

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 21020049-A 185 Crossings-Havenbrooke B - Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E15386468 thru E15386490

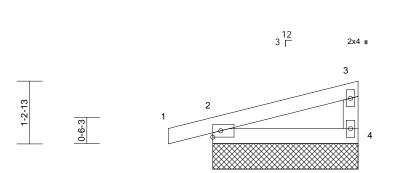
My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

February 5,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T3GE	Monopitch Supported Gable	1	1	Job Reference (optional)	E15386468


Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:05 ID:9axkUYub969qLlst2eTueSySZwi-Mock Me

2-10-4

2-10-4

2-10-4

Page: 1

3x5 =

-0-10-8

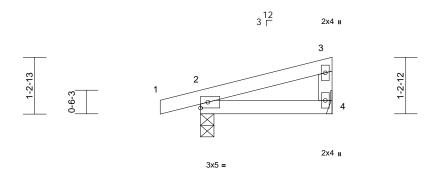
0-10-8

1-2-12

2x4 II

Scolo 1.226

Scale = 1:22.6													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-10-4 oc purlins, e Rigid ceiling directly bracing. (size) 2=2-10-4, Max Horiz 2=29 (LC Max Uplift 2=-31 (LC (LC 11) Max Grav 2=169 (LC	xcept end verticals. applied or 10-0-0 od 4=2-10-4, 5=2-10-4 14), 5=29 (LC 14) 11), 4=-3 (LC 15), 5	6) 7) ed or 8) c . 9) 5=-31	load of 12.0 overhangs n Gable requir Gable studs * This truss t on the bottor 3-06-00 tall b chord and ar One RT7A U truss to bear		flat roof le h other li ttom chor oc. d for a liv as where vill fit betv s. ecommen JPLIFT at	bad of 13.9 p ve loads. d bearing. e load of 20.0 a rectangle veen the both ded to conne s jt(s) 2 and 4	sf on Opsf om ect					
FORCES TOP CHORD BOT CHORD	(LC 2) (Ib) - Maximum Com Tension 1-2=0/16, 2-3=-50/4 2-4=-44/31												
NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 2) Truss desig only. For s see Standa or consult (3) TCLL: ASC DOL=1.15 snow); Pf= Plate DOL= Ct=1.10	E 7-10; Vult=130mph mph; TCDL=6.0psf; B(b B; Enclosed; MWFR3) zone; cantilever left a and right exposed;C- WFRS for reactions s plate grip DOL=1.33 gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig ualified building desig E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg= 13.9 psf (flat roof snov =1.15); Category II; E) d snow loads have be	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumber =20.0 psf (ground w: Lumber DOL=1.1 cp B; Fully Exp.;	C end ss , , ble, Pl 1. er 5								MAR	A. ST	73 EER THUN


Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	тз	Monopitch	7	1	Job Reference (optional)	E15386469

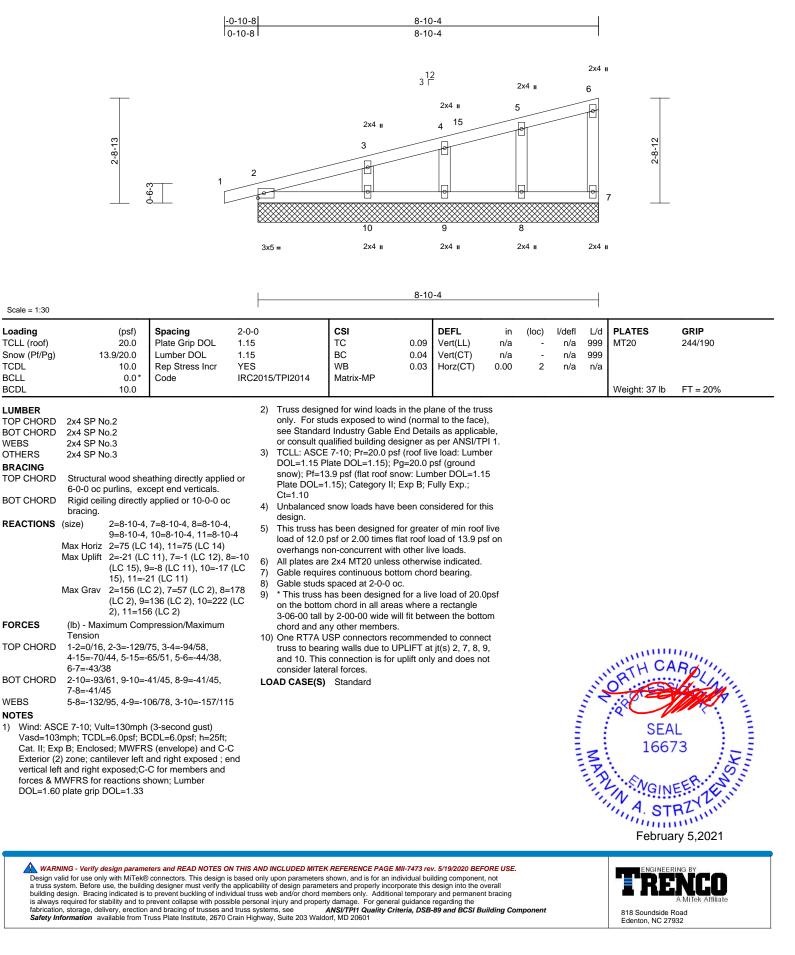
Scale - 1.25

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:05 ID:9axkUYub969qLlst2eTueSySZwi-Mock Me

Page: 1

2-10-4

Scale = 1:25											
Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .15 .15 .ES RC2015/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
2-10-4 oc purlins, e BOT CHORD Rigid ceiling directly bracing.	 applied or 10-0-0 oc 4= Mechanical 14) C 11), 4=-4 (LC 15) C 2), 4=100 (LC 2) apression/Maximum 5, 3-4=-68/56 ad (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; end C for members and chown; Lumber ado the Interpret and the Interpret and	 on the botton 3-06-00 tall b chord and an Refer to girdd 7) Provide meci bearing plate 4. 8) One RT7A U truss to beari connection is forces. LOAD CASE(S) 	has been designed f in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to trus hanical connection capable of withstar SP connectors reco ing walls due to UP for uplift only and o Standard	where fit betw ss conn (by othe nding 4 ommene LIFT at	a rectangle veen the botto nections. ers) of truss to lb uplift at join ded to connec jt(s) 2. This	m o nt			MAR	SEA 166	AROUND AND AND AND AND AND AND AND AND AND A


- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 4) overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

STR munn February 5,2021

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	E15386470

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:05 ID:9axkUYub969qLlst2eTueSySZwi-Mock Me Page: 1

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	Т2	Monopitch	3	1	Job Reference (optional)	E15386471

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:04 ID:9axkUYub969qLlst2eTueSySZwi-Mock Me

Page: 1

-0-10-8 0-10-8 8-10-4 8-10-4 2x4 II 12 3 Г 3 0 8 2-8-13 2-8-12 2 0-6-3 Ľ/ 4 2x4 II 3x5 =

			L			8-10	-4				_		
Scale = 1:30.2													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.99 0.85 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.22 -0.54 0.05	(loc) 4-7 4-7 2	l/defl >485 >195 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly bracing. size) 2=0-3.8, 4 Aax Horiz 2=75 (LC Aax Uplift 2=-35 (LC Aax Grav 2=403 (LC	applied or 9-0-12 oc l= Mechanical 14) : 11), 4=-16 (LC 15)	8	on the botto 3-06-00 tall chord and a Refer to gir Provide me bearing pla 4. One RT7A truss to bea	has been designe om chord in all area by 2-00-00 wide w any other members der(s) for truss to t chanical connectio te capable of withs USP connectors re ring walls due to L is for uplift only an) Standard	as where vill fit betv s. russ conr on (by oth tanding 1 ecommen JPLIFT at	a rectangle veen the bott nections. ers) of truss 6 lb uplift at ded to conne jt(s) 2. This	to joint ect					
FORCES	(lb) - Maximum Com Tension 1-2=0/16, 2-8=-231/9	pression/Maximum											
	3-4=-239/163	30, 3-070,00,											
BOT CHORD NOTES	2-4=-247/148												
 Wind: ASCE Vasd=103m Cat. II; Exp Exterior (2) vertical left a forces & MV DOL=1.60 p TCLL: ASCC DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Unbalanced design. This truss hi load of 12.0 	E 7-10; Vult=130mph hph; TCDL=6.0psf; B(B; Enclosed; MWFR: zone; cantilever left a and right exposed;C- VFRS for reactions s blate grip DOL=1.33 E 7-10; Pr=20.0 psf (Plate DOL=1.15); Pg- 3.9 psf (flat roof snov 1.15); Category II; E) I snow loads have be as been designed for psf or 2.00 times flat on-concurrent with C	CDL=6.0psf; h=25ft; S (envelope) and C-t and right exposed; e C for members and hown; Lumber roof live load: Lumbe =20.0 psf (ground w: Lumber DOL=1.1 gp B; Fully Exp.; ten considered for th greater of min roof 1 roof load of 13.9 ps	nd er 5 is ive								MATHIN	SEA 1667	73

- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

STR (IIIIIII) February 5,2021

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T1GE	Common Supported Gable	1	1	Job Reference (optional)	E15386472

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:04 ID:9axkUYub969qLlst2eTueSySZwi-Mock Me

Page: 1

818 Soundside Road Edenton, NC 27932

			-0-10-8 0-10-8		<u>6-7-12</u> 6-7-12						3-3-8 7-12			14-2-0 0-10-8
					12 5 [4x5 = 6						
	3-5-6 0.8-3	2	1	3x:	5 - 4 	5		14	7			8	3x5 ≈ 9	10
			3x5 II										3	3x5 "
Scale = 1:32							13	8-3-8						-
	(X, Y): [2:E	dge,0-7-0],	, [10:Edge,0-0-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 3.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP N 2x4 SP N Left 2x4 S 2-6-0 Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/25	lo.2 lo.3 SP No.3 2 I wood she purlins. ing directly 2=13-3-8, 13=13-3-8 16=13-3-8 2=-31 (LC 2=-12 (LC 12=-23 (L 15=-15 (L 17=-12 (L) (L 17=-12 (L) (L) (L 17=-12 (L)	9, 3-4=-18/26,	ad or 3) 3-8, 4) -3-8, -3-8) 5), 5) 6), 5) (5), 6) 34), 7) 3), 8) 2), 9)	Cat. II; Exp E Exterior (2) z vertical left ai forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Unbalanced design. This truss ha load of 12.0 tg overhangs no All plates are Gable require Gable studs : * This truss h on the botton 3-06-00 tall b	h; TCDL=6.0psf ;; Enclosed; MW/ one; cantilever le nd right exposed FRS for reaction ate grip DOL=1.2 ed for wind loads ds exposed to we l Industry Gable alified building d alified building d 7-10; Pr=20.0 p ate DOL=1.15); .9 psf (flat roof s .15); Category II snow loads have s been designed osf or 2.00 times on-concurrent wii 2x4 MT20 unles as continuous bo spaced at 2-0-0 as been designed n chord in all are y 2-00-00 wide v y other members	FRS (env ff and rig ;C-C for r s shown; is in the pl ind (norm End Deta ssigner a sf (roof lik Pg=20.0 now: Lun Exp B; F been con for great flat roof l h other li s otherwittom chor oc. d for a liv as where vill fit betw	elope) and C ht exposed; nembers and Lumber ane of the tru al to the face ils as applica s per ANSI/TI e load: Lumb ssf (ground uber DOL=1.1 'ully Exp.; nsidered for tl er of min roof bad of 13.9 p ve loads. se indicated. d bearing. e load of 20.0 a rectangle	-C end I iss iss ible, PI 1. ber 15 f live sf on 0psf				ORTH CA	BOUL
BOT CHORD WEBS NOTES 1) Unbalance this design	7-8=-52/6 10-11=0/ 2-16=0/4 13-14=0/ 6-14=-90 7-13=-12 ed roof live	54, 8-9=-11, 25 1, 15-16=0, 41, 12-13=0 /0, 5-15=-1 3/85, 8-12=	/106, 6-7=-59/106, /19, 9-10=-83/38, /41, 14-15=0/41, 0/41, 10-12=0/41 23/85, 4-16=-142/98 =-142/99 been considered for	, LO	One RT7A U truss to beari 16, 13, and 1	SP connectors re ng walls due to l 2. This connections sider lateral force	ecommer JPLIFT a on is for u	t jt(s) 2, 10, 1	5,			MATIN	SEA 166 NGIN A ST Februa	73 HEER HEIL

a duss system. Detoite use, the building designer must verify the application of the star parameters and propeny incorporate must use use of the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T1	Common	1	1	Job Reference (optional)	E15386473

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:01 ID:DBpz3ssLdUv75RjUxDQQZ1ySZwk-Mock Me

Page: 1

	6-7-12	13-3-8	14-2-0	
			0-10-8	
		4x5 = 3		
3-5-6	5 ¹² 16 3x5 = 2 1	7	3x5 ≈ 4 5	6
	245 m	2x4 II		
	3x5 II		Зх5 ш	
	6-7-12	13-3-8		
Scale = 1:35.4	6-7-12	6-7-12		
Plate Offsets (X, Y): [5:Edge,0-0-0]				
Loading (psf) Spacing TCLL (roof) 20.0 Plate Gri Snow (Pf/Pg) 13.9/20.0 Lumber I TCDL 10.0 Rep Stre BCLL 0.0* Code BCDL 10.0 Tode	p DOL 1.15 TC DOL 1.15 BC	DEFL in (loc) 0.50 Vert(LL) -0.06 7-10 0.43 Vert(CT) -0.10 7-10 0.08 Horz(CT) 0.02 1	I/defi L/d PLATES >999 240 MT20 >999 180 n/a n/a Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 SLIDER Left 2x4 SP No.3 SLIDER Left 2x4 SP No.3 2-6-0, Righ 2-6-0 BRACING TOP CHORD Structural wood sheathing dire 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or bracing. REACTIONS (size) 1=0-3-8, 5=0-3-0 Max Horiz 1=-35 (LC 16) Max Uplift 5=-8 (LC 16) Max Grav 1=530 (LC 2), 5=586 FORCES (b) - Maximum Compression/M Tension TOP CHORD 1-2=-305/0, 2-16=-690/217, 3- 3-17=-661/231, 4-17=-690/218 5-6=0/25 BOT CHORD 1-7=-209/636, 5-7=-114/636 WEBS 3-7=0/184 NOTES 1) Unbalanced roof live loads have been const this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps Cat. II; Exp B; Enclosed; MWFRS (envelop Exterior (2) zone; cantilever left and right exposed; C-C for mem forces & MWFRS for reactions shown; Lum DOL=1.60 plate grip DOL=1.33	 4) Unbalanced snow loads have been design. 5) This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with ot of 12.0 psf or 2.00 times flat overhangs non-concurrent with ot on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fin chord and any other members. 6) (LC 2) 7) One RT7A USP connectors recontruss to bearing walls due to UPLI connection is for uplift only and do forces. 16=-668/231, 4-5=-268/0, idered for igust) if, h=25ft; e) and C-C xposed ; end bers and 	20.0 psf (ground Lumber DOL=1.15 B; Fully Exp.; In considered for this greater of min roof live oof load of 13.9 psf on her live loads. a live load of 20.0psf here a rectangle between the bottom Immended to connect FT at jt(s) 5. This	SE 166 A A S	NEEP H

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T1A	Common	2	1	Job Reference (optional)	E15386474

4x5 =

6-4-4

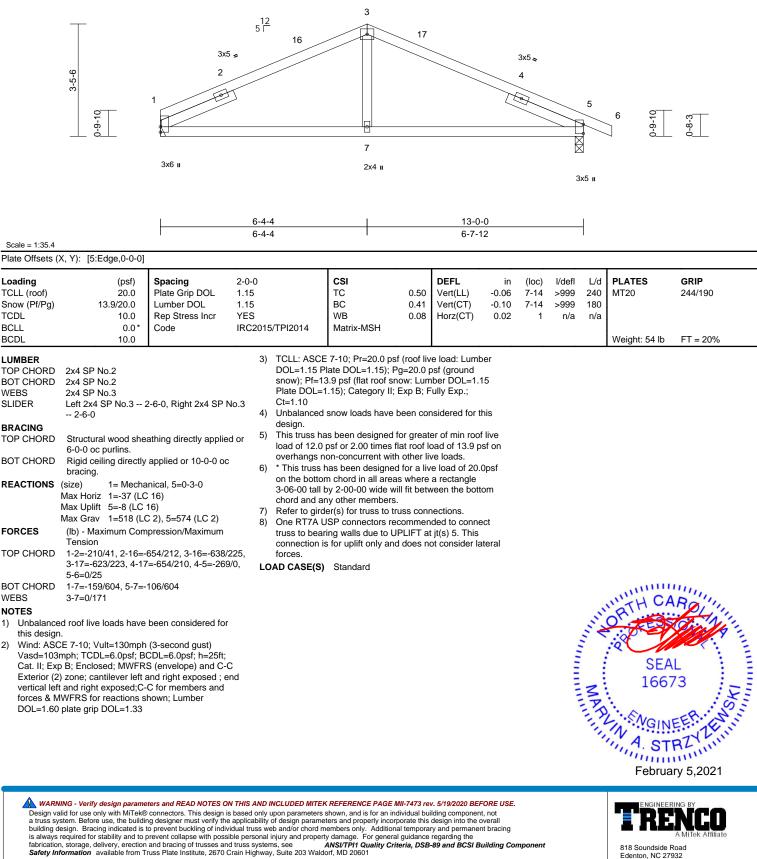
6-4-4

Carter Components (Sanford), Sanford, NC - 27332,

1)

