218, 3-13 4-13=-1095/201, 1-9	2=-577/226, 3=-1000/220, 9=-705/175, 4-5=-708										H CA	1111
BOT CHORD	8-9=-245/378, 7-8=- 5-6=-123/355	245/378, 6-7=-123/8	392,								13	WTH CA	Rollin
WEBS	2-7=-153/552, 3-7=- 1-7=-88/276, 4-6=0/		,							6	i	A Contraction	Di Na
this design 2) Wind: ASC Vasd=103	ed roof live loads have). CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bi o B; Enclosed; MWFR	(3-second gust) CDL=6.0psf; h=25ft;								20111111		SEA 0363	• –


Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T1	Roof Special	1	1	Job Reference (optional)	E15385510

Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:30 ID:1DyARrjIWnqPjqs0yNm5O2zB1hr-Mock Me

NOTES

WEBS

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

WEBS

FORCES

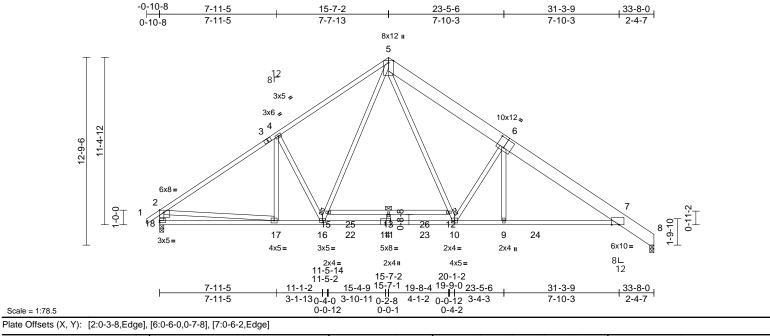
Unbalanced roof live loads have been considered for 1) this design

7-18=-170/1871

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

9-17=-167/1881, 9-18=-170/1871,

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T1A	Roof Special	2	1	Job Reference (optional)	E15385511

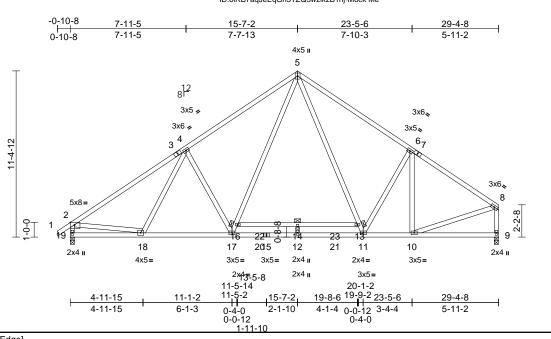
Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:30 ID:zc3wsXIY2O46z80P4opZTTzB1hp-Mock Me

Page: 1

Plate Olisets (.	A, T). [2.0-3-6,Euge],	[0.0-0-0,0-7-0], [7.0-	·o-z,Eugej											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		5/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.90 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.63 0.18	(loc) 13 12-13 8	l/defl >999 >635 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 257 lb	GRIP 244/190 FT = 20%	
	2x4 SP No.2 *Excep 2400F 2.0E 2x4 SP No.1 *Excep 2x4 SP No.2 *Excep No.3 Structural wood she except end verticals Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 12 (size) 8=0-3-8, 7 Max Horiz 18=-241 (Max Grav 8=1513 (I	t* 15-12:2x4 SP No.: t* 18-2,11-13:2x4 SF athing directly applie applied or 10-0-0 oc -15 18=0-3-8 LC 9)	a, 3)	Vasd=103mp Cat. II; Exp B Exterior (2) a vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=12 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 overhangs n	7-10; Vult=130mp oh; TCDL=6.0psf; I 3; Enclosed; MWFI cone; cantilever left nd right exposed; C (FRS for reactions late grip DOL=1.33 5 7-10; Pr=20.0 psf late DOL=1.15); P 3.9 psf (flat roof sn I.15); Category II; I as been designed f psf or 2.00 times f on-concurrent with	BCDL=6 RS (env t and rig C-C for r shown; (roof liv g=20.0 p ow: Lun Exp B; F or great at roof liv other lir	:.Opsf; h=25ft elope) and C ht exposed ; nembers and Lumber e load: Lumb osf (ground ber DOL=1.' ully Exp.; er of min roof pad of 13.9 p ve loads.	-C end ber 15 f live sf on						
FORCES	(lb) - Maximum Com Tension 1-2=0/43, 2-3=-2037 4-5=-1917/339, 5-6= 6-7=-2477/277, 7-8= 2-18=-1463/243	pression/Maximum 7/234, 3-4=-1821/238 2239/358,	· 3)	on the bottor 3-06-00 tall t chord and ar Bearing at jo using ANSI/7	nas been designed n chord in all area: yy 2-00-00 wide wi ny other members, int(s) 8 considers FPI 1 angle to grain uuld verify capacity	s where Il fit betw with BC parallel n formul	a rectangle veen the bott DL = 10.0ps to grain value a. Building	om f.					1	
BOT CHORD	17-18=-220/614, 16- 16-22=0/1355, 14-2 11-23=0/1354, 10-2	2=0/1355, 11-14=0/1 3=0/1354, 9-10=-88/2 4=-89/2147, 15-25=-8	355, 2151,	AD CASE(S)		or bour	ng oundoo.			4	ALL A	OR EESS	RO	***
WEBS	4-17=-123/47, 6-9=0 4-16=-434/248, 15-1 5-15=-89/824, 5-12= 10-12=-164/1223, 6- 11-13=-120/0)/106, 2-17=0/1259, 16=-125/692, 128/1355,								THE DAYS		SEA 0363	•	WWWWWW
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									A A A A A A A A A A A A A A A A A A A	100000	ER. K	in and a second

