

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J1120-5410 Precision/Lot 56 Summerlin/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15293411 thru E15293424

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

January 11,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

ob	Truss	Truss Type	Qty	Ply	Precision/Lot 56 S	ummerlin/Harnett	
1120-5410	ET1	FLOOR SUPPORTED GABL	1	1		D	E15293411
Comtech, Inc, Fa	ayetteville, NC - 28314,					stries, Inc. Mon Jan 11 0	
1-3-0	Q <u>-5-</u> 8					E8vTAU1IXgjDj9uhHjkwt8	
							Scale = 1:44.7
5x8 = 5x8 =	= 3x6 = 3x4 =	7x14 M18SHS = 3x10 = 3x4	3х	6 FP =			4x6 =
1 2	3 4 5 6	7 8 9 10	11 12	13 14 1	5 16 17	18 19	20 21 22
							44
 	LAN B POLAN						
43 42 4x6 = 5x12 =	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	37 36 35 34 33 6x12 = 3x6 FP =	32 31	30 2	9 28 27	26 25	24 23 4x6 =
	3x10 =	5x8 =					inc.
	6-8-0 6-2-8				19-1-8		26-3-8
	5-9-0 5-11112 7-7 5-9-0 0-2-12 0-11		<u>17-9-8</u> 5-11-8		18-5-8 0-8-0	<u>25-1-0</u> 5-11-8	25-8-4 26-11-8 0-7-4 0-8-0
lata Offacta (X V)	0-2-12 0-5-8	[5:0.1.9 Edge] [20:0.1.9 Edge] [22:Edgo 0 1 91 [22:0		0-8-0		0-7-4
late Offsets (X,Y)		, [5:0-1-8,Edge], [20:0-1-8,Edge], [
OADING (psf) CLL 40.0	Plate Grip DOL 1	0-0 CSI. 00 TC 0.72		in (loc) 0.20 39	l/defl L/d >715 480	PLATES MT20	GRIP 244/190
CDL 10.0 CLL 0.0	Rep Stress Incr	00 BC 0.77 NO WB 0.98		0.27 39 0.06 33	>520 360 n/a n/a	M18SHS	244/190
CDL 5.0	Code IRC2015/TPI201	4 Matrix-S				Weight: 137 lb	FT = 20%F, 11%E
UMBER- OP CHORD 2x4 S	P 2400F 2.0E(flat) *Except*		BRACING- TOP CHORD	Structu	ral wood sheathing	directly applied or 5-4-1	0 oc purlins,
	2: 2x4 SP No.1(flat) 3P 2400F 2.0E(flat) *Except*		BOT CHORD		end verticals. eiling directly applie	d or 6-0-0 oc bracing.	
	: 2x4 SP No.1(flat) P No.3(flat) *Except*						
2-41,	9-36: 2x4 SP No.2(flat)						
	bearings 15-3-0 except (jt=lengt Uplift All uplift 100 lb or less at	h) 43=Mechanical. ; joint(s) 32 except 23=-642(LC 1)					
		ss at joint(s) 31, 30, 29, 28, 27, 26,	25 except 43=4161(LC 1), 33=31	80(LC		
ORCES. (lb) - May		250 (lb) or less except when showr	1				
OP CHORD 1-4	3=-4152/0, 1-2=-3284/0, 2-3=-5	399/0, 3-4=-5399/0, 4-5=-7136/0, 5 57/0, 9-10=0/1257, 10-11=0/1257,	5-6=-7054/0,				
12-		6=0/1257, 16-17=0/1257, 17-18=0		,			
OT CHORD 41-	42=0/3284, 40-41=0/6726, 39-4	0=0/6726, 38-39=0/7136, 37-38=0 33=-1257/0, 31-32=-1257/0, 30-31=		3			
29-3	30=-1257/0, 28-29=-1257/0, 27-	28=-1257/0, 26-27=-1257/0, 25-26	,				
VEBS 10-3		2355/0, 2-41=0/2653, 3-41=-597/0					11111
		51/0, 9-36=0/3203, 8-36=-643/0, 7 98/0, 20-45=0/1460, 23-45=0/1423				THO	ARO
IOTES-						NON ES	Signi
·	ve loads have been considered) plates unless otherwise indica				4	and the second s	1001
	3 MT20 unless otherwise indicat a plus or minus 1 degree rotation					SE	AL
	or truss to truss connections. al connection (by others) of trus	s to bearing plate capable of withst	anding 100 lb uplift a	t joint(s) 32 e	except (jt=lb)	036	322 : 3
23=642. Recommend 2x6 s	trongbacks, on edge, spaced at	10-0-0 oc and fastened to each to	russ with 3-10d (0.13	1" X 3") nails		SE 036	a.i. 3
Strongbacks to be		ends or restrained by other means.		- /		A NGI	NEELP
OAD CASE(S) Sta						A.	GILBLU
5.55 5A02(0) 3ld						2011	January 11,20
ontinued on page 2						1	- ·
WARNING - Verify	design parameters and READ NOTES	ON THIS AND INCLUDED MITEK REFEREN	CE PAGE MII-7473 rev. 5/	19/2020 BEFOR	E USE.	ENGINE	PING BY
Design valid for use of	nly with MiTek® connectors. This design	is based only upon parameters shown, and ne applicability of design parameters and pro	is for an individual building	g component, no	t		NCO

818 Soundside Road Edenton, NC 27932

Design valid of use only with with exe contractors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett			
J1120-5410	ET1	FLOOR SUPPORTED GABL	1	1	E1529341	1		
					Job Reference (optional)			
Comtech, Inc, Fayette	Fayetteville, NC - 28314,			8.330 s Oct 7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:50 2021 Page 2				
		lD:qH4S_SYhXXrmAJJVJ6MTTvyngLu-kGUF4rFmgnlLeS6tHwFOQvquUKDNo3AqV?zy6MzwTWp						

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 23-43=-10, 1-10=-467, 10-22=-100

Concentrated Loads (lb) Vert: 1=-1500

January 11,2021

ob	Truss	Truss Type		(Qty Ply	Precisio	on/Lot 56 Summer	in/Harnett	E1529341
1120-5410	ET2	GABLE		1	1	1			E1529341
							erence (optional)		
Comtech, Inc, Fay	yetteville, NC - 28314,			ID:qH4S SY					1 09:22:50 2021 Page 1 KPDolzqV?zy6MzwTWp
0 ₁ 18						, ,	0	·	0 ₁ 1 ₇ 8
									Scale = 1:20
1 2	2 3	4	5	6	7		8	9	10 11
22 22	21 20	19	18	17	16	~~~~~	15	14	13 12
3x4 =									3x4 =
<u>1-4-0</u> 1-4-0		4-0-0 5-4 1-4-0 1-4			8-0-0 1-4-0	<u>9-4-0</u> 1-4-0	<u>10-8-0</u> 1-4-0		<u>2-0-0 12-7-8</u> 1-4-0 0-7-8
_OADING (psf)	SPACING-	2-0-0 C	SI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.00 T 1.00 B	C 0.06	Vert(LL) Vert(CT)	n/a - n/a -	n/a n/a	999 999	MT20	244/190

н	117	/IR	E	2_

BCLL

BCDL

LOWDEN	
TOP CHORD	2x4 SP No.1(flat)
BOT CHORD	2x4 SP No.1(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)

0.0

5.0

BRACING-TOP CHORD BOT CHORD

Horz(CT)

12

n/a

n/a

0.00

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 54 lb

REACTIONS. All bearings 12-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

WB

Matrix-R

0.03

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

Rep Stress Incr

Code IRC2015/TPI2014

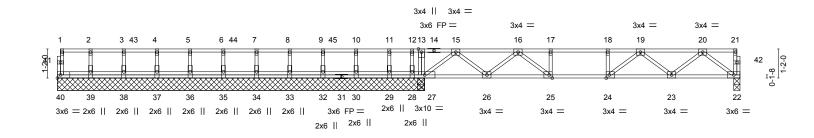
3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

YES

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



January 11,2021

FT = 20%F, 11%E

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett					
					E1529	3413				
J1120-5410	ET3	GABLE	1	1						
					Job Reference (optional)					
Comtech, Inc, Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:52 2021 Page 1										
		ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-gfc?VXH0COY3umGFOLHsWKvL28?kG847zJS3BFzwTWn								
0-1-8										
0.0			•							
Н	14-3-0	<u> 1-3</u>	-0		<u>2-2-0</u> 0-1-8					
					Scale =	1:46.3				

											14	-1-0		
	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	10-8-0	12-0-0	13-4-0	14-3-0	14 ₁ 9-0	27-5-0	
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-11-0	0-1-8	12-8-0	
											0	-4-8		
Plate	Offsets	(X,Y)	[24:0-1-	8,Edge],	[25:0-1-	8,Edge]								

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.40 WB 0.31 Matrix-S	DEFL. in (lo Vert(LL) -0.08 24-2 Vert(CT) -0.11 24-2 Horz(CT) 0.03 2	25 >999 480	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		exc	uctural wood sheathing dir ept end verticals. id ceiling directly applied o		oc purlins,

REACTIONS. All bearings 14-9-0 except (jt=length) 22=0-3-0.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) except 28=-187(LC 4)

Max Grav All reactions 250 lb or less at joint(s) 40, 39, 38, 37, 36, 35, 34, 33, 32, 30, 29 except 27=930(LC 1), 27=930(LC 1), 22=692(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 15-16=-1363/0, 16-17=-2085/0, 17-18=-2085/0, 18-19=-2085/0, 19-20=-1360/0

BOT CHORD 26-27=0/904, 25-26=0/1838, 24-25=0/2085, 23-24=0/1830, 22-23=0/856

- WEBS 15-27=-1056/0, 15-26=0/599, 16-26=-619/0, 16-25=0/316, 20-22=-1072/0, 20-23=0/656, 19-23=-612/0, 19-24=0/325

NOTES-

Р

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Gable studs spaced at 1-4-0 oc.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 187 lb uplift at joint 28.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

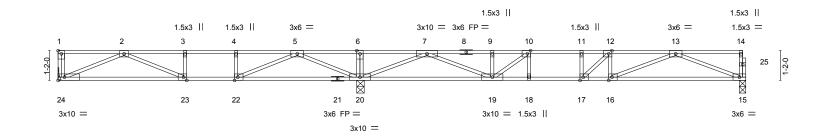
1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 22-40=-10, 1-21=-100

Concentrated Loads (lb)

Vert: 2=-92 5=-91 8=-91 11=-91 43=-91 44=-91 45=-91



January 11,2021

Job	Truss	Truss Type		Qty	Ply	Precision/Lot 56 Summerlin/Harnett
						E15293414
J1120-5410	F1	Floor		5	1	
						Job Reference (optional)
Comtech, Inc, Fayettev			8	.330 s Oct	7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:53 2021 Page 1	
			ID:qH4S	_SYhXXrr	nAJJVJ6M	ITTvyngLu-8rAOjtHfzigwVvrSy2o52XSO7XFc?WIGCzBdjhzwTWm
2-4-0	1-10-8	H	2-6-0	2-6-0		-

Scale = 1:45.2

	<u> </u>	<u>11-10-4</u> 0-0-4	<u>17-1-0</u> 5-2-12	17-8-14			
			-	0-7-14	4.0 5 4 1	8-6-12	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [10:0-1-8,Edge], [12:0-1	-8,Eage], [16:0-1-8,Eage]	, [17:0-1-8,Edge], [2	2:0-1-8,Edgej, [23:0-	-1-8,Eagej		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.76	()	0.17 23-24 >840	480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.80	(-)	0.25 23-24 >554	360		
BCLL 0.0	Rep Stress Incr NO	WB 0.63	Horz(CT)	0.04 15 n/a	n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 131 lb	FT = 20%F, 11%E
	P No.1(flat)		BRACING- TOP CHORD	Structural woo	d sheathing dir	ectly applied or 6-0-0 c	oc purlins,
	No.1(flat)			except end ver			
WEBS 2x4 SP	PNo.3(flat)		BOT CHORD	Rigid ceiling di	rectly applied o	or 6-0-0 oc bracing.	