2)

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:03 ID:DBpz3ssLdUv75RjUxDQQZ1ySZwk-Mock Me

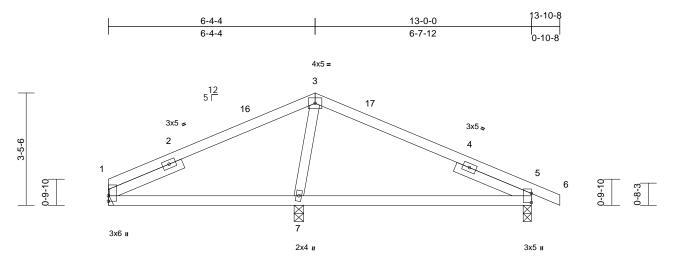

13-0-0

6-7-12

13-10-8

0-10-8

Page: 1



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T1B	Common	2	1	Job Reference (optional)	E15386475

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:03 ID:hONLGCtzOo1_jblgUxxf5EySZwj-Mock Me

Page: 1

ĺ	5-10-4	13-0-0
l	5-10-4	7-1-12
	0 10 1	=

Scale = 1:35.4 Plate Offsets (X, Y): [5:Edge,0-0-0]

	(X; 1): [5:Edge;6 6 6]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	15/TPI2014	CSI TC BC WB Matrix-MSH	0.52 0.42 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 -0.02	(loc) 7-14 7-14 5	l/defl >999 >702 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 2 2-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or anical, 5=0-3-0, 7=0- (16) (15), 5=-44 (LC 16), (33)	4 ed or 5 6 3-8 7 8	DOL=1.15 P snow); Pf=1: Plate DOL= Ct=1.10 Unbalanced design. This truss ha load of 12.0 overhangs n * This truss l on the botton 3-06-00 tall 1 chord and ai Refer to gird Provide med	E 7-10; Pr=20.0 ps Plate DOL=1.15); F 3.9 psf (flat roof sr 1.15); Category II; snow loads have as been designed psf or 2.00 times f ion-concurrent with has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr chanical connection e capable of withst	g=20.0 now: Lun Exp B; F been col for great ilat roof I n other li d for a liv s where ill fit betv uss conin n (by oth	psf (ground her DOL=1. Fully Exp.; nsidered for t er of min roo oad of 13.9 p ve loads. re load of 20. a rectangle ween the bott nections. uers) of truss	15 this f live osf on Opsf tom to						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Com Tension 1-2=-171/81, 2-16=- 3-17=-602/393, 4-17 5-6=0/25 1-7=-301/614, 5-7=- 3-7=-120/180 ed roof live loads have	665/405, 3-16=-649, 7=-635/381, 4-5=-31 260/586	1/0, [′] 1	truss to beau connection is forces. 0) One RT16A truss to beau	JSP connectors re ring walls due to U s for uplift only and USP connectors r ring walls due to U s for uplift only and Standard	PLIFT a d does n ecomme PLIFT a	t jt(s) 5. This ot consider la ended to conr t jt(s) 7. This	ateral nect			A States	NITH CA		
Vasd=103 Cat. II; Ex Exterior (2 vertical let forces & N	n. CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; B' p; B; Enclosed; MWFR 2) zone; cantilever left a ft and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and									MACHINI	SEA 166	FER E	WILLING .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A. STRZ February 5,2021

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T5GR	Common Girder	1	2	Job Reference (optional)	E15386476

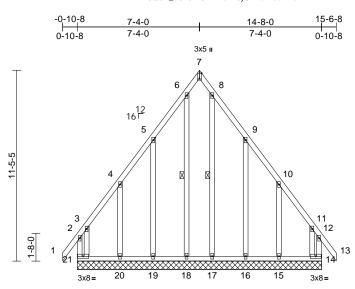
Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:10 ID:H4DeC_2l55n_OIMMJtCxgBySZwV-Mock Me

7-4-0 14-8-0 7-4-0 7-4-0 4x8 II 2 12 16 11-5-5 4x5 4x5、 3 1 1-8-0 Τ 7 ПЛ ПЛ ΠΠ Ш 4 lпп Ř 9 6 10 11 12 5 13 14 MT20HS 8x12 II MT20HS 8x12 II 8x10= 8x10= THD26 THD26 THD26 THD26 THD26 THD26 THD26 14-8-0 4-11-4 9-8-12 4-11-4 4-9-8 4-11-4

Scale = 1:70.2

Plate Offsets (X, Y): [1:0-3-8,Edge], [2:Edge,0-2-0], [3:0-3-8,Edge], [5:0-5-0,0-6-0], [6:0-5-0,0-6-0]

	⊼, 1). [1.0-3-0,⊑uge],	[z.Luge,0-z-0], [0.0-	J-0,∟uye	l, [3.0-3-0,0-0-0	J, [0.0-3-0,0-0-0]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.23 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.00	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 262 lb	GRIP 244/190 187/143 FT = 20%
	,	athing directly applied cept end verticals. applied or 10-0-0 oc 7=0-3-8 C 6) C 2), 7=6210 (LC 2) pression/Maximum 522/0, 1-7=-4320/0,	d or 5) 6) 7) 57, 95, 65,	Vasd=103m Cat. II; Exp Ib left and right exposed; Lu TCLL: ASCE DOL=1.15 P snow); Pf=1: Plate DOL= Ct=1.10 All plates are * This truss I on the bottoo 3-06-00 tall I chord and ar Use USP TH 12-10d x 1-1 2-0-0 oc mai 12-8-12 to cc chord.	7-10; Vult=130m ph; TCDL=6.0psf; 3; Enclosed; MWF exposed ; end ve mber DOL=1.60 p 27-10; Pr=20.0 ps late DOL=1.15); F 3.9 psf (flat roof sr 1.15); Category II; e MT20 plates unl- has been designe m chord in all area by 2-00-00 wide w hy other members 1026 (With 18-16c /2 nails into Truss x. starting at 0-8-1 ponnect truss(es) to bles where hangel	BCDL=(FRS (env prical left)late grip of (roof lik Pg=20.0 now: Lun Exp B; F ess other d for a liv as where vill fit betw, with BC d nails int s) or equi 2 from th o back fa	6.0psf; h=25ft elope); cantil and right DOL=1.33 re load: Lumt osf (ground iber DOL=1.* Fully Exp.; rwise indicate re load of 20. a rectangle veen the bott DDL = 10.0ps to Girder & valent space ne left end to cc of bottom	ever Der 15 ed. Opsf f. d at					
WEBS	2-6=0/3382, 1-6=0/2 3-5=0/2411	402, 2-5=0/3365,	L(1)	Dead + Sno	Standard ow (balanced): Lu	mber Inc	rease=1 15	Plate					11111
 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-6-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 				Increase=1 Uniform Lo Vert: 1-2 Concentrat Vert: 6=-	.15	7=-20 1 (B), 9≕	-1287 (B),				MACTIN	A ST	3 B. H.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 5,2021

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T5GE	Common Supported Gable	1	1	Job Reference (optional)	E15386477

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:09 ID:w6Ql9H_dGZ9ilzUPWKcmz8ySZwa-Mock Me