Scale = 1:78.5

818 Soundside Road Edenton, NC 27932


February 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	ТЗА	Common	5	1	Job Reference (optional)	E15385512

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:33 ID:olRB7aqJeEqGh3TZQ3wzikzB1hj-Mock Me

Page: 1

Scale = 1:79

Scale = 1.79					1-11-10								
Plate Offsets ((X, Y): [2:0-3-8,Edge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.96 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-17 12-17 9	l/defl >999 >610 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 202 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep 19-2,9-8,18-2,12-14 Structural wood she except end verticals Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 13 (size) 9=0-3-8, Max Horiz 19=248 (I Max Grav 9=1311 (I (Ib) - Maximum Com Tension 1-2=0/43, 2-3=-167(4-5=-1590/306, 5-6= 6-7=-1258/191, 7-8= 2-19=-1289/205, 8-5 18-19=-284/535, 17	ot* :2x4 SP No.3 :2x4 SP No.3 :2x4 SP No.3 :2x4 SP No.3 :2x1 SP No.3 :	3) ; (25) (5) (1, (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Vasd=103mj Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl TCLL: ASCE DOL=1.15 P snow); Pf=13 Plate DOL=1 Ct=1.10 This truss ha load of 12.0 overhangs n * This truss ha on the bottor 3-06-00 tall h	7-10; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF zone; cantilever le and right exposed; /FRS for reactions late grip DOL=1.3 57-10; Pr=20.0 ps late DOL=1.15); F 3.9 psf (flat roof sr 1.15); Category II; as been designed psf or 2.00 times f on-concurrent with as been designed m chord in all area by 2-00-00 wide w by other members Standard	BCDL=6 RS (env ft and rig C-C for r s shown; 3 f (roof liv g=20.0 p low: Lurr Exp B; F for great flat roof liv n other lin d for a liv is where ill fit betw	5.0psf; h=25ft elope) and C ht exposed; nembers and Lumber re load: Lumb sf (ground uber DOL=1.1 fully Exp.; er of min roof pad of 13.9 p ve loads. re load of 20.1 a rectangle veen the bott	-C end ber 15 f live sf on 0psf om				Weight: 202 Ib	R_{O}
WEBS NOTES 1) Unbalance this design	12-21=0/1057, 11-2 10-11=-109/1129, 9 14-22=-71/0, 14-23 4-18=-130/39, 2-18 16-17=-127/704, 5- 5-13=-53/604, 11-13 6-10=-400/63, 8-10= ed roof live loads have	1=0/1057, -10=-24/67, 16-22=-7 =-71/0, 13-23=-71/0 =0/1010, 4-17=-428/2 16=-90/836, 3=-90/472, 6-11=-211 =-90/1142, 12-14=-11	71/0, 266, 1/227, 14/0							G. million		SEA 0363	

818 Soundside Road Edenton, NC 27932

February 5,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	тз	Common	5	1	Job Reference (optional)	E15385513

Loading

TCDL

BCLL

BCDL

WEBS

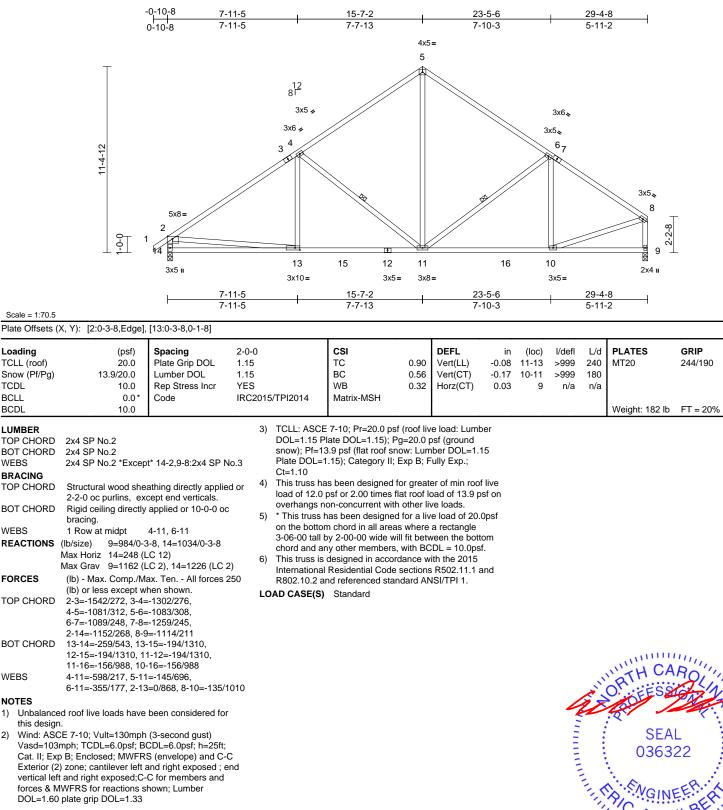
WEBS

FORCES

WEBS

NOTES

1)


BRACING

LUMBER

TCLL (roof)

Run: 8 43 S. Nov 30 2020 Print: 8 430 S Nov 30 2020 MiTek Industries. Inc. Fri Feb 05 16:12:38 ID:R39kehzrpwLZ7vOs7a7nCGzB1hX-lbe?Cp2C7a_shUWjy5i9czC?aR04ENY1i1KiUYzo92u

Page: 1

Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G mmm February 5,2021 11111111111

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T3GE	Common Supported Gable	1	1	Job Reference (optional)	E15385514

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:33 ID:Gy_aKwqxOYz7ID2I_mRCFyzB1hi-Mock Me

-0-10-8 0-10-8 15-7-2 29-4-8 _ 13-9-6 15-7-2 4x5= 11 10 12 13 9 12 81 8 14 4x5💊 4x5 🖌 67 1₽6 11-4-12 X 5 17 M X X 18 4 19 2-2-8 0-0-20 34 33 32 31 30 29 28 27 26 25 24 23 22 21 5x6=