18-4-12

REACTIONS. (size) 24=Mechanical, 20=0-3-8, 15=0-3-0 Max Grav 24=2280(LC 3), 20=1698(LC 1), 15=747(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-24=-1794/0, 2-3=-1437/52, 3-4=-1437/52, 4-5=-1437/52, 5-6=0/1515, 6-7=0/1517,

7-9=-2044/0, 9-10=-2044/0, 10-11=-2418/0, 11-12=-2418/0, 12-13=-2377/0 BOT CHORD 23-24=0/1085, 22-23=-52/1437, 20-22=-557/667, 19-20=-139/899, 18-19=0/2418, 17-18=0/2418, 16-17=0/2377, 15-16=0/1576

WEBS 6-20=-284/0, 2-24=-1179/0, 2-23=-152/384, 5-20=-1566/0, 5-22=0/1078, 4-22=-348/0, 13-15=-1689/0, 13-16=0/865, 12-17=-284/274, 7-20=-2081/0, 7-19=0/1333, 10-19=-740/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

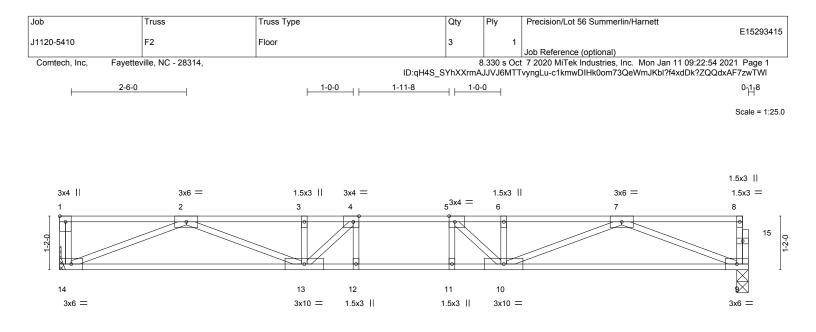
5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


Uniform Loads (plf) Vert: 15-24=-10, 1-14=-100 Concentrated Loads (lb)

Vert: 1=-1700

January 11,2021

L			14-11-8			
			14-11-8			1
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [5:0-1-8	,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.36 BC 0.65 WB 0.51	Vert(LL) -0.1	in (loc) l/defl L/d 6 11-12 >999 480 3 11-12 >783 360 4 9 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 75 lb	FT = 20%F, 11%E
BOT CHORD 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)	1	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	, ,,) oc purlins,

REACTIONS.	(size)	14=Mechanical, 9=0-3-0
	Max Grav	14=809(LC 1), 9=803(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2645/0, 3-4=-2645/0, 4-5=-2810/0, 5-6=-2645/0, 6-7=-2645/0

BOT CHORD 13-14=0/1718, 12-13=0/2810, 11-12=0/2810, 10-11=0/2810, 9-10=0/1716

WEBS 2-14=-1849/0, 2-13=0/1000, 7-9=-1839/0, 7-10=0/1004, 5-10=-516/101, 4-13=-516/100

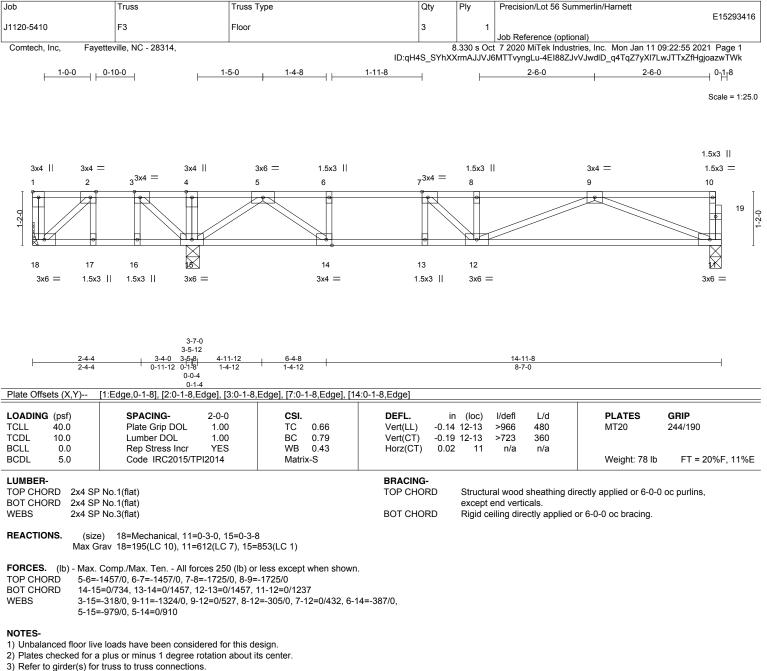
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

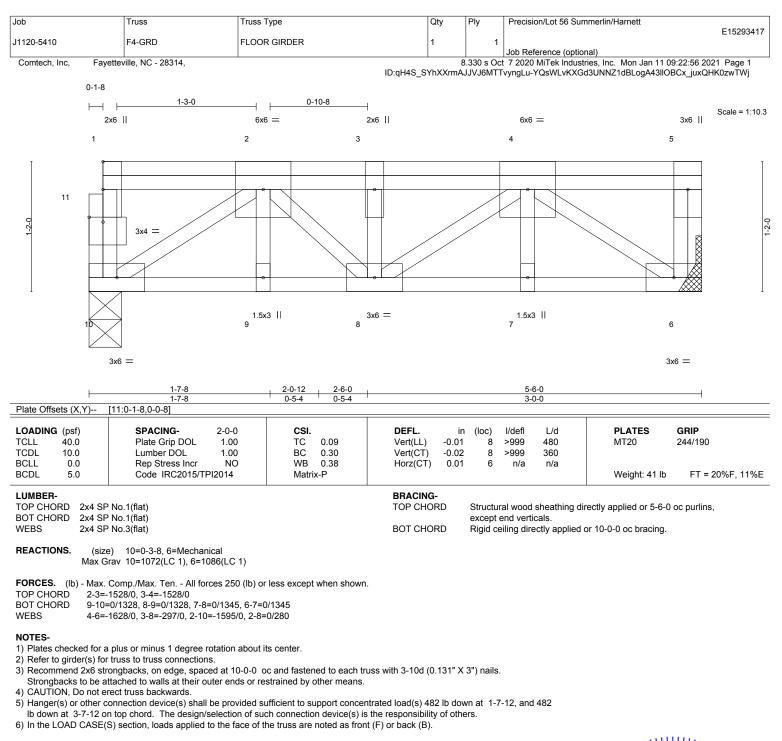
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

January 11,2021

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

January 11,2021

LOAD CASE(S) Standard

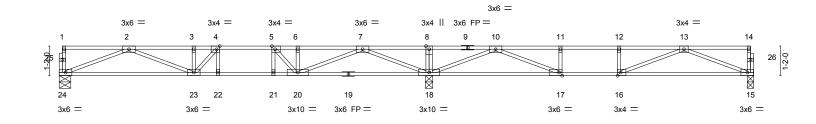
1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 6-10=-10, 1-5=-220

Concentrated Loads (lb)

Vert: 4=-482(F) 2=-482(F)



January 11,2021

[Job	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett
						E15293418
	J1120-5410	F5	Floor	1 1		
						Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:57 2021 Page 1

	<u> </u>			<u> </u>		
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [16:0-1-4	3,Edge], [17:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.71 BC 0.73 WB 0.60 Matrix-S	Vert(CT) -0	in (loc) I/defl L/d .22 15-16 >703 480 .33 15-16 >467 360 .05 15 n/a n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o 6-0-0 oc bracing: 18-20,17-18	r 10-0-0 oc bracing,	• •
REACTIONS. (size Max G	e) 24=0-5-8, 18=0-3-8, 15=0-3-0 srav 24=732(LC 10), 18=1700(LC 1), 15	=630(LC 4)		0 0 0 00 brading. 10 20, 17-10		
()	Comp./Max. Ten All forces 250 (lb) or -2301/0, 3-4=-2301/0, 4-5=-2316/0, 5-6=		0/1462,			

 8-10=0/1462, 10-11=-1730/0, 11-12=-1730/0, 12-13=-1730/0

 BOT CHORD
 23-24=0/1538, 22-23=0/2316, 21-22=0/2316, 20-21=0/2316, 18-20=-174/1015, 17-18=-374/840, 16-17=0/1730, 15-16=0/1277

 WEBS
 8-18=-291/0, 2-24=-1648/0, 2-23=0/823, 3-23=-277/12, 7-18=-2002/0, 7-20=0/1256, 5-20=-721/0, 4-23=-224/325, 10-18=-1726/0, 10-17=0/1155, 11-17=-356/0, 13-15=-1367/0, 13-16=-64/490

NOTES-

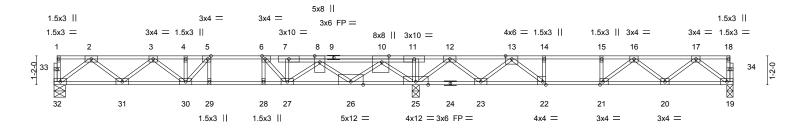
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

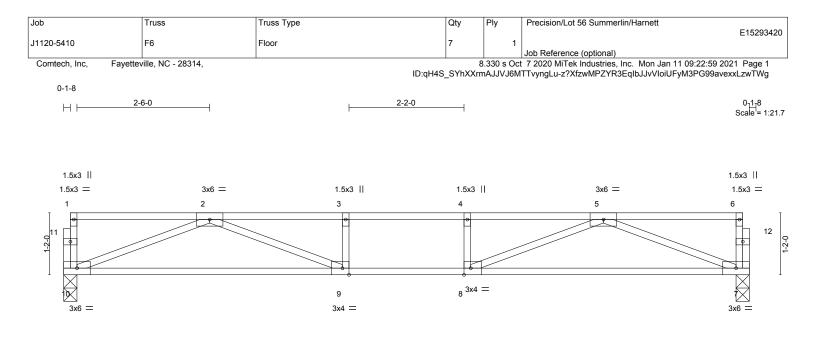
January 11,2021

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett			
					E1529341			
J1120-5410	F5-GRD	Floor Girder	1	1				
					Job Reference (optional)			
Comtech, Inc, Fayetteville, NC - 28314, 8.330 s Oct 7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:58 2021 Page 1								
	ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-VozHmaLnoEJCchjPlcOGlb9E2YvCgl9?LFvNOvzwTWh							
0-1-8	0-1-8							
	0-10-0 2-0-1	2 0-10-0			2-2-4 0-1-8			
					Scale = 1:46			

I	<u> </u>					27-5-0		
Plate Offsets (X,Y)	[5:0-1-8,Edge], [6:0-1-8,Edge], [10:0-3-0	0,Edge], [21:0-1-8,Edge],	[22:0-1-8,Edge]			12-9-12		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.81 BC 0.97 WB 0.66 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.19 -0.25 0.04	(loc) l/defl 28 >935 28 >700 25 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%F, 11%E
9-18: 2 BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) *Except* 2x4 SP 2400F 2.0E(flat) P No.1(flat) P No.3(flat) *Except* 2x4 SP No.2(flat)		BRACING- TOP CHOR BOT CHOR	ex	xcept end ver	icals.	rectly applied or 6-0-0 o	oc purlins,
Max L	e) 32=0-5-8, 25=0-3-8, 19=0-3-0 Jplift 19=-6(LC 3) Grav 32=882(LC 3), 25=2653(LC 1), 19=	-508(LC 4)						
TOP CHORD 2-3= 8-10 14-1 BOT CHORD 31-3 25-2 19-2 WEBS 2-32 8-26 13-2	Comp./Max. Ten All forces 250 (lb) or -1841/0, 3-4=-2971/0, 4-5=-2971/0, 5-6= =-1525/0, 10-11=0/3026, 11-12=0/3033, 5=-968/615, 15-16=-968/615, 16-17=-92 2=0/1104, 30-31=0/2538, 29-30=0/3361 26=-763/0, 23-25=-1884/0, 22-23=-1146/ 0=-28/616 =-1382/0, 2-31=0/960, 3-31=-908/0, 3-31 =-2265/0, 6-27=-219/339, 5-30=-762/0, 3=-1028/0, 13-22=0/1125, 14-22=-516/0 0=-288/192, 16-21=-524/0	3361/0, 6-7=-3377/0, 7- 12-13=0/1532, 13-14=-9 4/84 , 28-29=0/3361, 27-28=0, /286, 21-22=-615/968, 20 0=0/553, 10-25=-2809/0, 12-25=-1596/0, 12-23=0/9	8=-3382/0, 68/615, /3361, 26-27=0/325 -21=-231/1146, 10-26=0/2287, 966,	59,				
 All plates are 3x6 M Plates checked for at Provide mechanical Recommend 2x6 st Strongbacks to be at CAUTION, Do not et Hanger(s) or other of top chord. The desites In the LOAD CASE(s) LOAD CASE(s) Stant Dead + Floor Live (I Uniform Loads (plf) 	connection device(s) shall be provided si ign/selection of such connection device((S) section, loads applied to the face of t	ts center. Ig plate capable of withst oc and fastened to each tr istrained by other means. ufficient to support conce s) is the responsibility of o he truss are noted as from	russ with 3-10d (0.1 ntrated load(s) 106 others.	31" X 3")		on	SEA 0363	NEER.
Continued on page 2								
🛕 WARNING - Verify a	lesign parameters and READ NOTES ON THIS AN y with MiTek® connectors. This design is based on							

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

i KE


ſ	Job	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett	
	J1120-5410	F5-GRD	Floor Girder	1 1		E15293419	
						Job Reference (optional)	
	Comtech, Inc, Fayette	ville, NC - 28314,		8	.330 s Oc	7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:58 2021 Page 2	
			ID:qH4S_SYhXXmAJJVJ6MTTvyngLu-VozHmaLnoEJCchjPlcOGlb9E2YvCgl9?LFvNOvzwTV				

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 8=-986(B)

> MILLIN RT CAR O \cap Vanan Plas The second se SEAL 036322 GILB A. GILDIN

January 11,2021

			12-11-0 12-11-0			
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.46 BC 0.54 WB 0.42 Matrix-S	Vert(LL) -0.18	5 9-10 >602 360	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	except end verticals.		

