

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0720-3434 Watermark/Lot 18 Oak Haven/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E14661672 thru E14661688

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

July 24,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek a

GILU.... July 24,2020

818 Soundside Road Edenton, NC 27932

 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⁸¹⁸ Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	Watermark/Lot 18 Oak Haven/Harnett	
10700 0404		A40E					E14661673
J0720-3434	ŀ	AIGE	ROOF SPECIAL SUPPORT	1	1	Ich Deference (optional)	
						Job Reference (optional)	
Comtech, Inc,	Fayettevi	lle, NC - 28314,			8.330 s M	lay 6 2020 MiTek Industries, Inc. Fri Jul 24 13:39:09 2020	Page 2
			ID:9A4qZ	qxD4Am76	Sh51MM0E	DHQyTVPT-id3Lxvv1j4lVfP04nQeUZW3zm8axcaq4KyOSJ	_yur_m

NOTES-

10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIRS of MD INCLODED MITER REPERIENCE PAGE mit-14/3 a for an individual building compensent, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

ENGINEERING BY EREPACO A MITek Affiliate 818 Soundside Road denton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 	<u>10-8-15</u> 10-8-15	+	<u>21-3-1</u> 10-6-2		<u> </u>	<u>2-0-0</u> -8-15	
Plate Offsets (X,Y)	[2:0-1-0,0-1-12], [8:0-1-0,0-1-12]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.42 BC 0.42 WB 0.25 Matrix-S	DEFL. in Vert(LL) -0.15 Vert(CT) -0.23 Horz(CT) 0.05 Wind(LL) 0.04	(loc) l/defl 10-13 >999 10-13 >999 8 n/a 2-13 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 209 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP	No.1 No.1 No.2		BRACING- TOP CHORD BOT CHORD	Structural wood Rigid ceiling dire	sheathing direct ectly applied or 1	ly applied or 5-1-8 o 0-0-0 oc bracing.	c purlins.
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 8=0-3-8 orz 2=-112(LC 8) plift 2=-126(LC 10), 8=-126(LC 11) rav 2=1350(LC 1), 8=1350(LC 1)						
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-13= WEBS 3-13=	Comp./Max. Ten All forces 250 (lb) or 2101/582, 3-5=-1864/604, 5-7=-1864/60 374/1773, 10-13=-149/1206, 8-10=-374 421/274, 5-13=-147/727, 5-10=-147/72	less except when shown. 4, 7-8=-2101/582 I/1773 7, 7-10=-421/274					
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) to 28-9-13, Exterior(plate grip DOL=1.60	e loads have been considered for this des fult=130mph (3-second gust) Vasd=103n and C-C Exterior(2) -1-2-10 to 3-2-3, Inte 2) 28-9-13 to 33-2-10 zone;C-C for mem	sign. hph; TCDL=6.0psf; BCDL= erior(1) 3-2-3 to 11-7-3, Ex bers and forces & MWFRS	-5.0psf; h=15ft; Cat. II; I terior(2) 11-7-3 to 20-4 S for reactions shown; L	Exp C; Enclosed; -13, Interior(1) 20 .umber DOL=1.60	-4-13		

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=126, 8=126.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 30, 31, 32, 33, 34, 35, 28, 27, 26, 25, 24, 23, 22 except (jt=lb) 36=105.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	 	10-8-15				21-3-1					32-0-0	
Plate Offset	ts (X,Y)	[1:0-1-0,0-1-12], [7:0-1-0,	,0-1-12]			10-0-2					10-6-13	
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.15	8-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.23	8-11	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0.05	7	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	k-S	Wind(LL)	0.05	8	>999	240	Weight: 202 lb	FT = 20%
LUMBER-				_		BRACING-						

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-109(LC 6) Max Uplift 1=-107(LC 10), 7=-107(LC 11) Max Grav 1=1268(LC 1), 7=1268(LC 1)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-2114/623, 2-4=-1877/643, 4-6=-1877/643, 6-7=-2114/623
- BOT CHORD 1-11=-429/1788, 8-11=-177/1213, 7-8=-429/1788
- 2-11=-428/299, 4-11=-173/734, 4-8=-173/734, 6-8=-428/299 WFBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 11-7-3, Exterior(2) 11-7-3 to 20-4-13, Interior(1) 20-4-13 to 27-5-7, Exterior(2) 27-5-7 to 31-10-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=107, 7=107.

👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 feV, 3/92/20 BEFORE USE. Design valid for use only with MiTeR with MiteR connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-0-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOAD CASE(S) Standard

Continued on page 2

À WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign value to see only with rever contractions: The design is based only door parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component</u>
 Satisfies
 Ansi/TPH Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Edenton, NC 27932

July 24,2020

Job	Truss	Truss Type	Qty	Ply	Watermark/Lot 18 Oak Haven/Harnett	
						E14661680
J0720-3434	C3GDR	HOWE	1	2		
				_	Job Reference (optional)	
Comtech, Inc,	Fayetteville, NC - 28314,			8.330 s N	lay 6 2020 MiTek Industries, Inc. Fri Jul 24 13:39:19 202	0 Page 2

8.330 s May 6 2020 MiTek Industries, Inc. Fri Jul 24 13:39:19 2020 Page 2 ID:9A4qZqxD4Am76h51MM0DHQyTVPT-PYf72K1IN805syn?MXqqzdTbcAqPyzCYdWp_gPyur_c

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-7=-20, 1-4=-60, 4-7=-60

Concentrated Loads (lb)

Vert: 11=-588(F) 12=-588(F) 10=-591(F) 8=-588(F) 9=-591(F) 13=-588(F) 14=-588(F) 15=-588(F) 16=-588(F) 17=-591(F) 18=-591(F) 19=-591(F) 20=-588(F) 21=-588(F) 22=-588(F) 22=-58(

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Watermark/Lot 18 Oa	k Haven/Harnett	E1/661691
J0720-3434	D1	COMMON	10	1			E 1400 1681
					Job Reference (option	al)	
Comtech, Inc, Fayettev	ville, NC - 28314,		A4a7ayD4Am76h	8.330 s N 51MM0DH	lay 6 2020 MiTek Indu	stries, Inc. Fri Jul 24 13:	:39:20 2020 Page 1
		3-5-11 9-3-9	15	-5-0	16-9-8		
		3-5-11 5-9-15	6-	1-7	1-4-8		
		5x5 =					Scale = 1:68.1
	1	0.00 12 2					
	8.5.0 	x6 - 1	11 4x6 × 3 2x4 // 4	5	4 × 4×4 × 6 6 7 4 × 10		
		9 8 12	13		3x10 ''		
		3x10 =					
		2x4	45.5.0				
		3-5-11 3-5-11	<u>15-5-0</u> 11-11-5				
Plate Offsets (X,Y) [6:0	-7-10,0-0-2]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2015/TPI2014	CSI. E TC 0.16 W BC 0.38 W WB 0.15 H Matrix-S W	DEFL. in 'ert(LL) -0.12 'ert(CT) -0.24 lorz(CT) 0.00 Vind(LL) 0.01	(loc) 6-8 6-8 6	l/defl L/d >999 360 >756 240 n/a n/a >999 240	PLATES MT20 Weight: 149 b	GRIP 244/190
10.0					210	troigite. 170 lb	
LUMBER- TOP CHORD 2x6 SP No. BOT CHORD 2x6 SP No. WEBS 2x4 SP No. SLIDER Right 2x6 S	.1 .1 .2 SP No.1 -x 4-1-3	B T B W	RACING- OP CHORD OT CHORD /EBS	Structura except e Rigid ce 1 Row a	al wood sheathing dire and verticals. iling directly applied o t midpt 4-	ectly applied or 6-0-0 o r 6-0-0 oc bracing. 8, 1-9	c purlins,
REACTIONS. (size)	6=0-3-8, 9=Mechanical						

EACTIONS. (size) 6=0-3-8, 9=Mechanical Max Horz 9=-302(LC 11) Max Uplift 6=-4(LC 11), 9=-133(LC 11) Max Grav 6=701(LC 18), 9=665(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-294/133, 2-4=-366/106, 4-6=-594/92, 1-9=-749/225

BOT CHORD 8-9=-294/349, 6-8=0/395

WEBS 4-8=-440/294, 1-8=-117/575

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 7-10-7, Interior(1) 7-10-7 to 12-3-4, Exterior(2) 12-3-4 to 16-8-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 9=133.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