Scale = 1:69.2

Plate Offsets (X, Y): [6:0-2-8,0-2-4], [16:0-2-8,0-2-4], [28:0-3-0,0-3-0]

								-						i	
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.25	Vert(LL)	n/a		-	n/a	999	MT20	244/190
Snow (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	n/a		-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.00		20	n/a	n/a		
BCLL		0.0*	Code	IRC2	015/TPI2014	Matrix-R									
BCDL		10.0		_										Weight: 230 lb	FT = 20%
LUMBERTOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3OTHERS2x4 SP No.2 *Except*32-5,33-4,34-3,22-17,21-18:2x4 SP No.3BRACINGStructural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.BOT CHORDRigid ceiling directly applied or 6-0-0 oc				FORCES TOP CHORD	(lb) - Maximum Cor Tension 2-35=-222/166, 1-2 3-4=-215/204, 4-5= 6-7=-176/205, 7-8= 9-10=-287/334, 10- 11-12=-330/384, 12 13-14=-237/273, 14 15-16=-120/157, 16	=0/43, -210/20 -187/21 11=-33 2-13=-2 1-15=-1 5-17=-1	2-3=-269/249,)8, 5-6=-196/1 4, 8-9=-235/2 0/384, 89/335, 89/216, 40/150,	193, 272,	5)	DOL snov Plate Ct=1 This load over All p	_=1.15 F w); Pf=1 e DOL= 1.10 s truss h I of 12.0 rhangs r olates ar	Plate D 3.9 ps 1.15); as bee psf or non-co e 2x4	OL=1.15); Pg=20 f (flat roof snow: Category II; Exp en designed for g 2.00 times flat ro ncurrent with oth MT20 unless oth	Lumber DOL=1.15 B; Fully Exp.; reater of min roof live bof load of 13.9 psf on er live loads. erwise indicated.	
BOT CHORD					BOT CHORD	17-18=-92/99, 18-1 34-35=-48/51, 33-3	4=-48/5	51, 32-33=-48	/51,		Trus	ss to be	fully sl		e face or securely
WEBS	0		11-27, 10-28, 9-29, 12-26, 13-25				8=-47/5	50, 26-27=-47	/50,		Gab	le studs	space	ed at 2-0-0 oc.	.e. diagonal web).
	8		$\begin{array}{c} , 24=29-4.8, 25=29-4.8, 25=29-4.8, 25=29-4.8, 28=29-3, 33=29-4.8, 31=29-4.8, 31=29-4.8, 31=29-4.8, 33=29-4.8, 31=29-4.8, 33=29-4.8, 31=29-4.8, 31=29-4.8, 31=2-6.1, 21=2, 21=$	4-8, 4-8, 4-8, 4-8, 1-8,),),),),),),),),), (), (), (),	 this design. Wind: ASCI Vasd=103m Cat. II; Exp Exterior (2) vertical left forces & MM DOL=1.60 µ Truss desig only. For s see Standa 	28-29=-48/51, 27-28=-47/50, 26-27=-47/50, 25-26=-47/50, 24-25=-47/50, 23-24=-47/50, 22-23=-47/50, 21-22=-47/50, 23-24=-47/50, 11-27=-353/244, 10-28=-137/65, 9-29=-135/91, 8-30=-126/80, 7-31=-128/82, 5-32=-127/82, 4-33=-129/83, 3-34=-154/110, 12-26=-128/65, 13-25=-135/91, 14-24=-126/80, 15-23=-128/82, 17-22=-127/80, 18-21=-137/93 lanced roof live loads have been considered for esign. ASCE 7-10; Vult=130mph (3-second gust) =103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; I; Exp B; Enclosed; MWFRS (envelope) and C-C or (2) zone; cantilever left and right exposed ; end al left and right exposed; C-C for members and s & MWFRS for reactions shown; Lumber ±1.60 plate grip DOL=1.33 designed for wind loads in the plane of the truss For studs exposed to wind (normal to the face), tandard Industry Gable End Details as applicable, nsult qualified building designer as per ANSI/TPI 1.				11)	on tl 3-06 chor Prov bear 28.	he botto S-00 tall rd and a vide mea ring plat	m cho by 2-0 ny oth chanic e capa	rd in all areas wh 0-00 wide will fit er members. al connection (by bble of withstandi TH CA SEA 0363 SEA 0363	between the bottom rothers) of truss to ng 21 lb uplift at joint

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design remust verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO

February 5,2021

Page: 1

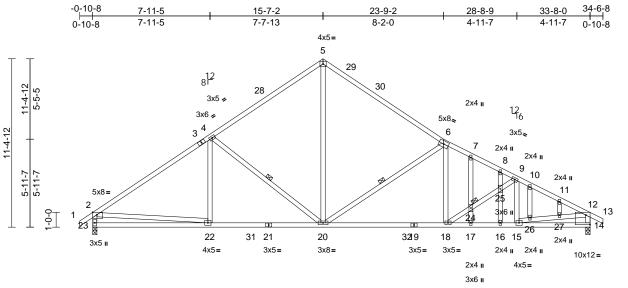
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T3GE	Common Supported Gable	1	1	Job Reference (optional)	E15385514
Carter Components (Sanford), Sanford, NC - 27332,		Run: 8.43 S Nov 30 2) 2020 MiTek Industries, Inc. Fri Feb 05 12:24:33	Page: 2		

ID:Gy_aKwqxOYz7ID2I_mRCFyzB1hi-Mock Me

12) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 35, 20, 27, 29, 30, 31, 32, 33, 34, 26, 25, 24, 23, 22, and 21. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T2SE	Roof Special Structural Gable	2	1	Job Reference (optional)	E15385515

