

RE: 20080001 A&G RESIDENTIAL - SVG 004 Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: A&G Residential Project Name: 20080001 Lot/Block: 4 Model: Camden B Address: Subdivision: Sierra Village City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 17 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	E14761230	A01	9/23/2020
2	E14761231	A01S	9/23/2020
3	E14761232	A02	9/23/2020
4	E14761233	A02S	9/23/2020
5	E14761234	A03	9/23/2020
6	E14761235	A05	9/23/2020
7	E14761236	A06	9/23/2020
8	E14761237	B01	9/23/2020
9	E14761238	B02	9/23/2020
10	E14761239	B03	9/23/2020
11	E14761240	B04	9/23/2020
12	E14761241	C01	9/23/2020
13	E14761242	D01	9/23/2020
14	E14761243	D02	9/23/2020
15	E14761244	J01	9/23/2020
16	E14761245	J02	9/23/2020
17	E14761246	V1	9/23/2020

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)). Truss Design Engineer's Name: Gilbert, Eric My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	A01	Common	2	1	E14761230 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:29 ID:8CDnsoKbDqPZbv4sG2M0ISypGLm-9oYME0X2xbl9D6Xiz_KlnILoFnN?Flgz1e1kJbymMuR

Page: 1

Scale = '	1:62.3
-----------	--------

Scale = 1:62.3	ł	9	-10-7	1	10-8-2					9-		
Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15	CSI TC	0.33	DEFL Vert(LL)	in -0 16	(loc) 10-12	l/defl	L/d 240	PLATES	GRIP 244/190
Snow (Pf/Pg) TCDL	13.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.67 0.23	Vert(CT) Horz(CT)	-0.25 0.04	10-12 8	>999 n/a	180 n/a	11120	2111100
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-MSH							Weight: 202 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	Since 2x6 SP No.2 Since 2x6 SP No.2 DRD 2x6 SP No.2 Since 2x6 SP No.2 DRD 2x6 SP No.2 Since 2x4 SP No.2 2x4 SP No.2 *Except* 10-7,12-3:2x4 SP No.3 Since 2x4 SP No.2											

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	EXC OF THOSE
WEBS	2x4 SP No.2 *Except* 10-7,12-3:2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-9-4 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-5-8, 8=0-5-8
	Max Horiz 2=-174 (LC 13)
	Max Grav 2=1432 (LC 29), 8=1432 (LC 30)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/25, 2-3=-2149/0, 3-4=-2043/15,
	4-19=-1966/29, 5-19=-1939/55,
	5-20=-1939/55, 6-20=-1967/29,
	6-7=-2043/15, 7-8=-2150/0, 8-9=0/25
BOT CHORD	2-12=-16/1923, 12-21=0/1228, 11-21=0/1228
	11-22=0/1228, 10-22=0/1228, 8-10=0/1793

WEBS

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

5-10=-28/1005, 7-10=-457/157, 5-12=-28/1004, 3-12=-457/157

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

MILLIN C Martin Martinet VIIIIIIIIIII SEAL 036322 GI mmm August 19,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	A01S	Common	2	1	E14761231 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:31 ID:8CDnsoKbDqPZbv4sG2M0ISypGLm-VmLFHkbBm7OSKtQfmXwwUL2fAo6bw?niBwkV_oymMuM

Page: 1

Plate Offsets (X, Y): [2:0-1-15,0-1-8], [8:0-1-15,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.57 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.24 0.05	(loc) 14-21 11-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 218 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Except SP No.2 Structural wood sheat 4-8-14 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 8 Max Horiz 2=-174 (LC Max Grav 2=1357 (L (lb) - Maximum Comp Tension 1-2=0/25, 2-3=-2137, 4-25=-1881/0, 5-25= 6-26=-1881/0, 6-7=-1	* 10-5,14-5,15-16:2: athing directly applie applied or 10-0-0 oc 15-16 =0-5-8 C 13) C 2), 8=1357 (LC 2) pression/Maximum /0, 3-4=-1972/0, -1851/0, 5-26=-1851 1972/0, 7-8=-2137/0	3) x4 4) d or 5) 6) 7) 8) 9) //0, LO	TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 Unbalanced si design. This truss ha load of 12.0 p overhangs no 200.0lb AC u from left end, All plates are * This truss h on the bottom 3-06-00 tall b chord and an This truss is o International R802.10.2 ar	7-16; Pr=20.0 psf (1.15); Pg=20.0 psf; I ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be s been designed fo osf or 2.00 times fla on-concurrent with on nit load placed on t supported at two p 2x4 MT20 unless of as been designed in chord in all areas y 2-00-00 wide will y other members. designed in accord: Residential Code s do referenced stance	(roof LL Pf=13.9 en con or greate the roof lo other liv he bott other liv bother wis for a live where fit betw ance wi ections lard AN	: Lum DOL= psf (Lum ugh Cat B; F sidered for th er of min roof pad of 13.9 p re loads. om chord, 15 5-0-0 apart. se indicated. a rectangle reen the botto th the 2018 R502.11.1 a SI/TPI 1.	1.15 Fully his five sf on 5-2-8 Opsf om					
BOT CHORD WEBS 1) Unbalance this design 2) Wind: ASG Vasd=103 Cat. 11; Ex Exterior (2 vertical lef forces & M DOL=1.60	8-9=0/25 2-14=0/1767, 13-14= 11-12=0/1252, 10-11 5-16=0/879, 10-16=0 14-15=0/819, 5-15=0 15-17=-100/0, 17-18: 13-17=0/23, 11-18=0 ed roof live loads have l n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a t and right exposed;C-0 MWFRS for reactions st p plate grip DOL=1.33	:0/1252, 12-13=0/12 =0/1252, 8-10=0/17 //819, 7-10=-443/16 //879, 3-14=-443/16 =-100/0, 16-18=-100 //23 been considered for (3-second gust) CDL=6.0psf; h=25ft; 6 (envelope) and C-6 ind right exposed; e C for members and hown; Lumber	52, 67 7, 7, //0, C							My minine.		SEA OSCA. G	L L L B H H H H H H H H H H H H H H H H

August 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	A02	Common	2	1	E14761232 Job Reference (optional)

2)

3)

4)

Run: 8,41 S May 22 2020 Print: 8,410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06;26;31 ID:vlioXXRdLIPRZ8hOkjVu48ypGLe-VmLFHkbBm7OSKtQfmXwwUL2ezo47w0viBwkV_oymMuM