loh	Truco		Otv	Dhy	Watermark/Let 19 Oa	k Havaa/Harnatt
100	TTUSS	Truss Type	Qty	Ріу	watermark/Lot 16 Oa	E14661682
J0720-3434	D1GE	GABLE	2	1	lob Peference (option	21)
Comtech, Inc, Fayette	ville, NC - 28314,			8.330 s M	lay 6 2020 MiTek Indu	stries, Inc. Fri Jul 24 13:39:21 2020 Page 1
		3-5-11	ID:9A4qZqxD4Am7 15-5-0	'6h51MM(0DHQyTVPT-LxntS02Y 16-9-8	/vmGo6FxOUysI22Y?Xze2Q08r5qI5kIyur_a
		3-5-11	11-11-5		1-4-8	
		5x5 =				Scale = 1:69.0
	1	0.00 12				
	'	2				
		4x6 1/1				
			4x6 \\			
			4			
	-3-15		II P			
	2 de la companya de			\backslash		
				R	2x6	
					5	
					12 4 4	
	1 1	*******************	*****	~~~~~~		
		15 14 13 12	11 10 9	8	7 4v4 II	
		3,44 —			474 []	
		3-5-11 3-5-11	<u> </u>			
		081		(10.0)	1/104	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.17	Vert(LL) 0.00	(IOC) 6	n/r 120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) 0.00	6	n/r 120	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	H012(C1) 0.00	1	11/a 11/a	Weight: 182 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x6 SP No	.1		TOP CHORD	Structura	al wood sheathing dire	ectly applied or 6-0-0 oc purlins,
WEBS 2x6 SP No WEBS 2x4 SP No	0.1 0.2 *Except*		BOT CHORD	except e Rigid cei	nd verticals. iling directly applied o	r 10-0-0 oc bracing.
5-7: 2x6 S	P No.1		WEBS	1 Row at	t midpt 1-	15, 2-13
OTHERS 2x4 SP No).2					
REACTIONS. All bearin	ngs 15-5-0.					
(ID) - Max Horz Max Uplift	All uplift 100 lb or less at joi	nt(s) 7, 13 except 15=-226(LC 11)	, 10=-296(LC 11), 8=-1-	45(LC 11)	
Max Grav	All reactions 250 lb or less	at joint(s) 15, 14, 12, 11, 9, 8 excep	ot 7=274(LC 20), 10=53	85(LC 18)),	
	13=304(LC 20)					
FORCES. (lb) - Max. Con	mp./Max. Ten All forces 250	(lb) or less except when shown.				
BOT CHORD 14-15=-2	225/402, 13-14=-225/402, 12-	13=-156/333, 11-12=-156/333, 10-	11=-156/333,			
9-10=-15 WEBS 4-10=-57	56/333, 8-9=-156/333, 7-8=-15 2/443	6/333				
	2,110					
1) Unbalanced roof live loa	ads have been considered for	this design.				
2) Wind: ASCE 7-10; Vult=	130mph (3-second gust) Vas	d=103mph; TCDL=6.0psf; BCDL=	5.0psf; h=15ft; Cat. II; E	xp C; En	closed;	
members and forces & l	MWFRS for reactions shown;	Lumber DOL=1.60 plate grip DOL	rner(3) 12-3-4 to 16-8-7 =1.60	i zone;C-	-C for	
3) Truss designed for wind	l loads in the plane of the trus	s only. For studs exposed to wind	(normal to the face), se	ee Standa	ard Industry	
4) All plates are 2x4 MT20	unless otherwise indicated.	building designer as per ANSI/TPT	1.			TH CARO
5) Gable requires continue	bus bottom chord bearing.					OF EESTIN VII
7) This truss has been des	signed for a 10.0 psf bottom cl	nord live load nonconcurrent with a	ny other live loads.		4	The hard
 This truss has been de will fit between the botto 	esigned for a live load of 20.0	osf on the bottom chord in all areas with $BCDI = 10.005f$	where a rectangle 3-6	-0 tall by	2-0-0 wide	OEAL .
9) Provide mechanical con	nection (by others) of truss to	bearing plate capable of withstand	ding 100 lb uplift at joint	:(s) 7, 13	except	SEAL OCCORD
(jt=lb) 15=226, 10=296,	8=145.					036322
					1	ENA ANE
						MGINEEN ON
						CA GILBEIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

July 24,2020

Max Uplift 7=-134(LC 11)

Max Grav 5=628(LC 18), 7=668(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-294/136, 2-3=-368/111, 3-5=-597/99, 1-7=-754/233

BOT CHORD 6-7=-300/344, 5-6=0/395

WEBS 3-6=-438/314, 1-6=-124/579

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 7-10-7, Interior(1) 7-10-7 to 11-0-3, Exterior(2) 11-0-3 to 15-5-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=134.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u> </u>				11-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.12 BC 0.41 WB 0.22 Matrix-S	DEFL. Vert(LL) -0 Vert(CT) -0 Horz(CT) 0 Wind(LL) 0	in (loc)).07 2-9).15 2-9).02 6).02 9	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 142 lb FT = 20°	%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 6=0-3-8, 2=0-3-8 Max Horz 2=80(LC 9) Max Uplift 6=-93(LC 11), 2=-93(LC 10) Max Grav 6=950(LC 1), 2=950(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1378/465, 3-4=-1054/361, 4-5=-1054/361, 5-6=-1378/465

