

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 2000815-2000815A Wellons BB 1398 Extended

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I43201091 thru I43201122

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

October 15,2020

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

ł	6-0-0 15-0-3	20-9-0	26-5-13	33-10-4	40-0-0
	6-0-0 9-0-3	5-8-13	5-8-13	7-4-7	6-1-12
Plate Offsets (X,Y)	[7:0-4-4,0-2-4], [9:0-4-4,0-2-4], [20:0-5-0	,0-2-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.78 BC 0.82 WB 0.59 Matrix-MS	DEFL. in Vert(LL) -0.19 Vert(CT) -0.34 Horz(CT) 0.02	(loc) l/defl L/d 19-20 >999 240 19-20 >974 180 14 n/a n/a	PLATES GRIP MT20 197/144 Weight: 256 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Left: 2x4 SP No.3 , Rig	No.2 or 2x4 SPF No.2 No.2 or 2x4 SPF No.2 No.3 ht: 2x4 SP No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing di 2-0-0 oc purlins (6-0-0 max.) Rigid ceiling directly applied 1 Row at midpt	rectly applied or 6-0-0 oc purlins, except : 7-9. or 6-0-0 oc bracing. 3-20, 7-19, 8-17, 9-15
REACTIONS. (size Max H Max U Max G	e) 20=0-3-8, 14=0-3-8 orz 20=254(LC 11) plift 20=-201(LC 12), 14=-183(LC 13) rav 20=1655(LC 1), 14=1690(LC 1)				
FORCES. (lb) - Max. TOP CHORD 2-3=- 9-11: BOT CHORD 2-21= 12-14 WEBS 6-20= 11-15	Comp./Max. Ten All forces 250 (lb) or 262/411, 3-5=-290/567, 5-6=-324/687, 6 =-718/129, 11-12=-300/556 =-276/268, 19-20=-174/557, 17-19=-127/ I=-357/340 =-1520/446, 6-19=-63/333, 8-17=-393/18 i=-143/950, 11-14=-1510/490	less except when shown. -7=-819/168, 7-8=-706/208 724, 15-17=-52/588, 14-15 6, 9-17=-148/390, 9-15=-3	8, 8-9=-706/208, =-357/340, 64/179,		
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and shown; Lumber DOL 3) Provide adequate dr 4) This truss has been 5) * This truss has been 6) One MTS12 Simpson connection is for upli 7) One H2.5A Simpson connection is for upli 8) Graphical purlin repr	e loads have been considered for this det ult=130mph Vasd=103mph; TCDL=6.0p C-C Exterior(2) zone; cantilever left and =1.60 plate grip DOL=1.60 ainage to prevent water ponding. designed for a 10.0 psf bottom chord live n designed for a live load of 20.0psf on t ottom chord and any other members, wi n Strong-Tie connectors recommended ift only and does not consider lateral forc strong-Tie connectors recommended t ift only and does not consider lateral forc esentation does not depict the size or th	sign. sf; BCDL=6.0psf; h=30ft; C right exposed ;C-C for mer be bottom chord in all areas th BCDL = 10.0psf. to connect truss to bearing tes. o connect truss to bearing to es. e orientation of the purlin a	at. II; Exp B; Enclosed mbers and forces & MV any other live loads. s where a rectangle 3-6 walls due to UPLIFT a valls due to UPLIFT at long the top and/or bot	; MWFRS (envelope) VFRS for reactions 6-0 tall by 2-0-0 wide t jt(s) 20. This jt(s) 14. This tom chord.	SEAL 044925

October 15,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

October 15,2020

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- Contraction of the mmm October 15,2020