14-8-0

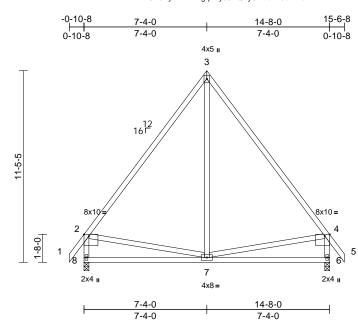
Scale = 1:69.1

	A, 1). [7.Euge,0-1-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MR	0.35 0.15 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 137 lb	GRIP 244/190 FT = 20%
	(size) 14=14-8-(17=14-8-(20=14-8-(20=14-8-(Max Horiz 21=-277 (16=-109 (18=-27 (L 20=-219 (Max Grav 14=286 (L) 16=-176 (L) 18=224 (L)	11:2x4 SP No.3 athing directly applie cept end verticals. applied or 6-0-0 oc 6-18, 8-17 0, 15=14-8-0, 16=14 0, 15=14-8-0, 19=14 0, 21=14-8-0 [LC 11), 15=-217 (LC (LC 14), 17=-17 (LC (LC 14), 17=-179 (LC (LC 13), 21=-163 (LC	this desi this desi d or 2) Wind: A Vasd=11 Cat. II; E Exterior vertical 8-0, forces & 8-0, DOL=1. 3) Truss de only. Fo see Star or cons: 13), 4) TCLL: A DOL=1. 4) DOL=1. 5) Snow); F 50, Snow); F 13), 20, 5) This trus	SCE 7-10; Vult=130mp)3mph; TCDL=6.0psf; ixp B; Enclosed; MWF (2) zone; cantilever lef eft and right exposed; MWFRS for reactions 50 plate grip DOL=1.33 isigned for wind loads r studs exposed to win indard Industry Gable E It qualified building de SCE 7-10; Pr=20.0 ps 15 Plate DOL=1.15); Pf f=13.9 psf (flat roof sn DL=1.15); Category II; s has been designed flat	20=-307 16=-263 1-14=-3 ve been oh (3-see BCDL=6 RS (envi t and rig C-C for r shown; 3 in the pl nd (norm signer a f (roof liv g=20.0 0 w: Lun Exp B; F for great	/292, /251, 61/313 considered fo cond gust) 6.0psf; h=25ft; elope) and C- ht exposed; - nembers and Lumber ane of the tru ial to the face is per ANSI/Tf ve load: Lumb posf (ground ber DOL=1.1 ^c ully Exp.; er of min roof	ss), bile, PI 1. er 5	étrus 17,	s to bea 19, 20, does n CASE(S	aring wa 16, and ot cons) Sta	alls due to UPLIF d 15. This connec sider lateral force	nended to connect T at jt(s) 21, 14, 18, tion is for uplift only s.
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-21=-286/282, 1-2= 3-4=-223/210, 4-5=- 6-7=-163/191, 7-8=- 9-10=-180/220, 10-1 11-12=-185/205, 12- 12-14=-283/283 20-21=-143/158, 19- 18-19=-143/158, 15- 14-15=-143/158	- =0/62, 2-3=-187/206, 175/218, 5-6=-353/4 164/191, 8-9=-352/4 11=-210/197, -13=0/62, -20=-143/158, -18=-143/158,	overhan 6) All plate 7) Gable re 33, 8) Truss to braced a 9) Gable si 10) * This tru on the b 3-06-00	2.0 psf or 2.00 times f gs non-concurrent with s are 2x4 MT20 unless quires continuous bot be fully sheathed from gainst lateral moveme uds spaced at 2-0-0 o uss has been designed ottom chord in all area tall by 2-00-00 wide w id any other members.	n other li s otherw tom choo n one fac ent (i.e. c c. d for a liv s where ill fit betw	ve loads. ise indicated. rd bearing. ce or securely diagonal web) ve load of 20.0 a rectangle	Dpsf			MATIN	SEA 1667	13 EFR. M.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collepse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

H

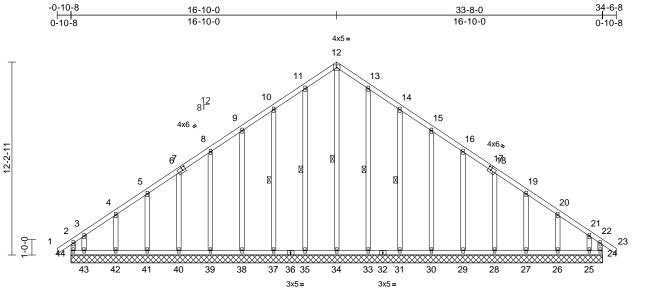

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	E 4 5000 470	
21020049-A	Т5	Common	3	1	Job Reference (optional)	E15386478	

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:09 ID:SwsNyxz?VF1rgqvDyc5XQwySZwb-Mock Me Page: 1

February 5,2021

818 Soundside Road Edenton, NC 27932


Scale = 1:68.8

	, .). [sgs,s . s],	[4:Edge,0-1-3]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.32 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.06 0.01	(loc) 7-8 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r Cat. II; Exp Exterior (2) vertical left forces & M DOL=1.60 3) TCLL: ASC DOL=1.15 snow); Pf=	Max Horiz 8=-277 (L Max Uplift 6=-7 (LC Max Grav 6=636 (LC (lb) - Maximum Com Tension 1-2=0/62, 2-3=-530/ 4-5=0/62, 2-8=-572/ 7-8=-353/467, 6-7=- 3-7=-67/271, 2-7=-3: ed roof live loads have	cept end verticals. applied or 9-9-11 or 3=0-3-8 C 11) 13), 8=-7 (LC 14) C 2), 8=636 (LC 2) pression/Maximum 189, 3-4=-530/189, 194, 4-6=-572/194 251/386 20/444, 4-7=-322/44 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber roof live load: Lumber =20.0 psf (ground w: Lumber DDL=1.19	c 6) LC 15 r C end er	load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall h chord and ar One RT7A L truss to bear		lat roof k n other liv l for a liv s where ill fit betv commen PLIFT at	bad of 13.9 p ve loads. e load of 20.0 a rectangle veen the bott ded to conne jt(s) 8 and 6	sf on Opsf om ect				SEA 1667	13 BE

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T4GE	Common Supported Gable	2	1	Job Reference (optional)	E15386479

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:08 ID:WXkdXFyk_en7RWlqrB23LVySZwd-Mock Me

Scale = 1:73 Plate Offsets (X, Y): [7:0-2-4,0-2-4], [17:0-2-4,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC 0.20 BC 0.10 WB 0.20		′a ·	- n/a - n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2015/TPI2014	Matrix-MR					Weight: 268 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	No.3 Structural wood she 6-0-0 oc purlins, ex	9,26-20,25-21:2x4 SP eathing directly applied		28=166 (LC 26) 30=166 (LC 26) 33=171 (LC 26) 35=174 (LC 25) 38=166 (LC 25) 40=166 (LC 25) 42=167 (LC 2), 44=312 (LC 10) (lb) - Maximum Compressi	, 27=165 (LC 26), , 29=166 (LC 26), , 31=166 (LC 26), , 34=229 (LC 14), , 37=165 (LC 25), , 39=166 (LC 25), , 41=166 (LC 25), 43=268 (LC 11),	źth	:S nbalance	10-37 6-40= 3-43= 14-31 16-29 19-27 21-25 d roof li	=-313/204, 11-3 =-134/90, 9-38= =-128/82, 5-41=-' -150/130, 13-33 =-134/90, 15-30 =-128/82, 18-28 =-127/81, 20-26 =-159/124 ive loads have b	5=-134/63, -126/80, 8-39=-128/82, 127/81, 4-42=-131/83, =-131/63, =-126/80, =-128/82, =-131/83, een considered for
WEBS	bracing. 1 Row at midpt	12-34, 11-35, 10-37, 13-33, 14-31	TOP CHORD	Tension 2-44=-205/143, 1-2=0/43, 3-4=-168/161, 4-5=-146/14		Ý V	asd=103r	nph; T(3-second gust) DL=6.0psf; h=25ft; (envelope) and C-C
	27=33-8- 30=33-8- 34=33-8- 38=33-8- 41=33-8- 44=33-8- 44=33-8- Max Horiz 44=256 (i) Max Uplift 24=-137 26=-24 (L 28=-29 (L 30=-29 (L 33=-19 (L 37=-36 (L 39=-30 (L 41=-31 (L	0, 25=33-8-0, 26=33-8 0, 28=33-8-0, 29=33-8 0, 31=33-8-0, 33=33-8 0, 35=33-8-0, 37=33-8 0, 39=33-8-0, 40=33-8 0, 42=33-8-0, 43=33-8 0	-0, -0, -0, -0, -0, -0, -0, -0, -0, -0,	$\begin{array}{l} 6-7=-121/120, 7-8=-119/13\\ 9-10=-200/236, 10-11=-25\\ 11-12=-294/347, 12-13=-2\\ 13-14=-252/298, 14-15=-2\\ 15-16=-152/178, 16-17=-1\\ 17-18=-104/106, 18-19=-7\\ 19-20=-87/82, 20-21=-112\\ 21-22=-172/148, 22-23=0/\\ 22-24=-151/119\\ 43-44=-117/138, 42-43=-1\\ 41-42=-117/138, 42-43=-1\\ 41-42=-117/138, 36-37=-1\\ 35-36=-117/138, 36-37=-1\\ 35-36=-117/138, 32-33=-1\\ 31-32=-117/138, 32-33=-1\\ 31-32=-117/138, 26-32=-1\\ 27-28=-117/138, 26-27=-1\\ 25-26=-117/138, 24-25=-1\\ \end{array}$	2/298, 94/347, 00/236, 02/120, 7/79, /102, 43, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138, 17/138,	ve fo	ertical left prces & M' OL=1.60	and rig WFRS plate g	ht exposed;C-C for reactions sho rip DOL=1.33	ROUT