REACTIONS.	(size)	10=0-3-0, 7=0-3-0
	Max Grav	10=690(LC 1), 7=690(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2099/0, 3-4=-2099/0, 4-5=-2099/0

BOT CHORD 9-10=0/1428, 8-9=0/2099, 7-8=0/1428

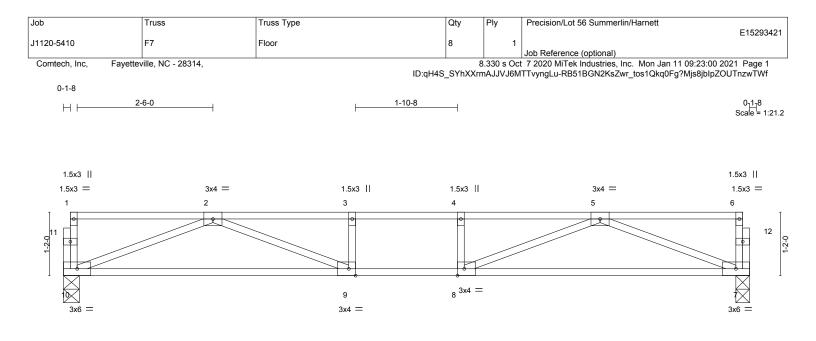
WEBS 2-10=-1530/0, 2-9=0/829, 5-7=-1530/0, 5-8=0/829

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

January 11,2021

Description Spacing- TCLL 2-0-0 Plate Grip DOL CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL 40.0 Plate Grip DOL 1.00 TC 0.40 Vert(LL) -0.15 9-10 >965 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.51 Vert(CT) -0.23 9-10 >655 360 BCLL 0.0 Rep Stress Incr YES WB 0.41 Horz(CT) 0.03 7 n/a n/a	
TCLL 40.0 Plate Grip DOL 1.00 TC 0.40 Vert(LL) -0.15 9-10 >965 480 MT20 244/190 TCDL 10.0 Lumber DOL 1.00 BC 0.51 Vert(CT) -0.23 9-10 >655 360 BCLL 0.0 Rep Stress Incr YES WB 0.41 Horz(CT) 0.03 7 n/a n/a	
BCDL 5.0 Code IRC2015/TPI2014 Matrix-S Weight: 61 lb FT = 20	0%F, 11%E
LUMBER- TOP CHORD BRACING- TOP CHORD BOT CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) BOT CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.	

REACTIONS. (size) 10=0-3-8, 7=0-3-0 Max Grav 10=674(LC 1), 7=674(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2014/0, 3-4=-2014/0, 4-5=-2014/0

BOT CHORD 9-10=0/1390, 8-9=0/2014, 7-8=0/1390

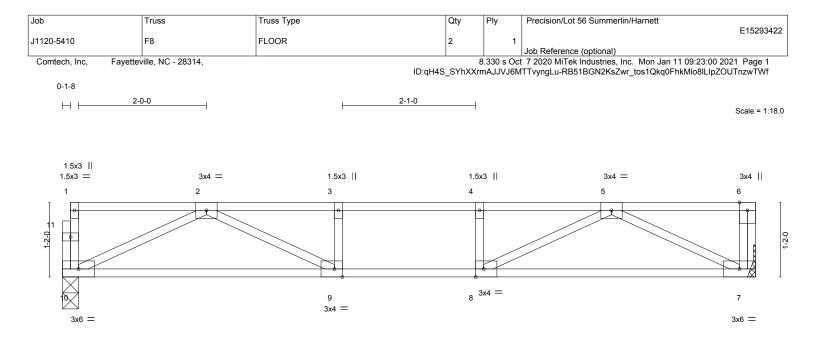
WEBS 2-10=-1489/0, 2-9=0/774, 5-7=-1489/0, 5-8=0/774

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

January 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses sand truss system, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	<u>5-3-12</u> 5-3-12		<u>5-4-12 6-3-0 6-5-0</u> 0-1-0 0-10-4 0-2-0		0-10-0 4-5-0	
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.35 BC 0.38 WB 0.29 Matrix-S		(loc) l/defl L/d 9-10 >999 480 9-10 >999 360 7 n/a n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)			Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	, ,,,	oc purlins,

REACTIONS. (size) 10=0-3-0, 7=Mechanical Max Grav 10=576(LC 1), 7=582(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1453/0, 3-4=-1453/0, 4-5=-1453/0

BOT CHORD 9-10=0/970, 8-9=0/1453, 7-8=0/972

WEBS 2-10=-1075/0, 2-9=0/618, 5-7=-1083/0, 5-8=0/617

NOTES-

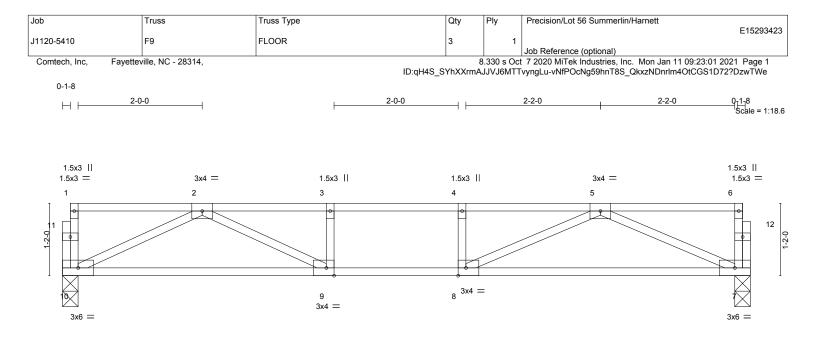
1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

January 11,2021

	<u> </u>		<u>5-4-4 6-2-0 6-4-0</u> 0-1-0 0-9-12 0-2-0	<u> </u>		
Plate Offsets (X,Y)	[8:0-1-8,Edge], [9:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.40 BC 0.42 WB 0.32 Matrix-S	DEFL. in Vert(LL) -0.11 Vert(CT) -0.16 Horz(CT) 0.02	(loc) l/defl L/d 7-8 >999 480 7-8 >813 360 7 n/a n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			e	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	,) oc purlins,

Max Grav 10=5-3-0, 7=0-3-0 Max Grav 10=590(LC 1), 7=590(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1527/0, 3-4=-1527/0, 4-5=-1527/0

BOT CHORD 9-10=0/999, 8-9=0/1527, 7-8=0/1060

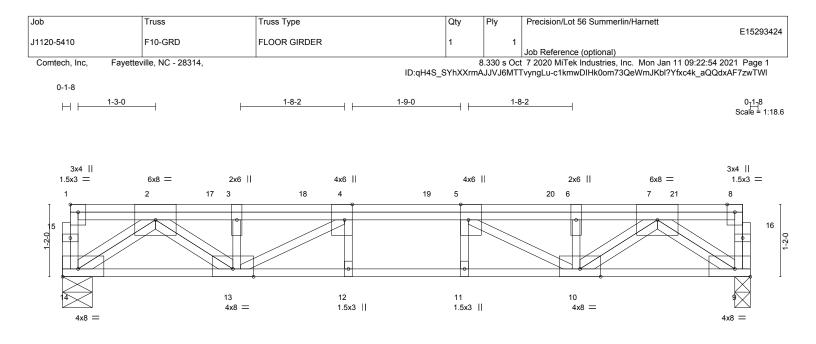
WEBS 2-10=-1107/0, 2-9=0/662, 5-7=-1159/0, 5-8=0/606

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

January 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses sand truss system, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

			11-1-4			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-3-0,Edge], [5:0-3-0,	Edge], [9:Edge,0-1-8], [14				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.77 BC 0.72 WB 0.57 Matrix-S	Vert(LL) -0.13	n (loc) l/defl L/d 3 12-13 >999 480 3 12-13 >741 360 4 9 n/a n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	⁹ No.1(flat) 2 2400F 2.0E(flat) 9 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	, , ,) oc purlins,

REACTIONS. (size) 14=0-5-12, 9=0-3-0

Max Grav 14=2423(LC 1), 9=1211(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-14=-816/0, 2-3=-4187/0, 3-4=-4247/0, 4-5=-4299/0, 5-6=-2677/0, 6-7=-2676/0

BOT CHORD 13-14=0/2298, 12-13=0/4299, 11-12=0/4299, 10-11=0/4299, 9-10=0/1563

WEBS 2-14=-2762/0, 2-13=0/2386, 7-9=-1913/0, 7-10=0/1406, 5-10=-1902/0, 3-13=-1375/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 796 lb down at 0-2-4, 789 lb down at 2-5-12, 774 lb down at 3-11-12, 115 lb down at 5-11-12, and 175 lb down at 7-11-12, and 176 lb down at 9-11-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

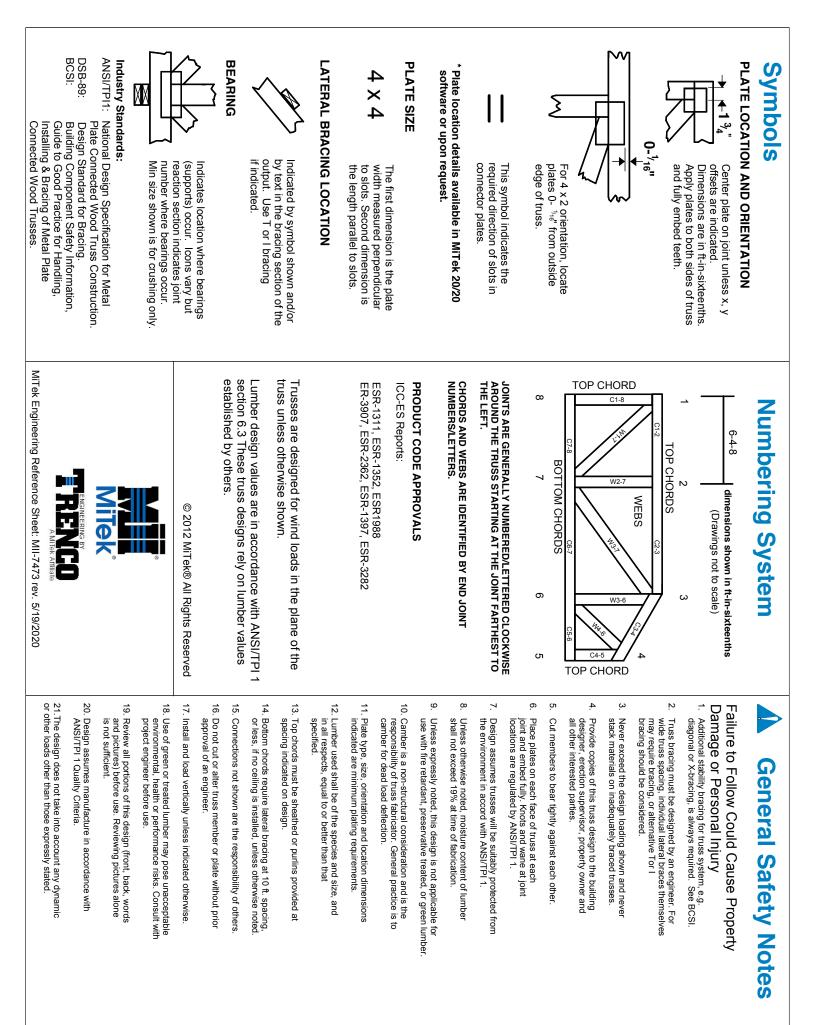
5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 9-14=-10, 1-8=-100


Concentrated Loads (lb)

Vert: 1=-744(B) 17=-709(B) 18=-709(B) 19=-95(B) 20=-95(B) 21=-99(B)

