

Trenco RE: 2227286 - H&H/Southport/ 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: h and h Project Name: 2227286 Lot/Block: Subdivision: Model: Address: City: State: nc General Truss Engineering Criteria & Design Loads (Individual Truss Design **Drawings Show Special Loading Conditions):** Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.2 Wind Code: ASCE 7-10 Wind Speed: 150 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-10 Roof Load: 40.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 2/13/20 2/13/20 2/13/20 2/13/20 2/13/20 35 36 37 38 A01 A02 140248625 140248659 C02 2/13/20 123456789111234 140248626 40248660 2/13/20 140248661 140248662 140248627 A03 C04 2/13/20 140248628 Č05 2/13/20 A04 140248629 140248630 <u>3</u>9 140248663 Č06 C07 2/13/20 13/20 **4**0 140248664 A06 13/20 C07 C08 C09 C10 CP01 CP02 140248665 140248631 41 2/13/20 A07 2/13/20 140248666 A08 13/20 140248633 43 140248667 2/13/20 A09 2/13/20 140248634 A10 13/2044 140248668 140248635 A11 45 140248669 2/13/20 2/13/20 A12 46 140248670 D01 2/13/20 140248636 /13/20 140248637 4Ť 140248671 2/13/20 A13 2/13/20 140248638 48 140248672 D03 2/13/20 /13/20 140248639 4ğ 140248673 D04 2/13/20 A15 2/13/20 16 17 18 19 20 21 22 23 140248640 A17 50 140248674 2/13/20 2/13/20 A18 140248675 E02 2/13/20 2/13/20 140248642 52 140248676 E03 2/13/20 A19 /13/20 53 54 55 56 140248643 A20 2/13/20 140248677 E04 2/13/20 140248644 A21 2/13/20 140248678 E05 140248645 A22 140248679 E06 2/13/20 2/13/20 140248646 140248680 **G**01 13/20 140248647 57 140248681 Ğ02 2/13/20 /13/20 140248648 58 140248682 Ğ04 25 26 27 28 29 30 31 32 140248649 59 140248683 A26 G05 /13/20 13/20 I40248684 G06 61 I40248651 140248685 13/20 G07 62 63 140248652 140248686 G08 140248653 A30 140248687 G09 13/20 Ğ10 G11

The truss drawing(s) referenced above have been prepared by

2/13/20

13/20

13/20

64

65

66

67

68

I40248688

140248689 140248690

140248691 140248692

J01

J02

.103

A31 B01

B02

B03

C01

140248654

140248655

140248656

40248657

140248658

34

Instance of North Carolina is December 31, 2020 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that if designs comply with ANSI/TPL1. These designs are is shown (e.g., loads, supportential of the terminal of terminal of the terminal of terminal o given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

2

February 13,2020

RE: 2227286 - H&H/Southport/

Trenco 818 Soundside Rd Edenton, NC 27932

No.	Seal#	Job ID#	Truss Nam	e Date
69	140248693	2227286	J04	2/13/20
70	140248694	2227286	J05	2/13/20
72	140248695	2227286	J06 J07	2/13/20
73	40248697	2227286	JÖ8	2/13/20
74	140248698	2227286	J09	2/13/20
76	140248099	2227286	J11	2/13/20
77	140248701	2227286	J12	2/13/20
78 70	140248702	2227286	J13 114	2/13/20
80	140240700	2227286	J15	2/13/20
81	140248705	2227286	J1 <u>6</u>	2/13/20
o∠ 83	140248706	2227286	J18	2/13/20
84	140248708	2227286	J19	2/13/20
85	140248709	2227286	J20	2/13/20
87	140248711	2227286	J23	2/13/20
88	140248712	2227286	J24	2/13/20
89 90	140248714	2227286	J25 PB01	2/13/20
91 91	40248715	2227286	PB02	2/13/20
92	140248716	2227286	PB03	2/13/20
93 94	140248718	2227286	PB05	2/13/20
95	140248719	2227286	PB06	2/13/20
96 97	140248720	2227286	PB07 PB08	2/13/20
98	110210721	2227286	V01	2/13/20
99	140248723	2227286	V02	2/13/20
101	140248725	2227286	V03 V04	2/13/20
102	140248726	2227286	V05	2/13/20
103	140248727	2227286	V06 V07	2/13/20
105	40248729	2227286	V08	2/13/20
106	140248730	2227286	V09	2/13/20
107	140248732	2227286	V10 V11	2/13/20
109	140248733	2227286	V12	2/13/20
110	140248734	2227286	V13 V14	2/13/20
112	140248736	2227286	V15	2/13/20
113	140248737	2227286	V16	2/13/20
115	140248739	2227286	V18	2/13/20
116	1400 407 44	2227286	V19	2/13/20
117	140248741	2227286	V20 V21	2/13/20 2/13/20

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=549, 7=549.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=549, 7=507.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

"William and the SEAL 044925 S M //////// February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	11-0-0	1	10-0-0	10-0-0		
Plate Offsets (X,Y)	[2:0-0-0,0-0-4], [3:0-4-0,0-3-0], [4:0-3-0,	0-2-2], [5:0-3-0,0-2-2], [6:0)-4-0,0-3-0], [9:0-4-0,0-4	-0]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.75 BC 0.57 WB 0.97 Matrix-AS	DEFL. in Vert(LL) -0.20 Vert(CT) -0.30 Horz(CT) 0.04 Wind(LL) 0.26	(loc) l/defl L/d 14-23 >999 360 14-23 >999 240 9 n/a n/a 14-23 >999 240	PLATES MT20 Weight: 231 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S 4-5: 2 BOT CHORD 2x6 S WEBS 2x4 S 15-16 WEDGE Left: 2x4 SP No.3	P No.2 *Except* x6 SP No.2 P No.2 P No.3 *Except* : 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood sheathing dir 2-0-0 oc purlins (6-0-0 max.): Rigid ceiling directly applied. 1 Row at midpt 6 1 Brace at Jt(s): 19, 20	ectly applied, except e 4-5. -9	and verticals, and
REACTIONS. (Ib/si Max Max	ze) 2=1378/0-5-8, 9=1338/Mechanical Horz 2=476(LC 9) Uplift 2=-450(LC 12), 9=-376(LC 13)					
FORCES. (lb) Max TOP CHORD 2-3: 7-9: 80T CHORD 2-14	Comp./Max. Ten All forces 250 (lb) or 1933/742, 3-4=-1921/851, 4-5=-1323/7 539/382 4=-521/1530, 13-14=-111/998, 11-13=-11	less except when shown. 2, 5-6=-1801/798, 6-7=-57 1/998, 10-11=-111/998, 9-	73/403, 10=-380/1232			

 BOT CHORD
 2-14=-521/1530, 13-14=-111/998, 11-13=-111/998, 10-11=-111/998, 9-10=-380/1232

 WEBS
 3-14=-638/608, 14-15=-323/938, 15-19=-301/945, 4-19=-284/935, 5-20=-178/745, 16-20=-216/704, 10-16=-229/688, 6-10=-429/561, 6-9=-1297/314, 4-20=-270/237

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) 200.0lb AC unit load placed on the bottom chord, 16-0-0 from left end, supported at two points, 5-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=450, 9=376.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=562, 7=519.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

<u> 4-8-</u> 4-8-	4-8-0 4-8-0 10-10-0			<u>26-4-0</u> 10-10-0	31-0-0						
Plate Offsets (X,Y)	[2:0-8-0,0-2-8], [3:0-3-0,0-2-12], [8:0-3-0	,0-2-12], [9:0-8-0,0-2-8], [12	2:0-5-0,0-4-8]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.37 BC 0.42 WB 0.23 Matrix-MS	DEFL. in (loc) Vert(LL) 0.20 11-12 Vert(CT) -0.15 12-13 Horz(CT) -0.06 \$	l/defl L/d >999 240 ⇒999 240 ⇒999 240 ∋ n/a n/a	PLATES MT20 Weight: 414 lb	GRIP 244/190 FT = 20%					
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP	No.2 No.2 No.2		BRACING- TOP CHORD Struc 2-0-0 BOT CHORD Rigid	tural wood sheathing directly oc purlins (6-0-0 max.): 3-8 ceiling directly applied or 8-	/ applied or 6-0-0 or 6-4 oc bracing.	c purlins, except					
REACTIONS. (Ib/size Max Ho Max Up Max Go) 2=1652/0-5-8, 9=1652/0-5-8 prz 2=-183(LC 6) plift 2=-1643(LC 5), 9=-1643(LC 4) rav 2=1661(LC 33), 9=1661(LC 34)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2438/2519, 3-4=-1911/2104, 4-5=-3668/4023, 5-7=-3668/4023, 7-8=-1912/2105, 8-9=-2439/2520 BOT CHORD 2-13=-2068/2022, 12-13=-3562/3262, 11-12=-3499/3231, 9-11=-1925/1951 WEBS 3-13=-1119/1161, 4-13=-1495/1854, 4-12=-644/719, 5-12=-388/614, 7-12=-645/720, 7-11=-1495/1854, 8-11=-1118/1160											
NOTES- 1) 2-ply truss to be com Top chords connecte Bottom chords connected by connected as: 2) All loads are conside ply connections have 3) Unbalanced roof live 4) Wind: ASCE 7-10; V MWFRS (envelope) 5) Provide adequate dr. 6) This truss has been will fit between the bu 8) All bearings are assu 9) Provide mechanical 2=1643, 9=1643. 10) Graphical purlin reg 11) "NAILED" indicates	 8-9=-2439/2520 OT CHORD 2-13=-2068/2022, 12-13=-3562/3262, 11-12=-3499/3231, 9-11=-1925/1951 yEBS 3-13=-1119/1161, 4-13=-1495/1854, 4-12=-644/719, 5-12=-388/614, 7-12=-645/720, 7-11=-1495/1854, 8-11=-1118/1160 IOTES-) 2-ply truss to be connected together with 10d (0.131*x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.) Unbalanced roof live loads have been considered for this design.) Unbalanced roof live loads have been considered for this design.) Wind: ASCE 7-10; Vittl=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60) Provide adequate drainage to prevent water ponding.) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.) All bearings are assumed to be User Defined crushing capacity of 565 psi.) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=1643, 9=1643.) Graphical purifin representation does not depict the size or the orientation of the purifin along the top and/or bottom chord.) "NAILED" indicates 3-104 (0.148*x3") or 3-124 (0.148*x3.25") toe-nails per NDS guidlines. 										
LOAD CASE(S) Stand 1) Dead + Roof Live (ba	lard alanced): Lumber Increase=1.15, Plate	ncrease=1.15			in the	M. SEVININ					

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

February 13,2020

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
					14024	48632
2227286	A08	Hip Girder	3	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:03 2020 Page	÷2

8.240 s Dec 6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:03 2020 Page 2 ID:oMYUFR_W5RnH0V88pNA3fyzorLo-dzLaaJv6iv0E3lmvHM?r_J_WOGDoP7BMYTkyACzldQ6

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-8=-60, 8-10=-60, 14-17=-20

Concentrated Loads (lb)

