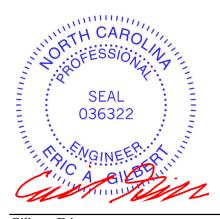


Trenco 818 Soundside Rd Edenton, NC 27932

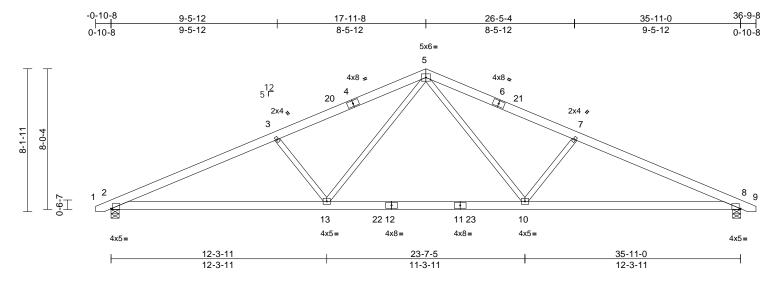

Re: 20090102 A&G RESIDENTIAL - 46SV

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: E14920679 thru E14920692

My license renewal date for the state of North Carolina is December 31, 2020.

North Carolina COA: C-0844


September 30,2020

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

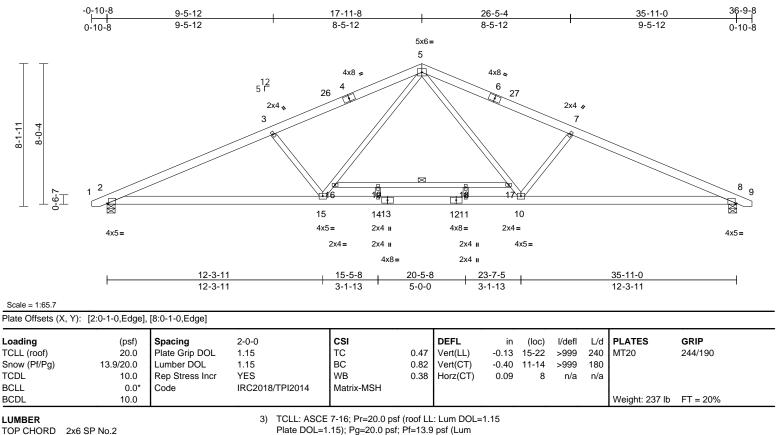
Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A01	Common	4	1	Job Reference (optional)	E14920679

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:35 ID:GePeabhrSJ?UwFbiu4vKCwykESO-Mock Me

Scale = 1:65.7

Plate Offsets (X, Y): [2:0-1-0,Edge], [8:0-1-0,Edge]

	(x, i): [2:0 i 0,2dg0];	[0:0 : 0;=090]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.49 0.95 0.28	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.39 0.09	(loc) 10-13 13-16 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 220 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 *Excep Structural wood shea 3-6-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=73 (LC	athing directly applie applied or 2-2-0 oc =0-5-8 15)	ed or 6) 7)	design. This truss ha load of 12.0 overhangs n * This truss I on the botto 3-06-00 tall I chord and au This truss is International	snow loads have b s been designed for psf or 2.00 times fla on-concurrent with has been designed in chord in all areas by 2-00-00 wide will by other members, designed in accord Residential Code s do referenced stam	or greate at roof le other liv for a liv where I fit betw with BC lance w sections	er of min roo bad of 13.9 p re loads. e load of 20. a rectangle reen the bott DL = 10.0ps th the 2018 R502.11.1 a	f live osf on Opsf com f.					
FORCES	Max Grav 2=1598 (L (lb) - Maximum Com	<i>,</i>) L	DAD CASE(S)	Standard								
FURGES	(ID) - Maximum Com Tension	pression/iviaximum											
TOP CHORD	4-20=-2767/0, 4-5=-2 6-21=-2767/0, 7-21= 8-9=0/18	2759/0, 5-6=-2759/0 -2853/0, 7-8=-3120 =0/1891, 12-22=0/1	/0, 891,										
WEBS	5-10=0/1108, 7-10=- 3-13=-590/157	590/157, 5-13=0/11	08,									TH CA	ROUT
NOTES											15	ONEESS	Nº 1
	ed roof live loads have	been considered fo	r								ès		No. T
Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.60 3) TCLL: AS Plate DOL DOL=1.15	n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; B(p B; Enclosed; MWFR; 2) zone; cantilever left a ft and right exposed;C- MWFRS for reactions sl 0 plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; F] Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	CDL=6.0psf; h=25ft; S (envelope) and C- and right exposed ; C for members and hown; Lumber roof LL: Lum DOL=' f=13.9 psf (Lum	C end 1.15							CONTRACTOR CONTRACTOR		SEA 0363	22



September 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A02	Common	2	1	Job Reference (optional)	E14920680

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:37 ID:dEN51B_yFBUIFhGGf2KQ1UykEQj-Mock Me

TOP CHORD	2X6 SP N0.2		Plate DOL=1.15), Pg=20.0 psi, Pl=15.9 psi (Lulli DOL=4.45 Plate DOL=4.45); la 4.0; Dayah Cat D; Fully
BOT CHORD	2x6 SP No.2		DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully
WEBS	2x4 SP No.3 *Except* 10-5,15-5,16-17:2x4 SP No.2	4)	Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this
BRACING		5)	design. This truss has been designed for greater of min roof live
TOP CHORD	Structural wood sheathing directly applied or 3-7-5 oc purlins.	5)	load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	6)	200.0lb AC unit load placed on the bottom chord,
WEBS	1 Row at midpt 16-17		17-11-8 from left end, supported at two points, 5-0-0 apart.
	(size) 2=0-5-8, 8=0-5-8 Max Horiz 2=73 (LC 15) Max Grav 2=1574 (LC 2), 8=1574 (LC 2)		All plates are 2x4 MT20 unless otherwise indicated. * This truss has been designed for a live load of 20.0psf
FORCES	(lb) - Maximum Compression/Maximum Tension		on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
TOP CHORD	1-2=0/18, 2-3=-3150/0, 3-26=-2837/0, 4-26=-2733/0, 4-5=-2726/0, 5-6=-2726/0, 6-27=-2734/0, 7-27=-2837/0, 7-8=-3150/0, 8-9=0/18	9)	This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
BOT CHORD	2-15=0/2856, 14-15=0/2019, 13-14=0/2019, 12-13=0/2019, 11-12=0/2019, 10-11=0/2019, 8-10=0/2856	LO	AD CASE(S) Standard
WEBS	5-17=0/1050, 10-17=0/976, 7-10=-579/168, 15-16=0/976, 5-16=0/1050, 3-15=-579/167, 16-19=-129/0, 18-19=-129/0, 17-18=-129/0, 11-18=0/24, 14-19=0/24		

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33


MILLING CAR \cap and a state of the MULLIUM III SEAL 036322 GI 1111111 September 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A03	Common	5	1	Job Reference (optional)	E14920681

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:38 ID:HMgvFkITPYQMJNbNrnyC5mykEPk-Mock Me

Exp.; Ce=0.9; Cs=1.00; Ct=1.10

chord and any other members.

design.

apart.