Page: 1

818 Soundside Road Edenton, NC 27932

-0-10-8 7-11-9 15-2-8 22-5-7 30-5-0 0-10-8 7-11-9 7-2-15 7-2-15 7-11-9 5x6= 5 12 7 Г 4x6 🍬 4x6 👟 18 19 2x4 v 6 Δ 2x4 // 3 7 9-5-5 9-8-1 0-6-14 8 11 20 10 21 9 3x5= 4x6= 3x5= 3x5= 3x5= 9-10-7 20-6-9 30-5-0 9-10-7 10-8-2 9-10-7 Scale = 1:62.3 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.33 Vert(LL) -0.16 9-11 >999 240 MT20 244/190 Snow (Pf/Pg) BC Vert(CT) 13 9/20 0 Lumber DOL 0.67 1 15 -0.25 9-11 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.23 Horz(CT) 0.04 8 n/a n/a BCLL 0.0* Code IRC2018/TPI2014 Matrix-MSH BCDL 10.0 Weight: 200 lb FT = 20% LUMBER 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on TOP CHORD 2x6 SP No.2 overhangs non-concurrent with other live loads. BOT CHORD 2x6 SP No.2 2x4 SP No.2 *Except* 9-7,11-3:2x4 SP No.3 6) * This truss has been designed for a live load of 20.0psf WEBS on the bottom chord in all areas where a rectangle BRACING 3-06-00 tall by 2-00-00 wide will fit between the bottom TOP CHORD Structural wood sheathing directly applied or chord and any other members, with BCDL = 10.0psf. 4-9-3 oc purlins. 7) This truss is designed in accordance with the 2018 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc International Residential Code sections R502.11.1 and bracing. R802.10.2 and referenced standard ANSI/TPI 1. REACTIONS 2=0-5-8 8=0-5-8 (size) LOAD CASE(S) Standard Max Horiz 2=172 (LC 12) Max Grav 2=1433 (LC 32), 8=1395 (LC 33) (lb) - Maximum Compression/Maximum FORCES Tension TOP CHORD 1-2=0/25, 2-3=-2150/0, 3-4=-2043/15, 4-18=-1967/29, 5-18=-1939/55, 5-19=-1941/55, 6-19=-1969/29, 6-7=-2046/15, 7-8=-2152/0 BOT CHORD 2-11=-18/1920, 11-20=0/1225, 10-20=0/1225, 10-21=0/1225, 9-21=0/1225, 8-9=0/1797 WEBS 5-9=-28/1007, 7-9=-458/157, 5-11=-28/1004, 3-11=-457/157 NOTES ORT 1) Unbalanced roof live loads have been considered for this design Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C VIIIIIIIIIII CITICO MANDALINE Exterior (2) zone; cantilever left and right exposed ; end SEAL vertical left and right exposed;C-C for members and 036322 forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 GI Unbalanced snow loads have been considered for this mmm design. August 19,2020 🛕 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	A02S	Common	4	1	E14761233 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:32 ID:vlioXXRdLIPRZ8hOkjVu48ypGLe-zyvdV4cpXRWJx1?rKER90ZbqvCSofS0sPaU2XFymMuL

Page: 1

Plate Offsets (X, Y): [2:0-1-15,0-1-8], [8:0-1-15,0-1-8]

Loading TCLL (rc Snow (P TCDL BCLL BCLL	l oof) f/Pg)	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.58 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.24 0.05	(loc) 9-23 10-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 216 lb	GRIP 244/190 FT = 20%	
LUMBE TOP CH BOT CH WEBS BRACIN TOP CH BOT CH WEBS REACTI	R ORD ORD ORD ORD ONS (2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Except No.2 Structural wood sheat 4-8-13 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 8 Max Horiz 2=172 (LC Max Grav 2=1357 (L	* 9-5,13-5,14-15:2x4 athing directly applie applied or 10-0-0 oc 14-15 =0-5-8 : 12) C 2), 8=1316 (LC 2)	3) 4 SP 4) d or 5) : 6) 7) 8)	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced s design. This truss ha load of 12.0 p overhangs no 200.0lb AC u from left end, All plates are * This truss h on the bottom 3-06-00 tall b	7-16; Pr=20.0 psf (.15); Pg=20.0 psf; I ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have be s been designed fo osf or 2.00 times fla on-concurrent with on it load placed on t supported at two p 2x4 MT20 unless of as been designed in o chord in all areas y 2-00-00 wide will	(roof LL Pf=13.9 :1.0; Rc een con r greate t roof lc other liv he bott points, 5 otherwis for a liv where fit betw	: Lum DOL= psf (Lum ugh Cat B; F sidered for th er of min roof pad of 13.9 ps re loads. om chord, 15 5-0-0 apart. se indicated. a rectangle even the bott	1.15 fully his live sf on -2-8 Opsf om						
FORCES TOP CH BOT CH WEBS	S ORD ORD	(lb) - Maximum Comp Tension 1-2=0/25, 2-3=-2137, 4-24=-1881/0, 5-24= 6-25=-1883/0, 6-7=-1 2-13=0/1768, 12-13= 10-11=0/1253, 9-10= 5-15=0/882, 9-15=0// 13-14=0/819, 5-14=0	pression/Maximum /0, 3-4=-1973/0, -1852/0, 5-25=-1853 1975/0, 7-8=-2117/0 -0/1253, 11-12-0/12 -0/1253, 8-9=0/1770 821, 7-9=-445/167, y/879, 3-13=-443/167	9) 3/0, 53, LC	chord and an This truss is a International R802.10.2 ar DAD CASE(S)	y other members. Jesigned in accord Residential Code s Id referenced stanc Standard	ance wi ections lard AN	th the 2018 R502.11.1 a SI/TPI 1.	nd				TH CA	ROL	
NOTES 1) Unb this 2) Win Vas Cat. Exte verti force DOL	alanced design. d: ASCI d=103n II; Exp rior (2) cal left es & M =1.60 j	14-16=-100/0, 16-17 12-16=0/24, 10-17=0 d roof live loads have E 7-16; Vult=130mph nph; TCDL=6.0psf; BC B; Enclosed; MWFRS zone; cantilever left a and right exposed;C-0 WFRS for reactions sf plate grip DOL=1.33	=-100/0, 15-17=-100 //23 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-0 ind right exposed ; e C for members and hown; Lumber	D/O, C Ind							And the second second	K. M.	SEA 0363	ER.K.	7

GI A. GIL August 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	A03	Common Supported Gable	1	1	E14761234 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:32 ID:C5dS?xW0hRIRuCkkeh7XsdypGLX-zyvdV4cpXRWJx1?rKER90ZbuECa5fUAsPaU2XFymMuL

Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190			
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999					
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horz(CT)	0.00	18	n/a	n/a					
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH											
BCDL	10.0	-									Weight: 249 lt	o FT = 20%			
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	10.0 2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep 30-5,31-4,32-3,21-15 No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=30-5-0, 20=30-5-C 23=30-5-C 30=30-5-C 33=30-5-C Max Horiz 2=166 (LC Max Uplift 2=-14 (LC 20=-15 (L 22=-20 (L 22=-20 (L 24=-4 (LC) 24=-4 (LC)	t* 5,20-16,19-17:2x4 SP athing directly applied applied or 10-0-0 oc 10-26 18=30-5-0, 19=30-5- 0, 24=30-5-0, 22=30-5 0, 24=30-5-0, 22=30-5 0, 24=30-5-0, 23=30-5 0, 31=30-5-0, 32=30-5 0, 37=30-5-0 2 12), 33=166 (LC 12) 2 11), 19=-36 (LC 16) 2 16), 21=-20 (LC 16 C 16), 23=-26 (LC 15), (16), 27=-8 (LC 15), (16), 27=-8 (LC 15),	TOP CHORD TOP CHORD BOT CHORD WEBS 	1-2=0/25, 2-3=-14 4-5=-109/89, 5-6= 7-40=-76/86, 8-40 9-10=-126/129, 11 11-12=-106/97, 12 13-14=-77/52, 14 16-17=-76/36, 17 2-32=-57/99, 31-3 29-30=-57/99, 28 26-27=-57/99, 28 26-27=-57/99, 29 20-21=-57/99, 29 20-21=-57/99, 19 10-26=-103/29, 96 6-29=-119/43, 5-3 3-32=-166/55, 11 12-23=-133/49, 12 15-21=-121/43, 11 17-19=-168/55 1 roof live loads ha E 7-16; Vult=130m rph; TCDL=6.0psf; B: Enclosed: MWE	46/128, 3- 103/88,)=-68/92, 0-11=-12(2-41=-60/ -15=-57/9 -29=-57/9 -29=-57/9 -20=-50 -20=-50	4=-121/97, 6-7=-95/82, 8-9=-106/115, 5/124, 62, 13-41=-67/, 9, 27-28=-57/, 9, 24-25=-57/, 9, 24-25=-57/	/57, 29, 39, 39, 39, 39, 39, 40,	6) This load over 7) All p 8) Gab 9) Gab 10) * Th 3-06 chor 11) One trus: 29, ; conr forc. 12) Bev suff 13) This Intee R80 LOAD C	truss h. of 12.0 hangs r lates ar le requi le studs is truss he botto 6-00 tall d and a RT7A L s to bea 30, 31, 3 hection i es. eled pla ace with truss is nationa 2.10.2 a cASE(S)	as bee psf or ion-co e 2x4 i res con space has be m choo by 2-0 JSP cc rring wa 22, 24, s for u te or si desigg I Resic I Resic ind ref Star	Weight: 249 lb n designed for 2.00 times flat ncurrent with ot MT20 unless ot thinuous bottom dat 2-0-0 oc. en designed fo rd in all areas w 0-00 wide will fi er members. onnectors recon alls due to UPLI 23, 22, 21, 20, plift only and do him required to chord at joint(s) ned in accordar gental Code se dental Code se dental Code se	FT = 20% greater of min roof live roof load of 13.9 psf on her live loads. herwise indicated. herwise indicated. herwise indicated. herwise indicated. herwise indicated. herwise indicated. herwise indicated. herwise indicated. herwise indicated. r a live load of 20.0psf there a rectangle it between the bottom nmended to connect IFT at jt(s) 2, 27, 28, and 19. This bes not consider lateral provide full bearing 18. nce with the 2018 ctions R502.11.1 and ard ANSI/TPI 1.			
FORCES	28=-24 (LC 15), 29=-20 (LC 15), 30=-20 (LC 15), 31=-15 (LC 15), 32=-36 (LC 15), 33=-14 (LC 11) Cat. II; Exp. Max Grav 2=167 (LC 33), 18=115 (LC 2), 19=257 (LC 33), 20=124 (LC 33), 21=165 (LC 33), 22=157 (LC 33), 26=142 (LC 35), 27=197 (LC 22), 30=164 (LC 32), 31=126 (LC 32), 30=164 (LC 32), 31=126 (LC 32), 37=115 (LC 2) 3) Truss designon or consult of the DLendon 30=164 (LC 32), 32=157 (LC 33), 30=164 (LC 32), 31=126 (LC 32), 37=115 (LC 2) 4) TCLL: ASC Plate DOLendon 8CES (lb) - Maximum Compression/Maximum Tension 5) Unbalance design.				ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 3; Enclosed; MWFRS (envelope) and C-C zone; cantilever left and right exposed; end ind right exposed;C-C for members and /FRS for reactions shown; Lumber late grip DOL=1.33 red for wind loads in the plane of the truss uds exposed to wind (normal to the face), d Industry Gable End Details as applicable, ialified building designer as per ANSI/TPI 1. 5: 7-16; Pr=20.0 psf; (roof LL: Lum DOL=1.15 1.15); Pg=20.0 psf; Pf=13.9 psf (Lum late DOL=1.15); Is=1.0; Rough Cat B; Fully 9; Cs=1.00; Ct=1.10 snow loads have been considered for this					SEAL 036322					

August 19,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	A05	Common	10	1	E14761235 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:33 ID:JxeVexD04zIF3_zVxucl7fypGFS-R8T?iPcRIleAZBa2tyyOZm7_Mbo7Oud?eEDc3hymMuK

Page: 1

Sca	le –	1.62.3	

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-MSH	0.33 0.57 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.20 0.01	(loc) 7-9 7-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 147 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 7 Max Horiz 2=238 (LC Max Grav 2=937 (LC	t* 9-3:2x4 SP No.3 athing directly applie cept end verticals. applied or 10-0-0 oc 5-7 7= Mechanical C 14) C 29), 7=948 (LC 29)	5) T lc o 6) * dor 3 c 7) R 8) T Ir R LOAI	This truss has bad of 12.0 p werhangs no This truss h no the bottom -06-00 tall b hord and an tefer to girde his truss is o thernational 8802.10.2 ar D CASE(S)	s been designed for osf or 2.00 times fla on-concurrent with as been designed in chord in all areas y 2-00-00 wide will y other members, or(s) for truss to tru- designed in accord Residential Code st direferenced stan Standard	or greate at roof lo other liv for a live where a l fit betw with BC loss conn lance wi sections dard AN	or of min roof ad of 13.9 ps e loads. e load of 20.0 a rectangle een the botto DL = 10.0 psf. ections. th the 2018 R502.11.1 ar SI/TPI 1.	live f on psf m nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/25, 2-3=-1191 4-13=-1002/57, 5-13 6-7=-168/65	/17, 3-4=-1086/41, =-979/81, 5-6=-166/	145,										
BOT CHORD	2-9=-53/1087, 9-14= 8-15=-43/368, 7-15=	-43/368, 8-14=-43/3 -43/368	68,										
WEBS	5-9=-26/1042, 3-9=-	470/157, 5-7=-781/2	6										
NOTES													U.L.
 Unbalanc this desig Wind: AS 	ed roof live loads have n.	been considered for									11	TH CA	ROL