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:32 ID:KZtpvEphtwiP3vuMtLOkAXzB1hk-Mock Me

Page: 1

	7-11-5	15-7-2	23-10-14	28-8-9	33-8-0	
e = 1:78	7-11-5	7-7-13	8-3-12	4-9-11	4-11-7	
e = 1:78						

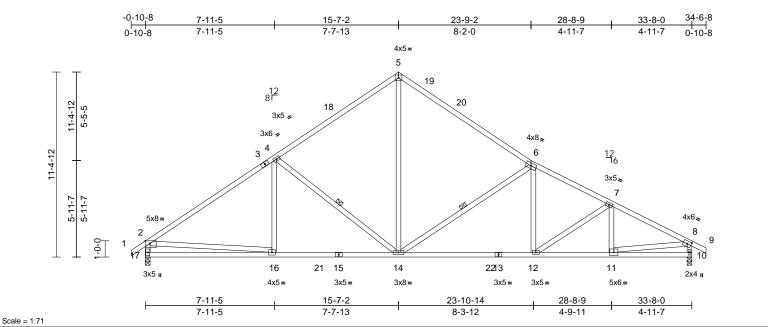
Plate Offsets (X, Y): [2:0-3-8,Edge], [14:Edge,0-7-13]

Scale

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.69 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.26 0.06	(loc) 20-22 18-20 14	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
	No.2 2x4 SP No.2 2x4 SP No.2 *Excep SP No.3 2x4 SP No.3 Structural wood shea 3-6-6 oc purlins, exc Rigid ceiling directly bracing.	t* 23-2,14-12,15-9:2: athing directly applie cept end verticals. applied or 10-0-0 oc 4-20, 6-20 23=0-3-8 LC 13) 16) (LC 2), 23=1396 (LC pression/Maximum /334, 3-4=-1548/337 8=-1233/376, 30=-1209/340, =-1854/414, -1945/391, 11=-2005/404, 2-13=0/34, 14=-1331/338 31=-116/1521, -21=-116/1521, -32=-186/1671, 7-18=-270/1763,	 A d or N 11 2) 2) 3) 4) 5) 6) 7) 	OTES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp Exterior (2) vertical left a forces & MV DOL=1.60 p Truss desig only. For st see Standar or consult q DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Unbalanced design. This truss h load of 12.0 overhangs r All plates ar Truss to be braced agai	4-22=0/189, 4-20= 6-20=-826/288, 6-1 18-24=-202/109, 2 9-25=-192/102, 9-1 15-26=-215/1491, ; 12-27=-214/1457, 17-24=-67/12, 8-25 10-26=-32/221, 11: 1 roof live loads have 5 7-10; Vult=130mp ph; TCDL=6.0psf; I B; Enclosed; MWFI zone; cantilever left and right exposed; CWFRS for reactions olate grip DOL=1.33 ned for wind loads i uds exposed to win rd Industry Gable E ualified building des 5 7-10; Pr=20.0 psf Plate DOL=1.15); Pl 3.9 psf (flat roof sn 1.15); Category II; I I snow loads have to as been designed ff psf or 2.00 times fl hon-concurrent with e 2x4 MT20 unless fully sheathed from nst lateral moveme spaced at 2-0-0 or	8=0/33 4-25=-1 15=-373 26-27=- 7-24=-6 5=0/34, -27=-20 e been of h (3-sec 3CDL=6 RS (env; and rig C-C for r shown; f the pl d (norm nd Deta signer a: (roof liv g=20.0 pow: Lum Exp B; F been cor or great at roof le other li other li other li other li other li), 2-22=-7/10 94/104, (106, 212/1454, 6/42, 16-25=0/49, 24 considered for considered for cond gust) .0psf; h=25ft elope) and C the exposed ; nembers and Lumber ane of the tru al to the face ils as applica s er load: Lumb sf (ground ber DOL=1.1 'ully Exp.; nsidered for the er of min roof pad of 13.9 p ve loads. se indicated. e or securely	r -C end ss), ble, -1 1. er 5 his live sf on	on t 3-0 cho 11) One trus con forc	the botto 6-00 tall ord and a e RT8A is to bea inection ces. CASE(S)	m cho by 2-0 iny oth USP ca is for u) Sta	rd in all areas wh 0-00 wide will fit er members, with onnectors recom alls due to UPLIF iplift only and doe	a live load of 20.0psf ere a rectangle between the bottom a BCDL = 10.0psf. mended to connect T at jt(s) 14. This as not consider lateral

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 5,2021


Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T2	Roof Special	3	1	Job Reference (optional)	E15385516

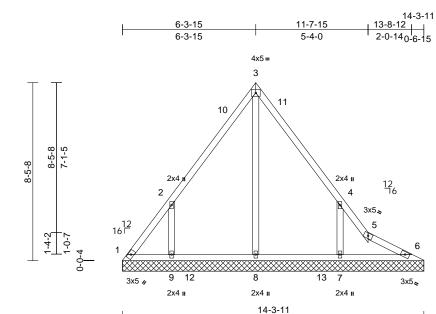
Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:31 ID:v_BhHCmpa?KqCS9nBDr1YuzB1hn-Mock Me

Page: 1

February 5,2021

818 Soundside Road Edenton, NC 27932

Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-2-15,0-2-0]