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on

overhangs non-concurrent with other live loads.

200.0lb AC unit load placed on the bottom chord,

17-11-8 from left end, supported at two points, 5-0-0

All plates are 2x4 MT20 unless otherwise indicated.

on the bottom chord in all areas where a rectangle

Refer to girder(s) for truss to truss connections.

R802.10.2 and referenced standard ANSI/TPI 1.

* This truss has been designed for a live load of 20.0psf

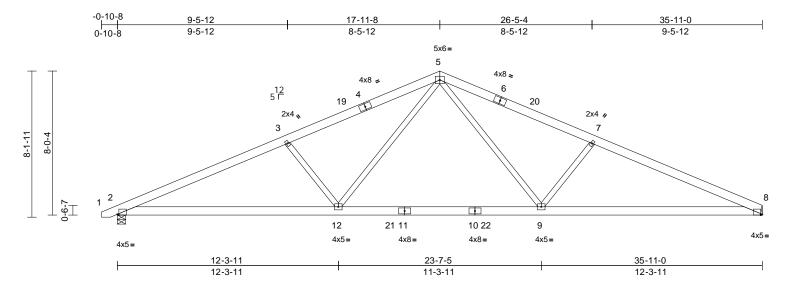
3-06-00 tall by 2-00-00 wide will fit between the bottom

International Residential Code sections R502.11.1 and

- BOT CHORD WEBS 2x4 SP No.3 *Except* 9-5,14-5,15-16:2x4 SP 4) No.2 BRACING 5) TOP CHORD Structural wood sheathing directly applied or 3-7-4 oc purlins BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 6) bracing. WEBS 1 Row at midpt 15-16 REACTIONS (size) 2=0-5-8, 8= Mechanical 7) Max Horiz 2=76 (LC 15) 8) Max Grav 2=1575 (LC 2), 8=1536 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/18, 2-3=-3151/0, 3-25=-2837/0, 4-25=-2734/0, 4-5=-2727/0, 5-6=-2717/0, 10) This truss is designed in accordance with the 2018 6-26=-2728/0, 7-26=-2839/0, 7-8=-3152/0 2-14=0/2856, 13-14=0/2019, 12-13=0/2019, BOT CHORD 11-12=0/2019, 10-11=0/2019, 9-10=0/2019, LOAD CASE(S) Standard
- 8-9=0/2858 WEBS 5-16=0/1052, 9-16=0/978, 7-9=-580/168, 14-15=0/975, 5-15=0/1050, 3-14=-579/167, 15-17=-129/0, 17-18=-129/0, 16-18=-129/0, 13-17=0/24, 10-18=0/23

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33


 \cap AND DURING THE PARTY OF THE PAR or and the second SEAL 036322 GI 1111111 September 30,2020

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A04	Common	3	1	Job Reference (optional)	E14920682

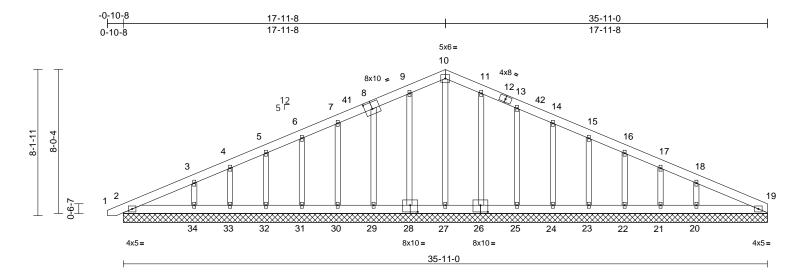
Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:38 ID:xfPRnqu?aEwfIDVhYIA0alykEPY-Mock Me

Scale = 1:64.2

Plate Offsets (X, Y): [2:0-1-0,Edge], [8:0-1-0,Edge]

		. , , , , , , , , , , , , , , , , , , ,											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.49		-0.23	9-12	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.95	Vert(CT)	-0.39	9-18	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.28	Horz(CT)	0.09	8	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 218 lb	FT = 20%
LUMBER			4	Unbalanced	snow loads have l	been cor	sidered for	this					
TOP CHORD				design.									
BOT CHORD			5		is been designed f								
WEBS	2x4 SP No.2 *Excep	t* 9-7,12-3:2x4 SP	No.3		psf or 2.00 times f			osf on					
BRACING				•	on-concurrent with								
TOP CHORD	Structural wood she	athing directly appli	ed or 6		nas been designeo n chord in all area			.0psf					
	3-5-14 oc purlins.				by 2-00-00 wide wi			tom					
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc		chord and ar	y other members,	, with BC	DL = 10.0ps						
REACTIONS	(size) 2=0-5-8, 8	B= Mechanical	7		er(s) for truss to tr								
	Max Horiz 2=76 (LC	15)	8		designed in accor Residential Code			ممط					
	Max Grav 2=1598 (L	.C 3), 8=1566 (LC 3	5)		nd referenced star			and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)			101/11 1 I.						
TOP CHORD		/0_3-19=-2853/0											
	4-19=-2767/0, 4-5=-)										
	6-20=-2760/0, 7-20=	,	,										
BOT CHORD													
	10-11=0/1892, 10-22												
	8-9=0/2847												
WEBS	5-9=0/1110, 7-9=-59	1/157, 5-12=0/1108	3,									mm	UIL.
	3-12=-590/157											IN'TH CA	ROUL
NOTES											N	R	L'in
	ed roof live loads have	been considered fo	r								1.	O FESS	Diz Vin
this desigr										6	ès	the 1	City
	CE 7-16; Vult=130mph											10	- T
	mph; TCDL=6.0psf; B											SEA	r 1 E
	p B; Enclosed; MWFR3 2) zone; cantilever left a										:		• –
	ft and right exposed;C-		ena								:	0363	22 : =
	AWFRS for reactions s									-	. d		1 2
) plate grip DOL=1.33	ionii, Lumboi									2	1. J.	1 3
	CE 7-16; Pr=20.0 psf (roof LL: Lum DOI =	1.15									N.S.Now	FFR. X S
	_=1.15); Pg=20.0 psf; F										1	P. GIN	5. 2 P N
	5 Plate DOL=1.15); Is=		ully								1	CA C	BEIN
	0.9; Cs=1.00; Ct=1.10											in A. C	
												<u></u>	. 00 0000

September 30,2020


Page: 1

ENGINEERING BY ENGINEERING BY A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A05	Common Supported Gable	1	1	Job Reference (optional)	E14920683

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:39 ID:P7UFY_6ILmC6v_t8c4VEI5ykEPG-Mock Me

