

RE: J1120-5332

Weaver / 2 Adcock Farms Lockamy / Johnston

Site Information:

Customer: Lot/Block:	Project Name:	J1120-5332
Address:		
City:		

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

Trenco

818 Soundside Rd

Edenton, NC 27932

This package includes 21 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E15026276	A1	11/18/2020	21	E15026296	VB6	11/18/2020
2	E15026277	A1GE	11/18/2020				
3	E15026278	A2	11/18/2020				
4	E15026279	A3	11/18/2020				
5	E15026280	A4	11/18/2020				
6	E15026281	A5	11/18/2020				
7	E15026282	A5GE	11/18/2020				
8	E15026283	B1	11/18/2020				
9	E15026284	B1GE	11/18/2020				
10	E15026285	B2	11/18/2020				
11	E15026286	C1	11/18/2020				
12	E15026287	C1GE	11/18/2020				
13	E15026288	D1	11/18/2020				
14	E15026289	D1GE	11/18/2020				
15	E15026290	D2	11/18/2020				
16	E15026291	VB1	11/18/2020				
17	E15026292	VB2	11/18/2020				
18	E15026293	VB3	11/18/2020				
19	E15026294	VB4	11/18/2020				
20	E15026295	VB5	11/18/2020				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Strzyzewski, Marvin

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	6-0-0 6-0-0	12-11-7 6-11-7		25-0-9 12-1-3			<u>38-0-0</u> 12-11-7	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip I Lumber DO Rep Stress Code IRC2	2-0-0 DOL 1.15 L 1.15 Incr YES 015/TPI2014	CSI. TC 0.49 BC 0.70 WB 0.49 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.29 10-13 -0.39 10-13 0.04 8 0.06 8-10	l/defl L/d >999 360 >969 240 n/a n/a >999 240	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x4 SP No.2

TOP CHORD BOT CHORD WEBS

BRACING-

Structural wood sheathing directly applied or 4-9-6 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 2-14.

T-Brace: 2x4 SPF No.2 - 5-13, 3-14 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. (size) 14=0-3-8, 8=0-3-8 Max Horz 14=128(LC 11) Max Uplift 14=-121(LC 12), 8=-101(LC 13) Max Grav 14=1846(LC 1), 8=1316(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-569/798, 3-5=-1262/263, 5-7=-1946/429, 7-8=-2190/412

- BOT CHORD 2-14=-580/614, 13-14=-78/898, 10-13=0/1072, 8-10=-211/1888
- WEBS 3-13=0/483, 5-10=-157/1157, 7-10=-582/341, 3-14=-2135/752

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 19-0-0, Exterior(2) 19-0-0 to 23-4-13, Interior(1) 23-4-13 to 38-8-6 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=121, 8=101.

6) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	6-0-0	12-11-7	1	25-0-9		1		38-0-0	
	6-0-0	6-11-7		12-1-3				12-11-7	
Plate Offsets (X,Y)-	- [13:0-4-0,0-3-4]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACINO Plate Grip Lumber D Rep Stree Code IRO	G- 2-0-0 DOL 1.15 DOL 1.15 SS Incr YES C2015/TPI2014	CSI. TC 0.49 BC 0.57 WB 0.59 Matrix-S	DEFL. Vert(LL) -0.1 Vert(CT) -0.3 Horz(CT) 0.0 Wind(LL) 0.0	in (loc) 7 8-10 6 8-10 3 8 9 8-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 329 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 BOT CHORD 2x6 WEBS 2x4	SP No.1 SP No.1 SP No.2			BRACING- TOP CHORD BOT CHORD	Structo Rigid o 6-0-0 o	ural wood s ceiling dire	sheathing di ctly applied 2-14.	rectly applied or 4-10-1. or 10-0-0 oc bracing, 1	2 oc purlins. Except:
OTHERS 2x4	SP No.2			WEBS	1 Row	at midpt	5	5-13, 3-14	

REACTIONS. (size) 14=0-3-8, 8=0-3-8 Max Horz 14=199(LC 12) Max Uplift 14=-394(LC 12), 8=-303(LC 13) Max Grav 14=1846(LC 1), 8=1274(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-569/798, 3-5=-1106/318, 5-7=-1732/489, 7-8=-2025/483