818 Soundside Road Edenton, NC 27932

Page: 1

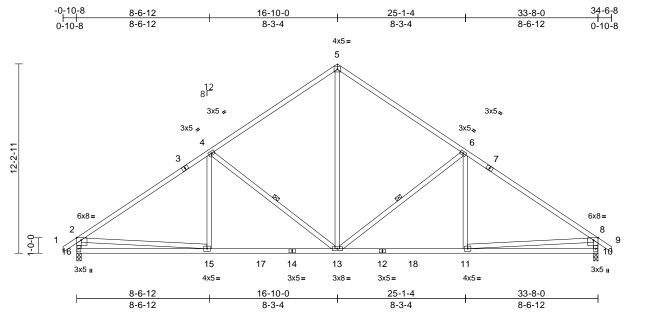
Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T4GE	Common Supported Gable	2	1	Job Reference (optional)	E15386479

ID:WXkdXFyk_en7RWlqrB23LVySZwd-Mock Me

Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:08

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,


- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 44, 24, 35, 37, 38, 39, 40, 41, 42, 43, 33, 31, 30, 29, 28, 27, 26, and 25. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof		
21020049-A	Τ4	Common	4	1	Job Reference (optional)	E15386480	

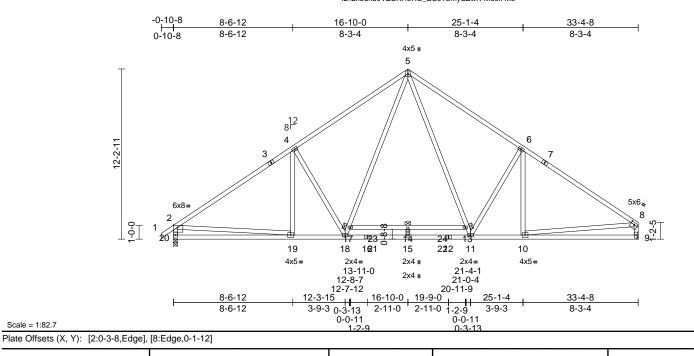
Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:06 ID:5z3UuEwshjPYa20FA3VMjtySZwg-Mock Me

Scale = 1:74.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-3-8,Edge]
-------------------------	-------------------------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	CSI TC BC WB 14 Matrix-MSH	0.92 0.68 0.48	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.23 0.05	(loc) 13-15 13-15 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt	applied or 10-0-0 or 6-13, 4-13 16=0-3-8 _C 12)	DOL snow Plate Ct=1 4) This load overl 5) All pl 6) * Thi on th 3-06	russ has been designe of 12.0 psf or 2.00 time angs non-concurrent v tres are 3x5 MT20 unli- truss has been design bottom chord in all au 00 tall by 2-00-00 wide and any other member	; Pg=20.0 ; snow: Lum II; Exp B; F ed for great es flat roof I with other In ess otherwin ned for a liv reas where e will fit betw	osf (ground her DOL=1.1 iully Exp.; er of min roof poad of 13.9 p ve loads. se indicated. e load of 20.0 a rectangle veen the botto	15 f live sf on Opsf om					
FORCES	(lb) - Maximum Com		LOAD C	SE(S) Standard								
TOP CHORD	Tension 1-2=0/43, 2-3=-1806 4-5=-1303/358, 5-6= 6-7=-1582/321, 7-8= 2-16=-1317/298, 8-1	1303/358, 1806/292, 8-9=0/43										
BOT CHORD	15-16=-247/634, 15- 14-17=-121/1550, 13 12-13=-119/1397, 12	-17=-121/1550, 3-14=-121/1550, 2-18=-119/1397,									WH CA	Route
WEBS	11-18=-119/1397, 10 5-13=-190/896, 6-13 4-13=-653/234, 4-15 8-11=0/1045	8=-653/234, 6-11=0/2								CIT.	OF CON	A THE
this design 2) Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M	ed roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and	с						. attitute.	MATIN	A ST	13 HS

February 5,2021


Page: 1

ENGINEERING BY EREPACED A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	T4A	Common	7	1	Job Reference (optional)	E15386481

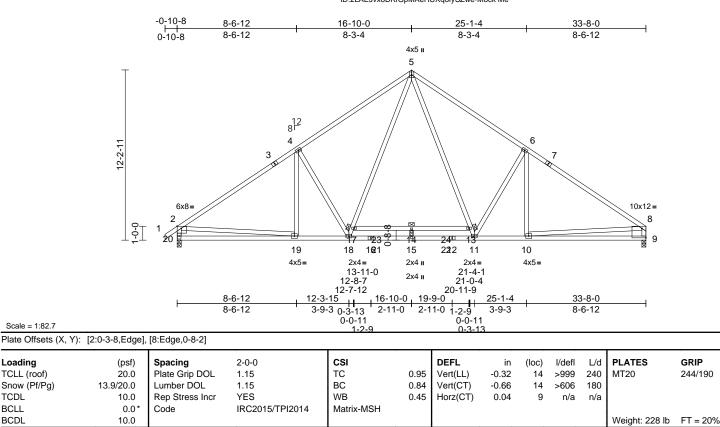
Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:06 ID:Lh5unJ0VZUXH9RC_BS9TbmySZwX-Mock Me

Page: 1

Sca	ale = 1:82	2.7

Fiale Olisels (A, T). [2.0-3-6,Euge],	, [0.Luge,0-1-12]										-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.89 0.84 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.66 0.04	(loc) 14 14 9	l/defl >999 >604 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 227 lb	GRIP 244/190 FT = 20%
	2x4 SP No.1 *Excep 2x4 SP 2400F 2.0E No.1, 17-13:2x4 SP 2x4 SP No.2 *Excep Structural wood she except end verticals Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 13 (size) 9= Mecha Max Horiz 20=254 (I Max Grav 9=1564 (I	*Except* 12-16:2x4 : No.2 tt* 9-8,15-14:2x4 SP athing directly applie applied or 10-0-0 oc t-17 anical, 20=0-3-8 _C 12)	No.3 d, 3) ; 4)	Vasd=103mj Cat. II; Exp B Exterior (2) 2 vertical left a forces & MW DOL=1.60 p) TCLL: ASCE DOL=1.15 P snow); Pf=11 Plate DOL=1 Ct=1.10) This truss ha load of 12.0	7-10; Vult=130mp bh; TCDL=6.0psf; I bh; TCDL=6.0psf; I 3; Enclosed; MWFI cone; cantilever lefi nd right exposed; O (FRS for reactions late grip DOL=1.33; 7-10; Pr=20.0 psf late DOL=1.15); P 3.9 psf (flat roof sn 1.15); Category II; I as been designed f psf or 2.00 times fl on-concurrent with	BCDL=6 RS (env t and rig C-C for r shown; i (roof liv g=20.0 ow: Lun Exp B; F or great at roof l	5.0psf; h=25ft elope) and C ht exposed ; nembers and Lumber re load: Lumb osf (ground iber DOL=1.1 fully Exp.; er of min rool pad of 13.9 p	-C end ber 15 f live					
FORCES	(lb) - Maximum Com	pression/Maximum	5)) 200.0lb AC ເ	init load placed on	the bot	om chord,						
TOP CHORD	Tension 1-2=0/43, 2-3=-2137 4-5=-1988/165, 5-6= 6-7=-1879/87, 7-8=- 2-20=-1521/153, 8-9 19-20=-232/701, 18-	1974/165, 2082/56, 91469/104	6) 7)	apart.) All plates are) * This truss f on the bottor	a left end, supporte e 3x5 MT20 unless has been designed n chord in all areas by 2-00-00 wide wi	otherwi for a liv s where	se indicated. e load of 20. a rectangle	0psf					
16-18=0/1364, 16-21=0/1364, 15-21=0/1364, 15-22=0/1364, 12-22=0/1364, 15-21=0/1364, 10-11=0/1644, 9-10=-67/279, 17-23=-82/0, 14-23=-82/0, 14-24=-82/0, 13-24=-82/0 WEBS 6-10=-186/15, 4-19=-128/11, 2-19=0/1252,				8) Refer to girder(s) for truss to truss connections. LOAD CASE(S) Standard									ROUNT
NOTES	8-10=0/1419, 4-18= 5-17=0/987, 5-13=0, 6-11=-423/305, 14-1 ed roof live loads have	-459/304, 17-18=-42 /953, 11-13=-41/812 15=-98/0	/846, ,								MAT	SEA 1667	• -
											11	A ST	ZYZY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



STR "IIIIIIIII February 5,2021

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof		
21020049-A	T4B	Common	1	1	Job Reference (optional)	E15386482	

Run: 8,43 S Nov 30 2020 Print: 8,430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:07 ID:2LAEJvx6DKfGpMAeHUXqolySZwe-Mock Me

Page: 1

.