Page: 1

Scale = 1:64.2

Plate Offsets (X, Y): [8:0-5-0,0-4-8], [26:0-5-0,0-4-8], [28:0-5-0,0-4-8] 1-11-4 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.06 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf/Pg) 13.9/20.0 Lumber DOL 1.15 BC 0.07 Vert(CT) n/a n/a 999 TCDL Rep Stress Incr WB 19 10.0 YES 0.12 Horz(CT) 0.00 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code Weight: 267 lb FT = 20% BCDL 10.0 LUMBER Max Grav 2=174 (LC 2), 19=132 (LC 2), 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 20=309 (LC 36), 21=93 (LC 2), Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; TOP CHORD 2x6 SP No.2 22=168 (LC 36), 23=153 (LC 2), Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C BOT CHORD 2x6 SP No.2 24=155 (LC 2), 25=179 (LC 23), Exterior (2) zone; cantilever left and right exposed ; end OTHERS 2x4 SP No.3 *Except* 26=188 (LC 23), 27=137 (LC 32), 27-10,28-9,29-8,26-11,25-13:2x4 SP No.2 vertical left and right exposed;C-C for members and 28=196 (LC 22), 29=178 (LC 22), forces & MWFRS for reactions shown; Lumber BRACING 30=148 (LC 2), 31=154 (LC 35), DOL=1.60 plate grip DOL=1.33 TOP CHORD Structural wood sheathing directly applied or 32=168 (LC 35), 33=96 (LC 2), Truss designed for wind loads in the plane of the truss 3) 6-0-0 oc purlins. 34=303 (LC 35), 35=174 (LC 2), only. For studs exposed to wind (normal to the face), BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 38=132 (LC 2) see Standard Industry Gable End Details as applicable, bracing. FORCES or consult qualified building designer as per ANSI/TPI 1. (lb) - Maximum Compression/Maximum REACTIONS (size) 2=35-11-0, 19=35-11-0, TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Tension 20=35-11-0, 21=35-11-0, Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum TOP CHORD 1-2=0/18, 2-3=-84/46, 3-4=-73/38, 22=35-11-0, 23=35-11-0, DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 4-5=-55/52, 5-6=-47/66, 6-7=-48/80 24=35-11-0, 25=35-11-0, Exp.; Ce=0.9; Cs=1.00; Ct=1.10 7-41=-61/86, 8-41=-53/93, 8-9=-75/108, 26=35-11-0, 27=35-11-0, 5) Unbalanced snow loads have been considered for this 9-10=-87/119, 10-11=-87/116, 11-12=-71/96, 28=35-11-0, 29=35-11-0, desian. 12-13=-76/91, 13-42=-52/73, 14-42=-60/68, 30=35-11-0, 31=35-11-0, 6) This truss has been designed for greater of min roof live 14-15=-46/51, 15-16=-37/35, 16-17=-35/21, 32=35-11-0, 33=35-11-0, 17-18=-48/8, 18-19=-56/34 load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 34=35-11-0, 35=35-11-0, overhangs non-concurrent with other live loads. BOT CHORD 2-34=-32/70, 33-34=-32/70, 32-33=-32/70, 38=35-11-0 All plates are 2x4 MT20 unless otherwise indicated. 31-32=-32/70, 30-31=-32/70, 29-30=-32/70, Max Horiz 2=73 (LC 15), 35=73 (LC 15) $\begin{array}{c} \text{Max Holds} & 22-73 (LC 16), \ 30-273 (LC 16), \ 32-25 (LC 16), \ 21-7 (LC 16), \ 22-12 (LC 16), \ 22-11 (LC 16), \ 22-11 (LC 16), \ 22-11 (LC 16), \ 22-15 (LC 16), \ 22-15 (LC 16), \ 22-11 (LC 16), \ 2$ 28-29=-34/70, 27-28=-34/70, 26-27=-34/70, 8) Gable requires continuous bottom chord bearing. 25-26=-34/70, 24-25=-34/70, 23-24=-34/70, 22-23=-34/70, 21-22=-34/70, 20-21=-34/70, 19-20=-34/70WEBS 10-27=-99/4, 9-28=-157/30, 8-29=-139/38, 7-30=-109/32, 6-31=-117/35, 5-32=-121/36, 4-33=-88/30, 3-34=-196/49, 11-26=-149/25, 33=-7 (1 C 16), 34=-24 (LC 15) VIIII MANUMULIU 13-25=-140/39, 14-24=-115/34, SEAL 15-23=-116/35, 16-22=-121/36, 17-21=-87/30, 18-20=-199/49 036322 NOTES 1) Unbalanced roof live loads have been considered for this design.

ontinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not being read to be doiny with react outractions into besign is based only doin parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and trus systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component** fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Qu** Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

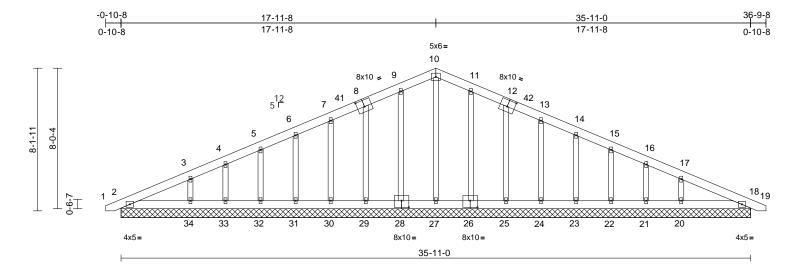
GIL mmm

September 30,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A05	Common Supported Gable	1	1	Job Reference (optional)	E14920683

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:39 ID:P7UFY_6ILmC6v_t8c4VEI5ykEPG-Mock Me

Page: 2


- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 28, 29, 30, 31, 32, 33, 34, 26, 25, 24, 23, 22, 21, and 20. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A06	Common Supported Gable	1	1	Job Reference (optional)	E14920684

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:39 ID:Xdn9HRGRHmqFz_NetJEHKrykEP3-Mock Me