818 Soundside Road Edenton, NC 27932

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⊢	6-0-0	15-0-3	20-9-0	26-5-13		33-10-4 3	<u>4-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0 40-0-0-0 40-0-0-0 40-0-0-0 40-0-0-0 40-0-0-0 40-0-0-0 40-0-0-0 40-0-0-00 40-0-0-0-</u>	
Plate Offsets (X Y)	[7:0-4-4 0-2-4] [9:0-4-4 (9-0-3	0-0-13	5-6-13		7-4-7 0	-1-12 6-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TI	2-0-0 CSI. 1.15 TC 1.15 BC YES WB Pl2014 Matri	0.75 V 0.82 V 0.56 H ix-MS	PEFL. ir 'ert(LL) -0.19 'ert(CT) -0.34 lorz(CT) 0.02	n (loc) l/def 18-19 >999 18-19 >974 18-13 n/a	I L/d 9 240 I 180 a n/a	PLATES MT20 Weight: 254 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x4 SP No.3 , Rig	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2 P No.3 ht: 2x4 SP No.3		B Tr B W	RACING- OP CHORD OT CHORD /EBS	Structural wo except 2-0-0 oc purli Rigid ceiling o 1 Row at mid	od sheathing dire ns (6-0-0 max.): 7 directly applied or pt 6-	ectly applied or 5-10-6 7-9. r 6-0-0 oc bracing. 19, 7-18, 8-16, 9-14	oc purlins,
REACTIONS. (size Max H Max U Max G	e) 19=0-3-8, 13=0-3-8 lorz 19=259(LC 9) lplift 19=-202(LC 12), 13= Grav 19=1673(LC 1), 13=	152(LC 13) 1600(LC 1)						
FORCES. (lb) - Max. TOP CHORD 2-3=- 9-11 9-11 BOT CHORD 2-203 WEBS 6-193 11-14	Comp./Max. Ten All foi -262/411, 3-5=-290/567, 5 =-758/152, 11-12=-200/4 =-276/268, 18-19=-181/54 =-1541/453, 6-18=-63/337 4=-79/876, 11-13=-1419/4	rces 250 (lb) or less except 5-6=-324/687, 6-7=-836/18 21 42, 16-18=-134/711, 14-16 7, 8-16=-393/186, 9-16=-14 423	t when shown. 3, 7-8=-729/228, 8-9= =-59/584 I9/384, 9-14=-320/146	-729/228, S,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and shown; Lumber DOI 3) Provide adequate dr 4) This truss has been 5) * This truss has bee will fit between the b	e loads have been consid /ult=130mph Vasd=103m C-C Exterior(2) zone; cal L=1.60 plate grip DOL=1. rainage to prevent water p designed for a 10.0 psf b n designed for a live load oottom chord and any oth	ered for this design. ph; TCDL=6.0psf; BCDL=6 ntilever left and right expos 60 ponding. ottom chord live load nonc of 20.0psf on the bottom c er members. with BCDL = -	5.0psf; h=30ft; Cat. II; ed ;C-C for members oncurrent with any oth thord in all areas wher 10.0psf.	Exp B; Enclosed and forces & M\ ner live loads. re a rectangle 3-	l; MWFRS (env NFRS for react 6-0 tall by 2-0-0	relope) ions) wide	UNITH C	AROLINI

