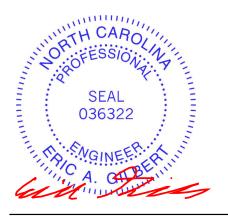


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 21020141-A 2854 Norrington-Roof-Marinette

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Chesapeake, VA).

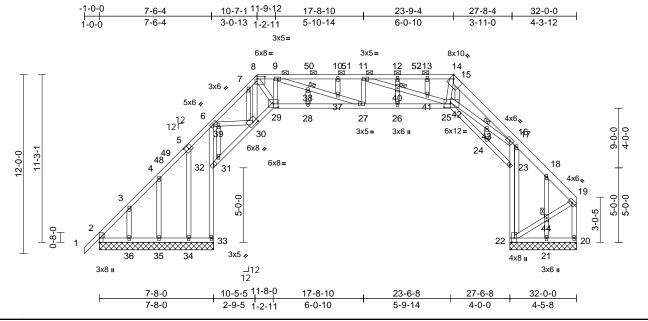
Pages or sheets covered by this seal: E15512279 thru E15512344

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

March 18,2021

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	A01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	E15512279

Scale = 1:77.3

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:40 ID:6AYrRfN?Yyb7PTHx4co9hdzaT4h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(ps		Spacing	2-0-0)	CSI		DEFL	in	(loc		L/d	PLATES	GRIP		
TCLL (roof)	30		Plate Grip DOL	1.15		TC	0.52	Vert(LL)	-0.20		6 >999	240	MT20	244/190		
Snow (Pf)	20		Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.31		6 >783	180				
TCDL	10		Rep Stress Incr	YES		WB	1.00	Horz(CT)	0.27	2	3 n/a	n/a				
BCLL			Code	IRC2	015/TPI2014	Matrix-MSH										
BCDL	10	.0											Weight: 251 lb	FT = 20%		
LUMBER					TOP CHORD	1-2=0/57, 2-3=-431							; Vult=130mph (3			
TOP CHORD			* 14-19:2x6 SP No.			4-48=-362/354, 48-								L=6.0psf; h=25ft;		
BOT CHORD	No.3		* 33-6,16-22:2x4 SF			5-49=-338/365, 5-6 6-7=-1089/185, 7-8	=-1091	251,		z	Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-0-0 to 2-0-0, Exterior (2)					
WEBS	14-25:2x4 SP 2400F 2.0E				8-9=-1679/259, 9-50=-2652/343, 10-50=-2652/343, 10-51=-2652/343,						2-0-0 to 7-4-10, Corner (3) 7-4-10 to 13-9-7, Exterior (2) 13-9-7 to 20-6-14, Corner (3) 20-6-14 to 26-11-10,					
OTHERS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3						11-51=-2652/343, 1					Exterior (2) 26-11-10 to 28-7-14, Corner (3) 28-7-14 to 31-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and					
						12-52=-1480/154, 1										
BRACING	CHORD Structural wood sheathing directly applied or 4-4-14 oc purlins, except end verticals, and					13-14=-1480/154, 15-16=-2154/240, 1										
TOP CHORD						17-18=-145/268, 18		,		0	forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss					
2-0-0 oc purlins (3-1-5 max.): 8-14.					19-20=-165/170 3 BOT CHORD 2-36=-178/153, 35-36=-38/3, 34-35=-38/3,											
BOT CHORD	HORD Rigid ceiling directly applied or 6-0-0 oc					33-34=-38/4, 32-33=0/0, 6-32=-976/239,								ormal to the face), Details as applicable,		
	bracing.				31-32=-194/23, 30-31=-126/22,									er as per ANSI/TPI 1		
JOINTS	OINTS 1 Brace at Jt(s): 38,										4) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber					
	40, 43, 44				27-28=-335/1740, 26-27=-408/2652,									.0 psf (flat roof snow		
REACTIONS	· /	,)=4-5-8, 21=4-5-8,	21=4-5-8, 25-26=-408/2652, 24-25=-310/50,						L	Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp E					
			23=4-5-8, 32=7-8-0			23-24=-291/33, 22-					ully Exp.;					
			34=7-8-0, 35=7-8-0 45=7-8-0	,		16-23=-1437/85, 21			34/41		i) Unbalanced snow loads have been considered for this					
			13), 45=319 (LC 1:	3)	WEBS	6-39=-175/789, 30-				С	lesign.					
			10), 20=-90 (LC 1			8-30=-724/131, 8-2 9-29=-833/151, 9-3										
			C 53), 22=-84 (LC			9-29=-833/131, 9-3 37-38=-123/970, 27							"TH CA	Rollin		
			(LC), 32=-259			11-27=-81/43, 11-4						X	R	- Late		
	33=-	30 (LC	39), 34=-79 (LC 1-	4),		40-41=-1227/195, 2		,				6-	EESS	ON Vin		
			2 14), 36=-150 (LC	14),		25-42=-223/1524, 4	12-43=-2	270/1862,				22		12/		
		293 (L	,			16-43=-274/1838, 2	22-44=-	48/35,			-		27	S		
			13), 20=148 (LC 13			19-44=-48/35, 14-2	5=-62/5	86, 10-37=-9	3/54,		-		SEA	1 : =		
			C 13), 22=28 (LC 10			28-38=-23/66, 7-30			9/29,				JLA 0000	• -		
			_C 2), 32=1171 (LC			5-34=-125/106, 4-3					= : 036322 ; =					
			11), 34=186 (LC 48			3-36=-185/142, 12-		,	,		SEAL 036322					
			C 2), 36=266 (LC 3	1),		13-41=-139/36, 15-			=0/72,							
		975 (LC	,			17-22=-36/281, 18-	44=-51	213,	A SNOWEFRICK S							
FORCES	()	Comp	ression/Maximum			21-44=-51/211						1	PL	E. CAN		
	Tension				NOTES					CA CILBENN						
1			,	d roof live loads have	e been (considered fo	r				1111.0	in the second se				
			this design	lis design.					Moreh 18 2021							

March 18,2021

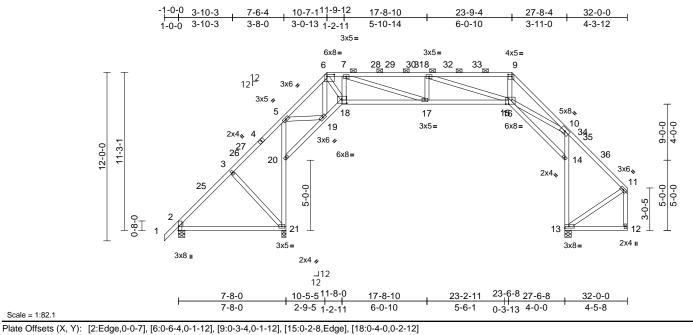
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	E15510070
21020141-A	A01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	E15512279

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) This truss is not designed to support a ceiling and is not intended for use where aesthetics are a consideration.
- Provide adequate drainage to prevent water ponding. 8)
- 9) All plates are 2x4 MT20 unless otherwise indicated.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Bearing at joint(s) 32, 23 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 33
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 32, 23, 20, 34, 35, 36, and 21. This connection is for uplift only and does not consider lateral forces.
- 16) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 22. This connection is for uplift only and does not consider lateral forces
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Thu Mar 18 08:44:40 ID:6AYrRfN?Yyb7PTHx4co9hdzaT4h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2



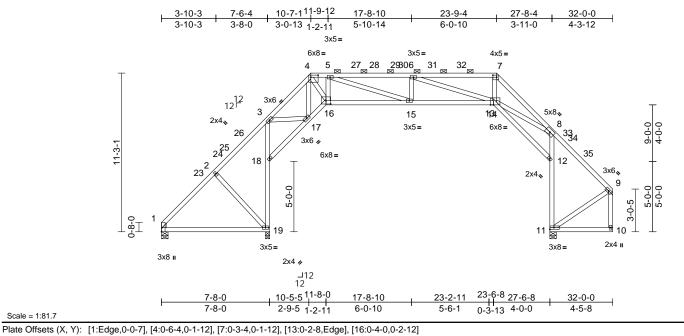
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	A02	Piggyback Base	4	1	Job Reference (optional)	E15512280

Scale = 1:82.1

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:43 ID:qb4B_9hRdKM31hBFfEAZrizaSyX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (A, T). [2.Euge,0-0-7],	[0.0-0-4,0-1-12], [9.	0-3-4,0-1-1	2], [15.0-2-6,1	Eugej, [16.0-4-0,0-2	-12]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.56 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.27 0.73		l/defl >999 >894 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 198 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.1 2x4 SP No.1 *Excep 10-13:2x4 SP 2400F 2x4 SP No.3 Left: 2x4 SP 2400F : Structural wood she 4-2-12 oc purlins, e	² 2.0E 2.0E athing directly applie xcept end verticals, a	, NC dor 1)	DTES Unbalanced this design.	5-19=-192/836, 6-1 6-18=-347/1920, 7- 7-17=-151/1036, 8- 8-16=-1303/354, 9- 10-15=-238/1776, ' 3-21=-263/172 roof live loads have	18=-82 17=-19 15=-22 11-13=-	6/174, 7/130, 8/1126, 123/117, considered fo	pr	trus 21. con 10) Gra or t	s to bea This cor sider lat phical p he orien tom choi	rring wannectio reral for urlin re tation o rd.	alls due to UPLIF n is for uplift only rces. presentation doe of the purlin along	es not depict the size
	2-0-0 oc purlins (3-3 Rigid ceiling directly bracing. (size) 2=0-5-8, ' Max Horiz 2=321 (LC Max Uplift 2=-161 (L 21=-335 (LC Max Grav 2=533 (LC 21=1386 (lb) - Maximum Com	applied or 5-1-12 oc 13=0-5-8, 21=0-3-8 C 13), C 10), 13=-182 (LC LC 11) C 32), 13=1455 (LC 2 (LC 55)	15),	Vasd=103m Cat. II; Exp I zone and C- 2-2-6 to 6-0- 15-1-5 to 19 (1) 28-3-9 to zone; cantile and right exp MWFRS for	ph; TCDL=6.0psf; E B; Enclosed; MWFF C Exterior (2) -1-0- 12, Exterior (2) 6-0 -2-15, Exterior (2) 6-0 -2-15, Exterior (2) 1 2 8-7-14, Exterior (ever left and right ex posed; C-C for mem reactions shown; L	BCDL=6 RS (env 0 to 2-2 -12 to 1 19-2-15 2) 28-7- (posed lbers an	0.0psf; h=25ft elope) exterio -6, Interior (1 5-1-5, Interio to 28-3-9, Int -14 to 31-10 ; end vertical id forces &	or) or (1) terior 4 left					
TOP CHORD	(ib) - Maximum com Tension 1-2=0/57, 2-25=-47(3-26=-375/322, 26-2 4-27=-362/329, 4-5= 5-6=-1176/130, 6-7= 7-28=-2795/444, 23 29-30=-2795/444, 3-3 32-33=-1561/301, 9 9-10=-2078/399, 10 34-35=-21/262, 35-3 11-36=-47/125, 11-1 2-21=-224/173, 20-2 5-20=-1074/306, 19- 18-19=-257/1152, 11 16-17=-511/2795, 13 10-14=-1016/137, 12)/295, 3-25=-402/322 27=-369/325, 350/350, 1750/288, -29=-2795/444, 0-31=-2795/444, 0-31=-2795/444, 32=-1561/301, -33=-1561/301, -34=-19/297, 36=-24/242, 12=-88/99 21=-1151/305, -20=-93/38, 7-18=-368/18511, -14=-1370/324,	2, ,	DOL=1.15 F Lumber DOL Fully Exp.; C Unbalanced design. This truss hi load of 12.0 overhangs n Provide ade This truss ha chord live lo * This truss on the botto 3-06-00 tall	E 7-10; Pr=30.0 psf Plate DOL=1.15); Pf L=1.15 Plate DOL=	=20.0 p 1.15); C een cor or great at roof k other liv or a 10.0 vith any for a liv s where	sf (flat roof si ategory II; E: ansidered for t er of min roof bad of 20.0 p ve loads. water pondin. 0 psf bottom other live loa e load of 20. a rectangle	now: xp B; his f live sf on g. ads. 0psf		Manifi Maria		SEA 0363	EEP H


Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	A03	Piggyback Base	4	1	Job Reference (optional)	E15512281

Scale = 1:81.7

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:44 ID:IwAfon022DVg1BdRJfVNbIzaSmU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

	A, T). [1.Euge,0-0-7],	[4.0-0-4,0-1-12], [7.	0-3-4,0-1-	12], [13.0-2-0,1	Lugej, [10.0-4-0,0-2	-12]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.56 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-15 19-22 11	l/defl >999 >868 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.1 2x4 SP No.1 *Excep 8-11:2x4 SP 2400F 2x4 SP No.3 Left: 2x4 SP 2400F Structural wood she	2.0E 2.0E	2, N	OTES	3-17=-192/836, 4-1 4-16=-347/1920, 5- 5-15=-151/1036, 6- 6-14=-1303/355, 7- 8-13=-238/1777, 9- 2-19=-270/175 roof live loads have	16=-82 15=-19 13=-22 11=-12	6/173, 7/130, 8/1126, 3/117,	or	or t	he orien	tation o rd.	of the purlin along	s not depict the size the top and/or
BOT CHORD REACTIONS	Max Horiz 1=304 (LC Max Uplift 1=-163 (L 19=-336 (Max Grav 1=478 (LC 19=1390	-15 max.): 4-7. applied or 5-1-15 or 213) C 10), 11=-182 (LC LC 11) C 31), 11=-1456 (LC 2 (LC 54)	2) c 15),	Vasd=103m Cat. II; Exp zone and C- 3-2-6 to 6-0- 15-1-5 to 19 (1) 28-3-9 to zone; cantile and right ex MWFRS for	F-10; Vult=130mp ph; TCDL=6.0psf; E B; Enclosed; MWFF C Exterior (2) 0-0-0 -12, Exterior (2) 6-0 -2-15, Exterior (2) 1 0 28-7-14, Exterior (aver left and right ex posed; C-C for mem reactions shown; L	3CDL=6 RS (env) to 3-2- -12 to 1 (9-2-15 2) 28-7- (posed (bers ar	6.0psf; h=25ft elope) exterio 6, Interior (1) 5-1-5, Interio to 28-3-9, Int -14 to 31-10- ; end vertical id forces &	or) or (1) terior 4 I left					
TOP CHORD	(lb) - Maximum Com Tension 1-23=-471/295, 2-23 2-24=-375/322, 24-2 25-26=-362/329, 3-2 3-4=-1177/130, 4-5= 5-27=-2795/445, 27 28-29=-2795/445, 6-3 31-32=-1561/301, 7 7-8=-2079/399, 8-33 33-34=-21/262, 34-3	3=-385/322, 25=-369/325, 26=-348/350, 1751/288, -28=-2795/445, 9-30=-2795/445, 31=-1561/301, -32=-1561/301, 3=-19/296, 35=-24/242,	3) 4) 5) 6) 7)	DOL=1.15 F Lumber DOI Fully Exp.; O Unbalanced design. Provide ade This truss hi chord live lo * This truss	E 7-10; Pr=30.0 psf Plate DOL=1.15); Pf L=1.15 Plate DOL=	=20.0 p 1.15); C revent or a 10.1 vith any for a liv	sf (flat roof s category II; E: nsidered for t water pondin 0 psf bottom other live loa re load of 20.	now: xp B; his g. ads.		N	2 P	SEA 0363	
BOT CHORD	9-35=-47/131, 9-10= 1-19=-224/179, 18-1 3-18=-1072/306, 17- 16-17=-257/1153, 19 14-15=-512/2795, 11 12-13=-704/725, 11 8-12=-1016/137, 10-	8)	3-06-00 tall chord and a One RT7A t truss to bea	by 2-00-00 wide wil ny other members. JSP connectors rec ring walls due to UF nection is for uplift	l fit betw ommen PLIFT at	veen the bott ded to conne t jt(s) 11, 1, a	ect				SEA 0363	L 22 1LBER 18,2021	

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	E15512282

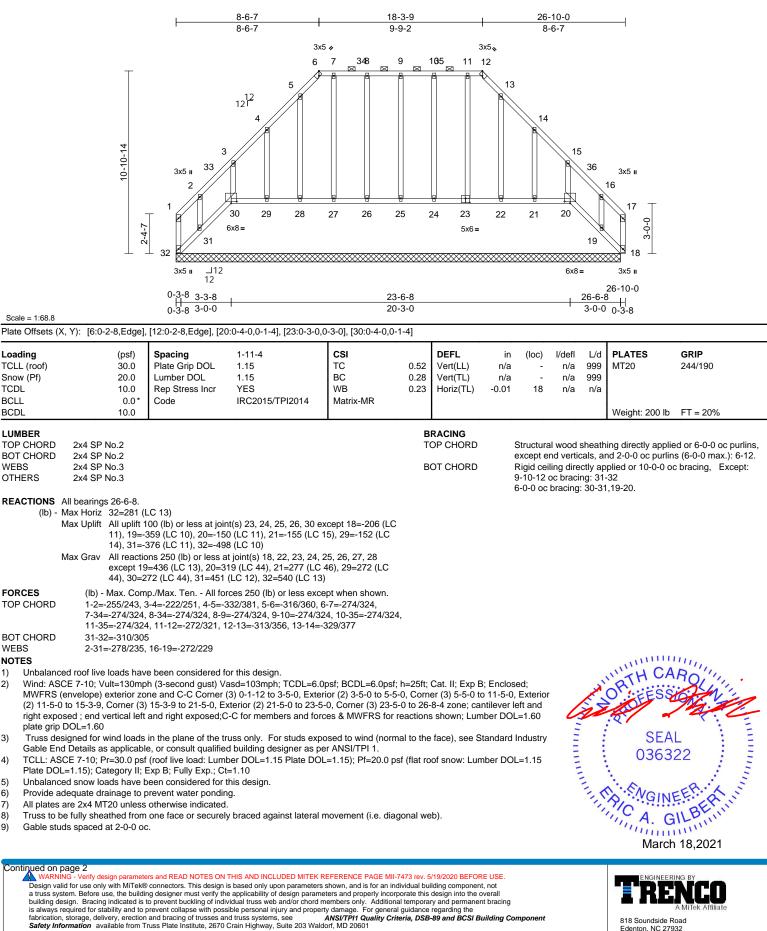
1)

2)

3)

4)

5)


6)

7) 8)

9)

Run: 8 43 S. Feb 12 2021 Print: 8 430 S Feb 12 2021 MiTek Industries, Inc. Thu Mar 18 12:42:59 ID:Czb28pWOkvy3F3IMR55_1KzaSbW-LrorWuD0PcuC_Ucg6jOzjHrSZEVLWNzkhhoUSszZiti

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	E15512282
Carter Components, Chesapeak	e, VA - 23323,	Run: 8.43 S Feb 12 2	2021 Print: 8.4	430 S Feb 12	2021 MiTek Industries, Inc. Thu Mar 18 12:42:59	Page: 2

ID:Czb28pWOkvy3F3IMR55_1KzaSbW-LrorWuD0PcuC_Ucg6jOzjHrSZEVLWNzkhhoUSszZiti

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any 11) other members.

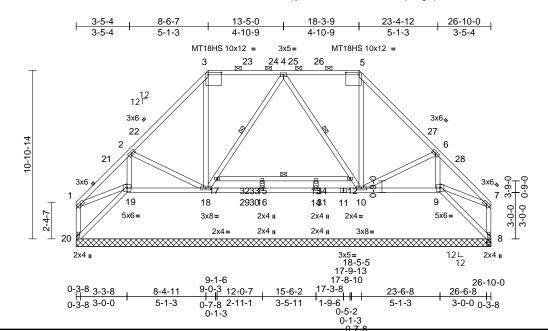
12) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 32, 18, 30, 31, and 19. This connection is for uplift only and does not consider lateral forces.

One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 20, 25, 26, 29, 24, 23, and 21. This connection is for uplift only and does not 13) consider lateral forces.

Non Standard bearing condition. Review required. 14)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15)

16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B02	Piggyback Base	1	1	Job Reference (optional)	E15512283

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:46 ID:6NsEICBCc6JkpjhXePN_rdzaSJs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.5

Plate Offsets (X, Y): [3:0-10-4,0-1-12], [5:0-10-4,0-1-12]

(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.22 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 -0.01	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 196 lb	GRIP 244/190 244/190 FT = 20%
0-0 oc purlins, ex 0-0 oc purlins, (ex) 0-0 oc purlins (6-0 gid ceiling directly 0-0 oc bracing: 12 Row at midpt 2) 8=26-10-(14=26-10 20=26-10 Horiz 20=290 (L 19=-247 10=-90 (L 19=-247 (LC 10=706 (L 10=706 (L)	cept end verticals, an -0 max.): 3-5. applied or 9-3-8 oc -17 4-18, 4-10 0, 9=26-10-0, 10=26-1 -0, 16=26-10-0, -0, 19=26-10-0, -0 -C 11) 2 14), 9=-93 (LC 15), C 15), 18=-84 (LC 11) C 11), 20=-272 (LC C 31), 9=502 (LC 39), -C 55), 14=357 (LC 2 -C 22), 18=728 (LC 5 -C 47), 20=360 (LC 11) -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	d or d WE 10-0, NO 1) 2), 4), 3) 2, 4), 3) 2, 4), 3) 2, 4), 3) 2, 4), 3) 2, 4), 5, 5) 5) 6)	BS TES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp E zone and C-1 3-5-4 to 4-3- 12-9-6 to 14- (1) 22-6-8 to zone; cantile and right exp MWFRS for grip DOL=1.1 TCLI: ASCE DOL=1.15 CP DOL=1.15 CP	18-29=-144/245, 29 16-30=-144/245, 14 14-31=-144/245, 14 10-11=-144/245, 9- 17-32=-31/0, 32-33 13-15=-31/0, 13-34; 1-19=-91/119, 2-19; 2-18=-147/151, 3-18 17-18=-375/111, 4- 4-12=-343/121, 10- 5-10=-337/84, 6-10: 7-9=-42/70, 15-16=- roof live loads have 7-10; Vult=130mpt ph; TCDL=6.0psf; B 3; Enclosed; MWFR C Exterior (2) 4-3-8 0-10, Exterior (2) 4-3-8 0-10; Pr=30.0 psf i late DOL=115); Pf= =-1.15 Plate DOL=1 t=1.10 snow loads have be unit load placed on t , supported at two p quate drainage to p	-30=-1, -30=-1, -31=-1, -31=-1, -31=-3, -31/0, 31/0, 31/0, 31/0, 31/0, 31/0, 32/0, 32/0, 32/0, 406/1, 3232, 	14/245, 14/245, 14/245, 14/245, 15-33=-51/6, 15-33=-31/0, 12-34=-34=-31/0, 12-34=-34=-34=-34=-34=-34=-34=-34=	/138,) r)) erior left te er iow: p B; iis -5-0 j.	 9) This cho 10) * Thomas cho 10) * Thomas cho 10) * Thomas cho 11) One 11) One 12) One 13) Grave 13) Grave 13) Grave 14 13) Grave 14 14 13) Grave 14 14 14 14 15 16 17 16 16 16 16 16 17 16 17 16 16<!--</td--><td>s truss h rd live lo nis truss the botto 6-00 tall ord and a e RT7A is to bea is der lat e RT16A is to bea s conner eral force aphical p he orien tom choi CASE(S</td><td>has bee bad noise that be by 2-0 any oth USP call conne conne conne conne tring w. conne tring w. uring w. uring w. uring w. tring w. a. b. b. b. conne tring w. b. b. conne tring w. b. b. conne tring w. b. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. conne tring w. cono</td><td>en designed for a nconcurrent with een designed for r rd in all areas wh 0-00 wide will fit I er members, with onnectors recomr alls due to UPLIF ction is for uplift o rces. connectors recom alls due to UPLIF for uplift only and epresentation doe of the purlin along indard</td><td>10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. mended to connect T at jt(s) 20, 8, 19, only and does not mended to connect T at jt(s) 18 and 10. d does not consider as not depict the size the top and/or</td>	s truss h rd live lo nis truss the botto 6-00 tall ord and a e RT7A is to bea is der lat e RT16A is to bea s conner eral force aphical p he orien tom choi CASE(S	has bee bad noise that be by 2-0 any oth USP call conne conne conne conne tring w. conne tring w. uring w. uring w. uring w. tring w. a. b. b. b. conne tring w. b. b. conne tring w. b. b. conne tring w. b. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. b. conne tring w. conne tring w. cono	en designed for a nconcurrent with een designed for r rd in all areas wh 0-00 wide will fit I er members, with onnectors recomr alls due to UPLIF ction is for uplift o rces. connectors recom alls due to UPLIF for uplift only and epresentation doe of the purlin along indard	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. mended to connect T at jt(s) 20, 8, 19, only and does not mended to connect T at jt(s) 18 and 10. d does not consider as not depict the size the top and/or
	30.0 20.0 10.0 0.0* 10.0 3.5P No.2 3.5P No.2 3.5P No.2 3.5P No.3 4.5P No.2 3.5P No.3 4.5P No.2 3.5P No.3 4.5P No.2 3.5P No.2 3	30.0 20.0	$\begin{array}{c} 30.0 \\ 30.0 \\ 20$	$\begin{array}{c} 30.0 \\ 30.0 \\ 20.0 \\ 1.15 \\ 10.0 \\ 10.0 \\ \hline \\ $	30.0 20.0 1.00 10.0 0.0^* Piate Grip DOL Lumber DOL 1.15 1.15 1.15 TC BC WB Matrix-MSH 10.0 0.0^* 10.0 Rep Stress Incr YES CodeRC2015/TPI2014WB Matrix-MSH 10.0 0.0^* 10.0 BOT CHORD $19-20=-406/398, 18$ BC $19-20=-406/398, 18$ $18-29=-144/245, 29$ $16-30=-144/245, 19$ $10-11=-144/245, 14$ $10-11=-144/245, 11$ $10-11=-144/245, 12$ $10=-90 (LC 10), 10=26-10-0, 12=-6-10-0, 12=-6-10-0, 12=-6-10-0, 12=-26-10-0, 12=-$	30.0 20.0 1.00 Plate Grip DOL 1.15 Rep Stress Incr YES 0.0^* 10.0 TC 0.0^* 0.0^* 10.0 TC 0.0^* 0.0^* 10.0 10.0 CodeIRC2015/TPI2014Matrix-MSH 10.0 SP No.2 $SP No.3$ BOT CHORD $19.20=-406/398, 18-19=-18$ $18-29=-144/245, 29.30=-14$ $18-29=-144/245, 29.30=-144/245, 29.30=-144/245, 11.31=-1410.0^*10.0^*10.0^*SP No.2BOT CHORD19.20=-406/398, 18-19=-1818-29=-144/245, 29.30=-144/245, 29.30=-144/245, 29.30=-144/245, 11.31=-1410.11=-144/245, 9.10=-53/11-11=144/245, 9.10=-53/11-11=144/245, 9.10=-53/11-11=144/245, 9.10=-53/11-12=144/245, 11.31=-14/(15.1)=14-10/0, 12-37/11-12=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11.22=37/11$	30.0 Plate Grip DOL 1.15 TC 0.58 Vert(LL) 10.0 Rep Stress Incr YES Matrix-MSH Vert(CT) 10.0 Rep Stress Incr YES Matrix-MSH Vert(CT) 10.0 Rep Stress Incr YES WB 0.35 SP No.2 SP No.3 BOT CHORD 19-20=-406/398, 18-19=-181/203, 18-29=-144/245, 39-30=-144/245, 39-30=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-144/245, 14-16=-16-053/93, 8=9=-51/6, 17-32=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-33=-31/0, 12-34=-31/0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30.0 Piate Grip DoL 1.15 TC 0.88 Vert(L1) -0.02 9-10 >999 240 MT20 0.00 0.00 Code IRC2015/TPI2014 WB 0.03 9-10 >999 240 WT18HS 0.00 0.00 Code IRC2015/TPI2014 WB 0.03 9-10 >999 240 WT18HS SP No.2 SP No.2 SP No.3 BOT CHORD 19-20=-406/398, 18-19=181/203, 18-29=-51/63, 19-23=-31/0, 12-32=-31/0, 22-33=-31/0, 12-30=-31/2

March 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B03	Piggyback Base	2	1	Job Reference (optional)	E15512284

Loading

TCLL (roof)

Snow (Pf)