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pf=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	A06	Common	1	1	E14761236 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:33 ID:Bit0UJGW8BpgYcGGAkhhHVypGFO-R8T?iPcRIleAZBa2tyyOZm70_bw4Ox9?eEDc3hymMuK

_

August 19,2020

818 Soundside Road Edenton, NC 27932 Page: 1

19-8-8

Scale = 1:60.3													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.23 0.06 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 184 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep No.3 Structural wood shee 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 2=19-8-8, 17=19-8-8 20=19-8-6 23=19-10 23=10-10 23=10-10-10 23=10-10-10 23=10-10-10-10-10-10-10-10-10-10-10-10-10-1	t* 21-5,22-4,23-3:2x4 athing directly applied cept end verticals. applied or 10-0-0 oc 10-17 14=19-8-8, 15=19-8- 8, 18=19-8-8, 19=19-8 8, 21=19-8-8, 22=19-8 8, 21=19-8-8, 22=19-8 8, 24=19-8-8 C 14), 24=238 (LC 14) C 15), 17=-27 (LC 14 C 15), 19=-24 (LC 15 C 15), 21=-21 (LC 15 C 15), 21=-21 (LC 15 C 15), 21=-21 (LC 15 C 15), 21=-21 (LC 15 C 15), 23=-37 (LC 15 C 15), 23=-37 (LC 15 C 23), 17=159 (LC 2 C 29), 21=170 (LC 2 C 29), 21=170 (LC 2 C 29), 23=262 (LC 2 C 29), 23=262 (LC 2 C 30) pression/Maximum 217, 3-4=-182/169, 161/123, 6-7=-151/11 143/130, 9-10=-160/1 -12=-152/146, -14=-105/104	B ^I SP W I or N 1) 2) 8, 3-8, 3-8, 3-8, 3-8, 3-8, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	OT CHORD 2 (2-23=-90/103, 22- 21-22=-90/103, 22- 21-22=-90/103, 12 7-18=-90/103, 12 7-18=-90/103, 14 15-16=-90/103, 14 15, 15, 15, 15, 15 15); Pg=20.0 ps 16; 15); Pg=20.0 ps 16; Pg=20.0 ps 17; Pg=20.0 ps 16; Pg=20.0 ps 16; Pg=20.0 ps 16; Pg=20.0 ps 17; Pg=20.0 ps 16; Pg=20.0 ps 16; Pg=20.0 ps 17; Pg=20.0 ps 16; Pg=20.0 ps 16; Pg=20.0 ps 17; Pg=20.0 ps 16; Pg=2	23=-90/1)-21=-90/ 3-19=-90/ 3-17=-90/ 4-15=-90/ 4-15=-90/ 4-15=-176/ ve been of ph (3-sec BCDL=6 FRS (envit frand rigi C-C for n s shown; 3 in the pla nd (norm End Detai seigner as if (roof LL f; Pf=13.2 s=1.0; Rc flat roof lc h other lin s otherwis thom chor pc. d for a liv as where will fit betw i.	03, 103, 103, 103, 103 34, 8-19=-126 5, 4-22=-109/ 51, 12-14=-82 considered for cond gust) .0psf; h=25ft; elope) and C-4 ht exposed; e nembers and Lumber ane of the trus al to the face) ils as applicat s per ANSI/TP psf (Lum bugh Cat B; Fu isidered for th er of min roof bad of 13.9 ps re loads. se indicated. d bearing. e load of 20.0 a rectangle veen the botto	5/49, 41, 2/25 C end ss , le, e11. .15 ully is live f on psf m	11) One trus: 18, upli 12) Bev surf: 13) This Inte R800 LOAD C	RT7A Is s to bea 19, 20, 2 t only as eled pla ace with t truss is mationa 2.10.2 z cASE(S)	USP ca ring we 21, 22, 7 the or s in truss of design il Resid il R	onnectors recommands and to UPLIF 23, and 15. This is not consider lat him required to p chord at joint(s) 2 ned in accordance dential Code sect erenced standard ndard	nended to connect T at jt(s) 2, 14, 17, connection is for eral forces. rovide full bearing 2, 24. e with the 2018 ions R502.11.1 and I ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	B01	Roof Special	1	1	E14761237 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:34 ID:NM51wiplY0UIRWDwlh_Fc_ypGEh-wL1Nwld332m1BL8ERITd5_gA2?BZ7NG9tuz9b7ymMuJ

Page: 1

Plate Offsets (X, Y): [2:0-1-8,0-0-13], [6:0-1-8,0-0-13], [8:0-4-0,0-3-8], [9:0-4-0,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	3/TPI2014	CSI TC BC WB Matrix-MSH	0.27 0.36 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.10	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 5-7-7 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, (Max Horiz 2=-168 (L Max Gray 2=845.1)	t* 9-3,8-5:2x4 SP No athing directly applie applied or 10-0-0 oc 5=0-5-8 C 11) 2 21, 6=845 (LC 2)	4) 5.3 5) ed or 6) 7 7)	This truss ha load of 12.0 overhangs n * This truss h on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/7 designer sho This truss is International R802.10.2 at	Is been designed f psf or 2.00 times f on-concurrent with has been designed in chord in all area by 2-00-00 wide wi yy other members, int(s) 2, 6 conside FPI 1 angle to grai build verify capacity designed in accor Residential Code nd referenced star Standard	for greate lat roof lo n other liv d for a liv is where ill fit betw rrs paralle n formula / of beari dance wi sections ndard AN	er of min roo ad of 13.9 p re loads. e load of 20. a rectangle reen the bott el to grain va a. Building ng surface. th the 2018 R502.11.1 i SI/TPI 1.	f live isf on Opsf .om lue and					
F ORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/33, 2-3=-1588 4-5=-1365/11, 5-6=- 2-9=-119/1274, 8-9= 4-8=0/762, 4-9=-55/, 5-8=-237/147	 /10, 3-4=-1365/44, 1588/0, 6-7=0/33 0/749, 6-8=0/1218 313, 3-9=-227/140, 		.,									
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10: Cat. II; E> Exterior (vertical le forces & I DOL=1.6 S Plate DO DOL=1.1: Exp.; Ce=	eed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi yp B; Enclosed; MWFR: 2) zone; cantilever left a fit and right exposed;C- MWFRS for reactions s 0 plate grip DOL=1.33 SCE 7-16; Pr=20.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; e C for members and hown; Lumber roof LL: Lum DOL=1 If=13.9 psf (Lum 1.0; Rough Cat B; Fi	C end I.15 ully							Contraction .		SEA 0363	EER. HILL

August 19,2020

ENGINEERING BY EREPTOR AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a duss system, before use, the building designer must verify the applicationary or design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
tabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type C		Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES					
20080001	B02	Roof Special	1	1	E14761238 Job Reference (optional)					