January 11,2021

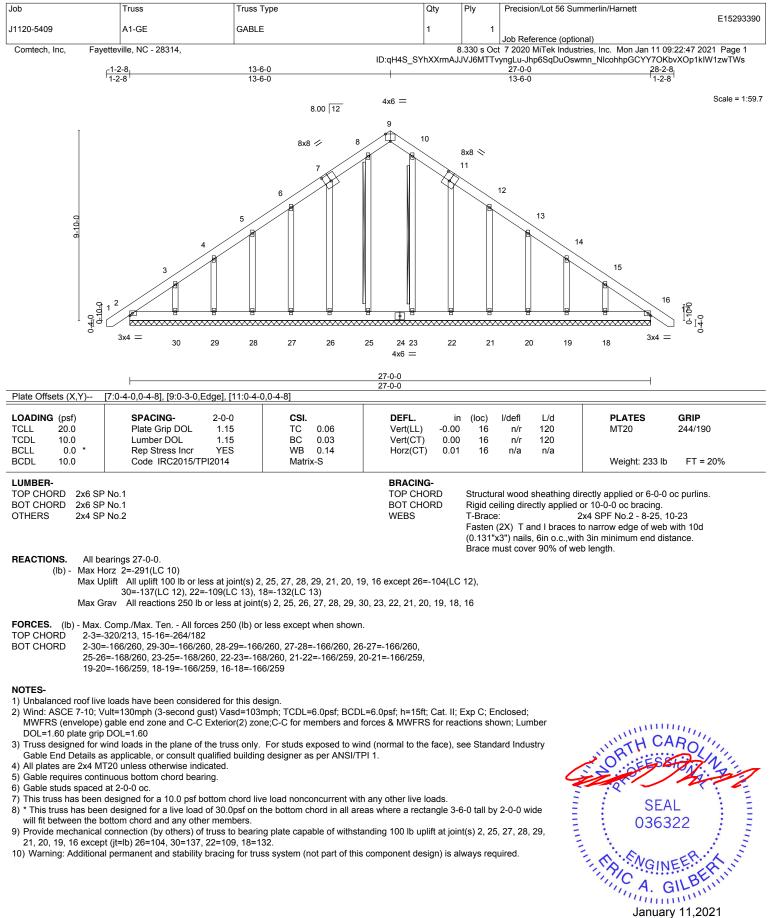
Trenco 818 Soundside Rd Edenton, NC 27932

Re: J1120-5409 Precision/Lot 56 Summerlin/Harnett

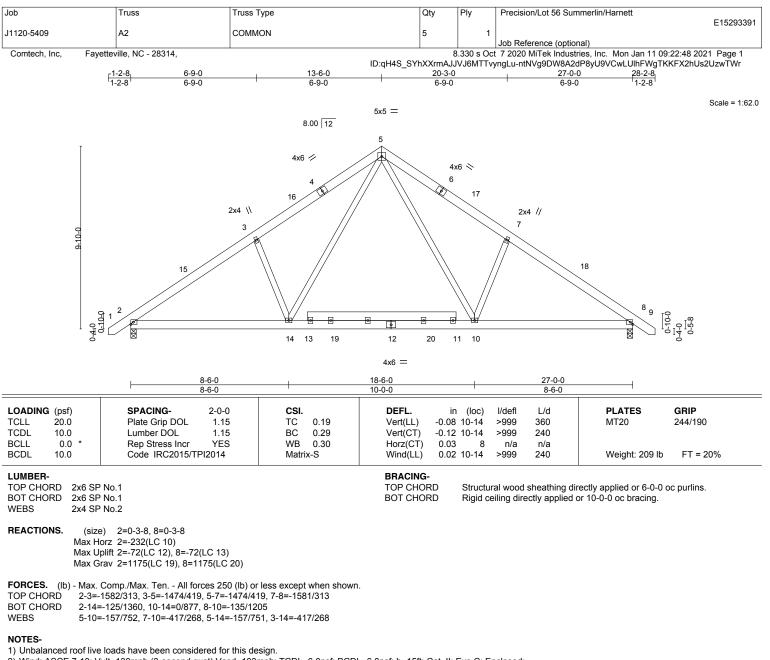
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15293390 thru E15293410

My license renewal date for the state of North Carolina is December 31, 2021.


North Carolina COA: C-0844

January 11,2021


Gilbert, Eric

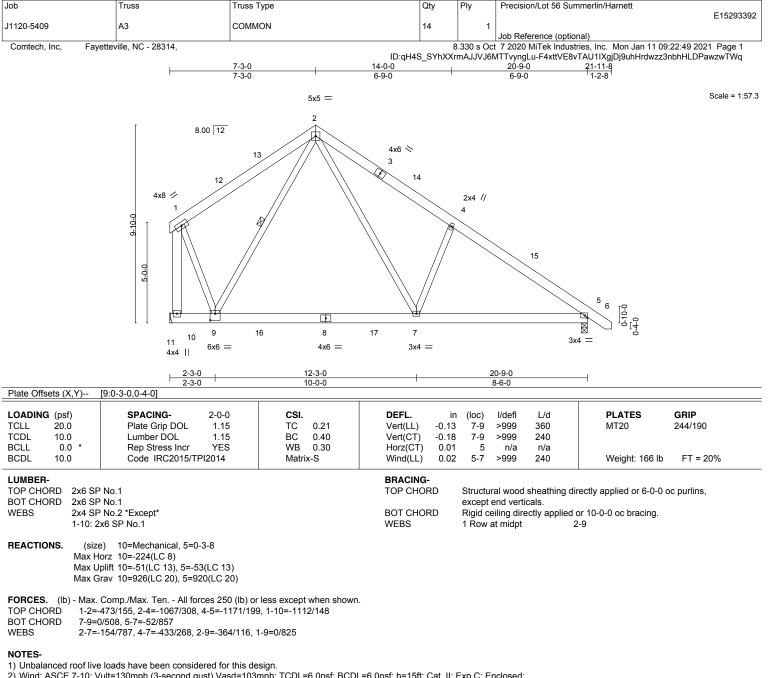
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

5411441y 11,2021

818 Soundside Road Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-9 to 3-4-4, Interior(1) 3-4-4 to 13-6-0, Exterior(2) 13-6-0 to 17-10-13, Interior(1)

17-10-13 to 28-0-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) All plates are 3x4 MT20 unless otherwise indicated.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

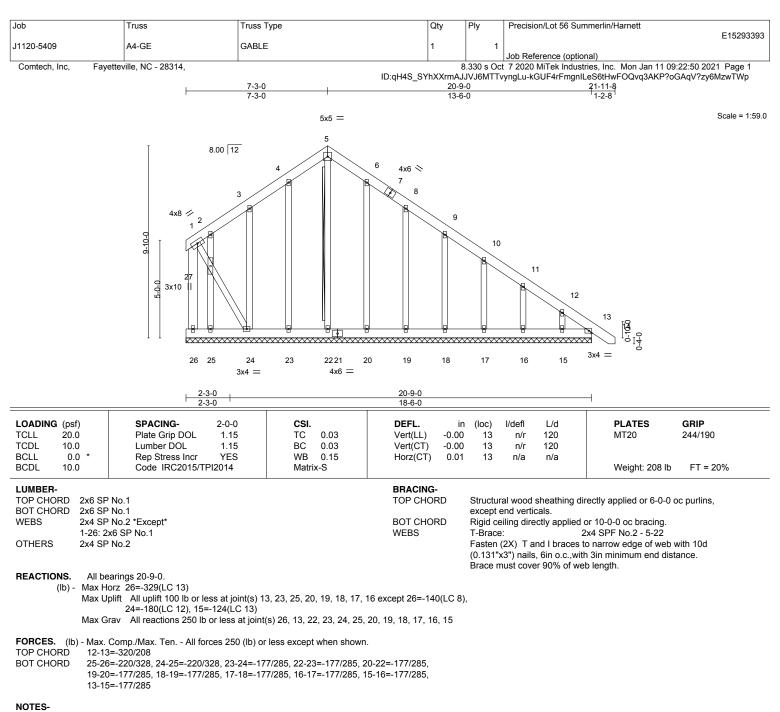
5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

SEAL 036322 January 11,2021

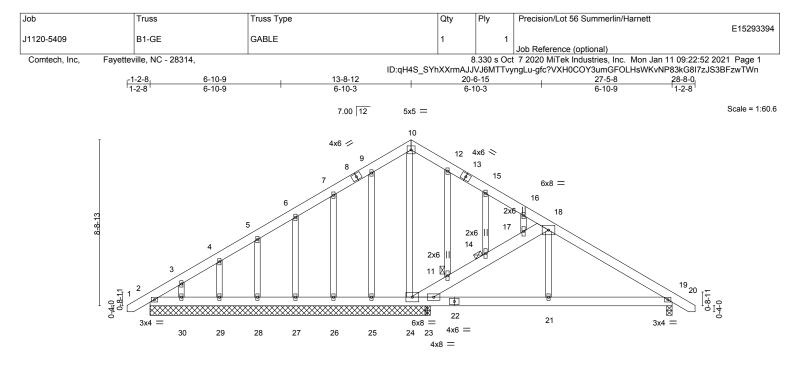
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 7-3-0, Exterior(2) 7-3-0 to 11-7-13, Interior(1) 11-7-13 to 21-9-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 5.



- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 23, 25, 20, 19, 18, 17, 16 except (jt=lb) 26=140, 24=180, 15=124.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

818 Soundside Road Edenton, NC 27932

	6-10-9 6-10-9	13-8-12 6-10-3	14-9-0 1-0-4	20-6-15 5-9-15	20 ₁ 11-8 0-4-9	27-5-8 6-6-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.18 BC 0.14 WB 0.30 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.01 19-21 -0.03 19-21 0.00 19 0.01 19-21	l/defi L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 235 I	GRIP 244/190 b FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 *Except* 18-24: 2x8 SP No.1						directly applied or 6-0- d or 6-0-0 oc bracing,	

TOP CHORD	2x6 SP No.1 *Except*	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins.
	18-24: 2x8 SP No.1	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing, Except:
BOT CHORD	2x6 SP No.1		10-0-0 oc bracing: 23-24,21-23,19-21.
WEBS	2x4 SP No.2	JOINTS	1 Brace at Jt(s): 11, 14
OTHERS	2x4 SP No.2		

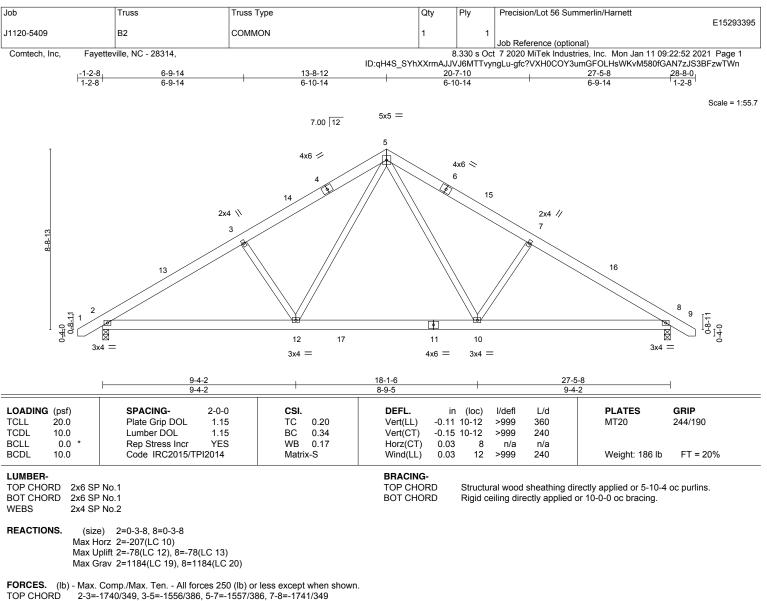
REACTIONS. All bearings 14-7-0 except (jt=length) 19=0-3-8, 23=0-3-8.