LUMBER

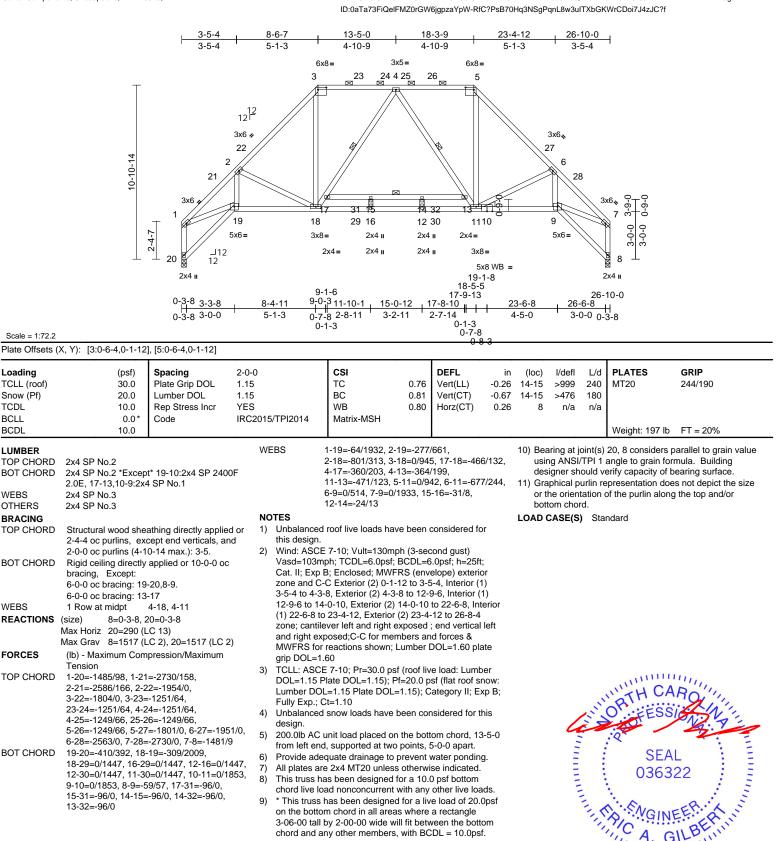
WEBS

WEBS

FORCES

OTHERS

BRACING

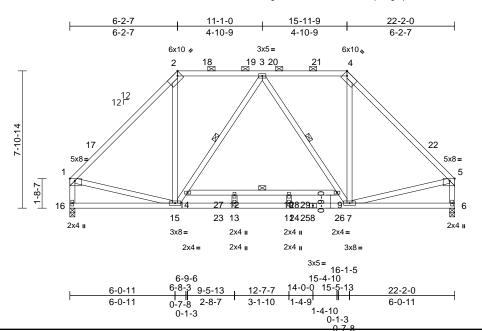

TCDL

BCLL

BCDL

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Thu Mar 18 08:44:47

Page: 1


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with twe commendations. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

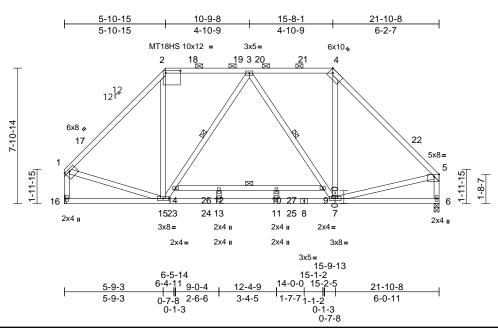
mmm March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B05	Piggyback Base	3	1	Job Reference (optional)	E15512285

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:48 ID:dPrs3_nlQGYxEGAgb6shMszaSS8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.3

Plate Offsets (X, Y): [1:Edge,0-1-7], [2:0-2-8,Edge], [4:0-2-8,Edge], [5:0-3-8,Edge]


Loading TCLL (roof) Snow (Pf) TCDL	(psf) 30.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.79 0.94 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-12 10-12 6	l/defl >848 >365 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2015/TPI2014	Matrix-MSH							Weight: 157 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.1 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 9- 1 Row at midpt (size) 6=0-3-8, ' Max Horiz 16=205 (I	athing directly applie cept end verticals, ar -0 max.): 2-4. applied or 6-0-0 oc 14 3-15, 3-7 16=0-3-8 _C 11)	Vasd=10: Cat. II; Ex zone and 10-5-6 to cantilever dor right expo for reaction DOL=1.6 3) TCLL: AS DOL=1.1: Lumber E Fully Exp 4) Unbalance design.	CE 7-10; Pr=30.0 ps 5 Plate DOL=1.15); I OL=1.15 Plate DOL ; Ct=1.10 ed snow loads have	BCDL=6 FRS (env- 12 to 10 11-8-10 ed ; end v rs and fo DOL=1.6 Sf (roof liv Pf=20.0 p =1.15); C been col	6.0psf; h=25ft elope) exterio -5-6, Interior to 22-0-4 zor vertical left ar roes & MWFf D plate grip ve load: Lumb sf (flat roof si ategory II; E: nsidered for t	or (1) ne; nd RS per now: xp B; his					
FORCES	Max Grav 6=1283 (I (Ib) - Maximum Com	<i>.</i>	· 0) 200.010 /	C unit load placed o nd, supported at two			1-1-0					
TOP CHORD	20-21=-823/93, 4-21	1181/0, 2-18=-823/9 9=-823/93, 3-20=-823 1=-823/93, 4-22=-118 1269/0, 5-6=-1269/0	93, 7) All plates /93, 8) This truss 3/0, chord live	dequate drainage to are 2x4 MT20 unles has been designed load nonconcurrent is has been designe	s otherwi for a 10. with any	ise indicated. 0 psf bottom other live loa	ads.					
BOT CHORD	15-16=-242/244, 15 13-23=0/1033, 11-1 24-25=0/1033, 8-25 7-26=0/1033, 6-7=-1	-23=0/1033, 3=0/1033, 11-24=0/1 =0/1033, 8-26=0/103 107/121, 14-27=-111/ 2=-111/0, 10-28=-111	on the bo 033, 3-06-00 tr 3, chord and 0, 10) Graphica	tom chord in all area all by 2-00-00 wide w l any other members purlin representatio entation of the purlin	as where vill fit betv s, with BC n does n	a rectangle ween the bott CDL = 10.0ps ot depict the s	om f.		4	in	ORTH CA	ROLIN
WEBS		-456/81, 3-14=-333/1 456/79, 4-7=0/556,							THE OWNER OF THE OWN		SEA 0363	• –
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for								ALL THE T	A. C	EER

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B06	Piggyback Base	1	1	Job Reference (optional)	E15512286

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:49 ID:oMncqEGLssogk36emM7NoVzaSU5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

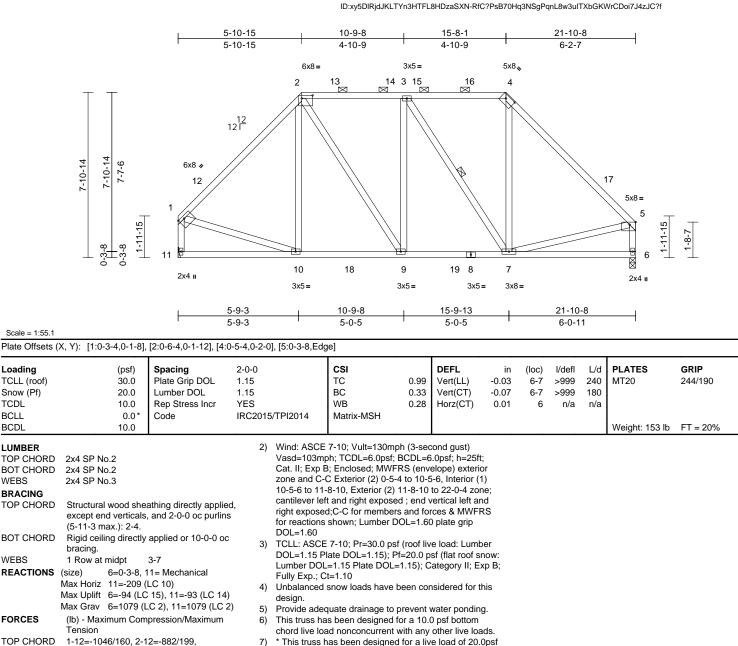
Page: 1

Scale = 1:67.3

Plate Offsets (X, Y): [1:0-3-4,0-1-8], [2:0-10-4,0-1-12], [4:0-2-8,Edge], [5:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.99 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-12 10-12 6	l/defl >849 >359 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 157 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	except end verticals (6-0-0 max.): 2-4. Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 9-7	t* 8-6:2x4 SP No.2 athing directly applied , and 2-0-0 oc purlins applied or 2-2-0 oc	j,	Vasd=103mp Cat. II; Exp E zone and C 10-5-6 to 11- cantilever lef right exposer for reactions DOL=1.60 DOL=1.15 P Lumber DOL	7-10; Vult=130mpl bh; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior (2) 0-5-4 8-10, Exterior (2) 1 t and right exposed d;C-C for members shown; Lumber DC 57-10; Pr=30.0 psf late DOL=1.15; Pf= =1.15 Plate DOL=	CDL=6 S (env to 10-5 1-8-10 I ; end v and fo DL=1.60 (roof liv =20.0 p	6.0psf; h=25ft elope) exterio 5-6, Interior (^ to 22-0-4 zor vertical left ar rcces & MWFF 0 plate grip re load: Lumb sf (flat roof si	br I) he; hd RS per now:					
REACTIONS		16= Mechanical LC 10)	4)) 5)	design.	t=1.10 snow loads have b init load placed on								
FORCES	18-19=-786/91, 3-19 20-21=-807/94, 4-21	=-1129/1, 2-18=-786/9]=-786/91, 3-20=-807 =-807/94, 4-22=-115	6) 91, 7) /94, 8) 8/0, 9)	from left end Provide adeo All plates are All plates are This truss ha	, supported at two p quate drainage to p MT20 plates unles 2x4 MT20 unless is been designed fo	points, s revent ss other otherwi or a 10.	5-0-0 apart. water ponding wise indicated se indicated. 0 psf bottom	g. ed.					
BOT CHORD	15-16=-228/220, 15- 23-24=0/1013, 13-2- 11-25=0/1013, 8-25- 6-7=-104/122, 14-26- 10-12=-113/0, 10-27- 2-15=0/528, 14-15=- 3-9=-319/163, 7-9=- 1-15=0/801, 5-7=0/7	4=0/1013, 11-13=0/10 =0/1013, 7-8=0/1013, 5=-113/0, 12-26=-113 7=-113/0, 9-27=-113/0 -474/79, 3-14=-350/1 444/77, 4-7=0/537,	1(013, /0, 0 1 ¹ 61, 12	 This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Graphical pu or the orienta bottom chord 		for a liv where l fit betw with BC ss conr does no	e load of 20. a rectangle veen the bott DL = 10.0ps nections. ot depict the s	0psf om f.			i	SEA 0363	• -
NOTES 1) Unbalance this design	10-11=-9/21 ed roof live loads have n.	been considered for	L	OAD CASE(S)	Standard					1100	A A A A A A A A A A A A A A A A A A A	SEA 0363	EERIX

G mmm March 18,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B07	Piggyback Base	2	1	Job Reference (optional)	E15512287

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:50

Page: 1

TOP CHORD 1-12=-1046/160. 2-12=-882/199. 2-13=-799/247, 13-14=-799/247, 3-14=-799/247, 3-15=-637/232, 15-16=-637/232, 4-16=-637/232, 4-17=-912/198, 5-17=-1085/160, 1-11=-1026/175, 5-6=-1022/176 BOT CHORD 10-11=-208/250, 10-18=-135/622 9-18=-135/622, 9-19=-127/799, 8-19=-127/799, 7-8=-127/799, 6-7=-84/152 WEBS 2-10=-56/128, 3-7=-380/130, 4-7=-17/324, 1-10=-75/565, 5-7=-82/556, 3-9=-247/162, 2-9=-128/401

NOTES

TCDL

BCLL

BCDL

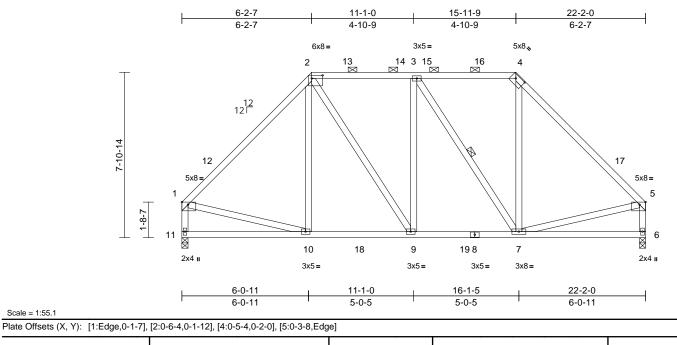
WEBS

WEBS

1) Unbalanced roof live loads have been considered for this design.

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 9)
- bearing plate capable of withstanding 93 lb uplift at joint 11.
- 10) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 6. This connection is for uplift only and does not consider lateral forces
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

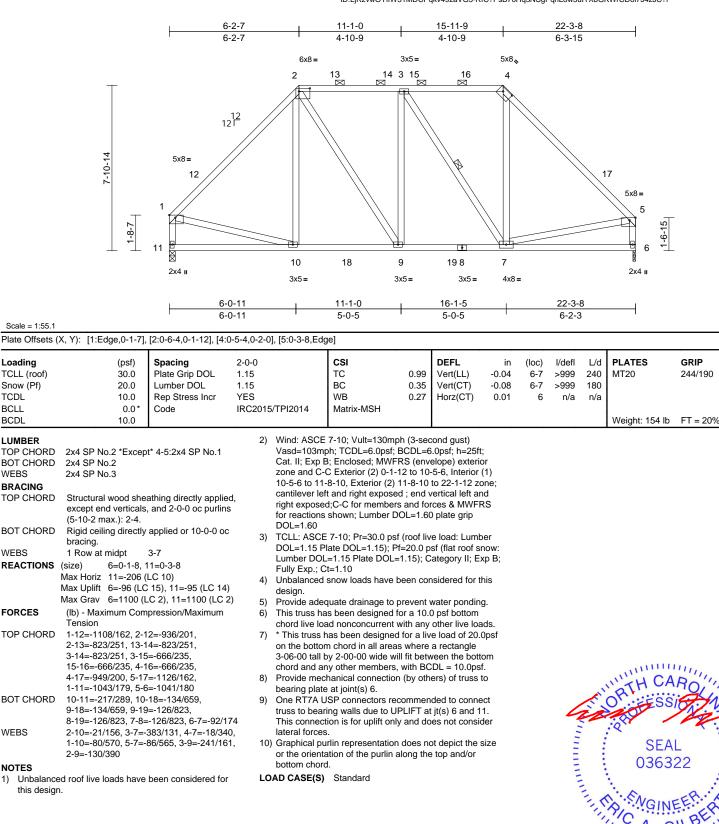

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantietis and property incorporate dust using in the version of the second property incorporate and begin into version of the version of the

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B08	Piggyback Base	1	1	Job Reference (optional)	E15512288

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:50 ID:YF1fRu?M6oVmY_RjkKw3ZAzaSie-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	1 1	2-0-0 1.15 1.15 YES IRC2015/TPI2014	BC C).99).34	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-11 10-11 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 154 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shear except end verticals; (5-10-8 max.): 2-4. Rigid ceiling directly bracing. 1 Row at midpt (size) 6=0-3-8, 1 Max Horiz 11=-205 (Max Grav 6=1094 (L (lb) - Maximum Com	3-7 11=0-3-8 LC 12) : 15), 11=-95 (LC 14) .C 2), 11=1094 (LC 2)	Vasd=103m Cat. II; Exp zone and C 10-5-6 to 11 cantilever le right expose for reaction: DOL=1.60 3) TCLL: ASC DOL=1.15 F Lumber DO Fully Exp.; (4) Unbalancec design. 5) Provide ade 6) This truss h	snow loads have bee quate drainage to prev as been designed for a	DL=6.((envel to 10-5 8-10 to end vend forc =1.60 0.0 pst 5); Ca n cons vent wa a 10.0	Opsf, h=25ft; lope) exteric 5-6, Interior (0 22-0-4 zon ertical left an ess & MWFR plate grip load: Lumb f (flat roof sr ttegory II; Ex sidered for th ater ponding psf bottom	r 1) e; d SS er now: p B; nis J.					
TOP CHORD	2-13=-816/250, 13-1 3-14=-816/250, 3-15 15-16=-649/233, 4-1 4-17=-928/200, 5-17 1-11=-1037/178, 5-6	4=-816/250, 5=-649/233, 6=-649/233, 7=-1101/162, 5=-1037/178	 7) * This truss on the botto 3-06-00 tall chord and a 8) One RT7A truss to bea 	ad nonconcurrent with has been designed for m chord in all areas w by 2-00-00 wide will fit ny other members, with JSP connectors recom ring walls due to UPLI tion is for uplift only ar	r a live here a t betwe th BCD nmend FT at j	load of 20.0 rectangle een the botto DL = 10.0psf led to conne t(s) 6 and 1)psf om ct 1.			A.I.	MATH CA	ROLIN
WEBS NOTES	2-10=-20/156, 3-7=-3	9=-127/816, 127/816, 6-7=-84/15 392/130, 4-7=-17/331 82/566, 3-9=-234/162	or the orien	urlin representation do ation of the purlin alon d.			ize			V		• -
	ed roof live loads have n.	been considered for									SEA 0363	ER. Kunn


Scale = 1:55.1

G mmm March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B09	Piggyback Base	1	1	Job Reference (optional)	E15512289

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Thu Mar 18 08:44:51 ID:LjRzvwOYifW31MDCPqkv49zaVG5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

this design.

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

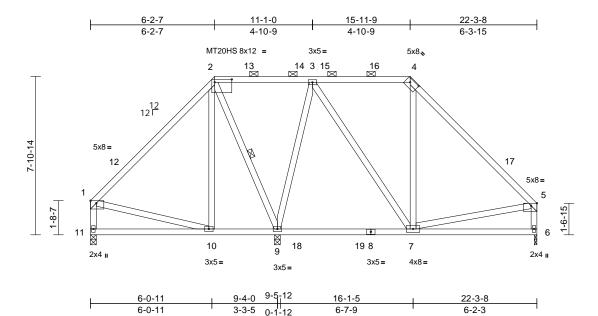
WEBS

FORCES

WEBS

NOTES

BRACING


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G mmm March 18,2021 WITTER PARTY

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	B10	Piggyback Base	1	1	Job Reference (optional)	E15512290

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:51 ID:H6ZjJcQoDHnnGfNaXFmN9azaVG3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57.5

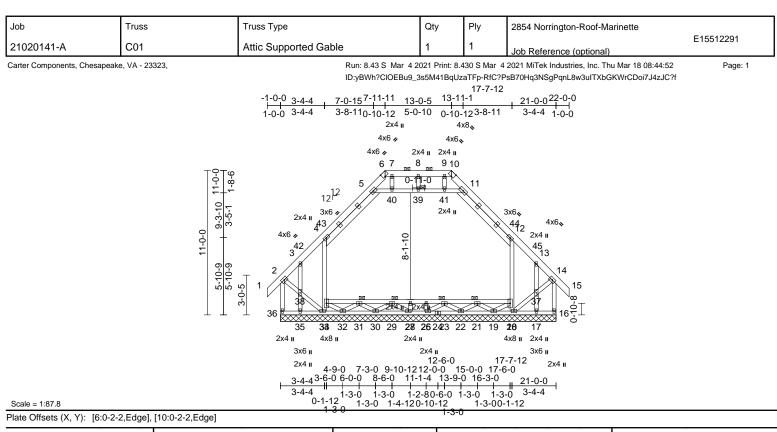
Plate Offsets (X, Y): [1:Edge,0-1-7], [2:0-10-4,0-1-12], [4:0-5-4,0-2-0], [5:0-3-8,Edge]

			,										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.35 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.10 0.01	(loc) 7-9 7-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 153 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals (6-0-0 max.): 2-4. Rigid ceiling directly bracing. 1 Row at midpt 	C 15), 9=-79 (LC 11), C 14)	2) 3) 4) 5) 6)	Vasd=103mj Cat. II; Exp E zone and C- 10-5-6 to 11. cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. Provide adee	7-10; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) 0-1- 8-10, Exterior (2) t and right expose d;C-C for member: shown; Lumber D 4;C-10; Pr=30.0 psf late DOL=1.15); P =1.15 Plate DOL= t=1.10 snow loads have f quate drainage to p	BCDL=6 RS (env 12 to 10 11-8-10 d; end v s and fo vOL=1.6 f (roof liv f=20.0 p =1.15); C been col prevent	6.0psf; h=25ft elope) exterit -5-6, Interior to 22-1-12 zc vertical left ar rcces & MWFF) plate grip e load: Lumb sf (flat roof si ategory II; E) nsidered for th water ponding	or (1) one; nd RS oer now: xp B; his g.				<u>.</u>	
FORCES TOP CHORD	11=531 (l (lb) - Maximum Com Tension 1-12=-446/93, 2-12= 2-13=-142/164, 13-1 3-14=-142/164, 3-15 15-16=-318/197, 4-1 4-17=-441/146, 5-17	pression/Maximum 235/131, 14=-142/164, 5=-318/197, 16=-318/197,	7) 8) 9)	chord live loa * This truss h on the bottor 3-06-00 tall h chord and an Provide med	is been designed f ad nonconcurrent v has been designed in chord in all area by 2-00-00 wide wi hy other members, hanical connection e at joint(s) 6.	with any I for a liv s where ill fit betv with BC	other live loa e load of 20.0 a rectangle veen the bott CDL = 10.0ps	0psf om f.			111	NITH CA	RO, 11,
BOT CHORD	9-18=-82/177, 18-19 7-8=-82/177, 6-7=-9 2-10=0/180, 2-9=-37 3-7=-51/322, 4-7=-1	0=-98/201, 9=-82/177, 8-19=-82/17	7, 11) One RT7A L truss to bear This connect lateral forces) One RT16A truss to bear	ISP connectors red ing walls due to U ion is for uplift only USP connectors re ing walls due to U	PLIFT a y and do ecomme PLIFT a	t jt(s) 6 and 1 bes not consid anded to conn t jt(s) 9. This	1. der nect		CN - I I I I I	E S	SEA 0363	• –
NOTES	5-7=-55/243	 57, 11) One RT16A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9. This connection is for uplift only and does not consider lateral forces. for 12) Graphical purlin representation does not depict the size or the connection of the purlin elege the ten end/or and the size or the connection of the purlin elege the ten end/or and the size or the connection of the purlin elege the ten end/or and the size or the connection of the purlin elege the ten end/or and the size or the connection of the purlin elege the ten end/or and the size or the connection of the purlin elege the ten end/or and the size or the connection of the purlin elege the ten end/or and the size of the size of the purlin elege the ten end/or and the size of the size of							al. 3				
1) Unbalanc	ed roof live loads have	live loads have been considered for 12) Graphical purlin representation does not depict the size						size			-15	NGIN	ENAN

or the orientation of the purlin along the top and/or

1) Unbalanced roof live loads have been considered for this design.

LOAD CASE(S) Standard


bottom chord.

G١ The GILL

March 18,2021

C

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP						
TCLL (roof)		30.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190						
Snow (Pf)		20.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	n/a	-	n/a	999								
TCDL		10.0	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.01	16	n/a	n/a								
BCLL		0.0*	Code	IRC2015/TPI2014	Matrix-MSH														
BCDL		10.0				-						Weight: 235 lb	FT = 20%						
UMBER				TOP CHORI	0 2-36=-950/137, 1	-2=0/65,	2-3=-655/112	,	2) Wir	nd: ASC	E 7-10	; Vult=130mph (3	-second gust)						
FOP CHORD	2x6 SP N	o.2			3-42=-629/140, 4								L=6.0psf; h=25ft;						
BOT CHORD	2x4 SP N	o.2			4-43=-761/142, 5				Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior										
WEBS	2x4 SP N	o.3 *Excep	ot* 5-11:2x4 SP No.2		5-6=-558/109, 6-7		,	,					2-0-0, Interior (1)						
OTHERS	2x4 SP N	0.3				8-9=-462/83, 9-10=-462/83, 10-11=-558/114, 11-44=-610/181, 12-44=-761/142,						2-0-0 to 3-8-12, Exterior (2) 3-8-12 to 17-3-4, Interior (1							
BRACING					,		,		17-3-4 to 19-0-0, Exterior (2) 19-0-0 to 22-0-0 zone; cantilever left and right exposed ; end vertical left and										
FOP CHORD	Structura	wood she	athing directly applie	d or	12-45=-534/139,														
			cept end verticals, a	nd	13-14=-655/103, 14-15=0/65, 14-16=-950/127							right exposed;C-C for members and forces & MWFRS							
)-0 max.): 6-10.	BOT CHORI		31-353	07/285			for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60									
BOT CHORD		ing directly	applied or 6-0-0 oc	BOT ONOR	32-34=-111/420, 30-32=-48/325,						Truss designed for wind loads in the plane of the truss								
	bracing.				28-30=-46/249, 2						ormal to the face),								
JOINTS		t Jt(s): 21,				24-26=-47/250, 22-24=-47/250,							Details as applicabl						
	31, 23, 29				19-22=-61/334, 18-19=-103/420,						or consult qualified building designer as per ANSI/TPI								
REACTIONS	(size)), 17=21-0-0, 18=21·		17-18=-37/47, 16			/152,					of live load: Lumber						
			0, 22=21-0-0, 26=21		29-31=-42/247, 2	7-29=-46	/223,		DO	L=1.15	Plate D	OL=1.15); Pf=20	0.0 psf (flat roof sno						
			0, 30=21-0-0, 32=21		25-27=-46/223, 2								5); Category II; Exp						
	Max Llaria		0, 35=21-0-0, 36=21-		21-23=-40/246, 2					Fully Exp.; Ct=1.10) Unbalanced snow loads have been considered for the formation of the state of the stateo									
	Max Horiz	,	,	WEBS	2-38=-119/563, 3				,										
	wax upilit		LC 11), 17=-65 (LC LC 15), 34=-292 (LC		33-34=-440/177,				design.										
			.C 15), 34=-292 (LC		18-20=-462/183,														
	Max Grav		_C 2), 17=119 (LC 50		18-37=-112/562,							munn	11111						
			_C 13), 19=242 (LC 2		5-40=-158/143, 3 39-41=-157/143,						1	ORTH CA	Rollin						
			_C 21), 26=226 (LC 2		19-20=-148/0, 32			20/0			1	R							
			_C 21), 30=342 (LC 2		31-32=-129/8, 21						~	OWEESE	TON VI						
			_C 21), 34=365 (LC		22-23=-119/0, 29					2	is		12 -						
35=122 (LC 52), 36=965 (LC 2)					28-29=-85/0, 27-2		,	,	and the first										
FORCES (Ib) - Maximum Compression/Maximum Tension					13-37=-131/81, 1							SEA	1 1 1						
					3-38=-131/82, 35	-38=-129	/82, 8-39=-62	/30,		=	:		•						
					7-40=-20/90, 9-41=-20/90					SEAL 036322									
					NOTES														
				1) Unbalan) Unbalanced roof live loads have been considered for						-	1. A	1.5						

 Unbalanced roof live loads have been considered for this design.