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:34 ID:gi0gO5v8uAMInbFGDfcuOTypGEa-wL1NwId332m1BL8ERfTd5_gCM?AA7Mv9tuz9b7ymMuJ

Page: 1

Plate Offsets (X, Y): [2:0-1-4,0-1-5], [7:0-3-12,0-3-0], [12:0-1-4,0-1-5], [17:0-5-4,0-3-8], [19:0-5-4,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.19 0.39 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.08	(loc) 20-21 20-21 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Except 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 5-11-1 oc purlins. Rigid ceiling directly	t* 17-8,19-6:2x4 SP t athing directly applied applied or 10-0-0 oc	2) No.3 3) d or 4)	Wind: ASCE Vasd=103mp Cat. II; Exp E Exterior (2) z vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE	7-16; Vult=130mph bh; TCDL=6.0psf; B 8; Enclosed; MWFR one; cantilever left nd right exposed;C- FRS for reactions s ate grip DOL=1.33 ed for wind loads in ds exposed to winc d Industry Gable En alified building desi 7-16: Pr=20.0 psf	(3-sec CDL=6 S (env and rig C for r shown; the pla d (norm d Deta gner as (roof LL	ond gust) .0psf; h=25ft; elope) and C- ht exposed ; (hembers and Lumber ane of the true al to the face; is as applicat is per ANSI/TF .: Lum DOL=	C end ss), ple, Pl 1. .15						
REACTIONS	bracing. (size) 2=0-5-8, 1 Max Horiz 2=-159 (L0 Max Grav 2=818 (L0	2=0-5-8 C 11) C 2), 12=818 (LC 2)	5)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ba	.15); Pg=20.0 psf; I ate DOL=1.15); Is= b; Cs=1.00; Ct=1.10 s been designed fo	Pf=13.9 1.0; Ro) psf (Lum bugh Cat B; F	ully						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0)	load of 12.0	osf or 2.00 times fla	t roof le	bad of 13.9 ps	on sf on						
TOP CHORD	1-2=0/32, 2-3=-1430, 4-5=-1336/0, 5-6=-13 7-8=-1274/45, 8-9=-1 10-11=-1392/0, 11-12	/0, 3-4=-1387/0, 805/19, 6-7=-1378/12 1304/0, 9-10=-1344/0 2=-1435/0, 12-13=0/3	6) 27, 7)), 8) 32	All plates are Gable studs * * This truss h	2x4 MT20 unless of spaced at 2-0-0 oc. has been designed for p chord in all areas	otherwi	e load of 20.0	psf					17	
BOT CHORD	2-22=-96/1086, 21-2 19-20=0/1190, 18-19 16-17=0/1148, 15-16 12-14=0/1053	2=0/1123, 20-21=0/1 9=0/765, 17-18=0/766 6=0/1117, 14-15=0/10	152, 6, 088, 9)	3-06-00 tall b chord and an Bearing at jo using ANSI/T	by 2-00-00 wide will by other members. int(s) 2, 12 conside TPI 1 angle to grain	fit betv rs para formuli	llel to grain va	om alue			AN STRANG	OR FESS	ROIN	
WEBS	7-17=-140/737, 8-17 7-19=-184/931, 6-19 5-20=-60/45, 4-21=-4 9-16=-46/44, 10-15=	=-144/150, =-266/146, 7-18=-27, 11/42, 3-22=-57/42, -46/42, 11-14=-55/41	/77, 10 I	designer sho) This truss is International R802.10.2 ar	uld verify capacity of designed in accorda Residential Code s and referenced stand	of bear ance w ections lard AN	ng surface. ith the 2018 R502.11.1 a ISI/TPI 1.	nd		Con in		SEA	L	- and
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	LC	OAD CASE(S)	Standard					11112.0			EER.K	inning.

G minimum) August 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	B03	Roof Special	6	1	E14761239 Job Reference (optional)

Scale = 1:61.4

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:35 ID:0gpZRoyHji_btM7D?CC35WypGEV-OXbm75eipMuuoVjQ?N_seBDLyPXnsqUI6Yii7aymMuI

Page: 1

Plate Offsets (X, Y): [1:0-1-4,0-1-5], [5:0-1-4,0-1-5], [6:0-4-0,0-3-8], [7:0-4-0,0-3-8]

		1											
Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in 0.05	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)	20.0	Plate Grip DOL	1.15			0.26	Vert(LL)	-0.05	6-7	>999	240	MT20	244/190
	J) 13.9/20.0	Lumber DOL Ron Stross Incr	I.ID			0.37		-0.10	0-7 5	>999	180 n/o		
BCU	0.0*	Code	IRC201	R/TPI2014	Matrix-MSH	0.19	11012(01)	0.11	5	n/a	n/a		
BCDL	10.0	Code	11(0201)	5/11/2014	Matrix-Mort							Weight: 140 lb	FT = 20%
LUMBER			4)	* This truss h	nas been designed	for a liv	e load of 20.	0psf					
TOP CHOR	D 2x6 SP No.2			on the bottor	n chord in all areas	where	a rectangle	om					
BOICHOR	D 2X6 SP No.2	+* 7 2 6 1·2v1 SD N	0.2	chord and ar	by 2-00-00 wide will	III Delw	een me bou	.011					
WEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3	1 7-2,0-4.2X4 OF N	5)	Bearing at jo	int(s) 1, 5 considers	s paralle	el to grain va Building	lue					
kight 244 SF No.5 designer should verify capacity of bearing surface.													
TOP CHOR	TOP CHORD Structural wood sheathing directly applied or 6) This truss is designed in accordance with the 2018												
	5-7-9 oc purlins. B802 4.0.2 and referenced defined of AUSUAL 1.1 and												
BOT CHOR	HORD Rigid ceiling directly applied or 10-0-0 oc bracing. Robert 10.2 and referenced standard ANS// FFTT. LOAD CASE(S) Standard												
REACTION	S (size) 1=0-5-8, 5	5=0-5-8											
	Max Horiz 1=-157 (Le	C 9)											
	Max Grav 1=803 (LC	C 2), 5=803 (LC 2)											
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHOR	D 1-2=-1594/16, 2-3=- 4-5=-1594/0	1371/50, 3-4=-1371	/17,										
BOT CHOR	D 1-7=-122/1268, 6-7=	0/742, 5-6=0/1224											
WEBS	3-6=-5/767, 3-7=-59/	/813, 2-7=-230/140,											The second
NOTES	4-0=-240/140											W''LL CA	Palli
1) Unbalar	nced roof live loads have	been considered fo	r								1	atrio	9114
this des	ign.										1	O' FESO	Idin A
2) Wind: A	SCE 7-16; Vult=130mph	(3-second gust)								6	25	in 1	City 1
Vasd=1	03mph; TCDL=6.0psf; B0	CDL=6.0psf; h=25ft;	;										
Cat. II; I	Exp B; Enclosed; MWFR	S (envelope) and C	-C									SEA	r 1 ⊑ .
Exterior	(2) Zone; cantilever left a	C for members and	ena							=	:	SLA	- : :
forces &	MWFRS for reactions sl	hown: Lumber								=		0363	22 : =
DOL=1.	60 plate grip DOL=1.33	,									i ()	•	1 - 5
3) TCLL: A	SCE 7-16; Pr=20.0 psf (i	roof LL: Lum DOL=	1.15								1	· •	a !
Plate D	OL=1.15); Pg=20.0 psf; P	f=13.9 psf (Lum									2.5	NGIN	EENAN
DOL=1.	15 Plate DOL=1.15); Is=	1.0; Rough Cat B; F	ully								11	710	CEL IN
Evn · C	-0 9 Cc-1 00 Ct-1 10										1.00		