Vert: 3=-21(F) 8=-21(F) 13=-21(F) 11=-21(F) 20=-21(F) 21=-21(F) 22=-21(F) 23=-21(F) 24=-21(F) 25=-21(F) 26=-21(F) 27=-21(F) 28=-21(F) 30=-115(F) 31=-21(F) 32=-21(F) 33=-21(F) 33=-21(F) 35=-21(F) 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	L	10-3-7		20-8-9				31-0-0			
	1	10-3-7		10-5-2					10-3-7		
Plate Offset	ts (X,Y)	[2:0-6-0,0-0-4], [6:0-6-0,0-0-4]									
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.82 BC 0.55 WB 0.47 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.17 0.04 0.12	(loc) 10-13 10-13 6 10-13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 186 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHOR BOT CHOR WEBS	LUMBER- TOP CHORD 2x6 SP No.2 *Except* 3-5: 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3				D D	Structu 2-0-0 o Rigid c	iral wood oc purlins eiling dire	sheathing dir (3-8-13 max.) ectly applied.	ectly applied, except): 3-5.		
REACTION	IS. (Ib/size Max H Max U	e) 2=1284/0-5-8, 6=1284/0-5-8 lorz 2=-273(LC 10) plift 2=-457(LC 12), 6=-457(LC 13)									
FORCES. TOP CHOR BOT CHOR WEBS	DRCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. DP CHORD 2-3=-1660/963, 3-4=-1535/997, 4-5=-1535/997, 5-6=-1660/963 OT CHORD 2-10=-638/1267, 8-10=-838/1735, 6-8=-529/1267 TEBS 3-10=-194/631, 4-10=-408/446, 4-8=-408/446, 5-8=-193/631										
NOTES-											

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=457, 6=457.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1	10-2-0	1	20-10-0		31-0-0				
	10-2-0	I	10-8-0		10-2-0	1			
Plate Offsets (X,Y)	[2:0-8-0,0-0-12], [3:0-3-0,0-3-4], [5:0-3-0	.0-3-4], [6:0-8-0,0-0-12]			1				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.72 BC 0.59 WB 0.25 Matrix-AS	DEFL. ir Vert(LL) 0.22 Vert(CT) -0.21 Horz(CT) 0.03	n (loc) I/defl L/d 10-13 >999 240 10-13 >999 240 6 n/a n/a	PLATES MT20 Weight: 202 lb	GRIP 244/190 FT = 20%			
LUMBER- TOP CHORD 2x6 SI 3-5: 2: BOT CHORD 2x6 SI	P No.2 *Except* x4 SP No.2 P No.2 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (4-4-2 max.): Rigid ceiling directly applied.	ectly applied, except 3-5.				
WEBS 2x4 SI	P N0.3		WEBS	1 Row at midpt 4-	-10, 4-8				

REACTIONS. (lb/size) 2=1284/0-5-8, 6=1284/0-5-8 Max Horz 2=-362(LC 10) Max Uplift 2=-501(LC 12), 6=-501(LC 13) Max Grav 2=1348(LC 2), 6=1348(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1715/866, 3-4=-1361/897, 4-5=-1361/897, 5-6=-1715/866
- BOT CHORD 2-10=-468/1288, 8-10=-479/1372, 6-8=-368/1288
- WEBS 3-10=-143/597, 4-10=-279/375, 4-8=-279/375, 5-8=-143/597

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=501, 6=501.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSL	DEFL in (loc) l/defl	I/d PLATES	GRIP
Plate Offsets (X,Y)	[2:0-0-0,0-0-4], [3:0-4-0,0-3-0], [4:0-3	-3,Edge], [5:0-3-3,Edge], [6:0-4-0	,0-3-0], [7:Edge,0-0-4], [10:0-5-0,0-4-8]]	
	7-9-5	7-8-11	7-8-11	7-9-5	
	7-9-5	15-6-0	23-2-11	31-0-0	1

TCU	20.0		1 15	TC	0.55	Vort(LL)	-0.05	10	~000	360	MT20	2///100	
TCDI	10.0		1.15	BC	0.33	Vert(CT)	-0.03	9-10	~999	240	101120	244/130	
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.43	Horz(CT)	0.04	7	/a >	n/a			
BCDL	10.0	Code IRC2015/TF	12014	Matrix	<-AS	Wind(LL)	0.07	11-14	>999	240	Weight: 206 lb	FT = 20%	
LUMBER-		- 2				BRACING-	D	Chrucht	nol uso d	ah a a thin a di	weathy applied avecat		
TOP CHOP	JP CHORD 2X4 SP No.2					TOP CHUR	D	Siruciu	rai wood	sneathing d	irectly applied, except		

LUMBER-		BRACING-			
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheat	thing directly applied, except	
BOT CHORD	2x6 SP No.2		2-0-0 oc purlins (4-11	-3 max.): 4-5.	
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied.		
WEDGE		WEBS	1 Row at midpt	3-10, 6-10	
Left: 2x4 SP N	o.3, Right: 2x4 SP No.3				

REACTIONS. (lb/size) 2=1292/0-5-8, 7=1293/0-5-8 Max Horz 2=-453(LC 10) Max Uplift 2=-540(LC 12), 7=-540(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1840/938, 3-4=-1370/832, 4-5=-1310/837, 5-6=-1370/832, 6-7=-1840/938

- BOT CHORD 2-11=-619/1363, 10-11=-602/1406, 9-10=-518/1391, 7-9=-537/1345
- WEBS 3-11=0/322, 3-10=-805/506, 4-10=-196/489, 5-10=-196/489, 6-9=0/322, 6-10=-805/507

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=540, 7=540.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TRENGINEERING BY REACTOR A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
Plate Offsets (X,Y)	[2:0-0-0,0-0-4], [3:0-4-0,0-3-0], [4:	0-3-3,Edge], [5:0-3-3,Edge], [6:0-4-0,0	·3-0], [7:Edge,0-0-4], [9:0-5-0,0-4-8]	
	7-0-0	9-0-0	9-0-0	7-0-0
	7-0-0	16-0-0	25-0-0	32-0-0

TCLL TCDL BCLL	20.0 10.0 0.0 *	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.58 BC 0.40 WB 0.44	Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) 0.0	6 9-10 >999 360 3 9-10 >999 240 4 7 n/a n/a	MT20 244/190	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.0	7 10-13 >999 240	Weight: 211 lb FT = 20%	
LUMBER	-		· · · · ·	BRACING-			
TOP CHO	ORD 2x4 SP	P No.2		TOP CHORD	Structural wood sheathing d	irectly applied, except	
BOT CHO	DRD 2x6 SP	P No.2			2-0-0 oc purlins (4-10-6 max	(.): 4-5 .	
WEBS	2x4 SP	9 No.3		BOT CHORD	Rigid ceiling directly applied	•	

WEBS

1 Row at midpt

3-9, 6-9

WEDGE Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (lb/size) 2=1333/0-5-8, 7=1279/0-5-8 Max Horz 2=460(LC 9) Max Uplift 2=-558(LC 12), 7=-515(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1922/959, 3-4=-1424/860, 4-5=-1356/861, 5-6=-1424/860, 6-7=-1920/963

BOT CHORD 2-10=-644/1509, 9-10=-644/1508, 8-9=-579/1362, 7-8=-578/1363

WEBS 3-10=0/317, 3-9=-798/544, 4-9=-209/524, 5-9=-209/523, 6-8=0/318, 6-9=-796/549

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=558, 7=515.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

		1000			2140				02 0 0		
	1	10-8-0		I	10-8-0		1		10-8-0		1
Plate Offset	s (X,Y)	[2:0-8-0,0-0-8], [3:0-5-4,	Edge], [5:0-5-4,I	Edge], [6:0-8-0,0)-0-8]						
LOADING	(psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC 0.8	30 Vert(LL)	0.27 7-12	>999	240	MT20	244/190	

TCDL 10. BCLL 0. BCDL 10.	.0 .0 * .0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.65 WB 0.25 Matrix-AS	Vert(CT) -0.26 Horz(CT) 0.04	6 7-12 >999 4 6 n/a	240 n/a	Weight: 207 lb	FT = 20%
LUMBER- TOP CHORD	2x6 SP 3-5: 2x4	No.2 *Except* 4 SP No.2		BRACING- TOP CHORD	Structural wood 2-0-0 oc purlins	l sheathing dir ; (4-1-8 max.):	ectly applied, except 3-5.	
BOT CHORD WEBS	2x6 SP 2x4 SP	No.2 No.3		BOT CHORD WEBS	Rigid ceiling dir 1 Row at midpt	ectly applied. 4	-9, 4-7	

REACTIONS. (lb/size) 6=1279/0-5-8, 2=1325/0-5-8 Max Horz 2=370(LC 9) Max Uplift 6=-483(LC 13), 2=-518(LC 12) Max Grav 6=1364(LC 2), 2=1402(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1775/891, 3-4=-1407/928, 4-5=-1406/929, 5-6=-1776/892
- BOT CHORD 2-9=-484/1332, 7-9=-487/1410, 6-7=-406/1333
- WEBS 3-9=-149/614, 4-9=-279/382, 4-7=-278/381, 5-7=-149/614

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=483, 2=518.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TENGINEERING BY A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	9-10-14 9-10-14	+	22-1-2 12-2-5			<u>32-0-0</u> 9-10-14	
Plate Offsets (X,Y	[2:0-6-0,0-0-8], [6:0-6-0,0-0-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.82 BC 0.67 WB 0.27 Matrix-AS	DEFL. in Vert(LL) -0.13 Vert(CT) -0.27 Horz(CT) 0.05 Wind(LL) 0.13	i (loc) l/defl 8-10 >999 8-10 >999 6 n/a 6 n/a 10-13 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 194 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 22 3- BOT CHORD 22 WEBS 22 REACTIONS. (I M	6 SP No.2 *Except* 5: 2x4 SP No.2 6 SP No.2 4 SP No.3 b/size) 2=1324/0-5-8, 6=1324/0-5-8 ax Horz 2=-289(LC 10) ax Uplift 2=-475(LC 12), 6=-475(LC 13)		BRACING- TOP CHORD BOT CHORD WEBS	Structural woo 2-0-0 oc purlir Rigid ceiling d 1 Row at midp	od sheathing dire is (3-9-10 max.): irectly applied. ot 4-	ectly applied, except : 3-5. 10, 4-8	
FORCES. (lb) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) or 2-3=-1753/975, 3-4=-1536/989, 4-5=-1536/98 2-10=-636/1346, 8-10=-828/1748, 6-8=-525/ 3-10=-173/655, 4-10=-431/474, 4-8=-431/474	less except when shown. 9, 5-6=-1753/975 346 , 5-8=-173/655					
NOTES- 1) Unbalanced ro 2) Wind: ASCE 7- MWFRS (enve MWFRS for rea	of live loads have been considered for this de 10; Vult=150mph (3-second gust) Vasd=119 ope) gable end zone and C-C Exterior(2) zor ctions shown; Lumber DOL=1.60 plate grip [sign. nph; TCDL=6.0psf; BCDL=6.0 e; end vertical left and right e DOL=1.60	Dpsf; h=25ft; Cat. II; xposed;C-C for men	Exp C; Enclose	d; s &		

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=475, 6=475.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