> ENGINEERING BY RENCO

818 Soundside Road Edenton, NC 27932

A. GILD

March 18,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	C01	Attic Supported Gable	1	1	Job Reference (optional)	E15512291
Carter Components Chesapeak	- VA - 23323	Run: 8 43 S Mar 4 2	Page: 2			

ID:yBWh?CIOEBu9_3s5M41BqUzaTFp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components, Chesapeake, VA - 23323,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 3x5 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 4-5, 11-12, 5-40, 39-40, 39-41, 11-41; Wall dead load (5.0psf) on member(s).4-33, 12-20
- 15) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 36, 16, 34, 18, 17, and 35. This connection is for uplift only and does not consider lateral forces.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	C02	Attic	2	1	Job Reference (optional)	E15512292

11-0-0

2x4 🛛

4x8 II

3x6=

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:44:54 ID:h0pS4JJJrp9sztDuQgrRYhzaTDo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 17-7-12 -<u>1-0-0</u> <u>3-4-4</u> 1-0-0 <u>3-4-4</u> 7-0-15 7-11-11 3-8-11 0-10-12 <u>21-0-0</u> 22-0-0 3-4-4 1-0-0 13-11-1 13-0-5 5-0-10 0-10-12 3-8-11 6x8= 5x10💊 5x10 🍬 6x8= 5 _3**3**4 6 12 12 4x5 🍬 4x5、 11-0-0 1-8-6 Ħ 0-11-0 4 7 3x10、 4x5 30 9-3-10 x5、 3-5-1 3x10 358 3³² 8-1-10 31 36 4x6 4x6、 5-10-9 5-10-9 2 9 10 3-0-5 ¥ \geq 뉻 29 11 × ĕ 28 26 24 22 20 18 16 13 12

2x4 II

2x4 II

2x4 🛛

21-0-0 3-4-4

3x6=

4x8 II

17-7-12

Page: 1

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [6:0-5-8,0-3-0]															
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.83 0.74		-0.41 0.06	(loc) 19-21 19-21 11 14-27	l/defl >999 >606 n/a >951	L/d 240 180 n/a 360	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-0	athing directly applied cept end verticals, an -0 max.): 5-6.	l or d		27-28=-431/19, 3 12-14=-431/21, 8 4-30=-1324/162, 7 2-28=0/1015, 9-1 6-30=-136/242, 13 26-27=0/1254, 13 25-26=-1303/0, 14 16-17=-633/0, 23 22-23=-8/309, 21	-14=-107, 7-30=-13 2=0/1016 3-14=0/12 3-15=-130 5-16=0/7 -24=-633,	/579, 26/162, 5, 5-30=-136/2 254, 03/0, 41, 24-25=0/7 /0, 17-20=-12	741, 2/313,	on 1 3-0 cho 10) Cei 7-3 11) Bot cho 23-	the botto 6-00 tall ord and a ling dead 0; Wall tom choi ord dead 25, 21-2	m cho by 2-0 iny oth d load dead lo rd live load (5 3, 19-2	een designed for rd in all areas wi 0-00 wide will fit er members. (5.0 psf) on mer pad (5.0psf) on r load (40.0 psf) a 5.0 psf) applied o 21, 17-19, 15-17	here a rectan between the hber(s). 3-4, 7 hember(s).3- nd additional only to room. 14-15	gle bottom 7-8, 4-30, 27, 8-14 bottom 25-27,	
JOINTS REACTIONS	Max Horiz 29=-322 (LC 12) Max Grav 11=1720 (LC 3), 29=1720 (LC 3)			Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-8-12, Exterior (2) 3-8-12 to 17-3-4, Interior (1) 17-3-4 to 19-0-0, Exterior (2) 19-0-0 to 22-0-0 zone; cantilever left and right exposed ; end vertical left and						 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Attic room checked for L/360 deflection. LOAD CASE(S) Standard 					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		for reactions	d;C-C for membe shown; Lumber [(3					10.		
TOP CHORD	$\begin{array}{c} 1-2=0/65, 2-31=-126\\ 3-32=-912/133, 4-32\\ 4-5=-368/322, 5-33=\\ 33-34=-249/440, 6-3\\ 6-7=-368/322, 7-35=\\ 8-35=-912/133, 8-36\\ 9-36=-1261/0, 9-10=\\ 9-11=-1719/0\\ 28-29=-312/323, 26-\\ 24-26=0/2657, 22-2\\ 18-20=0/3746, 16-18\end{array}$	2=-878/173, 249/440, +4=-249/440, 878/173, =-1129/22, -0/65, 2-29=-1719/0, -28=-146/829, 4=0/3746, 20-22=0/38 8=0/3746, 13-16=0/26 =-34/43, 25-27=-993/6 -33=-3390/0, 9=-3390/0,	521, 7)	TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade All plates are This truss ha	or reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 CLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: .umber DOL=1.15 Plate DOL=1.15); Category II; Exp B; fully Exp.; Ct=1.10 Jnbalanced snow loads have been considered for this					SEAL 036322 March 18,2021					

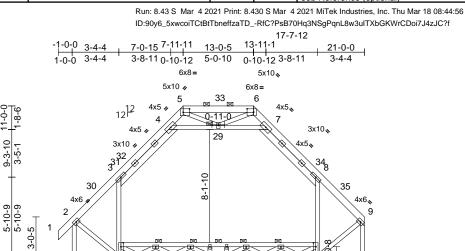
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	C03	Attic	3	1	Job Reference (optional)	E15512293

11-0-0

9-3-10

28

2x4 🛛


26

27 25

4x8 II

3x6=

11-0-0

尌

23

18 16

21 19 17

2x4 II

 \geq

15

10

Ø

21-0-0 3-4-4

2x4 🛚

5

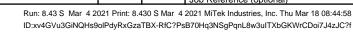
4x8 🛚

17-7-12

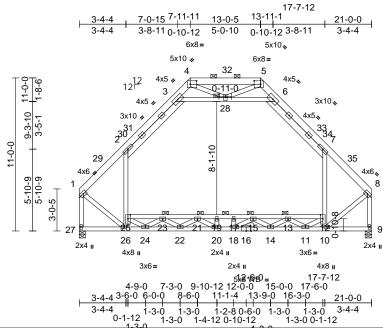
12 11

3x6=

Page: 1


Plate Offsets ()	X, Y): [5:0-5-8,0-3-0],	[6:0-5-8,0-3-0]					1-3-0								
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 30.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.83 0.76	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.41 0.06	(loc) 18-20 18-20 10 13-26	l/defl >999 >606 n/a >951	L/d 240 180 n/a 360	PLATES MT20	GRIP 244/190		
BCDL	10.0											Weight: 226 lb	FI = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.1 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. Except: 2-11-0 oc bracing: 1	t* 4-7:2x4 SP No.2 athing directly applie cept end verticals, ar I-0 max.): 5-6. applied or 10-0-0 oc 6-22	2 d or nd NC	DTES	26-27=-430/23, 3 11-13=-442/44, 8 4-29=-1333/144, 7 2-27=0/1018, 9-1 25-26=0/1253, 12 24-25=-1304/0, 1 15-16=-632/0, 22 21-22=-7/313, 20 18-19=-124/13, 6 5-29=-133/241 roof live loads ha	.13=-113, 7-29=-13, 1=-1/100, -14=-130, 4-15=0/7, 23=-633, 21=-124, -29=-138,	575, 34/151, 4, 12-13=0/12 2/0, 40, 23-24=0/7 0, 16-19=-14 10, 239,	742, /309,	on 3-0 chc 10) Cei 7-2 11) Bot chc 22- 12) Gra or t	the botto 6-00 tall ord and a ling dea 9; Wall tom cho ord dead 24, 20-2 aphical p	om cho by 2-0 any oth d load dead lo rd live load (2, 18-2 urlin re tation o	rd in all areas w 10-00 wide will fi er members. (5.0 psf) on me bad (5.0psf) on load (40.0 psf) a 5.0 psf) applied 20, 16-18, 14-16 epresentation do	r a live load of 20.0ps here a rectangle t between the bottom mber(s). 3-4, 7-8, 4-2 member(s).3-26, 8-13 and additional bottom only to room. 24-26, , 13-14 les not depict the size ing the top and/or		
2-11-0 oc bracing: 16-22 3-4-0 oc bracing: 22-24, 14-16 5-7-0 oc bracing: 22-24, 14-16 JOINTS 1 Brace at Jt(s): 14, 24, 16, 22, 29 REACTIONS (size) 10=0-5-8, 28=0-5-4 Max Horiz 28=312 (LC 11) Max Grav 10=1643 (LC 3), 28=1722 (LC 3)			2)	5						 Attic room checked for L/360 deflection. LOAD CASE(S) Standard 					
FORCES	(lb) - Maximum Com		5)		ft and right expose d;C-C for member										
Tension TOP CHORD 1-2=0/65, 2-30=-1264/0, 3-30=-1132/20, 3-31=-915/131, 31-32=-894/137, 4-32=-784/170, 4-5=-365/326, 5-33=-246/443, 6-33=-246/443, 6-7=-366/326, 7-34=-880/173, 8-34=-914/133, 8-35=-1127/0, 9-35=-1259/0, 2-28=-1723/0, 9-10=-1641/0 BOT CHORD 27-28=-302/304, 25-27=-158/815, 23-25=0/2641, 21-23=0/3747, 19-21=0/3988, 17-19=0/3749, 15-17=0/3749, 12-15=0/2625, 11-12=0/664, 10-11=-35/39, 24-26=-986/9, 22-24=-2631/0, 20-22=-3391/0, 18-20=-3391/0, 16-18=-3391/0, 14-16=-2634/0, 13-14=-1017/19				for reactions DOL=1.60 TCLL: ASCE DOL=1.15 F Lumber DOI Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade All plates an This truss ha	s shown; Lumber I E 7-10; Pr=30.0 ps Plate DOL=1.15); F L=1.15 Plate DOL	DOL=1.6(of (roof liv Pf=20.0 p =1.15); C been cor for greate flat roof lo h other liv prevent v s otherwi for a 10.0	a) plate grip e load: Lumb sf (flat roof sr ategory II; Ex asidered for th er of min roof pad of 20.0 ps ve loads. water ponding se indicated. D psf bottom	er now: xp B; nis live sf on g.		M. COLLINS		SEA 0363	EER. Kunn		

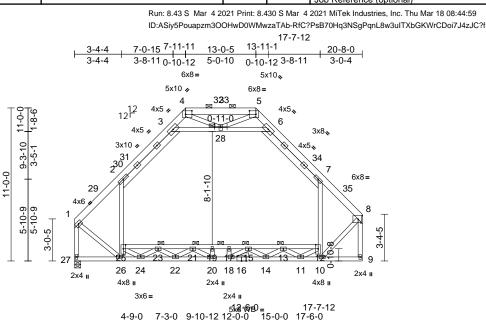
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

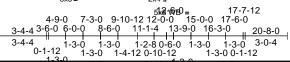


March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	C04	Attic	1	1	Job Reference (optional)	E15512294

Page: 1

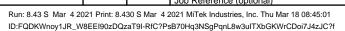

Scale = 1:82.8	
Plate Offsets (X_Y)	[4:0-5-8 0-3-0] [5:0-5-8 0-3-0]


Plate Offsets ()	X, Y): [4:0-5-8,0-3-0],	[5:0-5-8,0-3-0]										-	-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.83 0.75	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.41 0.06	(loc) 17-19 17-19 9 12-25	l/defl >999 >605 n/a >951	L/d 240 180 n/a 360	PLATES MT20 Weight: 223 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x4 SP No.1 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. Except: 2-11-0 oc bracing: 1 3-4-0 oc bracing: 23 1 Brace at Jt(s): 13, 23, 15, 21, 28 (size) 9=0-5-8, 2 Max Horiz 27=294 (L Max Grav 9=1645 (L (lb) - Maximum Com Tension 1-29=-1261/0, 2-29= 30-31=-895/131, 3-3 3-4=-363/330, 4-32= 5-32=-242/446, 5-6= 6-33=-786/170, 33-3 7-34=-916/131, 7-35 1-27=-1644/0, 8-9=- 26-27=-284/297, 24- 22-24=0/2652, 20-22 16-18=0/3749, 14-16	It* 3-6:2x4 SP No.2 athing directly applie cept end verticals, ar l-0 max.): 4-5. applied or 10-0-0 oc 5-21 -23, 13-15 -25, 12-13 27=0-5-4 _C 11) _C 3), 27=1645 (LC 3 pression/Maximum e-1129/0, 2-30=-916/ 31=-786/170, -242/446, e-363/330, 34=-895/131, 5=-1129/0, 8-35=-126 1644/0 -26=-153/823, 2=0/3749, 18-20=0/3 6=-0/3749, 11-14=0/2 -36/39, 23-25=-994/4	2 d or id 1) 2) 131, 3) 1/0, 4) 989, 624, 7)	OTES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp zone and C: 3-4-1 to 3-8 17-3-4 to 17 cantilever le right expose for reactions DOL=1.45 F Lumber DO TCLL: ASCI DOL=1.15 F Lumber DO TCLL: ASCI DOL=1.15 F Lumber DO Fully Exp.; (Unbalanced design. Provide ade All plates ar This truss h chord live lo	snow loads have h quate drainage to p e 3x5 MT20 unless as been designed f ad nonconcurrent	12=-113, -28=-13 =0/1007 13=-130, -14=0/7, 22=-633, 20=-123, 28=-135, e been of h (3-sec BCDL=6 RS (env 12 to 3 B-12 to 1 17-7-15 d ; end v s and fo OL=1.6((roof liv f=20.0 p 1.15); C been con prevent of otherwid	<pre>/575, 43/139, ,11-12=0/125 3/0, 41,22-23=0/7 /0,15-18=-12/ 10, /238, considered for .0psf; h=25ft; telope) exterio -1, Interior (1 7-3-4, Interior to 20-10-4 zo rertical left am ces & MWFR) plate grip e load: Lumbu sf (flat roof sn ategory II; Ex usidered for th water ponding se indicated.</pre>	41, /312, /312, / r) (1) ne; d S er ow: p B; is j. ds.	6-2 10) Bot cho 21- 11) Gra or t bot 12) Atti LOAD (8; Wall tom cho rd dead 23, 19-2 phical p he orien tom cho c room c CASE(S	dead k rd live load (f 1, 17-1 urlin re tation o rd. shecke) Star	(5.0 psf) on merr bad (5.0 psf) on merr load (40.0 psf) an 5.0 psf) applied o 19, 15-17, 13-15, spresentation doe of the purlin along d for L/360 defled indard	hber(s). 2-3, 6-7, 3-28, hember(s).2-25, 7-12 hd additional bottom nly to room. 23-25, 12-13 as not depict the size g the top and/or ction.
	17-19=-3391/0, 15-1 13-15=-2633/0, 12-1	7=-3391/0,	8)	on the botto 3-06-00 tall	Fully Exp.; Ct=1.10 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. All plates are 3x5 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.							E.E. RALIN	

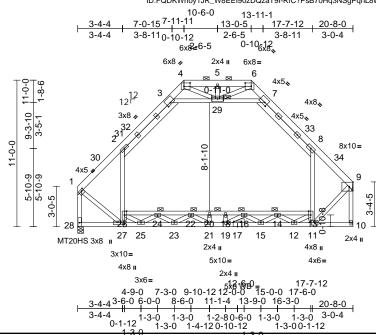
March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	C05	Attic	2	1	Job Reference (optional)	E15512295

Scale =	1:82.8
---------	--------


Scale = 1.62.6		[5 0 5 0 0 0 0]			3-0	.2 0 .0	1-3-0	0001							
Plate Offsets ()	X, Y): [4:0-5-8,0-3-0],	, [5:0-5-8,0-3-0]	_												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.82 0.87	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.39 -0.10	(loc) 17-19 17-19 8 12-25	l/defl >999 >620 n/a >957	L/d 240 180 n/a 360	PLATES MT20 Weight: 222	GRIP 244/19 Ib FT = 2		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.1 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-0	athing directly applied cept end verticals, and	l or	BS	25-26=-457/42, 2- 10-12=-470/37, 7- 3-28=-1220/134, (1-26=-3/963, 8-10 24-25=0/1285, 11 23-24=-1279/0, 12 14-15=-651/0, 21- 20-21=-14/278, 15 4-28=-141/226	12=-186, 5-28=-12 =-2/1077 -13=-133 3-14=0/7(22=-613, 9-20=-112	/518, 82/149, 7, 11-12=0/11 12/0, 67, 22-23=0/7 /0, 15-18=-6/3 2/13,	719,	6-24 10) Bot cho 21-7 11) Ref 12) Gra or t	8; Wall o tom chor rd dead 23, 19-2 er to girc phical po	dead lo rd live load (1, 17-1 der(s) f urlin re ation o	(5.0 psf) on m bad (5.0psf) or load (40.0 psf) 5.0 psf) applie 19, 15-17, 13- for truss to trus opresentation of of the purlin al-	and additi and additi d only to ro 5, 12-13 ss connecti does not de	ional bottom iom. 23-25, ions. epict the size	
JOINTS	Agia Centry Unextry bracing, Except: 6-0-0 oc bracing: 9- 3-0-0 oc bracing: 15 3-4-0 oc bracing: 21 5-5-0 oc bracing: 21 5-11-0 oc bracing: 1 1 Brace at Jt(s): 13,	10. -21 -23, 13-15 -25 2-13	1)	 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 3-4-1, Interior (1) 						 13) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. 14) Attic room checked for L/360 deflection. LOAD CASE(S) Standard 					
	Max Horiz 27=298 (I	anical, 27=0-5-4 _C 11) _C 3), 27=1618 (LC 3)	1	3-4-1 to 3-8-12, Exterior (2) 3-8-12 to 20-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip								2.011	un.		
FORCES	(lb) - Maximum Corr	,		DOL=1.60 TCLL: ASC	E 7-10; Pr=30.0 ps	f (roof liv	e load: Lumb	er				1111H C	ARO	11.	
TOP CHORD	Tension 1-29=-1231/0, 2-29= 30-31=-861/134, 3-3 3-4=-392/280, 4-32= 32-33=-275/397, 5-3 5-6=-380/303, 6-34= 7-34=-900/137, 7-35 1-27=-1602/0, 8-9=- 26-27=-286/298, 24 22-24=0/2662, 20-2: 16-18=0/3677, 14-11 10-11=0/576, 9-10= 21-23=-2654/0, 19-2 21-23=-2654/0, 19-2 13-15=-2575/0, 12-1	4) 5) 6) 7) 141, 8) 16,	Lumber DO Fully Exp.; Unbalanced design. Provide ade All plates ai This truss h chord live lo * This truss on the botto 3-06-00 tall	LL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber JL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: mber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Ily Exp.; Ct=1.10 balanced snow loads have been considered for this sign. ovide adequate drainage to prevent water ponding. plates are 3x5 MT20 unless otherwise indicated. is truss has been designed for a 10.0 psf bottom ord live load nonconcurrent with any other live loads. his truss has been designed for a live load of 20.0psf the bottom chord in all areas where a rectangle)6-00 tall by 2-00-00 wide will fit between the bottom ord and any other members.					SEAL 036322 March 18,2021						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Page: 1

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	C06	Attic	1	1	Job Reference (optional)	E15512296

Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:86.5 Plate Offsets (X, Y): [1:0-2-0,0-1-8], [3:0-3-10,0-1-7], [4:0-5-8,0-3-0], [6:0-5-8,0-3-0], [7:0-2-7,0-2-4], [27:0-3-8,0-3-6], [27:0-3-8,0-3-0], [27:0-3-8,0-3-8,0-3-0], [27:0-3-8,0-3-8,0-3-0], [27:0-3-8,0-3-8,0-3-0], [27:0-3-8,0-

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	30.0	Plate Grip DOL	1.15		тс	0.78	Vert(LL)	-0.24	· · /	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-0.38		>638	180	MT20HS	187/143	
TCDL	10.0	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.17	9	n/a	n/a		101/110	
BCLL	0.0*	Code		5/TPI2014	Matrix-MSH	0.00	Attic		13-26	>959	360			
BCDL	10.0	Code	11(0201	5/11/2014	Width - WIGTT		Auto	-0.10	15-20	2909	500	Weight: 223 lb	o FT = 20%	
			-											_
LUMBER			W	EBS	26-27=-1024/0, 2	-26=-774/	461,						mber(s). 2-3, 7-8, 3-29,	,
TOP CHORD	2x6 SP No.2				11-13=-1127/0, 8	-13=-967/	/384,		7-2	9; Wall	dead l	oad (5.0psf) on	member(s).2-26, 8-13	
BOT CHORD	2x4 SP No.1 *Excep	ot* 26-13:2x4 SP No.2	2		3-29=-867/800, 7	-29=-919/	709, 1-27=0	/1811,						
WEBS	2x4 SP No.3 *Excep	ot*			9-11=0/2014, 4-2		,	,	11) Bot	tom cho	rd live	load (40.0 psf) a	and additional bottom	
	2-27,8-11,3-7,29-4,2	29-6:2x4 SP No.2			5-29=-2265/0, 12				cho	rd dead	load (5.0 psf) applied	only to room. 24-26,	
OTHERS	2x4 SP No.3				12-14=-1338/0, 2	4-25=-12	77/0, 14-15=	0/771,	22-2	24, 20-2	2, 18-2	20, 16-18, 14-16	i, 13-14	
BRACING					23-24=0/717, 15-			9/0,	12) Ref	er to gir	der(s)	for truss to truss	connections.	
TOP CHORD	Structural wood she	athing directly applie	d or		16-19=-3/369, 21		,		13) Loa	d case(s) 1, 2	has/have been	modified. Building	
	3-6-8 oc purlins, ex				20-21=-111/13, 1	8-19=-14	8/8		des	igner m	ust rev	iew loads to ver	rify that they are	
	2-0-0 oc purlins (3-0		N	OTES					cori	rect for t	he inte	ended use of this	s truss.	
BOT CHORD	Rigid ceiling directly		1)	Unbalanced	roof live loads ha	ave been o	considered fo	or	14) Gra	phical p	urlin re	presentation do	pes not depict the size	
	bracing, Except:			this design.					or t	he orien	tation	of the purlin alor	ng the top and/or	
	6-0-0 oc bracing: 27	-28.10-11.	2)	Wind: ASC	7-10; Vult=130m	nph (3-sec	ond gust)		bott	om cho	rd.			
	3-0-0 oc bracing: 16			Vasd=103m	ph; TCDL=6.0psf	; BCDL=6	.0psf; h=25ft	t;					bearing and first	
	3-4-0 oc bracing: 22				B; Enclosed; MW								exceed 0.500in.	
	3-5-0 oc bracing: 14	-16			-C Exterior (2) 0-1			1)	16) Atti	c room d	checke	d for L/360 defle	ection.	
	5-6-0 oc bracing: 24				-12, Exterior (2) 3				LOAD	CASE(S) Sta	ndard		
	6-0-0 oc bracing: 13	-14			ft and right expos				1) De	ead + Sr	, now (ba	alanced): Lumb	er Increase=1.15, Plate	э
JOINTS	1 Brace at Jt(s): 29,				ed;C-C for membe			RS	Í	crease=	1.15	,		
	14, 24, 16, 22				s shown; Lumber	DOL=1.60) plate grip		Uniform Loads (lb/ft) H CAR B; ESSI					
REACTIONS	(size) 9= Mecha	anical, 28=0-5-4		DOL=1.60									LICEN .	
	Max Horiz 28=298 (L	_C 11)	3)		E 7-10; Pr=30.0 p								a line	
	Max Grav 9=2634 (L	_C 47), 28=2573 (LC	47)		Plate DOL=1.15);							OR FESS	AROUN	
FORCES	(lb) - Maximum Com	pression/Maximum	,	Fully Exp.; (L=1.15 Plate DOL	_=1.15); C	ategory II; E	хр в;			1	A	Sin Inter	
	Tension		4)		snow loads have	hoon oor	aidarad far t	hio			52	FESC	NIN STA	
TOP CHORD	1-30=-1977/0, 2-30=	-1902/0, 2-31=-2300		design.	SHOW IDaus Have	Deen coi	ISIDELED IOI I	.1115		4			4.	۶.,
	31-32=-2269/0, 3-32	2=-2059/0, 3-4=-2549)/0, 5)	0	quate drainage to	nrovent	water pondin	a		-	2 - D	.4		
	4-5=-4215/0, 5-6=-4	215/0, 6-7=-2518/0,	6)		e MT20 plates un							SE/	AL : =	
	7-33=-2270/0, 8-33=	-2333/0, 8-34=-1763	^{6/0,} 7)		e 3x5 MT20 unles						:	JL/	<u>`</u> : : :	
	9-34=-1850/0, 1-28=	-2572/0, 9-10=-116/	46 8)		as been designed					=		0363	322 ; =	
BOT CHORD	27-28=-289/294, 25-	-27=-41/1397,	0)		ad nonconcurrent			ade					1	
	23-25=0/3150, 21-23	3=0/3965, 19-21=0/4	084, 9)		has been designe						2	Sec. and	1 S - S	
	17-19=0/3771, 15-1		742, [°]		m chord in all are			opoi			20	S. SNOW	FER. AS	
	11-12=0/1178, 10-1	1=-46/41, 24-26=-99	3/21,		by 2-00-00 wide v			om			1	A GIN	AL 322	
	22-24=-2615/0, 20-2				ny other members						1	ICA I	BEIN	
	18-20=-3328/0, 16-1				,	-						SEA 0363	אווייובוג	
	14-16=-2525/0, 13-1	4=-798/122										201111	inn,	
												Marc	h 18,2021	

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	C06	Attic	1	1	E15512296 Job Reference (optional)	

Vert: 1-2=-60, 2-3=-70, 3-4=-60, 4-6=-60, 6-7=-60, 7-8=-70, 8-9=-60, 10-28=-20, 13-26=-30, 3-29=-10, 7-29=-10 Drag: 2-26=-10, 8-13=-10 Concentrated Loads (lb) Vert: 5=-2520

2) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

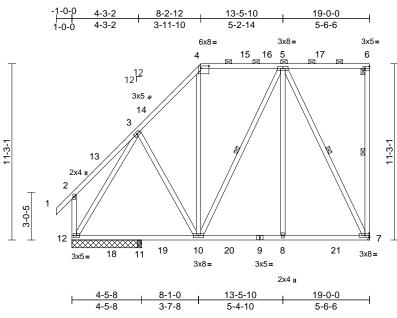
Uniform Loads (lb/ft)

- Vert: 1-2=-80, 2-3=-90, 3-4=-80, 4-6=-80, 6-7=-80, 7-8=-90, 8-9=-80, 10-28=-20, 13-26=-30, 3-29=-10,
- 7-29=-10 Drag: 2-26=-10, 8-13=-10

Concentrated Loads (lb)

Vert: 5=-840

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:01 ID:FQDKWnoy1JR_W8EEI90zDQzaT9I-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2


Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	D01	Piggyback Base	1	1	Job Reference (optional)	E15512297

Scale = 1:73.6

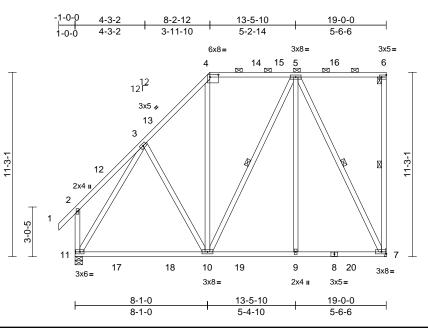
Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Thu Mar 18 12:44:19 ID:DVhTkHR2lu1UWzWzegprE?zaVG1-xdlrkwCS5pEZq5tRwxtC2ZFO_ITHkHaoYRfpK6zZisQ

