

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0720-3457 Lot 19 Oak Haven

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E14672412 thru E14672439

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

July 28,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

À WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS AND INCLODED MITER REFERENCE PAGE mit-143 a few of 3/3/2/00 BeFORE DSE. Design valid for use only with MITeR's connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 28,2020

Edenton, NC 27932

LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.15 тс 0.47 Vert(LL) -0.16 13-15 >999 360 MT20 244/190 TCDL вс 10.0 Lumber DOL 1.15 0.52 Vert(CT) -0.26 13-15 >999 240 BCLL 0.0 Rep Stress Incr YES WB 0.67 Horz(CT) 0.04 9 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.03 10-12 >999 240 Weight: 340 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x6 SP No 1 TOP CHORD Structural wood sheathing directly applied or 5-4-13 oc purlins, BOT CHORD 2x6 SP No.1 except end verticals. 2x4 SP No.2 *Except* BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 1-16: 2x6 SP No.1 6-0-0 oc bracing: 8-9. WEBS 3-15, 3-13, 5-13 1 Row at midpt REACTIONS. (size) 8=0-3-0, 16=0-3-8, 9=0-3-8 Max Horz 16=-272(LC 8)

Max Uplift 8=-123(LC 9), 9=-10(LC 13) Max Grav 8=114(LC 24), 16=1578(LC 19), 9=1946(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FURCES. (ID) -	Max. Comp./Max. Ten All forces 250 (b) of less except when shown.
TOP CHORD	1-3=-1685/214, 3-4=-1468/326, 4-5=-1470/317, 5-7=-1930/265, 7-8=-95/762,
	1-16=-1562/202
BOT CHORD	15-16=-153/301, 13-15=-18/1527, 12-13=-26/1568, 10-12=-69/1271, 9-10=-62/1273,
	8-9=-647/128
WEBS	1-15=-20/1362, 3-15=-252/133, 3-13=-454/191, 5-13=-703/198, 4-13=-161/1050,
	5-12=0/287, 7-12=0/331, 7-9=-2576/254

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-8-10, Interior(1) 4-8-10 to 17-5-8, Exterior(2) 17-5-8 to 21-11-6, Interior(1) 21-11-6 to 43-11-4 zone; cantilever right exposed : parch right exposed : Data and the constant of the constant of

 21-11-6 to 43-11-4 zone; cantilever right exposed; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10 0 psf bottom chord live load ponconcurrent with any other live loads

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 8=123.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 8=101.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affilia 818 Soundside Road

Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply		Lot 19 Oak Haven	
								E14672416
J0720-3457		A4	COMMON	1		2		
						2	Job Reference (optional)	
Comtech, Inc,	Fayettev	ille, NC - 28314,			8.330	s Ma	y 6 2020 MiTek Industries, Inc. Tue Jul 28 13:39:18 2020	Page 2
	-			ID:jZjEylzcbTV	25wFqK	vmk1	fyGMC6-u7bohdTQJSrcD6aMT?b4MTe36DMYugxi?PV35	TytWcd