Scale = 1:65.7

oading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06		n/a	(100)	n/a	999	MT20	244/190
now (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
CDL	10.0	Rep Stress Incr	YES	WB		Horz(CT)	0.00	18	n/a	n/a]	
CLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
CDL	10.0										Weight: 269	lb FT = 20%
I	20=35-11 22=35-11 24=35-11 26=35-11 30=35-11 32=35-11 34=35-11 34=35-11 34=35-11 Max Horiz 2=73 (LC Max Uplift 20=-24 (L 22=-13 (L 24=+0)(LC 29=-14 (L 29=-14 (L 29=-14 (L)	11,25-12:2x4 SP No athing directly applie applied or 10-0-0 oc 0, 18=35-11-0, -0, 21=35-11-0, -0, 25=35-11-0, -0, 25=35-11-0, -0, 27=35-11-0, -0, 27=35-11-0, -0, 31=35-11-0, -0, 35=35-11-0, -0, 35=35-11-0, -0, 35=35-11-0, -0, 35=73 (LC 15) C 16), 21=-8 (LC 16 C 16), 23=-16 (LC 16) C 16), 23=-16 (LC 16) -16), 25=-16 (LC 16) -16), 25=-16 (LC 16) -16), 25=-16 (LC 15), -16), 25=-16 (LC 15), 25=-16 (LC 15),-16), 25=-16 (LC 15), -16), 25=-16 (LC 15), 25=-16 (LC 15),-16), 25=-16 (LC	.2 ed or FORCES TOP CHORD BOT CHORD), 6),), WEBS NOTES	22=1 24=1: 26=2/ 28=2 30=1: 32=1 34=3 38=1 (b) - Maximum Tension 1-2=0/18, 2-3=- 4-5=-55/55, 5-6: 7-41=-64/90, 8-7 9-10=-91/125, 1 11-12=-79/101, 13-14=-51/56, 1 16-17=-50/9, 17 2-34=-36/75, 3 31-32=-36/75, 3 28-29=-38/76, 2 25-26=-38/76, 2 22-23=-36/75 10-27=-104/5, 9 7-30=-112/33, 6 4-33=-91/31, 3- 12-25=-143/40, 14-23=-121/36, 16-21=-91/31, 1	12 (LC 36), 73 (LC 36), 73 (LC 2), 2 53 (LC 2), 2 53 (LC 2), 3 73 (LC 35), 12	21=99 (LC 2) 23=158 (LC 2) 23=158 (LC 2) 25=184 (LC 23) 29=184 (LC 2) 32=9184 (LC 2) 33=99 (LC 2) 35=179 (LC 2) 33=367(15) 5, 29:30=367(15) 5, 29:30=367(15) 5, 29:30=367(15) 5, 29:30=367(15) 5, 29:30=367(15) 5, 29:21=367(15) 5, 29:21=37(15) 5, 29:21=37(15)5, 29:21=37(15) 5,	,), ,), ,2), ,2), ,2), ,2), ,2, ,2, ,2,	Vass Cat. Exter verti forci DOL 3) Trus only see or ci 4) TCL Plat DOL Exp 5) Unb desi 6) This load over	d=103m II; Exp erior (2) iccal left a ess & MV _=1.60 p ss desig . For st Standar onsult q e DOL= _=1.15 F. ; Ce=0. alanced gn. t fuss hi l of 12.0 hhangs r	aph; TC B; Enc zone; (and rig VFRS blate gi ned foi uds ext rd Indu ualified E 7-16 1.15); Plate D 9; Cs= I snow as bee psf or non-co e 2x4	CDL=6.0psf; Bi losed; MWFR cantilever left a th exposed; C- for reactions s rip DOL=1.33 r wind loads in tposed to wind stry Gable En- d building desig; Pr=20.0 psf; [Pg=20.0 psf; [Pg=20.0 psf; 1 OL=1.15); Is= 1.00; Ct=1.10 loads have be an designed for 2.00 times fla ncurrent with of MT20 unless of	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed; enc C for members and hown; Lumber the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1 roof LL: Lum DOL=1.19 Yf=13.9 psf (Lum 1.0; Rough Cat B; Fully en considered for this r greater of min roof live therof load of 13.9 psf o ther live loads. other live loads. therwise indicated. m chord bearing.
	A.	GILBE									Sontom	per 30,2020

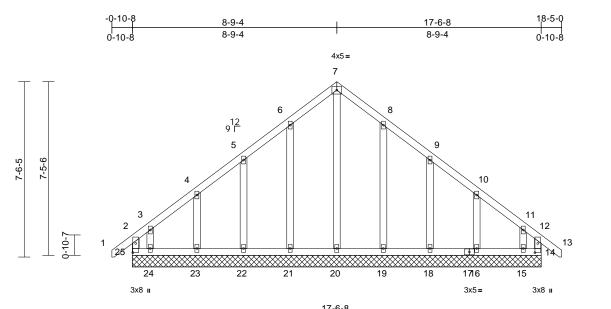
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Tracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	A06	Common Supported Gable	1	1	Job Reference (optional)	E14920684

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:39 ID:Xdn9HRGRHmqFz_NetJEHKrykEP3-Mock Me

Page: 2


- 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 28, 29, 30, 31, 32, 33, 34, 26, 25, 24, 23, 22, 21, and 20. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

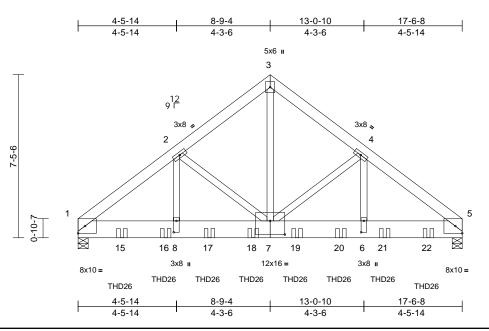
Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	B01	Common Supported Gable	1	1	Job Reference (optional)	E14920685

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:40 ID:e7340tQbDITP1_t87YzKMaykEOs-Mock Me

	17-0-0
Scale = 1:49.4	
Plate Offsets (X, Y): [14:0-4-12,0-1-8], [25:0-4-12,0-1-8]	

Loading	(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15		CSI TC	0.09	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.11	Horz(CT)	0.00	14	n/a	n/a		
BCLL BCDL	0.0*	Code	IRC20	18/TPI2014	Matrix-MR								FT 200/
JCDL	10.0											Weight: 111 lb	FT = 20%
UMBER			В	OT CHORD	24-25=-67/79, 23	-24=-67/7	9, 22-23=-67	/79,	11) One	RT7A	USP co	onnectors recom	nended to connect
OP CHORD	2x4 SP No.2				21-22=-67/79, 20								T at jt(s) 25, 21, 22,
BOT CHORD	2x4 SP No.2				18-19=-67/79, 17			/79,					connection is for
VEBS	2x4 SP No.3				15-16=-67/79, 14							s not consider la	
DTHERS	2x4 SP No.3 *Excep	ot* 20-7,21-6,19-8:2x	4 SP V	/EBS	7-20=-121/51, 6-							ned in accordanc	
	No.2				4-23=-127/55, 3-		,	,					ions R502.11.1 and
BRACING					9-18=-120/55, 10	-16=-128/	55, 11-15=-9					erenced standard	
OP CHORD	Structural wood she	athing directly applie	edor N	OTES									russ Connection
	6-0-0 oc purlins, ex		1		d roof live loads ha	ave been o	considered fo	r					as applicable, or
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc		this design						•		uilding designer.	
	bracing.		2		E 7-16; Vult=130m				LOAD	CASE(S) Star	ndard	
REACTIONS	(size) 14=17-6-8	8, 15=17-6-8, 16=17	-6-8,		nph; TCDL=6.0psf								
	18=17-6-8	8, 19=17-6-8, 20=17	-6-8,		B; Enclosed; MW								
		8, 22=17-6-8, 23=17	-6-8,		zone; cantilever le			end					
		8, 25=17-6-8			and right exposed								
	Max Horiz 25=-148 (· /			WFRS for reaction		Lumber						
I	Max Uplift 14=-70 (L				plate grip DOL=1.3								
		.C 14), 18=-33 (LC 1			gned for wind load								
		.C 14), 21=-29 (LC 1			tuds exposed to w								
		.C 13), 23=-28 (LC 1			ard Industry Gable qualified building d								
		LC 10), 25=-111 (LC			2E 7-16; Pr=20.0 p								U11.
	Max Grav 14=136 (L		12),		=1.15); Pg=20.0 p			1.15				WITH CA	Dille
		_C 26), 18=159 (LC			Plate DOL=1.15);			ully				OR FESS	70/11
		_C 26), 20=160 (LC).9; Cs=1.00; Ct=1		agii Gat B, i	uny			~	OFFE	in the
		_C 25), 22=159 (LC			has been designed		er of min roof	live		4	1.	10th	Phi: a
		_C 25), 24=168 (LC	11), 0		0 psf or 2.00 times					6	/	1 12	11.1
	25=170 (L	,			non-concurrent wi					2	е <u>р</u>	· ×	1 N N E
ORCES	(lb) - Maximum Com	pression/Maximum	6		re 2x4 MT20 unles					-		SEA	L : E
	Tension	440 0 4 05/00	7		ires continuous bo					=		0000	
OP CHORD	1-2=0/43, 2-3=-132/		. 8		e fully sheathed fro					-		0363	22 : :
	4-5=-78/77, 5-6=-81	, ,	0		ainst lateral movem					-	- 3	1 .	1 2
	7-8=-118/114, 8-9=-	, , ,	. 9		s spaced at 2-0-0		J a a a b a b a b b b b b b b b b b				1	·	A 1. 3
	10-11=-63/63, 11-12 2-25=-132/77, 12-14		5		s has been designed		e load of 20.0)psf			2.0	S. SNGINI	EER. KIN
	2-20=-132/11, 12-14	⊧=-1∪8/48	•		om chord in all are						1	AL GIN	the ct is
					l by 2-00-00 wide v			om			1	O363	II BUN
					any other member							1, 7. 6	1-11