Page: 1

818 Soundside Road Edenton, NC 27932

oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	30.0	Plate Grip DOL	1.15	тс	0.83	Vert(LL)	-0.04	7-8	>999	240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.07	7-8	>999	180		
CDL	10.0	Rep Stress Incr	YES	WB	0.91	Horz(CT)	0.01	7	n/a	n/a		
CLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
CDL	10.0										Weight: 173 lb	FT = 20%
UMBER					в	RACING						
OP CHORD	2x4 SP No.2				Т	OP CHORD						ed or 6-0-0 oc purlins
OT CHORD	2x4 SP No.2	** ** * ** * * * *										s (6-0-0 max.): 4-6.
VEBS	2x4 SP No.2 *Exce	ept* 10-3,12-2,12-3:	2x4 SP No.3			OT CHORD EBS		Row at		ctiy ap	plied or 10-0-0 or 6-7, 5-10	
EACTIONS	(lb/size) 7=726/ M	echanical, 11=89/0-	3-8, 12=750/4-5-8			200		non a	mapt		01,010	, 0 1
	Max Horiz 12=428 (L											
	Max Uplift 7=-241 (L											
	Max Grav 7=983 (L0	<i>,,</i>	,, ,									
ORCES	()		rces 250 (lb) or less exce									
OP CHORD		5, 5-16=-384/255, 2-	4=-540/282, 4-15=-384/2 12=-299/268	200,								
OT CHORD		, ,	12- 200/200 11-19=-319/502, 10-19=-	319/502.								
		, ,	9=-190/385, 8-21=-190/3	,	5							
VEBS	5-8=0/337, 5-7=	-817/233, 3-12=-77	1/65									
OTES												
	ced roof live loads hav											
) Wind: AS	SCE 7-10; Vult=130mp	h (3-second gust) V	asd=103mph; TCDL=6.0									
) Wind: AS MWFRS	SCE 7-10; Vult=130mp (envelope) exterior zo	h (3-second gust) V ne and C-C Exterior	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter	ior (1) 2-0-0 to 3-1	1-13, Ext	erior (2) 3-11	-13 to 12	-5-11,				
) Wind: AS MWFRS Interior (1	CE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4,	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile	ior (1) 2-0-0 to 3-1 ver left and right ex	1-13, Ext (posed ;	erior (2) 3-11 end vertical le	-13 to 12	-5-11,			Ann th	911
) Wind: AS MWFRS Interior (1 exposed;	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, ;C-C for members and	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS for	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter	ior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat	1-13, Ext kposed ; e grip DC	erior (2) 3-11 end vertical le DL=1.60	-13 to 12 eft and rig	-5-11, ght			ANNUM CA	Rout
) Wind: AS MWFRS Interior (1 exposed;) TCLL: AS	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, ;C-C for members and	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS for (roof live load: Lum	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DO	ior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat	1-13, Ext kposed ; e grip DC	erior (2) 3-11 end vertical le DL=1.60	-13 to 12 eft and rig	-5-11, ght			TH CA	ROLIN
) Wind: AS MWFRS Interior (1 exposed;) TCLL: AS Plate DO) Unbaland	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, ;C-C for members and SCE 7-10; Pr=30.0 psf DL=1.15); Category II; E ced snow loads have b	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS for (roof live load: Lum Exp B; Fully Exp.; Ci been considered for	asd=103mph; TCDL=6.0 · (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DOI t=1.10 this design.	ior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat L=1.15); Pf=20.0 p	1-13, Ext kposed ; e grip DC sf (flat ro	erior (2) 3-11 end vertical le DL=1.60 of snow: Lum	-13 to 12 eft and rig ber DOL	-5-11, ght =1.15		and a	OR FESE	ROLIN
 Wind: AS MWFRS Interior (1 exposed; TCLL: AS Plate DO Unbaland This truss 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, ;C-C for members and SCE 7-10; Pr=30.0 psf VL=1.15); Category II; E zed snow loads have b s has been designed for	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; Cr been considered for or greater of min roc	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DO t=1.10	ior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat L=1.15); Pf=20.0 p	1-13, Ext kposed ; e grip DC sf (flat ro	erior (2) 3-11 end vertical le DL=1.60 of snow: Lum	-13 to 12 eft and rig ber DOL	-5-11, ght =1.15	4		ORTH CA	ROLIN
 Wind: AS MWFRS Interior (1 exposed; TCLL: AS Plate DO Unbaland This trust concurrent 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, (C-C for members and SCE 7-10; Pr=30.0 psf VL=1.15); Category II; E zed snow loads have to s has been designed fin nt with other live loads	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; Cr seen considered for or greater of min roo	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DOI =1.10 this design. of live load of 12.0 psf or	ior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat L=1.15); Pf=20.0 p	1-13, Ext kposed ; e grip DC sf (flat ro	erior (2) 3-11 end vertical le DL=1.60 of snow: Lum	-13 to 12 eft and rig ber DOL	-5-11, ght =1.15 non-	4		ORTH CA	ROLIN
 Wind: AS MWFRS Interior (1 exposed; TCLL: AS Plate DO Unbaland This trust concurred Provide a 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, C-C for members and SCE 7-10; Pr=30.0 psf vL=1.15); Category II; E zed snow loads have b s has been designed fi nt with other live loads adequate drainage to p	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS for (roof live load: Lum Exp B; Fully Exp.; Ci been considered for or greater of min root.	asd=103mph; TCDL=6.0 · (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumn ber DOL=1.15 Plate DOI =1.10 this design. of live load of 12.0 psf or ng.	ior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root	1-13, Exi (posed ; e grip DC sf (flat ro f load of :	erior (2) 3-11 end vertical le DL=1.60 of snow: Lum 20.0 psf on ov	-13 to 12 eft and rig ber DOL	-5-11, ght =1.15 non-	4		OR FESS	ROLIN
 Wind: AS MWFRS Interior (1 exposed; TCLL: AS Plate DO Unbaland This truss concurrer Provide a This truss 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, C-C for members and SCE 7-10; Pr=30.0 psf pL=1.15); Category II; E ced snow loads have b s has been designed fin th with other live loads adequate drainage to p s has been designed fin	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS for (roof live load: Lum Exp B; Fully Exp.; Croeen considered for or greater of min roc or grevent water pondir or a 10.0 psf bottom	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DOI =1.10 this design. of live load of 12.0 psf or	Fior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat roo	1-13, Ext (posed ; e grip DC sf (flat ro f load of : ner live lo	erior (2) 3-11 end vertical le DL=1.60 of snow: Lurr 20.0 psf on ov ads.	-13 to 12 eft and rig ber DOL	-5-11, ght =1.15 non-	4		OR FESS	• -
 Wind: AS MWFRS Interior (1 exposed; TCLL: AS Plate DO Unbaland This truss concurre Provide as This truss * This trus 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, (C-C for members and SCE 7-10; Pr=30.0 psf bL=1.15); Category II; E ced snow loads have b s has been designed for th with other live loads adequate drainage to p s has been designed for ss has been designed for ss has been designed for	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; C been considered for or greater of min roc or prevent water pondir or a 10.0 psf bottom for a live load of 20	asd=103mph; TCDL=6.0 · (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DOI ter 1.10 this design. of live load of 12.0 psf or ng. chord live load nonconc	Fior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root current with any oth d in all areas wher	1-13, Ext (posed ; e grip DC sf (flat ro f load of : ner live lo	erior (2) 3-11 end vertical le DL=1.60 of snow: Lurr 20.0 psf on ov ads.	-13 to 12 eft and rig ber DOL	-5-11, ght =1.15 non-	()		SEA 0363	• -
 Wind: AS MWFRS Interior (1 exposed;) TCLL: AS Plate DO Unbaland This trust concurrer Provide a) This trust * This trust * This trust * Refer to g 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, ;C-C for members and SCE 7-10; Pr=30.0 psf bL=1.15); Category II; B ced snow loads have b s has been designed find twith other live loads adequate drainage to p s has been designed find the between the bottom girder(s) for truss to tru	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; C been considered for or greater of min root. brevent water pondir or a 10.0 psf bottom for a live load of 20 chord and any othe uss connections.	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Luml ber DOL=1.15 Plate DOL (=1.10) this design. of live load of 12.0 psf or ng. chord live load nonconco .0psf on the bottom chor or members, with BCDL =	Fior (1) 2-0-0 to 3-1 ver left and right ex ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root current with any oth d in all areas wher = 10.0psf.	1-13, Ext (posed ; e grip DC sf (flat ro f load of 2 her live lo e a recta	erior (2) 3-11 end vertical le DL=1.60 of snow: Lum 20.0 psf on ov ads. ngle 3-06-00	-13 to 12 eft and rig ber DOL	-5-11, ght =1.15 non-	(W) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		SEA 0363	• -
 Wind: AS MWFRS Interior (¹ exposed; TCLL: AS Plate DO Unbalance concurrer Provide a This truss This truss * This truss wide will Refer to (Provide r 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, C-C for members and SCE 7-10; Pr=30.0 psf vL=1.15); Category II; E ced snow loads have b s has been designed fint with other live loads adequate drainage to p s has been designed fit between the bottom girder(s) for truss to tru mechanical connection	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; Ci been considered for or greater of min roc or greater of min roc brevent water pondir or a 10.0 psf bottom for a live load of 20 chord and any othe uss connections.	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantiler or reactions shown; Lumi ber DOL=1.15 Plate DOI =1.10 this design. of live load of 12.0 psf or ng. chord live load nonconc .0psf on the bottom chor er members, with BCDL = to bearing plate capable	Fior (1) 2-0-0 to 3-1 ver left and right ex- ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root current with any oth d in all areas wher = 10.0psf.	1-13, Exi (posed ; e grip DC sf (flat ro f load of 2 her live lo e a recta 41 lb upli	erior (2) 3-11 end vertical le JL=1.60 of snow: Lum 20.0 psf on ov ads. ngle 3-06-00 ft at joint 7.	-13 to 12 eft and rig aber DOL verhangs tall by 2-	-5-11, ght =1.15 non-	Within		SEA 0363	• -
 Wind: AS MWFRS Interior (¹ exposed; TCLL: AS Plate DO Unbaland This trus: concurrer Provide a This trus: * This trus * This trus Wide will Refer to (One RT7 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, C-C for members and SCE 7-10; Pr=30.0 psf pL=1.15); Category II; E ced snow loads have b s has been designed fint with other live loads adequate drainage to p s has been designed fit ss has been designed fit between the bottom girder(s) for truss to tru mechanical connection 'A USP connectors rec	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; Ci eeen considered for or greater of min root. rorevent water pondir or a 10.0 psf bottom for a live load of 20 chord and any othe uss connections. (by others) of truss commended to con	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Luml ber DOL=1.15 Plate DOL (=1.10) this design. of live load of 12.0 psf or ng. chord live load nonconco .0psf on the bottom chor or members, with BCDL =	Fior (1) 2-0-0 to 3-1 ver left and right ex- ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root current with any oth d in all areas wher = 10.0psf.	1-13, Exi (posed ; e grip DC sf (flat ro f load of 2 her live lo e a recta 41 lb upli	erior (2) 3-11 end vertical le JL=1.60 of snow: Lum 20.0 psf on ov ads. ngle 3-06-00 ft at joint 7.	-13 to 12 eft and rig aber DOL verhangs tall by 2-	-5-11, ght =1.15 non-	Within		SEA 0363	• -
 Wind: AS MWFRS Interior (¹ exposed; TCLL: AS Plate DO Unbaland This truss concurrei Provide a This truss 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, C-C for members and SCE 7-10; Pr=30.0 psf pL=1.15); Category II; I ced snow loads have b s has been designed fint with other live loads adequate drainage to p s has been designed fi iss has been designed fit between the bottom girder(s) for truss to tru nechanical connection A USP connectors rec does not consider late	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; Cr been considered for or greater of min roc orevent water pondir for a 10.0 psf bottom for a live load of 20 chord and any othe use connections. (by others) of truss commended to conn tral forces.	asd=103mph; TCDL=6.C (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DOI te1.10 this design. of live load of 12.0 psf or ng. chord live load nonconc copsf on the bottom chor or members, with BCDL = to bearing plate capable ect truss to bearing walls	Fior (1) 2-0-0 to 3-1 ver left and right ex- ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root current with any oth d in all areas wher = 10.0psf.	1-13, Exit kposed ; e grip DC sf (flat ro f load of : her live lo e a recta 41 lb upli jt(s) 12.	erior (2) 3-11 end vertical le DL=1.60 of snow: Lurr 20.0 psf on ov ads. ngle 3-06-00 ft at joint 7. This connecti	-13 to 12 eft and rig ber DOL verhangs tall by 2-	-5-11, ght =1.15 non-	Within		SEA O363	22 EREALIT
 Wind: AS MWFRS Interior (1 exposed; Plate DO TCLL: AS Plate DO Unbaland This trus: concurre Provide a This trus wide will Refer to (Provide a Provide r Provide r One RT7 only and This trus 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, C-C for members and SCE 7-10; Pr=30.0 psf pL=1.15); Category II; I ced snow loads have b s has been designed fint with other live loads adequate drainage to p s has been designed fi iss has been designed fit between the bottom girder(s) for truss to tru nechanical connection A USP connectors rec does not consider late	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; C been considered for or greater of min roc - pervent water pondir for a 10.0 psf bottom for a live load of 20 c hord and any othe uss connections. (by others) of truss commended to conn ral forces. dance with the 2015	asd=103mph; TCDL=6.0 (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantiler or reactions shown; Lumi ber DOL=1.15 Plate DOI =1.10 this design. of live load of 12.0 psf or ng. chord live load nonconc .0psf on the bottom chor er members, with BCDL = to bearing plate capable	Fior (1) 2-0-0 to 3-1 ver left and right ex- ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root current with any oth d in all areas wher = 10.0psf.	1-13, Exit kposed ; e grip DC sf (flat ro f load of : her live lo e a recta 41 lb upli jt(s) 12.	erior (2) 3-11 end vertical le DL=1.60 of snow: Lurr 20.0 psf on ov ads. ngle 3-06-00 ft at joint 7. This connecti	-13 to 12 eft and rig ber DOL verhangs tall by 2-	-5-11, ght =1.15 non-	Within		SEA 0363	22 EREALIT
 Wind: AS MWFRS Interior (1 exposed; Plate DO TCLL: AS Plate DO Unbaland This trus: concurre Provide a This trus wide will Refer to (Provide a Provide r Provide r One RT7 only and This trus 	SCE 7-10; Vult=130mp (envelope) exterior zo 1) 12-5-11 to 15-10-4, (C-C for members and SCE 7-10; Pr=30.0 psf Cad snow loads have b s has been designed fint with other live loads adequate drainage to p is has been designed fi tiss has been designed fit between the bottom girder(s) for truss to tru- mechanical connection 'A USP connectors rec does not consider lates is is designed in accord	h (3-second gust) V ne and C-C Exterior Exterior (2) 15-10-4 forces & MWFRS fc (roof live load: Lum Exp B; Fully Exp.; C been considered for or greater of min roc - pervent water pondir for a 10.0 psf bottom for a live load of 20 c hord and any othe uss connections. (by others) of truss commended to conn ral forces. dance with the 2015	asd=103mph; TCDL=6.C (2) -1-0-0 to 2-0-0, Inter to 18-10-4 zone; cantile or reactions shown; Lumi ber DOL=1.15 Plate DOI te1.10 this design. of live load of 12.0 psf or ng. chord live load nonconc copsf on the bottom chor or members, with BCDL = to bearing plate capable ect truss to bearing walls	Fior (1) 2-0-0 to 3-1 ver left and right ex- ber DOL=1.60 plat L=1.15); Pf=20.0 p 1.00 times flat root current with any oth d in all areas wher = 10.0psf.	1-13, Exit kposed ; e grip DC sf (flat ro f load of : her live lo e a recta 41 lb upli jt(s) 12.	erior (2) 3-11 end vertical le DL=1.60 of snow: Lurr 20.0 psf on ov ads. ngle 3-06-00 ft at joint 7. This connecti	-13 to 12 eft and rig ber DOL verhangs tall by 2-	-5-11, ght =1.15 non-	M. HILLIN.			22 EREALITY

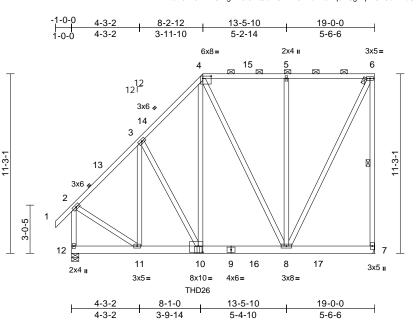
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette		
21020141-A	D01	Piggyback Base	1	1	Job Reference (optional)	E15512297	
Carter Components, Chesapeak	e, VA - 23323,	Run: 8.43 S	Run: 8.43 S Feb 12 2021 Print: 8.430 S Feb 12 2021 MiTek Industries, Inc. Thu Mar 18 12:44:19				


ID:DVhTkHR2lu1UWzWzegprE?zaVG1-xdlrkwCS5pEZq5tRwxtC2ZFO_ITHkHaoYRfpK6zZisQ

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	D02	Piggyback Base	4	1	Job Reference (optional)	E15512298

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:03 ID:ihEsydShWC9L7759CNK4nDzaVG0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


|--|

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 30.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.60 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.25 0.01	(loc) 10-11 10-11 7	l/defl >999 >899 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 173 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 *Except Structural wood sheet 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied cept end verticals, and 0 max.): 4-6. applied or 10-0-0 oc 6-7, 5-10, 5-7 nical, 11=0-5-8 C 11)	3)	Vasd=103mp Cat. II; Exp E zone and C-1 2-0-0 to 3-11 (1) 12-5-11 t zone; cantile and right exp MWFRS for grip DOL=1.0 TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C	7-10; Pr=30.0 psf ate DOL=1.15); Pl =1.15 Plate DOL=	CDL=6 CS (env 0 to 2-0 11-13 to (2) 15- cposed ubers ar umber l (roof liv =20.0 p 1.15); C	.0psf; h=25ft; elope) exteric -0, Interior (1) o 12-5-11, Inti o 12-5-11, Inti o 12-5-11, Inti o 10-4 to 18-10 e nd vertical d forces & DOL=1.60 pla e load: Lumb sf (flat roof sr ategory II; Ex	or erior -4 left te er now: p B;	LOAD	CASE(S)	Sta	ndard	
	Max Grav 7=1013 (L	<i>1</i> .		design.									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)		s been designed for osf or 1.00 times fl								
TOP CHORD	1-2=0/65, 2-12=-238 3-13=-701/235, 4-13 4-14=-417/243, 14-1 5-15=-417/243, 5-16	=-597/266, 5=-417/243,	6) 7) 61 8)	overhangs n Provide adeo This truss ha chord live loa	on-concurrent with quate drainage to p is been designed fo ad nonconcurrent v has been designed	other lin prevent or a 10.0 vith any	ve loads. vater ponding) psf bottom other live loa). ds.					1111
BOT CHORD	,	18=-307/548, 19=-186/401, -186/401,	9)	on the bottor 3-06-00 tall b chord and ar	n chord in all areas by 2-00-00 wide wil by other members, er(s) for truss to tru	s where I fit betv with BC	a rectangle /een the botto DL = 10.0psf	om		4	1111	OR FESS	ROLIN
WEBS	3-10=-185/225, 4-10 5-10=-108/280, 5-9= 3-11=-803/56)) Provide mec	hanical connection capable of withsta	(by oth	ers) of truss t					SEA	• –		
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for		truss to bear connection is forces.) Graphical pu	SP connectors rec ing walls due to UF s for uplift only and rlin representation ation of the purlin a l.	PLIFT at does no does no	jt(s) 11. This of consider la of depict the s	teral		THURS .		10 min	ERA

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	D03	Piggyback Base Girder	1	2	Job Reference (optional)	E15512299

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:04 ID:AtoE9zTJHVHCIHgLm5rJKQzaVG?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:72.2
---------	--------

Plate Offsets (X, Y): [4:0-6-4,0-1-12], [10:0-3-8,0-4-12]

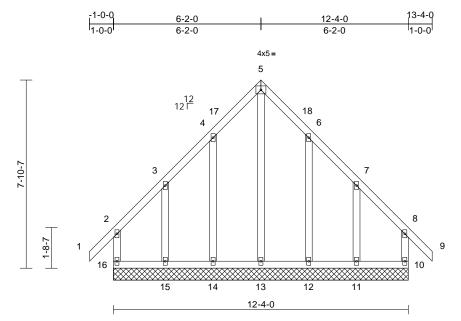
	, , , 	j, <u>r</u> = = = ;; = _ j											
Loading TCLL (roof)	(psf) 30.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.38	DEFL Vert(LL)	in 0.03	(loc) 10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	-0.04	8-10	>999	180	101120	244/100
TCDL	10.0	Rep Stress Incr	NO		WB	0.50	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MSH		- (-)						
BCDL	10.0											Weight: 386 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP No.2 2x4 SP No.2 *Excep 3-11,10-3,12-2,11-2 Structural wood she 6-0-0 oc purlins, ex	:2x4 SP No.3 athing directly applie cept end verticals, a	ed or	 (0.131"x3") r Top chords o oc. Bottom chor staggered at Web connec All loads are 	b be connected to nails as follows: connected as follo ds connected as follo (0-9-0 oc. ted as follows: 2x considered equa ed as front (F) or	ows: 2x4 follows: 2 4 - 1 row lly applie	- 1 row at 0-9- x6 - 2 rows at 0-9-0 oc. d to all plies,		bea join 13) On trus cor foro 14) Gra	aring pla at 7. e RT7A ss to bea nection ces. aphical p	te capa USP co uring wa is for u urlin re	able of withstand onnectors recom alls due to UPLIF plift only and do	y others) of truss to ing 506 lb uplift at mended to connect T at jt(s) 12. This es not consider lateral es not depict the size o the top and/or
BOT CHORD	2-0-0 oc purlins (6-0 Rigid ceiling directly		c	CASE(S) se	ction. Ply to ply co distribute only load	onnection	s have been		bot	tom cho	rd.	(With 18-16d nai	
WEBS	bracing. 1 Row at midpt	6-7			wise indicated.		., .,						equivalent at 7-11-4
REACTIONS		anical, 12=0-5-8	3		roof live loads ha	ve been	considered fo	r				connect truss(e	es) to front face of
REACTIONS	Max Horiz 12=425 (L	,		this design.						tom cho			
	Max Uplift 7=-506 (L		2) 4		7-10; Vult=130m				'			•	n contact with lumber.
	Max Grav 7=1539 (L				ph; TCDL=6.0psf; 3; Enclosed; MWF					CASE(S			
FORCES	(lb) - Maximum Com		-,		ver left and right							alanced): Lumbe	r Increase=1.15, Plate
	Tension				oosed; Lumber D			ion		crease= niform L		h /f+)	
TOP CHORD	1-2=0/65, 2-13=-141	9/409, 3-13=-1324/4	428,	DOL=1.60			51		0		,	2-4=-60, 4-6=-60	1 7-1220
	3-14=-1549/575, 4-1	4=-1457/605,	5) TCLL: ASCE	7-10; Pr=30.0 ps	sf (roof liv	e load: Lumb	er	C	oncentra	,	,), 1-12-20
	4-15=-681/303, 5-15				late DOL=1.15); F				0	onoonnic		ads (Ib)	11111
	5-6=-681/303, 6-7=-	1490/508,			=1.15 Plate DOL	=1.15); C	ategory II; Ex	κp B;				WAH CA	ROUL
BOT CHORD	2-12=-1760/486 11-12=-403/273, 10-	11 - 510/1064	~	Fully Exp.; C	snow loads have	h					AN'	OR	
BOTCHORD	9-10=-502/1075, 9-1		0	design.	show loads have	been cor		115		/	5.	U. ESS	J. Vian
	8-16=-502/1075, 8-1		7		as been designed	for areat	er of min roof	live		2			12 mil
	7-17=-151/114	,			psf or 1.00 times					-		. Q	
WEBS	3-11=-545/194, 3-10)=-206/375,			on-concurrent wit					-		SEA	1 i E
	4-10=-658/1592, 4-8		8) Provide ade	quate drainage to	prevent	water ponding	g.		Ξ		02/	E E
	5-8=-628/188, 6-8=-	520/1446,	9) This truss ha	as been designed	for a 10.	0 psf bottom	-				0363	22 : 3
	2-11=-281/1145				ad nonconcurrent					-	- Q		1 2
NOTES				on the botton 3-06-00 tall I chord and a	has been designe m chord in all area by 2-00-00 wide w hy other members er(s) for truss to t	as where vill fit betv s, with BC	a rectangle veen the botto DL = 10.0psf	om				SEA 0363	EERATION
												Marak	19 2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	D03	Piggyback Base Girder	1	2	Job Reference (optional)	E15512299
Carter Components, Chesapeake	, VA - 23323,	Run: 8.43 S Mar 4 20	021 Print: 8.4	30 S Mar 4 2	2021 MiTek Industries, Inc. Thu Mar 18 08:45:04	Page: 2

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:04 ID:AtoE9zTJHVHCIHgLm5rJKQzaVG?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

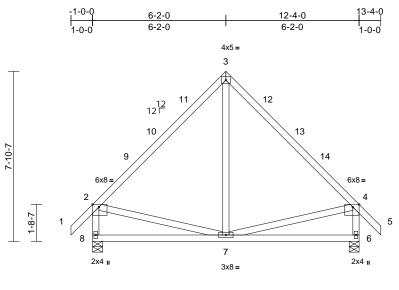

Vert: 10=-1263 (F)

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	E01	Common Supported Gable	1	1	Job Reference (optional)	E15512300

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:04 ID:vddr0aO7AZxPkGIPTAsi12zaT7F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.2


Boald = 111012															
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		30.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.46	Horz(CT)	0.00	10	n/a	n/a			
BCLL		0.0*	Code	IRC20	15/TPI2014	Matrix-MR									
BCDL		10.0											Weight: 89 lb	FT = 20%	
LUMBER				2	2) Wind: ASCE	7-10; Vult=130r	mph (3-seo	cond gust)							
TOP CHORD	2x4 SP N	o.2			Vasd=103m	ph; TCDL=6.0ps	f; BCDL=6	0.0psf; h=25ft	;						
BOT CHORD	2x4 SP N	o.2				B; Enclosed; MV									
WEBS	2x4 SP N					C Corner (3) -1-0		, , , , , , , , , , , , , , , , , , , ,	,						
OTHERS	2x4 SP N	0.3				0, Corner (3) 3-2									
BRACING						2-0, Corner (3) 1									
TOP CHORD	Structura	l wood she	athing directly applied	d or		ft and right expos									
	6-0-0 oc j	purlins, ex	cept end verticals.			d;C-C for memb shown; Lumber			(5						
BOT CHORD		ing directly	applied or 6-0-0 oc		DOL=1.60	SHOWH, LUMDER	DOL=1.0	plate grip							
	bracing.					ned for wind load	le in the n	and of the tru	~~						
REACTIONS	(size)	10=12-4-0	0, 11=12-4-0, 12=12-4	4-0, `		ids exposed to v									
			0, 14=12-4-0, 15=12-4	4-0,		d Industry Gable									
		16=12-4-0				alified building o									
	Max Horiz			4	 TCLL: ASCE 	7-10; Pr=30.0 p	osf (roof liv	e load: Lumb	er						
	Max Uplift		LC 11), 11=-175 (LC			late DOL=1.15);									
			C 15), 14=-86 (LC 14			=1.15 Plate DO	L=1.15); C	ategory II; Ex	кр B;						
	May Cray		LC 14), 16=-140 (LC	a) [′]	Fully Exp.; C										
	wax Grav		_C 28), 11=288 (LC 29 _C 33), 13=305 (LC 19			snow loads have	e been coi	nsidered for t	his						
			_C 33), 13=305 (LC 1) _C 32), 15=292 (LC 2)	0)	design.										
		16=261 (L		0), (as been designed									
FORCES	(lb) - Max	· ·	pression/Maximum			psf or 1.00 times on-concurrent w			51 011						
1011020	Tension		procolori/maximum	-		e 2x4 MT20 unle							mun	11111	
TOP CHORD	2-16=-20	9/176. 1-2=	=0/65, 2-3=-146/156,			es continuous be							WH CI	ARO	
		/253, 4-17=			.,	ully sheathed fro		0	,			S	R		
	5-17=-22	4/353, 5-18	3=-224/353,			nst lateral mover						- and	O. FES	Noine .	1.
	6-18=-23	8/340, 6-7=	-156/253, 7-8=-140/1	148, ·		spaced at 2-0-0		σ,				22		12	2
		8-10=-204	1/176			as been designed		0 psf bottom			-				1
BOT CHORD		,	-15=-118/114,		chord live loa	ad nonconcurrer	nt with any	other live loa	ids.		-		SEA 0363	vi 1.	=
			-13=-118/114,		12) * This truss I	has been design	ed for a liv	e load of 20.0	Opsf		=	:	SLF		=
		,	-11=-118/114			m chord in all are					=		0363	322 🔅	
WEBS		,	I=-176/119,			oy 2-00-00 wide		veen the bott	om			6			Ξ
	3-15=-204 7-11=-202	,	2=-176/119,			ny other member						-	1.		3
	7-11=-20	2/107				JSP connectors I						20	N. SNOW	EFR. X	2
NOTES						ing walls due to 11. This connect						14	A. GIN	E. CA	2
,		oads have	been considered for			sider lateral for		ipint only and					ICA C	II BEIN	
this desig	n.				LOAD CASE(S)								A. C	215	
					LUAD CASE(S)	Stanuaru									
													Marc	h 18,2021	

- 1) Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	E02	Common	2	1	Job Reference (optional)	E15512301

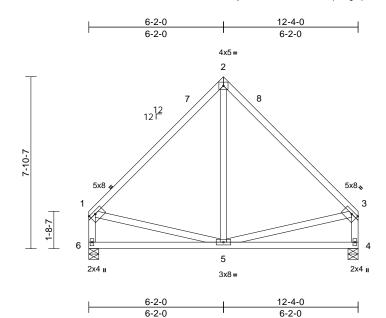
Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:05 ID:km?7GeSumPhYSBCZpQz6HJzaT79-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:53.3

Plate Olisets	(X, Y): [2:0-3-8,Edge],	[4:0-3-8,Edge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP		CSI TC BC WB Matrix-MSH	0.77 0.32 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-5-8, 4 Max Horiz 8=231 (LC Max Uplift 6=-53 (LC Max Grav 6=694 (LC (lb) - Maximum Com Tension 1-2=0/65, 2-9=-552/ 10-11=-370/12, 3-1 3-12=-300/135, 12-1 13-14=-381/110, 4-1 2-8=-639/160, 4-6=-	cept end verticals. applied or 10-0-0 o 3=0-5-8 C 13) C 14), 8=-53 (LC 15) C 2), 8=694 (LC 2) pression/Maximum 89, 9-10=-381/110, 11=-300/135, 13=-370/112, 14=-552/89, 4-5=0/6 639/160	DC Lui Fui ed or 5) Th c loa ove 6) Th che 7) * T on 3-C che 8) On tru Th late	IL=1.15 P mber DOI ly Exp.; C balanced sign. s truss ha d of 12.0 rrhangs n s truss ha ord live lo his truss is the bottoi 6-00 tall l ord and au e RT7A L ss to bear ss to bear ss connec	snow loads have I as been designed f psf or 1.00 times f on-concurrent with as been designed has been designed n chord in all area by 2-00-00 wide wi by other members. ISP connectors re- ing walls due to U tion is for uplift on	If=20.0 p =1.15); C been cool for great lat roof l n other li for a 10. with any d for a liv s where ill fit betv. commer PLIFT a	sf (flat roof s ategory II; E er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ded to connet t jt(s) 8 and 6	now: xp B; this f live ssf on ads. 0psf tom ect 3.					
BOT CHORD WEBS	7-8=-247/322, 6-7=- 3-7=-15/224, 2-7=-1		38									11111	
NOTES		,									1	"ATH UT	NO
 Unbalanc this designation 	ed roof live loads have	been considered fo	r								N.	OFESE	North Contraction
2) Wind: AS Vasd=10: Cat. II; Ex zone and 2-0-0 to 3 9-2-0 to 1 cantilever right expo	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B cp B; Enclosed; MWFR C-C Exterior (2) -1-0-0 i-2-0, Exterior (2) -2-0, Exterior (2) -2-0, i-2-0, Exterior (2) -0-4 0-4-0, Exterior (2) -0-4 i-1eft and right exposed based;C-C for members bas shown; Lumber DC	CDL=6.0psf; h=25ft; S (envelope) exterio to 2-0-0, Interior (1) to 9-2-0, Interior (1) i-0 to 13-4-0 zone; ; end vertical left an and forces & MWFF	or) d									SEA 0363	EER ER LIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



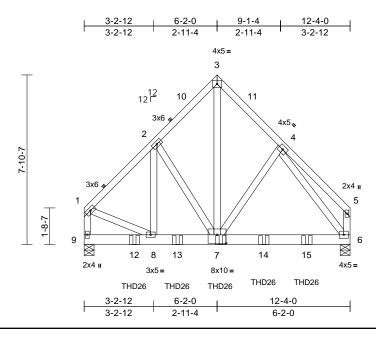
GI mmm March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	E03	Common	1	1	Job Reference (optional)	E15512302

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:05 ID:17wmk1YH6YaZoGEvjObl3nzaT72-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y):	[1:0-3-4,0-1-8], [3:0-3-4,0-1-8]
-----------------------	----------------------------------


	0 4,0 1 0],	[0.0 0 4,0 1 0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.32 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
BOT CHORD Figid ceil bracing. REACTIONS (size) Max Horiz Max Uplift	o.2 o.3 I wood shea ourlins, exc ing directly 4=0-5-8, 6 6=-203 (Li 4=-47 (LC		7) C	chord live loa * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to bear		vith any for a liv s where Il fit betw commen PLIFT at	other live loa e load of 20.0 a rectangle veen the botto ded to conne jt(s) 6 and 4	0psf om ect					
FORCES (lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD 1-7=-552		293/127, 2-8=-293/1 548/115, 3-4=-548/1											
	/262, 4-5=-												
	9, 1-5=-63/2	231, 3-5=-65/232											
 NOTES Unbalanced roof live I this design. Wind: ASCE 7-10; Vu Vasd=103mph; TCDL Cat. II; Exp B; Encloss zone and C-C Exterio exposed; end vertica members and forces Lumber DOL=1.60 pli TCLL: ASCE 7-10; Pr DOL=1.15 Plate DOL Lumber DOL=1.15 Pli Fully Exp.; Ct=1.10 Unbalanced snow loa design. 	It=130mph =6.0psf; B(ed; MWFRS r (2) zone; I left and rig & MWFRS ate grip DO =30.0 psf (i =1.15); Pf= ate DOL=1.	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and rig ght exposed;C-C for for reactions shown; L=1.60 roof live load: Lumbe 20.0 psf (flat roof sn .15); Category II; Ex	or ght ; er iow: ip B;							Contraction of the second seco		SEA 0363	