5-2	2-0 1	6-0-0		26-10-0	32-0	-0
5-2	2-0 1	0-10-0	1	10-10-0	5-2-	.0
Plate Offsets (X,Y)	[2:0-8-0,0-2-8], [3:0-3-0,0-2-12], [8:0-3-0	,0-2-12], [9:0-8-0,0-2-8],	[12:0-5-0,0-4-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.39 BC 0.45 WB 0.25 Matrix-MS	DEFL. ir Vert(LL) 0.21 Vert(CT) -0.16 Horz(CT) -0.07	i (loc) l/defl 11-12 >999 2 i 11-12 >999 2 i 9 n/a	L/d PLATES 240 MT20 240 n/a Weight: 430 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP REACTIONS. (lb/size Max H Max U Max G	No.2 No.2 No.2 e) 2=1814/0-5-8, 9=1814/0-5-8 orz 2=-199(LC 6) plift 2=-1829(LC 8), 9=-1829(LC 9) rav 2=1843(LC 33), 9=1843(LC 34)		BRACING- TOP CHORD BOT CHORD	Structural wood sho 2-0-0 oc purlins (6- Rigid ceiling directh	eathing directly applied or 6-0-0 0-0 max.): 3-8. y applied or 8-3-6 oc bracing.	oc purlins, except
FORCES. (lb) - Wax. TOP CHORD 2-3=- 8-9=- BOT CHORD 2-13= WEBS 3-13= 7-11=	Comp./Max. Ten All forces 250 (lb) or 2687/2793, 3-4=-2105/2329, 4-5=-3828 2687/2794 2294/2227, 12-13=-3769/3446, 11-12= 1250/1278, 4-13=-1525/1904, 4-12=-6 1525/1903, 8-11=-1250/1278	less except when shown. 4222, 5-7=-3828/4222, 7 -3700/3412, 9-11=-2136/ 64/734, 5-12=-423/669, 7	-8=-2105/2329, 2148 -12=-665/735,			
 NOTES- 1) 2-ply truss to be con Top chords connected Bottom chords connu- Webs connected as 2) All loads are conside ply connections have 3) Unbalanced roof live 4) Wind: ASCE 7-10; V MWFRS (envelope) 5) Provide adequate dr 6) This truss has been 7) * This truss has been will fit between the b 8) All bearings are assis 9) Provide mechanical 2=1829, 9=1829. 10) Graphical purlin rep 11) "NAILED" indicates 	nected together with 10d (0.131"x3") na ad as follows: 2x6 - 2 rows staggered at ected as follows: 2x6 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. red equally applied to all plies, except if a been provided to distribute only loads i loads have been considered for this de ult=150mph (3-second gust) Vasd=119 gable end zone; end vertical left and rig ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on t ottom chord and any other members. Juned to be User Defined crushing capar connection (by others) of truss to bearin presentation does not depict the size or i 3-10d (0.148"x3") or 3-12d (0.148"x3.2 dard	Is as follows: 0-9-0 oc. at 0-9-0 oc. noted as front (F) or back toted as (F) or (B), unless sign. nph; TCDL=6.0psf; BCDL nt exposed; Lumber DOL= to load nonconcurrent with the bottom chord in all are sity of 565 psi. g plate capable of withstat the orientation of the purli 5") toe-nails per NDS guid	((B) face in the LOAD C s otherwise indicated. =6.0psf; h=25ft; Cat. II; =1.60 plate grip DOL=1. any other live loads. as where a rectangle 3- inding 100 lb uplift at joir n along the top and/or b dlines.	ASE(S) section. Ply Exp C; Enclosed; 60 6-0 tall by 2-0-0 wide ht(s) except (jt=lb) ottom chord.	to	SEAL 044925
1) Dead + Roof Live (b	alanced): Lumber Increase=1.15, Plate	ncrease=1.15			1111	M. Sum

February 13,2020

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
						I40248639
2227286	A15	Hip Girder	3	2		
				-	Job Reference (optional)	
Builders FirstSource, S	umter, SC - 29153,		8	.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:15 2020	Page 2

8.240 s Dec 6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:15 2020 Page 2 ID:oMYUFR_W5RnH0V88pNA3fyzorLo-GH365Q2etbXXVchD_tDfTqUY_6J9DYs7IKebaVzldPw

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-8=-60, 8-10=-60, 14-17=-20

Concentrated Loads (lb)

Vert: 3=-32(B) 8=-32(B) 13=-26(B) 11=-26(B) 20=-32(B) 21=-32(B) 22=-32(B) 23=-32(B) 23=-32(B) 25=-32(B) 25

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=562, 9=562.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6) * This trues has been designed for a live ball of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=563, 9=500.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Uplift 2=-463(LC 12), 10=-376(LC 13)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-4=.1789/733, 4-5=-1819/810, 5-6=-1319/715, 6-7=-1794/798, 7-8=-569/408, 8-10=-536/385

 BOT CHORD
 2-15=-438/1457, 14-15=-113/983, 12-14=-113/983, 11-12=-113/983, 10-11=-380/1227

 WEBS
 4-15=-573/574, 15-16=-261/817, 16-20=-242/829, 5-20=-227/822, 6-21=-173/745,

17-21=-212/715, 11-17=-224/699, 7-11=-432/564, 7-10=-1301/314, 5-21=-265/236

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) 200.0lb AC unit load placed on the bottom chord, 16-0-0 from left end, supported at two points, 5-0-0 apart.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=463, 10=376.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Af

S Μ. "IIIIIIIII February 13,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE FACE INFERTOR FOR INFERTOR OF THE ADDRESS OF THE SECOND AND INCLOSE MITER REFERENCE FACE INFERTOR OF THE ADDRESS O fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

F	4	- 8-0 8-0	15 10	-6-0 -10-0		20	26-4-0 0-10-0		<u>31-0-0</u> 4-8-0)	
Plate Offsets	; (X,Y)	[2:0-0-0,0-1-2], [3:0-3-0	,0-2-12], [8:0-3-0,	0-2-12], [9:0-0-0,0-1-2], [12:0-5-0,0-4-8]						
LOADING (p TCLL 20 TCDL 10 BCLL 0 BCDL 10	osf) 0.0 0.0 0.0 * 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 NO IPI2014	CSI. TC 0.37 BC 0.41 WB 0.25 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.23 11-12 0.19 11-12 -0.06 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 426 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD BOT CHORD WEBS WEDGE Left: 2x4 SP I	0 2x6 SF 0 2x6 SF 2x4 SF No.3, Righ	9 No.2 9 No.2 9 No.2 9 No.2 ht: 2x4 SP No.3			BRACING- TOP CHOF BOT CHOF	D Structu 2-0-0 c D Rigid c	ural wood s oc purlins (i ceiling direc	heathing dire 6-0-0 max.): : ctly applied or	ctly applied or 6-0-0 c 3-8. · 8-4-12 oc bracing.	oc purlins, except	
REACTIONS	6. (Ib/size Max H Max U Max G	e) 2=1509/0-5-8, 9=1 lorz 2=-196(LC 6) lplift 2=-1809(LC 8), 9=- grav 2=1758(LC 33), 9=	509/0-5-8 1809(LC 9) 1758(LC 34)								
FORCES. (I TOP CHORD BOT CHORD WEBS	(lb) - Max. 2-3=- 8-9=- 2-13= 3-13= 7-11=	Comp./Max. Ten All f -2382/2596, 3-4=-1819// -2383/2596 =-2083/1947, 12-13=-35 =-1290/1177, 4-13=-153 =-1531/1863, 8-11=-128	orces 250 (lb) or l 2127, 4-5=-3578/4 45/3180, 11-12=- 1/1863, 4-12=-80 9/1177	ess except when shown. 1127, 5-7=-3578/4127, 7- 3484/3150, 9-11=-1941/ 3/745, 5-12=-390/527, 7-	8=-1819/2127, 1878 12=-805/746,						
NOTES- 1) 2-ply truss Top chords Bottom chu Webs conr 2) All loads a ply connec 3) Unbalance 4) Wind: ASC MWFRS (e 5) Provide ad 6) This truss will fit betw 8) All bearing 9) Provide me 2=1809, 9= 10) Graphica 11) "NAILED"	s to be con ls connect ords conn nected as are conside titons have ded roof live CE 7-10; V envelope) dequate dr has been is has been is has been is has been sechanical =1809. al purlin rej " indicates	nnected together with 10 ed as follows: 2x6 - 2 ro lected as follows: 2x6 - 2 follows: 2x4 - 1 row at (ered equally applied to a e been provided to distr e loads have been consi (ult=150mph (3-second gable end zone; end ve rainage to prevent water designed for a 10.0 psf in designed for a	d (0.131"x3") naii ws staggered at (2 rows staggered 0-9-0 oc. Ill plies, except if i bute only loads n dered for this des gust) Vasd=119m rtrical left and righ ponding. bottom chord live d of 20.0psf on the remembers. d crushing capaci of truss to bearing epict the size or th 12d (0.148"x3.25	s as follows: 1-9-0 oc. at 0-9-0 oc. hoted as front (F) or back oted as (F) or (B), unless ign. ph; TCDL=6.0psf; BCDL= load nonconcurrent with e bottom chord in all area ty of 565 psi. plate capable of withstal me orientation of the purlir ") toe-nails per NDS guid	(B) face in the L otherwise indica =6.0psf; h=25ft; (=1.60 plate grip D any other live loc as where a rectar nding 100 lb uplif n along the top ar lines.	DAD CASE(S) ied. Xat. II; Exp C; E OL=1.60 ids. igle 3-6-0 tall b at joint(s) exc.	section. Pl Enclosed; by 2-0-0 wic ept (jt=lb) nord.	ly to de	Annum Soot	CAROL ESSIO SEAL 44925 GINEER M. SE	A Community of the second seco
LOAD CASE	E(S) Stan	dard								111111111	
Continued on	nage 2								Februa	ry 13,2020	

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses safe truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
					4	10248647
2227286	A24	Hip Girder	3	2		
				_	Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,		8	.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:30 2020 Pa	age 2

ID:oMYUFR_W5RnH0V88pNA3fyzorLo-KATnFYE2LCQPovK6MW_Aa?b8Y9RLELaKIAmuc8zIdPh

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-8=-60, 8-10=-60, 14-17=-20

Concentrated Loads (lb)

Vert: 3=-7(F) 8=-7(F) 13=-10(F) 11=-10(F) 20=-7(F) 21=-7(F) 22=-7(F) 23=-7(F) 24=-7(F) 25=-7(F) 26=-7(F) 27=-7(F) 28=-7(F) 29=-7(F) 30=-98(F) 31=-10(F) 32=-10(F) 33=-10(F) 33=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	9-7-0	1	21-5-0	1		31-0-0	
	9-7-0	1	1-10-0			9-7-0	
Plate Offsets (X,Y)-	[2:0-0-0,0-1-6], [6:0-0-0,0-1-6]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.85 BC 0.63 WB 0.26 Matrix-AS	DEFL. in Vert(LL) -0.14 Vert(CT) -0.28 Horz(CT) 0.05 Wind(LL) 0.11	(loc) l/defl 8-10 >999 8-10 >999 6 n/a 8-10 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 3-5: BOT CHORD 2x6 WEBS 2x4 WEDGE Left: 2x8 SP NJ. 2, F	SP No.2 *Except* 2x4 SP No.2 SP No.2 SP No.3 tight: 2x8 SP No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing dire (3-10-14 max actly applied. 4-	ectly applied, except .): 3-5. 10, 4-8	
REACTIONS. (Ib/ Ma Ma	size) 2=1309/0-5-8, 6=1309/0-5-8 (Horz 2=-287(LC 10) (Uplift 2=-475(LC 12), 6=-475(LC 13)						
FORCES.(lb) - M.TOP CHORD2-BOT CHORD2-WEBS3-	ax. Comp./Max. Ten All forces 250 (lb) or 3=-1664/921, 3-4=-1437/933, 4-5=-1437/93 10=-603/1239, 8-10=-798/1650, 6-8=-476/1 10=-171/628, 4-10=-425/464, 4-8=-425/464	less except when shown. 3, 5-6=-1664/921 239 , 5-8=-171/628					
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-10 MM/EDS (appreciate	live loads have been considered for this dea ; Vult=150mph (3-second gust) Vasd=119m	sign. nph; TCDL=6.0psf; BCDL=6.0	0psf; h=25ft; Cat. II;	Exp C; Enclosed;	0		

MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=475, 6=475.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
 NaVSITPI Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TREENCO AMITek Affiliate 818 Soundside Road Edenton, NC 27932