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 11=-1100(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 19 Oak Haven	F11070110
J0720-3457	A6	ROOF TRUSS	8	1		E14672418
Comtech Inc Favett	eville_NC - 28314			330 s Ma	Job Reference (optiona	al) ries Inc. Tue Jul 28 13:39:21 2020 Page 1
	20014,		ID:jZjEylzcbTV2	25wFqKvn	nk1fyGMC6-liHxKeVIcN	IDB4ZIx979n_6GREREd53m8hMkjioytWca
	⊢ −−−	6-5-8 10-10-12 6-5-8 4-5-4	<u>14-9-4</u> 3-10-8 6-7-4	5	4-0-8 2-6-12	2 <u>31-5-13</u> 3-6-1
				5	~ —	Scale = 1:82.8
				5)	K5 —	
				(6	
	Ī		7.50 12		4x8 ≈	
			3x6 📁		7	
			$2x4 = \frac{18}{2}$			Ī
		2x6 ≫ 2x4	5	×	5x8 =	
		4x8 📂			12 2x6 II	
	0-6-	4 3 RT			4x6	
	13	2x4 🚿 🔛 🛱				3-15
		2	10-1-4	8-2-4		£
		17	1014			
			14-0-0	b		
	1 س					
	½ <u>(~ ⊓</u>				×	1
	5x8 💋	10	9 6x8 ==		2x6 8	
	5712	11 4x8 =			REMOVED A	FTER TRUSS IS ERECTED AND BRACED.
	<u>1-5-0</u> 1-5-0	<u>10-10-12</u> <u>11-2-0</u> 9-5-12 0-3-4	<u>21-4-8</u> 10-2-8		25-5-0 3	31-5-13 6-0-13
Plate Offsets (X,Y) [1	:0-0-6,Edge], [10:0-1-12,0-2-8]	, [11:0-2-8,0-2-4]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.71 BC 0.90	Vert(LL) -0.25	8-10 8-10	>677 360 >416 240	MT20 244/190
BCLL 0.0 *	Rep Stress Incr NC	WB 0.32	Horz(CT) 0.20	11	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.00	1-10	>999 240	Weight: 253 lb FT = 20%
	a 1 *Evaant*		BRACING-	Structure	al wood aboathing dire	actly applied or 6.0.0 as purlies
15-16: 2x	4 SP No.2		TOP CHORD	except e	and verticals.	cuy applied of 0-0-0 oc putilits,
BOT CHORD 2x10 SP	No.1		BOT CHORD	Rigid cei	iling directly applied of at It(s): 12	r 4-4-8 oc bracing.
5-11,4-10),7-11: 2x6 SP No.1		CONTO	1 Diace	at ot(3). 12	
WEDGE Left: 2x4 SP No.2						
	inga 0.2.0					
(lb) - Max Hor	z 1=325(LC 12)					
Max Upli Max Gra	ft All uplift 100 lb or less at jo	int(s) 11, 10 at igint(s) 1 except 11-373(LC 1)				
	10=1997(LC 19), 8=657(LC	26)	,			
FORCES. (lb) - Max. Co	omp./Max. Ten All forces 250) (lb) or less except when shown.				
TOP CHORD 1-2=-28	6/229, 2-4=-267/322, 4-5=-25	7/26, 5-6=-361/133, 6-7=-342/174	, 7-11=-370/165			
WEBS 5-12=-1	10/279, 4-10=-833/404, 7-12=	-122/320				
NOTES-	ade have been considered for	this design				
2) Wind: ASCE 7-10; Vult	t=120mph (3-second gust) Vas	sd=95mph; TCDL=6.0psf; BCDL=	6.0psf; h=15ft; Cat. II; Ex	kp C; Enc	losed;	
MWFRS (envelope) ar exposed :C-C for mem	nd C-C Exterior(2) 0-8-4 to 5-1 bers and forces & MWERS for	-1, Interior(1) 5-1-1 to 21-4-8, Extended to the second se	erior(2) 21-4-8 to 25-2-4	zone; car	ntilever left	ATTALLIA AND A STATE AND A STA
3) This truss has been de	signed for a 10.0 psf bottom c	hord live load nonconcurrent with	any other live loads.			TH CARO
 4) * This truss has been a will fit between the both 	tesigned for a live load of 30.0 tom chord and any other mem	pst on the bottom chord in all area	as where a rectangle 3-6	i-0 tall by	2-0-0 wide	S OFFESTON VII
5) Provide mechanical co	nnection (by others) of truss to	bearing plate capable of withsta	nding 100 lb uplift at join	t(s) 11, 10	0.	and have
6) In the LOAD CASE(S)	section, loads applied to the ta	ace of the truss are noted as front	(F) OF DACK (B).			OFAL STAT
LOAD CASE(S) Standar	rd	Plata Incrasco-1 15			E	SEAL
Uniform Loads (plf)	anosuj. Lumber morease=1.13	, FIALE INCIE 436=1.10			E	030322
Vert: 1-10=-20	0, 8-10=-50(F=-30), 1-6=-60, 6	-7=-60			5	MA ALS
						MGINEEN A
						CA GILBEIN
						Minimum V
						July 28,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-913/35, 2-4=-432/91, 4-5=-345/102, 1-11=-898/49, 5-7=-1032/200
- BOT CHORD 10-11=-308/351, 8-10=-202/725
- WEBS 2-8=-647/235, 1-10=0/666, 5-8=-124/853, 2-10=0/264

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 17-5-8, Exterior(2) 17-5-8 to 21-2-12 zone;C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 28,2020