818 Soundside Road Edenton, NC 27932

GI A. GIL March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	E04	Common Girder	1	2	Job Reference (optional)	E15512303

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:06 ID:w2MMmOBqfo0m1bU9XRpbIRzaSEh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.4

Plate Offsets	(X, Y):	[7:0-5-0,0-4-12]
Plate Offsets	(X, Y):	[7:0-5-0,0-4-12]

				_										
Lo	ading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	LL (roof)	30.0	Plate Grip DOL	1.15		тс	0.57	Vert(LL)	-0.05	6-7	>999	240	MT20	244/190
	ow (Pf)	20.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.08	6-7	>999	180		
TC	()	10.0	Rep Stress Incr	NO		WB	0.36	Horz(CT)	0.00	6	n/a	n/a		
BC		0.0*	Code		5/TPI2014	Matrix-MSH	0.00		0.00		1.70			
BC		10.0	oode	11(0201	5/11/2014								Weight: 204 lb	FT = 20%
LU TO BO WE BR	MBER P CHORD T CHORD EBS ACING P CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she		.,	this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp	oh; TCDL=6.0psf; I 3; Enclosed; MWFI ver left and right e	h (3-seo BCDL=6 RS (env xposed	cond gust) 5.0psf; h=25ft elope) exterio ; end vertical	; or				3), 12=-486 (B), ⁻	13=-560 (B), 14=-560
BO	T CHORD	Rigid ceiling directly bracing.	 4) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 5) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.60 5) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp; Ct=1.10 6) Unbalanced snow loads have been considered for this design. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 											
RE		(size) 6=0-5-8, 9 Max Horiz 9=-200 (L Max Uplift 6=-146 (L	C 8) C 12), 9=-130 (LC 13		Lumber DOL Fully Exp.; C Unbalanced	.=1.15 Plate DOL= t=1.10	1.15); C	ategory II; Ex	κp Β;					
FO	RCES				This truss ha				do					
то	P CHORD	1-2=-1587/161, 2-10 3-10=-1358/214, 3-1 4-11=-1451/200, 4-5 1-9=-1637/140, 5-6=	1=-1353/213, =-412/91,	8)	* This truss h on the bottor 3-06-00 tall b		for a liv s where	e load of 20.0 a rectangle	Opsf					
	T CHORD	9-12=-190/215, 8-12 8-13=-140/1075, 7-1 7-14=-52/922, 14-15 2-8=-22/101, 2-7=-2	2=-190/215, 3=-140/1075, i=-52/922, 6-15=-52/9 26/152, 3-7=-219/174	49,	One RT7A U truss to bear This connect lateral forces	SP connectors red ing walls due to UI ion is for uplift only s.	PLIFT at / and do	i jt(s) 9 and 6 les not consid					TH CA	ROUT
		4-7=-60/245, 1-8=-5	5/1095, 4-6=-1239/90) 10		ID26 (With 18-16d						Jon I	O' FESS	10:10 ···
	(0.131"x3")	to be connected toget) nails as follows: s connected as follows)	2-0-0 oc max 10-4-0 to cor chord.	/2 nails into Truss) k. starting at 2-4-0 nnect truss(es) to b	from the back fac	e left end to e of bottom			4	V	SEA	L
2)	staggered Web conne All loads an except if no CASE(S) s provided to	ords connected as follo at 0-9-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply conr o distribute only loads erwise indicated.	1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been	L(1)	DAD CASE(S) Dead + Sno Increase=1 Uniform Los Vert: 1-3	ow (balanced): Lun .15	nber Inc						in the second se	EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

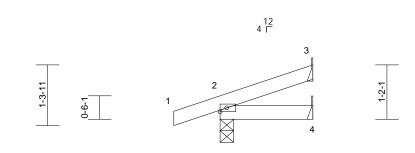
March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	EJ1	Jack-Open	3	1	E Job Reference (optional)	15512304

-1-0-0

1-0-0

2-0-0


2-0-0

Carter Components, Chesapeake, VA - 23323,

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:06 ID:CuSnCjesYpF3wuahOsGO3BzaT8C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

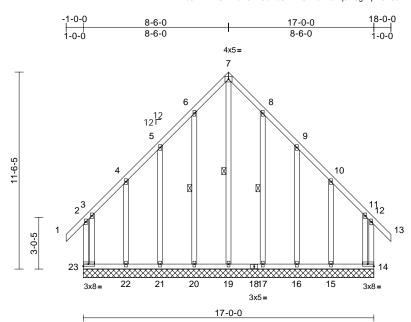
2x4 =

2-0-0

Scale = 1:24.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI201	4 CSI TC BC WB Matrix-MP	0.09 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=43 (LC Max Grav 2=200 (LC (LC 7)	applied or 10-0-0 or 3= Mechanical, 4= al 10) 2 10), 3=-22 (LC 14)	on the 3-06-00 chord a 3-06-00 chord a 9) Provide bearing 3. 9) One R' truss to connect forces.	russ has been desig bottom chord in all a 0 tall by 2-00-00 wide and any other membro o girder(s) for truss to e mechanical connect plate capable of wite T7A USP connectors bearing walls due to tion is for uplift only SE(S) Standard	reas where e will fit betw ers. o truss conr tion (by oth thstanding 2 s recommen o UPLIFT at	a rectangle veen the bott nections. ers) of truss 2 lb uplift at ded to conne ; jt(s) 2. This	to joint ect					
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Com Tension 1-2=0/25, 2-3=-62/6 2-4=-29/19											

NOTES


- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

mining CAROL O VIIIIIIIIIIII CHILLIAN AND AND SEAL 036322 GI minin March 18,2021

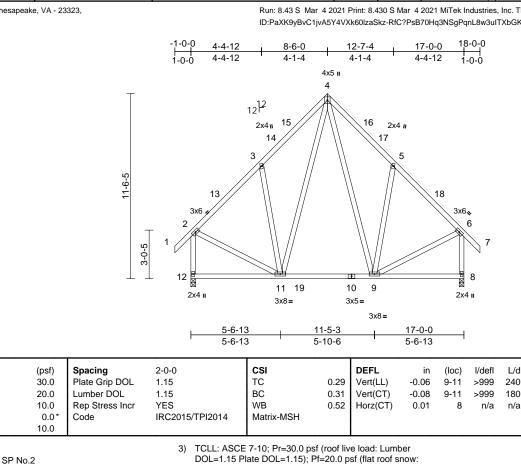
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	F01	Common Supported Gable	1	1	Job Reference (optional)	E15512305

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:07 ID:?HNd5kMhvKUwrEcmJT?OaizaSkI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:67.4

Plate Offsets (X, Y): [14:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Lumber DOL	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.52 0.22 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 14=17-0-0 21=17-0-0 Max Horiz 23=-337 (Max Uplift 14=-279 (L 20=-97 (L 22=-319 (L 22=-319 (L 16=197 (L 19=458 (L	athing directly applied cept end verticals. applied or 6-0-0 oc 7-19, 6-20, 8-17 0, 15=17-0-0, 16=17-0 0, 19=17-0-0, 20=17-0 0, 22=17-0-0, 23=17-0 LC 12) LC 11), 15=-312 (LC 1 C 15), 17=-97 (LC 15) C 14), 21=-79 (LC 14) LC 11), 23=-287 (LC 1 C 28), 15=434 (LC 29 C 2), 17=234 (LC 29 C 2), 17=234 (LC 29 C 15), 20=235 (LC 28 C 29), 22=439 (LC 28	NC or 1) 2) -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,	TTES Unbalanced of this design. Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C 2-0-0 to 5-6-C 11-6-0 to 15- cantilever leff right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 PI	7-19=-642/381, 6-2 5-21=-165/133, 4-2 5-23=-763/727, 8-1 9-16=-165/133, 10- 1-14=-745/710 roof live loads have 7-10; Vult=130mpl h; TCDL=6.0psf; E ; Enclosed; MWFF C Corner (3) -1-0-0 0, Corner (3) 5-6-0 0-0, Corner (3	2=-326, 7=-188, 15=-32 b been in h (3-sec 3CDL=6 CS (env to 2-0- to 11-6 0-0 to 1 1; end v and fo DL=1.60 in the pl d (norm ind Deta igner a: ((roof liv) (roof liv)	/267, /119, 3/263, considered for cond gust) 0.0psf; h=25ft; elope) exterior (2) -0, Exterior (2) 18-0-0 zone; vertical left and rcces & MWFRS 0 plate grip ane of the trus al to the face), ils as applicab s per ANSI/TP e load: Lumbe sf (flat roof sno	5 5, 1e, 11. er 50w:	chc 12) * TI on 3-0 chc 13) On trus 21, and	rd live lo his truss the botto 6-00 tall rd and a e RT7A l s to bea 22, 17, ' I does no CASE(S)	ad nor has be im cho by 2-0 iny oth USP cc ring wa 16, and ot cons) Star	een designed for rd in all areas wh 0-00 wide will fit er members. onnectors recomi alls due to UPLIF d 15. This connec- ider lateral force	any other live loads. a live load of 20.0psf lere a rectangle between the bottom mended to connect T at jt(s) 23, 14, 20, ction is for uplift only s.
FORCES TOP CHORD BOT CHORD		0/65, 2-3=-366/349, 199/317, 5-6=-287/420 361/510, 8-9=-287/420 1=-262/269, 13=0/65, 22=-177/165, 20=-177/165, 18=-177/165,	6, 6) 7) 8) 9)	Fully Exp.; C Unbalanced a design. This truss ha load of 12.0 p overhangs no All plates are Gable require Truss to be fu braced again	=1.15 Plate DOL= t=1.10 snow loads have b s been designed for sof or 1.00 times fla on-concurrent with 2x4 MT20 unless es continuous bottc ully sheathed from st lateral movemer spaced at 2-0-0 oc	een cor or great at roof le other lin otherwi om chor one fac nt (i.e. c	nsidered for thi er of min roof I boad of 20.0 psi ve loads. se indicated. d bearing. ee or securely	is ive		4		SEA 0363	19:1


March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	F02	Common	1	1	Job Reference (optional)	E15512306

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Thu Mar 18 08:45:07 ID:PaXK9yBvC1jvA5Y4VXk60lzaSkz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

Scale = 1:71.7 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 11-4,9-4:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 8=0-3-8, 12=0-3-8
	Max Horiz 12=337 (LC 13)
	Max Uplift 8=-75 (LC 14), 12=-75 (LC 15)
	Max Grav 8=927 (LC 2), 12=927 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/65, 2-13=-708/148, 3-13=-595/168, 3-14=-648/287, 14-15=-590/301, 4-15=-587/318, 4-16=-587/318, 16-17=-590/301, 5-17=-648/287, 5-18=-595/168, 6-18=-708/148, 6-7=0/65, 2-12=-878/162, 6-8=-878/162
BOT CHORD	
WEBS	10-19=-67/404, 9-10=-67/404, 8-9=-30/49 2-11=-3/500, 6-9=-4/500, 3-11=-338/263, 4-11=-222/363, 4-9=-222/359, 5-9=-338/263

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-6-0, Exterior (2) 5-6-0 to 11-6-0, Interior (1) 11-6-0 to 15-0-0, Exterior (2) 15-0-0 to 18-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT7A USP connectors recommended to connect 8) truss to bearing walls due to UPLIFT at jt(s) 8 and 12. This connection is for uplift only and does not consider lateral forces

LOAD CASE(S) Standard

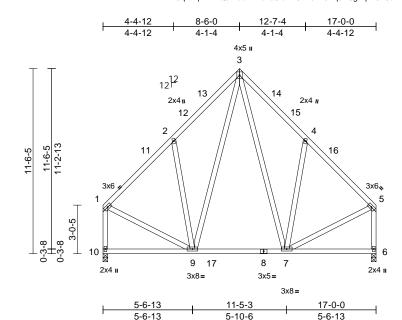
PLATES

Weight: 145 lb

MT20

GRIP

244/190


FT = 20%

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	F03	Common	1	1	Job Reference (optional)	E15512307

Run: 8 43 S Mar 4 2021 Print: 8 430 S Mar 4 2021 MiTek Industries Inc. Thu Mar 18 08:45:08 ID:TOqH1qYfhk2QJx?uuvlhNazaSlo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

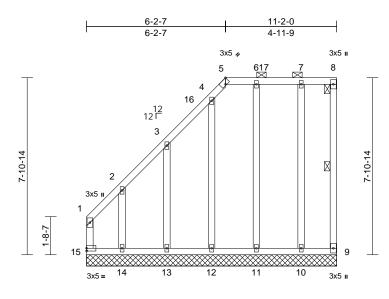
Page: 1

Scale =	1:71.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15	тс	0.31	Vert(LL)	-0.06	7-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.31	Vert(CT)	-0.08	7-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 141 lb	FT = 20%

- LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 9-3,7-3:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 6=0-3-8, 10=0-3-8 Max Horiz 10=299 (LC 11) Max Uplift 6=-70 (LC 14), 10=-70 (LC 15) Max Grav 6=835 (LC 2), 10=835 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-11=-712/128, 2-11=-519/149, 2-12=-661/282, 12-13=-598/298, 3-13=-598/314, 3-14=-598/314, 14-15=-598/298, 4-15=-661/282, 4-16=-516/149, 5-16=-712/128, 1-10=-787/119, 5-6=-787/119 9-10=-283/287, 9-17=-75/394, 8-17=-75/394, BOT CHORD 7-8=-75/394, 6-7=-34/40 WEBS 1-9=-11/491, 5-7=-8/493, 2-9=-354/273, 3-9=-219/369, 3-7=-216/366, 4-7=-353/273
- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 5-6-0, Exterior (2) 5-6-0 to 11-6-0, Interior (1) 11-6-0 to 13-10-4, Exterior (2) 13-10-4 to 16-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10 and 6. This connection is for uplift only and does not consider lateral forces.

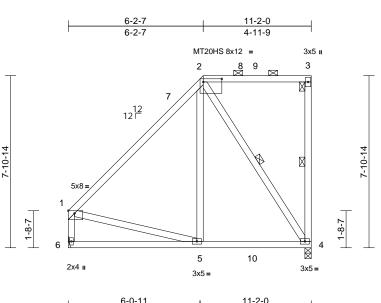

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	G01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	E15512308

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:08 ID:gnG6lhgsnbcsN_iuWvXWWMzaSFM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

11-2-0

Scale = 1:51.4 Plate Offsets (X, Y): [5:0-2-8,Edge]


Plate Offsets (2	X, Y): [5:0-2-8,Edge]	-											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .15 .15 ÆS RC2015	/TPI2014	CSI TC BC WB Matrix-MR	0.76 0.27 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 9=11-2-0, 12=11-2-0, 12=11-2-0 T5=11-2-0 Max Horiz 15=285 (L Max Uplift 9=-34 (LC 11=-59 (L	applied or 10-0-0 oc 8-9 10=11-2-0, 11=11-2-0, 0, 13=11-2-0, 14=11-2-0 0 2. C 11) 10=-56 (LC 10), C 11), 10=-56 (LC 10), C 11), 12=-93 (LC 11),	2) r 3) , 4) 5)	this design. Wind: ASCE Vasd=103mp Cat. II; Exp B Zone and C-(exposed ; en members and Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C	roof live loads have 7-10; Vult=130mpl bh; TCDL=6.0psf; E 8; Enclosed; MWFR C Corner (3) zone; d vertical left and r d forces & MWFRS =1.60 plate grip DC ed for wind loads in ds exposed to wind l ndustry Gable Er alified building des 7-10; Pr=30.0 psf ate DOL=1.15); Pf: =1.15 Plate DOL=' t=1.10 snow loads have b	n (3-sec SCDL=6 S (env cantilev ight exp for rea DL=1.60 n the pl d (norm nd Deta igner av (roof liv =20.0 p 1.15); C	cond gust) 0.0psf; h=25ft; elope) exterior ver left and rig bosed;C-C for ctions shown 0 ane of the trus al to the face) ils as applicat s per ANSI/TF e load; Lumbi sf (flat roof sn iategory II; Ex	r ht ss ble, ble, i 1. er ow: p B;	LOAD C	CASE(S)	Star	ndard	
	15=-257 (Max Grav 9=67 (LC 11=246 (L 13=250 (L 13=250 (L 15=440 (L	35), 10=221 (LC 35), LC 35), 12=223 (LC 40), LC 36), 14=379 (LC 40), LC 11)	7) 8) 9)	All plates are Truss to be for braced again Gable studs	uate drainage to p 2x4 MT20 unless ully sheathed from st lateral movemer spaced at 2-0-0 oc s been designed fo	otherwi one fac nt (i.e. d	se indicated. e or securely liagonal web).				111	ORTH CA	ROUT
FORCES	3-16=-193/152, 4-16	339/224, 2-3=-200/143	3, ,	* This truss h on the botton 3-06-00 tall b	ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members.	for a liv where	e load of 20.0 a rectangle	psf				SEA	• -
BOT CHORD	14-15=-125/159, 13- 12-13=-125/159, 11- 10-11=-125/159, 9-1	-12=-125/159, 0=-125/159	12)	One RT7A U truss to beari 13, 14, 11, ar	SP connectors rec ing walls due to UF and 10. This connect sider lateral forces	LIFT at tion is f	t jt(s) 15, 9, 12	2,		THE REAL		0363	22 <u> </u>
WEBS	4-12=-180/111, 3-13 2-14=-254/218, 6-11	3=-210/148, =-205/75, 7-10=-184/70		Graphical pu or the orienta	d bearing condition rlin representation ation of the purlin al	does no	ot depict the s	ize					ILBERT
				bottom chord	I.							Marak	10.0004

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	G02	Piggyback Base	4	1	Job Reference (optional)	E15512309

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:09 ID:UmPyTE5JPeDJn?mvubC1EyzaSHO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-0-11	11-2-0
6-0-11	5-1-5

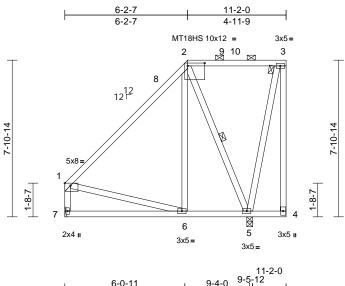
Scale = 1:52.9	
Plate Offsets (X Y)	[1:Edge 0-1-7] [2:0-10-4 0-1-12]

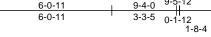
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15	TC	0.88	Vert(LL)	-0.03	5-6	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	-0.06	5-6	>999	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 82 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals, and 2-0-0 oc purlins
	(6-0-0 max.): 2-3.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 3-4, 2-4
REACTIONS	(size) 4=0-3-8, 6= Mechanical
	Max Horiz 6=285 (LC 11)
	Max Uplift 4=-152 (LC 11), 6=-28 (LC 14)
	Max Grav 4=544 (LC 2), 6=580 (LC 36)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-7=-505/102, 2-7=-254/127, 2-8=-128/139,
	8-9=-128/139, 3-9=-128/139, 3-4=-232/84,
	1-6=-525/117
BOT CHORD	5-6=-297/279, 5-10=-136/260, 4-10=-136/260
WEBS	2-5=0/234, 2-4=-428/141, 1-5=-97/217
NOTES	

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2) Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Unbalanced snow loads have been considered for this desian.


- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9)
 - Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 6.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	G03	Piggyback Base	1	1	Job Reference (optional)	E15512310

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:09 ID:AXoK08aH4xLBfe7hW8xU8NzaSJM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.1

Plate Offsets (X, Y): [1:Edge,0-1-7], [2:0-10-4,0-1-12]

	(X, I). [I.Luge,0-1-7],	[2.0-10-4,0-1-12]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	12014	CSI TC BC WB Matrix-MSH	0.86 0.25 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.07 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 92 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex 2-0-0 cc purlins (10- 0 Rigid ceiling directly bracing. 1 Row at midpt (size) 5=0-3-8, ī Max Horiz 7=285 (LC Max Uplift 5=-215 (L Max Grav 5=646 (LC (lb) - Maximum Com Tension 1-8=-419/64, 2-8=-1 9-10=-121/126, 3-10 1-7=-448/83 	cept end verticals, a 0-0 max.): 2-3. applied or 10-0-0 or 2-5 7= Mechanical C 13) C 11), 7=-11 (LC 14 C 2), 7=506 (LC 36) pression/Maximum 57/89, 2-9=-121/126)=-121/126, 3-4=-59 117/172, 4-5=-129/1	E DC Lu Fu 4) Ur ed or de nd 5) Pr 6) All c 7) Th c 7)	DL=1.15 P mber DOL IIIy Exp.; C balanced sign. ovide adec plates are is truss ha ord live loa his truss h the bottor b6-00 tall b ord and ar fer to gird ovide mec aring plate e RT16A ss to bear nnection is ces. aphical pu	7-10; Pr=30.0 psi late DOL=1.15); P =1.15 Plate DOL= t=1.10 snow loads have b quate drainage to p MT20 plates unle s been designed fad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi hy other members. er(s) for truss to tr hanical connectiors capable of withst USP connectors re ing walls due to U s for uplift only and rlin representation ation of the purlin a	f=20.0 p =1.15); C peeen cor prevent ss other or a 10. with any t for a liv s where a liv s where uss conr h (by oth anding 1 ecomme PLIFT at d does no	sf (flat roof s ategory II; E: insidered for t water pondin wise indicate 0 psf bottom other live loa e load of 20. a rectangle ween the bott nections. ers) of truss 1 lb uplift at inded to comr jt(s) 5. This ot consider la bt depict the	now: xp B; d. g. ed. ads. Opsf to joint to joint nect ateral				WITH CA	NRO/ 11/1
this desig 2) Wind: AS Vasd=10 Cat. II; Ez zone and exposed members	ced roof live loads have gn. SCE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Br xp B; Enclosed; MWFR I C-C Exterior (2) zone; ; end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DO	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and ri ght exposed;C-C for for reactions shown	r LOAD or ght	ttom chord	l. Standard					4.111111		SEA 0363	EEPER I

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI mmm March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	H01	Monopitch	2	1	Job Reference (optional)	E15512311

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:10 ID:t_arL2jZsqtE51DK6JMgQjzaSYg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0 3-10-8 7-10-8 -4-0-0 3-10-8 1-0-0 2x4 ı 4⁵ 12 12 11 3x5 🍬 10 3 10-10-13 10-10-13 Ø 9 2x4 ŋ 2 3-0-5 ᆂᆊ7 8 ⊠ 12 13 6 3x5= 3x5 = 7-10-8 || 0-3-4 7-7-4 7-7-4

Scale = 1:64.4

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15		тс	0.58	Vert(LL)	-0.21	7-8	>431	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.39	7-8	>228	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.46	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 71 lb	FT = 20%
LUMBER			3)	Unbalanced	snow loads have	been co	nsidered for t	this					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD			4)		as been designed								
WEBS	2x4 SP No.3 *Excep	ot* 4-7:2x4 SP 2400F			psf or 1.00 times			osf on					
	2.0E				ion-concurrent wit								
BRACING			5)		as been designed								
TOP CHORD		athing directly applie	ed or		ad nonconcurrent								
	6-0-0 oc purlins, ex		6)		has been designe			.0psf					
BOT CHORD	0 0 7	applied or 10-0-0 oc	>		m chord in all are								
	bracing.				by 2-00-00 wide v ny other members								
WEBS	1 Row at midpt	4-7	7)		ler(s) for truss to t			ы.					
REACTIONS		anical, 8=0-5-8	8)	•	chanical connection			to					
	Max Horiz 8=407 (LC	,	-)		e capable of withs								
	Max Uplift 7=-268 (L			joint 7.		stantaning 1							
	Max Grav 7=537 (L0	C 28), 8=602 (LC 29)) 9)	,	JSP connectors re	ecommer	ded to conne	ect					
FORCES	(lb) - Maximum Com	pression/Maximum	- /		ring walls due to l								
	Tension			connection is	s for uplift only ar	nd does n	ot consider la	ateral					
TOP CHORD				forces.									
	3-10=-273/174, 10-1		LC	DAD CASE(S)	Standard								
		-16/0, 4-7=-169/144	,										
	2-8=-255/294	10 105/170											
BOT CHORD	,											minin	11111
WEBS	7-13=-195/176, 6-7= 3-7=-284/262, 3-8=-											N'L'H CA	ROUL
	3-7=-204/202, 3-0=-	427/190									1	all	10/11/1
NOTES		(*)									5.	O'	Sitter 1
	SCE 7-10; Vult=130mph									6	20	10	1 Xost
	3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR		-									:0	K. 1.
,	C-C Exterior (2) -1-0-0	· · · ·								-			
	4-10-8, Exterior (2) 4-10											SEA	AL : =
	r left and right exposed		ł									0363	22 E
	osed;C-C for members											. 0000	: : :
	ons shown; Lumber DO		-							1		N.	1 3
DOL=1.60											2.	N.En.	Richi
	SCE 7-10; Pr=30.0 psf (roof live load: Lumbe	ər								25	S. GIN	EFIAN
	5 Plate DOL=1.15); Pf=										11	10	BEN
Lumber D	DOL=1.15 Plate DOL=1	.15); Category II; Exp	р В;									11, A. C	ALLUN

TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; 2) Fully Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A. GILB A. GILDIN

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	H03	Monopitch	7	1	Job Reference (optional)	E15512312

3-11-4

3-11-4

9

12

7-8-12 7-8-12

2x4 u 2

8 ₿

3x5=

12 12

11-0-5

3-0-5

Carter Components, Chesapeake, VA - 23323,

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:10 ID:?pj0eR2Cl8e_A6gFHpugP8zaoO4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-0-5

-

2x4 II 4⁵

Ø

劃7

6

3x5= 8-0-0

0-3-4

8-0-0

4-0-12

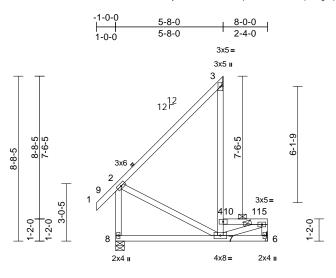
11 3x5 🍬 10 3

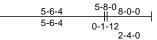
13

Page: 1

Scale = 1:64.9

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) //defl L/ TCLL (roof) 30.0 Plate Grip DOL 1.15 TC 0.59 Vert(LL) -0.23 7-8 >404 24 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.86 Vert(CT) -0.42 7-8 >215 18 TCDL 10.0 Rep Stress Incr YES WB 0.47 Horz(CT) 0.00 7 n/a n/a BCDL 10.0 Inccontext	0	244/190 FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2.0E BRACING TOP CHORD Structural wood sheathing directly applied or 6-0: oc purins, except end verticals. BOT CHORD Rigid ceiling directly applied or 8-3-12 oc bracing. WEBS 1 Row at midpt 4-7 REACTIONS (size) 7= Mechanical, 8=0-5-8 Max Horiz 8=411 (LC 11) Max Grav 7=454 (LC 28), 8=610 (LC 29) Max Grav 7=454 (LC 28), 8=610 (LC 29) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2-0/05, 2-9=-149/259, 3-9=-80/288, 3-10=-277/176, 10-11=-230/190, 4-11=-227/201, 4-5=-1600, 4-7=-171/146, 2-8=-256/285 1) Wind: ASCE 7-10; Vult=130mph (G-second gust) Vaste103mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 5-0-0 to 8-0-0 zone; cantilever left and right exposed; envelope) exterior zone and C-C Exterior (2) 5-0-0 to 8-0-20 one; cantilever left and right exposed; envelope) exterior zone and C-C Exterior (2) 5-0-0 to 8-0-0 zone; cantilever left and right exposed; envelope) exterior zone and C-C Exterior (2) 5-0-0 to 8-0-0 zone; cantilever left and right exposed; envelope) exterior zone and C-C Exterior (2) 5-0-0 to 8-0-0 zone; cantilever left and right exposed; cord or like bag bag bag bag bag bag bag bag bag bag	200000	22 EER. A.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



818 Soundside Road Edenton, NC 27932

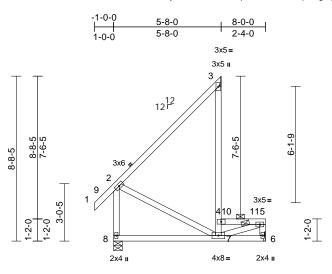
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	H04	Half Hip	1	1	Job Reference (optional)	E15512313

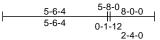
Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:10 ID:b4r7AwRZSyWY78TtRsV1Ebzaq6b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:60.7