							· · · ·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.94	Vert(LL)	-0.10	14-16	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.27	12-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.06	10	n/a	n/a		
BCLL	0.0*	Code	IRC2015	/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 205 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10; Vult=130mp	h (3-se	cond aust)						
TOP CHORD	2x4 SP No.2 *Excep	ot* 5-6:2x4 SP 2400F	,		oh; TCDL=6.0psf; E			t;					
	2.0E			Cat. II; Exp E	3; Enclosed; MWFF	RS (env	elope) and C	C-C					
BOT CHORD	2x4 SP No.2				one; cantilever left								
WEBS	2x4 SP No.2 *Excep				nd right exposed;C			ł					
	17-2,10-8,11-7,11-8	:2x4 SP No.3			FRS for reactions		Lumber						
BRACING			•		ate grip DOL=1.33								
TOP CHORD	Structural wood she	athing directly applie	d, 3)		7-10; Pr=20.0 psf			ber					
	except end verticals	i.			late DOL=1.15); Po			15					
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc Plate DOL=1.15; Category II; Exp B; Fully Exp.;												
	bracing.			Ct=1.10	. 10), Oalegoly II, I	_лр В, Г	ully Exp.,						
WEBS	1 Row at midpt	4-14, 6-14	4)		snow loads have b	een co	nsidered for t	his					
REACTIONS		17=0-3-8	,	design.									
	Max Horiz 17=-240 (5)	 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 									
	Max Uplift 10=-5 (LC	,	0)										
	Max Grav 10=1396 (LC 2), 17=1396 (LC 2) overhangs non-concurrent with other live loads.												
FORCES	(lb) - Maximum Com	pression/Maximum	6)		has been designed			0psf					
	Tension				n chord in all areas								
TOP CHORD	4-18=-1369/350, 5-1	3/334, 3-4=-1549/338	,		y 2-00-00 wide wil								
	5-19=-1142/362, 19	,	7)		y other members, SP connectors rec							SOUTH	117.5
	6-20=-1364/334, 6-7	,	()		ing walls due to UF							11111 01	1111
		=0/34, 2-17=-1321/30	7.		for uplift only and							TH UA	ROUL
	8-10=-1338/340		.,	forces.	for upint only and	000011		atorai			15	A	the last
BOT CHORD	16-17=-177/565, 16	-21=-116/1521,	LO	AD CASE(S)	Standard					4	22	FED	Nieson
	15-21=-116/1521, 1	4-15=-116/1521,			etandara					-		1000	2 de la
	14-22=-184/1668, 1	,								-		. *	1 1 E
	12-13=-184/1668, 1	1-12=-273/1753,								=		SEA	L 1 1
	10-11=-50/211									=	:		• -
WEBS		573/210, 5-14=-193/9								1		0363	ZZ ; :
		2=0/288, 2-16=0/1052	,							-	8	N	1.1.5
	7-12=-192/112, 7-11 8-11=-228/1561	1=-170/90,								5	-	·	airs
NOTES	0-11=-220/1001									111111111	25	S VGIN	EFICAN
NOTES	ad roof live loade have	hoon considered for									11	710	BELIN
,	ed roof live loads have	been considered for										11, A. G	ILPIN
this desigr												A. G	mm
												Eobrua	ny 5 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	V1	Valley	1	1	Job Reference (optional)	E15385517

Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:36 ID:1UTb?fxzW?z_GSfHSSa4aezB1ha-Mock Me

Page: 1

Scale = 1:54.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.26	Horiz(TL)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-SH								
BCDL	10.0										Weight: 73 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	o.3 *Except* 8-3:2x4 SP No.2
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=14-3-11, 6=14-3-11, 7=14-3-11, 8=14-3-11, 9=14-3-11
	Max Horiz	1=-174 (LC 13)
	Max Uplift	1=-145 (LC 13), 7=-150 (LC 16), 9=-196 (LC 15)
	Max Grav	1=193 (LC 12), 6=101 (LC 2),
		7=424 (LC 29), 8=446 (LC 31), 9=415 (LC 28)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-238/	238, 2-10=-194/179,
	3-10=-14	7/197, 3-11=-141/194,
	4-11=-192	2/176, 4-5=-115/118, 5-6=-115/76
BOT CHORD	1-9=-64/1	18, 9-12=-64/118, 8-12=-64/118,
	8-13=-64/	/118, 7-13=-64/118, 6-7=-64/118
WEBS	3-8=-238/	/57, 2-9=-405/364, 4-7=-380/327
NOTES		
1) Unbalanc	ed roof live l	oads have been considered for

this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

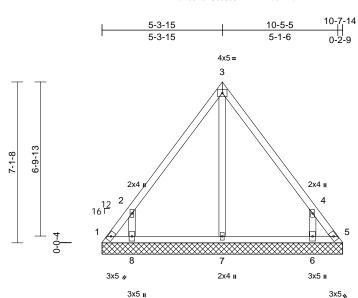
- Unbalanced snow loads have been considered for this 5) design.
- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 7)

* This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 145 lb uplift at joint 1, 196 lb uplift at joint 9 and 150 lb uplift at joint 7. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	V2	Valley	1	1	Job Reference (optional)	E15385518


Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:36 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

