

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J1220-5657 Precision/Lot 58 Summerlin/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15304809 thru E15304824

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

January 13,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

January 13,2021

ENGINEERING BY ENGINEERING BY A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

LUMBER-

REACTIONS.

2x6 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

> (size) 2=0-5-8, 8=0-5-8 Max Horz 2=260(LC 9) Max Uplift 2=-83(LC 12), 8=-64(LC 13) Max Grav 2=1471(LC 19), 8=1395(LC 20)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2001/363, 3-5=-1870/457, 5-7=-1877/473, 7-8=-2007/376
 BOT CHORD 2-11=-179/1748, 9-11=0/1138, 8-9=-182/1577

WEBS 5-9=-170/976, 7-9=-513/308, 5-11=-167/967, 3-11=-513/303

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 15-6-0, Exterior(2) 15-6-0 to 19-10-13, Interior(1) 19-10-13 to 30-9-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

Structural wood sheathing directly applied or 5-3-3 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

REACTIONS. (size) 2=0-5-8, 8=0-5-8 Max Horz 2=-265(LC 10) Max Uplift 2=-83(LC 12), 8=-83(LC 13) Max Grav 2=1459(LC 19), 8=1459(LC 20)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1980/362, 3-5=-1849/455, 5-7=-1849/455, 7-8=-1980/362

BOT CHORD 2-12=-143/1738, 10-12=0/1133, 8-10=-156/1564

WEBS 5-10=-166/956, 7-10=-512/302, 5-12=-166/955, 3-12=-512/302

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 15-6-0, Exterior(2) 15-6-0 to 19-10-13, Interior(1) 19-10-13 to 32-0-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

JOINTS

0.05

>999

1 Brace at Jt(s): 24, 25, 27, 29

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 5-7-2 oc purlins.

Weight: 275 lb

FT = 20%

REACTIONS.	All bearings 7-7-0 except (jt=length) 2=0-5-8.
------------	--

2x6 SP No.1

2x6 SP No.1

2x4 SP No.2

(lb) - Max Horz 2=-331(LC 10)

2x4 SP No.2 *Except*

5-20: 2x8 SP No.1

Max Uplift All uplift 100 lb or less at joint(s) 19, 18, 17 except 2=-226(LC 12), 20=-199(LC 13) All reactions 250 lb or less at joint(s) 19, 18, 17 except 2=1298(LC 19), 15=619(LC 19), 20=690(LC 1), Max Grav 20=690(LC 1)

Matrix-S

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2015/TPI2014

TOP CHORD	2-3=-1700/342, 3-5=-1538/431, 5-6=-996/377, 6-7=-855/324, 7-8=-901/273,
	8-10=-915/220, 10-11=-891/138, 11-12=-864/66, 12-13=-872/0, 13-14=-913/0, 14-15=-934/0
BOT CHORD	2-23=-263/1526, 21-23=-13/945, 20-21=-38/1227, 19-20=0/760, 18-19=0/760, 17-18=0/760, 15-17=0/760
WEBS	21-24=-88/629, 21-25=-323/217, 23-26=-221/945, 3-23=-447/355, 5-26=-445/22

26-27=-715/285, 24-29=-584/141, 29-30=-615/176, 25-30=-655/263, 25-31=-598/201. 20-31=-698/273. 6-27=-323/887

NOTES-

BCDL

WEBS

OTHERS

LUMBER-

TOP CHORD

BOT CHORD

10.0

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 18, 17 except (jt=lb) 2=226, 20=199.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MolSVTPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY REENCO AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

A. GILD

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Precision/Lot 58 Summerlin/Harnett		
						E15304818		
J1220-5657		C4	COMMON	1	2			
					_	Job Reference (optional)		
Comtech, Inc,	Fayettev	ille, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Jan 13 11:35:20 2021 Page 2		
				0 ITRI 00				

ID:jUICoITBhC0nIVImGynse8yuZYG-Qb6CYYhuoDu0Ps2aqf0x6Qyohl0Zqhhev8US7pzvnOb

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 1-8=-20

Concentrated Loads (lb)

Vert: 9=-1450(B) 15=-1450(B) 16=-1450(B) 17=-1450(B) 18=-1450(B) 19=-1450(B) 20=-1450(B) 21=-1450(B) 22=-1450(B) 23=-1800(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulsable personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 58 Summerlin/Harnett
					E15304820
J1220-5657	D2	Common Girder	1	ົ່	
					Job Reference (optional)
Comtech, Inc, Fay	tteville, NC - 28314,		8	.330 s Oct	7 2020 MiTek Industries, Inc. Wed Jan 13 11:35:22 2021 Page 2
		ID:		COnl\/ImC	WDDD9VUZVC N ETTEIOKr9k000w/42DBr1EuZoflf4vM9770itv007

ID:jUICoITBhC0nIVImGynse8yuZYG-N_EzzEj9Kr8ke9Cyy42PBr1FuZcflf4xMSzZCizvnOZ

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-1208(B) 5=-1200(B) 6=-1200(B) 7=-1200(B) 8=-1200(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/JTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6-0-0 6-0-0								
Plate Offsets (X,Y)	[2:0-2-5,Edge]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.09 BC 0.09 WB 0.02 Matrix-S	DEFL. in Vert(LL) 0.02 Vert(CT) -0.02 Horz(CT) -0.00	(loc) l/defl L/d 2-6 >999 240 2-6 >999 240 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 36 lb FT = 20%				
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S WEBS 2x6 S OTHERS 2x4 S	P No.1 P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.				

