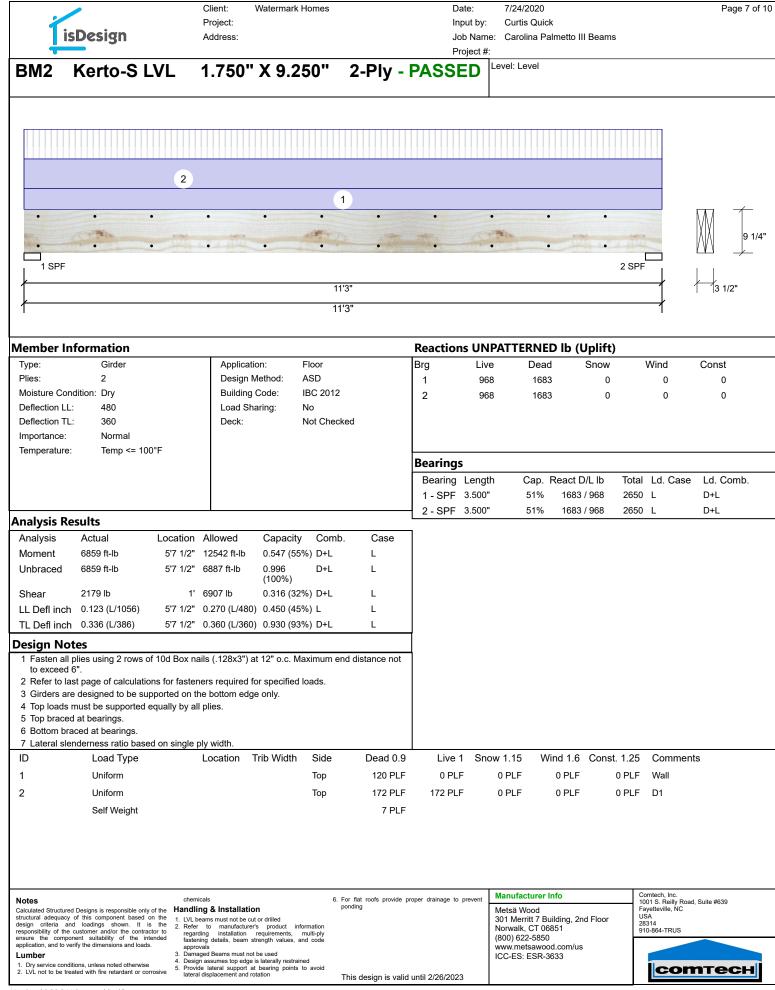
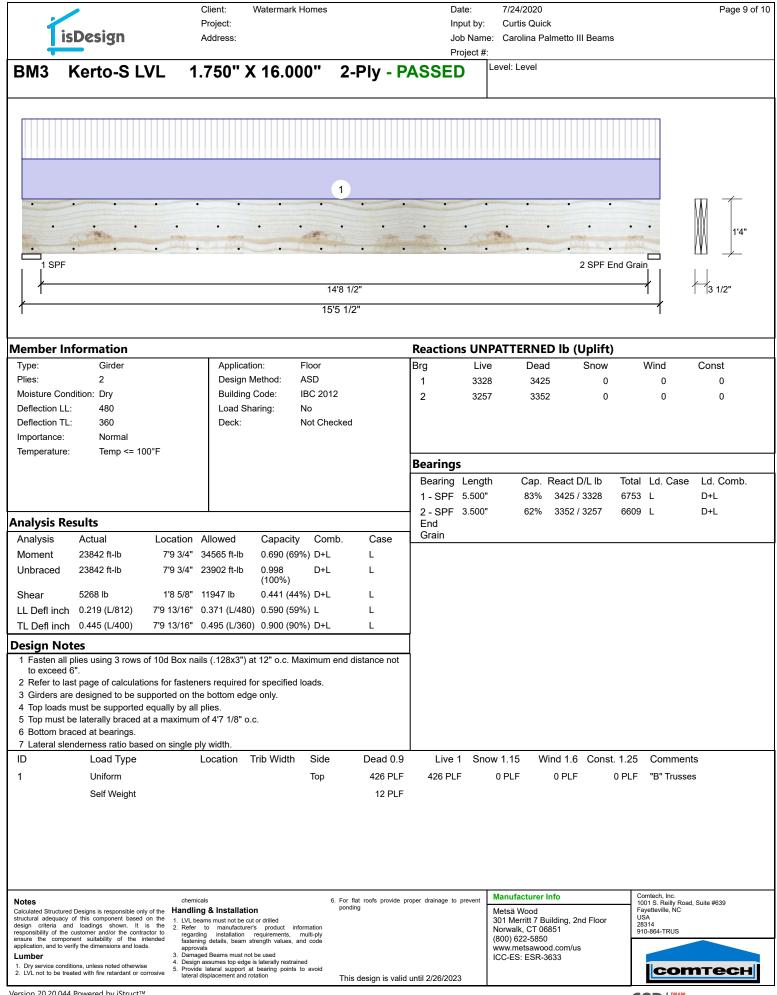


CSD DESIGN


			Client:	Watermark Homes	S	Date:	7/24/2020	Page 2 of 10
1	isDesign		Project: Address:				ne: Carolina Palmetto III Beams	
	Karta S		4 750"	V 44 075"	2 Db/	Project #	#: Level: Level	
GDH	Kerto-S		1.750	X 11.875"	Z-Piy	- PASSED		
								5.
•	• •	•	• •	• •	• •	• •	• • • •	··
	• •	•	• •	• •	• •	• •	••••••••••••••••••••••••••••••••••••••	
	F End Grain						2 SPF Ella	
					16'10" 16'10"			1]3 1/2"
I					10 10			I
Multi-Pl	y Analysis							
	l plies using 2			(.128x3") at 12'	' o.c Maxim	um end distance r	not to exceed 6"	
Capacity Load		0.0 9 0.0 F						
Yield Limit p Yield Limit p		163. 81.9	7 PLF lb					
Yield Mode		IV						
Edge Distan Min. End Dis		1 1/2 3"	2"					
Load Combi	ination							
Duration Fa	ctor	1.00						
							Manufacturentet	Comtach Inc
Notes Calculated Strue	ctured Designs is responsib	le only of the 🖁	chemicals landling & Installa	tion	For flat roofs pro ponding	vide proper drainage to prevent	Manufacturer Info Metsä Wood	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adeq design criteria responsibility of	uacy of this component b a and loadings shown. If the customer and/or the	ased on the 1 It is the 2 contractor to	. LVL beams must not be Refer to manufactu				301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314 910-864-TRUS
ensure the co	component suitability of t d to verify the dimensions and	he intended d loads.	fastening details, bean approvals Damaged Beams must	n strength values, and code			(800) 622-5850 www.metsawood.com/us	
1. Dry service	conditions, unless noted oth be treated with fire retardant	erwise 4	 Design assumes top ed 	ge is laterally restrained t at bearing points to avoid			ICC-ES: ESR-3633	соттесн
	044 Doworod by iStr		.atorar arapiacement all	MARGIN	i nis design is	valid until 2/26/2023		


New Upper Value Upper Value <t< th=""><th></th><th>•</th><th></th><th>Client:</th><th>Watermark Home</th><th>s</th><th>Date:</th><th>7/24/2020</th><th>Page 4 of 10</th></t<>		•		Client:	Watermark Home	s	Date:	7/24/2020	Page 4 of 10
Separati English GDH-1 Kerto-S LVL 1.750" X 11.875" 2-Ply - PASSED Low Low Image: Separation of the second of the se		- •		Project:			Input by:	Curtis Quick	