Scale = 1:82.7

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

LUMBER	
TOP CHORD	2x4 SP No.1 *Except* 1-3:2x4 SP No.2
BOT CHORD	2x4 SP 2400F 2.0E *Except* 12-16:2x4 SP
	No.1, 17-13:2x4 SP No.2
WEBS	2x4 SP No.2 *Except* 15-14:2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing. Except:
	6-0-0 oc bracing: 13-17
REACTIONS	(size) 9=0-3-8, 20=0-3-8
	Max Horiz 20=251 (LC 10)
	Max Grav 9=1573 (LC 26), 20=1631 (LC 25)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/43, 2-3=-2158/61, 3-4=-1947/91,
	4-5=-2010/166, 5-6=-2015/168,
	6-7=-1945/88, 7-8=-2155/56,
	2-20=-1534/154, 8-9=-1476/109
BOT CHORD	19-20=-230/702, 18-19=0/1847,
	16-18=0/1384, 16-21=0/1384, 15-21=0/1384,
	15-22=0/1384, 12-22=0/1384, 11-12=0/1384,
	10-11=0/1699, 9-10=-87/387, 17-23=-83/0,
	14-23=-83/0, 14-24=-83/0, 13-24=-83/0
WEBS	4-18=-458/305, 17-18=-42/845, 5-17=0/986,
	5-13=0/994, 11-13=-44/851, 6-11=-464/307,
	2-19=0/1269, 4-19=-130/10, 6-10=-139/17,
	8-10=0/1376, 14-15=-98/0
NOTES	

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads 200.0lb AC unit load placed on the bottom chord, 5)
- 16-10-0 from left end, supported at two points, 5-0-0 apart.

All plates are 3x5 MT20 unless otherwise indicated. 6)

* This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. LOAD CASE(S) Standard

MAR ORT Manuninini I SEAL 16673 February 5,2021

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof		
21020049-A	T4T	Roof Special	5	1	Job Reference (optional)	E15386483	

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:08 ID:_kl?kbzMlyv_3gK0PvalujySZwc-Mock Me

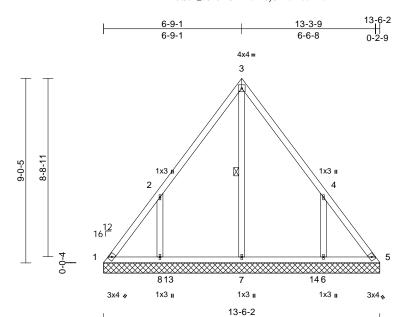
1-1-12 -0-10-8 2-1-12 0-10-8 1-0-0 1-1-12 34-6-8 0-10-8 7-9-8 13-5-4 16-10-0 25-1-4 33-8-0 5-7-12 5-7-12 3-4-12 8-3-4 8-6-12 5x8= 8 2x4 u 7 12 8 9 12-2-11 6 5 10 3x8 🍫 6x8 🖌 2x4 II 4 6x8= 3 2 11 2 0-0-19 12 22 2 20 18 🖽 Ìβ 4x5= 17 16 15 24 14 6x8= 5x10= ^{2x4} ¹¹6-10-0 13-11-0 0-7-8 2-11-0 2-4x5= 2-3-8 7-9-8 13-3-8 19-9-0 25-1-4 33-8-0 5-6-0 5-6-0 2-11-0 5-4-4 8-6-12

Scale = 1:77

Plate Offsets (X, Y): [11:0-3-8,Edge], [19:0-2-12,0-2-8]

			-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.92			14-16	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.27		>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.84	Horz(CT)	0.13	13	n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH		(
BCDL	10.0	0000	1102010									Weight: 238 lb	FT = 20%
-												- 3	
LUMBER			1)		roof live loads hav	e been	considered fo	or					
TOP CHORD			0)	this design.	7 40 34 14 400								
BOT CHORD			2)		7-10; Vult=130mp								
WEBS	2x4 SP No.2 *Excep				ph; TCDL=6.0psf;								
	6-20,16-19,3-21,23-3	3,22-3:2x4 SP No.3			B; Enclosed; MWF								
BRACING					zone; cantilever lef and right exposed;								
TOP CHORD	Structural wood she	athing directly applied	ł,		/FRS for reactions								
	except end verticals				late grip DOL=1.33		Lumber						
BOT CHORD		applied or 10-0-0 oc	2)		E 7-10; Pr=20.0 ps								
	bracing, Except:		3)		late DOL=1.15); P			bei					
	6-0-0 oc bracing: 18	-19,16-18.			3.9 psf (flat roof sn			15					
1 Row at midp					1.15); Category II;			10					
WEBS		9-16		Ct=1.10	1.10), Oategory II,	слр В, І	uny Exp.,						
REACTIONS	(size) 13=0-3-8,	23=0-3-8	4)		as been designed f	or area	er of min roof	live					
	Max Horiz 23=256 (L	_C 12)	•)		psf or 2.00 times f								
	Max Grav 13=1396	(LC 2), 23=1396 (LC	2)		on-concurrent with								
FORCES	(lb) - Maximum Com	pression/Maximum	5)		e 3x5 MT20 unless								
	Tension		6)		has been designed			Opsf					
TOP CHORD	1-2=0/43, 2-3=-216/8	80, 3-4=-2456/389,	-,		m chord in all area			-1					
	4-5=-2080/337, 5-6=				oy 2-00-00 wide wi			om					
	6-7=-1599/366, 7-8=	-1532/475,			y other members,								Un.
	8-9=-1300/359, 9-10		LO	AD CASE(S)	Standard							M' CA	Dille
	10-11=-1808/291, 1				etandara							"ath on	0111
	2-23=-325/130, 11-1										5	Oriving	K. Mi
BOT CHORD	,	,									24	TON	111/19 2
	4-21=-40/196, 20-21	,											
	19-20=-142/1733, 18										1 - A	- UI	
		8=-25/30, 16-17=-25	/30,							-		. SEA	
	15-16=-120/1393, 15									=	:		• -
	14-24=-120/1393, 13									-	7:	1667	3 :-==
WEBS)=0/290, 6-19=-584/1	79,								MAY	N	1 × =
	16-19=0/1002, 8-19=		•								- 1	· ~	
		-666/236, 9-14=0/23	В,								2.2	LISNOW	Envira
	11-14=0/1023, 3-21=	,									1	A. SIN	14.5
	3-23=-1273/166, 3-2	2=-1117/113									1	1, A OT	AZY
NOTES												111101	in the second se
												1. A. ST	T C 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



February 5,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	V1	Valley	1	1	Job Reference (optional)	E15386484

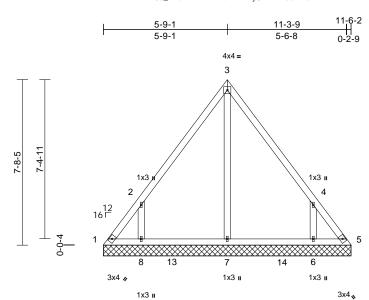
Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:10 ID:w6Ql9H_dGZ9ilzUPWKcmz8ySZwa-Mock Me Page: 1


Scale = 1:56.4

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 74 lb	FT = 20%
LUMBER			3) Truss desig	ned for wind loads	s in the pl	ane of the tru	ss					

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	o.3 *Except* 7-3:2x4 SP No.2
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
WEBS	1 Row at	midpt 3-7
REACTIONS	(size)	1=13-6-2, 5=13-6-2, 6=13-6-2, 7=13-6-2, 8=13-6-2
	Max Horiz	1=188 (LC 10)
	Max Uplift	1=-77 (LC 11), 5=-38 (LC 12),
		6=-185 (LC 14), 8=-189 (LC 13)
	Max Grav	1=168 (LC 25), 5=138 (LC 24),
		6=438 (LC 25), 7=354 (LC 27), 8=446 (LC 24)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-204/ 4-5=-198/	/190, 2-3=-182/156, 3-4=-163/156, /167
BOT CHORD	1-8=-124/	(169, 8-13=-124/169,
	7-13=-124	4/169, 7-14=-124/169,
	6-14=-124	4/169, 5-6=-124/169
WEBS	3-7=-150/	9, 2-8=-413/368, 4-6=-413/368
NOTES		
1) Unbalance	ed roof live I	oads have been considered for