REACTIONS. (size) 2=0-3-0, 5=0-1-8 Max Horz 2=110(LC 8) Max Uplift 2=-173(LC 8), 5=-138(LC 8)

Max Grav 2=299(LC 1), 5=219(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=173, 5=138.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						6-0	-0					
			I			6-0	-0				1	
Plate Offs	sets (X,Y)	[2:0-2-5,Edge]										
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.03	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	k-P	Wind(LL)	0.03	2-4	>999	240	Weight: 35 lb	FT = 20%
		•									-	

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=78(LC 8) Max Uplift 2=-120(LC 8), 4=-94(LC 8) Max Grav 2=299(LC 1), 4=219(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-13 to 3-5-0, Interior(1) 3-5-0 to 5-9-4 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=120.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(size) 1=8-1-9, 3=8-1-9, 4=8-1-9 Max Horz 1=-73(LC 8) Max Uplift 1=-26(LC 13), 3=-32(LC 13) Max Grav 1=169(LC 1), 3=169(LC 1), 4=247(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

(size) 1=4-11-2, 3=4-11-2, 4=4-11-2 Max Horz 1=-41(LC 10) Max Uplift 1=-14(LC 13), 3=-18(LC 13) Max Grav 1=95(LC 1), 3=95(LC 1), 4=139(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J1220-5658 Precision/Lot 58 Summerlin/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E15304825 thru E15304840

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

January 13,2021

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 58 Summerl	in/Harnett	
J1220-5658	ET1	Floor Supported Gable	1	1	Job Reference (optional)		E15304825
Comtech, Inc, Fayett	eville, NC - 28314,		8. ID:1NaocfdXEd	330 s Oct	7 2020 MiTek Industries, In	c. Wed Jan 13 11:35:12	2 2021 Page 1
0- 1 -8			ib. maociuxi g	11009₩20	002120720-100010001111000		0-1-8
							Scale = 1:51.7
1 2 3	4 5 6 7	3x6 8 9 10 11 12 1	13 14 15 16	17	18 19 20 2	21 22 23 2	24 25
50 49 48 3x4 =	47 46 45 44	43 42 41 40 39 3x	38 37 36 35 6 FP =	34	33 32 31 3	30 29 28 2	?7 26 3x4 =
		30	-11-0				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-C Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.08 BC 0.01 WB 0.03 Matrix-R 0	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 26	l/defi L/d n/a 999 n/a 999 n/a n/a	PLATES GR MT20 244 Weight: 127 lb F	IP /190 T = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N OTHERS 2x4 SP N PEACTIONS All boot	o.1(flat) o.1(flat) o.3(flat) o.3(flat) ingg 30,11,0		BRACING- TOP CHORD BOT CHORD	Structura except e Rigid cei	al wood sheathing directly nd verticals. lling directly applied or 10-	applied or 6-0-0 oc pu 0-0 oc bracing.	rlins,
(lb) - Max Gra	v All reactions 250 lb or less 35, 34, 33, 32, 31, 30, 29, 2	at joint(s) 50, 26, 49, 48, 47, 46, 45, - 8, 27	44, 43, 42, 41, 40, 39	, 37, 36,			

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

(lb) - Max Grav All reactions 250 lb or less at joint(s) 40, 21, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MaINSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		1	-0-0			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [8:0-1-8,Edge], [9:0-1-8,	Edge], [16:Edge,0-1-8], [17	7:0-1-8,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.51 BC 0.29 WB 0.07 Matrix-R	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) l/defl L/d - n/a 999 - n/a 999 10 n/a n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	rectly applied or 9-7-0 or 6-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 8-8-8.

Max Uplift All uplift 100 lb or less at joint(s) 16 except 11=-110(LC 4) (lb) -

Max Grav All reactions 250 lb or less at joint(s) 16, 15, 14, 13, 12, 11 except 10=436(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 7-10=-298/0

WEBS

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) All plates are 1.5x3 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16 except (jt=lb) 11 = 110

7) Non Standard bearing condition. Review required.

8) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 9) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 9-16=-10, 1-19=-100, 8-19=-220

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			0-10-0			
Plate Offsets (X,Y)	[17:0-1-8,0-1-8], [18:0-1-8,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 a - n/a 999) 9 n/a n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	² No.1(flat) ² No.1(flat) ² No.3(flat) ² No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 8-10-8.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses sand truss system, see
 ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

XX

22

21

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

3x10 = 3x6 FP =

20

4x12 =

in (loc)

16

-0.29 17-18

-0.39 17-18

0.06

19

18

31-11-0

17-6-4

L/d

480

360

n/a

l/defl

>727

>536

except end verticals.

n/a

17

3x10 =

PLATES

Weight: 153 lb

MT20

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 1-4-12 oc bracing.

GRIP

244/190

FT = 20%F, 11%E

26

3x6

Plate Offsets (X,Y)--

40.0

10.0

0.0

5.0

2x4 SP No.1(flat)

2x4 SP No.3(flat)

LOADING (psf)

TCLL

TCDL

BCLL

BCDL

WEBS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

TOP CHORD

BOT CHORD

WEBS

NOTES-

25

SPACING-

Plate Grip DOL

Rep Stress Incr

(size) 26=0-5-0, 22=0-3-8, 16=0-3-8

Max Grav 26=706(LC 3), 22=2020(LC 1), 16=849(LC 4) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

19-20=0/3109, 18-19=0/3109, 17-18=0/3109, 16-17=0/1827

Code IRC2015/TPI2014

Lumber DOL

2x4 SP 2400F 2.0E(flat) *Except*

1) Unbalanced floor live loads have been considered for this design. 2) All plates are 1 5x3 MT20 unless otherwise indicated

16-21: 2x4 SP No.1(flat)

3x6 =

24

14-4-12 14-4-12 23

[4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge], [23:0-1-8,Edge]

CSI.