Page: 1

G 40000

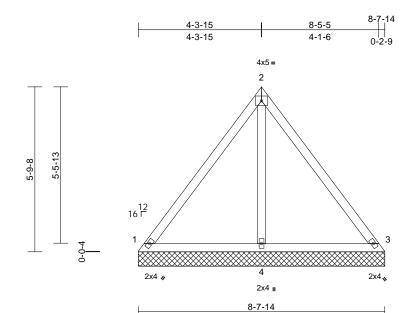
818 Soundside Road Edenton, NC 27932

February 5,2021

10-7-14

Scale	· -	1.51	
Scale	e =	1:51	

Scale = 1:51				-								-	
Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-SH	0.27 0.09 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORI BOT CHORI OTHERS BRACING TOP CHORI BOT CHORI REACTIONS	 D 2x4 SP No.2 2x4 SP No.3 *Except D Structural wood she 6-0-0 oc purlins. D Rigid ceiling directly bracing. S (size) 1=10-7-14 7=10-7-14 Max Horiz 1=-144 (L Max Uplift 1=-158 (L 6=-208 (L Max Grav 1=179 (LC 	eathing directly applied r applied or 10-0-0 o 4, 5=10-7-14, 6=10- 4, 8=10-7-14 .C 9) .C 11), 5=-139 (LC - C 14), 8=-208 (LC - C 13), 5=170 (LC 14) C 13), 7=201 (LC 2)	ed or { () 7-14, 12), 13)	 DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Gable requin Gable studs * This truss on the botto 3-06-00 tall chord and a Provide mee bearing plate 		Pg=20.0 p snow: Lurr ; Exp B; F ottom chor oc. ed for a liv eas where will fit betw s. on (by oth standing 1	osf (ground iber DOL=1.1 iully Exp.; d bearing. e load of 20.1 a rectangle veen the bott ers) of truss t 58 lb uplift al	15 Opsf om to t					
FORCES													
BOT CHORI	4-5=-286/228 D 1-8=-76/122, 7-8=-7 5-6=-76/122	6/122, 6-7=-76/122,	,									,	11111
this desi 2) Wind: A Vasd=10 Cat. II; E Exterior vertical I forces & DOL=1.6 3) Truss de only. Fo	3-7=-114/0, 2-8=-46 seed roof live loads have gn. SCE 7-10; Vult=130mph D3mph; TCDL=6.0psf; B Exp B; Enclosed; MWFR (2) zone; cantilever left eft and right exposed; C- MWFRS for reactions s 60 plate grip DOL=1.33 asigned for wind loads in or studs exposed to wind pard lodustry Cable En	been considered for (3-second gust) CDL=6.0psf; h=25ft S (envelope) and C and right exposed ; C for members and shown; Lumber the plane of the true (normal to the face	or ; -C end ! sss e),							4	The second second	SEA 0363	• -


forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	V3	Valley	1	1	Job Reference (optional)	E15385519

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:36 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

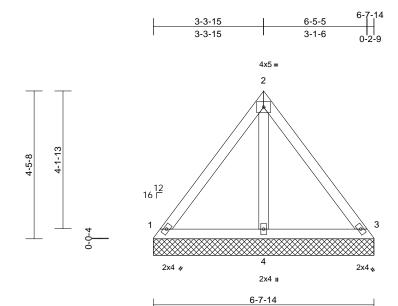
Page: 1

Scale = 1:40.4

		i										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI201	4 Matrix-P								
BCDL	10.0										Weight: 41 lb	FT = 20%
LUMBER				equires continuous b		d bearing.						
TOP CHORD	2x4 SP No.2			studs spaced at 4-0-0								
BOT CHORD	2x4 SP No.2			russ has been desigr			Opsf					
OTHERS	2x4 SP No.2			bottom chord in all ar		0						
BRACING	.		ملمع مطم) tall by 2-00-00 wide and any other membe		veen me bollo	om					
TOP CHORD	Structural wood she	athing directly appli		mechanical connect		ers) of truss t	n					
	6-0-0 oc purlins.		, hooring	plate capable of with								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 c		3 lb uplift at joint 3.	J							
REACTIONS	•	3=8-7-14, 4=8-7-14	LOAD CAS	E(S) Standard								
	Max Horiz 1=-116 (L		+									
	Max Uplift 1=-30 (LC)									
	Max Grav 1=207 (L0											
	(LC 2)	,, (,,										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-170/73, 2-3=-1	56/73										
BOT CHORD	1-4=-46/86, 3-4=-46											
WEBS	2-4=-132/41											
NOTES												
	d roof live loads have	been considered for	or									
, this design	I.											1111
2) Wind: ASC	E 7-10; Vult=130mph	(3-second gust)									WHILL CA	Dall
	mph; TCDL=6.0psf; B									15	atrio	
	B; Enclosed; MWFR								/	5.	Ontes	The Ala
) zone; cantilever left								4			What I
forces & M	t and right exposed;C- WFRS for reactions s	tor members and									:4	- K. /-
	plate grip DOL=1.33	nown, Lumber									05/	n 1913 -
	gned for wind loads in	the plane of the tru	ICC						=		SEA	• –
	studs exposed to wind								1	:	0363	322 : =
	ard Industry Gable En											
or consult	qualified building desi	gner as per ANSI/T	PI 1.							-	Sec. 1	1 3
	CE 7-10; Pr=20.0 psf (ber							20	N.S.Now	FER. A S
	Plate DOL=1.15); Pg									11	A. GIN	E. CAN
	13.9 psf (flat roof sno		15							1	SEA 0363	BEIN
	=1.15); Category II; E	хр в; Fully Exp.;									11111	
Ct=1.10												THE 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 5,2021


Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	V4	Valley	1	1	Job Reference (optional)	E15385520

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:37 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

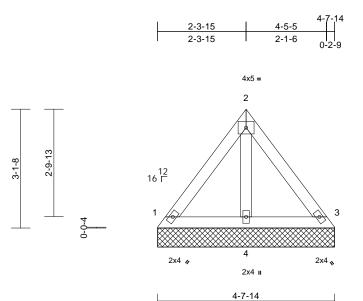
Page: 1

February 5,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:34.7

Scale = 1:34.7												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	CSI TC BC WB 2014 Matrix-P	0.26 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
	Max Horiz 1=-87 (LC Max Uplift 1=-23 (LC Max Grav 1=158 (LC	applied or 10-0-0 o 3=6-7-14, 4=6-7-14 9) 14), 3=-18 (LC 13)	6) Ga 7) * T on 3-C ed or cho c c bea c bea c 1 a 4 LOAD	ble requires continuous ble studs spaced at 4-(nis truss has been des the bottom chord in all 6-00 tall by 2-00-00 wi ord and any other mem wide mechanical connu ring plate capable of v nd 18 lb uplift at joint 3 CASE(S) Standard	0-0 oc. igned for a liv areas where de will fit betw bers. ection (by oth vithstanding 2	e load of 20.0 a rectangle veen the botto ers) of truss t	om o					
FORCES TOP CHORD BOT CHORD WEBS	(LC 2) (Ib) - Maximum Com Tension 1-2=-129/58, 2-3=-1 1-4=-35/68, 3-4=-35, 2-4=-96/32	19/58										
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=1037 Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 3) Truss desig only. For s see Standa or consult c DOL=1.15 snow); Pf=	d roof live loads have	(3-second gust) CDL=6.0psf; h=25ft S (envelope) and C- and right exposed; ; C for members and hown; Lumber the plane of the tru (normal to the face d Details as applica gner as per ANSI/TI roof live load: Lumb =20.0 psf (ground w: Lumber DOL=1.1	SS), ble, er						1		SEA 0363	L 22 EER A


Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	V5	Valley	1	1	E Job Reference (optional)	15385521

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:37 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

Page: 1

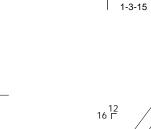
February 5,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:30.3

Scale = 1:30.3													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.12 0.03 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
I	Max Horiz 1=-59 (LC Max Uplift 1=-15 (LC Max Grav 1=106 (LC	applied or 10-0-0 o 3=4-7-14, 4=4-7-14 9) 14), 3=-12 (LC 13)	ed or 8) c 4 L(Gable studs * This truss I on the botton 3-06-00 tall I chord and an Provide med bearing plate	es continuous bc spaced at 2-0-0 nas been designe n chord in all are by 2-00-00 wide v ny other member hanical connectii e capable of with uplift at joint 3. Standard	oc. ed for a liv eas where will fit betw s. on (by oth	e load of 20.0 a rectangle veen the botto ers) of truss t	om					
FORCES TOP CHORD BOT CHORD WEBS	(LC 2) (lb) - Maximum Com Tension 1-2=-87/41, 2-3=-80, 1-4=-25/47, 3-4=-25, 2-4=-65/23	/41											
 this design. 2) Wind: ASC: Vasd=103m Cat. II; Exp Exterior (2) vertical left forces & MU DOL=1.60 3) Truss desig only. For s see Standa or consult c 4) TCLL: ASC DOL=1.15 snow); Pf=' 	d roof live loads have E 7-10; Vult=130mph mph; TCDL=6.0psf; Bu s; Enclosed; MWFR zone; cantilever left a and right exposed;C- WFRS for reactions s plate grip DOL=1.33 gned for wind loads in tuds exposed to wind and Industry Gable En qualified building desig E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= 13.9 psf (flat roof snov =1.15); Category II; Ex	(3-second gust) CDL=6.0psf; h=25ft S (envelope) and C and right exposed; ; C for members and hown; Lumber the plane of the tru (normal to the face d Details as applica gner as per ANSI/TI roof live load: Lumb =20.0 psf (ground w: Lumber DOL=1.1	; -C end ss), ble, PI 1. er									SEA 0363	EER A

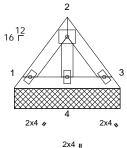
Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof		
21020045-01	V6	Valley	1	1	Job Reference (optional)	E15385522	


Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:37 ID:Vh1zD?xbHJ5rtcEU095J6rzB1hZ-Mock Me

2-5-5

1-1-6

4x5 =


Page: 1

1-5-13

0-0-4

1-9-8

2-7-14

1-3-15

Scale = 1:28.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.01	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/	TPI2014	Matrix-P								
BCDL	10.0											Weight: 11 lb	FT = 20%
LUMBER			5)	Gable requir	es continuous bo	ottom choi	d bearing.						
TOP CHORD	2x4 SP No.2				spaced at 2-0-0								
BOT CHORD	2x4 SP No.2				has been designe			Opsf					
OTHERS	2x4 SP No.3				m chord in all are								
BRACING					by 2-00-00 wide		veen the bott	om					
TOP CHORD	Structural wood she	athing directly appli			ny other member hanical connection		ore) of truce t	0					
	2-8-4 oc purlins.		,		e capable of with								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o		and 6 lb upli		otarianig c	, io apine acjo						
REACTIONS	0	, 3=2-7-14, 4=2-7-14	LO/	AD CASE(S)	Standard								
	Max Horiz 1=-30 (LC	· · ·	+										
	Max Uplift 1=-8 (LC	,											
	Max Grav 1=54 (LC	,, , ,	59										
	(LC 2)	_,, = = : (_= = _,, :											
FORCES	(lb) - Maximum Con	pression/Maximum											
	Tension												
TOP CHORD	1-2=-45/21, 2-3=-41	/21											
BOT CHORD	1-4=-13/24, 3-4=-13	/24											
WEBS	2-4=-33/12												
NOTES													
,	ed roof live loads have	been considered for	or									TH CA	
this design		(0,										minin	Millin,
	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B											"TH CA	Ro
	D B; Enclosed; MWFR										15	R	Della-
) zone; cantilever left										12	1700	Phillip
	t and right exposed;C-										(A		
forces & M	IWFRS for reactions s	hown; Lumber								-	- 14 14	. Q	1 1 2
DOL=1.60	plate grip DOL=1.33									=		SEA	
	gned for wind loads ir									=			• -
	studs exposed to wind									=		0363	22 : :
see Standa	ard Industry Gable En	d Details as applica	ble							-	• (X	•	• ~

- 3 see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

A. A. GI minimum) February 5,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T1GE	Common Supported Gable	1	1	Job Reference (optional)	E15385523

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:31 ID:FMp59DAAMBiC?FXPbf5MGizB0kb-Mock Me