BOT CHORD 2-9=-288/1162, 6-9=-288/1162

WEBS 3-9=-352/240, 4-9=-105/613, 5-9=-352/240

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-10 to 3-2-3, Interior(1) 3-2-3 to 6-7-3, Exterior(2) 6-7-3 to 15-4-13, Interior(1) 15-4-13 to 18-9-13, Exterior(2) 18-9-13 to 23-2-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Edenton, NC 27932

GILU.... July 24,2020

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES GRIP MT20 244/190 Weight: 38 lb FT = 20%
TCLL 20.0	Plate Grip DOL 1.15	TC 0.83	Vert(LL) -0.09	5 2-4	>999	360	
TCDL 10.0	Lumber DOL 1.15	BC 0.26	Vert(CT) -0.09	9 2-4	>999	240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00) 2-4	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10) 2	>916	240	
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 4=-105(LC 7)

Max Uplift 2=-171(LC 7), 4=-135(LC 7) Max Grav 2=405(LC 1), 4=296(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=171. 4=135.

Structural wood sheathing directly applied or 5-3-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing

except end verticals.

႔ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 feV, 3/92/20 BEFORE USE. Design valid for use only with MiTeR with MiteR connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-6-0			17-0-0		
	8-6-0		•	8-6-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.98 BC 0.63 WB 0.09 Matrix-S	DEFL.inVert(LL)0.31Vert(CT)-0.27Horz(CT)0.03	(loc) l/defl L/d 4-7 >653 240 4-7 >746 240 4 n/a n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	x4 SP No.1 x4 SP No.1 x4 SP No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathi Rigid ceiling directly app	ng directly applied. blied or 4-3-13 oc bracing.	
REACTIONS. M M M	(size) 4=0-3-8, 2=0-3-8 Max Horz 2=-30(LC 7) Max Uplift 4=-311(LC 7), 2=-311(LC 6) Max Grav 4=760(LC 1), 2=760(LC 1)					
FORCES. (Ib) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) or 2-3=-1567/1711, 3-4=-1567/1711 2-7=-1568/1458, 4-7=-1568/1458 3-7=-507/401	less except when shown.				
NOTES- 1) Unbalanced ro	of live loads have been considered for this de	sign.		Turn O. Fastland		

2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-4-8 to 3-0-5, Interior(1) 3-0-5 to 4-1-3, Exterior(2) 4-1-3 to 12-10-13, Interior(1) 12-10-13 to 13-11-11, Exterior(2) 13-11-11 to 18-4-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=311, 2=311.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-6-0 8-6-0				17-0-0 8-6-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.98 BC 0.63 WB 0.09 Matrix-S	DEFL. in Vert(LL) -0.11 Vert(CT) -0.27 Horz(CT) 0.03 Wind(LL) 0.11	(loc) l/defl 4-7 >999 4-7 >746 4 n/a 2-7 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2 REACTIONS. (size) 4=0-3-8, 2=0-3-8 Max Horz 2=-50(LC 11) Max Uplift 4=-250(LC 7), 2=-250(LC 6) Max Grav 4=760(LC 1), 2=760(LC 1)							
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-7=- WEBS 3-7=0	Comp./Max. Ten All forces 250 (lb) or 1567/493, 3-4=-1567/493 385/1458, 4-7=-385/1458 //401	less except when shown.					
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V MWFRS (envelope) Interior(1) 12-10-13 I Lumber DOL=1.60 p 3) Truss designed for w Gable End Details as 4) All plates are 2x4 MT 5) Gable studs spaced 6) This truss has been will fit between the b 8) Provide mechanical 4=250, 2=250.	loads have been considered for this des ult=130mph (3-second gust) Vasd=103n gable end zone and C-C Exterior(2) -1-4 o 13-11-11, Exterior(2) 13-11-11 to 18-4 late grip DOL=1.60 ind loads in the plane of the truss only. s applicable, or consult qualified building [20 unless otherwise indicated. at 2-0-0 c. designed for a 10.0 psf bottom chord live of designed for a live load of 20.0psf on the ottom chord and any other members. connection (by others) of truss to bearing	sign. nph; TCDL=6.0psf; BCDL= -8 to 3-0-5, Interior(1) 3-0 -8 zone;C-C for members For studs exposed to wind designer as per ANSI/TP a load nonconcurrent with he bottom chord in all area g plate capable of withstar	=5.0psf; h=15ft; Cat. II; I -5 to 4-1-3, Exterior(2) 4 and forces & MWFRS f d (normal to the face), s l 1. any other live loads. as where a rectangle 3-6 nding 100 lb uplift at join	Exp C; Enclosed; -1-3 to 12-10-13, or reactions shown ee Standard Indust 3-0 tall by 2-0-0 wid t(s) except (jt=lb)	n; try le	HUNNING RES	ARO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