- 6) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19. This connection is for uplift only and does not consider lateral forces.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Pathe Offsets (XY)- P20-70 US3 D2-13 D2-13 D2-13 D2-14 D2-12 D2-14 LOADINg (pri) SPACINO- 2-0.0 CSI. CSI. CSI. MIT	F	6-0-0	6-3-8	15-0-3		20-9-0		26-5-13		33-2	-4 3	4-0-0	40-0-0	
LOADING (ptr) TCLL 200 TCLL 200 TCLL 200 CCLL 115 SPACING- Lumber DOL Lumber DOL CCLL 115 CSL TC 0.78 WB 0.62 DEFL Wer(TCL 0.19 19:20 9:895 3:896 2:40 Wer(TCL 0.02 9:855 1:896 2:40 Wer(TCL 0.02 9:855 1:806 2:40 Wer(TCL 0.02 9:85 1:806 2:40 9:80 2	Plate Offsets (X,Y)	[7:0-4-4,0-2	-4], [9:0-4-4,	0-2-4], [20:0-4-0	,0-2-8]	5-6-13		5-6-13		0-0-	8 0	-9-12	6-0-0	
LUMBER TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 "Except" TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 "Except" TOP CHORD 2x4 SP No.3 or 2x4 SPF No.2 "Except" Structural wood sheathing directly applied or 5-9-13 oc purlins, Structural wood sheathing directly applied or	LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPA Plate Lumb Rep Code	CING- e Grip DOL per DOL Stress Incr e IRC2015/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC BC WB Matri	0.78 0.74 0.62 x-MS	DEF Vert Vert Hor:	E L. (LL) -0 (CT) -0 2(CT) 0	in (loc) .19 19-20 .36 19-20 .02 14	l/defl >999 >935 n/a	L/d 240 180 n/a		PLATES MT20 Weight: 307 lb	GRIP 197/144 FT = 20%
REACTIONS. All bearings 6-3-8 except (it=length) 14-0-3-8. (b) - Max Horz 2-257(LC 10) Max Uplit 14, uplit 100 to riss at joint(s) 21 except 2=280(LC 23), 20=1284(LC 12), 14=-202(LC 13) Max Grav All reactions 250 to rises at joint(s) 21 except 2=280(LC 23), 20=1284(LC 19), 20=1177(LC 1), 14=1748(LC 1), 2=277(LC 1) FORCES. (b) - Max. Comp./Max. Ten . All forces 250 (b) or less except when shown. TOP CHORD 34=-199272, 46=-179274, 46=-7933277, 7-8=769/275, 8-9=-769/275, 9-11=-761/174, 11-12=-300/566 BOT CHORD 4-20=-265(16, 19-20=-116/651, 17-19=-96/775, 15-17=-40/608, 14-15=-357/340, 12-14=-357/340 WEBS 6-20=-1106/16, 19-20=-116/651, 17-19=-96/75, 15-17=-40/608, 14-15=-357/340, 12-14=-357/340 WEBS 6-20=-1106/129, 8-17=-339/166, 9-17=-138/453, 9-15=-390/197, 11-15=-182/1004, 11-14=-1568/532 NOTES 1) Unbalance doc lark have been considered for this design. 2) Wind: ASCE 7-10; Vull=130mph Vasd=103mph; TCDL=6.0psf; B=CDL=6.0psf; h=30f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; canilleus only. For stude exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=-1.60 plate grip DOL=-1.60 3) Trus designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry cable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 4) Provide adequate drianage to prevent water ponding. 5) All plates are 1.5x4 MT20 undiless otherwise indicated. 6) Cable studs spaced at 2-0-0 cc. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (It=lb) 20=171. Continued on page 2 WANNOG- Verify design parameters and EAD NOTES ON THIS AND INCLUED MITEK REFERENCE PAGE MIN-773 exy 5478/200 EEPORE USE. Descent with Rese Contexton, This design individue building designers show, and its in individue building designer, exy 5478/200 EEPORE USE. Descent with Rese Contexton, This design individue two on ad	LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 4-21 WEBS 2x4 OTHERS 2x4 WEDGE Left: 2x4 SP No.3 , F	SP No.2 or 2x4 SP No.2 or 2x4 : 2x4 SP No.3 SP No.3 SP No.3 Right: 2x4 SP N	4 SPF No.2 4 SPF No.2 * No.3	Except*			BRA TOP BOT WEE	CHORD CHORD CHORD	Structo excepi 2-0-0 o Rigid o 1 Row	ural wood to poc purlins ceiling dire at midpt	sheathing o (6-0-0 max ectly applied	lirectly .): 7-9. I or 6- 6-20,	y applied or 5-9-13 0-0 oc bracing. 8-17, 9-15	oc purlins,