September 30,2020


Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	B02	Common Girder	1	2	Job Reference (optional)	E14920686

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:40 ID:bniF?NfWlbsjpvqol1pndbykEOZ-Mock Me

Page: 1

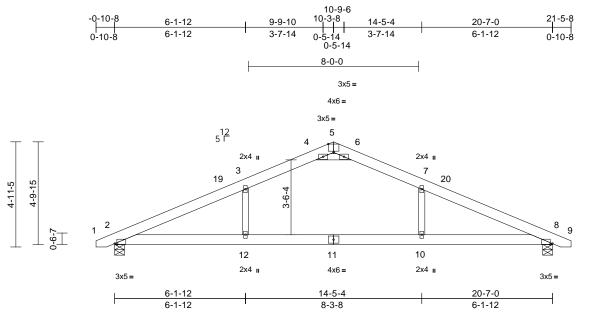
Scale = 1:52.6

Plate Offsets (X, Y): [6:0-6-4,0-1-8], [7:0-8-0,0-7-8], [8:0-6-4,0-1-8]

		1			1			-	-				
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.25	Vert(LL)	-0.06	6-7	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.13	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.85	Horz(CT)	0.03	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 309 lb	FT = 20%
LUMBER			4)	Wind: ASCE	7-16; Vult=130m	oh (3-seo	cond aust)						
TOP CHORD	2x6 SP No.2		/		oh; TCDL=6.0psf;								
BOT CHORD				Cat. II; Exp E	3; Enclosed; MWF	RS (env	elope); cantile	ever					
WEBS	2x4 SP No.3 *Excep	ot* 7-3:2x4 SP No.2		left and right	exposed ; end ve	rtical left	and right						
BRACING					mber DOL=1.60 p								
TOP CHORD	Structural wood she	athing directly applie	dor ⁵⁾		7-16; Pr=20.0 ps			1.15					
	5-2-15 oc purlins.	3, spp.io			.15); Pg=20.0 psf								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			late DOL=1.15); Is		ough Cat B; F	ully					
	bracing.); Cs=1.00; Ct=1.1			Jack					
REACTIONS	(size) 1=0-5-8, 5	5=0-5-8	6)		nas been designed n chord in all area			Jpsi					
	Max Horiz 1=120 (LC	C 8)			by 2-00-00 wide w			om					
	Max Grav 1=6357 (L	_C 2), 5=6838 (LC 2)			ly other members		veen the bott	0111					
FORCES	(lb) - Maximum Com	pression/Maximum	7)		designed in accor		ith the 2018						
	Tension		• • • •		Residential Code			ind					
TOP CHORD	1-2=-8275/0, 2-3=-6	099/0, 3-4=-6100/0,			nd referenced star								
	4-5=-8484/0		8)	Use USP TH	ID26 (With 18-16c	d nails int	o Girder &						
BOT CHORD	1-15=0/6541, 15-16	=0/6541, 8-16=0/654	1,	12-10d x 1-1	/2 nails into Truss) or equi	valent spaced	d at					
	,	=0/6541, 7-18=0/654	,		k. starting at 2-0-0								
	,	=0/6725, 6-20=0/672	,		nnect truss(es) to	back fac	e of bottom						
	,	=0/6725, 5-22=0/672		chord.									
WEBS	2-8=0/2834, 2-7=-23 4-7=-2429/0, 4-6=0/		,		oles where hanger	' is in cor	itact with lum	ber.				minin	11111
	4-7=-2429/0, 4-0=0/	2031		AD CASE(S)							3	WAH CA	Rolly
NOTES			1)		ow (balanced): Lu	mber Inc	rease=1.15, I	Plate			AN	R	
	s to be connected toge	ther with 10d		Increase=1							33	LESS.	10 Nin
	") nails as follows: Is connected as follows	a ave a rowo		Uniform Loa	()	0 40				9			
	l at 0-9-0 oc.	5. 2X0 - 2 10WS			=-46, 3-5=-46, 9-1	12=-19				-		·Q.	
	ords connected as foll	ows: 2x10 - 2 rows			ed Loads (lb) 1197 (B), 16=-11		17 4407 (D)			-		SEA	a : =
	at 0-6-0 oc.	21010			г (B), 19=-1297 (E					=		JLF	
	ected as follows: 2x4 -	- 1 row at 0-9-0 oc.			7 (B), 22=-1297 (E		237 (D),			=		0363	22 : =
2) All loads a	are considered equally	applied to all plies,		21- 125	(D), 22= 1257 (E	,					- Q		
	noted as front (F) or ba		AD								1	·	A 1 2
CASE(S)	section. Ply to ply conr	nections have been									2.0	S.SNOIN	EEM. X N
	o distribute only loads	noted as (F) or (B),								111 MAR	1	AL. GIN	5. 64 1
	nerwise indicated.										1	A C	BEN
-,	ed roof live loads have	been considered for										A. C	in in its
this desigr	n.											Cantamba	111 ····