	1	10-2-0	1	20-10-0		31-0-0	
	I	10-2-0	I	10-8-0		10-2-0	1
Plate Offsets ((X,Y)	[2:0-0-0,0-1-6], [3:0-3-0,0-3-4], [5:0-3-0,0	3-4], [6:0-0-0,0-1-6]				
LOADING(psTCLL20.TCDL10.BCLL0BCDL10.	sf) .0 .0 .0 * .0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.56 WB 0.25 Matrix-AS	DEFL. in Vert(LL) 0.16 Vert(CT) -0.16 Horz(CT) -0.04	n (loc) l/defl L/d 6 10-13 >999 240 5 10-13 >999 240 4 6 n/a n/a	PLATES MT20 Weight: 211 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD	2x6 SP 3-5: 2x4	No.2 *Except* 4 SP No.2		BRACING- TOP CHORD	Structural wood sheathing dir 2-0-0 oc purlins (4-5-3 max.):	ectly applied, except 3-5.	
BOT CHORD	2x6 SP	No.2		BOT CHORD	Rigid ceiling directly applied.		
WEBS	2x4 SP	No.3		WEBS	1 Row at midpt 4	-10, 4-8	

WEDGE

Left: 2x8 SP No.2, Right: 2x8 SP No.2

REACTIONS. (lb/size) 2=1309/0-5-8, 6=1309/0-5-8 Max Horz 2=-376(LC 10) Max Uplift 2=-519(LC 12), 6=-519(LC 13) Max Grav 2=1384(LC 2), 6=1384(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1709/840, 3-4=-1318/877, 4-5=-1318/877, 5-6=-1709/840

BOT CHORD 2-10=-451/1241, 8-10=-460/1326, 6-8=-331/1241

WEBS 3-10=-145/594, 4-10=-280/376, 4-8=-280/376, 5-8=-145/594

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
0) All between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=519, 6=519.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheatrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

0 Contraction of the MANDER IN THE SEAL 044925 ///////// February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-1706/891, 4-5=-1353/820, 5-6=-1292/826, 6-7=-1353/820, 7-9=-1706/891

BOT CHORD 2-13=-576/1403, 12-13=-575/1405, 11-12=-471/1287, 9-11=-472/1286

WEBS 4-13=0/263, 4-12=-691/497, 5-12=-191/471, 6-12=-191/471, 7-11=0/263, 7-12=-691/498

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=558, 9=558.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=573, 8=517.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Communities of the EAL 4925 S M //////// February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-

TOP CHORD

BOT CHORD

WEBS

Structural wood sheathing directly applied, except

4-9, 4-7

2-0-0 oc purlins (4-0-14 max.): 3-5.

Rigid ceiling directly applied.

1 Row at midpt

REACTIONS. (lb/size) 6=1279/0-5-8, 2=1350/0-5-8 Max Horz 2=380(LC 11)

Max Holz 2=380(LC 11) Max Uplift 6=-485(LC 13), 2=-533(LC 12)

Max Grav 6=1368(LC 2), 2=1434(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1772/869, 3-4=-1367/907, 4-5=-1404/929, 5-6=-1773/888

BOT CHORD 2-9=-473/1288, 7-9=-478/1386, 6-7=-397/1329

WEBS 3-9=-152/617, 4-9=-308/387, 4-7=-250/378, 5-7=-148/608

NOTES-

LUMBER-

WEBS

WEDGE Left: 2x6 SP No.2

BOT CHORD

TOP CHORD 2x6 SP No.2 *Except*

3-5: 2x4 SP No.2

2x6 SP No.2

2x4 SP No.3

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=485, 2=533.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

minin ORTH A THURSDAY SEAL 044925 S Μ. "IIIIIIIII February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

 	11-9-8		19-9-8		32-0-0	
Plate Offsets (X,Y)	2:0-0-0,0-0-10], [6:0-6-0,0-0-8]		0-0-0		12-2-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.83 BC 0.68 WB 0.42 Matrix-AS	DEFL. in Vert(LL) -0.16 Vert(CT) -0.33 Horz(CT) 0.04 Wind(LL) 0.17	(loc) l/defl L/d 8-16 >999 360 8-16 >999 240 6 n/a n/a 8-16 >999 240	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP 3-5: 2x4 BOT CHORD 2x6 SP WEBS 2x4 SP WEDGE Left: 2x6 SP No.2	No.2 *Except* I SP No.2 No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing 2-0-0 oc purlins (3-7-11 m Rigid ceiling directly applie	directly applied, except ax.): 3-5. ed.	
REACTIONS. (Ib/size Max Ho Max Up Max Gr) 2=1350/0-5-8, 6=1323/0-5-8 brz 2=300(LC 11) blift 2=-490(LC 12), 6=-478(LC 13) av 2=1356(LC 2), 6=1329(LC 2)					
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-10= WEBS 3-10=	Comp./Max. Ten All forces 250 (lb) or 1663/970, 3-4=-1592/1027, 4-5=-1630/1 -631/1244, 8-10=-789/1746, 6-8=-526/1 -230/673, 4-10=-394/415, 4-8=-333/399	less except when shown. 048, 5-6=-1671/988 290 , 5-8=-225/658				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vi MWFRS (envelope) & MWFRS for reaction: 3) Provide adequate dra 4) This truss has been * This truss has been * This truss has been 6) All bearings are assu 7) Provide mechanical of 2=490, 6=478. 8) This truss design req sheetrock be applied 9) Graphical purlin repro- 	loads have been considered for this de- ult=150mph (3-second gust) Vasd=119r gable end zone and C-C Exterior(2) zon s shown; Lumber DOL=1.60 plate grip D ainage to prevent water ponding. designed for a 10.0 psf bottom chord live designed for a live load of 20.0psf on the ottom chord and any other members, wi med to be User Defined crushing capac connection (by others) of truss to bearing uires that a minimum of 7/16" structural directly to the bottom chord. esentation does not depict the size or the	sign. ph; TCDL=6.0psf; BCDL=6 e; end vertical left and right OL=1.60 e load nonconcurrent with a ne bottom chord in all areas h BCDL = 10.0psf. ity of 565 psi. g plate capable of withstance wood sheathing be applied e orientation of the purlin al	5.0psf; h=25ft; Cat. II; E exposed;C-C for mem ny other live loads. where a rectangle 3-6 ling 100 lb uplift at join directly to the top chor ong the top and/or bott	Exp C; Enclosed; ibers and forces & ;-0 tall by 2-0-0 wide t(s) except (jt=lb) rd and 1/2" gypsum tom chord.	ALL RTH	SEAL 44925

7 \cap M. S. S February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job Truss	Truss Type	Qty	Ply	H&H/Southport/	
					140248654
2227286 A31	Hip Girder	3	2	lob Reference (ontional)	
Builders FirstSource Sumter SC - 29153		8	240 s Der	6 2019 MiTek Industries Inc. Thu Feb 13 07:07:39 2020	Page 2

8.240 s Dec 6 2019 Mi lek industries, inc. Thu Feb 13 07:07:39 2020 Page 2 ID:oMYUFR_W5RnH0V88pNA3fyzorLo-ZuWB8dLhDzY8NIWqOveHRuTfvnW7rOcfp3SsR6zldPY

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-8=-60, 8-10=-60, 14-17=-20

Concentrated Loads (lb)

Vert: 3=-15(B) 6=-15(B) 8=-15(B) 13=-12(B) 11=-12(B) 20=-15(B) 21=-15(B) 22=-15(B) 23=-15(B) 24=-15(B) 25=-15(B) 26=-15(B) 27=-15(B) 28=-12(B) 30=-12(B) 30=-12(B) 31=-12(B) 32=-12(B) 33=-12(B) 35=-12(B) 35=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TRENCIDEERING BY AMITEK ATHIIIate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web snd/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss systems, see ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
						I40248659
2227286	C02	Common Girder	3	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		6	.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:46 2020	Page 2

ID:oMYUFR_W5RnH0V88pNA3fyzorLo-sFRqc0Q4a7R8jMYAItGwENGuBbxn_RAhQfekACzIdPR

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 9-12=-20

Concentrated Loads (lb)

Vert: 6=-1318(B) 14=-1324(B) 15=-1219(B) 16=-1219(B) 17=-1219(B) 18=-1219(B) 19=-1219(B) 20=-1318(B) 21=-1318(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

DODL 10	.0	Code 11(C2013/11/2014	IVIAUIX-IVIO		JI J-20	/ /333	240	Weight. Tor ib	11 = 2070
LUMBER-				BRACING-					
TOP CHORD	2x6 SP	No.2		TOP CHORD	Struc	tural wood	d sheathing dir	ectly applied or 6-0-0 c	oc purlins.
BOT CHORD	2x6 SP	No.2			Exce	pt:	-		
WEBS	2x4 SP	No.3			1 Ro	w at midpt	: 1	1-13	
OTHERS	2x4 SP	No.3			6-0-0	oc bracin	g: 3-4		
				BOT CHORD	Rigic	l ceiling dir	rectly applied o	or 6-0-0 oc bracing. Ex	cept:
					1 Ro	w at midpt	2	2-25	
				JOINTS	1 Bra	ace at Jt(s)	: 7, 11, 8, 10		

REACTIONS. All bearings 5-5-12 except (jt=length) 13=0-5-8, 16=0-3-8.

(lb) - Max Horz 1=291(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 18, 3 except 17=-158(LC 12), 16=-316(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 13, 3, 1 except 17=267(LC 19), 16=541(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 18, 3, 1 except (jt=lb) 17=158, 16=316.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MILLIN С our of the MANUTALI I EAL 044925 S M "IIIIIIIII February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
						40248661
2227286	C04	Hip Girder	3	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:48 2020 F	Page 2

ID:oMYUFR_W5RnH0V88pNA3fyzorLo-odZb1iSL5khsygiZPIIOJoLCTPaZSRI_uz7rF5zIdPP

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 8=-1219(B) 7=-1318(B) 15=-1324(B) 16=-1219(B) 17=-1219(B) 18=-1219(B) 19=-1219(B) 20=-1219(B) 21=-1318(B) 22=-1318(B) 22=-138(B) 22=-138(B) 22=-138(B) 22=-138(B) 22=-138(B) 22=-138

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. All bearings 5-5-12 except (jt=length) 13=0-5-8, 16=0-3-8.