BOT CHORD 2-14=-580/614. 13-14=-209/725. 10-13=-51/931. 8-10=-289/1729

WEBS 3-13=0/399, 5-10=-263/956, 7-10=-582/446, 3-14=-2073/752

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 19-0-0, Exterior(2) 19-0-0 to 23-4-13, Interior(1) 23-4-13 to 38-8-6 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 14=394, 8=303.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

<u> </u>	5-1-12 17 5-1-12 17	/-11-8 -9-12	27-10	-08	38-0-0	
Plate Offsets (X,Y)	[8:0-3-3,Edge], [10:0-5-4,0-2-8], [11:0-	3-4,0-4-0]	0.10	0	1020	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.68 BC 0.68 WB 0.91 Matrix-S	DEFL. ir Vert(LL) -0.23 Vert(CT) -0.46 Horz(CT) 0.25 Wind(LL) 0.15	n (loc) I/defl 3 10 >999 5 10-11 >825 5 8 n/a 5 10 >999	L/d PLATE 360 MT20 240 n/a 240 Weight	ES GRIP 244/190 :: 260 lb FT = 20%
LUMBER- TOP CHORD 2x6 SI BOT CHORD 2x6 SI WEBS 2x4 SI 7-11: 2	P No.1 P No.1 P No.2 *Except* 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood Rigid ceiling dire 6-0-0 oc bracing 1 Row at midpt	sheathing directly applied o ectly applied or 10-0-0 oc br y: 2-13. 3-13, 7-11	or 2-10-11 oc purlins. racing, Except:
REACTIONS. (siz Max H Max U Max C	e) 13=0-3-8, 8=0-3-8 łorz 13=128(LC 11) Jplift 13=-121(LC 12), 8=-101(LC 13) Grav 13=1846(LC 1), 8=1274(LC 1)					

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-628/758, 3-5=-1204/292, 5-7=-1138/317, 7-8=-4093/611

BOT CHORD 2-13=-545/667, 11-13=-93/745, 10-11=-415/3676, 8-10=-417/3677

WEBS 3-11=-29/353, 3-13=-1985/868, 7-10=-102/2115, 5-11=-18/548, 7-11=-2961/511

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 19-0-0, Exterior(2) 19-0-0 to 23-4-13, Interior(1) 23-4-13 to 38-8-6 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=121, 8=101.

TRENCE A MITER A HILL 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	6	6-1-12	17-11-8	1	27-10-	-0			38-0-0	
	<u> </u>	6-1-12	11-9-12	1	9-10-8	8			10-2-0	1
Plate Offse	ets (X,Y)	[8:0-3-3,Edge], [9:0-5-4,0-2-8]	[10:0-3-4,0-4-0]							
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YE Code IRC2015/TPI201	-0 CSI. 15 TC 0.82 15 BC 0.61 15 WB 0.91 14 Matrix-S	32 Vert(LL) 37 Vert(CT) 31 Horz(CT) Wind(LL)	in -0.23 -0.47 0.25 0.16	(loc) 9 9-10 8 9	l/defl L >999 3€ >822 24 n/a n >999 24	/d 60 10 /a 10	PLATES MT20 Weight: 258 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOI BOT CHOI WEBS	RD 2x6 SP RD 2x6 SP 2x4 SP 7-10: 2	No.1 No.1 No.2 *Except* x6 SP No.1		BRACING TOP CHOF BOT CHOF WEBS	RD RD	Structura Rigid cei 6-0-0 oc 1 Row a	al wood shea iling directly bracing: 2-1 t midpt	athing dire applied o 2. 3-	ectly applied or 2-2-0 c r 10-0-0 oc bracing, E .12, 7-10	oc purlins. Except:
REACTIO	NS. (size Max H Max U Max G	e) 12=0-3-8, 8=0-3-8 orz 12=129(LC 11) plift 12=-121(LC 12), 8=-89(LC rav 12=1847(LC 1), 8=1223(L	: 13) C 1)							
FORCES. TOP CHOI	(lb) - Max. RD 2-3=-	Comp./Max. Ten All forces 2 629/758, 3-5=-1205/297, 5-7=-	50 (lb) or less except wher 1139/322, 7-8=-4073/661	en shown.						