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

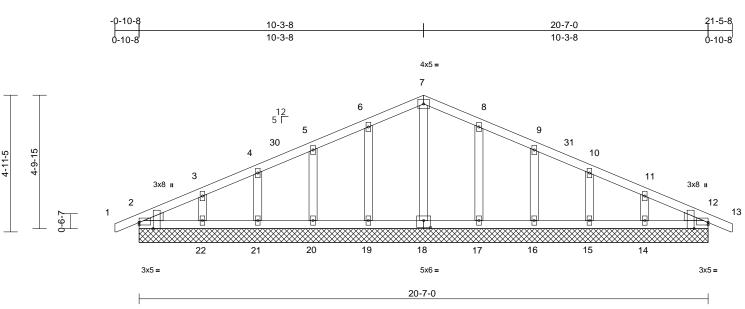
September 30,2020


Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	C01	Common	5	1	Job Reference (optional)	E14920687

Page: 1

SINFERING

818 Soundside Road Edenton, NC 27932



Scale = 1:54.2 Plate Offsets (X, Y): [2:0-1-4,Edge], [5:0-3-0,Edge], [8:0-1-4,Edge]

	(X, T): [2:0 T 4,Euge];	[olo o ojzago], [olo	1 1,Edg0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.51 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.27 0.02	(loc) 12-15 10-12 8	l/defl >999 >905 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%
 this design Wind: ASG Vasd=103 Cat. II; Ex Exterior (2 vertical lef forces & M DOL=1.6 TCLL: AS Plate DOI DOL=1.15 Exp.; Ce= 	2x6 SP No.2 2x4 SP No.3 Structural wood sheat 4-10-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, 8 Max Horiz 2=-43 (LC Max Grav 2=861 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-19=-139 3-4=-1199/13, 7-20= 8-9=0/18 2-12=0/1196, 11-12= 8-10=0/1196 3-12=0/241, 7-10=0/ ed roof live loads have	applied or 10-0-0 oc =0-5-8 20) 2), 8=861 (LC 2) pression/Maximum 5/0, 3-19=-1295/0, /1076, 5-6=0/1076, -1295/0, 8-20=-1395 =0/1196, 10-11=0/11 241, 4-6=-2364/0 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-(ind right exposed; e C for members and nown; Lumber roof LL: Lum DOL=1 f=13.9 psf (Lum 1.0; Rough Cat B; Fu	load of overhar 6) * This tr on the b 3-06-00 chord a 7) This tru Internat R802.10 LOAD CAS 5/0, 96, 2 15	ss has been designed 12.0 psf or 2.00 times gs non-concurrent wit uss has been designe ottom chord in all area tall by 2-00-00 wide w nd any other members ss is designed in acco onal Residential Code 0.2 and referenced sta E(S) Standard	flat roof lo th other lived for a live as where vill fit betwo s. rdance wi e sections	bad of 13.9 ps ve loads. e load of 20.0 a rectangle veen the botto ith the 2018 R502.11.1 a	sf on Opsf om			ES	SEA 0363	EER.K

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	C02	Common Supported Gable	1	1	Job Reference (optional)	E14920688

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:41 ID:TEJ2bNHBETSk5Mt9UBeqzeykEHI-Mock Me

Scale = 1:41.7

Plate Offsets (X, Y): [2:Edge,0-1-1], [2:0-2-11,Edge], [12:Edge,0-1-1], [12:0-2-11,Edge], [18:0-3-0,0-3-0]

	,, ;): [<u>_:_</u> age,e : :]	, [=:o = ::,=ago], [:=],[:=:0 = :	,Eugoj, [10:0 0 0,0	0 0]							
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.06	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC		Vert(CT)	n/a	-	n/a	999	11120	211,100
TCDL	10.0/20.0	Rep Stress Incr	YES		WB		Horz(CT)	0.00	12	n/a	n/a		
BCLL						0.05	11012(01)	0.00	12	II/a	11/a		
	0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 101 lb	FI = 20%
LUMBER				BOT CHORD	2-22=-18/43, 21-22	=-18/43	. 20-21=-18/4	3.	11) One	RT7A L	JSP co	onnectors recom	mended to connect
TOP CHORD	2x4 SP No.2				19-20=-18/43, 18-1		,	,					T at jt(s) 2, 19, 20,
BOT CHORD					16-17=-18/43, 15-1		,	,					connection is for
OTHERS	2x4 SP No.3				12-14=-18/43		,					s not consider lat	
WEDGE	Left: 2x4 SP No.2		1	VEBS	7-18=-94/0, 6-19=-1	55/36,	5-20=-139/35					ned in accordanc	
MEDGE	Right: 2x4 SP No.2				4-21=-115/35, 3-22								ions R502.11.1 and
BRACING					9-16=-139/35, 10-1				R80	2.10.2 a	nd refe	erenced standard	ANSI/TPI 1.
		منامحه والتحجيل حجرانه	ا يەم	NOTES					13) See	Standa	rd Indu	strv Piggyback T	russ Connection
TOP CHORD		eathing directly applie			I roof live loads have	boon	oncidered for						as applicable, or
	6-0-0 oc purlins.	applied or 10-0-0 oc		this design.	11001 live loads have	Deen						uilding designer.	
BOT CHORD	bracing.	applied of 10-0-0 oc			E 7-16; Vult=130mpl	(2 000	rond quet)		LOAD	•			
	0		-		ph; TCDL=6.0psf; E				LOAD	/AOE(0)	otai	laara	
REACTIONS		, 12=20-7-0, 14=20-7			B; Enclosed; MWFR		, , ,						
		0, 16=20-7-0, 17=20-			zone; cantilever left								
		0, 19=20-7-0, 20=20-			and right exposed;C								
		0, 22=20-7-0, 23=20-	-7-0,		VFRS for reactions								
	27=20-7-				late grip DOL=1.33	, nomi,	Lambol						
	Max Horiz 2=42 (LC				ned for wind loads in	the nl	one of the true						
	Max Uplift 2=-5 (LC				uds exposed to wind								
		_C 16), 15=-10 (LC 1			rd Industry Gable Er								
		_C 16), 17=-12 (LC 1			ualified building des								
		_C 15), 20=-12 (LC 1			E 7-16; Pr=20.0 psf	0						WITH CA	1111.
		C 15), 22=-21 (LC 15)),		1.15); Pg=20.0 psf;							WHILL CA	Pall
		C 11), 27=-6 (LC 12)			Plate DOL=1.15); Is=			illy			1	aTHO	O Martin
	Max Grav 2=140 (L				9; Cs=1.00; Ct=1.10						1	ORTES	ich A '
		LC 36), 15=150 (LC 2			I snow loads have b		sidered for th	is		1	$\mathcal{S} \in$	OFLOG	Viza
		LC 23), 17=193 (LC 2	23),	design.						2			
		LC 2), 19=193 (LC 2) LC 22), 21=150 (LC 2		0	as been designed fo	r areate	er of min roof l	live		-	() j		
		LC 22), 21=150 (LC 2 LC 35), 23=140 (LC 2			psf or 2.00 times fla						1	SEA	1. 1. 1.
	27=140 (Z),		non-concurrent with					=		0000	• –
	`	,	-		e 2x4 MT20 unless					1		0363	22 : :
FORCES	(lb) - Maximum Con	npression/Maximum	,		res continuous botto					-	- C		1 2
	Tension				spaced at 2-0-0 oc		a souring.			Contraction of the second s	1	·	A 1 5
TOP CHORD	1-2=0/24, 2-3=-44/2	, ,			has been designed		e load of 20 0	nsf			20	N. SNOW	EFM. AN
	4-30=-38/37, 5-30=-				m chord in all areas			201			1	S. GIN	5. 24 8
	6-7=-58/73, 7-8=-58		•		by 2-00-00 wide will			m			1	CA C	BEIN
		=-38/20, 10-11=-38/1	3,		ny other members.							1, 4. 6	IL III
	11-12=-28/14, 12-13	3=0/24			,							201111	Uma.
												Septembe	r 30,2020
												-	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	J01	Monopitch	8	1	Job Reference (optional)	E14920689