FORCES. (ib) - Max. Comp./Max. Ten All forces 250 (ib) or less except when shown. TOP CHORD 3-4=199/272, 4-6=719/274, 6-7=93/33/277, 7-8=-769/275, 8-9=-769/275, 9-11=-761/174, 11-12=-300/556 BOT CHORD 4-20=-265/166, 19-20=-116/651, 17-19=-96/775, 15-17=-40/608, 14-15=-357/340, 12-14=-357/340 WEBS 6-20=-1106/129, 8-17=-333/186, 9-17=-138/453, 9-15=-390/197, 11-15=-182/1004, 11-14=-1568/532 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Provide adequate drainage to prevent water ponding. 5) All plates are 1.5x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 1.0.0psf. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 20=171. Continued on page 2 WARNNO-Verly deegn parameters and READ NOTES ON THIS AND INCLUDED MTEK REFERENCE PAGE MIL-747 arev. 5/192020 BEFORE USE. Deserver 400 for use on Wind Toties connection. The deselow to con arganetics shown, and is for an individual building component, not	REACTIONS. All (Ib) - Max Max Max	bearings 6-3-8 (Horz 2=-257) (Uplift All upl 12), 14: (Grav All rea 19), 20	3 except (jt=l (LC 10) ift 100 lb or l =-202(LC 13) ictions 250 lb =1177(LC 1)	ength) 14=0-3-8 ess at joint(s) 21) o or less at joint(s), 14=1748(LC 1	except 2=- s) 21 excep), 2=277(LC	.112(LC 13), 2 t 2=280(LC 23 C 1)	20=-171(LC 3), 20=128	; 4(LC						
 11-14=-1568/532 NOTES- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 1.5x4 MT20 unless otherwise indicated. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearing at joint(s) 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 20=171. Continued on page 2 WARNING - Verly design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIF473 rev. 5/19/2020 BEFORE USE. Design wild for use only with MITeR 600 connectors. This design is based only upon parameters shown, and is for an individual building component. not 	FORCES. (lb) - Ma TOP CHORD 3 9- BOT CHORD BOT CHORD 4 12 WEBS	ax. Comp./Max 4=-199/272, 4- 11=-761/174, 1 20=-265/166, 1 -14=-357/340 20=-1106/129,	. Ten All fo 6=-179/274, 1-12=-300/5 9-20=-116/6 8-17=-393/1	rces 250 (lb) or 6-7=-933/277, 7 56 51, 17-19=-96/7 86, 9-17=-138/4	less except -8=-769/27 75, 15-17=- 53, 9-15=-3	when shown. 5, 8-9=-769/27 40/608, 14-15 90/197, 11-15	, 75, 5=-357/340 5=-182/100	, 4,						
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	 NOTES- Unbalanced roof Wind: ASCE 7-10 gable end zone a shown; Lumber D Truss designed fo Gable End Detail Provide adequate All plates are 1.52 Gable studs space This truss has be will fit between th Bearing at joint(s) capacity of bearir 10) Provide mechar 20=171. 	-14=-1568/532 live loads have by Vult=130mph nd C-C Exterio iOL=1.60 plate e drainage to pr c4 MT20 unless ed at 2-0-0 oc. en designed fo een designed fo een designed fo g surface. j g surface. ical connectior	been consid vasd=103m r(2) zone; ca grip DOL=1. the plane of the plane of revent water s otherwise in r a 10.0 psf b for a live load and any oth parallel to gra h (by others)	dered for this dee hph; TCDL=6.0p: Intilever left and 60 if the truss only. Jualified building ponding. Indicated. bottom chord live d of 20.0psf on the liver members, with ain value using A of truss to bearing	sign. sf; BCDL=6 right expos For studs e designer a e load nonce he bottom c th BCDL = 1 ANSI/TPI 1 ng plate cap	0.0psf; h=30ft; ed ;C-C for m xposed to win s per ANSI/TF oncurrent with hord in all are 10.0psf. angle to grain bable of withst	Cat. II; Ex embers an Id (normal I I 1. a any other as where a formula. I formula. I tanding 10	 b B; Encloid c) B; Encloid d) forces & to the face live loads. rectangle u) rectangle u) Building de c) buplift a 	sed; MWFF MWFRS fo), see Stan 3-6-0 tall b signer sho t joint(s) ex	tS (envelo r reaction dard Indu by 2-0-0 w uld verify ccept (jt=lb	ope) s stry ide	Community .	SE 044	AR AL 925 VEER HER SEVILIAN er 15,2020
	WARNING - Ve Design valid for us	rify design paramete e only with MiTek@	ers and READ No.	OTES ON THIS AND	INCLUDED M	ITEK REFERENC	E PAGE MII-7 d is for an ind	473 rev. 5/19 vidual buildir	2020 BEFORE g component,	USE.				