GDH-1 Kerto-S LVL 1.756" X 11.875" 2-Pily - PASSED Land I area I area I area I area I area I area I area I area I area I area I area I area Multi-Ply Analysis Factor all piles using 2 rows of 10d Box nails (128x3) at 12" o.c. Maximum end distance not to exceed 6" I area I area States all piles using 2 rows of 10d Box nails (128x3) at 12" o.c. Maximum end distance not to exceed 6" I area I area States all piles using 2 rows of 10d Box nails (128x3) at 12" o.c. Maximum end distance not to exceed 6" I area I area States all piles using 2 rows of 10d Box nails (128x3) at 12" o.c. Maximum end distance not to exceed 6" I area I area Multi-Ply Analysis I area I area I area I area States of reace 0.0 H F I area I area I area Ved Using Front III area I area I area I area States of reace 100 I area I area I area Note I area I area I area I area States of reace I area I area I area I area I area I area I area I area I area I area I area I area </th <th>IS</th> <th>Design</th> <th></th> <th>Address:</th> <th></th> <th></th> <th></th> <th></th> <th></th>	IS	Design		Address:					
SUBJECT Vertices LVL 1.730 X 11.070 2-PTy - PASSED Image: State of the state									
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00	GDH-1	Kerto-S	LVL	1.750	" X 11.87	5" 2-Ply	- PASSED	Level: Level	
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00									
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00									
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00									
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00									
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00									
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00									
Nem Addition 2 SPF End Grain 2 SPF End Grain 2 SPF End Grain 910* 910* 910* 910* 910* Multi-Ply Analysis Fasten all plies using 2 rows of 10d Box nails (128x3*) at 12* o.c. Maximum end distance not to exceed 6* Classify 0.0 % Wide buffer 0.0 % Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.10* Wide buffer 1.00									$ \rightarrow $
Image: September 2 <	•	•	•	•	•	•	• •	• • •	s. \\\\
Image: September 2 <									
Image: September 2 <									∇ $ \langle \rangle $ $ 11 / 18$