DOL=1.60 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932

GILB

1111 Ginn August 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	B04	Common Girder	1	2	E14761240 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:35 ID:vR34HA0nnxV0M_R?E2H?GMypGER-OXbm75eipMuuoVjQ?N_seBDNbPO2sjPI6Yii7aymMuI

Page: 1

Scale = 1:63.4

Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	-0.06	6-7	>999	240	MT20	244/190		
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.13	6-7	>999	180				
TCDL	10.0	Rep Stress Incr	NO		WB	0.58	Horz(CT)	0.04	5	n/a	n/a				
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH										
BCDL	10.0											Weight: 311 lb	FT = 20%		
LUMBER			2)	All loads are	considered equally	applied	d to all plies,			Vert: 6=	-649 (E	B), 9=-764 (B), 1	6=-764 (B), 17=-764		
TOP CHORD	2x6 SP No.2		,	except if note	ed as front (F) or ba	ick (B) 1	ace in the LC	DAD		(B), 18=	-764 (E	3), 19=-764 (B), 1	20=-764 (B), 21=-649		
BOT CHORD	2x6 SP No.2			CASE(S) sec	tion. Ply to ply con	nection	s have been			(B), 22=	-649 (È	B), 23=-650 (B)			
WEBS	2x4 SP No.2 *Except	* 4-6.2-9:2x4 SP No	.3	provided to d	istribute only loads	noted a	as (F) or (B),								
WEDGE	Left: 2x6 SP No.2	,		unless otherw	vise indicated.										
	Right: 2x6 SP No.2		3)	Unbalanced i	roof live loads have	been d	considered fo	or							
RRACING				this design.											
	Structural wood shor	thing directly applie	dor 4)	Wind: ASCE	7-16; Vult=130mph	n (3-sec	ond gust)								
TOP CHORD	6-0-0 oc purlins.	at ing unecity applie	u 01 🧳	Vasd=103mp	h; TCDL=6.0psf; B	CDL=6	.0psf; h=25ft	;							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		Cat. II; Exp B	; Enclosed; MWFR	S (env	elope); cantile	ever							
	bracing.			left and right	exposed ; end verti	ical left	and right								
REACTIONS	(size) 1=0-5-8 5	=0-5-8	-	exposed; Lur	nber DOL=1.60 pla	ite grip	DOL=1.33								
	Max Horiz 1=-152 (I (C 5)	5)	TCLL: ASCE	7-16; Pr=20.0 pst ((roof LL	: Lum DOL=	1.15							
	Max Grav 1=5033 (I	C 2) 5=5226 (I C 21	D D	Plate DOL=1	.15); Pg=20.0 pst; I	Pf=13.9	pst (Lum								
FORCES	(lb) - Maximum Com	pression/Maximum	.,	DUL=1.15 PI	ate DOL=1.15); IS=	1.0; RC	ough Cat B; F	ully							
FORCES		pression/maximum	C)	* This trues b	; CS=1.00; Cl=1.10	for a liv	a load of 20 (Onof							
	1-25850/0 2-34(046/0 3-44046/0	6)	on the better	as been designed i	whore	e load of 20.0	opsi							
	4-55926/0	J40/0, J-4=-4040/0,		3-06-00 tall b	v 2-00-00 wide will	fit botu	a reclarigie	om							
BOT CHORD	1-16=0/4432 16-17=	0/4432 9-17-0/443	2	chord and an	v other members	III Delw	leen me bou	om							
Bor onone	9-18=0/4432 8-18=0)/4432 8-19=0/4432	7)	This truss is a	designed in accord:	ance w	ith the 2018								
	7-19=0/4432 7-20=0)/4488 20-21=0/448	, <i>,</i> 8	International	Residential Code s	ections	R502 11 1 a	and					11		
	6-21=0/4488 6-22=0)/4488 22-23=0/448	8	R802 10 2 ar	nd referenced stanc	lard AN	ISI/TPI 1					11111 01	No lin		
	5-23=0/4488		8)	Use USP TH	D26 (With 18-16d r	nails int	o Girder &					I'TH UT	ROUL		
WEBS	3-7=0/4789. 4-7=-19	92/170. 4-6=-2/2334		12-10d x 1-1/	2 nails into Truss)	or equiv	valent spaced	dat				A	A LAND		
	2-7=-1886/0. 2-9=0/2	2212	,	2-0-0 oc max	starting at 1-2-0 fr	rom the	left end to			/	~ >	FESC	PA		
NOTES	,			19-2-0 to con	nect truss(es) to ba	ack face	e of bottom			4	0		N		
1) 2-ply trues	to be connected toget	ber with 10d		chord.	()					-	1.1	.4-	N 1 1 2		
(0 131"v3	") nails as follows:		9)	Fill all nail ho	les where hanger is	s in con	tact with lum	ber.				SEA	. : =		
Top chord	ls connected as follows	· 2x6 - 2 rows	Í	DAD CASE(S)	Standard					=	:	JLF	. : :		
standered	at 0-9-0 oc	. 2.00 21003	1)	Dead + Sno	w (balanced). I um	her Inc	rease=1.15	Plate				0363	322 ; =		
Bottom ch	ords connected as follo	ows: 2x6 - 2 rows	• • • • • • • • • • • • • • • • • • • •	Increase=1.	15			late			6		1 - E		
staggered	at 0-9-0 oc.			Uniform Loa	ads (lb/ft)							1. Sec. 1. Sec	- 1 S -		
Web conn	ected as follows: 2x4 -	1 row at 0-9-0 oc.		Vert [.] 1-3	-46 3-5=-46 10-1	3=-19					- 1	N. SNOW	-ER. A S		
				Concentrate	ed Loads (lb)	5					1	A. GIN	E. CR.		
				20110011100							1	CA C	II BEIN		
												11, 4. 0	21-111		
													1111		