a truss system. Before use, the building designer must verify the apprication of design parameters and propeny incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wellons BB 1398 Extended	
						I43201095
2000815-2000815A	AE	GABLE COMMON	1	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.	420 s Aug	25 2020 MiTek Industries, Inc. Wed Oct 14 10:11:00 2020	Page 2
		ID:k??ce3uB	NE?WoLN	ICO2wOO	yXnKS-wQcxO3E6DeWOCWF?Cd6sTyibg1BsAPfiOdUpGł	⟨уТХFv
					, , , ,	-

NOTES-11) N/A

12) N/A

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 2=0-3-8, 9=0-3-8 Max Horz 2=268(LC 11) Max Uplift 2=-161(LC 12), 9=-161(LC 13) Max Grav 2=1481(LC 20), 9=1482(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2032/388, 3-5=-1787/402, 5-6=-1197/374, 6-8=-1788/402, 8-9=-2033/388

BOT CHORD

2-14=-228/1781, 11-14=0/1237, 9-11=-187/1621 WFBS 3-14=-472/308, 14-15=-88/771, 5-15=-80/753, 6-16=-80/755, 11-16=-88/772, 8-11=-472/308

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding

4) All plates are 3x4 MT20 unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid to use only design parameters and READ NOTES ON THIS AND INCLUDED WITH REPORT PAGE MIT 473 1647 301 192/2020 DEFORE USE. Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BCDL	10.0	Code IRC2015/TPI2014	Matrix-S			Weight: 327 lb FT = 20%
LUMBER-			·	BRACING-		
TOP CHOR	RD 2x4 SP	No.2 or 2x4 SPF No.2		TOP CHORD	Structural wood sheat	hing directly applied or 6-0-0 oc purlins, except
BOT CHOR	RD 2x4 SP	No.2 or 2x4 SPF No.2			2-0-0 oc purlins (6-0-0) max.): 14-18.
OTHERS	2x4 SP	No.3		BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc bracing.
WEDGE				WEBS	1 Row at midpt	16-44, 15-45, 13-46, 12-47, 17-43, 19-42,
Left: 2x4 SF	P No.3 . Rial	ht: 2x4 SP No.3				20-41

REACTIONS. All bearings 34-0-0.

(lb) - Max Horz 2=-268(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 43, 30, 41,

39, 38, 37, 36, 35, 34, 33, 32

Max Grav All reactions 250 lb or less at joint(s) 2, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 43, 42, 30, 41, 39, 38, 37, 36, 35, 34, 33, 32

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-262/220, 12-13=-215/252, 19-20=-215/252

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 1.5x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 1-4-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) N/A

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

October 15,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

Edenton, NC 27932

4925

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

🙏 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid to use only design parameters and READ NOTES ON THIS AND INCLUDED WITH REPORT PAGE MIT 473 1647 301 192/2020 DEFORE USE. Design valid for use only with MITEK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent colleges with possible personal injury and property damage. For general quidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENGO

October 15,2020

- TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing

REACTIONS. All bearings 6-8-14.

(lb) -Max Horz 2=116(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 9, 10

Max Grav All reactions 250 lb or less at joint(s) 7, 2, 9, 8, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) N/A

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANS/TPH1</u> Quality Criteria, DSB-89 and BCSI Building Component
 Satisfy for the second secon

¹⁾ Unbalanced roof live loads have been considered for this design.

			7-5-13			
Plate Offsets (X,Y)	[4:0-2-0,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.15 BC 0.10 WB 0.04 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) l/defl L/d 1 n/r 120 1 n/r 90 6 n/a n/a	PLATES GRIP MT20 197/144 Weight: 29 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI WEBS 2x4 SI	P No.2 or 2x4 SPF No.2 P No.2 or 2x4 SPF No.2 P No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ectly applied or 6-0-0 oc purlins, r 10-0-0 oc bracing.	

7-5-13

REACTIONS. (size) 6=6-8-14, 2=6-8-14, 7=6-8-14 Max Horz 2=116(LC 12) Max Uplift 6=-13(LC 13), 7=-94(LC 12) Max Grav 6=132(LC 1), 2=137(LC 1), 7=304(LC 19)

2x4 SP No.3

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) N/A

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 =

2x4 =

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-11-9 3-11-9 Plate Offsets (X,Y)--[3:0-2-0,Edge] SPACING-DEFL. PLATES GRIP LOADING (psf) 2-0-0 CSI. in (loc) l/defl L/d TCLL 20.0 Plate Grip DOL 1.15 тс 0.02 Vert(LL) 0.00 120 MT20 197/144 4 n/r TCDL 10.0 Lumber DOL 1.15 BC 0.07 Vert(CT) 0.00 4 n/r 90 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 4 n/a n/a Code IRC2015/TPI2014 BCDL Matrix-P Weight: 11 lb FT = 20% 10.0 BRACING-LUMBER-TOP CHORD Structural wood sheathing directly applied or 3-11-9 oc purlins.