A MiTek A 818 Soundside Road Edenton, NC 27932

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 19 Oak Haven
					E14672421
J0720-3457	B2	ROOF SPECIAL	1	1	
					Job Reference (optional)
Comtech, Inc, Fay	etteville, NC - 28314,			3.330 s Ma	y 6 2020 MiTek Industries, Inc. Tue Jul 28 13:39:25 2020 Page 2

ID:jZjEyIzcbTV25wFqKvmk1fyGMC6-ATWS90YpgcjdZBciOzDj8yQ3l2aP1oYjc_ixrZytWcW

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 7-8=-60, 8-9=-60, 1-9=-20 Concentrated Loads (lb)

Vert: 18=-24(B) 19=-24(B) 24=-8(B) 25=-8(B) 26=-16(B) 27=34(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Scale = 1:87.6

				5-2-1	2	13-5-	В			5-2-12	1	
Plate Offsets (2	X,Y) [2:0-3-0,0-1-12], [10:0-3-	0,0-1-12], [13:0·	-4-0,0-6-0],	[15:0-4-0,0-6-0)]						
LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	if) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.68 0.82 0.29 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.41 0.01 0.09	(loc) 13-15 13-15 12 13-15	l/defl >999 >693 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 298 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP 17-18,1 2x10 SF 2x4 SP 4-8,3-15 2x4 SP	No.1 *Except* 9-20: 2x4 SP No.1 P No.1 No.2 *Except* 5,9-13: 2x6 SP No.1 No.2				BRACING- TOP CHOR BOT CHOR JOINTS	:D :D	Structu except Rigid c 1 Brace	ral wood end verti eiling dire e at Jt(s):	sheathing dir cals. actly applied c 21	ectly applied or 4-6-12 or 8-8-5 oc bracing.	oc purlins,
REACTIONS.	(size) Max Ho Max Gr) 16=0-3-8, 12=0-3-8 orz 16=395(LC 11) av 16=1652(LC 21), 12:	=1652(LC 20)									
FORCES. (Ib TOP CHORD BOT CHORD	o) - Max. (2-3=-1 2-16= 15-16	Comp./Max. Ten All foi 1755/0, 3-4=-1163/115, 4 -1875/0, 10-12=-1875/0 =-367/408, 13-15=0/121	rces 250 (lb) or I-6=-326/77, 6-8 5	less except 3=-326/77, 8	when shown. 3-9=-1162/115	, 9-10=-1755/0,						

BOT CHORD	15-16=-367/408, 13-15=0/1215
WEBS	4-21=-1067/148, 8-21=-1067/148, 3-15=-30/673, 9-13=-30/673, 2-15=0/1265,
	10-13=0/1266

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-21, 8-21; Wall dead load (5.0psf) on member(s).3-15, 9-13
- 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 13-15

10) Attic room checked for L/360 deflection.

SEAL 036322 July 28,2020

ENGINEERING BY ERENCOO AMITEK Attiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

JOINTS

Rigid ceiling directly applied or 8-11-2 oc bracing.

1 Brace at Jt(s): 20

16-17,18-19: 2x4 SP No.1 BOT CHORD 2x10 SP No.1 WEBS 2x6 SP No.1 *Except* 1-14,9-12,5-20: 2x4 SP No.2

REACTIONS. (size) 15=0-3-8, 11=0-3-8 Max Horz 15=284(LC 11) Max Grav 15=1592(LC 21), 11=1658(LC 21)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 1-2=-1727/0, 2-3=-1152/76, 3-5=-331/63, 5-7=-330/65, 7-8=-1147/66, 8-9=-1736/0, 1-15=-1806/0, 9-11=-1877/0

 BOT CHORD
 14-15=-262/327, 12-14=0/1172

 WEBS
 3-20=-1052/94, 7-20=-1052/94, 2-14=-22/672, 8-12=-4/697, 1-14=0/1192, 9-12=0/1175

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 11-11-8, Exterior(2) 11-11-8 to 16-7-11, Interior(1) 16-7-11 to 25-2-9 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 2-3, 7-8, 3-20, 7-20; Wall dead load (5.0psf) on member(s).2-14, 8-12