August 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	C01	Common Supported Gable	1	1	E14761241 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:36 ID:vFeM_cdnmcwn_pqojFhyq6ypGDe-sj98LRfKag0kQeIdZ4W5BPIaVpyWbJBSKCSGg0ymMuH

Page: 1

10-11-0

Scale =	1:40.3
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9	(psf) 20.0)/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.02 0.01 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP Right: 2x4 SP Structural wo 6-0-0 oc purl Rigid ceiling bracing. (size) 2= Max Horiz 2= Max Uplift 2= (L Max Grav 2= 10 12 14 13 15 15 16 12 12 14 12 12 14 15 12 12 14 12 14 15 12 12 14 15 12 14 15 12 14 15 12 14 15 12 14 15 12 14 15 15 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	2 No.2 P No.2 ood sheat ins. directly : =10-11-0 1=10-11- 5=10-11- =93 (LC - =-18 (LC - C 13), 19: =125 (LC D=149 (L 2=107 (L 4=151 (L 9=119 (L 9=119 (L	athing directly applie applied or 10-0-0 oc , 8=10-11-0, 10=10 0, 12=10-11-0, 0, 14=10-11-0 12), 15=93 (LC 12) 9), 8=-1 (LC 10), 11 1=-32 (LC 14), 13=- 4=-54 (LC 13), 15=- =-1 (LC 10) : 26), 8=119 (LC 2), C 26), 11=170 (LC 3) C 25), 15=125 (LC 3) C 25), 15=125 (LC 3)	2) ed or 3) 5 -11-0, 4) -11-0, 4) -5) -52 -52 -52 -52 -52 -52 -52 -52 -52 -52	Wind: ASCE Vasd=103mp Cat. II; Exp B Exterior (2) z vertical left ai forces & MW DOL=1.60 pli Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs no All plates are Gable require Gable require Gable require Gable require Gable studs s * This truss ha on the bottom 3-06-00 tall b chord and an	7-16; Vult=130m h; TCDL=6.0psf; ; Enclosed; MWF one; cantilever le nd right exposed; FRS for reactions ate grip DOL=1.3 ed for wind loads ds exposed to wi I Industry Gable B alified building de 7-16; Pr=20.0 psi ate DOL=1.15); li ; Cs=1.00; Ct=1. s been designed so been designed as been designed as been designed n chord in all area y 2-00-00 wide w y other members	ph (3-sec BCDL=6 FRS (envir ft and rig C-C for n s shown; 3 in the pla nd (norm End Detai ssigner as if (roof LL f; Pf=13.9 s=1.0; Rc 10 for greate flat roof l h other lin s otherwittom chor oc. d for a liv as where vill fit betw is	ond gust) .0psf; h=25ft; elope) and C- th exposed; and C- th e	C end ss), ole, Pl 1. 1.15 ully live sf on opsf om			Ň	WTH CA	
FORCES	(lb) - Maximu Tension 1-2=0/32, 2-3 4-5=-84/59, 9 7-8=-59/41	um Com 3=-79/61 5-6=-84/ 8-9=0/32	, 3-4=-88/44, 51, 6-7=-71/24,	10 1 ⁻	 One RT/A U truss to beari 11, and 10. T not consider This truss is a 	SP connectors re ng walls due to L his connection is lateral forces. designed in accor	commen JPLIFT at for uplift rdance with	it(s) 2, 8, 13, only and doe	ct 14, s		y	L.	OF FESC	
BOT CHORD	2-14=-50/69 11-12=-45/69	, 13-14= 9, 10-11:	-45/69, 12-13=-45/6 =-45/69, 8-10=-45/6	9, 9	R802.10.2 ar	id referenced sta	ndard AN	SI/TPI 1.	nu				0363	22
WEBS	5-12=-68/4, 4 6-11=-132/58	4-13=-13 8, 7-10=	33/59, 3-14=-107/57 -107/57	, L	DAD CASE(S)	Stanuaru								
NOTES 1) Unbalance this design	ed roof live load n.	ds have I	been considered for									The second second	A. C	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

August 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	D01	Common	3	1	E14761242 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:36 ID:RKcPL4pp?WxWvH3tfc_iTUypGDO-sj98LRfKag0kQeIdZ4W5BPIXmpu4bIPSKCSGg0ymMuH

Page: 1

3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

1)

2)

4) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

GI

August 19,2020

mmm

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	D02	Common Supported Gable	1	1	E14761243 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:36 ID:Cs5R1pwq6zxNsVgP7I7aoAypGDG-sj98LRfKag0kQeIdZ4W5BPIZipxabJwSKCSGg0ymMuH Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	J01	Monopitch	10	1	E14761244 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:37 ID:h8mWVPl6sAebe6RggHsm5kypGCB-KwiWYnfyLz8b2otp6o1KjcIhRDDvKmKbZrBpCSymMuG

Page: 1

818 Soundside Road Edenton, NC 27932

6-5-0

Plate Offsets (X, Y): [2:0-3-0,Edge]

Scale = 1:27.9

	() / [() - 5-1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x6 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20 5) * This on the	CSI TC BC WB Matrix-MP truss has been designe bottom chord in all are	0.27 0.26 0.04 ed for a live	DEFL Vert(LL) Vert(CT) Horz(CT) e load of 20.0	in 0.03 -0.05 0.00 0psf	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 Structural wood shea 6-6-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=46 (LC Max Grav 2=307 (LC	athing directly applie applied or 10-0-0 oc l=0-1-8 11) 11), 4=-66 (LC 11) 2 22), 4=281 (LC 22)	3-06-C chord 6) Bearir using d or 7) Provic bearin 8) One R truss t This c lateral 9) This tr	0 tall by 2-00-00 wide and any other member g at joint(s) 4 consider ANS/TPI 1 angle to gr er should verify capaci e mechanical connecti g plate at joint(s) 4. T7A USP connectors r o bearing walls due to onnection is for uplift of forces.	will fit betw s. s parallel t ain formula ity of beari on (by othe recommen- UPLIFT at nly and do	veen the bott o grain value a. Building ng surface. ers) of truss i ded to conne jt(s) 2 and 4 es not consid th the 2018	to to ect der					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/9, 2-3=-234/37 2-4=-53/213 3-4=-184/42	pression/Maximum	Interna R802. LOAD CA	ational Residential Cod 10.2 and referenced st SE(S) Standard	le sections andard AN	R502.11.1 a SI/TPI 1.	and					
 Wind: ASC Vasd=103 Cat. II; Exj Exterior (2 vertical lef exposed;C reactions s DOL=1.33 TCLL: ASP Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. This truss load of 12 overhangs 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC p B; Enclosed; MWFRS 2) zone; cantilever left a it and right exposed; pC -C-f or members and fc shown; Lumber DOL=1 3 CE 7-16; Pr=20.0 psf (P =1.15); Pg=20.0 psf; (P =1.15); Pg=20.0 psf; (P =0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for .0 psf or 2.00 times flat s non-concurrent with o	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-0 and right exposed; e orch left and right orces & MWFRS for .60 plate grip roof LL: Lum DOL=1 Y=13.9 psf (Lum 1.0; Rough Cat B; Ft en considered for thi greater of min roof I : roof load of 13.9 ps ther live loads.	C nd .15 illy is ive f on						M. HILLING		SEA 0363	L L L L L L L L L L L L L L L L L L L
											Augus	it 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	J02	Monopitch Supported Gable	1	1	E14761245 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:37 ID:aBXSwb?HwdHcfLYiPBkhS9ypGBs-KwiWYnfyLz8b2otp6o1KjclkfDG_KmwbZrBpCSymMuG