BOT CHORD

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. 2=2-5-11, 4=2-5-11 (size) Max Horz 2=-28(LC 10) Max Uplift 2=-22(LC 12), 4=-22(LC 13)

Max Grav 2=128(LC 1), 4=128(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) N/A

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not beigh valid bit de only with with with exercising to be detuine to be detuined on a particular to be detuined t
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			11-5-3					
			11-5-9				1	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.03 WB 0.03	Vert(CT) -C Horz(CT) C	0.00 8 0.00 8	n/r n/a	90 n/a	WI 20	197/144
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 47 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD

BOT CHORD

- LUMBER-
- 2x4 SP No.2 or 2x4 SPF No.2 TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3

REACTIONS. All bearings 9-11-11.

(lb) -Max Horz 2=90(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 14, 11, 13, 10

Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 14, 11, 13, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 1.5x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

7) N/A

8) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTeK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⁶⁾ N/A

Max Grav 2=167(LC 1), 4=167(LC 1), 6=216(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) N/A

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8.420 s Aug 25 2020 MiTek Industries, Inc. Wed Oct 14 10:11:29 2020 Page 1 ID:k??ce3uBeNE?WoLMCO2wOOyXnKS-Z?svUzbJOYAHB_zaPD8f83PjsjGgTdwz3e0roZyTXFS 18-7-0

Scale = 1:66.0

BOT CHORD

WEBS

TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2
BOT CHORD	2x4 SP No.2 or 2x4 SPF No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

Structural wood sheathing directly applied or 6-0-0 oc purlins except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 11-12, 10-13, 9-14

REACTIONS. All bearings 18-7-0.

(lb) - Max Horz 1=463(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 12, 1, 13, 14, 15, 16, 17, 18, 19, 21

Max Grav All reactions 250 lb or less at joint(s) 12, 13, 14, 15, 16, 17, 18, 19, 21 except 1=282(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-533/427, 2-3=-465/369, 3-5=-405/323, 5-6=-342/274, 6-7=-281/226

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) All plates are 1.5x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUN	IBER-

TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2
BOT CHORD	2x4 SP No.2 or 2x4 SPF No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

BRACING-TOP CHORD

WEBS

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 6-7

REACTIONS. All bearings 16-3-10.

(lb) - Max Horz 1=405(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 1 except 8=-138(LC 12), 9=-122(LC 12), 11=-141(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 1 except 8=509(LC 19), 9=382(LC 19), 11=372(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-445/367, 2-4=-316/258

WEBS 5-8=-283/191, 4-9=-250/169, 2-11=-282/187

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) All plates are 1.5x4 MT20 unless otherwise indicated.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

BCDL IU.	.0	Code IRC2015/1P12014	Matrix-5			weight: 73 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 2x4 SP 2x4 SP	No.2 or 2x4 SPF No.2 No.2 or 2x4 SPF No.2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied c	ectly applied or 6-0-0 or	c purlins,
OTHERS	2x4 SP	No.3		WEBS	1 Row at midpt 5	-6	

REACTIONS. All bearings 14-0-10.

(lb) - Max Horz 1=347(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 6 except 7=-117(LC 12), 8=-183(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 6, 1 except 7=454(LC 19), 8=543(LC 19)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-354/304

WEBS 2-8=-360/237

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING TCLL TCDL BCLL	(psf) 20.0 10.0 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.19 BC 0.29 WB 0.13	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 59 lb	FT = 20%
LUMBER- TOP CHOR	RD 2x4 SP	No.2 or 2x4 SPF No.2		BRACING- TOP CHORD	Structu	iral wood	sheathing dir	ectly applied or 6-0-0	oc purlins,
BOT CHOR	RD 2x4 SP	No.3			except	end verti	cals.		
WEBS	2x4 SP	No.3		BOT CHORD	Rigid c	eiling dire	ectly applied c	or 10-0-0 oc bracing.	

TOP CHORD	2x4 SP No.2 or 2x4 SPF No
BOT CHORD	2x4 SP No.3
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3

REACTIONS. All bearings 11-9-10.