TOP CHORD

DOL=1.33

design.

NOTES

1)

2)

4)

Tension

Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Wind: ASCE 7-16; Vult=130mph (3-second gust)

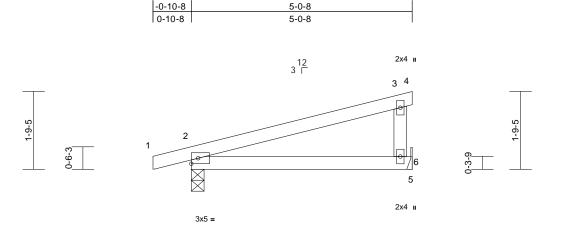
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum


3) Unbalanced snow loads have been considered for this

BOT CHORD 2-6=-29/84, 5-6=0/0

1-2=0/16, 2-3=-45/66, 3-4=-4/0, 3-6=-162/32

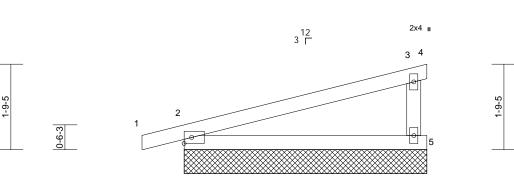
Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:41 ID:Q_3xr7KmlBPO1k0t4ziE??ykEFx-Mock Me

Page: 1

						5-0-8							
Scale = 1:26.3						_							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	0.03	6-9	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.26	Vert(CT)	-0.05	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 18 lb	FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-0-8 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-3-8.6	cept end verticals.		3-06-00 tall chord and a Refer to gird Provide med bearing plat 6. One RT7A L truss to bea	m chord in all are by 2-00-00 wide ny other membel ler(s) for truss to chanical connecti e capable of with JSP connectors i ring walls due to	will fit betw 's. truss conn on (by othe standing 4 recomment UPLIFT at	een the both ections. ers) of truss t 5 lb uplift at j ded to conne jt(s) 2. This	to joint ect					
	(3126) 2=0-3-8, C Max Horiz 2=43 (LC Max Uplift 2=-67 (LC Max Grav 2=273 (LC (lb) - Maximum Com	14) 5 11), 6=-45 (LC 11) C 22), 6=230 (LC 22	?)	forces. This truss is Internationa	s for uplift only a designed in acco I Residential Cod nd referenced st	ordance wi le sections	th the 2018 R502.11.1 a						

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV	
20090102	J02	Monopitch Supported Gable	2	1	Job Reference (optional)	E14920690

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:41 ID:c5E59tTg9aoqsQM?DnPpyJykEFm-Mock Me

Page: 1

5-0-8

3x5 =

Scale = 1:23.9				I						1			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.25 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 3 WEBS 2x4 3 BRACING TOP CHORD Struct 5-0-5 BOT CHORD Rigid brac REACTIONS (size) Max H Max U Max C FORCES (lb) - Tens TOP CHORD 1-2= BOT CHORD 1-2= BOT CHORD 2-5= NOTES 1) Wind: ASCE 7-11 Vasd=103mph; T Cat. II; Exp B; Er Exterior (2) zone vertical left and ri forces & MWFRS DOL=1.60 plate 4 2) Truss designed for only. For studs of see Standard Inco or consult qualifie 3) TCLL: ASCE 7-1 Plate DOL=1.5)	B oc purlins, exit a ceiling directly ing. 2=5-0-8, 5 loriz 2=42 (LC (LC 11) irav 2=265 (LC 6=265 (LC Maximum Com ion 0/15, 2-3=-48/54 32/78 B; Vult=130mph CDL=6.0psf; BC iclosed; MWFR iclosed; MWFR i	pression/Maximum 4, 3-4=-4/0, 3-5=-157 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) and C-C and right exposed ; e C for members and hown; Lumber the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 If=13.9 psf (Lum 1.0; Rough Cat B; Fu	6) 7) d or 8) 9) =-24 10) F=-24 10) LO 7/26	load of 12.0 p overhangs no Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an One RT7A U truss to beari This connecti lateral forces This truss is of International	designed in accord Residential Code nd referenced star	lat roof lo n other live c. d for a live s where ill fit betw PLIFT at y and do dance wi sections	ad of 13.9 p: re loads. d bearing. e load of 20.0 a rectangle reen the botto ded to conne jt(s) 2 and 5 es not consic th the 2018 R502.11.1 a	sf on Opsf om ect der				Sentember Sentember Sentember Sentember Sentember Sentember Sentember Sentember Sentember Sentember	EER AU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 30,2020

Job	Truss	Truss Type	Qty	Ply	A&G RESIDENTIAL - 46SV		
20090102	J03	Monopitch	6	1	Job Reference (optional)	E14920691	

Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:41 ID:RW7n_II5leia6ydP46JCNAykEFP-Mock Me -0-10-8 8-0-8 0-10-8 8-0-8 2x4 II 12 3 □ 34 2-6-5 2-6-5 10 2 .----0 16 5 2x4 II 3x5 = 8-0-8 Plate Offsets (X, Y): [2:0-1-0,Edge] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.57 Vert(LL) 0.12 6-9 >759 240 MT20 13.9/20.0 Lumber DOL 1.15 BC 0.40 Vert(CT) -0.20 6-9 >464 180 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.01 2 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP Weight: 36 lb 10.0 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle TOP CHORD 2x6 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SP No 2 chord and any other members. 2x4 SP No.3 Refer to girder(s) for truss to truss connections. 6) Provide mechanical connection (by others) of truss to 7) Structural wood sheathing directly applied or bearing plate capable of withstanding 75 lb uplift at joint 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc One RT7A USP connectors recommended to connect 8) bracing. truss to bearing walls due to UPLIFT at jt(s) 2. This 2=0-3-8, 6= Mechanical connection is for uplift only and does not consider lateral Max Horiz 2=62 (LC 14) forces. Max Uplift 2=-84 (LC 11), 6=-75 (LC 11)