(lb) - Max Horz 1=234(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 18 except 17=-218(LC 12), 4=-110(LC 12), 16=-243(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 13, 4, 1 except 17=325(LC 19), 16=435(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) All bearings are assumed to be User Defined crushing capacity of 565 psi.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 18, 1 except (jt=lb) 17=218, 4=110, 16=243.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
2227286	C06	Common Girder	3	2		140248663
Builders FirstSource,	Sumter, SC - 29153,			8.240 s Dec	Job Reference (option 6 2019 MiTek Industr	nal) ries, Inc. Thu Feb 13 07:07:51 2020 Page 1
		4-2-14 9-4-8	ID:oMYUFR_W5R 14-6-2	nH0V88pNA	3fyzorLo-DCEjfkUDOf: 18-2-0	3Rp8R85Rs5xQzkNcdzfhGQaxMVsQzldPM
		4-2-14 5-1-10	5-1-10	I	3-7-14 '	
			5x6			Scale = 1:69.5
	0.10-6	$12.00 \ \boxed{12} \\ 4x6 \ \\ 2 \\ 1 \\ 17 \\ 9 \ 18 \ 19 \\ 20 \\ 6x8 = 3x8 \ $	3 8^{21} 8^{21} 22 $10x12 = $ Special	23 7 3x8	5 246 $7x10 \parallel$ 5x6 =	
		Special Special Special Special	I Special	Special S	oecial Special	
		4-2-14 9-4-8	. 14-6-2		18-2-0	
Plate Offsets (X.Y)	[1:0-8-0.0-0-1]. [7:0-4-12.0-1-8]	<u>4-2-14</u> <u>5-1-10</u> [8:0-6-0.0-6-0], [9:0-5-4.0-1-8]	5-1-10		3-7-14	
	SPACING- 2-0-		DEFL.	n (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.30	Vert(LL) 0.0	9 7-8 2 7-8	>999 240	MT20 244/190
BCLL 0.0 *	Rep Stress Incr No	WB 0.79	Horz(CT) 0.0	2 5	n/a n/a	Waight: 226 lb ET - 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x8 SF WEBS 2x4 SF SLIDER Right 2 REACTIONS. (lb/size	P No.2 P DSS P No.2 2x8 SP DSS 1-11-12 e) 1=5822/0-5-8, 5=7006/0-3-	3 (req. 0-4-2)	BRACING- TOP CHORD BOT CHORD	Structura Rigid ce	al wood sheathing dir iling directly applied c	ectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing.
Max H Max U FORCES. (lb) - Max. TOP CHORD 1-2=- BOT CHORD 1-9=- WEBS 2-9=-	orz 1=414(LC 24) plift 1=-2319(LC 9), 5=-2392(LC Comp./Max. Ten All forces 25 -6769/2739, 2-3=-4632/1972, 3- -2043/4705, 8-9=-2043/4705, 7- -1070/2600, 2-8=-1957/1191, 3-	8) 0 (lb) or less except when shown. 4=-4621/1968, 4-5=-6252/2257 3=-1485/4286, 5-7=-1485/4286 3=-2465/6051, 4-8=-1412/702, 4-7=-52	OTHER MEANS 1 WIDTH (SUCH AS ARE THE RESPO OR THE BUILDIN	O ALLOW F COLUMN (NSIBILITY C G DESIGNE	PLATES, SPECIAL AN OR THE MINIMUM RE(SAPS, BEARING BLOC) OF THE TRUSS MANUF R.	UNDRAGE, OK QUIRED SUPPORT KS, ETC.) ACTURER
NOTES- 1) 2-ply truss to be con Top chords connect Bottom chords connected ply connections haw 3) Unbalanced roof live 4) Wind: ASCE 7-10; V MWFRS (envelope) 5) This truss has been will fit between the b 7) WARNING: Require 8) All bearings are ass 9) Provide mechanical 1=2319, 5=2392. 10) Hanger(s) or other 1-10-12, 1221 lb dd 1221 lb down and 396 lb connection device(nnected together with 10d (0.131 ed as follows: 2x6 - 2 rows stag rected as follows: 2x8 - 2 rows stag follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, e been provided to distribute oni e loads have been considered fo /ult=150mph (3-second gust) Va gable end zone; end vertical lef designed for a 10.0 psf bottom in designed for a live load of 20.0 bottom chord and any other mem d bearing size at joint(s) 5 great umed to be User Defined crushi connection device(s) shall be pi own and 527 lb up at 3-10-12, 1 527 lb up at 9-10-12, 1318 lb do (s) is the responsibility of others. dard	"x3") nails as follows: lered at 0-9-0 oc. aggered at 0-7-0 oc. except if noted as front (F) or back (B) i y loads noted as (F) or (B), unless other this design. sd=119mph; TCDL=6.0psf; BCDL=6.0p and right exposed; Lumber DOL=1.60 shord live load nonconcurrent with any lpsf on the bottom chord in all areas with bers. er than input bearing size. g capacity of 565 psi. o bearing plate capable of withstanding ovided sufficient to support concentratt 221 lb down and 527 lb up at 5-10-12, win and 396 lb up at 11-9-12, no bottom	face in the LOAD erwise indicated. psf; h=25ft; Cat. II plate grip DOL= other live loads. here a rectangle 3 g 100 lb uplift at jo ed load(s) 1221 lb , 1221 lb down an down and 396 lb i chord. The desig	CASE(S) s ; Exp C; Er .60 -6-0 tall by int(s) excep down and d 527 lb up up at 13-9- in/selectior	ection. Ply to closed; 2-0-0 wide bt (jt=lb) 527 lb up at at 7-10-12, 12, and 1318 of such	SEAL 044925 MGINEEPHIA
WARNING - Verify	design parameters and READ NOTES	DN THIS AND INCLUDED MITEK REFERENCE P.	AGE MII-7473 rev. 10/	3/2015 BEFO	RE USE.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Π

RE

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
					14024	48663
2227286	C06	Common Girder	3	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,			.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:51 2020 Page	ə 2

ID:oMYUFR_W5RnH0V88pNA3fyzorLo-DCEjfkUDOf3Rp8R85Rs5xQzkNcdzfhGQaxMVsQzIdPM

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 10-13=-20

Concentrated Loads (lb)

Vert: 15=-1324(B) 17=-1219(B) 18=-1219(B) 19=-1219(B) 20=-1219(B) 21=-1219(B) 22=-1318(B) 23=-1318(B) 24=-1318(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD

JOINTS

6-0-0 oc bracing: 5-6 Rigid ceiling directly applied or 6-0-0 oc bracing. Except: 1 Row at midpt 14-21 1 Brace at Jt(s): 10, 9, 11, 13

REACTIONS. All bearings 5-5-12 except (jt=length) 14=0-5-8, 17=0-3-8.

Max Horz 5=297(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 20, 14, 5 except 18=-354(LC 12), 19=-157(LC 19), 17=-232(LC 12) Max Grav All reactions 250 lb or less at joint(s) 20, 14, 5 except 18=357(LC 19), 19=282(LC 12), 17=427(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 5-18=-187/281 WEBS 3-19=-361/252

- NOTES-1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 14, 5 except (it=lb) 18=354, 19=157, 17=232,
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
						I40248665
2227286	C08	Common Girder	3	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,			.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:53 2020	Page 2

ID:oMYUFR_W5RnH0V88pNA3fyzorLo-9bMU4PWTwHJ83RaXCsuZ0r24uQI47bbj1FrcwlzIdPK

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 11-15=-20

Concentrated Loads (lb)

Vert: 9=-1218(B) 10=-1218(B) 17=-1324(B) 19=-1218(B) 20=-1218(B) 21=-1218(B) 22=-1317(B) 23=-1317(B) 24=-1317(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
						140248667
2227286	C10	Hip Girder	3	2		
				_	Job Reference (optional)	
Builders FirstSource, S	Sumter, SC - 29153,			.240 s Deo	c 6 2019 MiTek Industries, Inc. Thu Feb 13 07:07:56 2020	Page 2

ID:oMYUFR_W5RnH0V88pNA3fyzorLo-ZA1ciRYMDChjwvJ5t_SGeUgaldleK209kD3GXdzldPH

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-60, 12-16=-20

Concentrated Loads (lb)

Vert: 9=-1218(B) 18=-1324(B) 20=-1218(B) 21=-1218(B) 22=-1218(B) 23=-1218(B) 24=-1218(B) 25=-1317(B) 26=-1317(B) 27=-1317(B) 26=-1317(B) 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

- 4) * This truss has been designed for a live load of 20.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=373, 4=373.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.17 BC 0.10 WB 0.11 Matrix-P	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) 4 4 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES GRIP MT20 244/190 Weight: 22 lb FT = 20%
LUMBER-			BRACING-				

```
TOP CHORD 2x4 SP No.2
```

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-10-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 6=41/5-10-8, 2=178/5-10-8, 7=287/5-10-8 Max Horz 2=121(LC 9) Max Uplift 6=-31(LC 8), 2=-131(LC 8), 7=-182(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-7=-224/359

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=131, 7=182.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	G (psf) 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.42	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) 0.09 4-7 >814 240 MT20 244/190
TCDL BCLL	10.0 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.42 WB 0.00	Vert(CT) -0.04 4-7 >999 240 Horz(CT) -0.01 2 n/a n/a
BCDL	10.0	Code IRC2015/TPI2014	Matrix-AS	Weight: 27 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x6 SP No.2

REACTIONS. (lb/size) 2=287/0-3-8, 4=227/0-1-8 Max Horz 2=120(LC 8) Max Uplift 2=-287(LC 8), 4=-236(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=287, 4=236.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d PLATES GRIP Vort((1) 0.04 4.7 240 MT20 244/400
TCDL 10.0	Lumber DOL 1.15	BC 0.29	Veri(CC) 0.04 4-7 >999 240 M120 2447 190 Vert(CT) -0.02 4-7 >999 240
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-AS	Horz(CT) -0.00 2 n/a n/a Weight: 23 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x6 SP No.2

REACTIONS. (Ib/size) 2=248/0-3-8, 4=186/0-1-8 Max Horz 2=103(LC 8) Max Uplift 2=-251(LC 8), 4=-194(LC 8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=251, 4=194.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (Ib/size) 6=71/4-0-0, 2=118/4-0-0, 7=167/4-0-0 Max Horz 2=86(LC 9) Max Uplift 6=-52(LC 8), 2=-104(LC 8), 7=-108(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 2=104, 7=108.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BOT CHORD 2-6=-564/1085, 4-6=-564/1085

WEBS 3-6=0/406

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=397, 4=397.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be only with thread outpetting the boots into besign is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

20-0-0 Plate Offsets (X,Y)--[18:0-5-0,0-4-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.15 тс 0.04 Vert(LL) -0.00 120 MT20 244/190 12 n/r TCDL 10.0 Lumber DOL 1.15 BC 0.02 Vert(CT) -0.00 12 n/r 120 BCLL 0.0 Rep Stress Incr YES WВ 0.05 Horz(CT) 0.00 12 n/a n/a Code IRC2015/TPI2014 BCDL Matrix-S Weight: 135 lb FT = 20% 10.0 LUMBER-BRACING-

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 OTHERS 2x4 SP No.3

REACTIONS. All bearings 20-0-0.

(lb) -Max Horz 2=-138(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 2, 12 except 19=-112(LC 12), 20=-119(LC 12), 21=-115(LC 12), 22=-140(LC 12), 17=-108(LC 13), 16=-120(LC 13), 15=-114(LC 13), 14=-130(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 18, 19, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) All bearings are assumed to be User Defined crushing capacity of 565 psi.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12 except (jt=lb) 19=112, 20=119, 21=115, 22=140, 17=108, 16=120, 15=114, 14=130.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

📣 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid for dise only with with every connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	1000						10 0 0		
Plate Offsets (X,Y)	[2:0-0-0,0-1-6], [4:Edge,0-1-6], [6:0-5-0,	0-4-8]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.45 BC 0.43 WB 0.16 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.05 -0.11 -0.02 0.09	(loc) 6-9 6-9 2 6-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S	SP No.2 SP No.2		BRACING- TOP CHOR BOT CHOR	D D	Structu Rigid c	ral wood eiling dire	sheathing dir	ectly applied.	

 TOP CHORD
 2x6 SP No.2

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 WEDGE
 Left: 2x4 SP No.3, Right: 2x4 SP No.3

REACTIONS. (Ib/size) 2=865/0-5-8, 4=865/0-5-8 Max Horz 2=-138(LC 17)

Max Uplift 2=-416(LC 12), 4=-416(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1201/780, 3-4=-1201/780

BOT CHORD 2-6=-508/1006, 4-6=-508/1006

WEBS 3-6=0/427

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=416, 4=416.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

SEAL 044925 WGINEEPHER February 13,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/	
						l40248679
2227286	E06	Common Girder	1	2		
				_	Job Reference (optional)	
Builders FirstSource,	Sumter, SC - 29153,		8	.240 s Dec	6 2019 MiTek Industries, Inc. Thu Feb 13 07:08:10 2020	Page 2

ID:oMYUFR_W5RnH0V88pNA3fyzorLo-9suveDj8wVSkb2OoiwiZCRF?GH6ncSqDyOS?1pzIdP3

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-4=-60, 4-7=-60, 11-14=-20 Concentrated Loads (lb)

Vert: 9=-12(B) 4=-14(B) 17=-212(B) 18=-87(B) 19=-87(B) 20=-87(B) 21=-87(B) 22=-212(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

Design valid for use only with wit exes connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WEBS

1 Row at midpt

REACTIONS. (lb/size) 8=839/0-5-8, 6=839/0-5-8

Max Horz 8=-549(LC 10) Max Uplift 8=-331(LC 12), 6=-331(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-826/434, 3-4=-826/434, 2-8=-899/553, 4-6=-899/553

BOT CHORD 7-8=-1156/1144, 6-7=-912/1092

WEBS 3-7=-87/432, 2-7=-814/1161, 4-7=-826/1176

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 331 lb uplift at joint 8 and 331 lb uplift at joint 6.