Page: 1

6-5-0

Scale = 1:25.3				,										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.13 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASI Vasd=103 Cat. II; EX Exterior (2 vertical lei forces & N DOL=1.6 2) Truss des only. For see Stanc or consult 3) TCLL: AS Plate DOL DOL=1.1f Exp.; Ce=	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=6-6-8, 5 Max Horiz 2=44 (LC Max Uplift 2=-10 (LC (LC 22), 7 (lb) - Maximum Com Tension 1-2=0/9, 2-3=-139/4' 2-6=-9/120, 5-6=0/0 3-6=-320/49, 4-5=-5/ CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; BK 2) zone; cantilever left at ft and right exposed; C- MWFRS for reactions sl 0 plate grip DOL=1.33 igned for wind loads in studs exposed to wind lard Industry Gable End c qualified building desig CE 7-16; Pr=20.0 psf (L=1.15); Pg=20.0 psf; Is	athing directly applie applied or 10-0-0 oc 5=6-6-8, 6=6-6-8, 7=4 11), 7=44 (LC 11) : 11), 5=-154 (LC 22) : 15), 7=-10 (LC 11) 2 22), 5=5 (LC 15), 6 '=207 (LC 22) pression/Maximum 1, 3-4=-36/1 /75 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-6 and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 ?f=13.9 psf (Lum 1.0; Rough Cat B; Fu	4) 5) d or 7) 6-6-8 9)), ==517 10 LC C cnd is, lle, 11. .15 .115	Unbalanced : design. This truss ha load of 12.0 p overhangs no Gable require Gable studs : * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to beari This connect lateral forces) This truss is International R802.10.2 ar	snow loads have I s been designed I osf or 2.00 times f on-concurrent with spaced at 2-0-0 o ias been designed in chord in all area y 2-00-00 wide w y other members. SP connectors re ing walls due to U ion is for uplift onl designed in accor Residential Code ind referenced star Standard	been con for greate lat roof lo to other liv iom chore c. d for a liv s where ill fit betw commeny PLIFT at y and do dance wi sections ndard AN	hisidered for the er of min roof bad of 13.9 ps re loads. d bearing. e load of 20.0 a rectangle reen the botto ded to conne jt(s) 2, 6, and es not consic ith the 2018 R502.11.1 a ISI/TPI 1.	nis live sf on Opsf om ct d 5. ler ind				ORTH CA ORTH CA ORTH CA ORTH CA ORTH CA	EFR. AT	· Nooming

August 19,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 18 GRETCHEN PINES
20080001	V1	Valley	1	1	E14761246 Job Reference (optional)

Run: 8.41 S May 22 2020 Print: 8.410 S May 22 2020 MiTek Industries, Inc. Wed Aug 19 06:26:37 ID:vlioXXRdLIPRZ8hOkjVu48ypGLe-KwiWYnfyLz8b2otp6o1KjcIltDHQKmHbZrBpCSymMuG

Page: 1

11-10-0

Scale = 1:38.7			I								1	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.05 0.03 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-10-(9=11-10-(1=1-12)(LC 14), 1 (LC 13) Max Grav 1=-78 (LC (LC 25), 5 (LC 27), 1 (LC 24)	eathing directly applied r applied or 10-0-0 oc 0, 7=11-10-0, 8=11-10 0, 10=11-10-0, 10-0, 12=11-10-0 29) 29), 8=-26 (LC 14), 9: 11=-42 (LC 13), 12=-2 25), 7=63 (LC 2), 8=: 9=170 (LC 25), 10=13 11=169 (LC 24), 12=1	 3) Truss desig only. For st see Standar or consult q 4) TCLL: ASC Plate DOL= DOL=1.15 F Exp.; Ce=0. 5) All plates ar 6) Gable requi 7) Gable studs 8) * This truss on the botto 3-06-00 tall 172 the strust of the study of the stud	ned for wind loads uds exposed to w rd Industry Gable ualified building d E 7-16; Pr=20.0 ps 1.15); Pg=20.0 ps Plate DOL=1.15); J 9; Cs=1.00; Ct=1. e 2x4 MT20 unles res continuous bo is spaced at 2-0-0 o has been designe m chord in all area by 2-00-00 wide v iny other members chanical connection chansel of withs USP connectors re ring walls due to to connection is for to	s in the pl ind (norm End Deta esigner a: sf (roof LL f; Pf=13.2 sls=1.0; Rd 10 ss otherwi ttom chor oc. ed for a liv as where will fit betv s. on (by oth standing 1 ecommen JPLIFT at upLift only	ane of the trus al to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 ppsf (Lum ough Cat B; F se indicated. d bearing. e load of 20.0 a rectangle veen the botto ers) of truss tr 2 lb uplift at jo ded to conner .jt(s) 11, 12, § and does not	ss , ble, l 1. l.15 ully psf om obint ct ,					
TOP CHORD	(lb) - Maximum Com Tension 1-2=-91/77, 2-3=-71 4-572/59, 5-650	/57, 3-4=-72/67,	consider lat 11) This truss is Internationa	eral forces. designed in acco Residential Code	ordance w e sections	ith the 2018 R502.11.1 a	nd				Minimuter C	ARO
BOT CHORD	1-12=-47/72, 11-12= 9-10=-47/59, 8-9=-4	=-47/59, 10-11=-47/59 7/59, 7-8=-47/59	^{9,} LOAD CASE(S)) Standard		1 51/1111.				- AL	OR	Side Anis
WEBS	4-10=-95/1, 3-11=-1 5-9=-134/65, 6-8=-1	35/65, 2-12=-119/50, 18/49	,						4	Ľ.		
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103 Cat. II; Ex Exterior (2 vertical le forces & M	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B sp B; Enclosed; MWFR 2) zone; cantilever left : ft and right exposed;C- WWFRS for reactions s	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; er -C for members and hown: Lumber	C nd							A A A A A A A A A A A A A A A A A A A	SE/ 0363	AL 322

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI minimum)

August 19,2020