(lb) - Max Horz 2=-258(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 25, 26, 27, 28, 29, 30, 23 except 24=-158(LC 13), 19=-159(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 25, 26, 27, 28, 29, 30 except 24=509(LC 20), 19=536(LC 1), 23=350(LC 3)

- TOP CHORD 2-3=-268/285, 18-19=-563/169, 11-24=-712/338, 11-14=-668/312, 14-17=-619/273, 17-18=-597/257
- BOT CHORD 23-24=-31/399, 21-23=-31/399, 19-21=-29/402
- WEBS 10-24=-265/0, 18-21=0/277


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 25, 26, 27, 28, 29, 30, 23 except (jt=lb) 24=158, 19=159.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

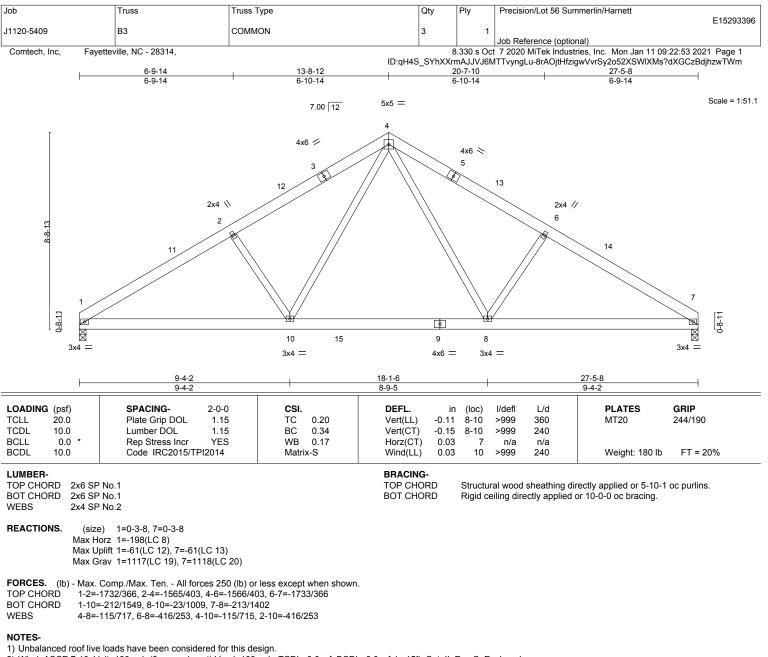
- BOT CHORD 2-12=-182/1543. 10-12=-6/1010. 8-10=-192/1389
- WEBS 5-10=-111/710, 7-10=-417/248, 5-12=-111/708, 3-12=-417/248

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-8 to 3-4-5, Interior(1) 3-4-5 to 13-8-12, Exterior(2) 13-8-12 to 18-1-9, Interior(1) 18-1-9 to 28-6-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

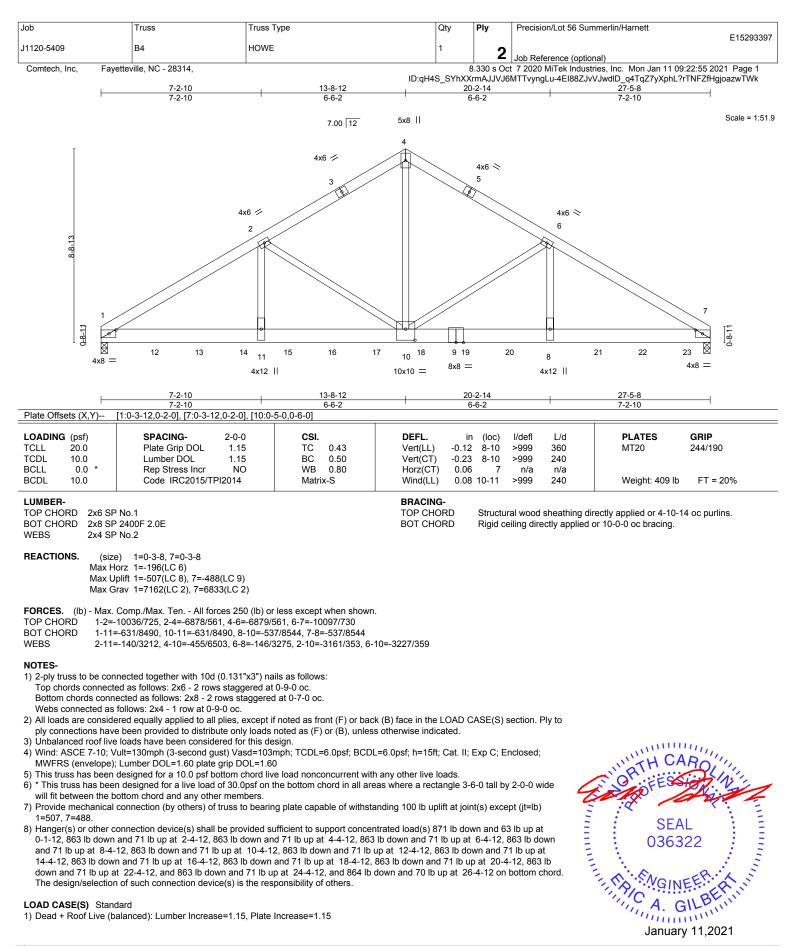

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 13-8-12, Exterior(2) 13-8-12 to 18-1-9, Interior(1) 18-1-9 to 27-3-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

Continued on page 2

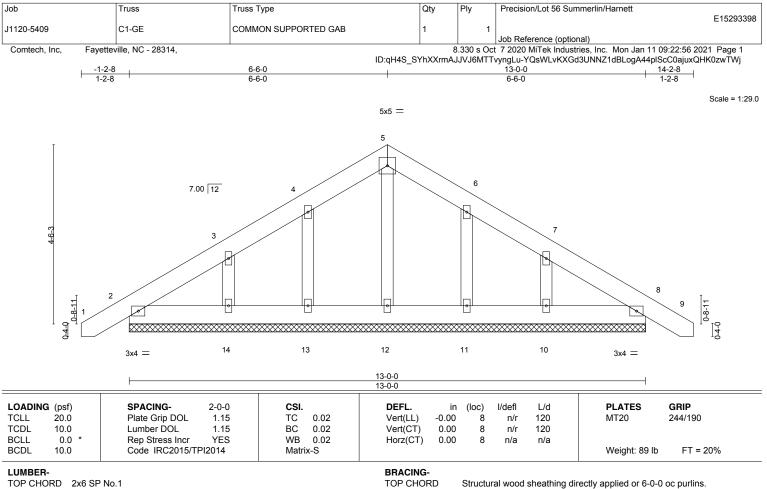
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett
J1120-5409	B4	HOWE	1	^	E1529339
				Z	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,			3.330 s Oct	7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:55 2021 Page 2

ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-4EI88ZJvVJwdID_q4TqZ7yXphL?rTNFZfHgjoazwTWk

LOAD CASE(S) Standard


Uniform Loads (plf)

Vert: 1-7=-20, 1-4=-60, 4-7=-60

Concentrated Loads (lb)

Vert: 1=-803(B) 8=-795(B) 12=-795(B) 13=-795(B) 14=-795(B) 15=-795(B) 16=-795(B) 17=-795(B) 18=-795(B) 19=-795(B) 20=-795(B) 21=-795(B) 22=-795(B) 23=-796(B) 23=-796

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

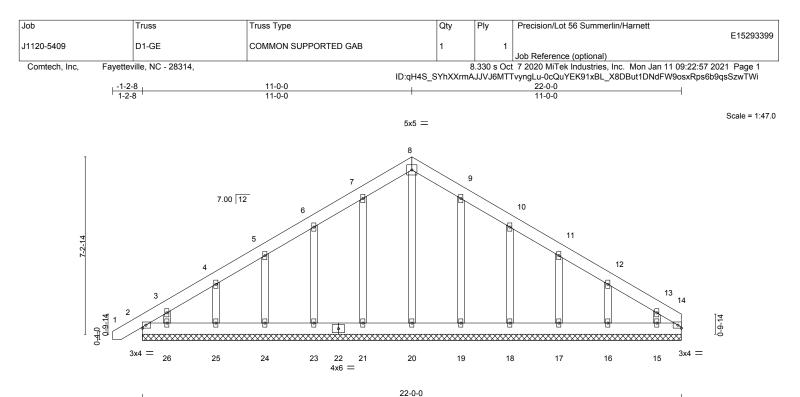
TOP CHORD

BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 13-0-0.

Max Horz 2=132(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 11 except 14=-103(LC 12), 10=-101(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 11 except (jt=lb) 14=103, 10=101.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	
TCLI 20.0				PLATES GRIP
10LL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00 1 n/r 120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 1 n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.09	Horz(CT) 0.00 14 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S		Weight: 167 lb FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

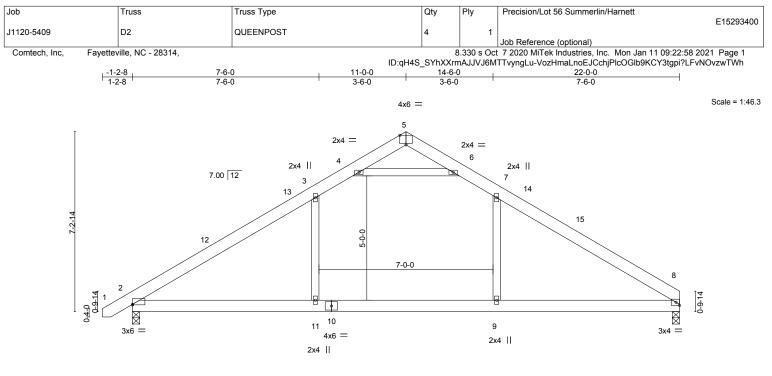
REACTIONS. All bearings 22-0-0.

Max Horz 2=208(LC 9) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 14, 2, 21, 23, 24, 25, 26, 19, 18, 17, 16 except 15=-107(LC 13) Max Grav All reactions 250 lb or less at joint(s) 14, 2, 20, 21, 23, 24, 25, 26, 19, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 2, 21, 23, 24, 25, 26, 19, 18, 17, 16 except (jt=lb) 15=107.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

		7-6-0 7-6-0			<u>14-6-0</u> 7-0-0					22-0-0 7-6-0	
Plate Offsets (X,Y)	[2:0-0-0,0-0-4], [5:0-3-0,										
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.12	`8-9	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.16	8-9	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.43	Horz(CT)	0.02	8	n/a	n/a		
3CDL 10.0	Code IRC2015/T	PI2014	Matrix	k-S	Wind(LL)	0.10	2-11	>999	240	Weight: 134 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

- TOP CHORD 2x6 SP No 1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS
- REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=166(LC 9) Max Uplift 2=-65(LC 12), 8=-48(LC 13) Max Grav 2=1043(LC 19), 8=974(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-1453/243, 3-4=-1057/292, 4-5=-90/348, 5-6=-81/351, 6-7=-1056/301,

- 7-8=-1446/246
- BOT CHORD 2-11=-88/1142, 9-11=-88/1142, 8-9=-88/1142

WEBS 3-11=0/411, 7-9=0/404, 4-6=-1483/437

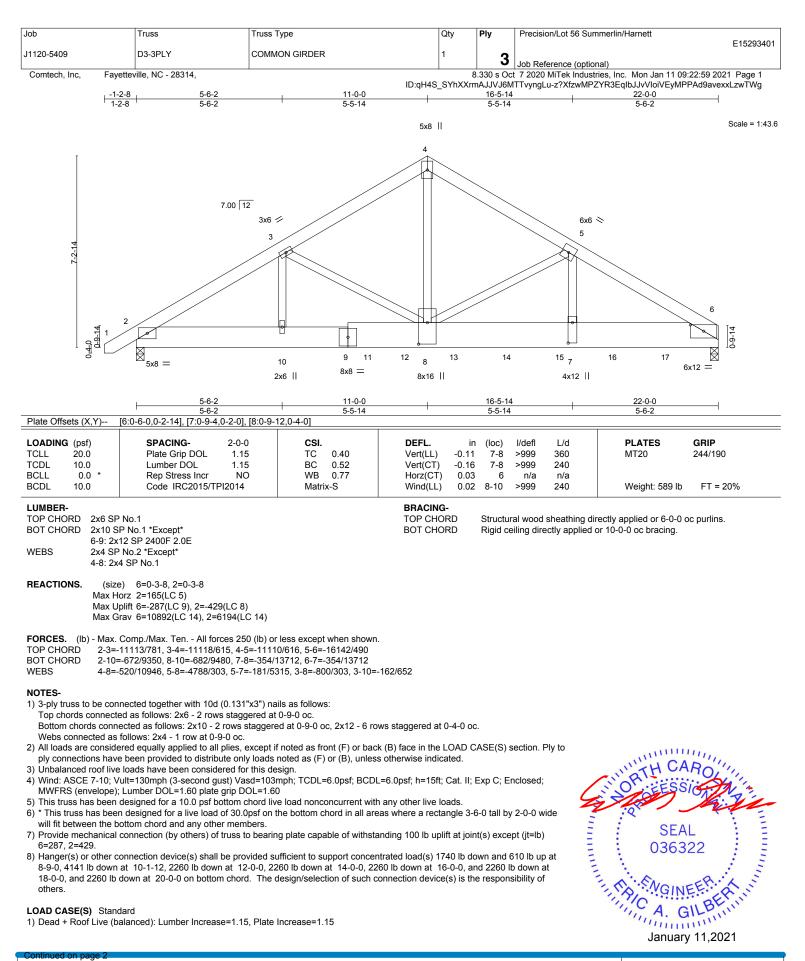
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-8 to 3-4-5, Interior(1) 3-4-5 to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Interior(1) 15-4-13 to 21-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