SEAL 044925 WGINEEP, HERMIN February 13,2020

2-7, 4-7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	10-0-0	
Plate Offsets (X,Y)	[2:0-7-0,Edge], [3:0-3-12,0-3-0], [4:0-3-12,0-3-0], [5:0-7-0,Edge]	

1 1010 01130	10 (7, 1)	[2.0 7 0,Edge], [0.0 0 12,0 0 0], [4.0 0	12,0 0 0j, [0.0 7 0,Euge]							
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.87 WB 0.35 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.33 -0.03 0.02	(loc) 7-8 7-8 7 8-9	l/defl >999 >697 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 162 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOF BOT CHOF WEBS	JMBER- DP CHORD 2x6 SP No.2 *Except* 3-4: 2x4 SP No.2 DT CHORD 2x4 SP No.2 EBS 2x4 SP No.3 *Except* 2-9,5-7: 2x8 SP DSS		BRACING TOP CHOP BOT CHOP WEBS	RD RD	Structural wood sheathing directly applied except end verticals, and 2-0-0 oc purlins Rigid ceiling directly applied or 5-8-12 oc 1 Row at midpt 3-8, 4-8, 2-8,			ectly applied or 6-0-0 c 0 oc purlins (5-6-9 ma r 5-8-12 oc bracing. -8, 4-8, 2-8, 5-8	oc purlins, x.): 3-4.	
REACTION	NS. (Ib/size) 9=839/0-5-8, 7=839/0-5-8 Max Horz 9=-517(LC 10) Max Uplift 9=-331(LC 12), 7=-331(LC 13)									
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-795/435, 3-4=-736/540, 4-5=-795/435, 2-9=-874/557, 5-7=-874/557 BOT CHORD 8-9=-1008/1068, 7-8=-784/1015 WEBS 3-8=-262/425, 4-8=-260/422, 2-8=-748/1009, 5-8=-760/1023										

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=331, 7=331.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

AMITEK AMITEK AMITEK

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-		BRACING-			
TOP CHORD	2x6 SP DSS	TOP CHORD	Structural wood sheathing of	directly applied or 6-0-0 oc purlir	
BOT CHORD	2x4 SP No.2		except end verticals.		
WEBS	2x4 SP No.3 *Except*	BOT CHORD	Rigid ceiling directly applied or 6-8-0 oc bracing.		
	1-6,3-4: 2x8 SP DSS	WEBS	1 Row at midpt	1-5, 3-5	

REACTIONS. (lb/size) 6=776/0-5-8, 4=776/0-5-8 Max Horz 6=-502(LC 8) Max Uplift 6=-310(LC 13), 4=-310(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-799/407, 2-3=-799/407, 1-6=-835/458, 3-4=-835/458

BOT CHORD 5-6=-746/864, 4-5=-529/633

WEBS 2-5=0/418, 1-5=-427/708, 3-5=-451/719

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=310, 4=310.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED INTER REFERENCE FACE minitors for the double of the doubl

818 Soundside Road Edenton, NC 27932

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 349 lb uplift at joint 10 and 349 lb uplift at joint 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 319 lb uplift at joint 9 and 344 lb uplift at joint 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclasse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-419/340, 3-4=-866/551, 4-5=-730/539, 5-6=-866/551, 6-7=-419/340,
- 2-11=-509/410, 7-9=-509/410
- BOT CHORD 10-11=-342/752, 9-10=-102/594
- WEBS 3-10=-390/458, 4-10=-298/391, 5-10=-298/391, 3-11=-696/229, 6-10=-390/458, 6-9=-698/229

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=351, 9=351.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD

REACTIONS. 3=58/Mechanical, 2=165/0-5-8, 4=37/Mechanical (lb/size) Max Horz 2=175(LC 12) Max Uplift 3=-93(LC 12), 2=-48(LC 12), 4=-19(LC 12) Max Grav 3=77(LC 19), 2=165(LC 1), 4=54(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

Structural wood sheathing directly applied or 2-8-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER-

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.03 BC 0.04 WB 0.02 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 10 >999 240 Vert(CT) -0.00 7-10 >999 240 Horz(CT) -0.00 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 26 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2

REACTIONS. (lb/size) 2=177/0-5-8, 7=135/Mechanical

Max Horz 2=173(LC 8) Max Uplift 2=-82(LC 8), 7=-138(LC 5)

Max Grav 2=184(LC 29), 7=135(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=138

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-5=-20, 6-8=-20

Concentrated Loads (lb) Vert: 3=-0(B) 11=-17(B)

Structural wood sheathing directly applied or 3-3-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

REACTIONS. (Ib/size) 3=81/Mechanical, 2=178/0-5-8, 4=41/Mechanical Max Horz 2=266(LC 12) Max Uplift 3=-175(LC 12), 4=-25(LC 12)

Max Uplift 3=-175(LC 12), 4=-25(LC 12) Max Grav 3=121(LC 19), 2=178(LC 1), 4=61(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=175.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING	(psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.16	Vert(LL) 0.00	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.12	Vert(CT) -0.01	4-7	>999	180		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-MP					Weight: 15 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (Ib/size) 3=70/Mechanical, 2=184/0-5-8, 4=47/Mechanical Max Horz 2=201(LC 12) Max Uplift 3=-112(LC 12), 2=-48(LC 12), 4=-22(LC 12) Max Grav 3=93(LC 19), 2=184(LC 1), 4=65(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 3=112.

Structural wood sheathing directly applied or 3-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2015/TPI2014	CSI. TC 0.05 BC 0.06 WB 0.03 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 7-10 >999 240 Vert(CT) -0.00 7-10 >999 240 Horz(CT) -0.00 7-10 >999 240	PLATES GRIP MT20 244/190 Weight: 29 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.2

REACTIONS. (lb/size) 2=197/0-5-8, 7=164/Mechanical

Max Horz 2=199(LC 8) Max Uplift 2=-83(LC 8), 7=-175(LC 8)

Max Grav 2=201(LC 33), 7=166(LC 33)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=175.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-5=-20, 6-8=-20

Concentrated Loads (Ib) Vert: 3=-10(B) 11=-27(B)

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 3-7-8 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPRETENCE PAGE MIT-1473 TeV. 100322010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Max Horz 2=292(LC 12) Max Uplift 3=-195(LC 12), 4=-26(LC 12)

Max Grav 3=135(LC 19), 2=193(LC 1), 4=68(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=195.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.03 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 7 >999 240 Vert(CT) -0.00 7 >999 240 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 9 lb FT = 20%
LUMBER-			BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD

REACTIONS. 3=37/Mechanical, 2=141/0-5-8, 4=28/Mechanical (lb/size) Max Horz 2=77(LC 12) Max Uplift 3=-41(LC 12), 2=-80(LC 8), 4=-9(LC 12) Max Grav 3=37(LC 1), 2=141(LC 1), 4=39(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.

Structural wood sheathing directly applied or 1-11-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE PAGE MIT-14's rev. Towasons beroke osc. Design valid for use only with MiTeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (it=lb) 8=105.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 5-6=-20, 7-10=-20

Concentrated Loads (Ib)

Vert: 14=-13(B) 15=-8(B)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS REPRETED FACE PAGE MIT-14/3 refer to 100 Sec. Design valid for use only with MTRK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.20 BC 0.05 WB 0.04 Matrix-MP	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00 Wind(LL) 0.00	(loc) 7-8 7-8 7 8	l/defl >999 >999 n/a	L/d 360 240 n/a 240	PLATES GRIP MT20 244/190 Weight: 25 lb FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 7=128/Mechanical, 8=197/0-5-8 Max Horz 8=99(LC 12) Max Uplift 7=-95(LC 9), 8=-77(LC 12)

Max Grav 7=129(LC 24), 8=197(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-194/257, 2-8=-272/368

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-7-0 zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members. 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Structural wood sheathing directly applied or 3-7-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPIT Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

3-7-0 3-7-0

in (loc)

7-8

7-8

7

8

-0.00

-0.00

-0.00

0.00

l/defl

>999

>999

n/a

L/d

360

240

n/a

240

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

PLATES

Weight: 29 lb

MT20

Structural wood sheathing directly applied or 3-7-0 oc purlins,

GRIP

244/190

FT = 20%

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

[3:0-6-1,0-3-0]

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

REACTIONS. (lb/size) 7=128/Mechanical, 8=197/0-5-8 Max Horz 8=157(LC 12) Max Uplift 7=-106(LC 9), 8=-54(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-215/269, 2-8=-301/373

WEBS 3-8=-265/204

Plate Offsets (X,Y)--

20.0

10.0

10.0

0.0

LOADING (psf)

TCLL

TCDL

BCLL

BCDL

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

CSI.

тс

BC

WΒ

Matrix-MP

0.20

0.05

0.06

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

2-0-0

1.15

1.15

YES

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 7=106.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.14 0.14 0.04 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.01	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x4 SP 2x6 SP 2x4 SP	No.2 No.2 No.3				BRACING- TOP CHOF BOT CHOF	RD RD	Structu except Rigid c	ral wood end vertic eiling dire	sheathing dire cals, and 2-0- ctly applied o	ectly applied or 3-7-0 0 oc purlins: 4-6. r 10-0-0 oc bracing.	oc purlins,

 BOT CHORD
 2x6 SP No.2

 WEBS
 2x4 SP No.3

 SLIDER
 Left 2x8 SP DSS 1-11-12

 REACTIONS.
 (lb/size)

 8=137/Mechanical, 2=191/0-5-8

EACTIONS. (lb/size) 8=137/Mechanical, 2=191/0-5-8 Max Horz 2=236(LC 12) Max Uplift 8=-171(LC 12), 2=-5(LC 12) Max Grav 8=146(LC 19), 2=191(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=171.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 2234.

1 1 1	NЛ	D	-	D

TOP CHORD 2x6 SP No.2

BOT CHORD 2x6 SP No.2 SLIDER Left 2x8 SP DSS 1-11-12 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-7-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 3=82/Mechanical, 2=191/0-5-8, 4=53/Mechanical Max Horz 2=289(LC 12) Max Uplift 3=-176(LC 12), 4=-64(LC 12) Max Grav 3=122(LC 19), 2=191(LC 1), 4=73(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-4=-439/422

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=176.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	-0.00	7	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-MP						Weight: 19 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEDGE BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-8-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=62/Mechanical, 2=189/0-5-8, 4=27/Mechanical Max Horz 2=187(LC 12) Max Uplift 3=-110(LC 12), 2=-54(LC 12), 4=-9(LC 12) Max Grav 3=86(LC 19), 2=189(LC 1), 4=48(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 3=110.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Offsets (X,Y)	4:0-3-4,0-2-12]			1
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) 0.00 11 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.00 11 >999 240	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.02	Horz(CT) -0.00 2 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP		Weight: 32 lb FT = 20%
UMBER-			BRACING-	
TOP CHORD 2x6 SP	No.2		TOP CHORD Structural wood sheathing d	irectly applied or 3-1-12 oc purlins,
BOT CHORD 2x6 SP	No 2		except end verticals and 2-	0-0 oc purlins: 4-6

WEBS 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Left 2x6 SP No.2 1-11-12 SLIDER

REACTIONS. (lb/size) 2=203/0-5-8, 8=118/Mechanical Max Horz 2=191(LC 8) Max Uplift 2=-91(LC 8), 8=-150(LC 8) Max Grav 2=209(LC 29), 8=124(LC 29)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

- 6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=150.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-60, 4-5=-60, 5-6=-20, 7-9=-20

Concentrated Loads (lb)

Vert: 4=-2(B) 13=-7(B)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CHERKICE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

	MD	ED	
LU		ER-	

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-1-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

 REACTIONS.
 (lb/size)
 5=225/0-5-8, 3=67/Mechanical, 4=29/Mechanical

 Max Horz
 5=266(LC 12)
 12

 Max Uplift
 3=-171(LC 12), 4=-54(LC 12)
 12

 Max Grav
 5=225(LC 1), 3=109(LC 19), 4=62(LC 10)
 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=171.