(lb) - Max Horz 1=289(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 5 except 6=-136(LC 12), 7=-128(LC 12)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=436(LC 19), 7=331(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-311/266

WEBS 3-6=-282/190, 2-7=-257/170

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KEERENCE PAGE MIL-7475 fev. or 19/2/2/0/ DEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1.5x4 ||

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code JRC2015/TPI2014	CSI. TC 0.58 BC 0.35 WB 0.09 Matrix-S	DEFL. Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	n (loc) a - a - 0 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	BRACING- TOP CHORD	Structu	iral wood end vert	sheathing dir	rectly applied or 6-0-0) oc purlins,		

1.5x4 ||

BOT CHORD

nd verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=9-6-10, 4=9-6-10, 5=9-6-10

2x4 SP No.3

2x4 SP No.3

Max Horz 1=231(LC 12) Max Uplift 4=-41(LC 12), 5=-178(LC 12)

Max Grav 1=165(LC 1), 4=162(LC 19), 5=524(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-5=-360/242 WEBS

NOTES-

WEBS

OTHERS

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KEERENCE PAGE MIL-7475 fev. or 19/2/2/0/ DEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.34 BC 0.20 WB 0.06 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) 1 - 1 -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	BRACING- TOP CHORD	Structu except	ural wood	sheathing di icals.	irectly applied or 6-0-0	oc purlins,		

nd verticals Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=7-3-10, 4=7-3-10, 5=7-3-10

2x4 SP No.3

2x4 SP No.3

Max Horz 1=173(LC 12) Max Uplift 4=-49(LC 12), 5=-135(LC 12)

Max Grav 1=98(LC 21), 4=131(LC 19), 5=363(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-5=-286/202WEBS

NOTES-

WEBS

OTHERS

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ARXING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KEERENCE PAGE MIL-7475 fev. or 19/2/2/0/ DEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.66 BC 0.41 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S	BRACING- TOP CHOR	D	Structu	ral wood	sheathing di	rectly applied or 5-1-0	oc purlins,		

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3WEBS2x4 SP No.3

REACTIONS. (size) 1=5-0-10, 3=5-0-10 Max Horz 1=115(LC 12) Max Uplift 3=-71(LC 12)

Max Grav 1=178(LC 1), 3=190(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code. IRC2015/JEP20	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 014 Matrix	0.14 DEFL. 0.09 Vert(LL) 0.00 Horz(CT) v.P	in n/a n/a 0.00	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190 ET = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4	BRACING- TOP CHORI		Structura except e	al wood	sheathing dire	ectly applied or 2-10-	0 oc purlins,		

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=2-9-10, 3=2-9-10 Max Horz 1=57(LC 12) Max Uplift 3=-35(LC 12) Max Grav 1=88(LC 1), 3=94(LC 19)

2x4 SP No.3

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

WEBS

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	(nof)	SDACING	2.0.0	661		DEEL		(10.0)	l/dofi	1 /4			
	(psi)	SPACING-	2-0-0	USI.	0.74		in	(100)	i/deli	L/d	PLATES	GRIP	
CLL	20.0	Plate Grip DOL	1.15		0.71	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
FCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a			
3CDL	10.0	Code IRC2015/TPI	2014	Matri	x-P						Weight: 20 lb	FT = 20%	
LUMBER-					BRACING-								
LOD CHC	ORD 2x4 SP	No.3				TOP CHOR	TOP CHORD Structural wood sheathing directly applied or 5-2-11 oc purlins,						

ł

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3WEBS2x4 SP No.3

REACTIONS. (size) 1=5-2-5, 3=5-2-5 Max Horz 1=118(LC 12) Max Uplift 3=-73(LC 12) Max Grav 1=184(LC 1), 3=196(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.16 BC 0.10 WB 0.00 Matrix-P	DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.0	in (loc) /a - /a - 00	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	BRACING- TOP CHORD	Struct	ural wood	l sheathing di	rectly applied or 2-11-1	1 oc purlins,		

BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3

REACTIONS. (size) 1=2-11-5, 3=2-11-5 Max Horz 1=60(LC 12) Max Uplift 3=-37(LC 12)

Max Grav 1=94(LC 1), 3=100(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