		1			· · · · · ·		i					i		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	30.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)	-0.03	7-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.06	7-8	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.23	Horz(CT)	-0.02	3	n/a	n/a			
BCLL	0.0*	Code	IRC2018	5/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 58 lb	FT = 20%	
LUMBER			3)		7-10; Pr=30.0 ps									
TOP CHORD	2x4 SP No.2				late DOL=1.15); P									
BOT CHORD					=1.15 Plate DOL=	=1.15); C	ategory II; E	xp B;						
WEBS	2x4 SP No.3			Fully Exp.; C				h:e						
BRACING			,	 Unbalanced snow loads have been considered for this design. 										
TOP CHORD		eathing directly applie		0										
		s, and 2-0-0 oc purlins	s 3)		psf or 1.00 times f									
BOT CHORD	(6-0-0 max.): 4-7, 4	-ɔ. / applied or 7-8-4 oc			on-concurrent with			-						
BUICHURD	bracing.	/ applied 01 / -0-4 0C	6)		quate drainage to			g.						
REACTIONS	0	anical, 6= Mechanica	7)		s been designed f									
NEACTIONS	(SIZE) 3= MECH 8=0-5-8				ad nonconcurrent									
	Max Horiz 8=475 (L	C 14)	8)		nas been designed			0psf						
	Max Uplift 3=-183 (L		,		n chord in all area			om						
	8=-46 (L0				by 2-00-00 wide wi			UIII						
	Max Grav 3=507 (L		, 9)		nord and any other members. efer to girder(s) for truss to truss connections.									
	8=459 (L	,	- /		hanical connection			to						
FORCES	(lb) - Maximum Con	npression/Maximum			capable of withst									
	Tension			joint 3 and 7	9 lb uplift at joint 6		•							
TOP CHORD			11		ISP connectors re			ect						
	4-7=-17/217, 3-4=-4 10-11=-390/430, 5-	4/302, 4-10=-390/430	,		ing walls due to U									
	5-6=-270/111, 2-8=				s for uplift only and	does no	ot consider la	ateral				munn	UIII.	
BOT CHORD			10	forces.) 1 has/have been	modifier	d Building				-	WAH CA	Rolly	
WEBS	5-7=-450/400, 2-7=		12		st review loads to						15	RIL		
NOTES	·			•	e intended use of						2.	EESS	CATV :	
	ed roof live loads have	been considered for	13		Irlin representation			size		Z	55		Rill	
this desig					ation of the purlin a					-		·Q		
	CE 7-10; Vult=130mpl			bottom chore						-	:	SEA	1 1 5	
	3mph; TCDL=6.0psf; B				n inside of top cho					Ξ			• –	
	p B; Enclosed; MWFR			•	vertical web shall r	not excee	ed 0.500in.			=		0363	22 : 3	
	C-C Exterior (2) -1-0-0			DAD CASE(S)							0	0363	1 2	
	r left and right exposed osed;C-C for members				ow (balanced): Lur	mber Inc	rease=1.15,	Plate			5	·	all S	
	ons shown; Lumber DC		5	Increase=1							2.5	NGIN	EELAN	
DOL=1.6				Uniform Lo	()	0 00 5	10 110				11	710	CEL N	
20211.00	-			vert: 1-2	=-60, 2-3=-60, 4-1	v=-60, 5	-10=-140,					A G	ILBEIT	

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-2=-60, 2-3=-60, 4-10=-60, 5-10=-140, 6-8=-20




G

mmm March 18,2021

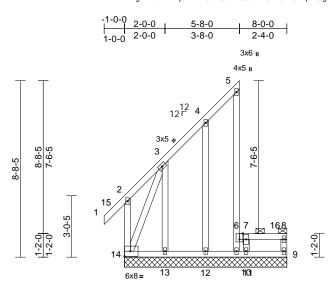
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	H05	Half Hip	2	1	Job Reference (optional)	E15512314

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:11 ID:b4r7AwRZSyWY78TtRsV1Ebzaq6b-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:60.7

			-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)	-0.03	7-8		240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		вс	0.27	Vert(CT)	-0.06	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.23	Horz(CT)	-0.02	3	n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 58 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 3= Mecha 8=0-5-8 Max Horiz 8=475 (LC Max Uplift 3=-242 (L 8=-47 (LC Max Grav 3=663 (LC	athing directly applie cept end verticals, ar -0 max.): 4-7, 4-5. applied or 7-8-4 oc unical, 6= Mechanica C 14) C 14), 6=-136 (LC 1- 22), 6=-273 (LC 37)	4) d or 5) (d 5) (, 7) (, 7) (, 8) (4),	DOL=1.15 PL Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 j overhangs n Provide adec This truss ha chord live loa * This truss to on the bottor 3-06-00 tall b chord and an	7-10; Pr=30.0 psf ate DOL=1.15); P =1.15 Plate DOL= t=1.10 snow loads have t s been designed f pon-concurrent with quate drainage to p s been designed fad nonconcurrent to as been designed n chord in all area: by 2-00-00 wide wi by other members. er(s) for truss to tr	f=20.0 p 1.15); C been cor or great at roof le ortevent or a 10. with any for a liv s where Il fit betw	sf (flat roof sr ategory II; Ex nsidered for the er of min roof bad of 20.0 pr ve loads. water ponding 0 psf bottom other live load e load of 20.0 a rectangle veen the bottom	now: kp B; his i live sf on g. ds. Opsf	Ir U C 3) D L U	niform Lo Vert: 1-2 oncentra Vert: 3= ead + 0.2 umber In niform Lo	1.15 bads (II 2=-60, .tted Lo 112 75 Roc crease bads (II 2=-65,	alanced): Lumbe b/ft) 2-3=-60, 4-10=-f ads (lb) of Live (balanced u=1.15, Plate Incr b/ft) 2-3=-65, 4-10=-f	r Increase=1.15, Plate 60, 5-10=-90, 6-8=-20) + 0.75 Attic Floor: rease=1.15
FORCES	8=459 (L0 (lb) - Maximum Com Tension	,	10	bearing plate	hanical connection capable of withsta 36 lb uplift at joint	anding 2							
TOP CHORD		2/270, 4-10=-389/43 1=-389/430,	0, 11) One RT7A U truss to bear	SP connectors red ing walls due to UI for uplift only and	commen PLIFT at	t jt(s) 8. This					WITH CA	1997
BOT CHORD WEBS NOTES	7-8=-584/416, 6-7=- 5-7=-451/399, 2-7=-		12) Load case(s) designer mu	1, 3 has/have been as review loads to be the streview loads to be the streveew loads to be the s	verify the	at they are				- AL	OR FES	2 Aller
this design 2) Wind: AS(Vasd=103 Cat. II; Ex zone and cantilever right expo	CE 7-10; Vult=130mph Bmph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior (2) -1-0-0 left and right exposed ised;C-C for members and ons shown; Lumber DO	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 7-10-4 zone; ; end vertical left and and forces & MWFR	14 15 15	or the orienta bottom choro) Gap betweer diagonal or v) Hanger(s) or provided suff lb down and	n inside of top choi ertical web shall n other connection icient to support c 42 lb up at 5-6-4 tion of such conne of others.	along the rd bearin ot excee device(s oncentra on top c	e top and/or ng and first ed 0.500in. s) shall be ated load(s) 1 hord. The	48		Statilities.			• -

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 7-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - design/selection of such connection device(s) is the responsibility of others. LOAD CASE(S) Standard



G minin March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	H06	Half Hip Supported Gable	1	1	Job Reference (optional)	E15512315

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:12 ID:ngRK4chARDj4xDN2G1LGcHzaSbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 \vdash

Scale = 1:56.8

Plate Offsets (X, Y): [6:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MSH	0.65 0.09 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 70 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (size) 9=8-0-0, 12=8-0-0 Max Horiz 14=475 (1 Max Uplift 9=-44 (LC 11=-252 13=-612 Max Grav 9=101 (LI 11=375 (1	applied or 10-0-0 oc 10=8-0-0, 11=8-0-0, , 13=8-0-0, 14=8-0-0 _C 14) 2 14), 10=-439 (LC 14), , 'LC 12), 12=-153 (LC 1 _C 14), 14=-379 (LC 37), _C 14), 12=254 (LC 38)	or 3) 4) 2) 5)), 6)	Vasd=103mp Cat. II; Exp E zone and C-C 2-0-0 to 2-6-4 cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp; C Unbalanced design. This truss ha	7-10; Vult=130mpf h; TCDL=6.0psf; B ; Enclosed; MWFR C Corner (3) -1-0-0 t, Corner (3) 2-6-4 and right exposed ;C-C for members shown; Lumber DC ed for wind loads ir ds exposed to wind I Industry Gable En alified building desi 7-10; Pr=30.0 psf ate DOL=1.15; Pf= =1.15 Plate DOL=1 t=1.10 snow loads have be s been designed fo ssf or 1.00 times fla	CDL=6 S (env. to 2-0- to 7-10 ; end v and foi DL=1.60 in the pla d (norm ind Deta igner as (roof liv =20.0 p 1.15); C een cor	.0psf; h=25ft; elope) exterior 0, Exterior (2) ertical left and cess & MWFR; 0 plate grip ane of the trus al to the face), ils as applicab s per ANSI/TP e load: Lumbe sf (flat roof snd ategory II; Exp isidered for thi er of min roof I	l S le, l 1. er cow: co B; s ive	trus con forc 16) Gra or t bott	s to bea nection i ces. phical p	ring wa is for u urlin re ation o d.	onnectors recom alls due to UPLIF plift only and doe presentation doe of the purlin along	mended to connect T at jt(s) 13. This es not consider lateral es not depict the size
13=463 (LC 38), 14=775 (LC 14) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-14=-212/250, 1-15=0/28, 2-15=0/67, 2-3=-109/228, 3-4=-370/291, 4-5=-195/154, 6-11=-358/249, 5-6=-108/114, 6-7=-89/116, 7-16=-89/116, 8-16=-89/116, 8-9=-84/79 BOT CHORD 13-14=-148/119, 12-13=-148/119, 11-12=-148/119, 10-11=-76/63, 9-10=-76/63 WEBS 4-12=-232/227, 3-13=-625/799, 7-10=-388/540, 3-14=-1270/806 NOTES 1) Unbalanced roof live loads have been considered for this design.				Provide adec All plates are Gable require Truss to be fit braced again Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to beari 10, and 14. T	on-concurrent with luate drainage to pr 2x4 MT20 unless es continuous botto sis continuous botto sis cantinuous botto sis been designed for d nonconcurrent w as been designed for d nonconcurrent w as been designed for n chord in all areas y 2-00-00 wide will y other members. SP connectors recc ng walls due to UP his connection is for lateral forces.	revent v otherwi one fac one fac or a 10.0 ith any for a liv where fit betv commen LIFT at	water ponding. se indicated. d bearing. e or securely iagonal web). D psf bottom other live load e load of 20.0p a rectangle veen the botton ded to connec jt(s) 9, 11, 12	ls. osf m		Contraction of the second seco		SEA 0363	22 EER C

- - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

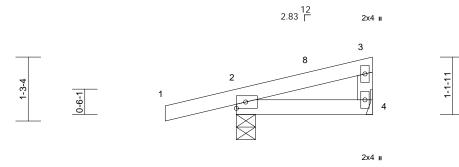
March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	HJ1	Diagonal Hip Girder	1	1	Job Reference (optional)	E15512316

-1-5-0

1-5-0

Carter Components, Chesapeake, VA - 23323,


Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:12 ID:CuSnCjesYpF3wuahOsGO3BzaT8C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-7

2-8-7

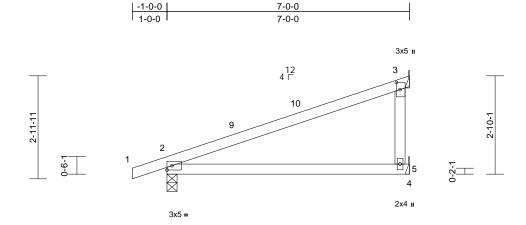
2-8-7

Page: 1

3x5 =

Scale = 1:22.9

Scale = 1:22.9												
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 30.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 11 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-8-7 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-4-9, 4 Max Horiz 2=36 (LC Max Uplift 2=-88 (LC	cept end verticals. applied or 10-0-0 o 4= Mechanical 11)	c 9) One RT truss to forces.	iss has been design ottom chord in all are tall by 2-00-00 wide d any other member girder(s) for truss to mechanical connection plate capable of with YA USP connectors r bearing walls due to on is for uplift only ar	as where will fit bety s. truss coni on (by oth standing 1 ecommer UPLIFT a	a rectangle ween the botto nections. lers) of truss to 13 lb uplift at jo nded to connect t jt(s) 2. This	om D Dint Ct					
	Max Grav 2=272 (L0		LOAD CASI	(S) Standard								
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-2=0/26, 2-8=-77/1 3-4=-73/23	28, 3-8=-14/13,										
BOT CHORD	2-4=-68/37											
NOTES												
Vasd=103r Cat. II; Exp zone; canti and right e DOL=1.60		CDL=6.0psf; h=25ft; S (envelope) exterio posed ; end vertical =1.60 plate grip	or left							an'	OPTH CA	ROJUIN
DOL=1.15	CE 7-10; Pr=30.0 psf (Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1	20.0 psf (flat roof sr	now:						4		ight co	
	ed snow loads have be	een considered for th	nis						E		SEA 0363	• -
4) This truss load of 12.	has been designed fo .0 psf or 1.00 times fla s non-concurrent with o	t roof load of 20.0 ps							1111			eRik S
	has been designed fo load nonconcurrent wi		ds.								A. C	ILBER III


818 Soundside Road Edenton, NC 27932

A. GILE A. GILUN March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	101	Monopitch	6	1	Job Reference (optional)	E15512317

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:12 ID:ZpHxNmB3v7Uge9e3?TfTcszaUz?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.3

Plate Offsets (X, Y): [3:0-2-8,0-1-4]

	5 (73, 1): [0:0 2 0,0 1 1]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.72 0.58 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.03	(loc) 5-8 5-8 2	l/defl >732 >359 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
Vasd=10 Cat. II; E zone and 2-0-0 to cantileve right exp for reacti DOL=1.6 DOL=1.1 Lumber I	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=107 (LC Max Uplift 2=-84 (LC Max Grav 2=422 (LC (LC 7) (b) - Maximum Com Tension 1-2=0/25, 2-9=-173/ 3-10=-47/60, 3-5=0/ 2-5=-104/123, 4-5=0/ 2-5=-104/123, 4-5=0/ SCE 7-10; Vult=130mph GC - C Exterior (2) -1-0-0/ 3-8-12, Exterior (2) -1-0-0/ 3-8-12, Exterior (2) -3-8- er left and right exposed iosed; C-C for members. 	cept end verticals. applied or 10-0-0 oc 3= Mechanical, 5= al C 13) C 10), 3=-77 (LC 14) C 2), 3=240 (LC 2), 5 apression/Maximum 144, 9-10=-59/0, 0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 2-0-0, Interior (1) 12 to 6-8-12 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip roof live load: Lumbe 20.0 psf (flat roof sno	5) d or 6) 7) 8) =135 9) 10) LOA	load of 12.0 j overhangs no This truss has chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One RT7A U truss to bear connection is forces. Gap between	s been designed i so so r 1.00 times f on-concurrent with s been designed i id nonconcurrent as been designed in chord in all area y 2-00-00 wide w y other members ar(s) for truss to tr nanical connection capable of withst SP connectors re ng walls due to U for uplift only and n inside of top cho ertical web shall r Standard	lat roof lin n other lin for a 10.1 with any d for a liv is where uss conr n (by oth anding 7 commen PLIFT at d does n rd bearin	bad of 20.0 p ve loads. O psf bottom other live load e load of 20. a rectangle veen the bott nections. ers) of truss 77 lb uplift at ded to connet i jt(s) 2. This of consider la ng and first	ads. Opsf iom to joint ect				ORTH CA ORTHESS SEA 0363	• -
	ced snow loads have be	en considered for thi	s								11	CAG	ILBEIT

design.

G١ mmm March 18,2021

818 Soundside Road Edenton, NC 27932

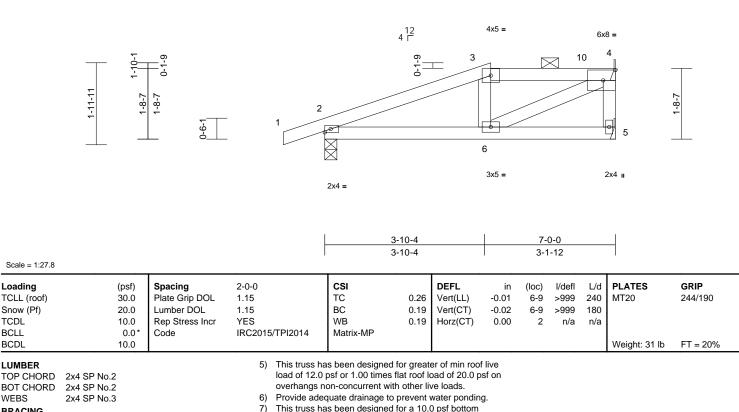
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	102	Half Hip	1	1	Job Reference (optional)	E15512318

4-0-0

4-0-0

-1-0-0

1-0-0


Carter Components, Chesapeake, VA - 23323,

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:13 ID:Uyr06JXbul?TjMpmpl52f4zaT8M-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

7-0-0

3-0-0

Page: 1

WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

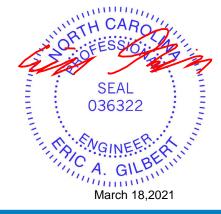
Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

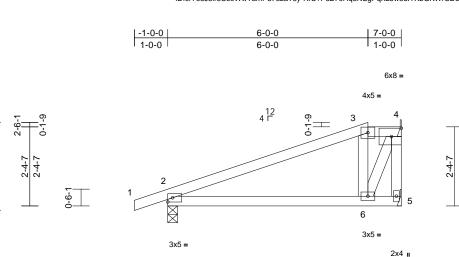

BCLL

BCDL

- **REACTIONS** (size) 2=0-3-8, 4= Mechanical, 5= Mechanical Max Horiz 2=63 (LC 13) Max Uplift 2=-90 (LC 10), 4=-65 (LC 10) Max Grav 2=429 (LC 2), 4=316 (LC 2), 5=46 (LC 7) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/26, 2-3=-471/126, 3-10=-410/150,
- 4-10=-412/149, 4-5=0/0 BOT CHORD 2-6=-85/400. 5-6=-25/27 WEBS 3-6=-104/90, 4-6=-133/453 NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 4.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	103	Half Hip	1	1	Job Reference (optional)	E15512319

2-7-11

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:13 ID:cfYe8J3Ir3Cs9WwTamP873zaT8y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

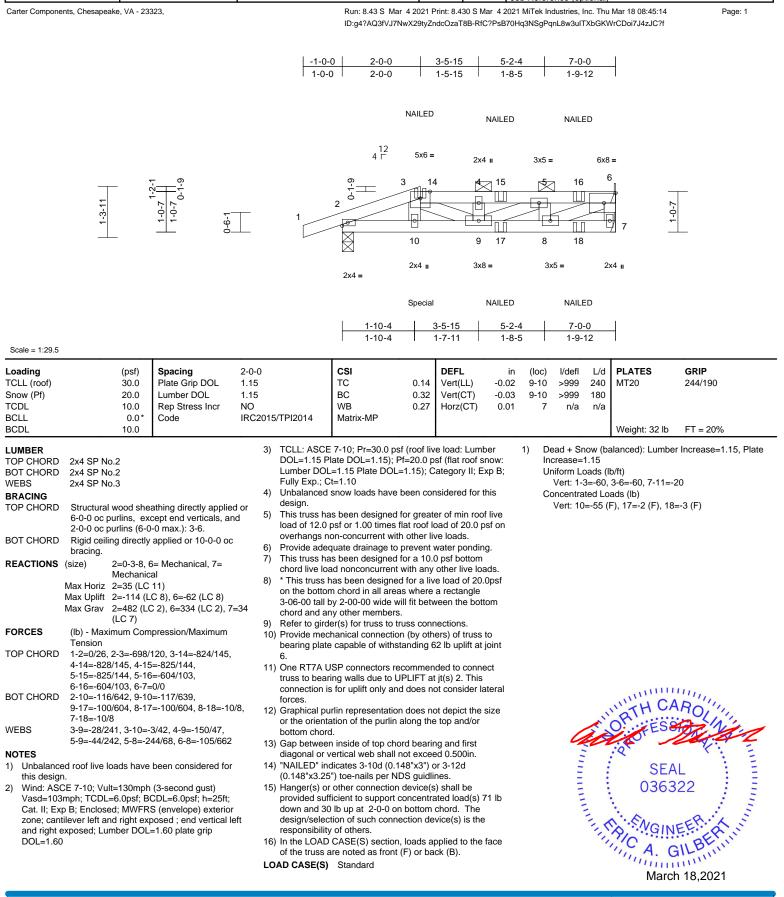
Page: 1

Scale = 1:34.5

						-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15		тс	0.70	Vert(LL)	-0.05	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.08	6-9	>974	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 31 lb	FT = 20%
LUMBER			4)	Unbalanced	snow loads have	been cor	nsidered for t	this					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD	2x4 SP No.2		5)		s been designed								
WEBS	2x4 SP No.3				psf or 1.00 times			osf on					
BRACING					on-concurrent wit								
TOP CHORD	Structural wood she				quate drainage to is been designed								
		cept end verticals, a	nd ()		ad nonconcurrent								
	2-0-0 oc purlins (6-0	,	. 8)		as been designe								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с с)		n chord in all area			.0001					
DEACTIONS		4 Machanical 5			y 2-00-00 wide v			tom					
REACTIONS	(SIZE) Z=0-3-8, Mechanic	4= Mechanical, 5=		chord and ar	y other members	5.							
	Max Horiz 2=91 (LC		9)		er(s) for truss to t								
	Max Uplift 2=-87 (LC		. 10		hanical connection								
	5=-142 (L		,		capable of withs		42 lb uplift a	it					
	Max Grav 2=440 (L		5=11		1 lb uplift at joint								
	(LC 14)		11		ing walls due to L								
FORCES	(lb) - Maximum Con	npression/Maximum			for uplift only an								
	Tension			forces.									
TOP CHORD	1-2=0/26, 2-3=-284/	/149, 3-4=-207/96,	12) Graphical pu	rlin representatio	n does n	ot depict the	size					
	4-5=0/0			or the orienta	ation of the purlin	along the	top and/or						
BOT CHORD	2-6=-95/194, 5-6=-3			bottom chore								WITH CA	1111
WEBS	3-6=-158/101, 4-6=	-124/473	13		n inside of top ch							WHY CA	AD
NOTES					ertical web shall	not excee	ed 0.500in.				1	alli	
,	ed roof live loads have	been considered fo	r LC	DAD CASE(S)	Standard						N.	O'EES	Id Nor
this design	n. CE 7-10; Vult=130mpł	(2 accord quat)								6	3	1P 1	1 des
	Bmph; TCDL=6.0psf; B									-		.0	T: -
	p B; Enclosed; MWFR											CEA	n 13
	C-C Exterior (2) zone;									=	:	SEA	• –
	end vertical left and ri											0363	322 ; =
	and forces & MWFRS		;								6		1 - E
	OL=1.60 plate grip DC										1		A 1 3
	CE 7-10; Pr=30.0 psf										20	NO.	FERIAS
	5 Plate DOL=1.15); Pf=										1	AL GIN	H. LAN
	OL=1.15 Plate DOL=1	.15); Category II; Ex	αр В;									11. A. C	HBUN
Fully Exp.	; Ct=1.10											1, 1. 0	11-11

3) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

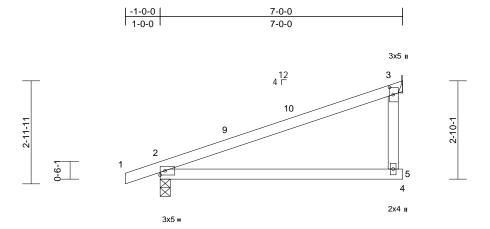
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



A. GIL March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	104	Roof Special Girder	1	1	Job Reference (optional)	E15512320

818 Soundside Road Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system: plantietis and property incorporate dust using in the version of the second property incorporate and begin into version of the version of the

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	J01	Monopitch	2	1	Job Reference (optional)	E15512321

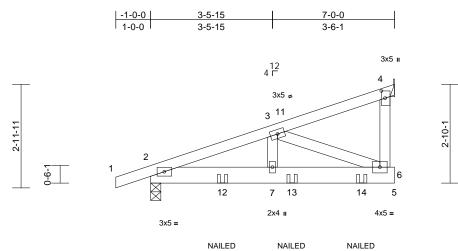
Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:14 ID:VVusFxxwuBHfoaQloui01FzaT7q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.3

Plate Offsets (X, Y): [3:0-2-8,0-1-4]

- 1010 0110010 ()	, i). [0.0 2 0,0 i i]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.96 0.62 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.24 0.03	(loc) 5-8 5-8 2	l/defl >684 >339 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (REACTIONS (Max Horiz 2=107 (LC Max Uplift 2=-84 (LC Max Uplift 2=-84 (LC Max Grav 2=422 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-9=-178/ 3-10=-48/59, 3-5=0/ 2-5=-103/131, 4-5=C E 7-10; Vult=130mph nph; TCDL=6.0psf; B B; Enclosed; MWFR -C Exterior (2) -1-0- 1-12, Exterior (2) -3-8- eft and right exposed ac;C-C for memberss s shown; Lumber DO E 7-10; Pr=30.0 psf (Plate DOL=1.15); Pf= U=1.15 Plate DOL=1	applied or 10-0-0 or 3= Mechanical C 13) C 10), 3=-53 (LC 14) C 2), 3=336 (LC 2) pression/Maximum 166, 9-10=-59/1, 136 0/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 12 to 6-8-12 zone; ; end vertical left an- and forces & MWFR 0L=1.60 plate grip roof live load: Lumbr- 20.0 psf (flat roof sn .15); Category II; Ex- pen considered for the r greater of min roof t roof load of 20.0 ps	chord liv 6) * This true on the bisis of t	s has been designed load nonconcurren ss has been designed tom chord in all are all by 2-00-00 wide v d any other member girder(s) for truss to nechanical connection late capable of withs A USP connectors r earing walls due to 1 on is for uplift only ar veen inside of top ch or vertical web shall (S) Standard	t with any ed for a liv as where will fit betw s. truss com on (by oth standing 5 ecommen UPLIFT at nd does no	other live load e load of 20. a rectangle veen the bott nections. ers) of truss i3 lb uplift at ded to connet i jt(s) 2. This of consider la ng and first	Opsf com to joint ect				SEA 0363	EEP HUI


mmm March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	J03	Monopitch Girder	1	1	Job Reference (optional)	E15512322

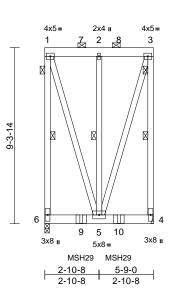
Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:15 ID:ckfLPZuPqymDJz6XZ2d4tPzaT7u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.1

Plate Offsets (X, Y): [4:0-2-8,0-1-4]

	7, 1): [4:0 2 0,0 1 4]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.15 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 7-10 7-10 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
	2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or 4= Mechanical C 11) C 8), 4=-118 (LC 12)	6) ed or 7)	chord live loa * This truss I on the bottor 3-06-00 tall I chord and ar Refer to gird Provide meco bearing plate 4. One RT7A L truss to bear	is been designed i ad nonconcurrent has been designed on chord in all area by 2-00-00 wide w hy other members er(s) for truss to tr hanical connection e capable of withst ISP connectors re ing walls due to U s for uplift only and	with any d for a liv s where ill fit betw uss coni n (by oth anding commer PLIFT a	other live load re load of 20. a rectangle veen the bott nections. ers) of truss 18 lb uplift a uded to connet t jt(s) 2. This	Opsf com to t joint ect					
FORCES	(lb) - Maximum Com Tension		10)	Gap between	n inside of top cho vertical web shall r								
TOP CHORD			11)	"NAILED" in	dicates 3-10d (0.1- ") toe-nails per NE	48"x3") (or 3-12d						
BOT CHORD		-94/450, 7-13=-94/4	50, 12)	In the LOAD	CASE(S) section, are noted as front	loads a	pplied to the	face					
WEBS	3-7=0/118, 3-6=-484	1/125	10	AD CASE(S)		(1) 01 00	on (B).						
NOTES			1)		ow (balanced): Lui	nber Inc	rease=1.15	Plate				mm	1111.
1) Wind: ASC Vasd=103 Cat. II; Exp zone; cant	CE 7-10; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR tilever left and right exp exposed; Lumber DOL	CDL=6.0psf; h=25ft; S (envelope) exterio posed ; end vertical	r	Increase=1 Uniform Lo Vert: 1-4 Concentrat	.15					4	A.	ORTH CA	ROLIN
2) TCLL: AS DOL=1.15	CE 7-10; Pr=30.0 psf (9 Plate DOL=1.15); Pf= 0L=1.15 Plate DOL=1	20.0 psf (flat roof sn	ow:							THUN STREET		SEA 0363	• •
3) Unbalance	ed snow loads have be	en considered for th	is								5	·	a:1 3
design.	has been designed for	analtan of minf	live								11	S. NGIN	EFFICAS
load of 12.	has been designed for .0 psf or 1.00 times flat s non-concurrent with c	t roof load of 20.0 ps									11	111111	18 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	K01	Flat Girder	1	1	Job Reference (optional)	E15512323

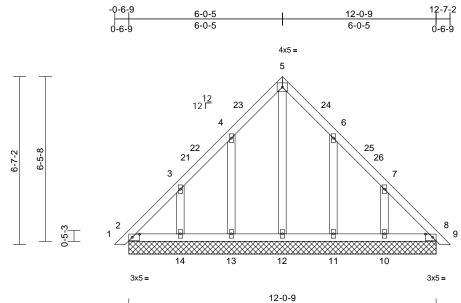
Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:15 ID:II75XxRQ_aveupym4yIciozaVG2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.1