 $\begin{array}{c} \mathsf{B}(\mathsf{F}) = \mathsf{B}(\mathsf{F})$

WEBS 3-10=-29/353, 3-12=-1986/869, 7-9=-134/2117, 5-10=-25/548, 7-10=-2970/561

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 19-0-0, Exterior(2) 19-0-0 to 23-4-13, Interior(1) 23-4-13 to 37-10-4 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 12=121.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO AMITEK Affiliate 818 Soundside Road

REACTIONS. (size) 5=0-3-8, 8=0-3-8 Max Horz 8=-278(LC 13) Max Uplift 5=-39(LC 13), 8=-108(LC 13) Max Grav 5=887(LC 1), 8=894(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-264/106, 2-4=-392/100, 4-5=-2564/226, 1-8=-895/273

TOP CHORD 1-2=-264/106, 2-4=-392/100, 4-5=-2564/226, 1-8=-895

BOT CHORD 7-8=-139/297, 6-7=-109/2304, 5-6=-111/2306

WEBS 4-6=0/1400, 4-7=-2219/357, 1-7=-197/761

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 8-0-13, Interior(1) 8-0-13 to 22-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 8=108.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING(psf)TCLL20.0TCDL10.0BCLL0.0BCDL10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.38 WB 0.64 Matrix-S	DEFL. Vert(LL) -0.1 Vert(CT) -0.1 Horz(CT) 0.0 Wind(LL) 0.0	in (loc) 12 6-8 17 6-8 01 5 04 5-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 22 BOT CHORD 22 WEBS 22	6 SP No.1 6 SP No.1 44 SP No.2 *Except*		BRACING- TOP CHORD BOT CHORD	Struct excep Rigid	tural wood ot end vertio ceiling dire	sheathing dir cals. ctly applied c	rectly applied or 6-0-0 o	oc purlins, Except:
REACTIONS.	(size) 8=0-3-8, 5=Mechanical lax Horz 8=-277(LC 13)		WEBS	6-0-0 1 Rov	v at midpt	1 1	-9, 2-8	

Max Uplift 8=-119(LC 13), 5=-28(LC 13) Max Grav 8=1089(LC 20), 5=799(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-4=-1209/337, 4-5=-1154/111 6-8=-68/292. 5-6=0/953

BOT CHORD WEBS 2-6=-375/1235, 2-8=-792/374, 4-6=-659/395

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 8-0-13, Interior(1) 8-0-13 to 22-7-4 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 8=119.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUPPI Quality Criteria, DSB-89 and BCSI Building Component Construction for the fabrication of the construction of the trust Sub 200 Wildord MD 2001
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					22-8-0						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/1	2-0-0 1.15 1.15 YES TPI2014	CSI. TC BC WB Matrix	0.04 0.05 0.12 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%

BRACING-

WFBS

22-8-0

LUMBER-

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt 1-25, 3-23, 2-24, 4-22

REACTIONS. All bearings 22-8-0.

(lb) - Max Horz 25=-402(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 25, 23, 24, 22, 20, 19, 18, 17, 16, 15 except 14=-113(LC 13) Max Grav All reactions 250 lb or less at joint(s) 25, 23, 24, 22, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 10-11=-300/106, 11-12=-352/121, 12-13=-440/161

- BOT CHORD 24-25=-141/422, 23-24=-141/422, 22-23=-141/422, 20-22=-141/422, 19-20=-141/422, 18-19=-141/422, 16-17=-141/422, 15-16=-141/422, 14-15=-141/422, 13-14=-141/422
- WEBS 12-14=-175/266

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-3-4 to 8-0-13, Exterior(2) 8-0-13 to 22-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 23, 24, 22, 20, 19, 18, 17, 16, 15 except (jt=lb) 14=113.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 13.