-0-10-8 0-10-8 15-7-2 31-3-9 33-8-0 15-7-2 15-8-7 2-4-7 8x10 II 10 3x6 II 9 11 3x6 II 12 8 _1<u>2</u> 8Г 3x6 II 13 7 5x6 🍫 10x12 💊 11-4-12 6 14 3x6 II 12-9-6 Ø 5 15 Ø 3x6 II X 16 Δ 3x6 II 17 18 19⁻⁷ 0-0-***** ∞ 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 5x8= 5x6=

31-3-9

Scale = 1:69.7 Plate Offsets (X, Y): [6:0-3-0,0-3-0], [14:0-6-0,0-7-8], [27:0-3-0,0-3-0]

- 1010 0110010 ()	, , , , , [0:0 0 0,0 0 0],	[,], [<u>-</u> .										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13		n/a	(.00)	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		2.1,100
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.01	18	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix		11012(01)	0.01	10	n/a	n/a		
BCDL	10.0		11(02010/11/12014	Matrix							Weight: 289 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2400F 2.0E 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 32-5,33-4,34-3,22-1 No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 18=31-3-5 22=31-3-6 22=31-3-6 28=31-3-6 31=31-3-5 34=31-3-6 34=32-34-6 34=32-34-6 34=32-34-6 34=32-34-6 34=32-34-6 34=32-34-6 34=34-634-6 34=34-6 34=34-634-6 34=34-6 34=34-634-6 34=34-6 34=34-634-6 34=34-6 34=34-634-6 34=34-6 34=34-634-6 34=34-6 34=34-634-6 34=34-6 34=34-634-6 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-6 34=34-634-7 34=34-634-7 34=34-634-7 34=34-7 34-7 34=34-634-7 34-7 34-7 34-7 34-7 34-7 34-7 34-7	t* 5,21-16,20-17:2x4 SF athing directly applied cept end verticals. applied or 6-0-0 oc 10-27, 9-28, 8-29, 11 9, 20=31-3-9, 21=31- 9, 22=31-3-9, 24=31- 9, 22=31-3-9, 24=31- 9, 22=31-3-9, 33=31- 9, 32=31-3-9, 33=31- 9, 35=31-3-9 LC 11) C, 14), 22=-25 (LC 12 C, 14), 22=-37 (LC 15 C, 14), 22=-37 (LC 15 C, 14), 22=-40 (LC 15 C, 14), 22=-40 (LC 15 C, 14), 24=-40 (LC 15 C, 14), 50=-31 (LC 15) C, 140, 50=-31 (LC 15) C, 140, 50=-31 (LC 15) C, 140, 50=-31 (LC 15)	 a or FORCES TOP CHORD 1-26 3-9, 3-9,<	(lb) - Ma: Tension 2-35=-14 3-4=-92/ 6-7=-141 9-10=-27 11-12=-2 13-14=-1 17-18=-1 32-33=-1 30-31=-1 26-27=-1 24-25=-1 24-25=-1 24-25=-1 24-25=-1 10-27=-2 8-29=-13 5-32=-12 11-26=-1 13-24=-1 15-22=-1 17-20=-1	18=309 (LC 19) 21=170 (LC 26) 23=168 (LC 26) 27=186 (LC 25) 31=166 (LC 25) 31=166 (LC 25) 33=170 (LC 2), 35=182 (LC 26) ximum Compressi 46/65, 1-2=0/43, 2 93, 4-5=-88/85, 5- /179, 7-8=-190/23 75/338, 10-11=-25 26/338, 10-11=-25 27/34, 40-22=-11 26/161, 33-34=-13 20/76, 10-21=-12 157/68 loads have been	22=159 (LC ,24=168 (LC ,26=161 (LC ,28=173 (LC ,32=161 (LC ,32=161 (LC ,32=161 (LC ,34=180 (LC ; ,32=161 (LC ,34=180 (LC ; ,34=180 (LC ; ,34=180 (LC ; ,34=180 (LC ; ,34=170 (LC ; ,34=1	26), 26), 26), 25), 25), 25), 25), 300, 300,	Va Ca Ext ver for DC 3) Tru onl see or 4) TC DC Sno Pla Ct= 5) Thi loa ove 6) All 7) Ga	sd=103rr t. II; Exp terior (2) tical left tical left tical left tical left to ces & MV DL=1.60 p uss desig ly. For st e Standar consult q e Standar consult q e Standar consult q e Standar te DOL= =1.10 is truss h d of 12.0 erhangs r plates ar ble requi	https://www.actionalized.com/ and rig VFRS blate gr ned fol uds ex rd Indu ualified E 7-10 Plate D 3.9 ps 1.15); as bee psf or hon-co re 2x4 l res col	Vult=130mph (3 CDL=6.0psf; BCC Josed; MWFRS (cantilever left and the exposed;C-C for reactions sho rip DOL=1.33 r wind loads in th exposed to wind (n istry Gable End I d building design the present of show: Category II; Exp en designed for g 2.00 times flat ro ncurrent with oth	e-second gust) DL=6.0psf; h=25ft; (envelope) and C-C d right exposed ; end for members and wn; Lumber e plane of the truss iormal to the face), Details as applicable, er as per ANSI/TPI 1. of live load: Lumber D.0. psf (ground Lumber DOL=1.15 B; Fully Exp.; reater of min roof live bof load of 13.9 psf on er live loads. erwise indicated.
	CA A	GILBE	this desig									
	in the second se	in in it.									Februa	ry 5,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design remust verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component</u> Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

-

Page: 1

Job	Truss	Truss Type	Qty	Ply	162 Crossing-Havenbrooke C-Roof	
21020045-01	T1GE	Common Supported Gable	1	1	Job Reference (optional)	E15385523

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 9) chord and any other members.
- chord and any other members.
 10) One RT8A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 35, 28, 29, 30, 31, 32, 33, 34, 25, 24, 23, 22, 21, 20, and 18. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 12:24:31 ID:FMp59DAAMBiC?FXPbf5MGizB0kb-Mock Me

Page: 2

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