Scale = 1.01.1												
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.02	5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.04	5	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.86	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2	014 Matrix-MP								
BCDL	10.0										Weight: 90 lb	FT = 20%
UMBER			6) * Th	s truss has been design	ed for a liv	e load of 20.	Opsf					
OP CHORD	2x6 SP No.2		on th	e bottom chord in all are	eas where	a rectangle						
BOT CHORD	2x6 SP No.2		3-06	-00 tall by 2-00-00 wide	will fit betw	veen the bott	om					
VEBS	2x4 SP No.3 *Excep	ot* 6-1,3-4:2x4 SP No		d and any other member								
RACING				r to girder(s) for truss to								
OP CHORD	2-0-0 oc purlins: 1-3	, except end vertical		ide mechanical connecti	ion (by oth	ers) of truss	to					
BOT CHORD			bear	ng plate at joint(s) 6.								
	bracing.		 9) Prov 	ide mechanical connecti								
VEBS	1 Row at midpt	1-6, 3-4, 2-5		ing plate capable of with	standing 6	642 lb uplift a	t					
REACTIONS	(size) 4= Mecha	anical, 6=0-2-14	joint									
	Max Horiz 6=311 (L0			RT8A USP connectors r			ect					
	Max Uplift 4=-642 (L			to bearing walls due to								
	Max Grav 4=1551 (I		26) conr	ection is for uplift only a	na aoes n	ot consider la	ateral					
ORCES	(lb) - Maximum Com	<i>y</i> · · · · · · · · · · · · · · · · · · ·	, 10106	s. hical purlin representation	on does n	ot denict the	ozizo					
011020	Tension	procolori/maximum		e orientation of the purlir			5120					
OP CHORD	1-6=-1455/575, 1-7=	-322/96, 2-7=-322/9		m chord.	r along th							
		22/96, 3-4=-1343/57		USP MSH29 (With 10d i	nails into (Sirder & 4-10	h					
BOT CHORD			,	into Truss) or equivalen								
	4-10=-115/88	,	,	ng at 1-11-2 from the lef								
VEBS	1-5=-543/1196, 2-5=	-1396/160,		(es) to back face of bott								
	3-5=-543/1196			Ì náil holes where hange		ntact with lum	nber.					
OTES				ger(s) or other connectio							OPTEESS	11
	CE 7-10; Vult=130mph	(3-second gust)	prov	ded sufficient to support	t concentr	ated load(s) 1	1023				11111 01	
	Smph; TCDL=6.0psf; B			wn and 81 lb up at 1-11							N'TH UT	HONIN
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope) exterior		at 3-11-2 on top chord.						N	n - Egg	in the
zone; cant	tilever left and right ex	posed ; end vertical le		connection device(s) is						12		Mi and
	exposed; Lumber DOL	=1.60 plate grip		e LOAD CASE(S) sectio			face		7		181 -	Nº1
DOL=1.60				e truss are noted as fron	it (F) or ba	ck (B).					· × ·	1 1 1 E
	CE 7-10; Pr=30.0 psf (ASE(S) Standard					=		SEA	L : E
	5 Plate DOL=1.15); Pf=			ad + Snow (balanced): L	umber Inc	rease=1.15,	Plate		=	:		• -
	OL=1.15 Plate DOL=1	.15); Category II; Exp		ease=1.15					1		0363	22 : 2
Fully Exp.;		an appointered for the		form Loads (lb/ft)						8		1
 Onbalance design. 	ed snow loads have be	en considered for th		/ert: 1-3=-58, 4-6=-19						-	·	airs
0	dequate drainage to pr	overt water pending		centrated Loads (lb)	0.44 (D)	0.044 (5)				21	NGIN	FERMAN
	has been designed fo			/ert: 7=-932, 8=-606, 9=-	-341 (B), ʻ	0=-341 (B)				11	710	THE REAL
	load nonconcurrent w		ls								IL A C	ILBEIT

- Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


GI

A. GIL March 18,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB01	Piggyback	1	1	Job Reference (optional)	E15512324

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:16 ID:AnQ50zLI1KLQAA7YyBmhbCzaT4j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

					. –	0 0							
Scale = 1:45.2													
Plate Offsets (X, Y):	[2:0-3-6,0-1-8],	[8:0-3-6,0-1-8]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	30.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0		1 15	BC	0.06	Vort(CT)	n/a	_	n/2	000			

TCLL (roof)		(psr) 30.0	Plate Grip DOL	2-0-0 1.15			0.07	Vert(LL)	n/a	(100)	n/a	2/0 999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999	101120	244/190	
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	8	n/a	n/a			
BCLL		0.0*	Code		15/TPI2014	Matrix-MSH									
BCDL		10.0											Weight: 71 lb	FT = 20%	
LUMBER			•	1) Unbalanced	roof live loads ha	ve been	considered for	r	13) See	e Standa	rd Ind	ustry Piggyback	russ Connection	
TOP CHORD	2x4 SP N	0.2			this design.									as applicable, or	
BOT CHORD	2x4 SP N			2		7-10; Vult=130m							uilding designer.		
OTHERS	2x4 SP N	0.3				ph; TCDL=6.0psf;				LOAD	CASE(S) Sta	ndard		
BRACING						B; Enclosed; MWI C Exterior (2) 0-2									
TOP CHORD	Structura 6-0-0 oc p		athing directly applie	d or	3-2-10 to 3-7	'-2, Exterior (2) 3-	7-2 to 9-	7-2, Interior (1)						
BOT CHORD	Rigid ceil		applied or 10-0-0 oc	;		-10, Exterior (2) stand right expose									
REACTIONS	bracing.	0 40 0 0	0 10 0 0 10 10 0	•		d;C-C for membe									
REACTIONS	(SIZE)		8=12-0-9, 10=12-0- 9, 12=12-0-9, 13=12-			shown; Lumber I	DOL=1.60) plate grip							
			9, 15=12-0-9, 18=12-	.n_a	DOL=1.60										
	Max Horiz		C 13), 15=158 (LC 13			ed for wind loads									
			C 10), 8=-8 (LC 11),	,		uds exposed to wi d Industry Gable									
			LC 15), 11=-104 (LC	; 15),		alified building de									
			LC 14), 14=-129 (LC			7-10; Pr=30.0 ps									
			.C 10), 18=-8 (LC 11)			late DOL=1.15); I									
	Max Grav		C 29), 8=151 (LC 31)		Lumber DOL	=1.15 Plate DOL	=1.15); Ċ	ategory II; Ex	рB;						
			_C 29), 11=214 (LC 2 _C 31), 13=215 (LC 2	201	Fully Exp.; C										
			_C 28), 15=167 (LC 2		/	snow loads have	been cor	nsidered for th	nis						
		18=151 (L		,	design.	a haan daalamad		an of min roof	live				, in the second	1111	
FORCES	(lb) - Max	imum Com	pression/Maximum	Ċ		is been designed psf or 1.00 times							WITH CA	Roite	
	Tension					on-concurrent wit						N	A	in the	
TOP CHORD	1-2=0/20,	, 2-3=-162/	116, 3-21=-135/60,	7		e 2x4 MT20 unles						12	U. FESS	The second	7
			-88/76, 4-23=-122/1	40		es continuous bo						1)			
			l=-108/124,	ç		spaced at 2-0-0 d		0			2		AL -		
			5=-38/40, 25-26=-61/	31, ₁	0) This truss ha	s been designed	for a 10.	0 psf bottom					SEA		
			138/90, 8-9=0/20		chord live loa	ad nonconcurrent	with any	other live load	ds.		=		0000	•	_
BOT CHORD		/143, 13-14		1		nas been designe)psf		1		0363	ZZ : :	-
		3/143, 11-1 3/143, 8-10	2=-73/143,)73/143			n chord in all area					-	8		1	
WEBS		0/54, 4-13=				by 2-00-00 wide w		veen the botto	om			-	·	airs	
			=-180/133,			ny other members		dod to corner	ot			15		EFICAN	
	7-10=-170			1		ing walls due to L						11	10	BEN	
NOTES						This connection is							MA. G	ILDIN	
						lateral forces.		2, and about	-				in min	inne.	
													Marak	10 2021	

March 18,2021

A MI Tek Affiliate B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEI Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building compo a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into it building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and perm is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding th fabrication, storace, delivery, erection and bracing of trusses and truss systems, see	nent, not he overall anent bracing e
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCS	SI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601	

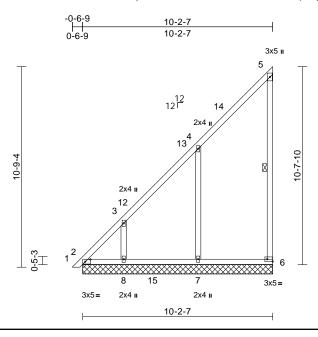
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB02	Piggyback	8	1	Job Reference (optional)	E15512325

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:17 ID:6Py_KwMV_1zuIYd3Z3BEF0zaSyy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 60 lb	FT = 20%

LUMBER		
TOP CHORD		
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc j	ourlins.
BOT CHORD		ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	2=12-0-9, 6=12-0-9, 8=12-0-9,
		9=12-0-9, 10=12-0-9, 11=12-0-9,
		14=12-0-9
	Max Horiz	2=-158 (LC 12), 11=-158 (LC 12)
	Max Uplift	2=-50 (LC 10), 6=-24 (LC 11),
		8=-212 (LC 15), 10=-213 (LC 14),
		11=-50 (LC 10), 14=-24 (LC 11)
	Max Grav	2=161 (LC 29), 6=144 (LC 31),
		8=410 (LC 29), 9=369 (LC 28),
		10=411 (LC 28), 11=161 (LC 29),
		14=144 (LC 31)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/20,	2-3=-172/129, 3-17=-200/89,
	17-18=-1	53/94, 18-19=-107/102,
	4-19=-95/	/120, 4-20=-95/112, 20-21=-104/96,
	21-22=-14	43/86, 5-22=-200/81, 5-6=-150/92,
	6-7=0/20	
BOT CHORD	2-10=-54	/127, 10-23=-54/127, 9-23=-54/127,
	9-24=-54	/127, 8-24=-54/127, 6-8=-54/127
WEBS	4-9=-189	/0, 3-10=-330/255, 5-8=-329/254
NOTES		
1) Unbalance	ed roof live l	oads have been considered for
this desig	n.	

Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-2-10 to 3-2-10, Interior (1) 3-2-10 to 3-7-2, Exterior (2) 3-7-2 to 9-7-2, Interior (1) 9-7-2 to 9-11-10, Exterior (2) 9-11-10 to 12-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 6, 10, and 8. This connection is for uplift only and does not consider lateral forces.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

SEAL 036322 MGINEER March 18,2021

> ENGINEERING BY AMITEK Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB03	Piggyback	5	1	Job Reference (optional)	E15512326

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:18 ID:H6ZjJcQoDHnnGfNaXFmN9azaVG3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61.9

Plate Offsets ((X, Y): [2:0-3-6,0-1-8], [6:Edge,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	30.0 Plate Grip DOL 1.1 20.0 Lumber DOL 1.1 10.0 Rep Stress Incr YE	15 S	5/TPI2014	CSI TC BC WB Matrix-MSH	0.77 0.34 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 5-6 (size) 2=10-2-7, 6=10-2-7, 7=10-2-7, 8=10-2-7, 9=10-2-7 Max Horiz 2=387 (LC 13), 9=387 (LC 13) Max Uplift 2=-138 (LC 12), 6=-114 (LC 11), 7=-172 (LC 14), 8=-201 (LC 14), 9=-138 (LC 12) Max Grav 2=298 (LC 11), 6=248 (LC 28), 7=594 (LC 28), 8=381 (LC 28), 9=298 (LC 11)	1) 2) 3) 4) 5)	Vasd=103m Cat. II; Exp B zone and C- 3-2-10 to 6-4 cantilever lef right expose for reactions DOL=1.60 Truss design only. For stt see Standar or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unblanced design.	7-10; Vult=130mpl bh; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior (2) 0-2-1 I-9, Exterior (2) 6-4 t and right exposed d;C-C for members shown; Lumber DC end for wind loads in uds exposed to winn d Industry Gable Er ialified building des 7-10; Pr=30.0 psf late DOL=1.15); Pf =1.15 Plate DOL= :t=1.10 snow loads have b as been designed for psf or 1.00 times fit	SCDL=6 SS (env 0 to 3-2 -9 to 10 d ; end v and fo DL=1.60 n the pl d (norm nd Deta igner a: (roof liv =20.0 p 1.15); C een cor or great	.0psf; h=25ft; elope) exteric 2-10, Interior (7-8 zone; recrtical left an rces & MWFF) plate grip ane of the tru al to the face ils as applical s per ANSI/T (flat roof sr ategory II; E> nsidered for th er of min roof	or (1) d SS ss), ble, P1 1. er now: cp B; nis live					
FORCES	(lb) - Maximum Compression/Maximum Tension 1-2=0/20, 2-3=-403/269, 3-12=-317/163, 12-13=-286/216, 4-13=-283/234, 4.44 - 250/426 - 5 6 - 157/108	6) 7) 8)	Gable requir Gable studs This truss ha	on-concurrent with es continuous botto spaced at 4-0-0 oc as been designed fo	om choi or a 10.0	d bearing.) psf bottom	-1-			AN.	OR FESS	ROUL
BOT CHORD	4-14=-250/125, 5-14=-173/152, 5-6=-157/108 2-8=-169/186, 8-15=-169/186, 7-15=-169/186, 6-7=-169/186 4-7=-393/213, 3-8=-304/242		* This truss I on the bottor 3-06-00 tall I	ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil	for a liv where I fit betw	e load of 20.0 a rectangle veen the botto)psf om		6	N	SEA	L
NOTES		10	One RT7A L truss to bear		ommen PLIFT at	ded to conne jt(s) 6, 2, 7, a does not	ct				0363	322

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or

consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

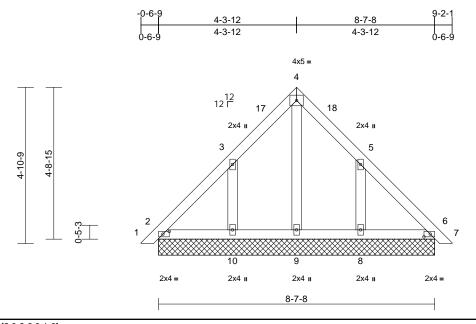
818 Soundside Road Edenton, NC 27932

GI

March 18,2021

A. GIL

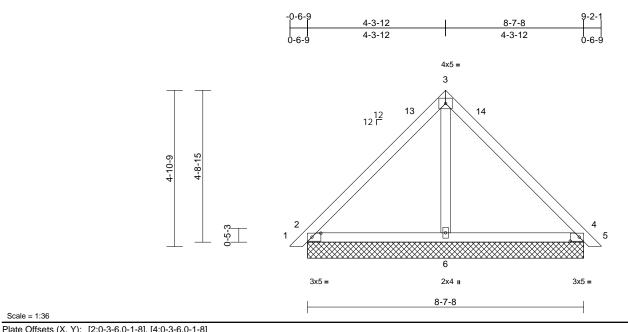
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB04	Piggyback	1	1	Job Reference (optional)	E15512327


Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:18 ID:jn1fwUVmzcqCevjAtOalV7zaSbX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 18,2021

818 Soundside Road Edenton, NC 27932


Scale = 1:36 ~ "

Scale = 1.50													
Plate Offsets ((X, Y): [2:0-2-6,0-1-0]	, [6:0-2-6,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI	2014	CSI TC BC WB Matrix-MP	0.08 0.06 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=8-7-8, 9=8-7-8, 14=8-7-8 Max Horiz 2=115 (L0 Max Uplift 2=-14 (L0 Max Grav 2=153 (L0 8=281 (L0	C 13), 11=115 (LC 13 C 10), 8=-150 (LC 15) (LC 14), 11=-14 (LC 1 C 29), 6=151 (LC 2), C 29), 9=119 (LC 31) LC 28), 11=153 (LC 2)	() () () () () () () () () ()	y. For stu standard consult qu LL: ASCE L=1.15 PM Iber DOL ly Exp.; C coalanced ign. ig	ed for wind loads ds exposed to wi 1 Industry Gable I alified building de 7-10; Pr=30.0 ps ate DOL=1.15); F =1.15 Plate DOL- t=1.10 snow loads have s been designed dosf or 1.00 times on-concurrent wit spaced at 2-0-0 c s been designed d nonconcurrent tas been designed d nonconcurrent as been designed d nonconcurrent as been designed d nonconcurrent as been designed d nonconcurrent as been designed	nd (norm End Deta ssigner as of (roof liv 2f=20.0 p =1.15); C been cor for greate flat roof lo h other liv tom chor ic. for a 10.0 with any d for a liv as where	al to the face ils as applical is per ANSI/TF e load: Lumb sf (flat roof sr ategory II; Ex asidered for th er of min roof pad of 20.0 ps ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle), ble, Pl 1. er now: pp B; his live sf on ds. 0psf					
FORCES TOP CHORD BOT CHORD	5-6=-98/58, 6-7=0/2	79, 3-17=-112/89, 84/94, 5-18=-110/89,	11) One trus Thi late	e RT7A U ss to beari s connect eral forces	y other members SP connectors re ing walls due to L ion is for uplift on d Industry Piggyb	commen IPLIFT at ly and do	jt(s) 2, 10, ar es not consid	nd 8. Ier			A. A.	ORTH CA	ROMA
WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex, zone and exposed ; members	6-8=-46/103 4-9=-87/40, 3-10=-2 ed roof live loads have	13/164, 5-8=-212/164 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown;	4 cor LOAD (ail for Co Isult quali	nnection to base fied building desig Standard	truss as a				La contrata a contrata contrata a contrata a contrata a contrata a contrata c		SEA 0363	EEP A LU

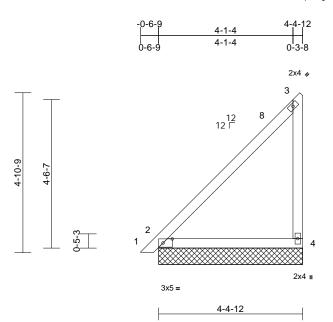
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB05	Piggyback	12	1	Job Reference (optional)	E15512328

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:19 ID:tXtahaOwxMOCPCe?r7DgXyzaVG6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.33 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex, zone and exposed ; members	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=8-7-8, 4 7=8-7-8, 1 Max Horiz 2=-115 (L Max Uplift 2=-60 (LC 7=-60 (LC Max Grav 2=332 (LC (LC 2), 7= 2) (lb) - Maximum Com Tension 1-2=0/20, 2-13=-285 3-14=-148/127, 4-14 2-6=-84/149, 4-6=-19 3-6=-80/43 ed roof live loads have	4=8-7-8, 6=8-7-8, 10=8-7-8 C 12), 7=-115 (LC 12 C 15), 4=-65 (LC 15), 15), 10=-65 (LC 15), 2), 4=332 (LC 2), 6= 332 (LC 2), 10=332 (pression/Maximum 5/116, 3-13=-148/127 L=-285/116, 4-5=0/20 9/129 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig pht exposed;C-C for for reactions shown;	 only. For si see Standa or consult q TCLL: ASC DOL=1.15 I Lumber DO Fully Exp.; (Unbalanced design. This truss h load of 12.0 overhangs (Gable requi Gable stud: Gable stud: This truss h chord live le This truss h chord live le This truss to bea This to bea This conner lateral force See Standa Detail for C consult qua LOAD CASE(S 	snow loads have b as been designed f psf or 1.00 times ff ion-concurrent with res continuous bott spaced at 4-0-0 oc as been designed ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wi ny other members. JSP connectors rec ring walls due to Uf tion is for uplift only s. rd Industry Piggyba ponection to base tr ified building design	d (norm nd Deta signer as (roof liv =20.0 p 1.15); C opeen cor or greate at roof lo other liv om chor c. or a 10.0 with any for a liv s where Il fit betw commen PLIFT at and do ack Trus: cuss as a	al to the face) ils as applicat s per ANSI/TF e load: Lumbi s (flat roof sn ategory II; Ex asidered for th er of min roof bad of 20.0 ps we loads. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ded to conner i jt(s) 2 and 4. es not consid s Connection), ole, PI 1. er oow: p B; nis live sf on ds. opsf om ct				ORTH CA	


exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

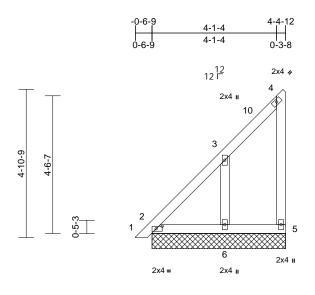
G mmm March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB06	Piggyback	5	1	Job Reference (optional)	E15512329

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:19 ID:ue2VKiK_4_U3smG0i5eEUszaWPm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:35.2

Plate Offsets (X, Y): [2:0-3-6.0-1-8]


Plate Offsets (X, Y): [2:0-3-6,0-1-8]	-	_										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.35 0.28 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-11-9 oc purlins, e Rigid ceiling directly bracing. (size) 2=4-4-12, Max Horiz 2=168 (LC Max Uplift 4=-79 (LC Max Grav 2=245 (LC 5=245 (LC	xcept end verticals. applied or 10-0-0 oc 4=4-4-12, 5=4-4-12 C 13), 5=168 (LC 13) C 11) C 29), 4=240 (LC 28)	9)	load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar) One RT7A L truss to bear	is been designed psf or 1.00 times i on-concurrent witi es continuous bot spaced at 4-0-0 c is been designed ad nonconcurrent has been designe n chord in all aree by 2-00-00 wide y other members SP connectors re ing walls due to U s for uplift only an	flat roof le h other lin tom chor oc. for a 10.4 with any d for a liv as where vill fit betw c. commen JPLIFT at	bad of 20.0 pe ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ded to conne s jt(s) 4. This	sfon Ids. Opsf om Ict					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/20, 2-8=-181/		1'	Detail for Co	d Industry Piggyb nnection to base t fied building desig	truss as a							
BOT CHORD	3-4=-172/88 2-4=-79/101		L	DAD CASE(S)	Standard								
 Wind: ASC Vasd=103 Cat. II; Exy zone and exposed; members Lumber Du Truss desi only. For see Stand or consult TCLL: ASC DOL=1.15 Lumber Du Fully Exp 	CE 7-10; Vult=130mph imph; TCDL=6.0psf; B(p B; Enclosed; MWFR: C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig CE 7-10; Pr=30.0 psf (plate DOL=1.15); Pf= OL=1.15 Plate DOL=1 ; Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig pht exposed;C-C for for reactions shown; l=1.60 the plane of the trus (normal to the face); d Details as applicab gner as per ANSI/TP roof live load: Lumbe ;20.0 psf (flat roof snc. .15); Category II; Exp	ght s , le, l 1. er ow: o B;							M. HIIIIII	The second secon	SEA 0363	EEP A

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB07	Piggyback	1	1	Job Reference (optional)	E15512330

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:19 ID:4IGWm4tDUo9gmgCfq2ynpMzaWP3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-4-12

Scale = 1:37.9 Plate Offsets (X, Y): [2:0-2-6,0-1-0]

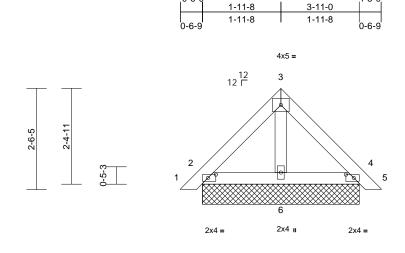
Plate Offsets (X, Y): [2:0-2	2-6,0-1-0]	-										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.41 0.06 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
4-11-9 oc Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxin Tension	.2 .3 .3 wood she ourlins, e g directly 2=4-4-12, 7=4-4-12 2=168 (LC 2=-30 (LC 6=-147 (L 2=-30 (LC 6=283 (LC num Com 2-3=-152/ 12, 4-5=- 130mph 6.0psf; Bd d; MWFRS e grip DO d loads in a dt o wind Gable En	9/106 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior antilever left and rigt ght exposed;C-C for for reactions shown; uL=1.60 the plane of the trus (normal to the face), d Details as applicab	s , , , , , , , , , , , , ,	DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall £ chord and ar 0) One RT7A U truss to bear This connect lateral forces 1) See Standar Detail for Co	snow loads have I as been designed f psf or 1.00 times fi on-concurrent with es continuous bott spaced at 2-0-0 or is been designed nas been designed nas been designed nas been designed nas been designed nas been designed nas been designed so concorrent as been designed nas been designed nas been designed nas been designed nas been designed nas been designed so concorrent so co	If=20.0 p =1.15); C been cor for great lat roof lo to other li tom chor c. for a 10.0 with any d for a liv s where ill fit betv commen PLIFT an y and dc ack Trus russ as a	sf (flat roof si ategory II; E2 ansidered for the er of min roof bad of 20.0 p ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott ided to conne t jt(s) 5, 2, an es not consid s Connection	now: xp B; his f live sf on ads. Opsf om ect d 6. der				SEA 0363	• -

- zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G١ mmm March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB08	Piggyback	1	1	Job Reference (optional)	E15512331


0-6-9

Carter Components, Chesapeake, VA - 23323,

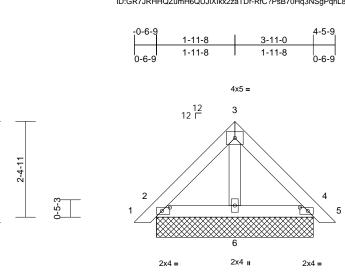
Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:20 ID:0pOwaWk8iZeRIliiFf?jl3zaTFr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-9

Page: 1

	3-11-0	
Scale = 1:28.8	I	
Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0]		

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.06 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 Cat. II; Ex	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-10 oc purlins. Rigid ceiling directly bracing. (size) 2=3-11-0, 7=3-11-0, Max Horiz 2=-57 (LC Max Uplift 2=-20 (LC (LC 14), 7 15) Max Grav 2=151 (LC (LC 2), 7= 2) (lb) - Maximum Com Tension 1-2=0/20, 2-3=-98/4 2-6=-19/51, 4-6=-14 3-6=-57/0 xed roof live loads have in. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Birks 	applied or 10-0-0 oc 4=3-11-0, 6=3-11-0 10=3-11-0 212), 7=-57 (LC 12) 15), 4=-25 (LC 15), (=-20 (LC 15), 10=-2 C 2), 4=151 (LC 2), 6 151 (LC 2), 10=151 pression/Maximum 6, 3-4=-98/46, 4-5=0 /51 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior	4) d or 5) 6=-1 7) 5 (LC 8) =147 9) (LC 1(/20 1 ⁻¹ 12	only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa 0) * This truss ha on the bottor 3-06-00 tall t chord and ar 1) One RT7A L truss to bear This connect lateral forces 2) See Standar Detail for Co	snow loads have as been designed pof or 1.00 times i on-concurrent witi es continuous bot spaced at 2-0-0 o is been designed n chord in all area by 2-00-00 wide w hy other members SP connectors re ing walls due to U tion is for uplift on s. d Industry Piggyb nnection to base i fied building desig	nd (norm End Deta signer a f (roof liv f=20.0 p =1.15); C been cou for great flat roof I n other li tom choir c for a 10. with any d for a liv is where ill fit betw commer PLIFT a y and do ack Truss	al to the face al to the face Is as applica s per ANSI/TI e load: Lumb of (flat roof sr ategory II; E> asidered for the er of min roof bad of 20.0 p: ve loads. d bearing. D psf bottom other live load e load of 20.0 c ve loads. d bearing. D psf bottom other live load e load of 20.0 c ue loads. d bearing. D psf bottom other live load e load of 20.0 c a rectangle veen the bottom ded to conne jt(s) 2, 4, an- es not consid s Connection), ble, PI 1. eer now: cp B; his f live sf on ds. Dpsf om ect d 6. der				ORTH CA	ROUNT
Cat. II; Ex zone and exposed ; members		S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown;	Jht	DAD CASE(S)	Standard						A A A A A A A A A A A A A A A A A A A	SEA 0363	EER ALU


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

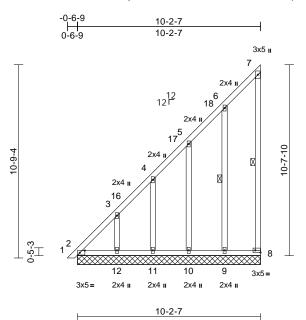
GI A. GIL March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette		
21020141-A	PB09	Piggyback	9	1	Job Reference (optional)	E15512332	

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:20 ID:GR7JRHHQZumH6QUJIXIkx2zaTDr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.8			3-11-0	-
Plate Offsets (X, Y): [2:0-2-6,0-1-0],	[4:0-2-6,0-1-0]			