State 910* White Ply Analysis Easten all plies using 2 rows of 10d Box nails (128x3*) at 12° o.c. Maximum end distance not to exceed 6° Supprovement of the pressnee of 10d Box nails (128x3*) at 12° o.c. Maximum end distance not to exceed 6° Market Ply Analysis Lad Continuation Base and pressnee of 10d Box nails (128x3*) at 12° o.c. Maximum end distance not to exceed 6° Market Ply Analysis Lad Continuation Lad Continuation Datation Factor 100	•	•	•	•	•	•	•	• • • +	
Multi-Ply Analysis Exaten all plies using 2 rows of 10d Box nails (.128x3*) at 12* o.c Maximum end distance not to exceed 6* Chapady 00% 00% Kado 00% 153.7 PLF Yield Limt por Fastor 10% 153.7 PLF Yield Limt por Fastor 10% 153.7 PLF Yield Limt por Fastor 10% 10% Weid Limt por Fastor 10% 100 Mon. End Diatance 10% 3* Joad Combande 10% 100 Mon. End Diatance 10% 100 Maximum end distance not to exceed 6* 100 Mon. End Diatance 10% 100 Maximum end distance not to exceed 6* 100 Mon. End Diatance 10% 100 Maximum end distance not to exceed 6* 100 Mon. End Diatance 10% 100 </td <td>1 SPF Er</td> <td>nd Grain</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2 SPF End Grain</td> <td></td>	1 SPF Er	nd Grain						2 SPF End Grain	
Multi-Ply Analysis Exaten all plies using 2 rows of 10d Box nails (.128x3*) at 12* o.c Maximum end distance not to exceed 6* Chapady 00% 00% Kado 00% 153.7 PLF Yield Limt por Fastor 10% 153.7 PLF Yield Limt por Fastor 10% 153.7 PLF Yield Limt por Fastor 10% 10% Weid Limt por Fastor 10% 100 Mon. End Diatance 10% 3* Joad Combande 10% 100 Mon. End Diatance 10% 100 Maximum end distance not to exceed 6* 100 Mon. End Diatance 10% 100 Maximum end distance not to exceed 6* 100 Mon. End Diatance 10% 100 Maximum end distance not to exceed 6* 100 Mon. End Diatance 10% 100 </td <td> <i> </i></td> <td></td> <td></td> <td></td> <td>9'1(</td> <td>0"</td> <td></td> <td></td> <td>3 1/2"</td>	<i> </i>				9'1(0"			3 1/2"
Nutl-Ply Analysis Pasten all plies using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6" Cigady 0.0% Multi-Ply Analysis Made using a Food 0.0% Made using a Food 1.37 P.F Multi-Ply Analysis 1.27 P.F Mode using a Food 1.9 P.F Mode using a Food 1.9 P.F Mode using a Food 1.00 Noted Using a Food 1.00 Name of Bobance 3" Add Combination 2000 Duration Factor 1.00									
Rester all plies using 2 rows of 10d Box nails (:128x3") at 12" o.c., Maximum end distance not to exceed 6" Capacity 0.0% Note 10.0 P.F. Weil Lint per Food 10.3 7 F.F. Weil Lint per Food 10.0	1				9'10	0"		.]	