тс

BC

WB

Matrix-S

0.85

1.00

0.83

2-0-0

1.00

1.00

YES

2-3=-2199/0. 3-4=-2199/0. 4-5=-2038/252. 5-6=-2038/252. 6-7=0/2066. 7-9=0/2066. 9-10=-2184/0, 10-11=-2184/0, 11-12=-3109/0, 12-13=-2912/0, 13-14=-2912/0

7-22=-303/0, 2-26=-1580/0, 2-25=-4/783, 3-25=-335/0, 6-22=-2088/0, 6-23=0/1575, 5-23=-422/0, 4-25=0/654, 4-24=-271/0, 9-22=-2472/0, 9-20=0/1736, 10-20=-260/30, 14-16=-1959/0, 14-17=0/1171, 13-17=-317/0, 11-20=-1220/0, 12-17=-450/216

25-26=0/1474, 24-25=-252/2038, 23-24=-252/2038, 22-23=-943/852, 20-22=-295/644,

3x6 =

3)	Plates checked for a plus or minus 1 degree rotation about its center.
4)	Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
	Strongbacks to be attached to walls at their outer ends or restrained by other means.
5)	CAUTION, Do not erect truss backwards.

818 Soundside Road Edenton, NC 27932

16

3x6 =

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and HEAD NOTES ON THIS AND INCLUDED WITER HERENCE PAGE MIL-14/3 rev. 3/13/2/2/2 DEFVHE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPI1 Quality Criteria</u>, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

21

3x10 =

3x10 = 3x6 FP =

18

17

3x10 =

16

3x6 =

L	14-4-12					30-11-0						
1		14-4-1	2		1	16-6-4						
Plate Offsets	s (X,Y)	[4:0-1-8,Edge], [11:0-1-8,I	Edge], [12:0-1-	8,Edge], [23:	:0-1-8,Edge]							
LOADING (p TCLL 4 TCDL 1 BCLL BCDL	psf) 0.0 0.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.00 1.00 YES I2014	CSI. TC BC WB Matrix	0.81 0.89 0.74 -S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.30 0.05	(loc) 17-18 17-18 16	l/defl >878 >645 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 148 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORE BOT CHORE WEBS REACTIONS	JUMBER- BRACING- TOP CHORD 2x4 SP No.1(flat) 30T CHORD 2x4 SP 2400F 2.0E(flat) *Except* 16-21: 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) REACTIONS. (size) 26=0-5-0, 16=0-5-0, 22=0-3-8 Max Grav 26=710(LC 3), 16=804(LC 4), 22=1941(LC 1)											
FORCES. (TOP CHORE BOT CHORE WEBS	Max Grav 26=710(LC 3), 16=804(LC 4), 22=1941(LC 1) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2215/0, 3-4=-2215/0, 4-5=-2064/127, 5-6=-2064/127, 6-7=0/1863, 7-9=0/1863, 9-10=-2069/0, 10-11=-2069/0, 11-12=-2742/0, 12-13=-2629/0, 13-14=-2629/0 BOT CHORD 25-26=0/1483, 24-25=-127/2064, 23-24=-127/2064, 22-23=-766/889, 20-22=-287/701, 19-20=0/2742, 18-19=0/2742, 16-17=0/1672 WEBS 7-22=-299/0, 2-26=-1589/0, 2-25=0/791, 3-25=-327/0, 6-22=-2048/0, 6-23=0/1521, 5-23=-410/0, 4-25=0/597, 4-24=-256/0, 9-22=-201/559, 14-16=-1805/0, 14-17=0/1033, 13-17=-292/0, 11-20=-1007/0, 12-17=-348/247											
NOTES-												

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 1.5x3 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

25

3x6 =

3x6

=

24

3x6 =

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

<u> </u>	15-2		23-10-0							
Plate Offsets (X,Y)	ate Offsets (X,Y) [4:0-1-8,Edge], [5:0-1-8,Edge], [12:0-1-8,Edge], [16:0-1-8,Edge]									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.56 BC 0.83 WB 0.61 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.23 0.04	(loc) 21 21 14	l/defl >999 >784 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER- BRACING- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) BOT CHORD 2x4 SP No.3(flat) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD BOT CHORD REACTIONS. (size) 23=0-5-0, 17=0-5-8, 14=Mechanical Max Grav 23=765(LC 10), 17=1506(LC 1), 14=1810(LC 4)								oc purlins,		
FORCES. (lb) - Max. TOP CHORD 13-1. 7-9= BOT CHORD 22-2: 16-1 WEBS 9-17: 5-19: 11-10	Comp./Max. Ten All forces 250 (lb) or 4=-1536/0, 2-3=-2464/0, 3-4=-2464/0, 4- 0/1166, 9-10=0/1166, 10-11=-715/140, 7 3=0/1620, 21-22=0/2531, 20-21=0/2531 7=-402/525, 15-16=-140/715, 14-15=-14 =-295/0, 2-23=-1736/0, 2-22=0/911, 3-22 =-710/0, 4-22=-339/219, 10-17=-1182/0, 6=-306/0	less except when shown. 5=-2531/0, 5-6=-2187/0, 6 1-12=-715/140 19-20=0/2531, 17-19=0/1 0/715 2=-260/14, 7-17=-2021/0, 7 12-14=-766/150, 10-16=0	-7=-2187/0, 072, 7-19=0/1282, /574,							
NOTES- 1) Unbalanced floor liv 2) All plates are 1.5x3 3) Plates checked for a 4) Refer to girder(s) fo 5) Recommend 2x6 str	e loads have been considered for this do MT20 unless otherwise indicated. a plus or minus 1 degree rotation about i r truss to truss connections. rongbacks, on edge, spaced at 10-0-0 c	esign. ts center. c and fastened to each tru	ss with 3-10d (0.1	31" X 3	3") nails					

- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 14-23=-10, 1-13=-100 Concentrated Loads (lb)
- Vert: 13=-1400

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		1	5-8-0			
	[1.Edge 0.4.0] [4:0.4.0 Edge] [5:0.4.0	[[dec]	5-8-0			1
Flate Olisets (A, f)	[1.Euge,0-1-6], [4.0-1-6,Euge], [5.0-1-6,	Eugej				
LOADING (psf) TCLL 40.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00	CSI. TC 0.40 BC 0.72	DEFL. ir Vert(LL) -0.19 Vert(CT) -0.26	n (loc) l/defl L/d 11-12 >979 480 11-12 >703 360	PLATES MT20	GRIP 244/190
BCDL 0.0 BCDL 5.0	Code IRC2015/TPI2014	MB 0.53 Matrix-S	Horz(CT) 0.05	9 n/a n/a	Weight: 77 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTIONS. (size Max G	e) 14=Mechanical, 9=0-5-0 rav 14=844(LC 1), 9=844(LC 1)					
FORCES. (lb) - Max.	Comp./Max. Ten All forces 250 (lb) or	less except when shown.				

OP CHORD

2-3=-2822/0, 3-4=-2822/0, 4-5=-3064/0, 5-6=-2804/0, 6-7=-2804/0 13-14=0/1807, 12-13=0/3064, 11-12=0/3064, 10-11=0/3064, 9-10=0/1772 BOT CHORD

WEBS 2-14=-1944/0, 2-13=0/1096, 7-9=-1912/0, 7-10=0/1115, 5-10=-606/45, 4-13=-590/59

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 Most/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L	8-4-0		9-7-0				14-11-8				
	1	8-4-0		· 1	1-3-0			5-4-8	1			
Plate O	ffsets (X,Y)	[4:0-1-8,Edge]										
LOADII TCLL TCDL BCLL BCDL	NG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.73 BC 0.98 WB 0.56 Matrix-S	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0	in (loc) 0.28 10-11 0.35 10-11 0.04 8	l/defl >638 >507 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%F, 11%E			
LUMBER- BRACING- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) BOT CHORD 2x4 SP No.3(flat) BOT CHORD 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) BOT CHORD (size) 12=0-5-0, 8=0-3-8 Max Grav 12=803(LC 1)												
FORCE TOP CH BOT CH WEBS	Max Grav 12=803(LC 1), 8=803(LC 1) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2664/0, 3-4=-2664/0, 4-5=-2760/0, 5-6=-2760/0 BOT CHORD 11-12=0/1715, 10-11=0/2760, 9-10=0/2760, 8-9=0/1713 WEBS 2-12=-1838/0, 2-11=0/1024, 3-11=-286/22, 4-11=-509/185, 6-8=-1836/0, 6-9=0/1180, 5-9=-324/0											
NOTES 1) Unba 2) Plate	- alanced floor lives as checked for a	e loads have been considered for this de a plus or minus 1 degree rotation about il	sign. s center.									

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			14-1-0									
Plate Offsets (X,Y)	[4:0-1-8,Edge], [9:0-1-8,Edge]		14-1-0									
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.49 BC 0.79 WB 0.47 Matrix-S	DEFL. in Vert(LL) -0.18 Vert(CT) -0.23 Horz(CT) 0.04	n (loc) l/defl 3 10-11 >916 3 10-11 >719 4 8 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%F, 11%E					
LUMBER- TOP CHORD BRACING- 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) BOT CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.												
REACTIONS. (size) 12=0-5-0, 8=Mechanical Max Grav 12=755(LC 1), 8=761(LC 1)												
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2417/0, 3-4=-2417/0, 4-5=-2461/0, 5-6=-2461/0 BOT CHORD 11-12=0/1595, 10-11=0/2461, 9-10=0/2461, 8-9=0/1595 WEBS 2-12=-1709/0, 2-11=0/887, 3-11=-267/36, 6-8=-1716/0, 6-9=0/990, 5-9=-274/0, 4-11=-419/220												
NOTES- 1) Unbalanced floor liv 2) Plates checked for a 3) Refer to girder(s) fo 4) Recommend 2x6 st Strongbacks to be a 5) CAUTION, Do not e	re loads have been considered for this d a plus or minus 1 degree rotation about r truss to truss connections. rongbacks, on edge, spaced at 10-0-0 attached to walls at their outer ends or re- rect truss backwards.	esign. its center. oc and fastened to each trus sstrained by other means.	s with 3-10d (0.131" >	(3") nails.								

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Af 818 Soundside Road Edenton, NC 27932

5-8-0 5-8-0 Plate Offsets (X,Y)--[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,Edge], [9:0-1-8,0-1-8] LOADING (psf) SPACING-DEFL. PLATES GRIP 2-0-0 CSI. in l/defl L/d (loc) 40.0 тс Vert(LL) TCLL Plate Grip DOL 1.00 0.17 -0.01 >999 480 MT20 244/190 7 TCDL Lumber DOL BC Vert(CT) -0.02 10.0 1.00 0.14 7 >999 360 BCLL 0.0 Rep Stress Incr YES WB 0.10 Horz(CT) 0.00 5 n/a n/a Code IRC2015/TPI2014 FT = 20%F, 11%E BCDL 5.0 Matrix-S Weight: 29 lb LUMBER-BRACING-TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 5-8-0 oc purlins, 2x4 SP No.1(flat) BOT CHORD except end verticals. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS.