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.10 BC 0.08 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 4-7 >999 240 Vert(CT) -0.00 4-7 >999 240 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 22 lb FT = 20%
LUMBER.			BRACING-	

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEDGE

Left: 2x4 SP No.3

REACTIONS. (lb/size) 3=77/Mechanical, 2=206/0-5-8, 4=34/Mechanical Max Horz 2=213(LC 12) Max Uplift 3=-132(LC 12), 2=-54(LC 12), 4=-10(LC 12) Max Grav 3=106(LC 19), 2=206(LC 1), 4=58(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 3=132.

 \sim Contraction of the SEAL 044925 M. ///////// February 13,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CHERKICE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LUMBER- TOP CHORD 2x6	SP No.2		BRACING- TOP CHORD Structural wood sheathing directly applied or 3-4-6 oc purlins,	
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	BC 0.05 WB 0.03 Matrix-MP	Vert(CT) -0.00 8-11 >999 240 Horz(CT) -0.00 2 n/a n/a Weight: 35 lb FT = 20%	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.06	DEFL. in I/defl L/d PLATES GRIP Vert(LL) 0.00 11 >999 240 MT20 244/190	

BOT CHORD

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 Left 2x6 SP No.2 1-11-12 SLIDER

Structural wood sheathing directly applied or 3-4-6 oc purlins, except end verticals, and 2-0-0 oc purlins: 4-6. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 2=218/0-5-8, 8=144/Mechanical Max Horz 2=217(LC 8) Max Uplift 2=-81(LC 8), 8=-199(LC 8)

Max Grav 2=218(LC 33), 8=161(LC 33)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb)
- 8=199.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 5-6=-20, 7-9=-20 Concentrated Loads (lb)

Vert: 4=-19(F) 13=-14(F)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED MITER REFERENCE FACE INFERTOR FOR INFERTOR OF THE ADDRESS OF THE STATE ADDRESS OF THE fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/		140248707
2227286	J18	Jack-Open	36	1			140240707
Buildora EiratSourao	Sumtor SC 20152		0	240 c Do	Job Reference (optiona	al) Do Ino, Thu Eob 12.07	7:09:40.2020 Page 1
Duliders FirstSource,	Sumer, SC - 29153,	-1-3-8 1-3-8	o. ID:oMYUFR_W5RnH <u>3-4-6</u> 3-4-6	240 S Dec 10V88pNA	A3fyzorLo-HeiFxU4ysjEU	JBggZSDEbQmV41NC	JGe1ydr3kb44zldOb
				3			Scale = 1:26.5
		12.00 12 12.00 12 3x6 // 2 4 5 2x4	4x6	=4	4.1.5		
			<u>3-4-6</u> 3-4-6				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. TC 0.42 BC 0.05 WB 0.12 Matrix-MP	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00 Wind(L) 0.00	(loc) 4-5 4-5 3 5	l/defl L/d >999 360 >999 240 n/a n/a **** 240	PLATES MT20 Weight: 24 lb	GRIP 244/190
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x6 SP N WEBS 2x4 SP N	0.2 0.2 0.3		BRACING- TOP CHORD BOT CHORD	Structur except e Rigid ce	al wood sheathing dire and verticals. iling directly applied or	ctly applied or 3-4-6 10-0-0 oc bracing.	oc purlins,
REACTIONS. (Ib/size) Max Hor Max Upli Max Gra	5=233/0-5-8, 3=75/Mechani z 5=281(LC 12) ft 3=-165(LC 12), 4=-71(LC 12 v 5=233(LC 1), 3=114(LC 19).	cal, 4=32/Mechanical ?) 4=71(LC 10)					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- BOT CHORD 4-5=-379/294
- WEBS 2-4=-307/397

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=165.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Plate Olise	els (A, f)	[4.0-5-6,0-3-0]				1						
LOADING TCLL	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.06	DEFL. Vert(LL)	in 0.00	(loc) 11	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 NO	BC WB	0.04 0.03	Vert(CT) Horz(CT)	-0.00 -0.00	8-11 2	>999 n/a	240 n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-MP						Weight: 34 lb	FT = 20%
LUMBER-	RD 2x6 SF	2 No 2				BRACING-	חא	Structu	iral wood	sheathing di	rectly applied or 3-4-6	oc purlins

BOT CHORD

except end verticals, and 2-0-0 oc purlins: 4-6.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.2 SLIDER Left 2x6 SP No.2 1-11-12

REACTIONS. (lb/size) 2=223/0-5-8, 8=143/Mechanical Max Horz 2=195(LC 8) Max Uplift 2=-104(LC 8), 8=-159(LC 5) Max Grav 2=225(LC 33), 8=143(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)

- 2=104, 8=159.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 5-6=-20, 7-9=-20 Concentrated Loads (lb)

Vert: 4=-10(B) 13=-27(B)

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOI ES ON THIS AND INCLUDED MILER REFERENCE FACE MILETATES. INVALUE DELIGIE ODE Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property dranage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			3-11-4	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.11 BC 0.10	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.01 4-7 >999 240 MT20 244/190 Vert(CT) -0.01 4-7 >999 240 MT20 244/190	
BCDL 0.0 * BCDL 10.0	Code IRC2015/TPI2014	MB 0.00 Matrix-MP	Horz(CT) -0.00 3 n/a n/a Weight: 23 lb FT = 20%	

BRACING-TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

REACTIONS. (lb/size) 3=100/Mechanical, 2=229/0-5-8, 4=46/Mechanical Max Horz 2=139(LC 12) Max Uplift 3=-115(LC 12), 2=-111(LC 12), 4=-1(LC 12) Max Grav 3=100(LC 1), 2=229(LC 1), 4=72(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 3=115, 2=111.

Structural wood sheathing directly applied or 3-11-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Edenton, NC 27932

0-<u>1-</u>8

Structural wood sheathing directly applied or 3-4-1 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.

7 4x6 = 6

Plate Offse	ets (X,Y)	[3:0-3-0,0-1-15]										
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.40	Vert(LL)	-0.00	7-8	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	-0.00	7-8	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.09	Horz(CT)	-0.00	7	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-MP	Wind(LL)	0.00	8	****	240	Weight: 30 lb	FT = 20%
LUMBER-						BRACING						

TOP CHORD

BOT CHORD

3-4-1 3-4-1

4x6

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (lb/size) 7=107/Mechanical, 8=224/0-5-8

Max Horz 8=151(LC 12) Max Uplift 7=-121(LC 9), 8=-58(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-289/358, 2-8=-396/510

WEBS 3-8=-371/301

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1-8-3

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 7=121.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR CHERKICE PAGE MIT-1473 TeV. 100/32010 SECORE 052. Design valid for use only with MITEK @ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-4-1 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-5.

Rigid ceiling directly applied or 10-0-0 oc bracing

LUMBER-

TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD

WEBS 2x4 SP No.3

REACTIONS. (lb/size) 7=107/Mechanical, 8=224/0-5-8 Max Horz 8=209(LC 12) Max Uplift 7=-183(LC 12), 8=-2(LC 12) Max Grav 7=136(LC 19), 8=224(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. BOT CHORD 7-8=-318/253

WEBS 2-7=-262/332

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 7=183.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 1003/2016 (0000) BECKE 052. Design valid for use only with MITeK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

Job	Truss	Truss Type	Qty	Ply	H&H/Southport/		140040740
2227286	J25	Jack-Open	1	1			140248713
					Job Reference (option	al)	
Builders FirstSource,	Sumter, SC - 29153,		8 ID:oMYLIER W5R	.240 s De H0\/88n	ec 6 2019 MiTek Industri	ies, Inc. Thu Feb 13 07	208:46 2020 Page 1 2kKWD_BvHkzIdOV
		-1-3-8	3-4-1				
		1-3-8	3-4-1	1			
							Scale = 1:28.4
		т		3	т		
			/	/M			
					I		
		12.00 12					
		4-0			0-4		
		ud 3x6 //			5-10		
		2 ~			4		
		8-3		_			
				Ň			
		5	4×6	_4			
		2x4	470 -				
			3-4-1				
			3-4-1	1			
Plate Offsets (X,Y) [4	:Edge,0-2-0]		1			1	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	5 TC 0.42	Vert(LL) -0.00	4-5	>999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.00	4-5	>999 240		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Wind(LL) 0.00	5	**** 240	Weight: 24 lb	FT = 20%
						Ū	
	lo 2		BRACING-	Structu	ral wood sheathing dire	actly applied or 3-4-1	oc purline
BOT CHORD 2x6 SP N	lo.2			except	end verticals.		oc punnis,
WEBS 2x4 SP M	lo.3		BOT CHORD	Rigid co	eiling directly applied o	r 10-0-0 oc bracing.	
REACTIONS (Ib/eizo)	5-232/0-5-8 3-71/Mechani	cal 4-32/Mechanical					
Max Hoi	z 5=270(LC 12)						
Max Upl	ift 3=-163(LC 12), 4=-105(LC	12)					
Max Gra	v 5=232(LC 1), 3=113(LC 19)	, 4=90(LC 10)					

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- BOT CHORD 4-5=-385/305
- WEBS 2-4=-333/420

NOTES-

- Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) All bearings are assumed to be User Defined crushing capacity of 565 psi.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=163, 4=105.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 = 2x4 || 2x4 =

3-3-11 3-3-11									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.01 WB 0.01 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4 4 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-3-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 2=73/1-11-5, 4=73/1-11-5, 6=61/1-11-5 (lb/size) Max Horz 2=-47(LC 10) Max Uplift 2=-53(LC 12), 4=-60(LC 13), 6=-4(LC 12) Max Grav 2=73(LC 1), 4=77(LC 20), 6=64(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozens Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 = 2x4 || 2x4 =

	3-3-11 3-3-11								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) 0.	00 4	n/r	120	MT20	244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) 0.	00 4	n/r	120			
BCLL 0.0 *	Rep Stress Incr YES	WB 0.01	Horz(CT) 0.	00 4	n/a	n/a			
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 10 lb	FT = 20%	

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-3-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 2=73/1-11-5, 4=73/1-11-5, 6=61/1-11-5 (lb/size) Max Horz 2=-47(LC 10) Max Uplift 2=-53(LC 12), 4=-60(LC 13), 6=-4(LC 12) Max Grav 2=73(LC 1), 4=77(LC 20), 6=64(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

0 Contraction of the MUUUUU SEAL 044925 //////// February 13,2020

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozen's Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			4-3-11				
			4-3-11			I	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.05 BC 0.02	DEFL. Vert(LL) (Vert(CT) (in (loc) 0.00 4 0.00 4	l/defl L/d n/r 120 n/r 120	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.01 Matrix-P	Horz(CT)	0.00 4	n/a n/a	Weight: 14 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3 TOP CHORD BOT CHORD