Scale = 1:61.5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	 	6-9-14		12-11	-4	+	19-1	1-10			26-9-8	
		0-9-14		0-1-0								
TCLL 20.	f) 0	SPACING- 2 Plate Grip DOL	2-0-0 1.15	CSI. TC	0.22	DEFL. Vert(LL)	in -0.01	(loc) 2-13	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10. BCLL 0.	0.0 *	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.14 0.71	Vert(CT) Horz(CT)	-0.03 0.01	2-13 8	>999 n/a	240 n/a		
BCDL 10.	0	Code IRC2015/TPI2	014	Matrix	-S	Wind(LL)	0.03	2-13	>999	240	Weight: 177 lb	FT = 20%

BRACING-

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

2x6 SP No.1 3S 2x4 SP No.2 TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 8=0-3-8, 12=0-3-8 Max Horz 2=92(LC 11) Max Uplift 2=-117(LC 9), 8=-64(LC 13), 12=-81(LC 9)

Max Grav 2=439(LC 23), 8=481(LC 24), 12=1376(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-449/373, 3-5=-110/417, 5-7=-96/368, 7-8=-541/90

BOT CHORD 2-13=-234/330, 12-13=-234/330, 10-12=-4/411, 8-10=-4/411

WEBS 5-12=-628/250, 3-12=-644/622, 3-13=-291/271, 7-12=-683/213, 7-10=0/299

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 13-4-12, Exterior(2) 13-4-12 to 17-9-9, Interior(1) 17-9-9 to 27-5-14 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 12 except (jt=lb) 2=117.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u> **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 28,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[1:0-3-0,0-1-6], [3:0-11-6,0-2-13], [4:0-6-	7-2-2 7-2-2 12,0-1-8]	+ 14-0-0 + 6-9-14	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.17 BC 0.52 WB 0.84 Matrix-S	DEFL. in (loc) l/defl L/d /ert(LL) -0.04 3-4 >999 360 /ert(CT) -0.07 3-4 >999 240 Horz(CT) 0.01 3 n/a n/a Wind(LL) 0.03 3-4 >999 240	PLATES GRIP MT20 244/190 Weight: 240 lb FT = 20%

4

3x10 ||

10

11

LUMBER-BRACING-TOP CHORD 2x6 SP No 1 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, 2x10 SP No.1 BOT CHORD except end verticals. 2x4 SP No.2 *Except* BOT CHORD WEBS Rigid ceiling directly applied or 10-0-0 oc bracing. 1-5: 2x6 SP No.1 REACTIONS. (size) 3=0-3-8, 5=0-3-8

Max Horz 5=-219(LC 9) Max Uplift 3=-141(LC 9), 5=-248(LC 9) Max Grav 3=3260(LC 1), 5=3285(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

0-9-4

Ž 7

^{6⁵}6x8 =

8

9

- TOP CHORD 2-3=-4239/159
- BOT CHORD 4-5=-79/3748, 3-4=-79/3748
- WEBS 2-5=-4101/323, 2-4=-64/3171

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
- Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 2 rows staggered at 0-2-0 oc.
- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=141, 5=248.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 779 lb down and 48 lb up at 1-0-12, 779 lb down and 48 lb up at 3-0-12, 779 lb down and 48 lb up at 5-0-12, 779 lb down and 48 lb up at 7-0-12, 779 lb down and 48 lb up at 9-0-12, and 779 lb down and 48 lb up at 11-0-12, and 782 lb down and 46 lb up at 13-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-6=-20

ontinued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

12

5x8 =

Job	Truss	Truss Type	Qty	Ply	Weaver / 2 Adcock Farms Lockamy / Johnston	
						E15026285
J1120-5332	B2	COMMON GIRDER	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayet	eville, NC - 28314,			3.330 s Oc	t 7 2020 MiTek Industries, Inc. Tue Oct 27 16:07:46 202	0 Page 2
		ID:wM_ul	NnofCrrYE	5Qb7eqy8	OynzD?pS_5OBSs7JLzQDLS5Q18Dpn9fdqlpEh8kWL	zeyP9pR