NS. (size) 8=Mechanical, 5=0-5-0 Max Grav 8=294(LC 1), 5=294(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-353/0

BOT CHORD 7-8=0/353, 6-7=0/353, 5-6=0/353 WEBS 2-8=-418/0, 3-5=-423/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MaNSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Vert: 14-23=-10, 1-13=-100

Concentrated Loads (lb) Vert: 13=-1400 25=-861(F)

vent. 13=-1400 25=-801(F

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			15-8-0							
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-4-8,Edge]		15-8-0							
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.96 BC 0.77 WB 0.88 Matrix-S	DEFL. ir Vert(LL) -0.26 Vert(CT) -0.36 Horz(CT) 0.05	n (loc) l/defl 5 10-11 >706 5 10-11 >505 5 9 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	2 No.1(flat) 2400F 2.0E(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	BRACING- TOP CHORD Structural wood sheathing directly applied or 5-5-7 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.						
REACTIONS. (size	e) 14=Mechanical, 9=0-5-0 ray 14=998(LC 1) 9=1110(LC 1)									
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 13-12 WEBS 2-14= 4-13=	Comp./Max. Ten All forces 250 (lb) or 3550/0, 3-4=-3550/0, 4-5=-4237/0, 5-6= I=0/2193, 12-13=0/4238, 11-12=0/4238 2359/0, 2-13=0/1465, 7-9=-2613/0, 7- 1069/0	less except when shown. -4144/0, 6-7=-4141/0 10-11=0/4238, 9-10=0/24 10=0/1857, 6-10=-605/0, 5	421 5-10=-368/287,							
NOTES- 1) Unbalanced floor live 2) Plates checked for a 3) Refer to girder(s) for 4) Recommend 2x6 str Strongbacks to be a 5) CAUTION, Do not e 6) Hanger(s) or other c chord. The design/s 7) In the LOAD CASE(e loads have been considered for this de plus or minus 1 degree rotation about i truss to truss connections. ongbacks, on edge, spaced at 10-0-0 c ttached to walls at their outer ends or re rect truss backwards. onnection device(s) shall be provided su selection of such connection device(s) is S) section, loads applied to the face of t	esign. ts center. c and fastened to each tru strained by other means. ufficient to support concen the responsibility of other ne truss are noted as from	uss with 3-10d (0.131" X htrated load(s) 498 lb do 's. t (F) or back (B).	(3") nails. wn at 9-10-4 on to	ор					
LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf) Vert: 9-14= Concentrated Loads Vert: 17=-4;	dard valanced): Lumber Increase=1.00, Plate -10, 1-8=-100 (lb) 20(B)	Increase=1.00			4	UNIOR THE OC	CAROUNING SEAL 36322			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 7-8=-776/0, 2-3=-2820/0, 3-4=-2820/0, 4-5=-3145/0, 5-6=-3176/0

BOT CHORD 11-12=0/1806, 10-11=0/3141, 9-10=0/3141, 8-9=0/2326

WEBS 2-12=-1937/0, 2-11=0/1094, 4-11=-716/0, 6-8=-2433/0, 6-9=0/981, 5-9=-277/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 946 lb down at 14-2-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 8-12=-10, 1-7=-100

Concentrated Loads (lb) Vert: 15=-884(B)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1402/0, 3-4=-1402/0

BOT CHORD 9-10=0/1259, 8-9=0/1259, 7-8=0/1259, 6-7=0/1259

WEBS 2-10=-1524/0, 4-6=-1524/0

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 661 lb down at 1-10-4, and 661

Ib down at 3-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 6-10=-10, 1-5=-100

Concentrated Loads (lb) Vert: 2=-661(B) 4=-661(B)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MaINSTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)

REACTIONS. (size) 10=Mechanical, 6=0-5-8 Max Grav 10=520(LC 1), 6=484(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-647/0, 3-4=-627/0

BOT CHORD 9-10=0/647, 8-9=0/781, 7-8=0/781, 6-7=0/627

WEBS 2-10=-783/0, 4-6=-755/0

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Refer to girder(s) for truss to truss connections.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

5) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 198 lb down at 1-10-4, and 198

Ib down at 3-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.

6) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 6-10=-10, 1-5=-100 Concentrated Loads (lb)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		C	Client:				Da	ate:	1/13/2021	nett				Paç	je 1 of 8
lis	Design	A	Address:				Jo	b Name:	ROARK 2	0					
	Korto S I	VI 4	750"	VOJ	50"	2 Db/		oject #:	evel: Level						
DIVIT	Rerio-5 L	VL 1	./ 50	X 9.2	50	2-Piy -	PA330	ש							
									1						
· · · · · · · · · · · · · · · · · · ·						<u></u>									
	2					3									
			′	1											,
	-	•		•		•	•	•						\mathbb{M}	1
	a ritte				al History									IXIXI	9 1/
•		•		•		•		•	1						
1 SPF E	End Grain						2 SPF End G	irain	ļ						
			6	'1"										´ ´ 3 1/	2"
			6	1°					I						
Member In	formation						Reaction	s UNP	ATTERN	ED lb (U	lplift)				
Туре:	Girder		Applicatio	n:	Floor		Brg	Live	Dea	ad s	Snow		Wind	Const	
Plies: Moisture Con	2 dition: Drv		Design M Buildina C	ethod: Code:	ASD IBC/IRC 2	015	1	803 803	17	71 71	1116 1116		0	0	
Deflection LL:	480		Load Sha	ring:	No		2	003	17	/ 1	1110		0	0	
Deflection TL:	360		Deck:		Not Check	ed									
Importance:	Normal - II	<u>м</u> г													
remperature:	1emp <= 100)°F					Bearings	;						<u> </u>	
							Bearing	Length	Cap.	React D	/L lb	Total	Ld. Case	Ld. Cor	mb.
							1 - SPF	3.000"	35%	1771 / 1	1439	3210	L	D+0.75(L+S)
Analysis Re	sults						End Grain								
Analysis	Actual	Location A	Allowed	Capacity	Comb	. Case	2 - SPF	3.000"	35%	1771 / 1	1439	3210	L	D+0.75((L+S)
Moment	4299 ft-lb	3' 1/2" 1	4423 ft-lb	0.298 (30	%) D+0.75	5(L+S) L	Grain								
Unbraced	4299 ft-lb	3' 1/2" 1	0861 ft-lb	0.396 (40	%) D+0.75	5(L+S) L									
Shear	2199 lb	11 1/2" 7	'943 lb	0.277 (28	%) D+0.75	5(L+S) L									
LL Defl inch	0.031 (L/2185)	3' 1/2" 0	0.143 (L/480)	0.220 (22	%) 0.75(L [.] %) D+0 74	+S) L 5(L+S) L									
	0.070 (£/300)	5 1/2 0	.130 (£/300)	0.070 (07	/// 010.70		1								
1 Fasten all p	olies using 2 rows of	10d Box nails	s (.128x3") at	12" o.c. M	aximum er	nd distance not	4								
to exceed 6 2 Refer to las	6". st page of calculation	ns for fastener	rs required fo	r specified	loads.										
3 Girders are	e designed to be sup	ported on the	bottom edge	only.											
4 Top loads r 5 Top braced	nust be supported e I at bearings.	qually by all p	lies.												
6 Bottom bra	ced at bearings.														
/ Lateral sler	Load Type	a on single ply L	ocation Ti	rib Width	Side	Dead 0.9	Live 1	Snov	v 1.15 \	Nind 1.6	Const	. 1.25	Commen	Its	
1	Uniform	-			Тор	88 PLF	264 PLF	:	0 PLF	0 PLF		0 PLF	F1		
2	Uniform				Тор	120 PLF	0 PLF	:	0 PLF	0 PLF		0 PLF	WALL		
3	Uniform				Тор	367 PLF	0 PLF	36	67 PLF	0 PLF		0 PLF			
	Self Weight					7 PLF									
Notes Calculated Structured	Designs is responsible only	chemical	s	1	6. F	For flat roofs provide p bonding	roper drainage to	prevent	Manufacture	r Info			omtech, Inc. 001 S. Reilly Roa ayetteville, NC	d, Suite #639	
structural adequacy design criteria and	of this component based of d loadings shown. It is	n the 1. LVL beam the 2. Refer t	ns must not be cut o manufacturer's	or drilled product inf	ormation				301 Merritt 7 Norwalk, CT (Building, 2nd)6851	d Floor	US 28	SA 3314		
ensure the compor application, and to ver	nent suitability of the inter rify the dimensions and loads.	ended fastening approvals	g installation re g details, beam stre s	equirements, ength values, a	multi-ply nd code				(800) 622-585 www.metsawo	50 pod.com/us		91			_
Lumber 1. Dry service condit	ions, unless noted otherwise	 Damager Design a Provide 	d Beams must not b ssumes top edge is lateral support at	e used laterally restrain bearing points	ied to avoid				ICC-ES: ESR	-3633				nter	
LVL not to be treat	ated with fire retardant or corr	osive lateral dis	splacement and rota	ation		This design is valid	until 11/27/202	3							

	Client:	Date:	1/13/2021	Page 2 of 8
LinDesian	Project:	Input by:	Neal Baggett	
IsDesign	Address:	Job Nam Designet f	ne: ROARK 2.0	
DM4 Karta CLV			Level: Level	
BINIT Kerto-S LV	L 1.750 X 9.250	2-PIY - PASSED		
••	• •	• • •	5	$\Lambda \Lambda = 1$
•••	• •	• • •	<u> </u>	
			$\exists - \star$	
1 SPF End Grain		2 SPF End Grain		
1	6'1"		1	1 13 1/2"
1	6'1"		7	
Multi-Ply Analysis				
Fasten all plies using 2 rows o	of 10d Box nails (.128x3") at 12"	o.c Maximum end distance r	ot to exceed 6"	
Capacity 0	.0 %			
Load 0 Vield Limit per Eest 1	.0 PLF			
Yield Limit per Fastener 8	1.9 lb.			
Yield Mode	V 1 (0)			
Edge Distance 1 Min. End Distance 3	1/2" "			
Load Combination				
Duration Factor 1	.00			
Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc.
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the	Handling & Installation	ponding	Metsä Wood 301 Morritt 7 Building, and Elect	Fayetteville, NC USA
design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to	 LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements. multi-plv 		Norwalk, CT 06851	28314 910-864-TRUS
ensure the component suitability of the intended application, and to verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber 1. Dry service conditions, unless noted otherwise	 Jamaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid 		ICC-ES: ESR-3633	Comtooul
2. LVL not to be treated with fire retardant or corrosive	lateral displacement and rotation	This design is valid until 11/27/2023		CONTECH
Version 20.00.210 Deversed by Chrystell				