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1 and

Max Grav 2=342 (LC 2), 6=363 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/9, 2-10=-234/45, 3-10=-52/64, 3-4=-4/0, 3-6=-282/59 BOT CHORD 2-6=-38/162, 5-6=0/0

NOTES

Scale = 1:29.2

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

LUMBER

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (size)

TCLL (roof)

Snow (Pf/Pg)

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf: BCDL=6.0psf: h=25ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

MILLIN CA SEAL 036322 G (1111111) September 30,2020

GRIP

244/190

FT = 20%

Page: 1

818 Soundside Road Edenton, NC 27932

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS ON TIPS AND INCLODED MITER REFERENCE PAGE mit-14/3 fev. 5/92/20 BEFORE USE. Design valid for use only with MiTeR with MiteR connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9)

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty Ply		A&G RESIDENTIAL - 46SV		
20090102	J04	Monopitch Supported Gable	2	1	Job Reference (optional)	E14920692	

8-0-8

-0-10-8

Carter Components (Sanford), Sanford, NC - 27332.

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

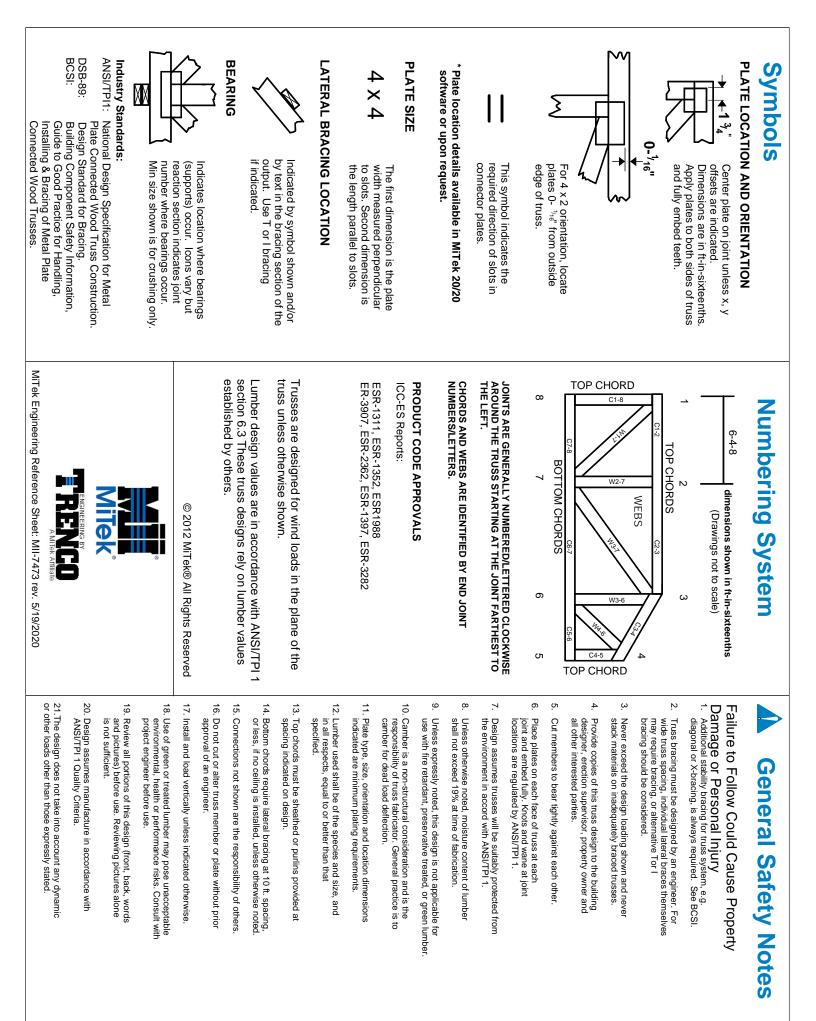
FORCES

WEBS

NOTES

2)

LUMBER


Run: 8.42 S Aug 25 2020 Print: 8.420 S Aug 25 2020 MiTek Industries, Inc. Tue Sep 29 22:08:41 ID:RoeDYZylksr9fZQhZA7BZlykEF8-Mock Me

Page: 1

11111111111

0-10-8 8-0-8 2x4 ı 12 3 Г 2x4 II 56 2x4 II 4 3 0 2-6-5 2-6-5 14 2 -9-9 ð 9 9 8 2x4 🛛 2x4 🛛 2x4 u 3x5 = 8-0-8 Scale = 1:29 Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL TCLL (roof) 20.0 1.15 тс 0.17 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) BC 13 9/20 0 Lumber DOL 1 15 Vert(CT) 0 1 1 n/a n/a 999 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 2 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 32 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum TOP CHORD 2x4 SP No.2 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 2x4 SP No.2 BOT CHORD 2x4 SP No.3 Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this 2x4 SP No.3 desian. This truss has been designed for greater of min roof live 5) TOP CHORD Structural wood sheathing directly applied or load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 6-0-0 oc purlins, except end verticals. overhangs non-concurrent with other live loads. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 6) Gable requires continuous bottom chord bearing. bracing. Gable studs spaced at 2-0-0 oc. 7) REACTIONS (size) 2=8-0-8, 7=8-0-8, 8=8-0-8, 8) * This truss has been designed for a live load of 20.0psf 9=8-0-8, 10=8-0-8 on the bottom chord in all areas where a rectangle Max Horiz 2=63 (LC 14), 10=63 (LC 14) 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Uplift 2=-19 (LC 11), 7=-2 (LC 15), 8=-4 chord and any other members. (LC 11), 9=-15 (LC 15), 10=-19 (LC One RT7A USP connectors recommended to connect 9) **11**) truss to bearing walls due to UPLIFT at jt(s) 2, 7, 9, and 2=184 (LC 2), 7=90 (LC 22), 8=109 Max Grav 8. This connection is for uplift only and does not (LC 22), 9=330 (LC 22), 10=184 consider lateral forces. (LC 2) 10) This truss is designed in accordance with the 2018 (lb) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and Tension R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD 1-2=0/15, 2-14=-43/59, 3-14=-38/71, LOAD CASE(S) Standard 3-4=-40/42, 4-5=-35/40, 5-6=-4/0, 5-7=-72/10 BOT CHORD 2-9=-37/70, 8-9=-34/38, 7-8=-34/38 3-9=-234/48, 4-8=-94/24 С 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Providence and the second Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C SEAL Exterior (2) zone; cantilever left and right exposed ; end 036322 vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, GI or consult qualified building designer as per ANSI/TPI 1. (1111111) September 30,2020 👠 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only design parameters and READ NOTES ON TIPS ON TIPS AND INCLODED MITCR REPERINCE PAGE MIT-14/3 (94) 3192/020 DEPORE 05E. Design valid for use only with MITER (be connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component**
 Satisfies
 Ansi/TPI Qu

 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601
 818 Soundside Road Edenton, NC 27932