Rester all plies using 2 rows of 10d Box nails (:128x3") at 12" o.c., Maximum end distance not to exceed 6" Capacity 0.0% Note 10.0 P.F. Weil Lint per Food 10.3 7 F.F. Weil Lint per Food 10.0									
Rester all plies using 2 rows of 10d Box nails (:128x3") at 12" o.c., Maximum end distance not to exceed 6" Capacity 0.0% Note 10.0 P.F. Weil Lint per Food 10.3 7 F.F. Weil Lint per Food 10.0	Multi-Ply A	nalysis							
Chapading 0.0 % Load 0.0 PUF Yield Limit per Foot 163.7 PUF Yield Limit per Faster 81.9 lb. Yield Mode N Edge Datance 3* Load Combination 3* Data Combination 1.00	-	-	is of 10d	Boy nails (128v3") at 12'	oc Maximun	n end distance n	ot to exceed 6"	
Lind i ODPUF Weld Lunit per Fastener 81.9 Ib. Weld Mode V Hege Distance 11/2* Man End Distance 3* Lad Combination B Duration Factor 100 Puration F				BOX Hulls (.120,3 / 41 12				
Net Mining per Fasterier 81.9 lb. Weid Mode 11/2* Min. End Distance 3* Load Combination 100 Duration Factor 1.00									
Yield Mode IV Edge Distance 3* Load Combination Duration Factor Duration Factor 1.00				F					
Edge Diatance 1 12 ² Min. End Diatance 3' Load Combination 3' Duration Factor 1.00 Manufacturer Info State Water State To State Company State Com		astener							
Min. End Distance 3* Lad Combination 3* Duration Factor 1.00									
Duration Factor 1.00 Netse • For the node produce pages damage to prove • Product scale pages damage to prove to prove • Product scale pages damage to prove to prove to prove • Product scale pages damage to prove to prove to prove • Product scale pages damage to prove to prove to prove • Product scale page to prove to prove to prove to prove to prove • Product scale page to prove to p		e							
Noes - for fur indu protein proper durage to prove Manufacturer Info Constant Structure Despine in exponents only for the induced regime model in the control of the induced regime model in		on							
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool	Duration Factor		1.00						
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Center tools at tools Wooid (Center tools at tool									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retardant or correster 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Work metsa wood .com/us ICC-ES: ESR-3633 Fourtee-Life									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retardant or correster 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Work metsa wood .com/us ICC-ES: ESR-3633 Fourtee-Life									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retardant or correster 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Work metsa wood .com/us ICC-ES: ESR-3633 Fourtee-Life									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo									
Notes Colculated Structured Designs is responsible only of the structural adequacy of this component based on the segonsibility of the isomer and/or the contractor to ensure the component suitability of the ustness noted otherwise b. For that roots provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding Matter tools provide proper dramage to prevent ponding 1. UV beams must not be cut or drilled 1. UV beams must not be cut or drilled 2. Relint Rood, Suite #639 Automatic tools provide proper dramage to prevent ponding Metsä Wooid 301 Kestä Wooid Soit USA 2. UV on the treated with fire retariant or component 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Metsä Wooid 301 Kestä Wooid 90-664-TRUS 3. Damaged Beams must not be used 4. Design assumes to pedge is laterally restrained 5. Provide lateral support at bearing points to avoid Good Component Good Compo								1	1