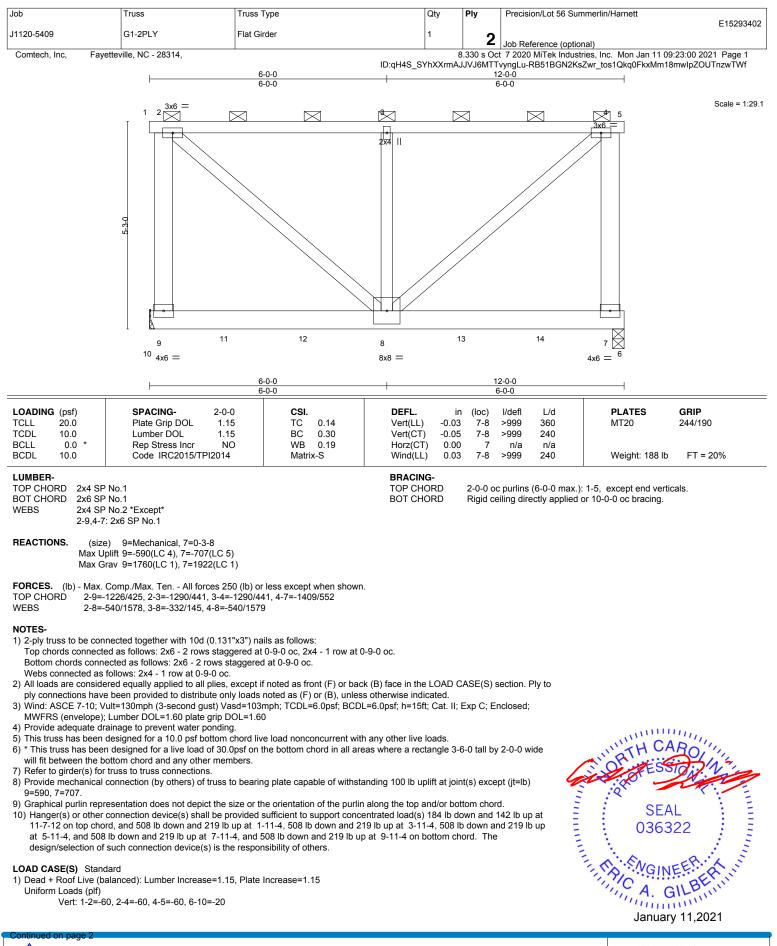
Structural wood sheathing directly applied or 5-11-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Edenton, NC 27932

ſ	lob	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett
						E15293401
	11120-5409	D3-3PLY	COMMON GIRDER	1	2	
					J	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,		8	.330 s Oc	7 2020 MiTek Industries, Inc. Mon Jan 11 09:22:59 2021 Page 2

ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-z?XfzwMPZYR3EqIbJJvVloiVEyMPPAd9avexxLzwTWg

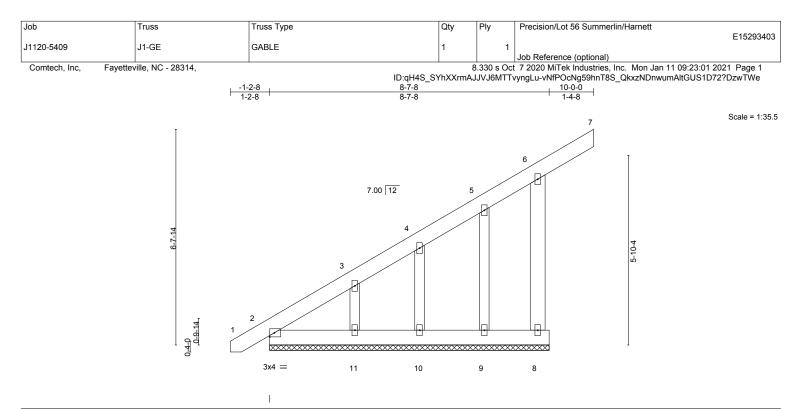

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-4=-60, 4-6=-60, 2-6=-20

Concentrated Loads (lb)

Vert: 11=-1740(B) 12=-1115(B) 13=-585(B) 14=-585(B) 15=-585(B) 16=-585(B) 17=-585(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

Γ	Job	Truss	Truss Type	Qty	Ply	Precision/Lot 56 Summerlin/Harnett	
						E15293	3402
	J1120-5409	G1-2PLY	Flat Girder	1	2		
					_	Job Reference (optional)	
	Comtech, Inc, Fayettev	ville, NC - 28314,		8	.330 s Oc	7 2020 MiTek Industries, Inc. Mon Jan 11 09:23:00 2021 Page 2	2
			ID:qH4S_SYhXXrmAJJVJ6MTTvyngLu-RB51BGN2KsZwr_tos1Qkq0FkxMm18mwIpZOUTnzwTWf				

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 4=-184 8=-508(B) 11=-508(B) 12=-508(B) 13=-508(B) 14=-508(B)

TCDL 10.0 BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.05 Matrix-P	Vert(CT) 0.00 Horz(CT) 0.00		Weight: 74 lb FT = 20%
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.07 BC 0.02	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00	7 n/r 120	PLATES GRIP MT20 244/190

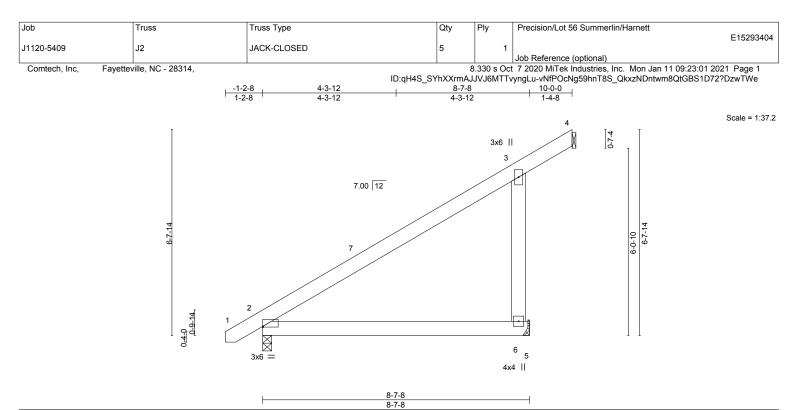
BOT CHORD	2x6 SP No.1		except end verticals.
WEBS	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.2		

REACTIONS. All bearings 8-7-8.

(lb) - Max Horz 2=293(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 9, 10 except 8=-141(LC 12), 11=-130(LC 12) Max Grav All reactions 250 lb or less at joint(s) 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


TOP CHORD 2-3=-348/259, 6-8=-221/265

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 10 except (jt=lb) 8=141, 11=130.

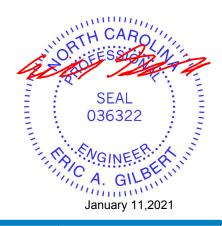
CDL 10.0 Lumber DOL 1.15 BC 0.17 Vert(CT) -0.06 2-6 >999 240 CLL 0.0 * Rep Stress Incr YES WB 0.00 Horz(CT) -0.00 4 n/a n/a	DADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
3CLL 0.0 * Rep Stress Incr YES WB 0.00 Hor2(CT) -0.00 4 n/a n/a	CLL 20.0	Plate Grip DOL 1.15	TC 0.	0.26 Vert(LL)	-0.03	2-6	>999	360	MT20	244/190
	CDL 10.0	Lumber DOL 1.15	BC 0.	0.17 Vert(CT)	-0.06	2-6	>999	240		
CDI 10.0 Code IRC2015/TPI2014 Matrix-P Wind(II) 0.02 2-6 >999 240 Weight: 62 lb ET	CLL 0.0 *	Rep Stress Incr YES	WB 0.	0.00 Horz(CŤ)	-0.00	4	n/a	n/a		
	CDL 10.0	Code IRC2015/TPI2014	Matrix-P	P Wind(LL)	0.02	2-6	>999	240	Weight: 62 lb	FT = 20%

BOT CHORD 2x6 SP No.1 except end verticals. BOT CHORD WEBS 2x6 SP No.1 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 6=Mechanical, 2=0-3-8 Max Horz 2=207(LC 12) Max Uplift 4=-82(LC 19), 6=-199(LC 12)

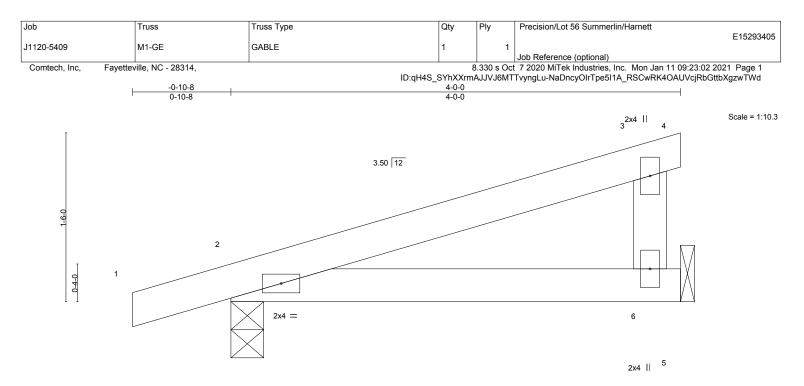
Max Grav 4=47(LC 12), 6=568(LC 19), 2=375(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-6=-510/326


NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-8 to 3-4-5, Interior(1) 3-4-5 to 9-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 6=199.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			4-0 4-0						
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -	-0.01	2-6	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -	-0.02	2-6	>999	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00		n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P		0.02	2-6	>999	240	Weight: 15 lb	FT = 20%

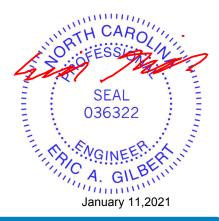
TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 6=Mechanical, 2=0-3-8

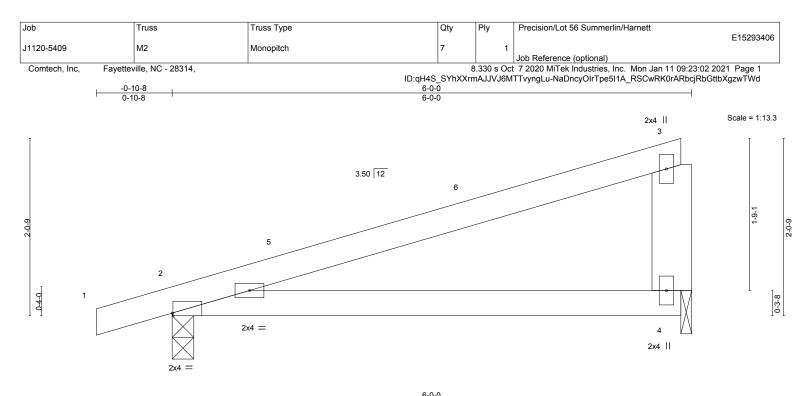

Max Horz 2=69(LC 8) Max Uplift 6=-87(LC 8), 2=-131(LC 8)

Max Grav 6=146(LC 1), 2=213(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=131.


Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

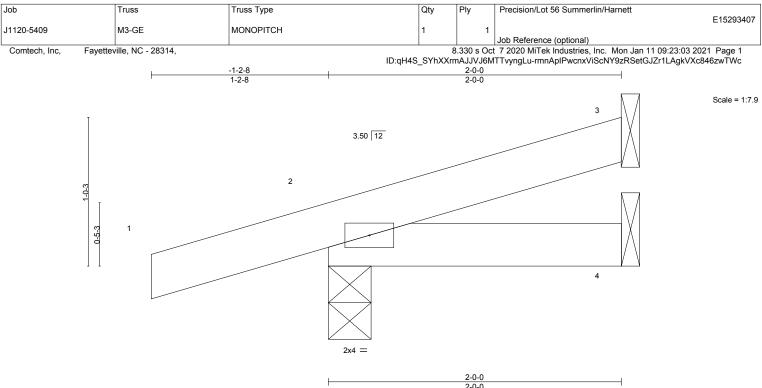
818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y) [2:0-0-2,Edge]					6-0-0						
.OADING (ps	f) SPACING-		2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.	0 Plate Grip	DOL	1.15	TC	0.44	Vert(LL)	-0.05	2-4	>999	360	MT20	244/190
TCDL 10.	0 Lumber D)L	1.15	BC	0.30	Vert(CT)	-0.11	2-4	>635	240		
BCLL 0.	0 * Rep Stress	Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.	0 Code IRC	2015/T	PI2014	Matri	x-P	Wind(LL)	0.12	2-4	>573	240	Weight: 23 lb	FT = 20%

LUWDER-		DRACING-	
TOP CHORD	2x4 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.1		except end verticals.
WEBS	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=67(LC 8) Max Uplift 2=-118(LC 8), 4=-92(LC 8) Max Grav 2=291(LC 1), 4=221(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-9-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=118.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 Most/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

								2-0-0				
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI	2014	Matri	x-P	Wind(LL)	0.00	2	****	240	Weight: 8 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 2=0-3-8, 4=Mechanical, 3=Mechanical

Max Horz 2=47(LC 8)

Max Uplift 2=-99(LC 8), 3=-29(LC 12)

Max Grav 2=176(LC 1), 4=39(LC 3), 3=35(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber

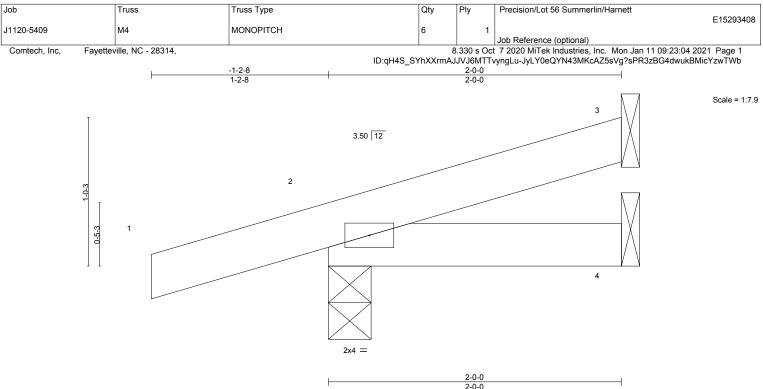
DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.



Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MaNS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

				2-0-0
LOADIN	IG (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.00 2 >999 360 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00 2-4 >999 240
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 8 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 2=0-3-8, 4=Mechanical, 3=Mechanical

Max Horz 2=34(LC 8)

Max Uplift 2=-64(LC 8), 3=-19(LC 12)

Max Grav 2=176(LC 1), 4=39(LC 3), 3=35(LC 1)

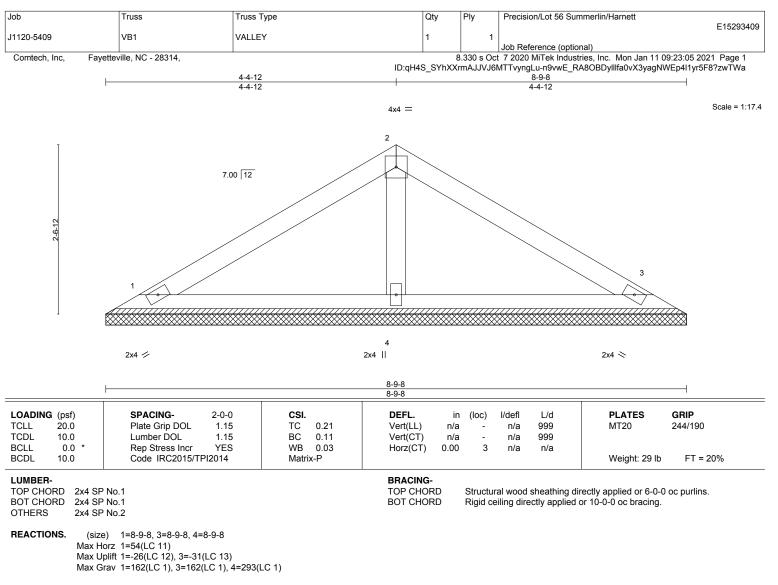
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWERS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWERS for reactions shown: Lumber DCL=1.60 plat
- MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.



Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

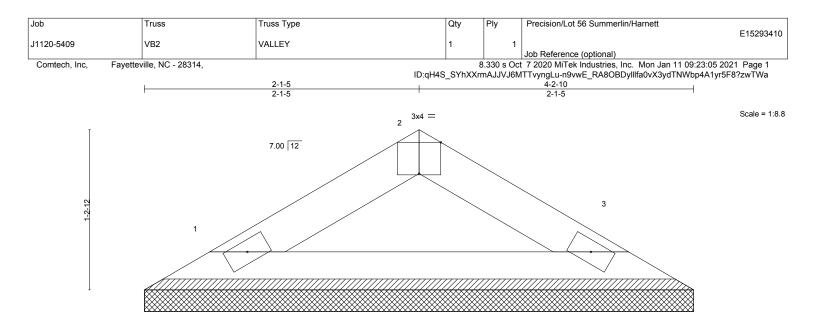
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MaNS/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliat 818 Soundside Road Edenton, NC 27932

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MINSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

2x4 💋

2x4 📎

DL CLL	20.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC WB	0.03 0.09 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
DL ·	10.0	Code IRC2015/TF	PI2014	Matrix	-P						Weight: 12 lb	FT = 20%

REACTIONS. (size) 1=4-2-10, 3=4-2-10

Max Horz 1=-22(LC 10) Max Uplift 1=-7(LC 12), 3=-7(LC 13) Max Grav 1=126(LC 1), 3=126(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

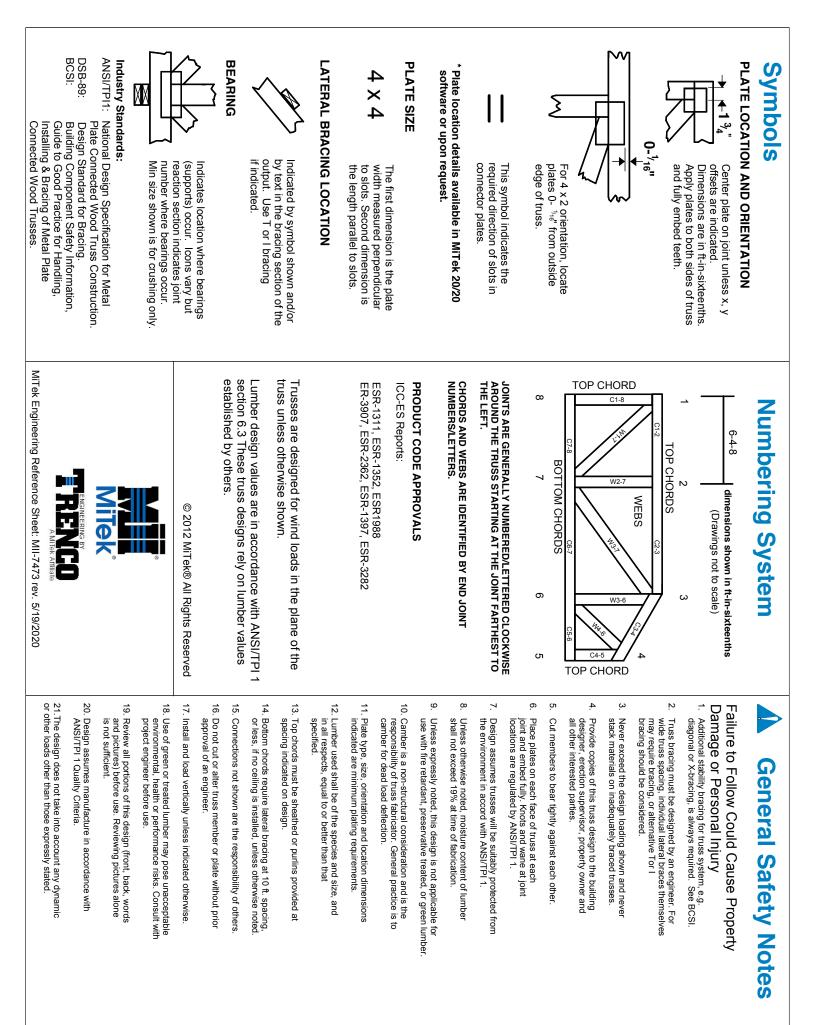
1) Unbalanced roof live loads have been considered for this design.

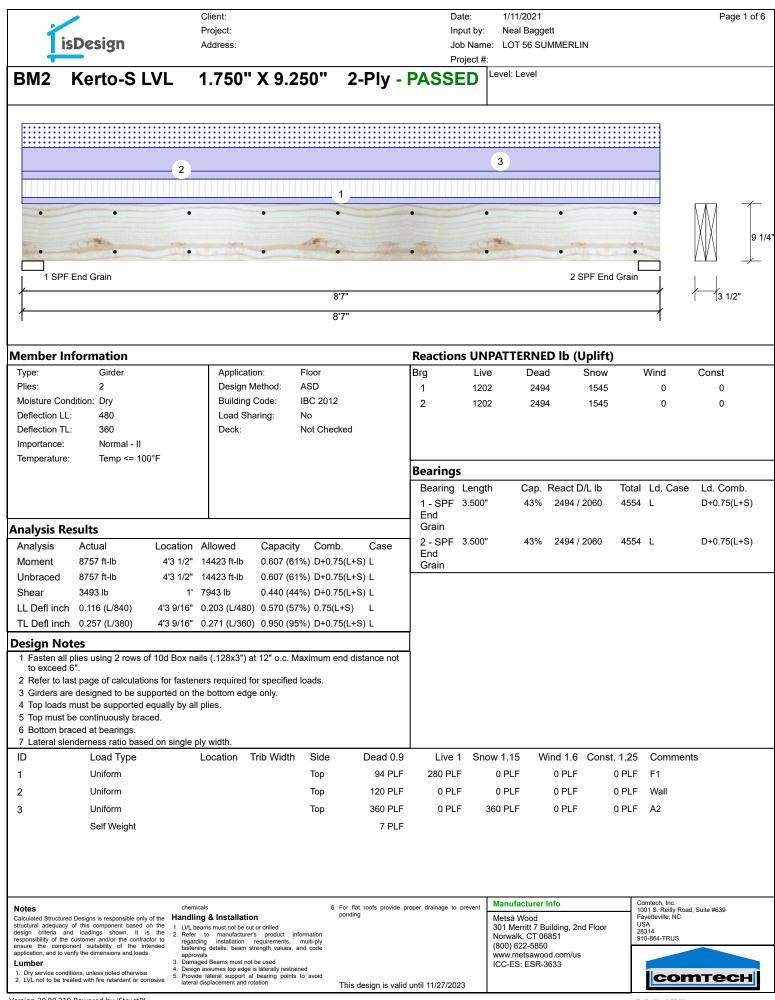
2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

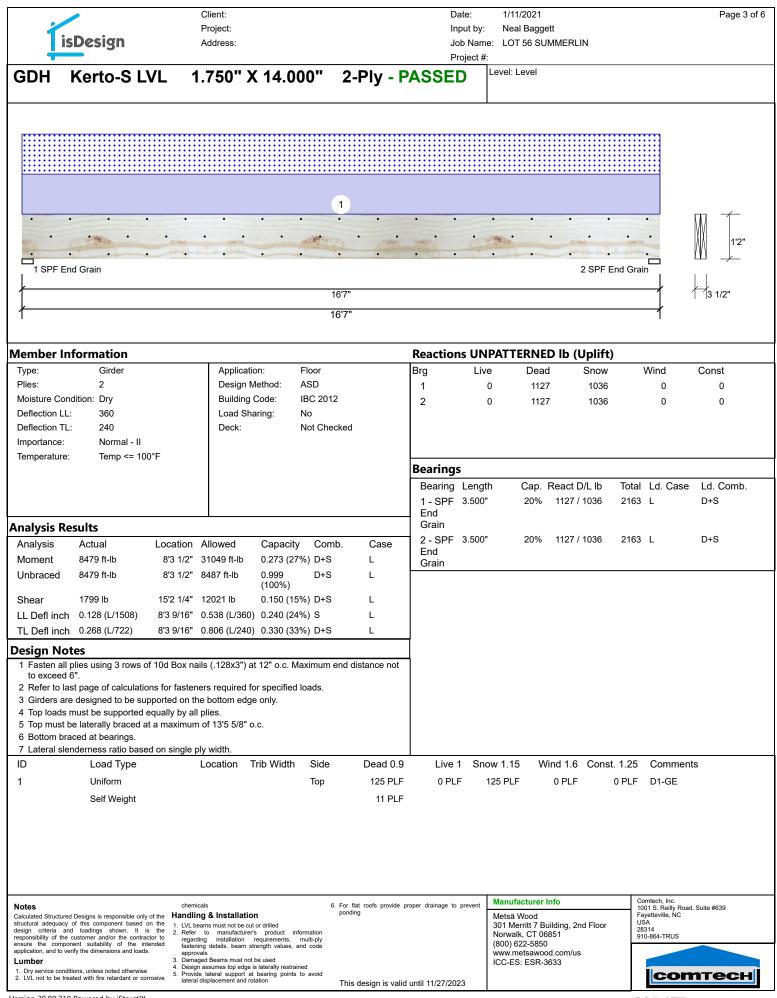
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