CSD DESIGN

		С	lient:				Da	ite:	1/13/202	1				Page 3 o	of 8
Tis	Design	P A	roject: ddress:				Inp Jo	but by: b Name:	ROARK	igett 2.0					
-							Pr	oject #:							
BM2	Kerto-S L	.VL 1	.750"	X 9.2	250"	2-Ply -	PASSE	ED	evel: Level.						
						3									
	2		1												
		-		•		•	•							$\overline{\Lambda}$	<u> </u>
															9 1/
	· ·	-	THE .	•		•	-							IVV j	5 I/
	End Grain					2 SPF En	d Grain								_
			5'7"											3 1/2"	
∤			5'7"												
Member In	formation		A		F I		Reaction	s UNP	ATTERN	ED Ib (Uplift))	\A/:	Ormat	
Type: Plies:	Girder 2		Applicati Design M	ion: Viethod:	Floor ASD		Brg	Live 877	De 16	ad 862	5now		VVIND	Const	
Moisture Con	dition: Dry		Building	Code:	IBC/IRC 2	015	2	877	16	62 62	1016		0	0	
Deflection LL	: 480		Load Sh	aring:	No										
Deflection TL	: 360		Deck:		Not Check	ked									
Importance:	Normal - II														
lemperature:	Iemp <= 100)°F					Rearings								
							Bearing	Longth	Cor	Beest	2/1.16	Total		Id Comb	
							1 SDE	Lengin	Cap 340	6 1662 /	J/L ID	10121 3081	Lu. Case	Lu. Comp.	
							End	3.000	347	0 1002/	1420	3061	L	D+0.75(L+3)	
Analysis Re	esults						Grain								
Analysis	Actual	Location A	llowed	Capaci	y Comb	. Case	2 - SPF	3.000"	34%	6 1662 /	1420	3081	L	D+0.75(L+S)	
Moment	3742 ft-lb	2'9 1/2" 14	4423 ft-lb	0.259 (2	6%) D+0.75	5(L+S) L	Grain								
Unbraced	3742 ft-lb	2'9 1/2" 1'	1402 ft-lb	0.328 (3	3%) D+0.75	5(L+S) L									
Shear	2023 lb	4'7 1/2" 79	943 lb	0.255 (2	5%) D+0.75	5(L+S) L									
LL Defl inch	0.024 (L/2564)	2'9 1/2" 0.	.130 (L/480) 0.190 (1	9%) 0.75(L-	+S) L									
TL Defl inch	0.053 (L/1182)	2'9 1/2" 0.	.174 (L/360) 0.300 (3	0%) D+0.75	5(L+S) L	ļ								
Design No	tes						ļ								
1 Fasten all to exceed	plies using 2 rows of 6".	f 10d Box nails	(.128x3") a	at 12" o.c. I	Maximum er	nd distance not									
2 Refer to la	st page of calculation	ns for fastener	s required f	or specifie	d loads.										
3 Girders are	e designed to be sup	ported on the	bottom edg	e only.											
5 Top braced	must de supported e d at bearings.	equally by all pi	les.												
6 Bottom bra	aced at bearings.														
7 Lateral sle	nderness ratio based	d on single ply	width.		Sida	Dead 0.0		Spec	N 1 15	Wind 1 C	Conc	1 25	Common	te	
	Luau Type	Lo	JUAUUI	יווט אומנר	Top	120 DEad U.9		- 300\ :	0 PI F		Cons	. 1.∠0 ∩ PI ⊑	WALL	10	
2	Uniform				Top		31/ DI C						FG3		
2	Uniform				Top			: 0/					F G 3		
3					юр		UPLF	36	J→ F L F	UPLF		UFLF	лJ		
	Sell vvelgnt					/ PLF									
Notes		chemicals	5		6. F	For flat roofs provide p	roper drainage to	prevent	Manufacture	er Info		Ci 10	omtech, Inc.)01 S. Reilly Road	, Suite #639	
Calculated Structured structural adequacy	d Designs is responsible only on of this component based on	of the Handling n the 1. LVI beam	& Installation	on t or drilled	F	ponding			Metsä Wood 301 Merritt 7	Building 2r		Fa	ayetteville, NC		
design criteria an responsibility of the	d loadings shown. It is customer and/or the contract	the 2. Refer to tor to regarding	manufacturer installation	's product requirements,	nformation multi-ply				Norwalk, CT	06851		28 91	3314 10-864-TRUS		
application, and to ve	rify the dimensions and loads.	approvals	details, beam s	trength values,	and code				www.metsaw	/ood.com/us	5				_
1. Dry service condi	tions, unless noted otherwise	4. Design as 5. Provide la	sumes top edge ateral support a	is laterally restr t bearing point	ained s to avoid				ICC-ES: ESF	x-3033			leon	птесн	
 LVL HOL TO DE TRE 	and with meneraldant of Coff	lateral dis	placement and ro	otation	1	This design is valid	until 11/27/202	3							4

isDesign	Clien Proje Addr	t: ect: ess:	Date: Input Job N	1/13/2021 by: Neal Baggett lame: ROARK 2.0	Page 4 of 8
BM2 Kerto-S	LVL 1.7	750" X 9.250"	Proje 2-Ply - PASSE	D Level: Level	
	•	•		<u></u>	9 1.
1 SPF End Grain		5'7"	2 SPF End Grain		↓ ↓ ↓ ↓ 3 1/2"
f		5'7"	1		
Multi-Ply Analysis					
Fasten all plies using 2 ro Capacity	ws of 10d Box	nails (.128x3") at 12" c	o.c Maximum end distance	e not to exceed 6"	
Load Yield Limit per Foot	0.0 PLF 163.7 PLF				
Yield Limit per Fastener Yield Mode	81.9 lb. IV				
Edge Distance Min. End Distance	1 1/2" 3"				
Load Combination Duration Factor	1 00				
Notes	chemicals	6	. For flat roofs provide proper drainage to prev	ant Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible or structural adequacy of this component basec design criteria and loadings shown. It responsibility of the customer and/or the cont ensure the component suitability of the application, and to verify the dimensions and load burne here.	ly of the on the is the actor to intended ds. Handling & II 1. LVL beams mu 2. Refer to n regarding in fastening deta approvals	nstallation ist not be cut or drilled nanufacturer's product information istallation requirements, multi-ply iis, beam strength values, and code me much on the used	μοιναϊιά	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Fayetteville, NC USA 28314 910-864-TRUS
Lumber 1. Dry service conditions, unless noted otherwis 2. LVL not to be treated with fire retardant or of	se sorrosive 3. Damaged Bea 4. Design assum 5. Provide latera lateral displace	es top edge is laterally restrained I support at bearing points to avoid ement and rotation	This design is valid until 11/27/2023	ICC-ES: ESR-3633	соттесн
Version 20.80.210 Powered by iStruct	м				