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 4=-779(F) 7=-779(F) 8=-779(F) 9=-779(F) 10=-779(F) 11=-779(F) 12=-782(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>8-0-0</u> 8-0-0	<u>18-4-0</u> 10-4-0			<u>26-4-0</u> 8-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL. TC 0.18 Vert(LL) BC 0.42 Vert(CT) WB 0.19 Horz(CT) Matrix-S Wind(LL)	in (loc) l/def -0.14 8-10 >999 -0.23 8-10 >999 0.03 6 n/a 0.03 8-10 >999	i L/d 9 360 9 240 a n/a 9 240	PLATES MT20 2	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=-90(LC 10)

Max Uplift 2=-75(LC 12), 6=-75(LC 13)

Max Grav 2=1092(LC 1), 6=1092(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1833/404, 3-4=-1718/474, 4-5=-1718/474, 5-6=-1833/404

BOT CHORD 2-10=-253/1592, 8-10=-92/1027, 6-8=-263/1558

3-10=-378/249, 4-10=-155/772, 4-8=-155/772, 5-8=-378/249 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-6 to 3-8-7, Interior(1) 3-8-7 to 13-2-0, Exterior(2) 13-2-0 to 17-6-13, Interior(1) 17-6-13 to 27-0-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

Structural wood sheathing directly applied or 5-6-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Statut Information avoidable from Zines Plate heating 2020 Crisp Highways. Suite 203 Waldord MD 20601 fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS//TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1			26-4-0						1	
26-4-0									_		
LOADING TCLL TCDL BCU	G (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Bep Strass Incr. VES	CSI. TC 0.04 BC 0.03 WB 0.09	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00	(loc) 14 15	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	11012(01)	0.00	14	Π/a	n/a	Weight: 193 lb	FT = 20%	
	2			BRACING.							_

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. All bearings 26-4-0.

Max Horz 2=140(LC 16) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 14, 23, 24, 25, 26, 21, 19, 18, 17 except 27=-108(LC 12), 16=-107(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 14, 22, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 7-8=-95/276, 8-9=-95/278

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-6 to 3-8-7, Exterior(2) 3-8-7 to 13-2-0, Corner(3) 13-2-0 to 17-6-13, Exterior(2) 17-6-13 to 27-0-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 23, 24, 25, 26, 21, 19, 18, 17 except (jt=lb) 27=108, 16=107.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON MILE OPEN MILE REFERENCE PAGE mil-14/3 (4) and (
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