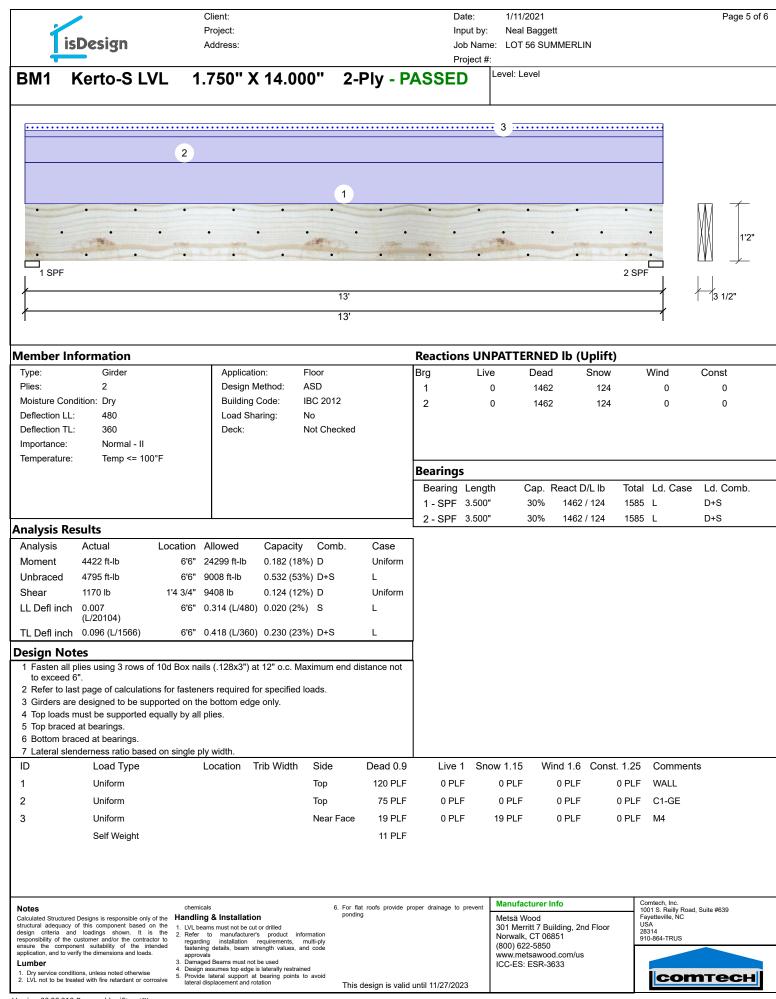

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Edenton, NC 27932

Version 20.80.210 Powered by iStruct™


Project: Input by: Neal Baggett Address: Job Name: LOT 56 SUMMERLIN Project #: BM2 Kerto-S LVL 1.750" X 9.250" 2-Ply - PASSED Level Imput by: Neal Baggett Job Name: Lot 76 SUMMERLIN Project #: Evel Level Imput by: Neal Baggett BM2 Kerto-S LVL 1.750" X 9.250" 2-Ply - PASSED Level Imput by: Neal Baggett Job Name: Lot 76 SUMMERLIN Project #: Evel Level Imput by: Neal Baggett BM2 Kerto-S LVL 1.750" X 9.250" 2-Ply - PASSED Level Imput by: Neal Baggett Lower Imput by: Level Imput by: Neal Baggett Lower Imput by: Lower			Client:	Date	: 1/11/2021	Page 2 of 6
New New New New New New New New Note: 1.0750" X 9.250" 2.PHy - PASSED Invel Level Image: Image: Image: Image: Image: Image: Image:	2					0
BM2 Kerto-S LVL 1.750" X 9.250" 2.Ply - PASSED Level Level Image: Second		isDesign	Address:	Job	Name: LOT 56 SUMMERLIN	
Image: Second				,		
Image: Second	BM2	Kerto-S LV	L 1.750" X 9.250"	2-Plv - PASSE	D Level: Level	
Number of the second of the				,	-	
Number of the second of the						
Number of the second of the						
Number of the second of the						
Number of the second of the						
Number of the second of the						
Number of the second of the						
Number of the second of the		•				
Image: State and the state of the state		•	• •	• •	•	
Issee and Grain 2 SPF End Grain 87* Multi-Ply Analysis Rasten all plies using 2 rows of 10d Box nails (128x3") at 12° o.c. Maximum end distance not to exceed 6° Company 0.0 % Uod Unit per Fastener 81.9 % Ved Unit per Fastener 81.9 % Ved Mode W Bege Distance 11.02 Data for Faster 10.0						9 1/4
Brace	•	•	• •	• •	• •	• <u>+ + + + + + + + + + + + + + + + + + +</u>
Brace		DE End Croin				
Multi-Py Analysis State nall plies using 2 rows of 10d Box nails (128x3") at 12" o.c Maximum end distance not to exceed 6" Capacity 0.0% Weld Link per Foot 163.7 PLF Weld Link per Foot 100 Weld Link per Foot 100	13					
Multi-Ply Analysis Easten all plies using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" Cognety 0.0 % Valid Ling per Castoner 81.9 % Yind Mode 1/2 State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" State all pries using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance	11			8'7"		1 13 1/2"
Rate all plies using 2 rows of 10d Box nails (128/3") at 12° o.c., Maximum end distance not to exceed 6" Capacity 0.0 % Indiana period 10.37 PLF With End Link per Foatoner 10 With End Link per Foatoner 10	1			8'7"		
Rate all plies using 2 rows of 10d Box nails (128/3") at 12° o.c., Maximum end distance not to exceed 6" Capacity 0.0 % Indiana period 10.37 PLF With End Link per Foatoner 10 With End Link per Foatoner 10						
Rate all plies using 2 rows of 10d Box nails (128/3") at 12° o.c., Maximum end distance not to exceed 6" Capacity 0.0 % Indiana period 10.37 PLF With End Link per Foatoner 10 With End Link per Foatoner 10						
Capacity 0.0 % Load 0.0 PUF Yeld Lint per Foot 163.7 PUF Yeld Lint per Faster 8.19 lb. Yeld Stater 8.19 lb. Yeld Michae V Keige Distance 1/27 Min. End Distance 3* Load Combination 3* Duration Factor 1.00	-					
Cond 0.0. PLF Walk Limit por Fastener 31.3 PLF Yeld More V Edge Distance 11.27 Min. End Distance 3.7 Lead Combination 100				o.c Maximum end distance	e not to exceed 6"	
Yead Linit per Foot 60.7 PL/F Yead Linit per Foot 19 Bb. Yead Linit per Foot 19 Bb. Yead Mode V Sign Ditatnon 3" Linit per Foot 1.00						
Yead Made W Kige Distance 11/2* Mone and Distance 1 Mark End Distance 3* Lead Combination 100						
Yeid Mode V/ Kego Diatance 3/ Lad Combination Duration Factor 1/02 Strategy lad Strategy lad						
Mon. End Distance 3° Load Combination Duration Factor 100 Network Manufacturer Info Second Schulzer Grayens reports and schulzer Schu	Yield Mode	IN				
Load Combination Duration Factor 100 Note: Note: Specific Reports of the Specific Reports page datage to prove Network: Specific Reports of the Specific Reports of the Specific Reports page datage to prove Network: Specific Reports of the Specific Reports of the Specific Reports page datage to prove Network: Specific Reports of the Specific Reports of the Specific Reports page datage to prove Network: Specific Reports of the Specific Reports of the Specific Reports page datage to prove Network: Specific Reports of the Specific Reports of the Specific Reports page datage to prove Network: Specific Reports of the Spec	-					
Duration Factor 1.00 Nete Second Region Reg						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor			.00			
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Notes chemicals c. For flat roots provide proper drainage to prevent ponding 1001 S. Relly, Road, Suite #639 Calculated Structured Designs is responsible only of the somponent based on the design criteria and loadings shown. It is the responsibility of the cultomer and/or the contractor to ensure the component suitability of the cultomer sind to verify the dimensions and loads. 1. UX beams must not be cut or drilled Metsä Wood 301 Metsä Wood 1001 S. Relly, Road, Suite #639 2. Wing the interest one and to verify the dimensions and boarditions, unless noted otherwise 3. Damaged Beams must not be used 4. Design assumes to p edge is laterally restarined 0. Wing the intered support at beaming points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. Wing the intered support at beams points to avoid 0. For that roots provide proper drainage to prevent points at beams points to avoid 1001 S. Relly, Road, Suite #639 Fayering assumes to the cut or drilled 2. Wing the performance of the perfor						
Calculated Structured Designs is responsible only of this component based on the structured Designs is responsible only of this component based on the structured leadings shown. It is the responsibility of the customer and/or the contractor is product information requirements, multi-phy ending application, and to verify the dimensions and loads. Handling & Installation ponding 1. UV beams must not be cut or drilled application, and to verify the dimensions and loads. 2. Neter to manufactures, and code approvals 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 (www.metsawood.com/us 10-864-TRUS 28314 (800) 622-5850 (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800) 622-5850 (800) (800	Notes		chemicals	6. For flat roofs provide proper drainage to pre	Manufacturer Info	1001 S. Reilly Road, Suite #639
design criteria and loadings shown. It is the responsibility of the cuismers and/or the contractor to responsibility of the cuismers and/or the contractor to requirements, multi-ply application, and to verify the dimensions and loads. 3. Refer to manufacture information requirements, multi-ply application, and to verify the dimensions and loads. 3. Norwalk, CT 06851 (800) 622-5850 (800) 620-5850 (800) 622-5850 (800) 620-580 (800) 620-58	Calculated Struc	ctured Designs is responsible only of the uacy of this component based on the		ponding		Fayetteville, NC USA
ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. V/ not the treated with fire relaration or corresive Frovide lateral support at bearing points to avoid (800) 622-5850 (Www.metsawood.com/us ICC-ES: ESR-3633	design criteria responsibility of	a and loadings shown. It is the f the customer and/or the contractor to	e 2. Refer to manufacturer's product information		Norwalk, CT 06851	28314
Lumber 3. Damaged Beams must not be used ICC-ES: ESR-3633 1. Dry service conditions, unless noted otherwise 4. Design assumes top edge is laterally restrained ICC-ES: ESR-3633 2. IVI, not the treated with fire relaration or correspice 5. Provide lateral support at bearing points to avoid ICC-ES: ESR-3633	ensure the co application, and	omponent suitability of the intended	d fastening details, beam strength values, and code approvals		www.metsawood.com/us	
2. IVI not to be treated with fire retardant or corrosive		conditions, unless noted otherwise	Design assumes top edge is laterally restrained			
			e s. riovide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 11/27/2023		COMTECH

Version 20.80.210 Powered by iStruct™

	Client:	D	ate: 1/11/2021	Page 4 of 6
Lin Danimu	Project:	In	put by: Neal Baggett	3
isDesign	Address:		ob Name: LOT 56 SUMMERLIN roject #:	
GDH Kerto-S LVL	1.750" X 14.000"			
· · · ·	· · · · ·		· · · · ·	
		• • •	• • • •	
	• • • •	• • • •	• • • •	──┼Ŧ╦╴╙ →∕
1 SPF End Grain			2 SPF End	Grain //
		16'7"		3 1/2"
1		16'7"		1
Multi-Ply Analysis ^F asten all plies using 3 rows of 1	Od Roy pails (12922") at 12"	o.c. Maximum and dista	nco not to overand 6"	
capacity 0.0 %		o.c Maximum enu uista	nce not to exceed o	
oad 0.0 P 'ield Limit per Foot 245.6	PLF 6 PLF			
ield Limit per Fastener 81.9				
ield Mode IV				
dge Distance 1 1/2 1in. End Distance 3"				
oad Combination				
Duration Factor 1.00				
structural adequacy of this component based on the 1.	chemicals andling & Installation LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals	 For flat roofs provide proper drainage to ponding 	prevent Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS
Lumber 3.	approvals Damaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 11/27/20	ICC-ES: ESR-3633	соттесн
Version 20.80.210 Powered by iStruct™			I	

bу

Version 20.80.210 Powered by iStruct™

Client:	Date: 1/11/2021 Page 6 of 6
Project: isDesign Address:	Input by: Neal Baggett Job Name: LOT 56 SUMMERLIN
	Project #:
BM1 Kerto-S LVL 1.750" X 1	4.000" 2-Ply - PASSED
• • • • •	\cdot
	\cdot
1 SPF	
	13'
Multi-Ply Analysis	
Fasten all plies using 3 rows of 10d Box nails (.128	8x3") at 12" o.c Maximum end distance not to exceed 6"
Capacity 6.7 % Load 19.0 PLF	
Yield Limit per Foot282.4 PLFYield Limit per Fastener94.1 lb.	
Yield Mode IV	
Edge Distance 1 1/2" Min. End Distance 3"	
Load Combination D+S	
Duration Factor 1.15	
Notes chemicals	6. For flat roofs provide proper drainage to prevent ponding Manufacturer Info Comtech, inc. 1001 S. Reilly Road, Suite #639 Fayetterville, NC
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the 2. Refer to manufacturer's pr	lied 301 Merritt 7 Building, 2nd Floor USA 28314
responsibility of the customer and/or the contractor to ensure the component suitability of the intended fastening details, beam strength	Values, and Code Norwalk, C1 06851 910-864-TRUS
application, and to verify the dimensions and loads. Lumber 1. Discovering application problem application of the second structure of the second struc	rally restrained
Dry service conditions, unless noted otherwise LVL not to be treated with fire retardant or corrosive LVL not to be treated with fire retardant or corrosive	ing points to avoid
Version 20.80.210 Powered by iStruct™	