BRACING-

Structural wood sheathing directly applied or 4-3-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 2=95/2-11-5, 4=95/2-11-5, 6=99/2-11-5 (lb/size) Max Horz 2=-64(LC 10) Max Uplift 2=-65(LC 12), 4=-73(LC 13), 6=-12(LC 12) Max Grav 2=95(LC 1), 4=98(LC 20), 6=101(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

0 Contraction of the MAN MARTIN SEAL 044925 //////// February 13,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozen's Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

			4-3-11				
			4-3-11				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.05 BC 0.02 WB 0.01	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 4 0.00 4 0.00 4	l/defl L/d n/r 120 n/r 120 n/a n/a	PLATES GRIP MT20 244/190	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 14 lb FT = 20%	6

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD OTHERS 2x4 SP No.3 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-3-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 2=95/2-11-5, 4=95/2-11-5, 6=99/2-11-5 (lb/size) Max Horz 2=-64(LC 10) Max Uplift 2=-65(LC 12), 4=-73(LC 13), 6=-12(LC 12) Max Grav 2=95(LC 1), 4=98(LC 20), 6=101(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

ann nu \mathbf{C} Contraction of the MUTURI 044925 //////// February 13,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REPERENCE PAGE MIL-14's rev. Invozen's Derrore USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

2x4 =

4-1-11 4-1-11 LOADING (psf) SPACING-2-0-0 CSI. DEFL. PLATES GRIP in (loc) I/defl L/d Plate Grip DOL Vert(LL) 0.00 120 244/190 TCLL 20.0 1.15 тс 0.05 n/r MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.02 Vert(CT) 0.00 120 4 n/r BCLL 0.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 4 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 13 lb FT = 20%

> BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

REACTIONS. 2=91/2-9-5, 4=91/2-9-5, 6=93/2-9-5 (lb/size) Max Horz 2=-61(LC 10) Max Uplift 2=-63(LC 12), 4=-71(LC 13), 6=-11(LC 12) Max Grav 2=91(LC 1), 4=95(LC 20), 6=95(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 4-1-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 1003/2016 (0000) BECKE 052. Design valid for use only with MITeK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

2x4 =

4-1-11 4-1-11 LOADING (psf) SPACING-2-0-0 CSI. DEFL. PLATES GRIP in (loc) I/defl L/d Plate Grip DOL Vert(LL) 0.00 120 244/190 TCLL 20.0 1.15 тс 0.05 n/r MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.02 Vert(CT) 0.00 120 4 n/r BCLL 0.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 4 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 13 lb FT = 20%

> BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.3

REACTIONS. 2=91/2-9-5, 4=91/2-9-5, 6=93/2-9-5 (lb/size) Max Horz 2=-61(LC 10) Max Uplift 2=-63(LC 12), 4=-71(LC 13), 6=-11(LC 12) Max Grav 2=91(LC 1), 4=95(LC 20), 6=95(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

C Annun manut SEAL 044925 S M. //////// February 13,2020

Structural wood sheathing directly applied or 4-1-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 1003/2016 (0000) BECKE 052. Design valid for use only with MITeK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

BRACING-TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

2x4 SP No.3 OTHERS

REACTIONS. 2=104/3-4-5, 4=104/3-4-5, 6=114/3-4-5 (lb/size) Max Horz 2=71(LC 11) Max Uplift 2=-70(LC 12), 4=-80(LC 13), 6=-16(LC 12) Max Grav 2=104(LC 1), 4=107(LC 20), 6=115(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.
- 8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

С C William Martine MANUTURI SEAL 044925 S Μ. //////// February 13,2020

Structural wood sheathing directly applied or 4-8-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERVICE PAGE MIT-14/3 refer to 1000 SEC. Design valid for use only with MITER deconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

4-8-11 4-8-11 LOADING (psf) SPACING-2-0-0 CSI. DEFL. PLATES GRIP in (loc) I/defl L/d Plate Grip DOL Vert(LL) 0.00 244/190 TCLL 20.0 1.15 тс 0.07 n/r 120 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(CT) 0.00 120 4 n/r BCLL 0.0 Rep Stress Incr YES WB 0.01 Horz(CT) 0.00 4 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Weight: 15 lb FT = 20%

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-8-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 2=104/3-4-5, 4=104/3-4-5, 6=114/3-4-5 Max Horz 2=-71(LC 10) Max Uplift 2=-70(LC 12), 4=-80(LC 13), 6=-16(LC 12) Max Grav 2=104(LC 1), 4=107(LC 20), 6=115(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 6.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

SEAL 044925 February 13,2020

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 1=114, 5=127, 7=531.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

February 13,2020

WEBS 2-7=-389/382

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 1=126, 5=134, 7=336.

- TOP CHORD
- BOT CHORD2x4 SP No.2WEBS2x4 SP No.3OTHERS2x4 SP No.3

2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-1-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (lb/size) 1=120/6-0-14, 4=84/6-0-14, 5=234/6-0-14 Max Horz 1=136(LC 9) Max Uplift 1=-126(LC 13), 4=-138(LC 13), 5=-61(LC 9) Max Grav 1=148(LC 20), 4=116(LC 20), 5=299(LC 19)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=126, 4=138.

To and the second SEAL 044925 1111111 February 13,2020

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=80/3-11-12, 3=80/3-11-12, 4=105/3-11-12 Max Horz 1=74(LC 9) Max Uplift 1=-52(LC 13), 3=-52(LC 13), 4=-13(LC 12) Max Grav 1=80(LC 1), 3=80(LC 1), 4=105(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

REACTIONS. All bearings 4-8-2.

(lb) - Max Horz 1=300(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 4 except 5=-119(LC 12), 6=-286(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 4, 5 except 6=269(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-379/311

WEBS 2-6=-349/352

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=119, 6=286.

LOADING (psf) SPACING- Plate Grip DOL 2-0-0 1.15 CSI. DEF TCLL 20.0 Plate Grip DOL 1.15 TC 0.17 Vert TCDL 10.0 Lumber DOL 1.15 BC 0.07 Vert BCLL 0.0 * Rep Stress Incr YES WB 0.00 Horz BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Matrix-P Horz	FL. in (loc) l/defl L/d t(LL) n/a - n/a 999 t(CT) n/a - n/a 999 z(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 14 lb FT = 20%
---	--	---

```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-2-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=90/3-1-14, 3=-107/3-1-14, 4=237/3-1-14 Max Horz 1=196(LC 12) Max Uplift 3=-155(LC 19), 4=-430(LC 12) Max Grav 1=104(LC 21), 3=224(LC 12), 4=334(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-492/496

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=155, 4=430.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.04 BC 0.01 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 7 lb FT = 20%
			BBACING.	

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-8-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=39/1-7-14, 3=-4/1-7-14, 4=66/1-7-14 Max Horz 1=92(LC 12) Max Uplift 3=-5(LC 19), 4=-108(LC 12) Max Grav 1=48(LC 21), 3=7(LC 12), 4=90(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 4=108.

Annun annun 044925 11111111 February 13,2020

44925 100000 February 13,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODED INTER REFERENCE FACE INTERCISES. To according to the operation of a second sec fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Qua Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
 7) Brouide machanical connection (by others) of trues to bearing plate capable of withstanding

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 144 lb uplift at joint 1, 112 lb uplift at joint 5, 118 lb uplift at joint 6 and 455 lb uplift at joint 7.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 1=114, 5=119, 7=345.

LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.37 BC 0.09 WB 0.05 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 28 lb FT = 20%
LUMBER-			BRACING-	

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-1-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

- REACTIONS. (lb/size) 1=128/6-0-14, 4=74/6-0-14, 5=236/6-0-14 Max Horz 1=151(LC 12) Max Uplift 1=-110(LC 13), 4=-127(LC 13), 5=-75(LC 12) Max Grav 1=151(LC 20), 4=103(LC 20), 5=302(LC 19)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=110. 4=127.

🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 1003/2016 (0000) BECKE 052. Design valid for use only with MITeK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

818 Soundside Road Edenton, NC 27932

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-5-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=90/4-4-12, 3=90/4-4-12, 4=118/4-4-12 Max Horz 1=-83(LC 8) Max Uplift 1=-59(LC 13), 3=-59(LC 13), 4=-15(LC 12) Max Grav 1=90(LC 1), 3=90(LC 1), 4=119(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.06 WB 0.11 Matrix-P	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	n (loc) 1 - 1 - 4 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	P No.2 P No.2	1	BRACING- TOP CHORD	Structu except	ral wood end verti	sheathing di	rectly applied or 5-1-2	oc purlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.2 2x4 SP No.3 WEBS

OTHERS 2x4 SP No.3

REACTIONS. All bearings 5-1-2.

(lb) -Max Horz 1=329(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 4=-108(LC 19), 5=-345(LC 12), 6=-310(LC 12) Max Grav All reactions 250 lb or less at joint(s) 4 except 1=281(LC 12), 5=271(LC 19), 6=299(LC 19)

ł

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- 1-2=-471/384, 3-5=-396/400 TOP CHORD

WEBS 2-6=-382/385

NOTES-

1) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 4=108, 5=345, 6=310.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 10/03/2015 BEFORE USE Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITER REPRETENCE PAGE MIT-1473 TeV. 1003/2016 (0000) BECKE 052. Design valid for use only with MITeK exponences. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-98 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qua** Safety Information available from Truss Plate Institute, 218 N. Lee Street, Suite 312, Alexandria, VA 22314.

LOADING TCLL TCDL	i (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.22 BC 0.10	DEFL. Vert(LL) Vert(CT)	in (n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Code IRC2015/TPI2014	WB 0.00 Matrix-P	Horz(CT)	-0.00	3	n/a	n/a	Weight: 16 lb	FT = 20%

```
LUMBER-
```

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-7-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 1=104/3-7-2, 3=-153/3-7-2, 4=303/3-7-2 Max Horz 1=225(LC 12) Max Uplift 3=-223(LC 19), 4=-558(LC 12) Max Grav 1=120(LC 21), 3=322(LC 12), 4=428(LC 19)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-256/254, 2-4=-636/642

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) All bearings are assumed to be User Defined crushing capacity of 565 psi.

6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=223, 4=558.

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-P						Weight: 9 lb	FT = 20%
	.					BRACING						

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-1-2 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 1=53/2-0-14, 3=-22/2-0-14, 4=103/2-0-14 Max Horz 1=121(LC 12) Max Uplift 3=-32(LC 19), 4=-176(LC 12) Max Grav 1=64(LC 21), 3=45(LC 12), 4=143(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 4=176.

818 Soundside Road Edenton, NC 27932

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 1=112, 5=127, 7=538.

¹⁾ Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 1=122, 5=134, 7=340.

LU	м	в	E	R-
				-

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-2-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 1=124/6-2-2, 4=83/6-2-2, 5=239/6-2-2 Max Horz 1=140(LC 9) Max Uplift 1=-125(LC 13), 4=-138(LC 13), 5=-64(LC 9) Max Grav 1=151(LC 20), 4=115(LC 20), 5=306(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 1=125, 4=138.

CHARLEN WIND 044925 1111111 February 13,2020

 8.4		
	<u> </u>	R -

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-2-12 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 1=85/4-2-4, 3=85/4-2-4, 4=112/4-2-4 Max Horz 1=-78(LC 8) Max Uplift 1=-55(LC 13), 3=-55(LC 13), 4=-14(LC 12) Max Grav 1=85(LC 1), 3=85(LC 1), 4=112(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) All bearings are assumed to be User Defined crushing capacity of 565 psi.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