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33


- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
 - DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 1 and 38 lb uplift at joint 5.
- One RT4 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 6. This connection is for uplift only and does not consider lateral forces.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	V2	Valley	1	1	Job Reference (optional)	E15386485

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:11 ID:OJ_7Md?F1tHZw72b417?VLySZwZ-Mock Me Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.25 0.16 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-6-2, 7=11-6-2, 7=11-6-2, Nax Horiz 1=160 (LC Max Uplift 1=-98 (LC 6=-167 (L Max Grav 1=153 (LC	athing directly applied r applied or 10-0-0 oc , 5=11-6-2, 6=11-6-2, 8=11-6-2 C 10) C 11), 5=-62 (LC 12), C 14), 8=-173 (LC 12, C 10), 5=-117 (LC 9), C 25), 7=309 (LC 27)	6) 7) 8) 3) 9)	DOL=1.15 Pl snow); Pf=13 Plate DOL=1 Ct=1.10 Gable requiri Gable studs * This truss t on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1 and 62 lb u One RT4 US truss to bear	7-10; Pr=20.0 psf late DOL=1.15); Pg 3.9 psf (flat roof sno .15); Category II; E es continuous botto spaced at 4-0-0 oc has been designed n chord in all areas by 2-00-00 wide will y other members, hanical connection e capable of withsta plift at joint 5. P connectors recoin ing walls due to UF ion is for uplift only	==20.0 p ow: Lum Exp B; F om chor for a liv where I fit betw with BC (by oth anding S mmend PLIFT at	osf (ground iber DOL=1.1 i'ully Exp.; d bearing. e load of 20.0 a rectangle ween the bott CDL = 10.0psi ers) of truss i 8 lb uplift at j ed to connec ; jt(s) 8 and 6	15 Opsf om f. to joint t					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)									
TOP CHORD		197/146, 3-4=-174/14	46,										

11-6-2

WEBS

NOTES

BOT CHORD

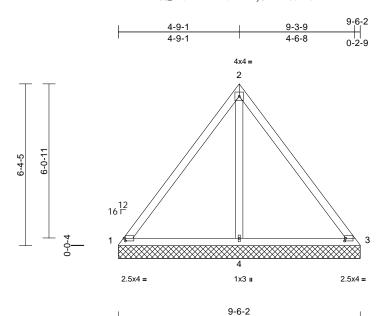
 Unbalanced roof live loads have been considered for this design.

1-8=-80/129, 8-13=-80/129, 7-13=-80/129,

7-14=-80/129, 6-14=-80/129, 5-6=-80/129

3-7=-110/20, 2-8=-427/395, 4-6=-427/395

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


SEAL 16673 A. STRZ February 5,2021

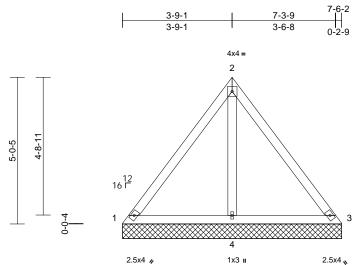
Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	V3	Valley	1	1	Job Reference (optional)	E15386486

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:11 ID:OJ_7Md?F1tHZw72b417?VLySZwZ-Mock Me

Page: 1

Scale = 1:45.3	
Plate Offsets (X Y):	[1:0-0-10 0-1-4] [3:0-0-9 0-1-4]

Plate Offsets ((X, Y): [1:0-0-10,0-1-4], [3:0-0-9,0-1-4]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.31 0.35	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 9-6-2 oc purlins. Rigid ceiling directly bracing. (size) 1=9-6-2, 3 Max Horiz 1=-131 (L Max Uplift 1=-18 (LC 4=-122 (L Max Grav 1=85 (LC (LC 2) (lb) - Maximum Corr	applied or 6-0-0 oc 3=9-6-2, 4=9-6-2 C 9) C 11), 3=-10 (LC 28), C 13) 28), 3=85 (LC 29), 4	ed or 5; 6; 7; 8;	DOL=1.15 F snow); Pf=1 Plate DOL= Ct=1.10 Gable requin Gable studs * This truss on the botto 3-06-00 tall chord and a Provide med bearing plate 1 and 10 lb One RT4 US truss to bear connection i	7-10; Pr=20.0 ps Plate DOL=1.15); F 3.9 psf (flat roof si 1.15); Category II; res continuous boi spaced at 4-0-0 chas been designe m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs uplift at joint 3. SP connectors rec ring walls due to L s for uplift only an	Pg=20.0 now: Lun ; Exp B; F ttom chor oc. d for a liv as where vill fit betw s. on (by oth standing 1 commend JPLIFT a	osf (ground her DOL=1.1 Fully Exp.; rd bearing. re load of 20. a rectangle veen the bott ers) of truss 1 8 lb uplift at j ed to connect t jt(s) 4. This	15 Opsf om to joint t					
 this design Wind: ASC Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & N DOL=1.6C Truss des only. For see Stand 	Tension 1-2=-259/265, 2-3=- 1-4=-248/237, 3-4=- 2-4=-592/368 ed roof live loads have n. CE 7-10; Vult=130mph gr B; Enclosed; MWFR 2) zone; cantilever left : t and right exposed;C- MWFRS for reactions s plate grip DOL=1.33 igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi	248/237 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face) d Details as applicab	C end ss ,	forces. DAD CASE(S)	Standard						MARTIN	SEA 166	73 HOULD


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

STR (IIIIIII) February 5,2021

Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	V4	Valley	1	1	Job Reference (optional)	E15386487

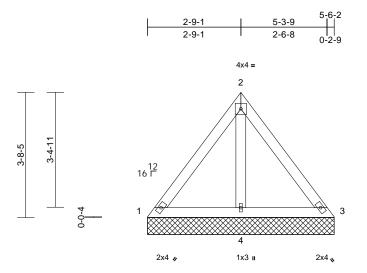
Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:11 ID:OJ_7Md?F1tHZw72b417?VLySZwZ-Mock Me

7-6-2

(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	Plate Grip DOL	1.15	тс	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
9/20.0	Lumber DOL	1.15	BC	0.24	Vert(TL)	n/a	-	n/a	999		
10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	3	n/a	n/a		
0.0*	Code	IRC2015/TPI2014	Matrix-MP								
10.0										Weight: 35 lb	FT = 20%
ç	20.0 9/20.0 10.0 0.0*	20.0Plate Grip DOL0/20.0Lumber DOL10.0Rep Stress Incr0.0*Code	20.0 Plate Grip DOL 1.15 0/20.0 Lumber DOL 1.15 10.0 Rep Stress Incr YES 0.0* Code IRC2015/TPI2014	20.0 Plate Grip DOL 1.15 TC 0/20.0 Lumber DOL 1.15 BC 10.0 Rep Stress Incr YES WB 0.0* Code IRC2015/TPI2014 Matrix-MP	20.0 Plate Grip DOL 1.15 TC 0.24 0/20.0 Lumber DOL 1.15 BC 0.24 10.0 Rep Stress Incr YES WB 0.17 0.0* Code IRC2015/TPI2014 Matrix-MP	20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) 0/20.0 Lumber DOL 1.15 BC 0.24 Vert(LL) 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.0* Code IRC2015/TPI2014 Matrix-MP Horiz(TL)	20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a 0/20.0 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 0.0* Code IRC2015/TPI2014 Matrix-MP 0.17 Horiz(TL) 0.00	20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a - 0/20.0 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 3 0.0* Code IRC2015/TPI2014 Matrix-MP - - -	20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a - n/a 0/20.0 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - n/a 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 3 n/a 0.0* Code IRC2015/TPI2014 Matrix-MP - - - - - - - n/a	20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a - n/a 999 0/20.0 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - n/a 999 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 3 n/a n/a 0.0* Code IRC2015/TPI2014 Matrix-MP Matrix-MP 0.00 3 n/a n/a	20.0 Plate Grip DOL 1.15 TC 0.24 Vert(LL) n/a - n/a 999 MT20 0/20.0 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - n/a 999 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 3 n/a n/a 0.0* Code IRC2015/TPI2014 Matrix-MP Horiz(TL) 0.00 3 n/a n/a