Calculated Structured Designs is responsible only of the structural designs is responsible only of the structural designs is component based on the design criteria and loadings shown. It is the responsibility of the ustness noted contractor is possible from and/acturers product information requirements, multi-phy ensures the component suitability of the ustness noted otherwise Mets a Wood 301 Merritt 7 Bidding, 2nd Floor Norwalk, CT 06851 (800) 622-5850 (www.metsawood.com/us IC-ES: ESR-3633 East a Bidding Structurer						6. For flat roofs provide	proper drainage to prevent		1001 S. Reilly Road, Suite #639
design criteria and loadings shown. It is the responsibility of the customer and/or the contractor is product information responsibility of the customer and/or the contractor is shallable. 2. Refer to manufacture's product information regarding installation code application, and to verify the dimensions and loads. Norwalk, CT 06851 (800) 622-5850 (800) 620 (800)	structural adequacy o	of this component based o	on the 1 IVI			ponding			Fayetteville, NC USA
ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. Why on the treated with fire retardant or correstive 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide Lateral support at bearing points to avoid	design criteria and responsibility of the cr	loadings shown. It is ustomer and/or the contract	the 2. Refe tor to regain	r to manufacture rding installation	er's product information requirements, multi-ply			Norwalk, CT 06851	28314 910-864-TRUS
1. Dry service conditions, unless noted otherwise 2. UV, not to be treated with fire retardant or correspondence in the tretardat	application, and to verif	fy the dimensions and loads.	 ended faste appro 	ning details, beam ovals	strength values, and code			www.metsawood.com/us	
2 IVI not to be treated with fire retardant or corrosive	1. Dry service condition	ons, unless noted otherwise	4. Desig	gn assumes top edge	e is laterally restrained			ICC-ES: ESR-3633	
	2. LVL not to be treat	ed with fire retardant or con		al displacement and r	rotation		id until 2/26/2023		соттесн

_	Client: Watermark Ho	mes Date:	7/24/2020	Page 6 of 10
	Project:	Input b	y: Curtis Quick	-
isDesign	Address:		ame: Carolina Palmetto III Beams	
		Projec		
BM1 Kerto-S L	VL 1.750" X 16.000	" 2-Ply - PASSED	Level: Level	
	· · · · ·	· · · · · ·		
• • •	• • •	• • • •	• • •	· · [7]
			• • •	• ¥ //
1 SPF			2	SPF
<u> </u>				
		14'7"		1 13 1/2"
1		14'7"		
Multi-Ply Analysis				
	we of 10d Box pails (128v2") at	12" o.c Maximum end distance	not to avcood 6"	
astern an pries using 5 roo		12 O.C. Maximum end distance	not to exceed o	
oad	0.0 PLF			
ield Limit per Foot	245.6 PLF			
ield Limit per Fastener ield Mode	81.9 lb. IV			
dge Distance	1 1/2"			
in. End Distance	3"			
oad Combination Juration Factor	1.00			
			Manufacture 1-6-	Comtach Inc
Notes Calculated Structured Designs is responsible onl	chemicals y of the Handling & Installation	For flat roofs provide proper drainage to prever ponding	Manufacturer Info Metsä Wood	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
Calculated Structured Designs is responsible onl structural adequacy of this component based design criteria and loadings shown. It	on the 1. LVL beams must not be cut or drilled		301 Merritt 7 Building, 2nd Floor	USA 28314
esponsibility of the customer and/or the contra- ensure the component suitability of the in	actor to regarding installation requirements, mu ntended fastening details beam strength values and	ti-ply	Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
application, and to verify the dimensions and load	 approvals 3. Damaged Beams must not be used 		www.metsawood.com/us ICC-ES: ESR-3633	