	-	Client:		Date:	1/13/2021	Page 6 of 8
4		Project:		Input by:	Neal Baggett	
	isDesign	Address:		Job Nam	e: ROARK 2.0	
				Project #		
BM3	Kerto-S LV	/L 1.750" X 9.	250" 2-Ply	- PASSED	Level: Level	
•	•	• •	•	•	• •	•
						9 1/4
•	•	• •	•	•	•	
	PF End Grain				2 SPF End (Grain I I
			ידיס			
			07			
1			8'7"			1
Multi-Pl	y Analysis					
Fasten al	I plies using 2 rows	of 10d Box nails (.128x3")	at 12" o.c Maxim	um end distance n	ot to exceed 6"	
Capacity	1 5	0.0 %				
Load		0.0 PLF				
Yield Limit p	oer Foot oer Fastener	163.7 PLF 81.9 lb				
Yield Mode		IV				
Edge Distan	ice	1 1/2"				
Min. End Dis Load Combi	stance ination	3"				
Duration Fa	ctor	1.00				
Notes		chemicals	6. For flat roofs pro	ovide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Strue structural adequ	ctured Designs is responsible only of t uacy of this component based on t	he Handling & Installation he 1. LVL beams must not be cut or drilled	ponding		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria responsibility of	a and loadings shown. It is t f the customer and/or the contractor	he 2. Refer to manufacturer's product to regarding installation requirements	information multi-ply		Norwalk, CT 06851	28314 910-864-TRUS
application, and	I to verify the dimensions and loads.	 fastening details, beam strength values approvals Damaged Beams must not be used 	, and code		www.metsawood.com/us	
1. Dry service	conditions, unless noted otherwise	 Damaged Deams must not be used Design assumes top edge is laterally res Provide lateral support at bearing point 	rained Its to avoid		ICC-ES: ESR-3633	Comtecu
2. LVL not to b	be treated with fire retardant or corrosi	lateral displacement and rotation	This design is	valid until 11/27/2023		Contech

			Client			Dete	. 1/12/2021		Dara 0 of 0
			Dient.			Dale	by: Nool Baggott		Fage o or o
1	isDesign		Project.			input Inb N			
	Ispesign		Address:			JODI	Name: RUARK 2.0		
-						Proje	ect #:		
GDH	Kerto-S	LVL	1.750"	X 11.875"	2-Plv	- PASSED	Level: Level		
					,				
•	• •	•		<u> </u>	<u> </u>	<u> </u>	• •	· · · · · · ·	$\Pi \neq$
-		•							M I
								V I	11 7/8"
	• •	•	• •	• •	• •	• •	• •		: Ш 🔟
1 SPF	End Grain							2 SPF End Grain	1.1
					4.0171				
					167"			Ĭ	3 1/2"
/					16'7"			†	
								·	
L									
Multi-Plv	v Analvsis								
Factor - "				(100-01) - (10	"	- ۱- الحاجم معن	o pot to	11	
Fasten all	i piles using 2	rows of	TUG BOX halls	(.128x3°) at 12	o.c Maxim	um end distanc	e not to exceed 6		
Capacity		0.0) %						
Load	F +	0.0							
Yield Limit p	er Foot	10	3.7 PLF						
Vield Limit p	er Fastener	01	.9 ID.						
Edge Distan		1 1	1/2"						
Min End Distain	stance	3"	1/2						
Load Combi	nation	0							
Duration Fac	ctor	1.0	00						
Note -			chemicals		6 For flat roofs	vide proper drainage to any	Manufacturer Info	Comtech, Inc.	
Calculated Strue	ctured Desians is responsibl	e only of the	Handling & Installa	ation	ponding	was proper urainage to pre-	Metsä Wood	1001 S. Reilly R Fayetteville, NC	oad, Suite #639
structural adequi	and loadings shown	ased on the	1. LVL beams must not b	e cut or drilled			301 Merritt 7 Buildin	ng, 2nd Floor USA 28314	
responsibility of	the customer and/or the customer and	contractor to	 Refer to manufact regarding installatio 	n requirements, multi-ply			Norwalk, CT 06851 (800) 622,5850	910-864-TRUS	
application, and	to verify the dimensions and	loads.	tastening details, bea approvals	m strength values, and code			www.metsawood.co	om/us	
Lumber	conditions unless	onvice	 Damaged Beams must Design assumes top et 	t not be used dge is laterally restrained			ICC-ES: ESR-3633		
2. LVL not to b	e treated with fire retardant	or corrosive	 Provide lateral suppo lateral displacement ar 	rt at bearing points to avoid nd rotation	This design in	valid until 11/27/2022		CO	тесн
			,		mis design is	vallu ulitii 11/27/2023			