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.67 BC 0.81 WB 0.28 Matrix-S	DEFL. in Vert(LL) -0.25 Vert(CT) -0.40 Horz(CT) 0.01 Wind(LL) 0.07	(loc) I/defl 11-13 >999 11-13 >713 10 n/a 11-13 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 264 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x0 BOT CHORD 2x0 WEBS 2x0 1-1	5 SP No.1 *Except* -16,17-18: 2x4 SP No.1 10 SP No.1 5 SP No.1 *Except* 3,9-11,5-19: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD JOINTS	Structural wood s except end vertica Rigid ceiling direc 1 Brace at Jt(s): 1	heathing dire als. xtly applied o 9	ectly applied or 4-7-10 rr 8-10-10 oc bracing.	oc purlins,
REACTIONS. Ma Ma	(size) 14=0-3-8, 10=0-3-8 ax Horz 14=220(LC 9) ax Grav 14=1592(LC 21), 10=1592(LC 20)						
FORCES.(lb) - MTOP CHORD11BOT CHORD1WEBS3	Ax. Comp./Max. Ten All forces 250 (lb) or -2=-1729/0, 2-3=-1152/70, 3-5=-328/63, 5-7: -14=-1808/0, 9-10=-1808/0 3-14=-230/294, 11-13=0/1152 -19=-1056/84, 7-19=-1056/84, 2-13=-20/676	less except when shown. =-328/63, 7-8=-1152/70, 8 , 8-11=-20/676, 1-13=0/11	-9=-1729/0, 193, 9-11=0/1194				
NOTES- 1) Unbalanced roo 2) Wind: ASCE 7-1	f live loads have been considered for this de: 0; Vult=120mph (3-second gust) Vasd=95m	sign. oh; TCDL=6.0psf; BCDL=6	6.0psf; h=15ft; Cat. II; E:	xp C; Enclosed;			

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 11-11-8, Exterior(2) 11-11-8 to 16-7-11, Interior(1) 16-7-11 to 23-8-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 5) Ceiling dead load (10.0 psf) on member(s). 2-3, 7-8, 3-19, 7-19; Wall dead load (5.0psf) on member(s).2-13, 8-11

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 11-13

7) Attic room checked for L/360 deflection.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Af 818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	Lot 19 Oak Haven	-
							E14672427
J0720-3457		C4	ATTIC	1	2		
					–	Job Reference (optional)	
Comtech, Inc,	Fayettevi	lle, NC - 28314,			8.330 s Ma	y 6 2020 MiTek Industries, Inc. Tue Jul 28 13:39:34 2020	Page 2
			ID:jZjE	ylzcbTV2	ōwFqKvmk	1fyGMC6-QCZs25fSYNsL8ZoRPMuq0rlpSgn8exM2guNvf	YytWcN

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 13-14=-20, 11-13=-40, 10-11=-20, 1-2=-60, 2-3=-80, 3-5=-60, 5-7=-60, 7-8=-80, 8-9=-60, 3-7=-20 Drag: 2-13=-10, 8-11=-10

Concentrated Loads (lb) Vert: 5=-2393(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-7 to 3-1-6, Interior(1) 3-1-6 to 11-11-8, Exterior(2) 11-11-8 to 16-4-5, Interior(1) 16-4-5 to 25-2-7 zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.15 1.15 YES 212014	CSI. TC BC WB Matrix	0.08 0.08 0.15 ←R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.00	(loc) 15 15 16	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP 2x6 SP 2x6 SP 2x4 SP	No.1 No.1 No.1 No.2				BRACING- TOP CHOR BOT CHOR WEBS	RD RD	Structur except e Rigid ce T-Brace	al wood end vertig eiling dire	sheathing di cals. ctly applied	irectly applied or 6-0-0 o or 6-0-0 oc bracing. 2x4 SPF No.2 - 8-22	oc purlins,

T-Brace: 2x4 SPF No.2 - 8-22 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 23-11-0. (lb) - Max Horz 28=-287(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except 28=-205(LC 8), 16=-178(LC 9), 27=-222(LC 9), 17=-200(LC 8) Max Grav All reactions 250 lb or less at joint(s) 22, 23, 24, 25, 26, 21, 20, 19, 18 except 28=303(LC 20), 16=280(LC 19), 27=313(LC 10), 17=291(LC 11)

except 20=303(LC 20), 10=200(LC 19), 27=313(LC 10), 17=291(LC

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 6-7=-210/275, 7-8=-237/308, 8-9=-237/307, 9-10=-210/275