lob	Truss	Truss Type	Otv	Plv	Weaver / 2 Adcock Farm	ns Lockamy / Johnston		
000	11000		aly	,		to Ecolutiny / connoton	E15026288	
J1120-5332	D1	COMMON	2	1				
Comtach Inc Equation				8 330 c O	Job Reference (optional) s Inc. Tue Oct 27 16:07:40	2020 Page 1	
Connech, Inc, Fayelle	eville, NC - 26314,		ID:wM uNnofCrr	7E5Qb7e	av80vnzD?-0087kQEK9	2hvauvw7DzkmsRC8tezVIi	aik?ZzvP9pO	
	-0 <u>-10-8 5-1(</u>	-4 11-0-0	16-1-12		22-0-0	22-10-8		
	0 ^L 10-8 5-10	1-4 5-1-12	5-1-12		5-10-4	0-10-8		
			426 -				Scale = 1:58.9	
			4x0 —					
	т		5 -					
		/	H					
		2x4 =						
				2x4 =				
	10.00	4		6				
	10.00	2x4 14		15	2x4			
		3			7			
	89	R T			\backslash			
	10-0			L L				
	1	3	q		16			
		4	6-6					
		4						
	2	10	0-0-0		$\langle \rangle$			
	ଙ୍କୁ 1					⁸ 9 ¹⁶		
		M.	•	Ľ				
		12	11	10				
	4x6		4x6	=	4	×0 —		
	E 40	2x4	1 4 2	2x4	II			
	5-10)-4 Id	0-3-8		5-10-4			
Plate Offsets (X,Y) [2:	0-0-0,0-0-3], [5:0-3-0,Edge], [8	:Edge,0-0-3]						
							_	
LOADING (pst)	SPACING- 2-0-0 Plate Grip DOI 1.15		Vort(LL) 0.27	1 (IOC)	I/defi L/d	PLATES GRI	P /100	
TCDL 10.0	Lumber DOL 1.15	BC 0.55	Vert(CT) -0.38	10-12	>685 240	101120 244	190	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.35	Horz(CT) 0.02	2 8	n/a n/a			
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.14	12	>999 240	Weight: 154 lb F	Г = 20%	
TOP CHORD 2x6 SP N	n 1		TOP CHORD	Structur	al wood sheathing direc	thy applied or 6-0-0 oc pur	lins	
BOT CHORD 2x6 SP No	p.1		BOT CHORD	Rigid ce	iling directly applied or	10-0-0 oc bracing.		
WEBS 2x4 SP No	b.2 *Except*			-		-		
4-6: 2x6 S	SP No.1							
WEDGE	2×4 SD No 2							
Len. 2x4 SP NU.S , Right.	2x4 SF N0.3							
REACTIONS. (size)	2=0-3-8, 8=0-3-8							
Max Horz	2=-235(LC 10)							
Max Uplif	t 2=-48(LC 12), 8=-48(LC 13)							
Max Grav	2=1074(LC 19), 8=1074(LC 2	20)						
FORCES. (Ib) - Max Co	mp /Max Ten - All forces 250	(lb) or less except when shown						
TOP CHORD 2-3=-143	31/200, 3-4=-880/282, 6-7=-88	0/282, 7-8=-1431/200						
BOT CHORD 2-12=0/9	956, 10-12=0/956, 8-10=0/956							
WEBS 7-10=0/5	589, 3-12=0/589, 4-6=-1095/3	58						
NOTES								
1) Unbalanced roof live lo	ads have been considered for	this design						
2) Wind: ASCE 7-10; Vult	=130mph (3-second gust) Vas	d=103mph; TCDL=6.0psf; BCDL=6.0p	psf; h=15ft; Cat. II;	Exp C; E	nclosed;			
MWFRS (envelope) an	d C-C Exterior(2) -0-8-14 to 3-	7-14, Interior(1) 3-7-14 to 11-0-0, Exte	erior(2) 11-0-0 to 1	5-4-13, In	terior(1)			
15-4-13 to 22-8-14 zon	e;C-C for members and forces	& MWFRS for reactions shown; Lum	ber DOL=1.60 plat	e grip DO	L=1.60	Southers.		
3) This truss has been de	signed for a 10.0 psf bottom ch	ord live load nonconcurrent with any	other live loads.		0 0 0 · · ·	IN CAD	111.	
 Inis truss has been a will fit between the betty 	esigned for a live load of 30.0	ost on the bottom chord in all areas with RCDL = 10 0pcf	nere a rectangle 3-	6-0 tall by	2-0-0 wide	"ath onno	1.14	
5) Provide mechanical co	nection (by others) of truss to	bearing plate capable of withstanding	n 100 lb uplift at ioi	nt(s) 2 8		NO CON	L'Alla	
					2	: SEAL	1 =	
					3		1 E	
						P:	123	
					3	PL: SNID -CE	1. 2 3	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODE MITER REFERENCE FACE miniformation of a state of the design of the applicability of design parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for statelity and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSTPHI Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

3) All plates are 2x4 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 12, 9, 8.7) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLODE MITER REFERENCE FACE miniformation of a state of the design of the applicability of design parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for statelity and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSTPHI Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-299/215, 4-6=-299/215

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-7 to 4-11-12, Interior(1) 4-11-12 to 8-11-12, Exterior(2) 8-11-12 to 13-4-9, Interior(1) 13-4-9 to 17-4-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6. 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 13-11-9.

(lb) - Max Horz 1=-41(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=284(LC 1), 8=308(LC 23), 6=308(LC 24)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-7 to 5-0-3, Interior(1) 5-0-3 to 6-11-12, Exterior(2) 6-11-12 to 11-4-9, Interior(1) 11-4-9 to 13-4-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Horz 1=5-11-9, 3=5-11-9, 4=5-

Max Uplift 1=-15(LC 12), 3=-18(LC 13)

Max Grav 1=96(LC 1), 3=96(LC 1), 4=186(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