т(В(О ^т ВІ Т(JMBER DP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.2 THERS 2x4 SP No.3 RACING DP CHORD Structural wood sheathing directly applied or 7-6-2 oc purlins. DT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.	 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 4-0-0 oc. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 1. 	
	EACTIONS (size) 1=7-6-2, 3=7-6-2, 4=7-6-2 Max Horiz 1=-102 (LC 9) Max Uplift 1=-5 (LC 11), 4=-92 (LC 13) Max Grav 1=77 (LC 28), 3=77 (LC 29), 4=494 (LC 2)	 9) One RT4 USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard 	
FC	DRCES (Ib) - Maximum Compression/Maximum Tension		
BC	DP CHORD 1-2=-183/181, 2-3=-128/181 DT CHORD 1-4=-201/204, 3-4=-201/204 EBS 2-4=-413/267		
N	DTES		
1)	Unbalanced roof live loads have been considered for		
2)	this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33		SEAL
3)	only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,		16673
4)	or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10		A STRZY

(innin February 5,2021


Page: 1

818 Soundside Road Edenton, NC 27932

- Ct=1.10

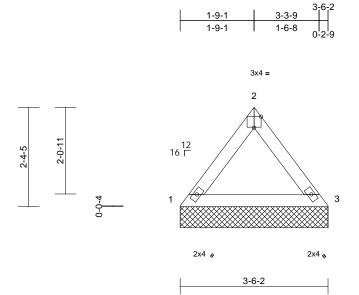
Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	V5	Valley	1	1	Job Reference (optional)	E15386488

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:12 ID:OJ_7Md?F1tHZw72b417?VLySZwZ-Mock Me Page: 1

5-6-2

Scale = $1:34$	34
----------------	----

Scale = 1:34											
Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.13 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
BOT CHORD 5-6-2 oc purlins. Rigid ceiling directly bracing. REACTIONS (size) 1=5-6-2, 3 Max Horiz 1=-74 (LC) Max Grav 1=71 (LC)	3=5-6-2, 4=5-6-2 ; 9)	 6) Gable studs 7) * This truss I on the bottol 3-06-00 tall 1 chord and at at a start of the sta	es continuous bot spaced at 4-0-0 o has been designed in chord in all area by 2-00-00 wide w by other members SP connectors reco ing walls due to U s for uplift only and Standard	c. d for a liv is where ill fit betv ommend IPLIFT at	e load of 20.0 a rectangle veen the botto ed to connect jt(s) 4. This)m					
 (LC 2) FORCES (Ib) - Maximum ComTension TOP CHORD 1-2=-89/102, 2-3=-5 BOT CHORD 1-4=-122/133, 3-4=-WEBS 2-4=-225/139 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; Br Cat. II; Exp B; Enclosed; MWFR Exterior (2) zone; cantilever left a vertical left and right exposed; Coforces & MWFRS for reactions s DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Emor consult qualified building design or consult qualified building design (DOL=1.15 Plate DOL=1.15); Pg snow); Pf=13.9 psf (flat roof snor Plate DOL=1.15); Category II; Exc Ct=1.10 	a, 1.						and the second	11	SEA 166 NGIN Februa	73 EER H	



Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	V6	Valley	1	1	Job Reference (optional)	E15386489

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:12 ID:OJ_7Md?F1tHZw72b417?VLySZwZ-Mock Me

Page: 1

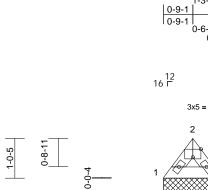
818 Soundside Road Edenton, NC 27932

Scale = 1:27.3

Plate Offsets (X, Y): [2:Edge,0-3-3]

BCDL 10.0 Weight: 13 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Volume Vol	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.08 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
OP CHORD 2x4 SP No.2 on the bottom chord in all areas where a rectangle 3OT CHORD 2x4 SP No.2 3.06-00 tall by 2.00-00 wide will fit between the bottom STCHORD 2x4 SP No.2 3.06-00 tall by 2.00-00 wide will fit between the bottom STCHORD Structural wood sheathing directly applied or 3-6-2 oc purlins. Structural wood sheathing directly applied or 3-6-2 oc purlins. SOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. LOAD CASE(S) Standard VEACTIONS (size) 1=3-6-2, 3=3-6-2 Max Horiz 1=45 (LC 12) Max Grav LOAD CASE(S) Standard OPC CHORD 1-24-5(LC 2), 3=3-140 (LC 2) Tension Tension Tension TOP CHORD 1-2=-155/38, 2-3=-86/36 Sot CHORD 1-3=-18/107 Tension VOTES 10 Unbalanced roof live loads have been considered for this design. Tension Tension 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Yasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber Tension Tension DOLE-1.60 plate gift DDL=-1.33 Delemation between the plate gift DDL=-1.33 Tension Tension			Code	IRC2015/TPI2014	Matrix-MP							Weight: 13 lb	FT = 20%
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 	UMBER 'OP CHORD OP CHORD BRACING OP CHORD BRACING COP CHORD BOT CHORD COP CHORD COP CHORD COP CHORD COP CHORD COT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-6-2 oc purlins. Rigid ceiling directly bracing. (size) 1=3-6-2, 3 Max Horiz 1=45 (LC Max Grav 1=140 (LC (lb) - Maximum Com Tension 1-2=-155/38, 2-3=-80 1-3=-18/107 ed roof live loads have b CE 7-10; Vult=130mph mph; TCDL=6.0psf; BK b B; Enclosed; MWFRS b CE 7-10; Vult=130mph mph; TCDL=6.0psf; BK b B; Enclosed; MWFRS b D; Enclosed; MWFRS b D; Enclosed; MWFRS b D; Enclosed; MWFRS creations sl plate grip DOL=1.33 gned for wind loads in studs exposed to wind studs exposed to wind udustry Gable Enc qualified building desig CE 7-10; Pr=20.0 psf (I Plate DOL=1.15); Pg= :13.9 psf (flat roof snov =1.15); Category II; Ex	applied or 10-0-0 or applied or 10-0-0 or applied or 10-0-0 or appression/Maximum b) 2 (2), 3=140 (LC 2) pression/Maximum b) 36 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; ec for members and hown; Lumber the plane of the true (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumbe- 20.0 psf (ground w: Lumber DOL=1.1 sp B; Fully Exp.;	on the botto 3-06-00 tall chord and a ed or LOAD CASE(S) c r r C end ss), ble, PI 1. er	m chord in all area by 2-00-00 wide w ny other members	as where	a rectangle				14	ORTH CA ORTH CA SEA 1667	L T3 EEER. L

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	185 Crossings-Havenbrooke B - Roof	
21020049-A	V7	Valley	1	1	Job Reference (optional)	E15386490

Run: 8.43 S Nov 30 2020 Print: 8.430 S Nov 30 2020 MiTek Industries, Inc. Fri Feb 05 15:07:12 ID:sVYWaz0toAPQXHdoeleE2ZySZwY-Mock Me

> 1-6-2 1-3-9

> 0-6-8 0-2-9

Page: 1

3

1-6-2

Scale = 1:29.8

Plate Offsets (X, Y): [2:Edge,0-2-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.01 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	-									Weight: 5 lb	FT = 20%
BOT CHORD 2x4 BRACING TOP CHORD Stru 1-6	-2 oc purlins.	athing directly applie	on the botto 3-06-00 tall chord and a ed or LOAD CASE(S	has been designe m chord in all area by 2-00-00 wide w ny other members) Standard	as where vill fit betv	a rectangle						
brain REACTIONS (size)	cing.) 1=1-6-2, 3	3-1-6-2										
Max	Horiz 1=-17 (LC	C 9)										
	Grav 1=60 (LC	2), 3=60 (LC 2) pression/Maximum										
Ten	ision											
	=-60/17, 2-3=-27 =-5/40	/13										
NOTES	- 3/40											
	f live loads have	been considered for	r									
this design. 2) Wind: ASCE 7-1	10 [.] Vult–130mph	(3-second qust)										
Vasd=103mph;	TCDL=6.0psf; B	CDL=6.0psf; h=25ft;									SEA 166	
		S (envelope) and C- and right exposed ; e										in the second se
		C for members and	enu								"ATH UA	ROIL
forces & MWFR	S for reactions s									3	Or.	the Main
DOL=1.60 plate		the plane of the true	20							54		
		(normal to the face)								1 1		
		d Details as applicat							- E		SEA	NL : E
		gner as per ANSI/TF roof live load: Lumb							1	-	166	73
DOL=1.15 Plate	DOL=1.15); Pg	=20.0 psf (ground								S		XE
	psf (flat roof sno 5); Category II; E:	w: Lumber DOL=1.1	5							- 5	·	A
Ct=1.10), Calegory II, E.	хр В, Fully Exp.,								11	GIN	EF. AV
		m chord bearing.									1. A. ST	BZY
Gable studs spa	aced at 4-0-0 oc.										Echrus	
											геріца	ary 5,2021