 Dry service conditions, unless noted otherwis LVL not to be treated with fire retardant or control of the service o	 e 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to 			соттесн
	lateral displacement and rotation	This design is valid until 2/26/2023		
lersion 20.20.044 Powered by iStruct™	1			

	/		Client:	Watermark Home	s	Date:	7/24/2020	Page 8 of 10
			Project:			Input by:		-
	isDesign		Address:			Job Nam		
						Project #		
BM2	Kerto-S	LVL	1.750"	' X 9.250'	2-Ply	- PASSED	Level: Level	
								= /
•	•	•	•	• •	•	•	• • •	₹ ∭ 1
								Ū [Å]Å 9 1/4"
•	•	•	•	• •	•	•	• • • –	
1 SPI	F						2	SPF
/ / · · · ·					11'3"			3 1/2"
					11'3"			
Multi-Ply	y Analysis							
Fasten all	plies using 2 ro	ows of 10d	Box nails (.128x3") at 12'	' o.c Maximu	m end distance n	ot to exceed 6"	
Capacity	p	0.0 %						
Load		0.0 PLF						
Yield Limit pe Yield Limit pe		163.7 PL 81.9 lb.	F					
Yield Limit pe	er Fastener	IV						
Edge Distand		1 1/2"						
Min. End Dis		3"						
Load Combir Duration Fac		1.00						
							Manufacturer Info	Comtech, Inc.
Notes Calculated Struct	tured Designs is responsible	only of the Handl	nicals ing & Installation	on	 For flat roofs provid ponding 	e proper drainage to prevent	Metsä Wood	 1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequa design criteria	acy of this component base and loadings shown.	ed on the 1. LVL I t is the 2. Refe	beams must not be co r to manufacture	ut or drilled r's product information			301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	USA 28314 010 864 TRUS
ensure the cor	the customer and/or the component suitability of the to verify the dimensions and lo	intended faste	rding installation ning details, beam	requirements, multi-ply strength values, and code			(800) 622-5850	910-864-TRUS
Lumber		3. Dam	ovals aged Beams must no on assumes ton edge	t be used is laterally restrained			www.metsawood.com/us ICC-ES: ESR-3633	
	conditions, unless noted otherw e treated with fire retardant of	vise 5. Prov		at bearing points to avoid		alid until 2/26/2022		соттесн
L	044.0		,		i nis design is va	alid until 2/26/2023		

lisDe	sign	Client: Project: Address:	Watermark Homes		Date: Input I Job Ni	7/24/2020 by: Curtis Quick ame: Carolina Pali		Page 10 of
	rto-S LVL		X 16.000"	2-Ply -	Projec			
•••	· ·	• •	· · ·	•	• •	• •	· ·	┓. ⋒ 千
•	•••	•••	• •	• •	• •	•••	• •	· [7] 1'4"
				14'8 1/2"			2 SPF End Grain	
<u>/</u>			1	5'5 1/2"				-1
lulti-Ply Anal	vcic							
apacity pad eld Limit per Foot eld Limit per Faster eld Mode Ige Distance n. End Distance pad Combination	ner 81.9 IV 1 1/: 3"	PLF 6 PLF 0 lb. 2"						
ration Factor	1.00)						
tructural adequacy of this lesign criteria and load	s is responsible only of the component based on the ings shown. It is the err and/or the contractor to	4 13/0 b	e and an define d	6. For flat roofs proponding	vide proper drainage to preve	Manufacturer In Metsä Wood 301 Merritt 7 Buil Norwalk, CT 068	Iding, 2nd Floor	ntech, Inc. 1 S. Reilly Road, Suite #639 etteville, NC X 14 -864-TRUS

responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise	LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-pyl fastening details, beam strength values, and code approvals Damaged Beams must not be used Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid	 For flat roofs provide proper drainage to prevent ponding 	Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us ICC-ES: ESR-3633	Comtech, Inc. 1001 S. Relly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS
2. LVL not to be treated with fire retardant or corrosive	 Provide lateral support at bearing points to avoid lateral displacement and rotation 	This design is valid until 2/26/2023		соттесн
Annian 20 20 044 Developed by Structt				