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 24, 25, 26, 21, 20, 19, 18 except (jt=lb) 28=205, 16=178, 27=222, 17=200.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 28,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design Valid for Use only with with exe connectors. This design is based only upon parameters shown, and is to an invitude building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP/11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A

818 Soundside Road Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP	
Plate Offsets (X,Y)	[1:0-4-1,0-1-3]										
			1-5-0	0-1-12		1-10-12	1				
			1-5-0	1 ₁ 6-12		3-5-8					

TOP CHORD

BOT CHORD

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	-0.00	1	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	-0.00	1-3	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	2014	Matri	x-P	Wind(LL)	0.00	1-3	>999	240	Weight: 18 lb	FT = 20%
LUMBER	-					BRACING-						

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x4 SP No.2

REACTIONS. (size) 2=Mechanical, 3=Mechanical, 1=0-3-8 Max Horz 1=41(LC 12) Max Uplift 2=-33(LC 12), 3=-10(LC 8), 1=-14(LC 9) Max Grav 2=84(LC 1), 3=56(LC 3), 1=112(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left exposed ; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3, 1.

Structural wood sheathing directly applied or 3-5-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AMS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Science (Integration Quillable from Zines Plate) between 2012 (Crite Highware Visite 2013 Waldoff MID 2001) Salways required not statuting to protein and bracing of trusses and truss systems, see **ANS/TPH Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.16 BC 0.04 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.00 -0.00 0.00	(loc) 1 1-4 3 1-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-		•				

TOP CHORD2x6 SP No.1TOP CHORDStructural wood sheathing directly applied or 3-5-8 oc purlins, excBOT CHORD2x6 SP No.12-0-0 oc purlins: 2-3.WEDGEBOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.Left: 2x4 SP No.2Enter Structural wood sheathing directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 1=0-3-8 Max Horz 1=34(LC 12) Max Uplift 3=-20(LC 9), 4=-11(LC 9), 1=-17(LC 9) Max Grav 3=76(LC 1), 4=53(LC 3), 1=112(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-7-0 to 2-9-2, Exterior(2) 2-9-2 to 3-4-12 zone; cantilever left exposed ; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

			1-5-0		1-5-1 <mark>4</mark>			3-5-	В			
			1-5-0		0-0-1'4			1-11-	10		1	
_Plate Offsets (X,Y) [2:0-4-0,0-3-0], [3:0-0-0,0-1-12], [3:0-3-8,0-0-8], [5:0-0-0,0-1-12], [6:0-1-10,0-0-11]												
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.02	Vert(LL)	0.00	6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	0.00	6	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matrix	(-P	Wind(LL)	-0.00	5-6	>999	240	Weight: 17 lb	FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 3-5-8 oc purlins,
BOT CHORD	2x6 SP No.1		except end verticals, and 2-0-0 oc purlins: 2-3.
WEBS	2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 5=Mechanical, 6=0-3-8 Max Horz 6=19(LC 12)

Max Holz 6=19(LC 12) Max Uplift 3=-13(LC 8), 5=-50(LC 1), 6=-46(LC 8)

Max Grav 3=51(LC 3), 5=30(LC 1), 6=258(LC 3)Max Grav 3=51(LC 1), 5=12(LC 12), 6=258(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-0-3 to 1-5-14, Exterior(2) 1-5-14 to 3-2-4 zone; cantilever left exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5, 6.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 28,2020

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ARXING - Verify design parameters and KEAD NOTES ON THIS AND INCLODED WITEK REFERENCE PAGE MIT-14's rev. or 19/20/20 DEFORE 052. Design valif for use only with MiTeKe connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITek A 818 Soundside Road

Edenton, NC 27932

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-6-2 to 4-10-14, Interior(1) 4-10-14 to 5-3-8, Exterior(2) 5-3-8 to 9-8-5, Interior(1) 9-8-5 to 10-0-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=4-8-10, 3=4-8-10, 4=4-8-10

Max Horz 1=-24(LC 8)

Max Uplift 1=-8(LC 12), 3=-10(LC 13)

Max Grav 1=79(LC 1), 3=79(LC 1), 4=138(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