2-6-5

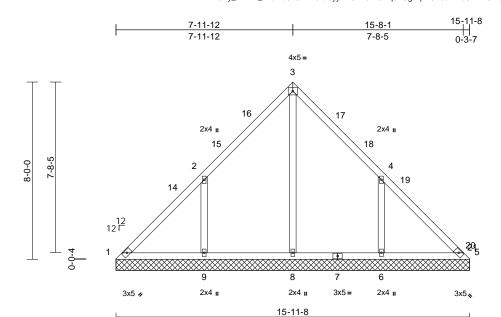

Loading (psf) TCLL (roof) 30.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	CSI TC BC WB Matrix-MP	0.05 0.06 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood she 5-0-10 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=3-11-0 7=3-11-0 Max Horiz 2=-57 (LC Max Uplift 2=-20 (LC (LC 14), 7 15) Max Grav 2=151 (LL (LC 2), 7 2) FORCES (lb) - Maximum Con Tension	 2 15), 4=-25 (LC 15), 6=-1 7=-20 (LC 15), 10=-25 (LC 2), 6=14' =151 (LC 2), 10=151 (only. For stisee Standar or consult qi TCLL: ASCE DOL=1.15 F DUL=1.15 F Lumber DOI Fully Exp.; C Unbalanced design. This truss hi load of 12.0 overhangs ri 7) Gable requii 8) Gable studs 9) This truss ho chord live lo 10) * This truss on the botto 3-06-00 tall chord and a 11) One RT7A L truss to bear This connec lateral force: 12) See Standar Detail for Comparison on the standard beta for contail chord contail chord and the connect lateral force: 	snow loads have be as been designed for psf or 1.00 times flat on-concurrent with c es continuous bottor spaced at 4-0-0 oc. as been designed for ad nonconcurrent wi has been designed f m chord in all areas by 2-00-00 wide will by other members. ISP connectors reco- ting walls due to UPL tion is for uplift only as a d Industry Piggybac nnection to base tru fied building designed	(norm d Deta gner as gner as gner as (20.0 p (20.0 p (20.0 p) (20.0 p) (20.	al to the face) Is as applicat s per ANSI/TF e load: Lumb of (flat roof sr ategory II; Ex isidered for th er of min roof bad of 20.0 ps re loads. d bearing. D psf bottom other live load e load of 20.0 a rectangle load of 20.0 a rectangle veen the bottom ded to conner if(s) 2, 4, and es not consid s Connection), ble, er oow: cp B; his live sf on ds. opsf ct d 6. ler				SEA 0363	ROLINI

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	PB10	Piggyback	1	1	Job Reference (optional)	E15512333

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:20 ID:H6ZjJcQoDHnnGfNaXFmN9azaVG3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.2


Plate Offsets (X, Y): [2:0-3-6,0-1-8],	[8:Edge,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.34 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2=10-2-7, 13=10-2-7 Max Horiz 2=387 (LC Max Uplift 2=-124 (L 9=-68 (LC 11=-100 (13=-124 (L 9=216 (LC	applied or 10-0-0 oc 7-8, 6-9 8=10-2-7, 9=10-2-7, 7, 11=10-2-7, 12=10-2 7 (13), 13=387 (LC 13) C 12), 8=-132 (LC 13) C 12), 8=-132 (LC 13) C 12), 8=-132 (LC 13) C 12), 8=-132 (LC 14), LC 14), 12=-142 (LC LC 12) C 11), 8=133 (LC 10), C 28), 10=217 (LC 28) LC 28), 12=261 (LC 2)	d or 2) 2-7, 3)), (14), 4) (14), 5)), 8), 6)	Vasd=103mp Cat. II; Exp E zone and C-1 3-2-10 to 6-4 cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. This truss ha load of 12.0 overhangs n All plates are	7-10; Vult=130mpf bh; TCDL=6.0psf; E 8; Enclosed; MWFR C Exterior (2) 0-2-1 -9, Exterior (2) 6-4- t and right exposed d;C-C for members shown; Lumber DC ed for wind loads in ds exposed to wind d Industry Gable Er alified building des 7-10; Pr=30.0 psf late DOL=1.15;) Pf =1.15 Plate DOL=1 t=1.10 snow loads have b s been designed for psf or 1.00 times fla on-concurrent with a 2x4 MT20 unless es continuous bott	SCDL=6 SS (env 0 to 3-2 -9 to 10 I ; end b and fo DL=1.60 n the pl d (norm nd Deta igner a (roof liv =20.0 p 1.15); C een col or great at roof l other wi	.0psf; h=25ft; elope) exterio 2-10, Interior (-7-8 zone; vertical left ani- rces & MWFR) plate grip ane of the trus al to the face) ils as applicat s per ANSI/TF e load: Lumbi sf (flat roof sn ategory II; Ex isidered for th er of min roof bad of 20.0 ps ve loads. se indicated.	r 1) d S S s s , o b e, t 1. er o w: p B; is live	LOAD	CASE(S)			NRO
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/20, 2-3=-398/2	261, 3-16=-332/187,	8) 9)	Gable studs This truss ha chord live loa	spaced at 2-0-0 oc. Is been designed fo ad nonconcurrent w	or a 10. vith any) psf bottom other live load				20	CP .	Bar
BOT CHORD WEBS NOTES	4-16=-317/212, 4-17 5-17=-255/175, 5-18 6-18=-236/174, 6-7= 2-12=-171/187, 11-1 10-11=-171/187, 9-1 8-9=-171/187 6-9=-205/125, 5-10= 4-11=-168/127, 3-12	=-261/170, 159/144, 7-8=-79/55 2=-171/187, 0=-171/187, -193/154,	5 11	on the bottor 3-06-00 tall b chord and ar) One RT7A U truss to bear 11, and 12. 7 not consider) See Standar Detail for Co	has been designed in chord in all areas by 2-00-00 wide will by other members. SP connectors reco- ing walls due to UP This connection is for lateral forces. d Industry Piggybac nnection to base tru- fied building design	where fit betwo ommer PLIFT a or uplift ck Trus	a rectangle veen the botto ded to connec jt(s) 8, 2, 9, 1 only and doe s Connection	om ct 0,		THILLIN'S		SEA 0363	22 EER. R. LUI

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL01	Valley	1	1	Job Reference (optional)	E15512334

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:21 ID:6Py_KwMV_1zuIYd3Z3BEF0zaSyy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:52

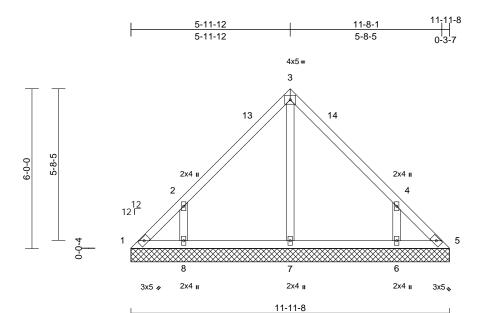
00010 = 1102												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.37	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 77 lb	FT = 20%
LUMBER TOP CHORD	2) Wind: ASCE 7-10; Vult=130mph (3-second gust) 2x4 SP No.2 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;											

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=15-11-8, 5=15-11-8, 6=15-11-8, 8=15-11-8, 9=15-11-8
	Max Horiz	1=192 (LC 11)
	Max Uplift	1=-41 (LC 10), 5=-1 (LC 11),
		6=-236 (LC 15), 9=-241 (LC 14)
	Max Grav	1=170 (LC 28), 5=129 (LC 30),
		6=549 (LC 28), 8=489 (LC 27), 9=555 (LC 27)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-14=-194	4/165, 2-14=-166/225,
	2-15=-125	5/108, 15-16=-50/121,
	3-16=-48/	/165, 3-17=-49/138, 17-18=-50/95,
		3/79, 4-19=-128/182,
		3/134, 5-20=-148/42, 5-20=-159/37
BOT CHORD		162, 8-9=-140/162, 7-8=-140/162,
		(162, 5-6=-140/162, 5-21=-24/118,
	5-21=-27/	
WEBS	3-8=-329/	0, 2-9=-377/274, 4-6=-375/271
NOTES		

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-0-0, Exterior (2) 5-0-0 to 11-0-0, Interior (1) 11-0-0 to 12-7-12, Exterior (2) 12-7-12 to 15-7-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 1, 1 lb uplift at joint 5, 241 lb uplift at joint 9 and 236 lb uplift at joint 6.


LOAD CASE(S) Standard

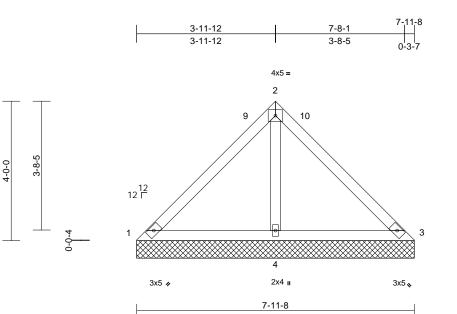
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL02	Valley	2	1	Job Reference (optional)	E15512335

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:21 ID:wEoPQSd69uowzyY0RbhcAZzaT5f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1.43.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MSH	0.25 0.12 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=11-1 7=11-1 Max Horiz 1=143 Max Uplift 1=-52 (6=-185 Max Grav 1=129	LC 10), 5=-17 (LC 11) (LC 15), 8=-191 (LC 1 (LC 28), 5=106 (LC 30 (LC 28), 7=270 (LC 2),	c 5 11-8, 6 7 , 8 , 14) 9	only. For stu see Standar or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. Gable requir Gable studs This truss ha chord live loo * This truss ha on the bottoo 3-06-00 tall h	ned for wind loads uds exposed to w d Industry Gable Jalified building d E 7-10; Pr=30.0 p Vate DOL=1.15); L=1.15 Plate DOL Ct=1.10 snow loads have res continuous bo spaced at 4-0-0 as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other member:	ind (norm End Deta esigner as f (roof liv Pf=20.0 p ==1.15); C been cor ttom chor oc. for a 10.0 with any ed for a liv as where vill fit betw	al to the face ils as applica is per ANSI/T e load: Lumb sf (flat roof si ategory II; E) nsidered for th d bearing. 0 psf bottom other live load e load of 20.0 a rectangle	e), ible, PI 1. oper now: xp B; his his ads. Opsf					
FORCES	(lb) - Maximum Co Tension 1-2=-163/131, 2-1 3-13=-105/126, 3-		10	 Provide med bearing plate 	chanical connection e capable of withe t at joint 5, 191 lb	on (by oth standing 5	52 lb uplift at j	joint					
BOT CHORD	4-14=-202/102, 4-			DAD CASE(S)								WH CA	RO
WEBS NOTES 1) Unbalance	ed roof live loads ha	345/254, 4-6=-342/252 ve been considered fo								4	A.L.	ORIEESS	No And

this design.
Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60



Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL03	Valley	1	1	Job Reference (optional)	E15512336

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:22 ID:LLUWAI_AII75AjvseXygzgzaSmX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	_	1.33
Scale	-	1.55

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 30.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.27 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	11(0201	5/11/2014	IVIALITA-IVII							Weight: 32 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-11-8 oc purlins. Rigid ceiling directly bracing. (size) 1=7-11-8, Max Horiz 1=94 (LC Max Uplift 1=-29 (LC 4=-135 (LC (LC 2) (lb) - Maximum Com Tension 1-9=-99/206, 2-9=-74 3-10=-98/202 1-4=-206/155, 3-4=-2	applied or 6-0-0 oc 3=7-11-8, 4=7-11-8 11) 32), 3=-29 (LC 31), C 14) 31), 3=90 (LC 32), 4 pression/Maximum 4/267, 2-10=-74/267	6) 7) 8) 9)	DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar) Provide mec bearing plate	snow loads have es continuous b spaced at 4-0-(is been designe ad nonconcurre has been design n chord in all ar by 2-00-00 wide hanical connec e capable of witt at joint 3 and 1	; Pf=20.0 p DL=1.15); C ve been cor bottom chor 0 oc. ed for a 10.0 nt with any need for a 10.1 reas where e will fit betw ers.	sf (flat roof s ategory II; E: sidered for t d bearing.) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 19 lb uplift at	now: xp B; his ads. Opsf om to					
WEBS	2-4=-523/196												
NOTES												mm	1111.
 Unbalance this design 	ed roof live loads have	been considered for										"TH CA	Bolly
2) Wind: ASC Vasd=103	i. CE 7-10; Vult=130mph mph; TCDL=6.0psf; BC	CDL=6.0psf; h=25ft;									- AL	ORTH CA	IN ST

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 3) see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

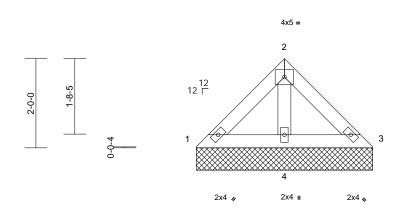
Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL04	Valley	2	1	E155 [:] Job Reference (optional)	12337

1-11-12

1-11-12

Carter Components, Chesapeake, VA - 23323,

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:23 ID:OyMml4ywEhtNxPIUX6vCuFzaSmZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


3-8-1

1-8-5

3-11-8

3-11-8

Page: 1

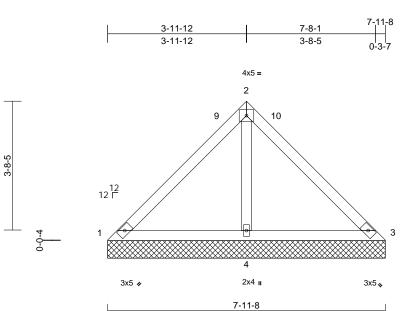
Scale = 1:25.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(ps 30, 20 10 0, 10	0 Plate Grip DOL 0 Lumber DOL 0 Rep Stress Incr 0* Code	1-11-4 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.06 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 3-11-8 oc purlin Rigid ceiling dire bracing. (size) 1=3-1 Max Horiz 1=-43 Max Uplift 1=-2 (LC 1 Max Grav 1=70 (LC 2	d snow loads have ires continuous bois s spaced at 4-0-0 con has been designed oad noncourrent is has been designed by 2-00-00 wide wany other memberse achanical connection te capable of withs t at joint 3 and 34 II b) Standard	ttom chor for a 10. with any ed for a liv as where vill fit betw s. on (by oth standing 2	d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the bott ers) of truss 1 2 lb uplift at jo	ads. Opsf om to							
FORCES	(lb) - Maximum Tension	Compression/Maximum										
TOP CHORD BOT CHORD WEBS	1-2=-61/69, 2-3 1-4=-57/51, 3-4 2-4=-152/37											

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10


Vanannon VIIIIIIIIIIII SEAL 036322 G minin March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL05	Valley	1	1	Job Reference (optional)	E15512338

4-0-0

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:23 ID:k2WYrSfZmdr8?p?qJVn5TuzaT6u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.27 0.27 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
	7-11-8 oc purlins. Rigid ceiling directly bracing.	, 3=7-11-8, 4=7-11-8 , 10) , 32), 3=-29 (LC 31), , C 14) 31), 3=90 (LC 32), 4 hpression/Maximum	ed or 4 1=707	 DOL=1.15 P Lumber DOL Fully Exp.; C Unbalanced design. Gable requir Gable studs This truss ha chord live load * This truss ha on the bottor 3-06-00 tall the chord and ar Provide mec bearing plate 	snow loads have les continuous bott spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members hanical connection e capable of withst t at joint 3 and 135	f=20.0 p =1.15); C peen cor com chor c. ior a 10.1 with any I for a liv s where Ill fit betw n (by oth anding 2	sf (flat roof sr ategory II; Ex sidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 29 lb uplift at j	now: cp B; nis ds. Dpsf om o					
this design 2) Wind: ASC Vasd=103	1-4=-206/155, 3-4=- 2-4=-522/196 ed roof live loads have n. CE 7-10; Vult=130mph imph; TCDL=6.0ps; B P : Enclosed: MWER								L	A	OR FESS	ROUT	

- 2) White ASOE 7-10, Valie Isompil (3 second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

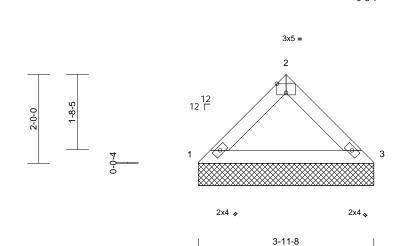
Page: 1

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL06	Valley	1	1	E15512 Job Reference (optional)	2339

1-11-12

1-11-12

Carter Components, Chesapeake, VA - 23323,


Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:23 ID:5?KRu9jha9TQ5auo62MGAyzaT6p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-8-1

1-8-5

3-11-8

Page: 1

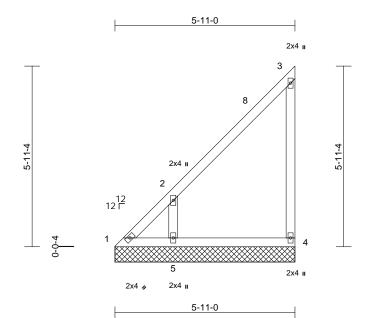
Scale = 1:26

Plate Offsets (X, Y): [2:0-2-8,Edge]

	i, .). [i,											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2	CSI TC BC WB 014 Matrix-MP	0.13 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
FORCES	Max Horiz 1=-44 (LC Max Uplift 1=-14 (LC Max Grav 1=198 (LC (Ib) - Maximum Com Tension 1-2=-246/41, 2-3=-1	applied or 10-0-0 o 3=3-11-8 2 10) 2 14), 3=-14 (LC 15) 2 2), 3=198 (LC 2) ppression/Maximum	8) This chor 9) * Th ed or on ti 3-06 c chor c 10) Prov bear 1 an LOAD C	e studs spaced at 4-0-0 truss has been designed d live load nonconcurrer s truss has been design e bottom chord in all are -00 tall by 2-00-00 wide d and any other member ide mechanical connecti ing plate capable of with d 14 lb uplift at joint 3. ASE(S) Standard	d for a 10. ht with any ed for a liv eas where will fit betw rs. ion (by oth	other live loa re load of 20.0 a rectangle veen the botto ers) of truss t	0psf om to				Weight: 13 lb	FT = 20%
BOT CHORD	1-3=-29/173											
NOTES	d roof live loads have	boon considered fo	r									
this design.			1									
 Wind: ASC Vasd=103n Cat. II; Exp zone and C exposed ; e members a 	E 7-10; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS	CDL=6.0psf; h=25ft S (envelope) exterio cantilever left and ri ght exposed;C-C for for reactions shown	or ight						4	E THE	OPTH CA	NROUNIN HOLININ
 Truss designed only. For sister standard or consult or 	DL=1.60 plate grip DC gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig	the plane of the tru (normal to the face d Details as applica gner as per ANSI/TI), ble, PI 1.								SEA 0363	• –
DOL=1.15 Lumber DC Fully Exp.;	CE 7-10; Pr=30.0 psf (Plate DOL=1.15); Pf= DL=1.15 Plate DOL=1 Ct=1.10 d snow loads have be	20.0 psf (flat roof sr .15); Category II; E>	now: ‹p B;							in the second se	NGIN C A C	EEP. KINN

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow:
- Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.

GI


March 18,2021

mmm

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL07	Valley	1	1	Job Reference (optional)	E15512340

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:24 ID:mt0pTNm0HubBCwfiF5TpkHzaTAe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.9

Scale = 1.57.9		1			1		· · · ·						
Loading	(psf) 30.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.53	DEFL Vert(LL)	in r/s	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 244/190
TCLL (roof) Snow (Pf)	30.0 20.0	Lumber DOL	1.15		BC	0.53	Vert(LL)	n/a n/a	-	n/a n/a	999 999	M120	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.00	-	n/a	999 n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MP	0.05	110112(112)	0.00	-	n/a	n/a	1	
BCDL	10.0											Weight: 30 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		4)	Unbalanced design.	snow loads have	been co	nsidered for t	his					
BOT CHORD	2x4 SP No.2		5)	•	es continuous bo	ttom cho	d bearing.						
WEBS	2x4 SP No.3		6)	Gable studs	spaced at 4-0-0	oc.	0						
OTHERS	2x4 SP No.3		7)		s been designed								
BRACING			0)		ad nonconcurrent								
TOP CHORD	Structural wood she 5-11-0 oc purlins, e			on the bottor	has been designe n chord in all are	as where	a rectangle	•					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o		chord and ar	by 2-00-00 wide v by other members	s.							
REACTIONS		4=5-11-0, 5=5-11-0	9)		hanical connection capable of withs								
	Max Horiz 1=208 (LC	,			at joint 1 and 18								
	Max Uplift 1=-80 (LC 5=-186 (L		, ro	DAD CASE(S)	Standard								
	Max Grav 1=150 (L0 5=412 (L0	C 11), 4=185 (LC 27	7),										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-232/196, 2-8=- 3-4=-153/93	201/85, 3-8=-121/10	04,										
BOT CHORD	1-5=-98/107, 4-5=-9	8/107											
WEBS	2-5=-356/298												111.
NOTES												WHY CA	Dall
	CE 7-10; Vult=130mph										1	ATT	
	Bmph; TCDL=6.0psf; B p B; Enclosed; MWFR										A.	O'.FES	102 N is
	C-C Exterior (2) zone;									4	ÙĎ	P	1 Sille
	end vertical left and right											.a	
	and forces & MWFRS		ı;							Ξ		SEA	1 : E
	OL=1.60 plate grip DC									=			• -
	igned for wind loads in studs exposed to wind									-		0363	22 : 3
	lard Industry Gable En											N	1 E
	qualified building desi											N. ENG	-cR: 1 3
	CE 7-10; Pr=30.0 psf (1	S, GIN	EF. A.S
	5 Plate DOL=1.15); Pf=	20.0 psf (flat roof sr									1	CA C	ILBEIT

- Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

818 Soundside Road Edenton, NC 27932

G١

minim

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL08	Valley	1	1	Job Reference (optional)	E15512341

12 12 Г

3-11-0

Carter Components, Chesapeake, VA - 23323,

3-11

Run: 8 43 S. Mar. 4 2021 Print: 8 430 S. Mar. 4 2021 MiTek Industries. Inc. Thu Mar. 18 08:45:24 ID:0hAwdjhJ8YIGxl2VGmLsMWzaT9R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 u

4

2 6

Page: 1

0 3 2x4 II 3x5 🍫 3-11-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 тс 0.24 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 1 15 0.26 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 n/a n/a Code IRC2015/TPI2014 Matrix-MP Weight: 18 lb FT = 20%7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 61 lb uplift at joint 3 LOAD CASE(S) Standard SEAL 036322

Scale = 1:29.5

Loading

TCDL

BCLL

BCDL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G mmm March 18,2021

TCLL (roof) Snow (Pf)

LUMBER TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 3-11-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=3-11-0, 3=3-11-0 Max Horiz 1=133 (LC 11) Max Uplift 3=-61 (LC 14) Max Grav 1=193 (LC 28), 3=210 (LC 27) FORCES (lb) - Maximum Compression/Maximum Tension

(psf)

30.0

20.0

10.0

0.0

10.0

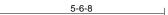
TOP CHORD 1-6=-218/56, 2-6=-72/96, 2-3=-144/69 BOT CHORD 1-3=-63/161

NOTES

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.: Ct=1.10
- Unbalanced snow loads have been considered for this 4) design
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.

Edenton, NC 27932

11111111111


Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL09	Valley	1	1	E1551234 Job Reference (optional)	42

Run: 8,43 S Mar 4 2021 Print: 8,430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:24 ID:E3aBgjme2Bj2q4Evpo_2HVzaTAd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-6-8 2x4 II 3 8 12 12 F 5-6-8 5-6-8 2x4 i 2 4 5 2x4 🛛 2x4 🎣

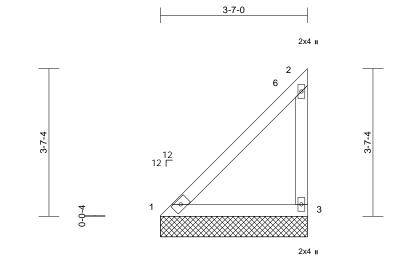
Scolo -	= 1:38.6
Scale =	= 1:38.6

Loading (psf) TCLL (roof) 30.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0*	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	2-0-0 1.15 1.15 YES RC2015/TPI2014	CSI TC 0.56 BC 0.12 WB 0.10 Matrix-MP	Vert(TL)	in (loc) n/a - n/a - .00 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0								Weight: 28 lb	FT = 20%
5-6-8 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=5-6-8, 4 Max Horiz 1=193 (LC Max Uplift 1=-96 (LC 5=-182 (LC Max Grav 1=142 (LC 5=412 (LC FORCES (lb) - Maximum Com	applied or 10-0-0 oc 1=5-6-8, 5=5-6-8 2 11) 1 (2, 4=-72 (LC 11), C 14) 2 11), 4=183 (LC 27), 2 27) pression/Maximum 196/80, 3-8=-112/101, 91/122 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior antilever left and right pht exposed; C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. cof live load: Lumber 20.0 psf (flat roof snow:	design. 5) Gable requit 6) Gable studs 7) This truss his chord live lo 3-06-00 tall chord and a 9) Provide met bearing plat 1, 72 lb uplif LOAD CASE(S)	I snow loads have been co res continuous bottom cho spaced at 4-0-0 oc. as been designed for a 10 and nonconcurrent with an has been designed for a 1 im chord in all areas wher by 2-00-00 wide will fit be ny other members. chanical connection (by or e capable of withstanding ft at joint 4 and 182 lb upli) Standard	ord bearing. 1.0 psf bottom y other live loads. ive load of 20.0psf e a rectangle tween the bottom hers) of truss to 96 lb uplift at joint				ORTH CA ORTHESE SEA 0363	• –

- Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=30.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

818 Soundside Road Edenton, NC 27932

GI


unumun .

March 18,2021

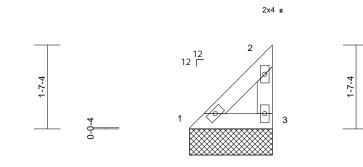

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette	
21020141-A	VL10	Valley	1	1	E15512 Job Reference (optional)	2343

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:25 ID:E3aBgjme2Bj2q4Evpo_2HVzaTAd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 🅢

Scale = 1:28.1


Scale = 1:28.1						· · · ·						
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	30.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP		-						
BCDL	10.0										Weight: 17 lb	FT = 20%
LUMBER				s has been designed								
TOP CHORD				e load nonconcurrer								
BOT CHORD				iss has been design)psf					
NEBS	2x4 SP No.3			ottom chord in all are tall by 2-00-00 wide			m					
	o		abord or	d any other member		ween the botto	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
TOP CHORD	Structural wood she 3-7-0 oc purlins, ex			nechanical connecti		ers) of truss to	0					
BOT CHORD			booring	plate capable of with								
	bracing.		3.									
REACTIONS	· · · ·		LOAD CAS	(S) Standard								
	Max Horiz 1=120 (LC	,										
	Max Uplift 3=-56 (LC		_,									
	Max Grav 1=176 (L0		,									
ORCES	(lb) - Maximum Corr Tension	npression/Maximum										
TOP CHORD		4/87, 2-3=-130/62										
BOT CHORD	1-3=-57/146	*										
NOTES												
1) Wind: AS	CE 7-10; Vult=130mph	(3-second gust)										
	Bmph; TCDL=6.0psf; B											
	p B; Enclosed; MWFR											
	C-C Exterior (2) zone;										minin	11111
	end vertical left and rig and forces & MWFRS										W'TH CA	Rolly
	OL=1.60 plate grip DC		ι,							- N	R	in the second
	igned for wind loads in		ISS							2.5	FES	Philip
,	studs exposed to wind								7			and -
	ard Industry Gable En								-		il in	N 1
	qualified building desi										Ś SEA	AL E
	CE 7-10; Pr=30.0 psf (0202	
	5 Plate DOL=1.15); Pf=										0363	22 : 2
	OL=1.15 Plate DOL=1	.15); Category II; Ex	хр В;							8		1 5
Fully Exp. 4) Unbalance	ed snow loads have be	en considered for t	his							-	·	airis
design.									C . 1111111	15	S. AGIN	EFF
0	uires continuous botto	m chord bearing.								11	C	BEIN
6) Gable stu	ds spaced at 4-0-0 oc.	_									Marc	all think
											<i></i>	THE
											Marc	h 18 2021

March 18,2021

Job	Truss	Truss Type	Qty	Ply	2854 Norrington-Roof-Marinette
21020141-A	VL11	Valley	1	1	E15512344 Job Reference (optional)

Run: 8.43 S Mar 4 2021 Print: 8.430 S Mar 4 2021 MiTek Industries, Inc. Thu Mar 18 08:45:25 ID:0hAwdjhJ8YIGxl2VGmLsMWzaT9R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 🍬

1-7-0

2x4 u

1-7-0

Scale =	1:22
---------	------

Scale = 1:22												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 30.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	2014 CSI TC BC WB Matrix-I	0.02 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS 2 BRACING 5 TOP CHORD 5 BOT CHORD 6 REACTIONS 6 Min Min	-7-0 oc purlins, exe Rigid ceiling directly pracing.	applied or 10-0-0 oc 3=1-7-0 11) ; 14)	ed or be c c be c be c c be c c c c be c c c c c c c c c c c c c	s truss has been d ord live load noncon his truss has been the bottom chord in 6-00 tall by 2-00-00 ord and any other n vide mechanical c aring plate capable CASE(S) Standa	ncurrent with any designed for a live a all areas where wide will fit betw nembers. connection (by oth of withstanding 2	other live loa ve load of 20.0 a rectangle ween the botto ers) of truss t)psf om o					
 TOP CHORD 1 BOT CHORD 1 BOT CHORD 1 NOTES 1) Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-C exposed ; en members and Lumber DOL 2) Truss design only. For stu see Standard or consult qu 3) TCLL: ASCE DOL=1.15 PI Lumber DOL Fully Exp.; C 4) Unbalanced s design. 5) Gable require 	ension -2=-72/32, 2-3=-46, -3=-20/50 7-10; Vult=130mph h; TCDL=6.0psf; B4 ; Enclosed; MWFRS Exterior (2) zone; d vertical left and rig forces & MWFRS =1.60 plate grip DO ed for wind loads in ds exposed to wind Industry Gable End alified building desig 7-10; Pr=30.0 psf (ate DOL=1.15); Pf= =1.15 Plate DOL=1 =1.10	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio cantilever left and rig ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumbo :20.0 psf (flat roof sn .15); Category II; Ex sen considered for the	r ght ; ss ole, ole, ole, ol 1. er ow: p B;								SEA 0363	L B22 EER

March 18,2021

MOINEEDING 818 Soundside Road Edenton, NC 27932

